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Abstract

When, in a multiple regression, regressors are near-collinear, so called regularized or
shrinkage regression methods can be highly preferable to ordinary least squares, by
trading bias for variance. Continuum regression, introduced by Stone and Brooks
in 1990, ties together several more classical regularized regression methods, such
as principal components regression, partial least squares regression, and ridge re-
gression.
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Collinearity and regularized regression

Continuum regression is a regularized regression estimation method, and being so,

it is particularly intended for dealing with the collinearity problem. Collinearity, or

multicollinearity*, means that there are approximate (or possibly even exact) linear

relationships between the regressors (predictors, x-variables). Let the regression to be

fitted be y = Xβ, in centered x- and y-variables. Collinearity implies that the design

matrix X is close to being of less than full rank. Consequently, X′X is (near-)singular,

and ordinary least squares* (OLS) regression coefficients have highly inflated variances,

since Var(bOLS) ∝ (X′X)−1, and they are likely to be quite unstable or possibly even

non-unique. The regression coefficients cannot be interpreted individually. In this sense

identification of a true regression will be (nearly) impossible. However, satisfactory

prediction may still be quite feasible, if the new items are like the ones used in the

calibration. Below we shall mainly have in mind the construction of a linear predictor

for future y-values. Therefore, cross-validation* and related validation techniques will

play an important role.

Exact collinearities are evidently unavoidable if there are more x-variables than ob-

servations. With instruments capable of registering a large set of variables, for example

a spectrum of hundreds of wavelengths, this is a frequent situation in practice. How-

ever, even if there are sufficiently many observations to guarantee a full rank design

matrix, most variability in x is likely to concentrate in a relatively small-dimensional

space. This non-rigorously defined dimension is the “latent dimension” or (in the

chemometrics literature) the “chemical rank” of the system under measurement.

Well-known examples of regularization methods are principal components regres-

sion* (PCR) and partial least squares* (or projection to latent structures) regression

(PLSR), which both attempt to find and span such a latent space, whereas ridge regres-

sion* (RR) performs quite different by shrinking more or less in each direction. The

concept of continuum regression (CR), as introduced by Stone & Brooks [9], embraces

OLS, PLSR as well as PCR, thus before we define CR, we shall briefly describe these

three special cases from a point of view which will naturally lead to CR.
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OLS, PCR and PLSR

OLS may be characterized as maximizing correlation. The multiple correlation coeffi-

cient R is the maximum over all direction vectors c of the correlation R(t, y) between

y and a regressor t = Xc. The desired direction c of course satisfies c ∝ bOLS =

(X′X)−1 X′y. Regression of y on t, by simple one-dimensional least squares, yields the

OLS multiple regression of y on X.

The PCR and PLSR methods depend on other maximization criteria for construc-

tion of regressors from X. In a standard PCR the first regressor is the first principal

component (PC), formed by letting c1 be the direction of highest variability in x, that

maximizes the variance Var(t1) for t1 = Xc1, |c1| = 1. Successive regressors t2 = Xc2

etc. are obtained by repeating the procedure on the residuals from the preceding step,

and the new PCs will be uncorrelated with the preceding ones. The number of PCs to

be used jointly as regressors will typically be optimized by cross-validation, or by using

a separate test set. PLSR selects regressors (PLS-factors) t1, t2 etc. by maximizing the

covariance cov(t, y), rather than the variance. Stone and Brooks [9] were among the

first to realize this fact. In other respects, however, PLSR and PCR are analogous.

Typically, PLSR requires fewer PLS-factors than PCR needs PCs; this is because

PCs need not necessarily be correlated with y, whereas all PLS-factors must be. The

reason that PCR may provide a useful regression equation at all, is that it avoids direc-

tions c with small variation, and those are the ones which may cause the collinearity

problems. PLSR may be regarded as a compromise between OLS and PCR, cov2(t, y)

being proportional to the product R2(t, y) Var(t).

Continuum regression

In continuum regression the construction rule for new regressors encompasses the three

constructions discussed above, which correspond to special values of a control parameter

γ selected within a continuum of possible values. The construction rule in [9] can be

expressed as follows: Maximize the function

gγ(R2(t, y),Var(t)) = R2(t, y) Var(t)γ , (1)
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over directions c, with |c| = 1, where t = Xc and γ ≥ 0. For γ = 0 we have OLS, γ = 1

yields the PLSR criterion, and as γ → ∞ we obtain PCR in the limit. As is the case

with PLSR and PCR, the construction rule is applied first on the centered (or centered

and scaled) x-data, and next successively on the residuals from the regression in each

step, such that the regressors t1, t2, etc. are uncorrelated. For each set of regressors,

y is then regressed on it, using the least squares method.

It is assumed in [9] that we select the optimal control parameter values, γ and the

number of regressors, using cross-validation, but in practice we may, of course, weigh

in the aspects of parsimony and simplicity. As a cross-validation criterion we may

use anyone of the many equivalent criteria commonly used, such as: PRESS, MSEP,

RMSEP, or the cross-validation index, analogous to R2 and sometimes denoted Q2.

Continuum regression is scale-dependent, a property it shares with other shrinkage

regressisions, such as PLSR, PCR, and RR. As compared with OLS, CR penalizes

regressors with small variance, and the variance is not invariant under non-orthogonal

variable transformations. The user must decide what is a reasonable and desirable

metric in x-space. Often the x-variables are individually “autoscaled” to unit variances,

but this cannot be always recommended, since it might simply blow up the noise in

noninformative x-variables.

Continuum regression and ridge regression

Examining more closely the construction rule (1), one observes that it yields a regressor

t = Xc which is proportional to the ridge regression* of y on x, for some ridge constant

δ dependant on γ. Hence, CR is closely related to RR. Specifically, we may interpret

first factor continuum regression, CR(1), simply as an upscaled ridge regression, with

1/(1 − γ) as the scale factor ([10], [5]). A further insight into CR is provided in [2]:

Not just for the special form (1), but for any function g(R2(t, y),Var(t)) of correlation

and variance, satisfying the natural condition of being increasing in each one of its two

arguments, the maximizing regressor t = Xc is of the ridge type, namely

c ∝ bRR = (X′X + δI)−1 X′y (2)
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for some ridge constant δ that depends on the particular function g. The OLS is

obtained for δ = 0, and we arrive at PLSR as δ → ±∞, while PCR appears in the limit

as δ approaches the minus of the largest eigenvalue of X′X (from below).

The RR always shrinks, even if there is only a single x-variable, or the x-variables

are orthonormal. On the other hand, CR(1) shrinks only to compensate for collinearity.

Hence, for statisticians which are not adhering to the principle of “always shrink”, this

motivates a modification of RR by the scalar compensation factor 1/(1− γ) built into

CR(1), simply by using t1 = XbRR as a single regressor in LS regression, instead of bRR
as an estimator. This modified RR was called least squares ridge regression (LSRR) in

[2]. There are only two minor differences between LSRR and the CR(1) as described

in [9]. The first is that occasionally CR(1) can be found to jump over an interval of the

δ-values [1]. Secondly, the cross-validation procedures turn out to be slightly different,

because different parameters, δ and γ respectively, are kept fixed. The latter effect is

more pronounced if LSRR is used as an alternative to the original CR for construction

of additional regressors.

Example

Figure 1 shows cross-validation leave-one-out RMSEP curves for varying control param-

eters, when RR, LSRR, and CR(k) for k factors are used on the cement heat evolution

data, provided already in Hald’s classical book of 1952 [7], and used later on in many

textbooks, and also in [9]. Characteristic for these data is the fact that the four x-

variables represent the composition of the cement and sum up to nearly 100 per cent.

The OLS coefficients are large and individually nonsignificant. In this illustration, the

original x-variables have been autoscaled, as it is also done in [9]. The continuum

parameter which is kept fixed in CR(k) is the ridge constant δ of (2), and not the γ

of criterion (1). This implies that LSRR and CR(1) are identical. With four factors

in CR, we get the OLS, shown as a horizontal line. The main feature of Fig. 1 is the

similarity of the minimum RMSEP values, achieved for different regularized regressions

(RR, LSRR=CR(1), CR(2), CR(3), the best PLS, and the best PCR). To some degree

of approximation, this feature is frequently seen. Note also that LSRR is less sensitive
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than RR to the choice of the ridge constant.
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Figure 1: RMSEP for five different predictors: RR, LSRR and CR(k) for varying k.
Data taken from [7], n=13, dim(x)=4. RMSEP is plotted against η = δ/(2δ + λmax),
0 ≤ η ≤ 1, for δ ≥ 0 or < −λmax, where λmax is the largest principal value.

An alternative continuum regression

A method suggested in [8] and mentioned in the discussion of [9], has also been called

continuum regression, but has later been referred to as CPR (continuum power regres-

sion), e.g. in [6]. In this method the matrix X is transformed to a continuum power

X(γ), by raising the singular values of X to the power γ, followed by ordinary PLS

with the new X = X(γ). Like CR, this method also encompasses OLS, PLS and PCR.

However, the construction criterion does not depend solely on the variance and the

correlation, hence CPR is not equivalent to CR.
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Joint continuum regression

A natural question is that in the case of multivariate response variable y, can one gain

efficiency by using some multivariate version of the univariate technique, instead of

applying the latter separately on each component? Brooks & Stone [3] proposed a

multivariate version of their CR, called joint continuum regression (JCR). Although

they did not find it very promising in practice, it ties together several methods as special

cases of JCR. The role of the OLS from the univariate situation is taken by the reduced

rank regression (RRR), whereas PCR remains as the other limiting case. Multivariate

PLSR appears in a form introduced by de Jong [4] under the name SIMPLS.

It is probably true that both the univariate and the multivariate versions of the

continuum regression have not been so far as important for statistical practice per se

than as a framework for tying up methods and for promoting a greater understanding of

various methods and their intimate relationships. One observation is that the choice of

regularized regression method seems to be of lesser importance than the choice of data

pretreatment procedure, since all the methods suffer from the lack of scale invariance.
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