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ABSTRACT. We generalize the relationship between continuum regression (Stone & Brooks,

1990) and ridge regression, by showing that any optimization principle will yield a regressor

proportional to a ridge regressor, provided only that the principle implies maximizing a

function of the regressor's sample correlation coef®cient and its sample variance. This

relationship shows that continuum regression as de®ned via ridge regression (`̀ least squares

ridge regression'') is a more generally valid methodology than previously realized, and also

opens up for alternative choices of its second and subsequent factors.
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1. Introduction

1.1. The problem

In regression problems where the explanatory variables are near collinear, the ordinary least

squares (OLS) predictor, albeit unbiased, has large variance. This often leads to large and

unrealistic predictor coef®cients. Several so-called shrinkage or regularized regression meth-

ods, trading bias for variance, have therefore been proposed. Well-known methods are

principal component regression (PCR), partial least squares regression (PLS), ridge regres-

sion (RR), and continuum regression (CR); see Stone & Brooks (1990), Frank & Friedman

(1993), Brown (1993) or Sundberg (1999) for reviews. Most of these methods are applied

in steps: the residuals from one step are taken as inputs for the next step, and an additional

regressor is constructed. Cross-validation is usually used to choose an optimal number of

steps (factors).

Questions about interrelationships between the various regularized methods have both

practical importance and theoretical interest, as has the question under what conditions higher

factors are worthwhile to compute. Of special interest here is CR, being wide enough to include

OLS, PLS and PCR as special cases.

Sundberg (1993) demonstrated that ®rst-factor CR may be interpreted as a modi®ed form of

RR, the modi®cation consisting of a scale adjustment of the predictor in order to minimize the

residual sum of squares over the training data. In the present paper, we demonstrate that this

modi®ed form of RR is a very general method, in the sense that a wide class of criteria in fact

yields predictors that are ridge regressors modi®ed for scale. A suf®cient condition is that the

method be equivalent to maximizing a function of the correlation and variance in data. To give

just one example, it is well-known that ®rst-factor PLS regression is equivalent to using the

regressor that maximizes sample covariance between the response values and their ®tted values.

Since covariance is the product of correlation and variance, the ®rst-factor PLS regressor is

proportional to a ridge regressor (more precisely, in the limit as the ridge constant tends to

in®nity).

Based on this general result, we suggest a generalized formulation of continuum regression

which is free from a type of discontinuity that may appear with the original CR (BjoÈrkstroÈm &
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Sundberg, 1996). We also demonstrate that for this generalized formulation, the coef®cient of

determination R2 and the length of the estimator are decreasing functions of the continuum

parameter, for the ®rst factor.

1.2. Notations, terminology and basic assumptions

Following the customary notation, we denote by X an n 3 p design matrix and by y the

vector of n responses, such that the ith row of X gives the values of the p explanatory

variables for the ith observation, and yi the corresponding value of the response variable.

The vector y and all columns of X are assumed centred, so that the rank of X can be at

most min(nÿ 1, p).

A linear predictor is, strictly speaking, an expression bTx which is used for prediction of y,

where (x, y) is an item of data with y not yet observed. However, we will often call the p-vector

b itself a `̀ predictor''. It will be convenient to reserve the term regressor for a linear

combination cTx �P c jxj of explanatory variables x1, . . ., x p, where the vector c is scaled to

unit length, jcj � 1.

As far as the ®rst factor is concerned, many methods share the following property: A regressor

c is ®rst determined, by some rule, and the predictor b / c is then obtained from simple linear

regression of y on Xc. Additional factors are constructed from the residuals in accordance with

the same rule. Ridge regression is the only method (among those considered here) where this

orthogonalization is not applied by de®nition; our study includes a discussion of the conse-

quences of applying this to RR as well.

We recall that in ridge regression we select the value of a constant ä (the ridge constant) and

de®ne the predictor b as

bRR(ä) � (X T X � äI)ÿ1 X T y:

In what follows, we focus on the class of regressors obtained by projecting the vectors

bRR(ä) onto the unit sphere, i.e. we form regressors

cä / (X T X � äI)ÿ1 X T y, jcäj � 1: (1)

In RR, the ridge constant ä is typically non-negative, but de Jong & Farebrother (1994)

pointed out that Sundberg's (1993) relationship could be extended to the interval ÿ1 <

ä,ÿëmax, where ëmax is the largest eigenvalue of X T X . As ä runs through the two

intervals [0, 1] and [ÿ1, ÿëmax], the point cä describes two continuous trajectories on the

unit sphere. The limits as ä!1 and ä! ÿ1 are the same, corresponding to ®rst-factor

PLS, so we have essentially one trajectory, that extends from OLS at one end (ä � 0), via

PLS (ä � �1) to PCR at the other end (ä! ÿëmax ÿ 0) (provided only that data y are

not orthogonal to the direction corresponding to the largest eigenvalue, see appendix A).

An alternative parametrization of the same trajectory is

cE / X T X � ëmax

E
I

� �ÿ1

X T y, jcEj � 1, (2)

where E runs through the semi-in®nite interval E.ÿ1. In this case, PCR is the limit as

E! ÿ1 and OLS is the limit as E!1. This parametrization avoids the jump from 1 to

ÿ1 at PLS. A third possibility, also binding the two parts of the trajectory together, is to

use the transformed parameter ä9 � ä=(ä� ëmax). This alternative is similar to the

parameter ã de®ned by Stone & Brooks (1990) in that ä9 � 0 for OLS, ä9 � 1 for PLS

and ä9!1 for PCR.
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2. Optimality of ridge-type regressors

2.1. A proposition

Near collinearity between explanatory variables means that some linear combinations cTx

vary little between the observations. Under arbitrary scaling of the explanatory variables

one cannot exclude that such a linear combination is in fact a major determinant of the

response. However, if almost constant linear combinations are allowed as regressors, their

OLS regression coef®cients will have large uncertainty (even though some of these coef®-

cients might be statistically signi®cant). In particular, these coef®cients may be spuriously

high and grossly misleading for prediction. One way to protect against this uncertainty is

to shrink the OLS predictor in directions where jXcj is small. This is particularly important

if one expects future observations to be different from the training data in some respects.

Apart from a constant factor, jXcj2 equals the sample variance of the linear combination

cTx, so V (c) � jXcj2 is a crucial measure of how useful a regressor c will be, large values

of V (c) making less shrinkage needed. Note that ®rst-factor PCR implies that we select c

so that V (c) is maximal, without regard to how much or how little correlation with y is

obtained by this choice. OLS, on the other hand, selects c for maximum correlation with

y, without regard to the size of V (c). Stone & Brooks (1990) de®ned a continuum of

regressors by considering, for each ã > 0, the regressor cã that maximizes the particular

function

Tã � R2(c)V ã(c) (3)

of these two measures. From the combined results of Sundberg (1993), de Jong &

Farebrother (1994) and BjoÈrkstroÈm & Sundberg (1996) we know that each such regressor

is proportional to a ridge regressor, for some ridge constant, whereas the converse need

not hold. Ridge regression is thus in a sense more basic than Stone & Brooks continuum

regression. We will now demonstrate that the ridge regressor is even more fundamental

than that, by showing that any reasonable maximization criterion which depends only on

R and V must yield a regressor proportional to a ridge regressor. The proof is more lucid

when formulated in terms of covariance, K(c) � yT Xc, rather than correlation R. We

have:

Proposition 2.1

If a regressor c f is de®ned according to the rule

c f � arg max
jcj�1

f (K2(c), V (c)), (4)

where f (K2, V ) is increasing in K2 (or R2 / K2=V ) for constant V, and increasing in V

for constant R2, and if X T y is not orthogonal to all eigenvectors corresponding to ëmax,

then there exists a number ä such that c f / (X T X � äI)ÿ1 X T y, including the limiting

cases ä # 0, ä "1, and ä " ÿ ëmax.

Remark 1. For any ã. 0, the Stone & Brooks function (3) evidently satis®es the conditions

posed on f .

Remark 2. It seems reasonable that, for a given sample variance V (c), the criterion should

favour a regressor with larger covariance, since this improves the correlation coef®cient.

Thus, f would typically be increasing in K2 for constant V , as required in the proposition.

Likewise, regressors with the same K2=V have the same R2, and among them, the one
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with larger sample variance should be preferred, since it has the best-determined coef®-

cient.

Remark 3. The condition that X T y not be orthogonal to the eigenspace corresponding to

ëmax is necessary, but only exceptionally not satis®ed. Without it, examples can be

constructed where the maximum point is not of the form c f / (X T X � äI)ÿ1 X T y. For

instance, we may use Stone & Brooks' original criterion f � R2V ã. It turns out that when

ã. 1, there can exist regressors that are not proportional to ridge regressors. We can take

p � 3, X T X � diag(1, 0.5, 0.2), X T y � (0, 1, 1)T, and ã large enough, say ã � 10. Since

the ®rst coordinate of X T y is zero, all vectors of the form c / (X T X � äI)ÿ1 X T y will

have their ®rst coordinate c1 � 0. However, the maximum of f on jcj � 1 is at c �
(0:910, 0:351, 0:219)T.

CR regressors with ã. 1 typically correspond to ridge regressors with negative ridge

parameter, as explained by de Jong & Farebrother (1994). However, these authors tacitly

excluded the degenerate case g1 � 0 and therefore overlooked the possibility of situations like

in this example.

Remark 4. As a background for the proof, the following picture may be helpful. Every

point c on the unit sphere can be represented by a point (K2(c), V (c)) in a two-

dimensional diagram as illustrated in Fig. 1. The region Ù is the image of the unit sphere,

jcj � 1. Figure 1 shows a case where ëmin . 0, so that V (c) . 0 everywhere on the unit

sphere. This is not always the case in practice, but it simpli®es the picture and has no

consequence for the argumentation that follows. In appendix A.1 we comment on the case

ëmin � 0, see also Fig. 5.

Proof of proposition. Since f is increasing in K2 for constant V , a necessary condition on

c f is that the point (K2(c f ), V (c f )) fall on the boundary of Ù, on the right hand side.

Fig. 1. Illustration of possible (K2, V )-values, in principle. Each point c on the unit sphere in R p is

depicted on (K2(c), V (c)). The function f (K2, V ) will have its maximum somewhere on the shaded

segment of the perimeter.
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Thus, c f must be a solution to the constrained maximization problem `̀ maximize K2(c)

subject to jcj2 � 1 and V (c) � v'', for some number v. Since f is increasing in V for

constant K2=V , the relevant number v cannot be smaller than the sample variance of the

(minimum-length) ordinary least squares regressor, vOLS. The upper bound for v is ëmax.

Unless v equals this upper bound, it follows from Lagrange's method of multipliers that, at

c � c f ,

=K2 2 span[=jcj2, =V ]:

Thus, there exist two numbers (Lagrangian multipliers) ì1 and ì2, such that

=K2 � ì1=jcj2 � ì2=V ,

or, since =K � X T y, =V � 2X T Xc, and =jcj2 � 2c,

K(c)X T y � ì1c� ì2 X T Xc:

We exclude the case K � 0 since it corresponds to the minimum of f , not the maximum.

The case ì2 � 0 yields the well-known limiting case of ®rst-factor PLS, so we concentrate

on the case ì2 6� 0. We denote the non-zero number K=ì2 by k, and ì1=ì2 by ä, and get

(X T X � äI)c � kX T y: (5)

We show in appendix A.1 that the matrix X T X � äI cannot be singular at the maximum

point c f . Thus it has an inverse and we can write c f / (X T X � äI)ÿ1 X T y. In appendix

A.2 we consider the limiting case v � ëmax.

2.2. Other regressor constructions

It follows from proposition 2.1 that if a regression method yields regressors not propor-

tional to ridge regressors, then that method cannot be de®ned as the maximum of any

function of V and R2 increasing in both arguments. Thus, such a method is not optimal,

unless its use can be defended by arguments other than variance and correlation. Among

methods of this type are power ridge regression (Hoerl & Kennard, 1975), and the method

proposed by Wise & Ricker (1993), also named continuum regression.

3. Least-squares ridge regression

3.1. An alternative function to maximize

We found in section 2 that the set of regressors proportional to ridge regressors (equation

1) contains the f-maximizing regressors for all realistic functions f . A nice feature of the

approach taken by Stone & Brooks (1990) is that it speci®es a parametric class of

functions typically spanning all of this path. Since it maximizes R2V ã, the selected

regressor is optimal in a well-speci®ed sense, and this optimality may help to understand

properties of the predictor. However, as we have here demonstrated, any parametrization of

the form

cã � arg max
jcj�1

Tã(R2(c), V (c)) (6)

will de®ne a set of regressors along this particular path, but not necessarily cover the path

completely. In particular, the CR parametrization used by Stone & Brooks can make jumps,
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as demonstrated by BjoÈrkstroÈm & Sundberg (1996). It turns out that there exist parame-

trizations free from jumps. One possibility is given by the following criterion, which, to

our knowledge, was ®rst stated by Frank & Friedman (1993):

cä � arg max
jcj�1

R2(c)V (c)

jV (c)� äj : (7)

Frank & Friedman showed that formula (7) for ä > 0 de®nes a regressor cä that is

proportional to the ridge regressor bRR(ä) � (X T X � äI)ÿ1 X T y with the same ä. It is

evident that the function bRR(ä) is free from discontinuities. Apart from notational

differences, our formula (7) differs from de®nition (20) in Frank & Friedman (1993) only

so as to allow ä,ÿëmax (cf. appendix B).

By analogy with how Stone & Brooks (1990) de®ned continuum regression based on the one-

parametric class of regressors de®ned by equations (3) and (6), for 0 < ã <1, we now de®ne

what may be called least-squares ridge regression (LSRR): We consider the class of regressors

de®ned by (1) and the parameter ä. The corresponding predictors are

bLSRR(ä) � âcä, (8)

where the scalar factor â is

â � yT X cä=jXcäj2: (9)

Stone & Brooks consider an arbitrary number ù of factors, and use cross-validation to

determine the optimal pair (ã, ù). A completely analogous procedure is possible with

LSRR, yielding an optimal pair (ä, ù).

3.2. Correlation and shrinkage properties

Methods for treating near-collinearity typically yield predictors whose lengths are smaller

than that of the OLS predictor. This `̀ shrinkage effect'' is closely coupled with the variance

reduction and bias of the predictor. Frank & Friedman (1993) compared RR, PCR and PLS

in this respect, in a number of situations with varying degree of collinearity. Goutis (1996)

and De Jong (1995), using different techniques, have shown that PLS regression always

shrinks, as long as the number of factors is smaller than the number of explanatory

variables, p. De Jong (1993) has also demonstrated that the coef®cient of determination

obtained by PCR with a given number of factors, cannot be larger than obtained by PLS

with the same number of factors. By considering the class of regressors (1) and limiting

ourselves to one factor (ù � 1), we can generalize the results of these authors, by proving

the following two propositions.

Proposition 3.1

R2(cä) decreases along the path from OLS via PLS to PCR.

Proposition 3.2

The length of the predictor coef®cient vector, jbLSRR(ä)j decreases along the path from OLS

via PLS to PCR.

In other words, proposition 3.1 states that the ®t between y and ŷ is gradually reduced as

one moves away from the OLS predictor, and proposition 3.2 states that the LSRR

estimator bLSRR(ä) is a regularized estimator (except for OLS), shrinking in length as one
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moves from OLS towards PCR. However, note that bLSRR(ä) need not shrink in all its

coordinates.

We want to point out that we prove propositions 3.1 and 3.2 only for ®rst-factor regression. In

section 4, we show by counterexample that the corresponding result for an arbitrary number of

factors does not hold for proposition 3.2.

The proofs of propositions 3.1 and 3.2 are given in appendix B.

4. Applications to data

We have tested our procedure on a limited number of data sets. Our main purposes at

present are to compare our results to those obtained using original CR and to illustrate the

conclusions drawn in propositions 3.1 and 3.2. An evaluation of the LSRR method, based

on a more extensive selection of data sets, is being prepared and will be reported

elsewhere. Factors beyond the ®rst one have been constructed keeping ä constant (although

other possibilities also exist, see conclusions).

Our main data set is taken from Fearn (1983). These data have been used for exampli®cation

by many authors. We follow Stone & Brooks (1990) and consider the subset consisting of the

®rst n � 12 items of Fearn's table 1. Rather than using the explanatory variables as they stand

(L1, . . ., L6) we have, like Hoerl et al. (1985) and Stone & Brooks (1990), transformed by

de®ning x6 � (L1� � � � �L6)=6 and xj � Lj ÿ x6 for j � 1, . . ., 5. All explanatory variables

have been scaled to unit variance.

4.1. Cross-validation index as criterion for predictor choice

We have constructed predictors for Fearn's data with n � 12 by applying our procedure for

several different combinations of number of factors, ù, and ridge constant, ä. For the

evaluation, we have used the same leave-one-out cross-validation index I as Stone &

Brooks (1990).

Figure 2 shows I � Iä as a function of ä for 1 < ù < 5. On the horizontal axis, we have

plotted ä=(ä� ëmax) rather than ä itself. This admits presentation of the two intervals

0 < ä <1 and ÿ1 < ä < ÿëmax in the same ®gure, the former interval corresponding to

0 < ä=(ä� ëmax) < 1, and the latter to ä=(ä� ëmax) > 1. As ä runs from OLS to PCR, our

equation (1) de®nes regressors that could also have been de®ned by maximizing Stone &

Brooks' criterion (3) for some 0 < ã <1. However, there is no one-to-one correspondence

between their parameter ã and our ä when ù > 2, since holding ã constant to the next factor is

not equivalent to holding ä constant. As far as leave-one-out cross-validation is concerned, there

is no exact correspondence even for ù � 1, since the relation between ã and ä will change with

the observation that is left out. Stone & Brooks' parameter ã is roughly comparable to our

transformed parameter ä=(ä� ëmax) insofar as both are 0 for OLS, 1 for PLS and1 for PCR.

It is of interest to compare our Fig. 2 to ®g. 3 of Stone & Brooks (1990). Their value á � 0:5

is PLS regression, equivalent to ä � 1 (ä=(ä� ëmax) � 1 in our parametrization). The two

®gures are similar. For the ®rst factor (ù � 1), I increases in a short range of parameter values

(approximately ä, 10ÿ1), and then rapidly drops to uninteresting levels. In contrast, for ù > 2,

the I-value stays above 0.9 for the whole range between OLS and PLS. From the point of view

of cross-validation, our optimal choice of parameters is ä � 2:10 and ù � 3, which gives

Iä � 0:9592. This is not much different from Iá � 0:960, the optimal value obtained by Stone

& Brooks with ù � 2. Table 1 shows the result.

When not standardizing the explanatory variables for sample variance, Stone & Brooks obtain

a solution which is different in that the coef®cient of L1 is about four times larger and of
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opposite sign. All other coef®cients change relatively less than so. With our method, the effect

of not standardizing is also most pronounced for the coef®cient of L1, which becomes roughly

seven times larger, but keeps its sign. In neither case is L1 among the most important predictors.

In terms of the untransformed variables xj, the effect of not standardizing is in our case largest

for x5. This differs from the result by Stone & Brooks, where x1 is affected most.

Lines 3 and 6 of Table 1 show the best solution obtained under the additional constraint

ù � 1, i.e. using only the ®rst factor. We note that this extra constraint does not reduce Iä much

(from 0.9592 to 0.9544). The effect on the predictor is also modest. The decision to stop or

proceed after the ®rst step seems to affect the predictor about as much as does the decision

whether to standardize or not.

4.2. Illustrations of propositions 3.1 and 3.2

Coef®cient of determination, R2. It is of interest to see how much of the variation in the y

data is explained by the regression models when the number of factors and the parameter ä
are varied. Figure 3 shows the picture for Fearn's data with n � 12. In accordance with

proposition 3.1, R2 decreases with ä for the ®rst factor (ù � 1). Note that with ù > 3, at

least 0.975 of the variation is explained, regardless of ä. The ®gure con®rms (of course) de

Jong's result `̀ PLS ®ts closer than PCR'', but we leave open the question whether R2 for

ù > 2 can possibly increase locally with ä.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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1

ω 5 3

ω 5 4

ω 5 5

ω 5 2ω 5 1

Fig. 2. Leave-one-out cross-validation index Iä plotted vs ä=(ä� ëmax), for LSRR with varying number of

factors (ù). The ®gure is based on the ®rst 12 observations of Fearn's (1983) data. The explanatory variables

are standardized, which gives ëmax � 3:19.
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Degree of shrinkage. Figure 4 shows the length of the predictor bLSRR for a range of ä
values. For ù � 1, it is monotone decreasing, in accordance with proposition 3.2. The

graphs for ù � 2 and ù � 3 are interesting in that the length increases with ä near OLS.

We thus see that proposition 3.2 cannot be generalized to hold for more than the ®rst-

factor regressor.
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ω 5 3

ω 5 4
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Fig. 3. Coef®cient of determination, R2, as a function of the parameter, for LSRR with 1 < ù < 4. The

abscissa shows log10(ä).

Table 1. Coef®cients in the optimal predictor as de®ned by leave-one-out cross-validation. The results with

parameter ã were taken from Stone & Brooks. The table is based on the ®rst 12 observations of Fearn's

(1983) data

Standardized data

Parameter values ä=(ä� ëmax) Imax L1 L2 L3 L4 L5 L6

ù � 2, ã � 0:54 0.960 ÿ0.02 0.09 0.16 ÿ0.21 0.01 ÿ0.01

ù � 3, ä � 2:10 0.40 0.9592 0.000 0.074 0.140 ÿ0.181 0.004 ÿ0.009

ù � 1, ä � 0:086 0.026 0.9544 0.014 0.082 0.159 ÿ0.226 0.005 ÿ0.008

Unstandardized data

Parameter values ä=(ä� ëmax) Imax L1 L2 L3 L4 L5 L6

ù � 4, ã � 0:43 0.958 0.09 0.08 0.13 ÿ0.27 0.01 ÿ0.01

ù � 4, ä � 84 0.024 0.9496 0.002 0.124 0.127 ÿ0.204 ÿ0.017 0.001

ù � 1, ä � 23 0.007 0.9473 ÿ0.006 0.123 0.126 ÿ0.210 0.005 ÿ0.002
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5. Conclusions

Least squares ridge regression, LSRR, is a regression method that improves on ridge

regression, RR, in the following respects.

(1) Avoids unwanted shrinkage. The shrinkage in standard RR can be regarded as the joint

effect of two separate principles: to counterbalance the in¯ating effect of near-collinearities and

to downscale any unbiased estimator in order to reduce the MSE. For those who do not admit

the latter principle as a general one, LSRR offers a way to concentrate on the near-collinearity

effects. Note for example that LSRR does not shrink in the case of a single x-variable or in

orthogonal designs, whereas RR does so. Note also that Sundberg (1993) empirically found

LSRR equally ef®cient to RR but more robust to the choice of ridge parameter.

(2) Orthogonal residuals. LSRR leaves residuals that are orthogonal to the ®tted values. This

facilitates the interpretation of factors beyond the ®rst one. Another consequence is that the

®tted values ŷ � XbLSRR(ä) are as close as possible, in the chosen metric, to the observed y,

given the direction of ŷ.

LSSR shares these two properties with standard continuum regression, CR. In addition, LSRR

improves on CR in the following respects.

(3) No discontinuity. With LSRR, the predictor always varies continuously with the method

parameter, for a ®xed number of factors.
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Fig. 4. Illustration of shrinkage effect. The length of the predictor, jbLSRRj, is plotted vs ä for different

number of factors ù. The ®gure is based on the ®rst 12 observations of Fearn's (1983) data. For ù � 1, the

length is a decreasing function of ä (proposition 3.2), but this is not the case for ù. 1.
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(4) Opens up for alternative parametrizations. When LSRR is used iteratively, there is no

reason why the method parameter ä must have the same value in each step. Many other

principles are conceivable. For example PCR amounts to holding ä equal to minus the largest

eigenvalue of the current X T X , although this number will gradually decrease with each step, as

the residual matrix X is updated.

(5) Speed of computations. The computer time required for application of equation (1) with

given ä is substantially less than for ®nding the maximum of R2V ã for a given ã. The

maximization (7) is explicit and involves much less computational effort than does CR.

References

BjoÈrkstroÈm, A. & Sundberg, R. (1996). Continuum regression is not always continuous. J. Roy. Statist. Soc.

Ser. B 58,703±710.

Brown, P. J. (1993). Measurement, regression, and calibration. Oxford University Press, Oxford.

de Jong, S. (1993). PLS ®ts closer than PCR. J. Chemometrics 7, 551±557.

de Jong, S. (1995). PLS shrinks. J. Chemometrics 9, 323±326.

de Jong, S. & Farebrother, R. W. (1994). Extending the relationship between ridge regression and continuum

regression. Chemometrics Intelligent Lab. Systems 25, 179±181.

Fearn, T. (1983). A misuse of ridge regression in the calibration of a near infrared re¯ectance instrument.

J. Appl. Statist. 32, 73±79.

Frank, I. E. & Friedman, J. H. (1993). A statistical view of some chemometrics regression tools (with

discussion). Technometrics 35, 109±148.

Goutis, C. (1996). Partial least squares algorithm yields shrinkage estimators. Ann. Statist. 24, 816±824.

Hoerl, A. E. & Kennard, R. W. (1975). A note on a power generalization of ridge regression. Technometrics

17, 269.

Hoerl, A. E., Kennard, R. W. & Hoerl, R. W. (1985). Practical use of ridge regression: a challenge met.

J. Appl. Statist. 34, 114±120.

Stone, M. & Brooks, R. J. (1990). Continuum regression: cross-validated sequentially constructed prediction

embracing ordinary least squares, partial least squares and principal components regression (with discus-

sion). J. Roy. Statist. Soc. Ser. B 52, 237±269; corrigendum (1992) 54, 906±907.

Sundberg, R. (1993). Continuum regression and ridge regression. J. Roy. Statist. Soc. Ser. B 55, 653±659.

Sundberg, R. (1999). Multivariate calibrationÐdirect and indirect regression methodology (with discussion).

Scand. J. Statist., to appear.

Wise, B. M. & Ricker, L. N. (1993). Identi®cation of ®nite impulse response models with continuum

regression. J. Chemometrics 7, 1±14.

Received July 1996, in ®nal form March 1998

Anders BjoÈrkstroÈm, Mathematical Statistics, Stockholm University, S-106 91 Stockholm, Sweden.

Appendix A. The remainder of the proof of proposition 2.1

It was shown in the main text that if a regressor is de®ned as the maximum of a function

f (K2(c), V (c)) on the unit sphere in p-dimensional space, this regressor must be a solution

to the problem

``maximize K2(c) subject to jcj2 � 1 and V (c) � v'',

for some number v. We showed that if v is in the interval [vOLS, ëmax), then an equation

like (5) holds. It remains to be shown that X T X � äI is non-singular, and to prove that the

regressor is ridge-proportional also when v � ëmax.
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A.1. Why the matrix in equation (5) is not singular

Since the eigenvectors of X T X constitute an orthonormal basis (the canonical basis), we

can without loss of generality assume that X T X is diagonal, X T X � Ë � diag(ë1 . . ., ë p),

where ëmax � ë1 > � � � > ë p � ëmin > 0, and X T y equals a vector g such that g j > 0 for

all j. By the assumptions in the proposition, we have g1 . 0. In canonical form, the

Lagrangian equation (5) reads

(Ë� äI)c � kg, (10)

with k 6� 0. We need to ascertain that the particular ä-value that holds at the global

maximum c f is not equal to ÿë j for any j. Since all g j > 0, all coordinates of c f are

non-negative, too. (Otherwise we could change the signs of the negative ones and increase

K2 � (Óc j g j)
2 without violating either of the two constraints.) Thus, if ä � ÿë j for some

ë j, this must be either for ë1 or ë p, otherwise equation (10) would imply that c f had both

positive and negative coordinates. Furthermore, by the assumptions we have g1 6� 0, so the

right hand side of equation (10) is non-zero for j � 1, which rules out the possibility

ä � ÿë1 also.

Comment. The example mentioned in remark 3 illustrates what may happen when g1 � 0.

The essential ingredients of that example are g1 � 0 and v . ë2, the second largest eigenvalue.

Under these circumstances, it is impossible to satisfy V (c) � v with c1 � 0. Equation (10) still

holds, with ä � ÿë1, but the solution cannot be written c f / (Ë� äI)ÿ1 g.

To rule out the one remaining possibility, ä � ÿë p, suppose that c0 is a solution to equation

(10) for ä � ÿë p. For such a solution to exist, it is necessary that g p � 0. Note that generally,

V (c) � Ó� ë jc j
2 can be regarded as a weighted average of the eigenvalues ë j, the weights

being c j
2. For OLS we have c j

2 / (g j=ë j)
2, and for the point c0 we have c j

2 / (g j=(ë j ÿ ë p))2.

These two expressions differ only in the denominator. By subtracting the same number ë p from

all the eigenvalues we increase the weights proportionately more for small ë j than for big ones.

Thus, if ë p . 0, V (c0) , V (cOLS). As already demonstrated, a point c0 where this strict inequal-

ity holds cannot be global maximum for the function f . If ë p � 0, the inequality is not strict,

and we cannot exclude that c0 might be the global maximum. However, when ë p � 0, the region

Ù extends down to the origin, as indicated in Fig. 5. All points on the correlation-maximizing

straight line between the origin and the point marked OLS correspond to least-squares

regressors: c j / g j=ë j for j < r, c j arbitrary for j . r, and all are solutions to (10) with

ä � ÿë p(� 0). The point marked OLS corresponds to the least-squares regressor with largest

variance, c j � 0 for j . r. This is the only point on the line that can correspond to the global

maximum c f , because of the assumptions on f , and it corresponds to the limiting case ä # 0, as

formulated in the proposition.

In conclusion, disregarding the limiting case just discussed, the matrix in equation (5) is not

singular at the maximum point c f .

A.2. The limiting case v � ëmax

We ®nish the proof of proposition 2.1 by considering the case that the maximum of f

occurs at a point c f which is represented by the top of the region Ù, i.e. when V (c) is

maximal, V (c) � ëmax � ë1. Unless the eigenvalue ë1 has multiplicity > 2, there is a unique

point c � v1 of the unit sphere that satis®es V (c) � ë1. Lagranges method of multipliers is

not applicable then, but provided g1 . 0, v1 is the limit of c / (Ë� äI)ÿ1 g as ä " ÿ ë1.

If the eigenvalue ë1 has multiplicity m1 > 2, a continuum of points c with jcj � 1 will satisfy
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the constraint V (c) � ë1. It is easily realized (using Cauchy±Schwarz' inequality, for example)

that K2 is maximized by taking cj / g j for j < m1, and c j � 0 for j . m1. This is also exactly

the point towards which c / (Ë� äI)ÿ1 g converges as ä " ÿ ë1, provided g j . 0 for all

j < m1. (This can always be provided since the vectors v1, . . ., vm1
are not unique.) Thus, when

v � ë1, the regressor c f is proportional to the limit of a ridge regressor, as asserted in

proposition 2.1. The proof of the proposition is thereby complete.

Appendix B. Proof of propositions 3.1 and 3.2

The proofs of propositions 3.1 and 3.2 are simpli®ed if we replace the parameter ä by a

new parameter å � ëmax=ä. The two disjoint intervals for ä correspond to one (connected)

interval for å: ÿ1 , å,1. Any function increasing in ä will be decreasing in å, and vice

versa. Formula (7) is replaced by

cå � arg max
jcj�1

T (c, å) (11)

where

T (c, å) � R2(c)jXcj2
ëmax � åjXcj2 : (12)

Note that since å.ÿ1 and jXcj2 < ëmax on jcj � 1, T(c, å) > 0 for all å and all c on the

unit sphere.

Proof of proposition 3.1. We must show that R2(cå) is an increasing function of å.
Rearranging in (12) we get

ëmax

jXcj2 �
R2(c)

T (c, å)
ÿ å:

Fig. 5. Image of the unit sphere in a case where ëmin � 0.

Scand J Statist 26 Generalized continuum regression 29

# Board of the Foundation of the Scandinavian Journal of Statistics 1999.



Here, the left hand side does not contain å. Therefore, for any vector c and any two

numbers å1 and å2 it must hold that

R2(c)

T (c, å1)
ÿ å1 � R2(c)

T (c, å2)
ÿ å2,

which yields

R2(c)

å2 ÿ å1

� 1

T (c, å2)
ÿ 1

T (c, å1)

� �ÿ1

: (13)

We now take å1 , å2 and apply equation (13) with corresponding optimal c1 and c2. From

(11) and (12) we obtain the following sequence of inequalities:

T (c1, å2) < T (c2, å2) < T (c2, å1) < T (c1, å1), (14)

where the middle inequality holds because when c is constant, the T of (12) is decreasing

in å for all å.ÿ1. It follows from (13) and (14) that R2(c1) < R2(c2), proving that R2(cå)

is an increasing function of å. This is just the statement of proposition 3.1.

Proof of proposition 3.2. To prove that jbLSRR(å)j is increasing, we note from (8) and (9) that,

since jcåj � 1,

jbLSRR(å)j2 � jy
T Xcåj2
jXcåj4 �

jyj2 R2(cå)

jXcåj2 :

We have proven that R2(cå) increases, so proposition 3.2 follows if we show that 1=jXcåj2
also increases. With c1 and c2 as above, we need to prove that 1=jXc1j < 1=jXc2j for all

å1 , å2.

By rearranging terms in (12) once more we get

R2(c) � T (c, å) å� ëmax

jXcj2
� �

where the left hand side contains no å. We conclude that for any triple (c, å1, å2) we have

T (c, å1) å1 � ëmax

jXcj2
� �

� T (c, å2) å2 � ëmax

jXcj2
� �

from which we obtain

ëmax

jXcj2 �
å2T (c, å2)ÿ å1T (c, å1)

T (c, å1)ÿ T (c, å2)
� (å2 ÿ å1)T (c, å2)

T (c, å1)ÿ T (c, å2)
ÿ å1

The inequalities (14) imply that both T (c, å2) and 1=(T (c, å1)ÿ T (c, å2)) are greater for

c � c2 than for c � c1, and hence, since å2 ÿ å1 . 0, that ëmax=jXc1j2 < ëmax=jXc2j2. As

remarked above, this proves proposition 3.2.
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