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Precision estimation in sample survey inference:
A criterion for choice between variance estimators

By ROLF SUNDBERG

Institute of Actuarial Mathematics and Mathematical Statistics, Stockholm University,
§-10691 Stockholm, Sweden

SUMMARY

We advocate the ‘mean squared error of predicted squared error’ as a universal criterion
for the choice between variance estimators in sample survey inference. The predictive
nature of the measure rewards variance estimators adapted to the amount of information
in the actual sample. This makes the new measure more satisfactory than the simpler
mean squared error of the variance estimator. The criterion turns out to be the same for
design-based as for model-based inference, and may also be used for comparison between
the design- and model-based theoretical variances. The theory is exemplified for the ratio
estimator by a study of six variance estimators suggested in the literature. These calcu-
lations are primarily made under a proportional regression model, but consideration is
also paid to model robustness. Three of the six estimators are shown to be inferior to the
three others, which are approximately equivalent.

Some key words: Expansion estimator; Mean squared error of predicted squared error; Predictive inference;
Randomization inference; Ratio estimator; Robust variance estimation.

1. INTRODUCTION

In classical sample survey inference concerning a finite population total or some other
population statistic, as presented for example in Cochran’s (1977) book, the statistical
error of an estimator is represented by its bias and its variance evaluated by averaging
over all possible samples from the given population according to the randomness specified
by the sampling design. Analogously, an estimator of this variance is judged by its sampling
bias and variance. As a challenge to this principle of design-based inference, model-based
inference regards the population as generated by a stochastic superpopulation model and
the actual population characteristic as an outcome to be predicted. Model-based inference
allows direct conditioning on the realized sample of units or labels. This is desirable if the
sampling units should be given different weight in the inference, for instance in the presence
of concomitant variables or in subsampling situations, in particular when the realized
sample is extreme. On the other hand model-based inference is model-dependent, and if
the actual population is extreme as a realization of the model assumed, a model-based
inference may be misleading.

In other words model-based inference provides an answer to the doubts expressed by
the question ‘Why should my inference depend on samples other than the actual one,
samples which could have occurred but did not?, whereas design-based inference responds
to the question “‘Why should my inference depend on populations other than the actual
one?” However, statistical inference requires one kind of randomness or another.
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Discussions of model-based versus design-based inference in sample surveys are given by,
e.g., Royall (1970), Smith (1976, 1984), Cassel, Sdrndal & Wretman (1977), Siarndal (1978,
1985), Hansen, Madow & Tepping (1983).

Design-based inference does not preclude the consideration of superpopulation models.
On the contrary such models give to a population the structure required for guidance in
the choice between different sampling procedures, different estimators of a population
parameter or, as here, between different estimators of the variance of a chosen estimator.
See Sirndal, Swensson & Wretman (1992) for a recent text along these lines. We will
incorporate design and model aspects in a common framework under the joint
assumption of:

(1) a prescribed sampling scheme for the selection of units;

(2) a superpopulation model that might have generated the population values;

(3) a chosen estimator/predictor, unbiased under sampling or model, or both.

We will argue that both theoretical variances, be they model-based or design-based, and
variance estimators should be regarded as statistics for prediction of the actual squared
error of the estimator/predictor, and we propose a quadratic measure of how close such
a statistic is to the actual error, on average under the joint randomness of design and
model. The principle ‘the closer, the better’ will provide a rating of the variances or
variance estimators under study.

Empirical comparisons of design- and model-motivated variance estimators have been
undertaken in several papers, for example by Royall & Cumberland (1978b, 1981a, b),
Cumberland & Royall (1981), Wu & Deng (1983), Deng & Wu (1987) and Valliant (1990),
who compare the performance of various variance estimators under simulated sampling
from a few real populations. The present paper may be regarded as a theoretical counter-
part to this type of papers. There are many previous theoretical comparisons based on
the sampling variance of the variance estimator and its expected value over a superpopu-
lation. We will explain why that approach is not good enough.

In § 3-5 the ideas will be applied to the expansion and ratio estimators/predictors, and
we will draw conclusions as to which are the best variance estimators for the ratio esti-
mator. These conclusions pay consideration also to the important aspect of robustness
against deviations from the assumed model.

2. THE THEORETICAL CONCEPT

Suppose that an unbiased estimator 0 has been chosen for the inference about a param-
eter 0 in a statistical model. Conventionally the precision of 6 is given by its variance V =
E{(6 — 0)*}, which is the best measure of the squared error itself among constants c, in
the sense of minimizing over ¢ the expected squared difference

E[{(0—60)*—c}?1. (2:1)

Typically V must be replaced by a statistic v that is a function of available data. The
conventional way of considering this replacement is as an estimation problem. Second
order properties of an unbiased v are then judged according to the variance of v as an
estimator of the parameter V. However, the primary object is to make a statement about
the squared error; the role as an estimator of V is secondary. We therefore consider it a
more natural principle that v be judged as a predictor of (0 0)%, and in analogy with
(2-1) we evaluate v according to the quadratic measure

E[{(0—0)*—v}?]. (2:2)
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Note that unbiasedness means the same for estimators of ¥ and predictors of (9 —0)% In
many estimation situations there is only a single unbiased v under consideration, and then
it is a question of only academic interest whether we select v as predictor or as estimator.
In other situations, frequent in sampling theory, there are several competing statistics v,
and because they are more or less correlated with (6 — 0)* they do not necessarily rank
in the same order as predictors of (§ — 0)? as they do as estimators of V. The ratio estimator
will later be seen to provide a good example.

For a finite population of N units with associated Y-values, consider an estimator T of
a population parameter T= T(Y}, ..., Yy), unbiased under the randomness of a specified
sampling procedure. The quantity V is then represented by the sampling variance of T.
This variance will depend on the unknown finite population values, and so will any
measure of precision of a variance estimator v, be it the expected squared difference (2-2)
or the conventional sampling variance of an unbiased estimator v. For guidance in the
choice between different statistics v, as well as between different 7, the solution is to make
a model-assisted evaluation by averaging over a superpopulation model that reflects the
structure of the population. When this is done with (2:2) we obtain the measure

E(y,ﬂ)[{(T— T)2 - 0}2]’ (2-3)

where % and . stand for the probability distributions defined by the sampling design
and the superpopulation model respectively, and (&, .#) denotes the joint distribution.

Analogously, if T has been chosen as an unbiased predictor of T for a model-based
inference, based on a fixed sample of units from a population whose Y-values are imagined
as randomly generated, the prediction variance of T — T is the best constant measure of
quadratic error, with the expected value in (2-1) taken over populations instead of over
samples. In the measure (2:2) for the choice between different precision statistics v the
expected value is now taken over the superpopulation model. However, this choice would
be sample-dependent, that is we must wait until the sample is realized until we can make
the choice. In practice we will probably desire more universal guidance in this choice and
it is natural to replace the sample-dependent version of criterion (2-2) by its average over
all possible samples, that is the measure (2-3) once more.

Thus we make the remarkable observation that, although proponents of design-based
and model-based inference follow different principles in their choice of T and in their
interpretation of the concept of precision of T, they have reason to agree about the criterion
for rating precision estimators. Note that (2-3) provides an adequate criterion for any
precision statistic v, be it motivated by design or model considerations, or even utterly
unfounded.

We saw that the sampling and prediction theoretical variances both minimize
expressions of type (2-1) but with expected values calculated under different probability
distributions. We can make them comparable by regarding them like v in (2-3) as precision
statistics under joint randomness, and compare

Ey u [{(T— T)Z - Vary]ﬁ(T)}Z] (2+4)
with
E(Y,ﬁ)[{(T_ T)z - Var.ltl.?’(T_ T)}Z]- (2-5)

Here & |/ indicates the sampling distribution given a fixed population generated by the
superpopulation model, and .Z|% the distribution defined by the model, given a fixed
sample of units. Comparisons under this joint randomness should be of some interest
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when discussing the merits of the design-based and model-based approaches, see §§ 3 and
4 for examples.

Any quantity of type (2-2)—(2-5) might be called a ‘mean squared error of predicted
squared error’. We propose that the choice between statistics for variance estimation in
specified situations be based on this measure.

From a design-based point of view we could ask why we should not measure the
performance of an estimator v by its sampling variance, or mean squared error if v is not
unbiased, averaged over ./ to get a measure that does not involve the actual unknown
population: E ,{vary | ,(v)}. Among others Wu (1982) used this measure, in a theoretical
study for the ratio estimator, but Wu & Deng (1983) found empirically that it was unsatis-
factory for describing precision and confidence interval coverage, remarking

In estimating the population mean the purpose of variance estimation is rather for
assessing the variability of the ratio estimator than for estimating the variance itself.

The mean squared error of predicted squared error satisfies their demand by measuring
how well v predicts (T — T)?, thereby paying attention to the amount of information in
the sample concerning the error (T — T)?, whereas varg ,(v) primarily measures how
precisely v estimates varg «(T). Only for v that are uncorrelated with (T—T)? will
E ,{vary| ,(v)} be a measure equivalent to (2:3). An analogous argument may be given
within model-based inference. It is intuitively reasonable that the argument carries over
to confidence intervals, so that intervals based on (T — T)?/v are most correct when v best
possible reflects the sampling variability of the estimator T, rather than when v best
estimates a population variance quantity. If so, the conclusions about confidence interval
coverage of Wu & Deng (1983) might be explained this way.

Isaki & Fuller (1982) introduced the anticipated variance of T — T as being the variance
of T— T over both design and model jointly. If v satisfies the unbiasedness requirement

Eg.u0)=Ey a {(T—-Ty}, (2-6)

the mean squared error of predicted squared error criterion is formally the same for v as
a predictor of (T'— T)? as the anticipated variance of T— T is for T as a predictor of T.

Expressions (2-:3)—(2-5) may be rewritten in a form more convenient for calculations
and comparisons. Assume first quite generally that v is any statistic satisfying relation
(2:6). Typically v has been chosen among & -unbiased estimators or .#-unbiased predictors
of the respective variance of T or T— T, so that (2:6) is satisfied. We may then rewrite
(2:3) as

Eg ) [{(T— TP —v}?*]= val s 4) {(T — Ty} -2 COV(w, a) {(T —T), v} + Var g 4 (v).
(27)

The first term, var gy 4, {(T— T)?}, does not depend on v and will therefore be called the
common term. It corresponds to the choice v = const = var g, ﬁ)(T T), the overall vari-
ance, that will minimize (2-3) only among constants, and will be inferior to the conditional
variances in (2-4) and (2'5).

The v-dependent remainder of (2-7) will be regarded as a reduction of the common
term, to be called the specific reduction, in formulae to be abbreviated spec.red. Hence,
for a particular statistic v,

mean squared error of predicted squared error = common term — specific reduction.
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In the special cases (2-4) and (2-5) with
v=Vy= Varyldlt(ff), v="V,= Varﬁ|y(T —T),

v is constant under & and .# respectively, so the covariance in (2-7) equals the following
variance and the specific reductions simplify to

spec.red. {V,} =var ,(V,), specred.{V,}=var,(V,). (2-8)

If v=v,, is a model-unbiased estimator of the theoretical conditional variance V,=
var 4 (T — T), its specific reduction may be expressed as

spec.red. {v,,} =spec.red. {V,} + E,[2 cov,,,ly{(T— T)*, v,.} —var 4 »(v,.)]. (2:9)
This form is convenient for calculations and is seen from (2-7) by writing

vary 4(.) =varg{E 4 ()} + Eg{var 4 4(.)},

and correspondingly for cove (., .). Analogously we cguld express the specific reduction
for a sampling-unbiased estimator v, of Vi, =vary| ,(T). Note that when we replace a
theoretical variance by an estimator, the specific reduction may be increased or reduced,
depending primarily on the correlation, /#|% or &|.#, between this estimator and the
actual squared error (T'— T)%

We will now turn to examples of situations where it may be of interest to compare the
specific reductions for theoretical variances or variance estimators. In all examples T will
be the finite population total.

3. SAMPLE MEAN UNDER SIMPLE RANDOM SAMPLING AND EXCHANGEABILITY
This is an almost trivial example but a natural starting point. Let the finite population
be (Y;,..., Yy), with total T=NY. A sample of size n is to be taken by simple random
sampling without replacement. We consider two different superpopulation models in which
unit labels carry no information about the Y-values.

Model #1. Y, ..., Yyis a randomly labelled finite set of fixed values.

Model #2. Y,,..., Yy are independent and identically distributed with mean u and
standard deviation o.

Note that model .#1 is obtained from .#2 by conditioning on the order statistic of the
population.

The natural estimator/predictor of T is the expansion estimator T'= Ny, where y is the
sample mean. Here T is design- and model-unbiased with variances

.. N?
Vy:VaTylﬂ(T):T(l—f)Sz, (3-1)
Vir=var gy (T = T) = 2 (1= 5% (32)
Vs =vat 31 (T T) = 0 (1= 1) (31)

where f=n/N and S>=(N—1)"') (Y;— Y)? when the summation is over the range
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i=1,...,N. The equality of Vi, and V,, simply reflects the probabilistic equivalence
between simple random sampling and random labelling, making the inferences equivalent.
In particular V, and V,, have identical mean squared error of predicted squared error
under (¥, #1).

Under (¥, .#2) we have the following results; compare with the more general § 4. The
common term may be written 2nC,{1 + O(1/n)}, for fixed f, where

C,= N*c*(1—f)*/n’.

For the .#2-based precision measure (3-3),

spec.red. {V ,,} =0, (3-4)
whereas for V,, under (¥, .#2)
N4 2 2
spec.red. {V,} = Pl (1 —f)* var_,,(S*) = 0. (35)
More specifically
2 y
var ,,(S%) = ot <ﬁ + ﬁ), (3:6)

with y, > —2 as the coefficient of excess, i.e. the standardized fourth cumulant, of the
distribution of Y under model .#2. Inserting (3-6) in (3-5) and neglecting the difference
between N — 1 and N we may note for later reference that

spec.red. {Vy,} =C,f(2+ 7,). (37)

We conclude from (3-4) and (3-5) that the .#2-based precision measure V,, does not
describe the true precision of T as well on the average as does V.. The obvious explanation
is that the o2 of model .#2 is not the actual finite population variance. The random
labelling model .#1 is therefore in principle a more attractive model than .#2, in that it
only involves the real finite population variance S* and no hypothetical o>

In practice, however, neither S? nor ¢? are known, but both are estimated by the same
statistic s, and in both models the inference becomes equivalent to sample randomization
inference under simple random sampling. In particular V,,, V,; and V,,, have the same
estimator, v = (N2/n)(1 — f)s?, with specific reduction under (&, .#2) given up to a factor
of order 1+ O(1/n) by

spec.red. {v} = C,{—2+7,(1 —2f)}. (3-8)
If the Y-values are generated by a normal distribution, say, for which y, =0,
spec.red. {v} <spec.red. {V,,} <spec.red. {V,}.

A simple explanation behind the first of these inequalities is that under normality s* and
(7 — Y)? are uncorrelated under .# |, so when going from V4, to v there is only a negative
contribution by the variance of v.

4. THE RATIO ESTIMATOR UNDER SIMPLE RANDOM SAMPLING AND PROPORTIONAL
REGRESSION

Again the study population is (Y, ..., Yy), with total T= NY, and the design specifies
that the choice of n units, or labels or indices, be made by simple random sampling,
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without replacement. We assume that there is also available a concomitant variable x,
with positive population values (Xi,...,Xy), and a known population average X.
Consider the superpopulation model which specifies that the Y-values are independently
generated, given the set of X-values, as

E ,(Y|X;) = BX,, Var/t(YiIXi)=0'2Xi- (41)

This is the superpopulation model traditionally associated with the ratio estimator. We
also assume that the conditional distributions have a common form, with coefficient of
excess y,. The ratio estimator/predictor is defined by T = NyX/x, where y and x denote
the sample means of Y- and X-values. This is an approximately unbiased estimator of T
under simple random sampling, with good approximation when n is large, and it is an
exactly unbiased, and even best linear unbiased, predictor of T under model (4:1); compare
Royall (1970). R
The approximate sampling variance, or mean squared error, of T is
-~ N(1—f)
Vy:Varf/lJt(T)ﬁ‘-—n‘_‘S%]X: (4-2)
with
1 X - o
S%']x= T Z (Yi_RXi)Za R= Y/X,
N-12

see e.g. Cochran (1977, p. 153). The predictive variance is (Royall, 1970)
N%6%? X(X — fx)
n X ’

Vy=var 4 o(T—T)= (43)

Several estimators of V., and V, have been proposed in the literature. Here six such
statistics will be compared. Various subsets of these six have been discussed by, for example,
Rao (1969), Royall & Eberhardt (1975), Royall & Cumberland (1978b, 1981a), Wu (1982),
Wu & Deng (1983).

The ‘classical’ estimator of (4:2), approximately sampling-unbiased, is obtained by
simply replacing the population variance in (4:2) by the corresponding sample variance
and R by R = y/x, with the result

_ N2(1—f) ni . Za (y; — Rx, . (4-4)

Note that E | «(R)=Rand E 1 #(R)=E_,(R) = p. Royall & Eberhardt (1975) and Royall
& Cumberland (1978b, 1981a) used the notation v.. Under model (4:1), v, is not model-
unbiased, but

Vo
n

., K& -1
"R = (1 =)

is, where 7, is the coefficient of variation of the x-sample; this was proposed by Royall &
Eberhardt (1975). In his discussion of Royall & Cumberland (1978b), Rao (1978) advo-
cated a design-motivated simpler alternative to vy,

v, = vo(X/X)?, (4-6)
and gave literature references. Wu (1982) and Wu & Deng (1983) studied a wider class

v (45)
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of estimators by replacing the exponent 2 in (4-6) by an arbitrary number g. Wu found
vy = 0o(X/X) (47)

to be of particular interest since the exponent value g =1 minimized the expected value
under model (4-1) of the approximate sampling variance for this class of estimators. A
related reasoning led Godambe & Thompson (1986) to propose the same estimator. Note
that all estimators mentioned until now are approximately sampling-unbiased.

A more direct alternative to vy as a model-unbiased estimator of V, is obtained by
simply replacing ¢” in (4-3) by the weighted mean square of residuals estimator,
1 i— in)z

2.

Following Royall & Eberhardt (1975) we denote the resulting statistic by vy. Royall &
Cumberland (1978b, 1981a) used the notation vy,.
The last statistic to be considered is obtained by replacing ¢ in (4-3) by
1 i— in)z

3=-Y

n=s f—x;/n

(48)

6% =

n—1 X;

(49)

The resulting model-unbiased estimator v, (Royall & Cumberland, 1981a) was proposed
by Royall & Cumberland (1978a) under the notation G,. Under mild restrictions on the
x;, Up is easily shown to be approximately sampling-unbiased.

PROPOSITION. For the ratio estimator/predictor under simple random sampling and the
proportional regression model (4:1), the specific reductions for the theoretical variances Ve
in (42) and V, in (43) and the variance estimators vy, vy, Uy, Uy, Up and vy, given by
(44)—(49), are as follows, up to factors of order 1+ O(1/n):

Cullx

1—f
spec.red. {vy } =spec.red. {V,} + C,{(1 — 2/)(2+7,) —4(1 = f)},

spec.red. {vy} =spec.red. {V,} + C,{(1 —21)(2 +7,) —4(1 — )} (1 + n%),

Canx(2—f)

specred. {Vy,} = C,f(2 +7,)(1 +1%), specred.{V,}=

spec.red. {vp} = spec.red. {vg}, spec.red.{vy} =spec.red. {vy} —

1-f 7
Cn 2 Cn 2 2
spec.red. {v;) = spec.red {vy} — 1 _11;, spec.red. {v,} = spec.red. {vy} — 111X; ,

where 7, is the coefficient of excess of the distribution of Y given X, ny is the coefficient of
variation of the X population, ny = Sx/X, and
C,= N4c*X2(1 — f)*/n’.
The common term equals 2nC,, except for a factor of order 1 + O(1/n).
Derivations of these expressions are given in the Appendix. Model .#2 of § 3 appears
for X =1, that is X =1 and 55y =0, and formulae (3-4), (3-7) and (3-8) of that example
are easily checked to be consistent with the present results. We continue by a list of

conclusions apparent from a comparison of the various expressions, followed by a
numerical example.
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Comments and conclusions. (i) Neither V,, nor V, dominates the other in specific
reduction. The predictive variance V,, benefits from a small sampling fraction and, perhaps
more surprising, also from a large fraction; V,, benefits from a small relative variation in
x. As nx—0 we approach the situation of § 3, in which the greater value for V,, was
explained by the appearance of the superpopulation parameter ¢ in V. For evaluation
of the factor (2 + y,) in V,, note that (2 + y,) > 0, and that the normal distribution corre-
sponds to y, =0, whereas the rectangular distribution has y, = —1-2.

(i) The exclusively sampling-motivated estimators v, and v, are uniformly inferior to
the estimators vy, vp and v,. For small f the difference in specific reduction between vy
and v, is approximately 4C,n%, which may be of considerable size.

(iii) Variance estimators vy and vy, are asymptotically equivalent with respect to specific
reduction.

(iv) Estimator v, is quite close to vy and vy, in specific reduction, in other words, the
further refinement from v, that vy represents is rarely worthwhile since their relative
difference is of order f2. See also § 5.

(v) Even the best estimators typically differ in specific reduction from the theoretical
model-based variance V, by a negative quantity, <0 at least for y, <2; compare with the
end of § 3.

(vi) The usual negative quantity mentioned under (v) is expanded by a factor (1 + %)
when we go from vy to vy or vp, so usually vy, is better in mean squared error of predicted
squared error than the other estimators. This is explained by the higher statistical efficiency
of vy. More precisely, Royall & Eberhardt (1975) remarked that

var 4| o (vg)
var 4| o (vy)

which partially explains the relationship between the specific reductions for vy and vy.
They stated their result under the assumption y, = 0, but it holds for arbitrary y,. However,
we will see in § 5 that spec.red. {vy} is so sensitive to small modelling errors that vy,
nevertheless cannot be recommended.

=1+,

(vii) The specific reductions, and their mutual differences, are of a smaller magnitude
than the common term. Hence, in large samples only marginal improvement in mean
squared error of predicted squared error is possible by changing from one variance esti-
mator to another.

Numerical illustration. Royall & Cumberland (1978b, 1981a) presented simulation stud-
ies of variance estimators in six real populations for which the ratio estimator/predictor
was regarded as natural. Let us take these populations as examples for typical parameter
values. Their #% values ranged almost from 0-5 to 3. No information was given about the
7, values. Let us assume y, =0. The authors used f=1 for one of the populations with
nz ==0-6, and otherwise f'==. With such values we obtain the following specific reductions,
after division by C,:

fOI’f=%, ”.%(:06’ '))2=03

Vo:+08, V,:408, vp:—12, vg=vp==0v,: 24, v;:—32; vy —4S8;
fOI'f=‘11—0, ’7§{=3’ V2=0,

Vo:+08, V,:433, vp:+13, vg=vp=0,: —47, v;:—80, vy:—167.
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5. ROBUSTNESS CONSIDERATIONS FOR THE RATIO ESTIMATOR/PREDICTOR

A finite population is likely to deviate in some respect from whatever simple superpopu-
lation model is used to represent it. To what extent will the estimated precision assigned
to an estimator/predictor be sensitive to such deviations? This was the concern of Royall
& Cumberland (1978b, 1981a, b) in their empirical studies of variance estimators when
they used real populations. We continue our study from § 4 of variance estimators for the
ratio estimator by considering here the influence of deviations between the assumed model
and the ‘true’ model.

Suppose there is an undetected intercept o > 0 in the true relationship,

E (Y| X;) = o + BX;. (51)

With an intercept it is no longer realistic to assume that the true variance of Y given X
tends to zero with X, so suppose instead that

var ,(Y| X;) = 1> + 0> X,. (52)

It will turn out that the intercept in the variance function introduced is more crucial to
our results that the intercept in the mean function.

Under (5-1) with « + 0, T is no longer an ./#-unbiased predictor. However, to the usual
degree of approximation condition (2-6) will still hold for all our estimators v except vy,
since these estimators are approximately sampling-unbiased. Therefore the specific
reductions are still given by the last right-hand terms of (2-7), except for v = vy which
requires that a squared bias term is added to (2:7),

bias (vy)* = Es.4) {(T— TP —vw}>

Elementary approximate calculations show that
N4
bias (v )>=—5 (1 — /P X*[*{Ave (X 1) — X'} +o?{Ave (X 1) — X' —nz X1}
n

(53)

where Ave (X ~1) stands for the population mean of the X ~! values. Note that for fixed
72 or a this term is of order nC, as n— co. However, if we let n— co but want to mimic
a finite sample situation with deviations from the assumed model that are not quite
apparent, we must let these deviations shrink with n. More precisely, we should let t> =
O(n*) and a = O(n" %), so that the intercepts may remain difficult to detect in sample
data as n— co. Doing so, we see from (5:3) that the intercept in the mean is less crucial
than the intercept in the variance function, and that the latter will reduce spec.red. {vy }
by a quantity of the same order of magnitude as the specific reductions themselves. Our
conclusion is that we cannot rely on the result of § 4 as concerns vy,. A rarely detectable
error in the variance function is sufficient to make vy, worse than the others. This result
matches findings by Royall & Cumberland (1978b, 1981a). Already Royall & Eberhardt
(1975) warned against the use of vy for its lack of robustness.

In the rest of the section we will compare the other estimators with vy. First, vy, is still
asymptotically equivalent with vy and need not be further discussed. The others, vy, v,
and v,, are all of the form v = g(s)vg, where g(s) only depends on the sample. Remark 2
at the end of the Appendix shows how the calculations of the specific reductions must be
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modified in this case. The results are as follows:

Canx(2—f)(2—f—2f0)

spec.red. {v,} = spec.red. {vg} —

1—f
Cnk(1—216
spec.red. {v;} = spec.red. {vg} — _LXI(__f_l_)
Canf(1 —20)
spec.red. {v,} = spec.red. {vy} — — ’

where 0 = 1%/(1? + ¢>X) < 1 and, in the expression for C,, 62X is replaced by the average
modified error variance 1% + 6> X.

It is seen that, unless f is large, it is still the case that v, is better than v,, which is better
than v,, as in § 4. The differences remain of the same magnitude unless 0 is large. The
previous small difference between vy and v,, of relative magnitude O(f?), remains small
but changes sign for large 6. As 6 > 1, v, becomes optimal.

Conclusion. If it appears that (4-1) is not too bad as a model for the data, use any of
Uy, Vg or UD.

6. DISCUSSION

In this paper we have introduced and advocated the mean squared error of predicted
squared error as a criterion for comparing variance estimators, be they design- or model-
motivated. The criterion minimizes the expected squared difference between a variance
estimator v and the squared error in T} (T — T)? so in conventional terminology v is not
treated here as an estimator of a variance. However, since the role of the variance is to
measure the squared error we see no conflict but only potential advantages in the present
point of view.

As an example we investigated in § 4 the ratio estimator/predictor under simple random
sampling and a proportional regression model. We found not only that the ‘classical’
variance estimator v, is uniformly inferior to the corresponding model-motivated estimator
vy and its close relatives v, and v,, but that the same negative conclusion holds for v,
which has been advocated in the literature as having minimum sampling variance. That
our conclusion was a different one is understood from the fact that the mean squared
error of predicted squared error pays attention to the correlation between the variance
estimator and the actual squared error. In § 5 we showed how robustness considerations
could be incorporated in these calculations. In this way we could distinguish one statistic,
vy, as being nonrobust, in agreement with empirical observations.

The calculations of mean squared error of predicted squared error may be regarded as
theoretical counterparts to empirical studies like those made by Royall & Cumberland
(1978b, 1981a, b) and Wu & Deng (1983), where they compare the variance estimators
with the actual variability of the ratio or regression estimators under repeated sampling
in simulation studies on a number of real populations. The present measure has the
advantage of allowing variation due to both repeated sampling and repeated generation
of population values, instead of being confined to one or a few fixed populations. But the
principal advantage of the measure itself lies in the possibility it opens for the statistician
to select and motivate a precision statistic which is adapted to the expected amount of
information in the actual sample, as expected under a reasonable model description of
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the population data structure. In this way it fits naturally within the framework of model-
based inference. From a design-based point of view the consequences are even more
significant, but not less satisfactory: the choice of a variance estimator thus adapted to
the information in the sample is not in conflict with the randomization inference principle;
the role of models is now only to assist in the selection. The present author prefers explicit
modelling used in this way to the alternative implicit modelling of Robinson (1987), where
the estimator v, in (4-6) is motivated as a conditionally adjusted estimator in an asymptotic
design-based argument.

In the particular sense described above we obtain a unification of design- and model-
based inference. If in a particular situation the statisticians can agree about the
estimator/predictor T, they should be able to agree about the function v of data used to
assign a value to the precision of T'

Future studies could concern other estimators/predictors or other sampling situations.
A close relative to the ratio estimator is the regression estimator, T'= N{j — f(x — X)},
for which we have strong reasons to anticipate results quite similar to those for the ratio
estimator. Other examples could concern estimators/predictors in systematic sampling or
in subsampling situations. A variance estimator is not only used per se, as a number
indicating precision, but also as a standard error factor in standard confidence intervals
under approximate normality. Empirical results by Wu & Deng (1983) and Deng & Wu
(1987) indicate that variance estimators with lower mean squared error of predicted
squared error tend to yield better coverage properties for the confidence intervals, but it
remains to find convincing theoretical support for such findings. Finally, the idea of this
paper might also be applied outside the field of sampling, in particular to situations with
two different sources of randomness, for example to designed experiments with their
random allocation of treatments to units and random experimental errors.

APPENDIX
Proof of the proposition of § 4
We start with the common term, var s _g,{(T — T)?}, and make the calculation by conditioning

on the sample 4. First note that 7'— T may be written Za;¢;, where ¢; = Y; — pX;(i=1,...,N) are
mutually independent with

E 19| X;)=0, var, o(|X;)=0°X;, var, o(¢8|X;)=(2+7y,)0*X?,
and the coeflicients a; depend only on the sample, more precisely,
(X —fONfx) fories,
{— 1 fori¢a.

= (A1)

a;

We apply the following lemma.
LeMMA 1. For arbitrary coefficients {a;}, allowed to depend on the sample,
E 4 9 {(Za;e;)’} = 0 Zai X,,
var | o {(Za;&)*} = 20%(Za? X;)* + y,0°Z(a? X;)%.
Proof. The lemma is easily proved by writing
(Zaie,)? =Zate? + 25, ja;a;8:¢;

and noting that all terms are mutually uncorrelated. O
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Application of the lemma with g; as in (A-1) yields the common term, var, ﬁ){(T— T)*},

E, [20‘4 {nx (X;xfx>2 + NX — nx}2

+7,0* {n ave (x?) (%f) + N Ave (X?)—nave (XZ)}:I + var, <

where ave (x?) and Ave (X?) represent the sample and population averages of the x* and X2 values,
respectively. Here the crude approximations

Ey{g®)} =gX){1+0(1/n)}, varg(1/%)=0(1/n),
compare Lemma 2 below, are sufficient to conclude that the dominating term of the right-hand
side is

N202X2>

2N*6*(1 — f)?X?*/n® = 2nC,,

as was to be shown.
For V, expression (4-2) is only approximate, but the difference is easily seen to be negligible.
Hence, see (2:8), with satisfactory approximation its specific reduction is given by
4
spec.red. {V,} =var ,(Vy) = = (1—f)? var (5% x).

Here we insert the sufficiently precise approximation

1 X =
var (S} ) =var.y (N ) s%) ~Laimeaim,

i=1

and the derivation for V,, is finished.
The specific reduction for ¥, is obtained by inserting (4-3) in the right-hand equation (2-8),

specred. {V,} = var, (V) = (N*0* X*/n?) var,(X/x).

An expression for the remaining variance is given by the last formula of the next lemma, and
insertion of this expression immediately yields the desired formula for spec.red. {V,,}.

LEMMA 2: Propagation of errors. For differentiable functions g(X) bounded within the range of
X-values, simple random sampling of x-values, and up to factors of order 1 + O(1/n),

Eq{g(x)} =g(X),
vary {g(%)} =g (X)? vary(%) = (1 — f)g'(X)*S§/n.
In particular,
Ey(X/x)=1, vary(X/x)==(1— f)nx/n.
Proof. The lemma is easily proved by linearization of g(x) around X. O

Now, let v,,=V,6%/c* denote any model-unbiased estimator of V,. By (2:9) we require the
difference between

2Eycov y s {(T_ T), v,.} =2E4[V, cov, | {(T—T)7 6*}1/0%, (A2)
and Eg var 4 4(v,,) = Ex{V?, var 4| »(6)} /0" (A-3)
In the variance, (A-3), 62 may be replaced, with relative error O(1/n), for each v,, under consideration
by the ideal estimators
1
nx

1
T, 0i—BuP =%, d (A4)

6% =

in vy and in vp, and
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&

62=124M=12 (A'5)

0
n X; n=?’x;

in vy. Given the sample o, statistics (A-4) and (A-5) have variances (2+7,)(1+#%2)o*/n and
(2 + y,)a*/n, respectively. Hence, for vy and vy, (A-3) takes the form

Z\2
Cu(2+72)Es {(1 +1%) <1 —f%) /(1 —f)z} == C,(2 4 72)(1 +1%)-

The approximation involves an obvious extension of the expected value part of Lemma 2 to
functions g of two statistics. For vy we obtain the same expression except for the factor (1 + 7).

Next, for the covariance term (A-2), if for 6% we use 63 as expressed in terms of ¢; in (A'4) or
(A'5), only terms a?¢? for i € s of (T — T)? contribute to the covariance. Elementary calculations as
in Lemma 1 yield, with a, denoting the common value of a; for i € ,

oV o {(T— TP, 63} = (2 + 12)0*al ave (x?)/x
for vy and vp, and
COV,ﬂly{(T_ T? 63 =(2+ y2)otal %

for vy. However, for the covariance between (T — T)* and 6? the approximation 63 of 4% is not
sufficiently precise. This is because 63 is obtained from 42 by replacing R by f§, and R and T are
proportional. For vy, a refinement of 63 by the term —(R — B)*x = —#&%/x yields a contribution to

COV./(IS’{(T_ T)?, 6%} of
—n2a? var 4| »(8%)/% = —2a2a* {1 + O(1/n)}.

When forming E(.) of the resulting conditional covariance the crude first order approximation
is again sufficient, with the result

2Ey cov 41 {(T — T vy} = 2C,12(1— f). (A'6)

By analogous but slightly more complicated calculations it can be shown that for vy and v, we
obtain for (A-2) the right-hand side of (A-6) multiplied by the factor (1 + 72).

Inserting the expressions for (A-2) and (A-3) derived above we obtain the desired formulae for
the difference between spec.red. {V,} and spec.red. {v,,} when v,, = vy, vp and vy, respectively.

The estimators vy, v; and v, will be treated in parallel. We start from the specific reduction as
expressed in (27); the unbiasedness requirement is satisfied to a sufficient order of magnitude. They
may all be written in product form g(s)vy, with only sampling variation in the factor g(s). We
apply the laws for propagation of errors on this product, that is an extension of Lemma 2 to
functions of several variables, but noting the factors are correlated. To the desired order of magni-
tude we obtain after some calculations the remarkably simple result

spec.red. {g(s)vy } =spec.red. {vy} — C,n vary,{g(s)}. (A7)
Further propagation of errors through the nonlinear g(s) by application of Lemma 2 yields: for v,

2-fr
1—f"°

nvare {g(o)} =n%
for v

nvary {g(0)} =1 ——.
1—7
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and for v,
f2
1—f

Inserting in (A-7) we find differences from spec.red. {vy} as asserted in the Proposition. O

nvary {g(s)} =nj%

Remark 1. As a by-product of (A7) we see that vy is optimal among all estimators obtained
from vy by a modification factor of type g(v).

Remark 2. If the assumed error variance function is incorrect, var (g;) = V; # 62 X;, so vy and the
other estimators are no longer model-unbiased, (A-7) no longer holds, but we must add to its right-
hand side a term

N? _ N
27(1 —fVcove[g(), Eu (T — T)? —vg}].

Also ¢%X in C, should be replaced by V.

Remark 3. In the derivations above we chose to condition on the sample 4. Alternatively we
could have conditioned on the population Y values. We would then have linearized the ratios and
used the higher moments calculation technique developed by Tukey (1950) and Wishart (1952).
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