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ABSTRACT

The paper deals with the numerical solution of the likelihood
equations for incomplete data from exponential families, that is
for data being a function of exponential family data. Illustrative
examples especially studied in this paper concern grouped and
censored normal samples and normal mixtures. A simple iterative
method of solution is proposed and studied. It is shown that the
sequence of iterates converges to a relative maximum of the
likelihood function, and that the convergence is geometric with
a factor of convergence which for large samples equals the maxi-
mal relative loss of Fisher information due to the incompleteness
of data. This large sample factor of convergence is illustrated
diagrammatically for the examples mentioned above. Experiences

of practical application are mentioned.

1. INTRODUCTION AND THEORETICAL BACKGROUND

The statistical distributions to which the iterative method of

the present paper could be applied are the distributions of incom-
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plete data from exponential families. A distribution is said to be

of exponential type (or belong to an exponential family) if it has
a probability density

py(x)=Cla) "1 e ) (1)

with respect to some o-finite measure du(x) over a Borel set in a
Euclidean space. Here a-«t denotes the usual scalar product of a
parameter vector a (in "natural" parametrization) and a minimal
sufficient statistic t , and C(a) is a norming constant. The para-
meter o belongs to the natural parameter space A , which will
here mean the interior of the maximal set of possible a values.
The distribution of a sample (x1 P ,xn) from '(1) is of exponential
type with t= Zit(xi) . The importance of the exponential families as
statistical models is well-known, some simple examples being the
binomial, the Poisson, the normal and the exponential distribution
families.

The term incomplete data will be used to mean that some re-

levant information contained in x is unobtainable, disregarded
or lost, such that we observe the value of a function y=v(x),
from which t can only be partially or approximately determined.
The resulting distribution of y is in general not of exponential
type. This situation appears frequently.

Examples. Grouped or censored data from a distribution of
exponential type. Missing values in multivariate analysis. Data
from a mixed normal distribution. Data from an exponential family
distribution observed with normal additive error (i.e. observa-
tions from a convolution). For details and further examples, see
Sundberg (1974).

The following basic properties of exponential families and
their incomplete data distribution families will be used in section
2. For proofs and other details the reader is referred to Sundberg
(1974). ,

The likelihood equation system for parameter estimation in

the exponential family (1) may be written
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Ea[t]=t or mt(a)=t . (2)

where Eon[t] and mt(OL) both are used to denote the expectation
vector of t . The Fisher information matrix Ix is given by the

variance-covariance matrix Va[t] of t,

Ix=Va[t] . (3)
This covariance matrix also represents the Jacobian matrix of
mt(a) . Without restriction we may assume that Va[t] is strictly
positive definite for all a € A . This ensures that mt(a) is a one-
to-one function of a .

Let y=y(x) be a measurable. function of x . The likelihood
equations when y is observed are obtained by taking the con-
ditional expectation of (2) ,

Ea[t]=Ea[tly] or mt(cx)rmtly(c.) . (4)

The Jacobian matrix of mtly(c‘) is Va[tly] , the conditional co-
variance matrix of t , and the Fisher information matrix Iy is

the expectation of Va[t] -Va[tly] ,

=V, [t ~E LV [tly]] . )

Comparison with (3) shows that the second term in (5) measures
the loss of information due to observing y(x) instead of x .

Frequently mt(OL) is explicitly invertible, and the unique
solution of the complete data equation system is readily obtained
as

&= mt_l © . )

In equation (4) we read mtly(a) instead of the t of equation (2),
and moreover this function of o is usually quite complicated.
The need for an iterative method of solution of the likelihood

equation system (4) is apparent.

2. THE ITERATION METHOD, THEORY

The two standard methods of iteration for solving likelihood
equations are the Newton-Raphson and scoring methods. They re-

quire repeated matrix inversion. The matrices to be inverted are
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Va[t] -Va[tly] and its expectation Iy given by (5). If these
matrices are laborious to calculate or to compute, or if the inver-
sion of the matrices is problematic, or if the method is sensitive
to the choice of trial value, then a simpler and more robust but
less rapid method may be a good alternative. In many particular
models, various such alternative methods have been proposed
(cf. below).

The iteration method proposed here is usually simple, its
convergence is geometric, and it is insensitive to the choice of
trial value because it always finds a relative maximum of the
likelihood function. These statements will be made more precise
and be demonstrated below. The iteration method runs as follows.
Choose a trial value oto of a and compute successive iterates
by the iteration step

Oy =) =m my @) @)

cf. the formula (6) for complete data. For this method to be of
any practical value, mt(a) must be explicitly invertible. As
mentioned above, in most cases of importance this is so.

For the most common examples of incomplete data from spe-
cific classes of distributions, such as grouped and censored data,
multivariate analysis with missing values, and data from mix-
tures, several special iteration methods have been proposed in
the literature. The method (7) was suggested by A. Martin-Lof
(1967, personal communication). For the special case of grouped
or censored samples from an exponential family, the method was
proposed by Blight (1970), although somewhat obscured. How-
ever, he failed to prove its convergence. Also worth mentioning
when discussing the method (7) is the method by Hasselblad
(1969) for finite mixtures of distributions of the same exponential
type. Hasselblad’s method is similar but not identical to the me-
thod (7). Neither did he manage to prove the convergence of his
method.

To prove the convergence of the method (7) we will make use

of the following criterion (see Ostrowski (1960), ch. 18) for a root

I
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& €A to be a point of attraction for the iterative process
Opyq= f(ak) . Let IMme be the value of the numerically largest
eigenvalue of the Jacobian matrix of f(a) at a=4 .
Criterion. For a root d€A to be a point of attraction it is necessary
that IAl___ <1 and sufficient that I\l <1.
max max
The quantity Il is the factor of convergence.

max
Asymptotically as k=« the error |ak-&l decreases by this factor

at each iteration step, provided ')‘|max< 1.
Lemma. The eigenvalues corresponding to the iteration process (7)
are all real and non-negative. At local maximum points of the
likelihood function they satisfy XmaxSI and at other extremal
) , <
points they cannot satisfy )‘max 1.

Qutline of proof. The Jacobian of the composite function in

(7) at =4 is
-1
Va[t] vd[t‘Y] (8)

The properties of its eigenvalues, as stated in the lemma, follow
from the positive (semi-)definiteness of covariance matrices in
combination with the local extremality of & . For details, see
Sundberg (1972).

Remark. The lemma indicates that the set of local maximum
points in A and the set of attraction points in A are identical.
A strict proof in the one-dimensional case of this nice property is
given in Sundberg (1972). Hence, in contrast to what is the case
with the Newton-Raphson and similar methods, we need not fear to
arrive at a local minimum or any other non-maximum.

We now approach a large sample result being an application
of the lemma and its proof. Assume that the (imagined) complete
data constitute a sample (x1 fe e ,xn) from a distribution of ex-
ponential type. The distribution of the sample is of exponential
type with minimal sufficient statistic Zt(xi) . Let us further
assume that we observe (y1 P ,yn) , where yi=Y(Xi) for a given
measurable function y(x) . In Sundberg (1974) the following suffi-

cient condition and result can be found.
1/2
n

- consistency condition. The Fisher information matrix Iy .
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see (5), is strictly positive definite at the true o .

nl/z— consistency theorem. Provided that the condition above is

satisfied, with probability tending to one as n=® there exists a
(unique) consistent root & of the likelihood equations, and
asymptotically a~N(@., (nIy) 1.

Combining this theorem and the lemma above the following
result may be proved.
Theorem. Provided that the nl/?‘— consistency condition is satis-
fied, with a probability tending to one as n=® the consistent
root & is a point of attraction with a factor of convergence

asymptotically equal to the maximal eigenvalue of

-1
v [t E [V [tly]] (9)
QOutline of proof. In this case of a sample (y1 Se e ,yn) and
at the point a =4 , the matrix (8) reads
-11 1
V&[t] - igl vg Ctly,] (10)

As n=o this matrix converges to (9) and the eigenvalues of (10)
converge to the eigenvalues of (9). A strict proof of this is given
by Sundberg (1972). Finally, the nl/z—consistency condition
ensures that the eigenvalues of (9) are strictly less than 1 .
Remark. The matrix (9) describes the relative loss of Fisher

information, as is seen from (3) and (5). Hence the factor of con-

vergence of the iteration method (7) for large samples equals the

maximal relative loss of information due to observing y(x) instead

of x (maximal with respect to the parameter components).

3. THE ITERATION METHOD, NUMERICAL RESULTS.

In this section we illustrate by some examples -how the large
sample factor of convergence of the iteration method (= the maxi-
mal eigenvalue xmax of the matrix (10)) depends on the parameter
values.

Example 1. Grouped normal sample.
Figure 1 shows how the large sample factor of convergence

depends on the class-width h in relation to the standard
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deviation o of the two-parametric N(y,0) , when the sample is
grouped according to the class limits
u+tkh , k=0, £1, +2,...
The factor of convergence is then independent of . .
It is seen that convergence is rapid (or equivalently that the
information loss due to grouping is small) even for a moderate

class-width.

)\mctx
I
0.15
0.10 4
0.05 4
0 T T T T T T T T T T T T >
0 0.5 1.0 h/o
FIG. 1
Large sample factor of convergence )‘max for grouped normal

distribution, N(u,o0), class-width h .

Example 2. Censored normal sample (type I, double).

Figure 2 shows how the large sample factor of convergence
depends on the points of censoring in relation to the standard
deviation o of the two-parametric N(y,0) . It is assumed that
the fixed points of censoring happen to fall equidistant from M |,
at u+h, and that the observations in the intervals (-, w-h)
and (u +h,=) are separately counted.

It is seen that convergence is rapid as long as a small part

of the data are censored.
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max

1.0 4

FIG. 2

Large sample factor of convergence )“max for censored normal

distribution, N(u,0) , points of censoring p+h.

Example 3. Mixture of two normal samples.

Figure 3 illustrates how the large sample factor of converg-
ence depends on (cr1 +02)/|p1—p2| for a 5-parametric mixture of
two normal distributions when 01 =0, happens to hold, and for a
4-parametric mixture when 0,=0,=0 by assumption. The factor
of convergence also depends on the mixing proportion §:1-8 ,
more specifically it increases with 18-0.51. Curves are given for
8=0.5 and 6=0.1.

For these two mixture models the iteration method has also
been applied in practice, inter alia on various samples of wing

and bill lengths of birds (mixture of males and females of equal
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appearance). The sample sizes ranged from slightly more than 100
to several thousands. The characteristic 26/!;.]1-,321 ranged from
.5 to 1. For all these samples the observed rates of convergence
agreed well with the large sample factor of convergence as shown
in Figure 3. In no case did the choice of trial value seem to be
critical for the cbnvergence.

kmax
4
1.0
0.5 4
0 T
0 0.5 1.0 °1+02
Ip,lﬁyzl
FIG. 3
Large sample factor of convergence xmax for mixture of two

normal distributions, N(p1 ,01) and N~(“2'02) , mixing propor-
tions 6: (1-8) .
A. Five-parametric model, 0,=0, by chance.
B. Four~parametric model, 01=02=0 by assumption.
Continuous curves: 6=0.5
Dashed curves: 8=0.1 or 0.9
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Example 4. Convolution of exponential and normal distributions.
The iteration method was also applied to o few censored
samples of life-time measurements of short-lived atomic kernel
states. The model assumed that exponentially distributed lifé-
times were measured with an additive normally distributed
measurement error of the same. magnitude. In some of these cases
extremely slow convergence was observed, and the Newton-
Raphson method applied to a simplified equation system was a

better alternative.
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