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ABSTRACT. In this paper we study such classes of distribu-
tions which are generated from exponential families by loss
of information due to the fact that only some function of the
exponential family variable is observable. Examples of such
classes are mixtures and convolutions of exponential type
distributions as well as grouped, censored and folded distribu-
tions. Their common structure is analysed. The existence is
demonstrated of a n'/?-comsistent, asymptotically normally
distributed and asymptotically efficient root of the likelihood
equation which asymptotically maximizes the likelihood in
every compact subset of the parameter space, imposing only the
natural requirement that the information matrix is positive
definite. It is further shown that even the weaker requirement
of local parameter identifiability, which admits of application
to non-regular cases, is sufficient for the existence of con-
sistent maximum likelihood estimates. Finally the subject of
large sample tests based on maximum. likelihood estimates
is touched upon. i

Key words: Incomplete data, grouping, mixtures, exponential
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1. Introduction

This paper is concerned with classes of probability
distributions generated from distributions of expo-
nential type by loss of information. In accordance
with Lehmann (1959), we say that a distribution is
of exponential type (or belongs to an exponential
Jfamily) if it possesses a probability density

plx; @) = C()~1e**® (1.1)

with respect to a o-finite measure ¢ over a Borel
set X in a Euclidean space, and where «-¢ is the
scalar product of an r-dimensional parameter « (in
“natural” parametrization) and a statistic # of the
same dimension. C(«) is a norming constant,

C(e) = fe""“”d,u(x). 1.2)

The importance of the exponential families as sta-
tistical models is well-known.
Since the statistic ¢ is sufficient for the parameter

4 — 741923

«, it contains all the relevant information contained
in x for inference about the parameter. The situa-
tion is sometimes such, however, that some relevant
information contained in x is unobtainable, dis-
regarded or lost, with the consequence that not
having x we have to be satisfied with the value of a
function y =y(x), from which ¢ can only be partially
or approximately determined. The resulting distri-
bution of y is in general not of exponential type.
The term incomplete data from an exponential fam-
ily will be used for this kind of situation.

Incomplete data from an exponential family ap-
pear not infrequently, as should be clear from the
examples in section 2, and many papers have been
devoted to the study of special cases. A general view
seems first to have been adopted by Martin-Lof
(1966), who recognized the common structure of the
examples below and discovered the form (4.10) of
the maximum likelihood equations and the form
(4.11) of the information matrix. A further analysis
appeared in Sundberg (1972), from which the pres-
ent paper is essentially an excerpt.

For simplicity the asymptotic theory in this paper
is restricted to random samples, that is samples of
independent observations from one and the same
distribution. Note that a random sample (x,, ..., x,,),
from a distribution with the density (1.1), has a
distribution of exponential type with the same para-
meter « and the sufficient statistic Z{" #(x,).

2. Examples

(The numbering of the examples will be adhered to
throughout the paper.)

Example 1. Grouping and censoring. Grouping
means that we are given some partitioning of the
sample space and observe y(x) = ‘the class into which
x falls’ instead of x itself. As a rule, grouping im-
plies loss of information. A more general case is
partial grouping, cf. for instance Kulldorff (1961).
A special case of that is type I censoring, in which
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the observations x falling outside some fixed inter-
val are grouped. In type II censoring, a fixed pro-
portion of the sample is censored and the resulting
observations are no longer independent, so that case
will not be covered by our asymptotic theory.

In this context the essentially different nature of
truncation should be observed. We may say that
censoring acts upon the sample, whereas truncation
acts upon the underlying measure u. As a conse-
quence, truncation does not bring us outside the
exponential families.

Example 2. Finite mixtures. By a mixture of k
distributions of exponential type with densities
pix; @), j=1, ..., k, with respect to some common
measure u, we mean a distribution with the density

k
a(y; a) = jz ejpj(y; 061), 2.1
=1
where 0, >0 are known or unknown mixing propor-
tion parameters with £0;=1.

That this is a situation with incomplete date from
an exponential family can be seen in the following
way, following Martin-Lof (1966). If the under-
lying k populations were distinguishable, so that we
could observe not only y but also a label indicating
from which population y was sampled, we would
have observations from a distribution of exponential
type. For let

o — 1 if y is sampled from p,(y; «,)
1 0 otherwise

forj=1, ..., k. Then the density of x =(y, ey, ..., &) is
k
jI_Il(eij()’; ;) é

0; ,e)] Q2
Cj(oc/) j ’ . )

and as a consequence it is of exponential type. Since
the e;’s are linearly related by Ze; =1, corresponding
to X6;=1, the parameter dimension is one less than
it appears from (2.2). Furthermore, the parameter
coordinates can be permitted to be linearly related,
in which case the actual dimension is still less.

A hybrid example has been used by Mendenhall
& Hader (1958) as a model for a life-testing experi-
ment. They consider maximum likelihood estima-
tion when observing from a mixture of two expo-
nential - life-time distributions censored at a fixed
point of time, where only the censored observations
are indistinguishable.

When we are concerned with applications to
practical cases, mixtures of two normal distributions
with or without common standard deviation seem
to be of the greatest importance, and parameter

k
=exp [/Z (oc,- e;1,(y) +log
=1

Scand J Statist 1

estimation for such mixtures have been studied ever
since the days of Karl Pearson.

Example 3. Convolutions. Another example arises
if we can only observe the sum y ==f x; of k in-
dependent variables x, ..., X, each with a distribu-
tion of exponential type. A more specified model,
which has been applied in practical situations, is
the following: We desire observations on a real
variable x with a distribution of exponential type,
the parameters of which are to be estimated. But
we cannot avoid a normally distributed additive
error component, with the result that the observable
statistic is y =x +z, where z has a normal distribu-
tion with more or less unknown parameters.

Example 4. Folded distributions. The folded nor-
mal distribution appears when only the numerical
value y=|x| of a normally distributed variable x
is observable. Leone et al. (1961) give examples of
situations arising in industrial practice in which this
model may provide an appropriate description of
the data.

What might analogously be called a folded bi-
nomial distribution has been considered by Urbakh
(1967) as giving an appropriate statistical descrip-
tion of an experiment to study differences in the
rates of DNA synthesis for two morphologically in-
distinguishable types of pair-wise occurring chro-
mosomes.

Example 5. The wrapped normal distribution.
The wrapped normal distribution is a distribution
on a circle, generated by wrapping an ordinary
normal distribution around the circle. Let the cir-
cumference of the circle be of unit length. Then the
wrapping is equivalent to addition modulo one of
the ordinary normal distribution. Instead of ob-
serving x we can only observe

¥x) =x=[x], (2.3)

where [x] is the greatest integer less than or equal
to x.

Example 6. Incomplete data in multivariate analy-
sis. Much attention has been paid to the problem
of missing values in multivariate analysis. Assume
given incomplete observation vectors from a multi-
variate normal distribution, where the incomplete-
ness is due to pure chance or to design. Then we
have an example of the general structure which is
the subject of our analysis. For recent discussions
on maximum likelihood estimation in such models
and literature reviews, see Hartley & Hocking (1971)
and Woodbury & Orchard (1972).

Example 7. The negative binomial distribution.
The negative binomial distribution, with density

-1
n(y;x,0)=(x+i )0”(1—0)", y=0,1,2, ...,
(2.4)




is an example of incomplete data from an expo-
nential family, and it can be used to illustrate two
kinds of generation of such examples.

If y has a Poisson distribution with parameter 4
which is itself a random variable with a two-dimen-
sional gamma distribution, the simultaneous distri-
bution of x =(y, 1) is of exponential type, since the
gamma distribution itself is of exponential type.
But it is common knowledge that the distribution
of y alone is the negative binomial. In this way the
negative binomial distribution shows that some in-
finite mixtures appear as examples of incomplete
data from exponential families.

If z is Poisson distributed and y is the sum of z
independent variables following a common log-
arithmic distribution, the simultaneous distribution
of x=(y, z) is of exponential type and the distribu-
tion of y alone is well known to be the negative bi-
nomial. In this way the negative binomial distribu-
tion shows that some compound (Poisson) distri-
butions appear as examples of incomplete data from
exponential families.

One interpretation of a model as a kind of in-
complete data may contribute to our understand-
ing of the data, but any interpretation of that kind
works as a technical aid in permitting us to use the
general theory in the following sections.

Example 8. The Cauchy distribution. The Cauchy
distribution family, given by the density

1 A

A3 W) = e @5
can also be looked upon as the distribution of in-
complete data from an exponential family. One
possibility is to consider it as a mixture, like the
negative binomial, namely by giving the inverse
variance in a normal distribution with mean u the
distribution of the square of a normal variable
with mean zero and variance 1/4%. Another possi-
bility is to consider the quotient of two random
variables having a bivariate normal distribution
with means zero and common variance. We omit
the details, which are not new.

3. Basic properties of exponential families

This section consists of some definitions and prop-
erties of exponential families, taken from Martin-
Lof (1970). Most of the material can also be found
in Lehmann (1959).

D(x; @) as introduced in (1.1) is a probability den-
sity provided that the integral C(«) given by (1.2) is
convergent. The interior of the set of points « for
which C(«) is finite is called the natural parameter
space and is denoted by 4. Most results in the se-
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quel are not valid on the boundary of A4, for which
reason A4 has been made open by definition. We as-
sume A to be non-empty. A is an open and convex
subset of R". ‘

The function C(«) can also be expressed as the
integral

Cla)= f e*tdit) 3.1

with respect to the measure A, which is induced
from u by the transformation x - ¢(x) from X into
R" and given by

ME) =

t— Y&

)d,u(x). 3.2)

It is easily verified that A(E) is finite for any compact
set E in R". Following Martin-L6f we call 1 the
structure measure. C(o) is the Laplace transform of
the structure measure.

Let { be a complex vector with «=Re (. The
function C({) is analytic in the open set «€4. The
differentiation of C({) may be performed under the
integral sign, from which operation we obtain the
formula (with m as a multiindex)

D"C() = | ™t tdir). (3.3)

Choosing ¢ real, £ =«, it appears that all moments
E(t™ of ¢t exist and can be written
E, (™ = D"C(x)/C(). 3.4
Since C(«) >0 for all x€4, log C(0) is well-defined
and analytic in some open set containing the real
set A. Differentiating log C we get the semi-invari-
ants (cumulants) =™,
D™ log C(x) =x™(2). (3.5)
In particular this implies that the gradient vector
D log C() equals E,(¢) and that the second and third
order derivatives equal the corresponding second
and third order central moments of 7. Denoting the
variance-covariance matrix by Var,() and the
matrix of second order derivatives by D2, we thus
have the relation

Var,(¢) = D? log C(«) = —D*log p(x; &)
= E,(—D*log p(x; «)).

From this we can conclude that Var,(¢) is Fisher’s
information matrix, which is known to play a
fundamental role in the asymptotic maximum likeli-
hood theory.

(3.6)
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If the structure measure A were concentrated to a
hyperplane of R", we should have replaced ¢ by a
statistic of lower dimension. Without restrictions
we can therefore assume that 4 is not concentrated
to any such hyperplane, from which follows that
Var,(?) is strictly positive definite.

From the relation

Dlogp(x; @) =t —Dlog C(x) =t — E,(t) 3.7
we find the form

1.2

=12 t(x) = E(¢) (3.3
ni-1

for the likelihood equation when a random sample
(x4, ..., X,) is observed. The positive definiteness of
Var,(¢) implies strict convexity of log C(«) and one-
to-one correspondence between « and E,(7). From
the latter fact it follows that the likelihood equation
has at most one root 4€A4. It is easily verified that
this & maximizes the likelihood function in 4 when-
ever it exists, and thus is the maximum likelihood
estimate in the strict sense.

During the recent years several authors independ-
ently have studied asymptotic properties of the
maximum likelihood estimate for exponential fami-
lies (Andersen, 1969; Martin-Lof, 1970; and others).
Martin-L6f has shown the following uniformity
version:

Let a,€A be the true parameter vector. & is de-
fined with a probability tending to one as n— oo,
l/r—z(& —«,) is asymptotically normally distributed
with mean 0 and variance Var,(¢#)~* (in particular,
& is consistent and asymptotically efficient), and the
convergences are uniform in «, on each compact
subset of A.

4. Basic results on distributions generated
when observing y(x)

Our starting-point is the following pair of assump-
tions:

(i) x has a distribution of exponential type, as
defined in (1.1);

(ii) y =y(x) is observed, where y(x) is a measur-
able function of x with values in a Euclidean space
Y.

We first introduce a well-behaving probability
density for y. It is no restriction to assume that u is
a probability distribution. As shown for instance in
Lehmann (1959), there exists for each y a condi-
tional probability distribution u, for x, generated
by u, and denoting the marginal distribution of y
by v we have for each Borel set B in Y (with charac-
teristic function I) and each x€4
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C(x)

1
- [10 i [ o) s
“4.n

The integral in parentheses differs from C(x) only
by the subscript y on g, so it comes natural to in-
troduce the notation

Cl)= f @y (x). 4.2)
Relation (4.1) states that for each x€4,
(y; ) = Cy(x)/C(e) 4.3)

is a probability density for y (w.r.t. »). Analogously

1w =p(x; &)/7(y; @)

T “.4)

is a version of the conditional density of x with
respect to the measure g, for fixed y = y(x).

It should be noted that since exp («-¢) is every-
where positive, the sets of probability zero in Y as
well as in X are parameter independent.

Being proportional to a probability density, Cy(@)
is an almost surely finite function of y for each
fixed « € 4. What is more, we now prove that C(®)
has the desirable property of being almost surely
finite on all of 4 simultaneously. For each fixed y,
C,() as a function of « obviously has the same
kind of properties as C(«). In particular, the set on
which C,(«) is finite is a convex subset of R". Con-
sider now a dense, countable set P of points in 4. P
being countable, C,(«) is almost surely finite on all
of P simultaneously. But then C,(«) is almost sure-
ly finite on all of the convex hull of P, which is
identical with A.

C,(«) has the same kind of properties as C(«),
and C,(a) plays the same role in the conditional
distribution of x for given y as C(«) plays in the
original distribution of x. Therefore we can im-
mediately state the following properties of Cy()
analogous to the properties of C(«) and valid for
almost all y.

Properties of the function C,(«). C,(¢) is analytic
in the set Re (€4, and the differentiation may be
performed under the integral sign;

D"C(®) = C(o) E(t"|y); “4.5)
D™ log C,(®) = »{™(¢|y), and in particular (4.6)
Dlog C,(«) = E(t]y) and @.7)
D*log C,(a) = Varg(t|). (4.8)



Directing our interest to the density #(y; «) =C,(a)/
C(®) of y, the properties of C,(«) and C(«) immedi-
ately provide us with expressions for the likelihood
equation and for Fisher’s information matrix. We
first remind of the general identity
Var (¢) = E(Var (¢|y)) + Var (E(]y)). 4.9
It now follows that the likelihood equation for a
sample (34, ..., y,) is

2 Ee|y)-E0), (4.10)

and that Fisher’s information matrix can be written

Var,(E,(t|y)) = Var,(t) — E,(Var,(¢|y)). 4.11)

The expression (4.10) for the likelihood equation
was noted by Kale (1962) in the special case of ob-
servations from the convolution of a general distri-
bution of exponential type and a completely speci-
fied normal distribution. But its general form seems
first to have been found by Martin-Lo6f (1966). The
likelihood equation (4.10) for incomplete data is
obtained by taking the conditional expectation of
the likelihood equation (3.8) for complete data. In
fact, this is true for general parametric families, as
indicated by Woodbury & Orchard (1972), under
suitable regularity conditions. Analogously the ex-
pression (4.11) for the information matrix is extended
to general families by substituting D log p for ¢.

The conditional expectation not being parameter
independent makes equation (4.10) more complicated
than equation (3.8). The likelihood equation (3.8)
for complete data has at most one root in 4, and that
root maximizes the likelihood. The likelihood equa-
tion (4.10), for incomplete data can have several
solutions in A4, and it may happen that none of
them corresponds to a global maximum in A4 of the
likelihood. As an illustration we consider an ex-
ample.

Example 2. Mixtures of two normal distributions.
Let the two normal distributions have means y,
and ., and standard deviations o, and o, respec-
tively, and let the mixing proportions be 6 and 1 —0
respectively. The five-dimensional natural parameter
space A is specified by the inequalities 0 <6 <1,
6, >0, 0, >0. The likelihood for a sample (yy, ..., ¥,)
of observations from the mixture is

L, M1 O Moy 0'2)

n _ 1— _
-1 (Lp(}" ”1)+ "q,(y‘ "2)), (4.12)
=1 \0, A A g,
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where ¢ denotes the standardized normal frequency
function. Put p, =y; for some j, 1<j<n, and let
o, 0. For fixed 0<0 <1, u,, g;>0 the likelihood -
L, yj, 01, p2, 02) tends to infinity as o, tends to
zero. Consequently the likelihood function has no
global maximum in A.

This was pointed out by Day (1969), who also
stated that any pair, triplet, etc. of distinct ob-
servations sufficiently close together will generate a
local maximum of the likelihood function. The lat-
ter fact shows that the likelihood equation can have
more than one root. On the basis of these observa-
tions, Day stated that maximum likelihood estima-
tion clearly breaks down in this case. The results
in the following sections will show that Day’s
opinion was too pessimistic.

The likelihood equation for mixtures of normal
distributions has several roots for an entirely dif-
ferent reason. It is a consequence of thearbitrari-
ness of the numbering of the components of the
mixture that whenever (0, u,, 01, ys, 02) is a root,
(1 -6, u,, 04, 1y, 0y) is also a root. This non-unicity
reflects the lack of a unique identifiability of the
parameter. However, unless y, =p, and ¢, =0,, the
parameter may be called locally identifiable. (End
of ex.)

We conclude this section with a lemma, to be ap-
plied in the next section.

Lemma. Each oy €A possesses a neighbourhood in
which any conditional moment Ea(lt’"| I y) can be uni-
formly dominated by a function which is integrable
with respect to the density n(y; o).

Proof. For |o—a,| <§ we have

Bl - [l et [ [or o
<f|tml eao-t+6|t|dﬂy(x)/femo.t—dltldluy(x)

=E(|rm| &1 ]y) / E. (e

<E (|t &% |y)- E (1 ]y).  (4.13)

The last inequality is an application of Jensen’s in-
equality to the convex function

fx) =1/x, x>0. (4.14)

The dominating function above is independent of «,
and by repeated application of the Schwarz inequal-
ity it is shown to be integrable:
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E (B (] €] 3) - E, (1 | 3))
H{ELEL[tm] ¥ 3)) - B (B (' | 9))}}
<{E(|*™] e®¥). E, (¥} <o, (4.15)

for é >0 sufficiently small. (End of proof.)
In particular the lemma ensures that

Eu (B |t [y) <o (4.16)
for some >0 and |« —e,| <4. It should be noted
that 6 only depends on the distance to the boundary
of 4 and thus may be chosen to be independent of
o, when «, varies within a compact.

An indirect implication of the lemma is that ex-
pectations such as E(E,(t™|y)) are continuous
functions of «. Of particular interest is the continu-
ity of the information matrix Vary(E,(t|y)). For
E(E,(t™]»)") to be continuous at « =0y, it is suf-
ficient that the integrand
a(y; o) Ey(t™] )¢ = C(@) C() 2 E (™ | y)* 4.17)
is almost surely continuous at «, and is dominated
by an integrable («,) function independent of « for
« in some neighbourhood of «, see e.g. Cramér
(1946) § 7.3. In the same way as in the proof of the
lemma it is seen that
Cy(0) < Cyog) E(®11 | ) (4.18)
for |« —a,| <d. For E (t™]|y) the lemma provides
a suitable dominating function. The integrability of
the resulting dominating function for the product
(4.17) for J small enough is now a consequence of
the Holder inequality, as in the proof of the lemma.

Differentiability can be shown in complete ana-
logy to the continuity proof above.

5. Local n'*-consistent maximum
likelihood estimates

In the last section we made the discouraging ob-
servation that the likelihood equation for incom-
plete data can have several essentially different solu-
tions, none of which necessarily corresponds to a
global maximum of the likelihood function. The
situation for large sample sizes is far from hope-
less, however. We first prove a consistency theorem
of Cramér type, for random samples of incomplete
data from an exponential family. All our theorems
are formulated in terms of the natural parameter «.
They can easily be converted to asymptotic state-
ments concerning any regular function of «, but
that contains nothing specific for the present situa-
tion.
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Let a2 €A4 be the true parameter. All we need
impose in order to obtain the following local theo-
rem is one natural condition on the information
matrix for y, ensuring that the observable statistic
y provides information on all of the parameter «,.
This condition is not necessary for consistency, cf.
Theorem 7.2, but when the condition is not satis-
fied we cannot expect a maximum likelihood esti-
mator d to be n'/?-consistent, that is n/%(d — o) to
be bounded in probability as 7 co.

n'/>-consistency condition. Var, (E, (t]») is a strictly
positive definite matrix.

This condition refers to the local behaviour of the
likelihood function in the vicinity of «,. A closer
examination follows in section 6.

Theorem. Let the n'/*-consistency condition be satis-
fied. With a probability tending to one as the sample
size n tends to infinity, the likelihood equation then
has a solution 6 being a consistent estimator of «,.
There exists a neighbourhood of «, in which this root
is unique with a probability tending to one. The esti-
mator & is asymptotically efficient and asymptotically
normally distributed with mean «, and variance

L Var Bt ) .1)

as n tends to infinity.

Remark. From the identity (4.11) it follows that
the relative loss of efficiency of estimation, or the
relative loss of information, when y is observed in-
stead of x, is expressed by the matrix

Vary, (1) E, (Vary, (1] ). (5.2

Proof of the theorem. First below we state general
conditions on distribution families sufficient for the
statements in the theorem to hold. We next demon-
strate that these conditions are satisfied by the
distribution families under consideration. The gen-
eral conditions are almost straightforward exten-
sions to arbitrary parameter dimension of Cramér’s
well-known consistency conditions in the one-
dimensional case, cf. Cramér (1946), p. 500. The
sufficiency of the multi-parametric conditions for
the proclaimed results has been demonstrated by
Aitchison & Silvey (1958), to which we refer for a
a strict proof. They did not consider the uniqueness
property, however, so finally we show that the con-
ditions are sufficient also for the uniqueness prop-
erty to hold.

Sufficient conditions on a general density n(y; «)
for the theorem to hold are:



(i) log n(y; «) is almost surely three times differ-
entiable with respect to « in some neighbourhood
of .

(i) E, (D log 7(y; «,)) =0

(iii) E,(—D?log n(y; %)) = Var,,(D log n(y; o)),
and this information matrix is strictly positive de-
finite.

(iv) Uniformly for « in some neighbourhood of
«, the third order partial derivatives of log 7(y; ©)
are dominated by some function which is integrable
with respect to the density zn(y; o).

For the distribution families under consideration

log 7(y; «) =log C,(«) —log C(), (5.3)
and the information matrix for y is precisely
Var,,(E,(¢[»)- G4

From the properties of C(«) (section 3) and C,(«)
(section 4) it immediately follows that conditions
(i)-(iii) are satisfied whenever the n'/?-consistency
condition holds true. It remains to be shown that
condition (iv) is satisfied.

Only log C,(«) depends on y in the decomposition
(5.3) of log n(y; «). By the property (4.6) of C, the
third order partial derivatives of log C,(«) equal the
corresponding third order central conditional mo-
ments of z. The central moments are dominated by
non-central moments, as may be seen from

E|e- Eliln < 3 ECle] + Bl 9! ])

r m| ;
.S (""') Eef* ) B [5] [y

j=1k=0 k

<23 E (6™ ), (5.5
j=1

the last inequality being an application of Holder’s
inequality to each factor. The lemma in section 4
now implies that condition (iv) is satisfied.

Only the local uniqueness property remains to be
shown. By Taylor expansion of the second order
partial derivatives of log n(y; «) about «, it is seen
from the conditions (iii) and (iv) that there exists a
neighbourhood of «, in which the log-likelihood
function is strictly concave with a probability tend-
ing to one as the sample size tends to infinity. In
that neighbourhood the likelihood function conse-
quently has at most one extremal point with a prob-
ability tending to one, by which the uniqueness is
settled. (End of proof.)

As an illustration we next apply the result to one
of the examples.
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Example 1. Grouped normal samples. Even in
situations as simple as observing from a grouped
normal distribution with either the mean u or the
variance o? regarded as known constants, our ap-
proach to the problems reveals some of its power
and possibilities. As far as it is known to the author,
the best asymptotic results in the literature on maxi-
mum likelihood estimates in these situations state
consistency only under restrictions imposing cer-
tain kinds of upper bounds on the number of inter-
vals in the grouping (Kulldorff, 1961). Now, to
apply our consistency theorem we need only in-
vestigate when the information matrix is positive.
This is elementary and gives the following results:

There exists a consistent estimator for (u, o) as
soon as there are at least three intervals in the
grouping.

When o is known there exists a consistent esti-
mator for u even for two intervals.

When p is known there exists a consistent esti-
mator for ¢ even for two intervals, unless they are
(— oo, u) and (g, o). (End of ex.)

In the same way any other grouped exponential
family could be analyzed.

6. The n'/*-consistency condition and
identifiability of parameters

Let us write @~ f whenever n(y; «) =n(y; f) a.s. In
this way we introduce an equivalence relation in 4,
separating A in equivalence classes. Obviously the
theorem in section 5 remains valid if the true «, is
replaced by any o~ o, in theformulations of the
theorem and its assumption. From observations on
y the true parameter is only identifiable with respect
to equivalence class. We first give some examples of
such equivalence classes.

Example 1. For the normal distribution grouped
in the two classes (— oo, ¢) and (c, o) the equiva-
lence classes form the curves

c—p
ag

= constant

©6.1)

in the parameter space.

Example 2. For a mixture of two normal distribu-
tions,
0, p1, 01, p2, 02) ~ (1 =0, pg, 04, p1, 04), (6.2)
and these pairs of points form the equivalence clas-
ses except when y, =y, and o, =0,. In the latter case
the equivalence classes are the curves obtained as 6
runs through (0, 1). Note that identifiability of the
true parameter in this context requires more than the
usual concept, the identifiability of the mixing meas-
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ure. In the present example the mixing measures cor-
respond to the equivalence classes.

Example 4. For the folded normal distribution,
when y = |x],
(#, 0) ~(—p, o). (6.3)

Example 5. For the wrapped normal distribution,
when y =x —[x],

(‘u’ G) ~(.u+k9 6)

for each integer k. (End of ex.)

We might say that « is locally indentifiable at o,
if «, is an isolated point in its equivalence class. We
will now show that this is the case if Var, (E,(t]y)
is strictly positive. In fact we prove a slightly stronger
assertion.

6.4)

Theorem. If the information matrix is strictly positive
definite at « € A, there exists some neighbourhood of
oo that contains at most one point from each equiva-
lence class.

Proof. Assume the contrary, that is the existence
of a sequence {(o, «;)} of pairs of distinct equivalent
points such that o~ «, o, >, as k- co. Consider
the Taylor expansion of log #(y; ay) about oG up to
a third order remainder term of third order uncon-
ditional and conditional moments, which are ma-
jorized by means of relation (5.5) and the lemma in
section 4. Taking expectations, the linear term
vanishes and we obtain

0= E,, (log n(y; ar) —log n(y; o))
= = Hok — )’ Vary, (B, (¢]3)) (o — o)

+O(| iy — o |?). (6.5)
For o and «;, sufficiently close to o,, the remainder
term is uniformly bounded by some constant times
| o — o |3. This is a consequence of the fact that the
0 of the lemma can be chosen independently of the
og and that the majorization (4.15) is bounded on
compact subsets of 4. On the other hand, the quad-
ratic form is bounded from below by some positive
constant times |aj —a,|? for o, sufficiently close to
«y, since the information matrix is continuous and
strictly positive at «,. As a consequence, the positive
quadratic form dominates as koo and (6.5) can-
not be zero for all k, in contradiction to the as-
sumption. (End of proof.)

If the information matrix is strictly positive for
all « equivalent to «,, the theorem implies that there
are at most a finite number of points « equivalent
to o, in every compact subset of 4. A further dis-
cussion of local identifiability and its relations to
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the behaviour of the information matrix may be
found in Sundberg (1972).

7. Asymptotic likelihood maximization
on compacts

This section is independent of the n'’%-consistency
condition. Let the true value «, be fixed. Our start-
ing-point is the information inequality

Ey(log n(y; ) < E, (log 7(y; o)), @7.1)
with equality if and only if «~ «,. Since our distri-
butions have a common support it is no restriction
to assume that the right hand side is finite and that
the left hand side exists for all «, finite or — oo.
Under strong assumptions on the distribution fam-
ily, Wald (1949) showed that (7.1) implies strong
consistency of the ‘global’ maximum likelihood esti-
mate. In the present situation Wald’s conditions
are much too strong and his result does not neces-
sarily hold. But the information inequality (7.1)
makes it plausible that some results similar to that
of Wald should hold if we restrict the parameter to
compact subsets of 4. More precisely, we have the
following two results. The proof reminds of Wald’s
proof inasmuch as it contains a majorization of the
likelihood within neighbourhoods, a finite number
of which cover the compact.
Let &, denote the set of points equivalent to «,.

Theorem 7.1. Let K be an arbitrary compact subset
of A, containing some element of &,. The maximum
point in K of the likelihood function is strongly con-
sistent w.r.t. &, in the sense that its distance to the
set &, converges almost surely to 0 as n— oo,

Theorem 7.2. Suppose «, is isolated from equivalent
points in A. Almost surely there exists for n large
enough at least one root & of the likelihood equation
such that 6->a, and such that & asymptotically maxi-
mizes the likelihood function in every compact sub-
set K of A, in the sense that the difference between
(1/m) Z; log n(y;; ) and sup,.x (1/n)3;log m(y;; @)
converges to 0 as n— oo,

The theorems are immediate consequences of the
following pair of lemmas.

Lemma 7.1. To each compact subset K of A which

has no point in common with &, we can find an & >0
such that

1 1
sup= 2 log a(y;; ) <= > log n(yy; a,) — 7.2)
acK N ny

for n large enough with probability one.



Lemma 7.2. For each compact subset K of A and each
>0

1 1
sup - 2 log a(y;; o) <= > log a(y;; o) + & (7.3)
xcK N3 n;

for n large enough with probability one.

Proof of Lemma 7.1. We first choose a compact
K’c A, which also contains no point in the equiva-
lence class of «, but such that the interior of X’
contains K. We next choose ¢ >0 such that

sup E, (log n(y; o)) < E, (log a(y; «,)) — 3e. (7.9
ae K’

This is possible by the inequality (7.1) and the con-
tinuity of E, (log#(y; «)). This continuity follows
from the expression

log n(y; «) = log C,(«) —log C(=), (1.5)
where the convexity of log C () is preserved when

taking expectations. For each fixed « €K’ the strong
law of large numbers now ensures that

1 1.
- 2 log a(y;; o) < - 2 log a(y;; o) - 26 (7.6)
i S 3

for n large enough with probability one.

Let us now reconsider the expression (7.5). Since
log C,(«) is a convex function of «, the supremum
of log C,(») in a closed cube is attained at some of
the 2" corners. To each point in X we can find a
cubic neighbourhood contained in K’ such that the
continuous function log C(«) varies with less than
in that neighbourhood. Since K is compact a finite
number of these neighbourhoods are sufficient to
cover K. Let the finite set of their corners be denoted
by FcK’. It follows that

1 1
sup - log a(y; a) <sup - > log a(y5 ) +&,  (1.7)
n aeF N §

aeK

and since F is finite we can finally conclude from
(7.6) that

1 1
sup — > log 7(y;; a) <= . log n(y;; o) — & (7.8)
acK N n

for n large enough with probability one. (End of
proof.)

Proof of Lemma 7.2. To obtain a proof of Lemma
7.2, we need only simplify the last proof by exclud-
ing the common restriction on the compacts K and
K’ that they should not contain any point «~ «, and
excluding the critical choice of ¢. (End of proof.)

Theorem 7.1 may be regarded as a large sample
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justification of the method of maximum likelihood
for the distribution families under consideration.
The condition of Theorem 7.2 is certainly satisfied
when the information matrix is strictly positive, by
the theorem of section 6, but the interesting applica-
tions of Theorem 7.2 are to non-regular cases. As a
single example we take folded distributions.

Example 4. Folded distributions. For the folded
normal and binomial distributions the folding in the
original sample space X has a direct correspondence
in the parameter space 4, where the equivalence
classes are obtained by folding the parameter space
at the line # =0 and the point 6 =1/2 respectively.
The n'/2-consistency condition holds except at the
folds u=0 and 6=1/2. Theorem 7.2 ensures the
existence of consistent roots even when the true
parameters happen to fall at these folds. For the
folded normal distribution, an exhaustive investiga-
tion is given by Sundberg (1974).

8. Large sample tests

The theory above can be used to derive or to justify
the usual large sample tests of parametric hypo-
theses based on maximum likelihood estimates. For
simplicity, write « =(8, y), the dimensions of # and
¥ being p and g =r —p >0, respectively, and let the
hypothesis to be tested be y =0. It is assumed that
A contains points satisfying the hypothesis. We will
only consider the local behaviour of the tests; more
specifically we apply the usual technique to con-
sider a sequence of alternatives «™ approaching
some a, =(f,, 0) as n— oo, at such a rate that

|&™ — oy | =O(n—112).

8.1

We impose the n'/2-consistency condition (section 5)
at «,. As one consequence this will save us from all
troubles of local non-identifiability. Furthermore
this condition ensures the existence of n'/?-consistent
roots d,=(80,0) and &=(8, ) of the likelihood
equations when the hypothesis is assumed true and
when it is not, respectively, where n'/?-consistency
means convergence to «, at a rate of order n—2 as
n—-oo and {«™} satisfies (8.1) For details and
proof we refer to Sundberg (1972).

In order to simplify the expressions below we in-
troduce a projection matrix Q, which associates
with each r-dimensional vector the vector of the ¢
last coordinates. Then we can for instance write y =
Q. Furthermore let the component of ¢ correspond-
ing to ¢ be v, that is v = Q¢.

Theorem. Let the n'/*-consistency condition be satis-
fied at o,. Then the following test statistics (i)—(iv)
are locally asymptotically equivalent in the sense that
the differences tend to zero in probability as n— oo
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and the parameter o™ runs through a sequence satis-
fying (8.1). Their common asymptotic distribution is
the (non-central) y* distribution with q degrees of
freedom and non-centrality parameter

1) (Q(Vary, E,(t| »)7'Q) ™.

ﬂ(yi; &o)
(y;; &)

(the local likelihood ratio test statistic).

(i) -2logA=-2>1log
i

(i) %Z(Ei.(tly,-)—E&.,a»' (Varg, Es(¢| y)
{

1
2Byt | y) - Ee (1)) = - g (Be0|y) - Es (o))
i
(O(Vars, B (t])7'0) . (f?&o(v [7) — Ez,(0)).

A general version of this test statistic was first pro-
posed by Rao (1948).

(iii) np(Q(Var; E¢(t]y)™'Q) 7'

A general version of this test statistic was introduced
by Wald (1943).

(iv) (& - &Y Varg, Ex(¢]3)(@~ &) o
n(& — do) Varg Ez(t|y)(a —&,).

The theorem can be proved by Taylor expansions
. of the likelihood function and its derivatives. The
remainder terms can be handled by means of the
lemma in section 4. However, the proof is long and
trite, and for the details we refer to Sundberg (1972).

An example of what can happen when the 7!/:-
consistency condition is not satisfied can be found
in Sundberg (1974), where large sample tests of
# =0 for the folded normal distribution (example 4)
are studied.
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