Outline
Brief Intro to Situation Theory
More Complex Objects
Linguistic Contexts and Agents
Applications
Some References

Situation Theory and its Applications

Roussanka Loukanova

Stockholm University

Logics for Linguistics

10-17 December, 2014

- Brief Intro to Situation Theory
 - Origins and Present
 - Atomic and basic objects
- More Complex Objects
 - Infons
 - Propositions
 - Complex Relations
 - Complex Types and Parameters
 - Restricted Parameters
- 3 Linguistic Contexts and Agents
- 4 Applications
- Some References

Origins and Present of Situation Theory (SitT)

- Barwise [1] is the most influential and debated works on SitT
- Barwise and Perry [2]
 - a general model theory of information and its fundamentals
 - by modelling relational and partial information
 - dependence of information on situations
 - parameters as basic and complex informational components
- Devlin [4, 5] is a detailed, intuitive introduction to SitT
- Seligman and Moss [8] is a mathematical model theory of SitT
- Loukanova [6, 7], is an intro to the mathematics of set-theoretical (non-well founded) foundations of SitT
 - information in context, w.r.t. agents
 - primitive and complex parameters
 - model (represent) objects with partially available information
 - model objects in nature that are undeveloped or in developmental stage

Sets of basic situation theoretical objects

- Primitive individuals: $\mathcal{A}_{\text{IND}} = \{a, b, c, \ldots\}$
- Space-time locations: $A_{LOC} = \{I, I_0, I_1, ...\}$ associated with some space and time relations, e.g.:

$$egin{array}{lll} I_i \prec I_j & (\mbox{time precedence}) \\ I_i \circ I_j & (\mbox{time overlapping}) \\ I_i \diamond I_j & (\mbox{space overlapping}) \\ I_i \subseteq_t I_j & (\mbox{time inclusion}) \\ I_i \subseteq_s I_j & (\mbox{space inclusion}) \\ I_i \subseteq I_j & (\mbox{space-time inclusion}) \\ \end{array}$$

• Primitive relations: $A_{\text{REL}} = \{r_0, r_1, \ldots\}$

Primitive (basic) types

$$B_{\text{TYPE}} = \{ \text{IND}, \text{REL}, \text{ARGR}, \text{LOC}, \text{POL}, \\ \text{INFON}, \text{SIT}, \text{PROP}, \text{PARAM}, \text{TYPE}, \models \}$$
 (2b)

- IND: primitive and complex individuals;
- REL: primitive and complex relations;
- ARGR: primitive and complex argument roles;
- LOC: space-time locations;
- POL: polarities 0 and 1;
- INFON: basic or complex information units;
- SIT: situations;
- PROP: basic or complex propositions;
- PARAM: primitive and complex parameters;
- TYPE: basic and complex types;

• \models is a special type called "supports" ("holds"), e.g., used in the type of propositions that a situation s and an infon σ are of the type "supports", i.e., "s supports σ ":

$$(s \models \sigma)$$
 (a proposition) $s \models \sigma$ (a verified proposition)

ullet Primitive and complex types $\mathcal{T}_{ ext{TYPE}}$

$$B_{\text{TYPE}} \subseteq \mathcal{T}_{\text{TYPE}}$$
 (4)

Basic argument roles with appropriateness constraints

- basic argument roles: \mathcal{BA}_{ARGR} , e.g., $\mathcal{BA}_{ARGR} = \{ \rho_1, \dots, \rho_m \}$; basic and complex argument roles: $\mathcal{BA}_{ARGR} \subseteq \mathcal{A}_{ARGR}$
- A set of argument roles is assigned to the primitive relations and types by a function *ArgR*. I.e.:
- for every $\gamma \in \mathcal{A}_{\text{REL}} \cup \mathcal{B}_{\text{TYPE}}$

$$ArgR(\gamma) = \{ \langle arg_1, T_1 \rangle, \dots, \langle arg_n, T_n \rangle \}$$
 (5)

$$\equiv \{T_1 : arg_1, \dots, T_n : arg_n\} \quad (n \ge 0) \qquad (6)$$

where $arg_1, \ldots, arg_n \in \mathcal{A}_{ARGR}$,

$$T_1, \ldots, T_n \in \mathcal{P}(\mathcal{T}_{\text{TYPE}})$$
 are sets of types (basic or complex).

- The objects arg₁,..., arg_n are called the argument roles or argument slots of γ.
- T₁,..., T_n are specific for γ and are called the appropriateness constraints of the argument roles of γ.

Relations and Types with Argument Roles

Each relation is associated with a set ArgR of argument roles

$$ArgR(smile) = \{ T_a : smiler \}$$
 (7a)

$$ArgR(read) = \{ T_{a_1} : reader, \ T_m : read-ed,$$
 (7b)

$$T_{a_2}$$
: readee}

$$ArgR(read_1) = \{T_a : reader, T_o : read-ed\}\}$$
 (7c)

$$ArgR(give) = \{T_a : giver, T_r : receiver, T_g : given\}$$
 (7d)

Each type is associated with a set ArgR of argument roles,
 e.g., for the "supports" type |= of situations and infons:

$$ArgR(\models) = \{SIT : arg_{SIT}, INFON : arg_{INFON}\}.$$
 (8)

Primitive parameters

• Typed primitive parameters (sometimes called indeterminates):

$$\mathcal{P}_{\text{IND}} = \{\dot{a}, \dot{b}, \dot{c}, \ldots\},\tag{9a}$$

$$\mathcal{P}_{\text{LOC}} = \{ \dot{l}_0, \dot{l}_1, \ldots \}, \tag{9b}$$

$$\mathcal{P}_{\text{REL}} = \{\dot{r}_0, \dot{r}_1, \ldots\},\tag{9c}$$

$$\mathcal{P}_{\text{POL}} = \{ \dot{i}_0, \dot{i}_1, \ldots \}, \tag{9d}$$

$$\mathcal{P}_{\text{SIT}} = \{ \dot{s_0}, \dot{s_1}, \ldots \}. \tag{9e}$$

We will define complex objects recursively

- Infons
- states
- events
- situations
- propositions
- situated propositions
- complex relations
- complex types
- restricted parameters

Definition (Basic Infons)

A basic infon is every tuple $\langle \gamma, \theta, \tau, i \rangle$, where

• $\gamma \in \mathcal{R}_{\text{REL}}$ is a relation (primitive or complex)

$$ArgR(\gamma) = \{ \langle arg_1, T_1 \rangle, \dots, \langle arg_n, T_n \rangle \} \quad (n \ge 0), \quad (10)$$

where $T_1, \ldots, T_n \in \mathcal{P}(\mathcal{T}_{\text{TYPE}})$

• θ is an argument filling for γ , i.e.:

$$\theta = \{ \langle \arg_1, \xi_1 \rangle, \dots, \langle \arg_n, \xi_n \rangle \}, \tag{11}$$

for ξ_1, \ldots, ξ_n that satisfy the type constraints over γ :

$$T_1: \xi_1, \dots, T_n: \xi_n \tag{12}$$

• LOC: τ (basic or complex), POL: $i, i \in \{0, 1\}$,

Definition (Infons)

The class \mathcal{I}_{INF} of infons has basic and complex infons:

$$\mathcal{BI}_{\mathsf{INF}} \subset \mathcal{I}_{\mathsf{INF}}$$

 Complex infons (for representation of conjunctive and disjunctive information), e.g.:

For any infons $\sigma_1, \sigma_2 \in \mathcal{I}_{INF}$,

$$\langle \wedge, \sigma_1, \sigma_2 \rangle \in \mathcal{I}_{INF}$$
 (13a)

$$\langle \vee, \sigma_1, \sigma_2 \rangle \in \mathcal{I}_{INF}$$
 (13b)

• basic infons in linear notations:

$$\ll \gamma, T_1 : \arg_1 : \xi_1, \dots,$$

$$T_n : \arg_n : \xi_n,$$

$$LOC : Loc : \tau, POL : Pol : i \gg$$
(14)

$$\ll \gamma, \arg_1 : \xi_1, \dots, \arg_n : \xi_n, Loc : \tau; Pol : i \gg$$
 (15)

$$\ll \gamma, \xi_1, \dots, \xi_n, \tau; i \gg$$
 (16)

Infons Propositions Complex Relations Complex Types and Parameters Restricted Parameters

Example (infons in linear notations)

An infon can be specific or parametric, e.g.

• a reads b to c at the space-time location I (specific objects)

$$\ll$$
 read, T_{a_1} : reader: a, T_m : read-ed: b, T_{a_2} : readee: c, LOC: Loc: I ; POL: $Pol: 1 \gg$

• a reads b to the unknown \dot{c} at the unknown location \dot{l}

```
\ll read, T_{a_1}: reader : a, (specific) T_m: read-ed : b, (specific) T_{a_2}: readee : \dot{c}, \dot{l}; : 1 \gg (parametric)
```

Infons Propositions Complex Relations Complex Types and Parameters Restricted Parameters

Example (infons in linear notations)

Other parametric infons, e.g.

• a reads

(the unknown \dot{b} to the unknown \dot{c} at the unknown location \dot{l})

 $\ll read, T_{a_1} : reader : a,$ (specific)

 $T_m : read-ed : b,$ (parametric)

 T_{a_2} : readee : \dot{c} , \dot{l} ; $1 \gg$ (parametric)

• the info that a either reads or does not — unknown polarity \dot{p}

 \ll read, T_{a_1} : reader: a, (specific)

 T_m : read-ed: \dot{b} , T_{a_2} : readee: \dot{c} , \dot{l} ; (parametric)

 $\dot{p}\gg$ (parametric)

Definition (Propositions)

Proposition is any tuple $\langle PROP, \mathbb{T}, \theta \rangle$, where

ullet $\mathbb{T}\in\mathcal{T}_{\mathtt{TYPE}}$ is a type with a set of argument roles

$$ArgR(\mathbb{T}) = \{ \langle arg_1, T_1 \rangle, \dots, \langle arg_n, T_n \rangle \}, \quad n \ge 0$$
 (21)

• θ is an argument filling for \mathbb{T} , i.e.:

$$\theta = \{ \langle arg_1, \xi_1 \rangle, \dots, \langle arg_n, \xi_n \rangle \}, \tag{22}$$

for some objects ξ_1, \ldots, ξ_n that satisfy the appropriateness type constraints of the type \mathbb{T} , i.e.:

$$T_1: \xi_1, \dots, T_n: \xi_n \tag{23}$$

Notation

$$\langle \mathbb{T}, \theta \rangle \equiv (\mathbb{T} : \theta)$$
 (24a)
 $\equiv (\theta : \mathbb{T})$ (24b)

$$\equiv \langle PROP, \mathbb{T}, \theta \rangle$$
 (24c)

- The variant notations (24a) and (24b) are used depending on context.
- The notation (24a) resemble the application operation.

Definition (Situated propositions)

• The type ⊨ ("supports"):

$$ArgR(\models) = \{SIT : arg_{SIT}, INFON : arg_{INFON}\}$$
 (25)

• Situated proposition:

$$\langle PROP, \models, s, \sigma \rangle$$
, where $s \in \mathcal{P}_{SIT}$ and $\sigma \in \mathcal{I}_{INFON}$ (26)

Notation

$$\langle \models, s, \sigma \rangle \equiv (s \models \sigma)$$
 (27a)

$$\equiv \langle PROP, \models, s, \sigma \rangle$$
 (27b)

Example (The situation s supports a positive information)

$$(s \models \ll book, IND : arg : b,$$
 (28a)

 $LOC: Loc: I; POL: Pol: 1 \gg)$ (28b)

Example (The situation s supports a negative information)

$$(s \models \ll book, IND : arg : b,$$
 (29a)

LOC: $Loc: I; POL: Pol: 0 \gg)$ (29b)

Infons
Propositions
Complex Relations
Complex Types and Parameter
Restricted Parameters

Example (The situation s does not support a positive information)

$$(s \not\models \ll book, IND : arg : b,$$
 (30a)

 $LOC: Loc: I; POL: Pol: 1 \gg)$ (30b)

Example (The situation s does not support a negative information)

$$(s \not\models \ll book, IND : arg : b,$$
 (31a)

LOC:
$$Loc: I; POL: Pol: 0 \gg)$$
 (31b)

Example (actual vs. fallible situations)

$$(s_1 \models \ll book, b, l; 1 \gg) \tag{32a}$$

$$(s_2 \models \ll book, b, l; 0 \gg) \tag{32b}$$

- In case that both propositions (32a), (32b) are true, at least one of the situations s_1 , s_2 is not actual, because of the shared location I
- It may be that
 - ullet s_1 is actual situation, corresponding to a part of the reality
 - s_2 is erroneous, i.e., "carries" wrong information E.g., s_2 can be a state of an informational entity

Example (actual vs. fallible situations)

$$(s_1 \models \ll book, b, l; 1 \gg) \tag{32a}$$

$$(s_2 \models \ll book, b, l; 0 \gg) \tag{32b}$$

- In case that both propositions (32a), (32b) are true, at least one of the situations s_1 , s_2 is not actual, because of the shared location I.
- It may be that
 - s_1 is actual situation, corresponding to a part of the reality
 - s_2 is erroneous, i.e., "carries" wrong information E.g., s_2 can be a state of an informational entity

Example (actual vs. fallible situations)

$$(s_1 \models \ll book, b, l; 1 \gg) \tag{32a}$$

$$(s_2 \models \ll book, b, l; 0 \gg) \tag{32b}$$

- In case that both propositions (32a), (32b) are true, at least one of the situations s_1 , s_2 is not actual, because of the shared location I.
- It may be that
 - ullet s_1 is actual situation, corresponding to a part of the reality
 - s_2 is erroneous, i.e., "carries" wrong information E.g., s_2 can be a state of an informational entity.

Infons
Propositions
Complex Relations
Complex Types and Parameter
Restricted Parameters

Example (A situation s can "carry" partial information)

$$(s \not\models \ll book, b, l; 1 \gg) \tag{33a}$$

$$(s \not\models \ll book, b, l; 0 \gg) \tag{33b}$$

Both propositions (33a) and (33b) can be true.

Example (conjunctive information)

• a conjunctive infon in a proposition

$$(s \models \ll smiles, IND : arg : a, LOC : Loc : I; 1 \gg (34a)$$

$$\wedge \ll animate, IND : arg : a, I_1; 1 \gg$$
 (34b)

$$\wedge I \circ I_1) \tag{34c}$$

a conjunctive proposition

$$(s \models \ll smiles, IND : arg : a, l; 1 \gg)$$
 (35a)

$$\land (s \models \ll animate, IND : arg : a, l_1; 1 \gg)$$
 (35b)

$$\wedge (I \circ I_1) \tag{35c}$$

• There is another way to present the information (34b) and (35b). More on this later.

Example (conjunctive information)

• a conjunctive infon in a proposition

$$(s \models \ll smiles, \text{ IND} : arg : a, \text{ LOC} : Loc : I; 1 \gg (34a)$$

$$\land \ll animate, \text{ IND : arg : a, } l_1; 1 \gg$$
 (34b)

$$\wedge \ I \circ I_1) \tag{34c}$$

a conjunctive proposition

$$(s \models \ll smiles, IND : arg : a, I; 1 \gg)$$
 (35a)

$$\land (s \models \ll animate, \text{ IND : } arg : a, l_1; 1 \gg)$$
 (35b)

$$\wedge (I \circ I_1) \tag{35c}$$

• There is another way to present the information (34b) and (35b). More on this later.

Example (conjunctive information)

• a conjunctive infon in a proposition

$$(s \models \ll smiles, IND : arg : a, LOC : Loc : I; 1 \gg (34a)$$

$$\wedge \ll animate, \text{ IND : } arg: a, l_1; 1 \gg$$
 (34b)

$$\wedge I \circ I_1$$
 (34c)

a conjunctive proposition

$$(s \models \ll smiles, \text{ IND : } arg: a, l; 1 \gg)$$
 (35a)

$$\land (s \models \ll animate, IND : arg : a, l_1; 1 \gg)$$
 (35b)

$$\wedge (I \circ I_1) \tag{35c}$$

• There is another way to present the information (34b) and (35b). More on this later.

Example

• The propositional content of the sentence (36) might be expressed by the proposition (37a)–(37c), with some (great) approximation.

The book
$$b$$
 is read (36)

$$(s \models \ll read, reader : \dot{x}, readed : b, readee : \dot{y}, (37a)$$

$$Loc : l; 1 \gg$$

$$\land \ll book, arg : b, Loc : l_1; 1 \gg)$$
(37b)

$$\wedge \ (I \subset I_1) \tag{37c}$$

(37b) and (37c) are presented as parts of the propositional content of (36). There are other ways to include this information (later).

Definition (Complex relations and appropriateness constraints)

- Let σ be a given infon, and $\{\xi_1, \dots, \xi_n\}$ a set of parameters that occur in σ .
- Let, for each $i \in \{1, ..., n\}$, T_i be the union of the constraints over the argument roles filled up by ξ_i .
- Then $\lambda\{\xi_1,\ldots,\xi_n\}\sigma$ is a complex relation, with abstract argument roles denoted by $[\xi_1],\ldots,[\xi_n]$ and having T_1,\ldots,T_n as appropriateness type constraints, respectively, i.e.:

$$ArgR(\lambda\{\xi_1,\ldots,\xi_n\}\sigma) = \{\langle [\xi_1], T_1\rangle,\ldots,\langle [\xi_n], T_n\rangle\}$$
(38)

Example (A complex infon)

$$\ll$$
 book, b, l_1 ; $0 \gg$ (39a)
 $\land \ll$ writes, a, b, l_2 ; $1 \gg$ (39b)
 $\land \ll$ book, b, l_3 ; $1 \gg$ (39c)
 $\land l_1 \prec l_2 \land l_2 \prec l_3$ (39d)

Example (A complex relation between
$$\dot{x}$$
, \dot{y} , and locations \dot{l}_1 , \dot{l}_2 , \dot{l}_3)
$$\lambda\{\dot{x},\dot{y},\dot{l}_1,\dot{l}_2,\dot{l}_3\}[\ll book,\ \dot{y},\ \dot{l}_1;\ 0\gg \qquad \qquad (40a)$$

$$\wedge\ll writes,\ \dot{x},\ \dot{y},\ \dot{l}_2;\ 1\gg \qquad (40b)$$

$$\wedge\ll book,\ \dot{y},\ \dot{l}_3;\ 1\gg \qquad (40c)$$

Example (A complex relation between
$$\dot{x}$$
, \dot{y} , and locations \dot{l}_1 , \dot{l}_2 , \dot{l}_3)
$$\lambda\{\dot{x},\dot{y},\dot{l}_1,\dot{l}_2,\dot{l}_3\}[\ll book,\ \dot{y},\ \dot{l}_1;\ 0\gg \qquad \qquad (40a)$$

$$\wedge \ll writes,\ \dot{x},\ \dot{y},\ \dot{l}_2;\ 1\gg \qquad (40b)$$

Example (A complex infon)

$$\ll$$
 book, b, l_1 ; $0 \gg$ (39a)
 $\land \ll$ writes, a, b, l_2 ; $1 \gg$ (39b)
 $\land \ll$ book, b, l_3 ; $1 \gg$ (39c)
 $\land l_1 \prec l_2 \land l_2 \prec l_3$ (39d)

Example (A complex relation between \dot{x} , \dot{y} , and locations l_1 , l_2 , l_3) $\lambda\{\dot{x},\dot{y},\dot{l}_1,\dot{l}_2,\dot{l}_3\}$ $\leq book, \dot{y}, \dot{l}_1; 0 \gg$ (40a)

$$\lambda\{\dot{x},\dot{y},\dot{l}_{1},\dot{l}_{2},\dot{l}_{3}\}\big[\ll book,\ \dot{y},\ \dot{l}_{1};\ 0\gg \qquad \qquad (40a)$$

$$\wedge\ll writes,\ \dot{x},\ \dot{y},\ \dot{l}_{2};\ 1\gg \qquad (40b)$$

$$\wedge\ll book,\ \dot{y},\ \dot{l}_{3};\ 1\gg \qquad (40c)$$

$$\wedge\dot{l}_{1}\prec\dot{l}_{2}\ \wedge\ \dot{l}_{2}\prec\dot{l}_{3}\big] \qquad (40d)$$

Definition (Complex types and appropriateness constraints)

- Let Θ be a given proposition, and $\{\xi_1, \dots, \xi_n\}$ be a set of parameters that occur in Θ .
- Let, for each $i \in \{1, ..., n\}$, T_i be the union of the constraints over the argument roles filled up by ξ_i .
- Then $\lambda\{\xi_1,\ldots,\xi_n\}\Theta$ is a complex type, with abstract argument roles denoted by $[\xi_1],\ldots,[\xi_n]$ and having T_1,\ldots,T_n as appropriateness type constraints, respectively, i.e.:

$$ArgR(\lambda\{\xi_1,\ldots,\xi_n\}\Theta) = \{\langle [\xi_1], T_1\rangle,\ldots,\langle [\xi_n], T_n\rangle\}$$
(41)

Notation

Alternative classic notations for the complex types (corresponding to the set-theoretical comprehension):

$$\lambda\{\xi_1,\ldots,\xi_n\}\Theta \equiv \left[T_1:[\xi_1],\ldots,T_n:[\xi_n]\mid\Theta\right] \tag{42a}$$

$$\lambda\{\xi_1,\dots,\xi_n\}\Theta \equiv \Big[[\xi_1],\dots,[\xi_n] \mid \Theta \Big]$$
 (42b)

Example (A proposition)

$$(s_1 \not\models \ll book, b, l_1; 0 \gg)$$
 (43a)
 $\land (s_2 \models \ll writes, a, b, l_2; 1 \gg)$ (43b)
 $\land (s_3 \models \ll book, b, l_3; 1 \gg)$ (43c)
 $\land (l_1 \prec l_2 \prec l_3)$ (43d)

$$\lambda\{\dot{x},\dot{y},\dot{l}_{1},\dot{l}_{2},\dot{l}_{3}\}[(s_{1} \not\models \ll book,\ \dot{y},\ \dot{l}_{1};\ 0\gg) \qquad (44)$$

$$\wedge(s_{2} \models \ll writes,\ \dot{x},\ \dot{y},\ \dot{l}_{2};\ 1\gg) \qquad (44)$$

$$\wedge(s_{3} \models \ll book,\ \dot{y},\ \dot{l}_{3};\ 1\gg) \qquad (44)$$

Example (A proposition)

$$(s_1 \not\models \ll book, b, l_1; 0 \gg)$$
 (43a)
 $\land (s_2 \models \ll writes, a, b, l_2; 1 \gg)$ (43b)
 $\land (s_3 \models \ll book, b, l_3; 1 \gg)$ (43c)
 $\land (l_1 \prec l_2 \prec l_3)$ (43d)

Example (Complex type of objects
$$\dot{x}$$
, \dot{y} , and locations \dot{l}_1 , \dot{l}_2 , \dot{l}_3)
$$\lambda\{\dot{x},\dot{y},\dot{l}_1,\dot{l}_2,\dot{l}_3\}[(s_1 \not\models \ll book,\ \dot{y},\ \dot{l}_1;\ 0\gg) \qquad (44a)$$

$$\lambda\{\dot{x},\dot{y},\dot{l}_{1},\dot{l}_{2},\dot{l}_{3}\}\big[(s_{1}\not\models\ll book,\ \dot{y},\ \dot{l}_{1};\ 0\gg) \qquad (44a)$$

$$\wedge(s_{2}\models\ll writes,\ \dot{x},\ \dot{y},\ \dot{l}_{2};\ 1\gg) \qquad (44b)$$

$$\wedge(s_{3}\models\ll book,\ \dot{y},\ \dot{l}_{3};\ 1\gg) \qquad (44c)$$

$$\wedge(\dot{l}_{1}\prec\dot{l}_{2}\prec\dot{l}_{3})\big] \qquad (44d)$$

Definition (Complex propositions)

• Let TYPE : $\lambda\{\xi_1,\ldots,\xi_n\}\Theta$, and

$$ArgR(\lambda\{\xi_1,\ldots,\xi_n\}\Theta) = \{\langle [\xi_1], T_1\rangle,\ldots,\langle [\xi_n], T_n\rangle\}$$
 (45)

- Let $T_{i,1}: a_i, \ldots, T_{i,k_i}: a_i$, for $i = 1, \ldots, n$.
- Then we can form the proposition

$$(\lambda\{\xi_1,\ldots,\xi_n\}\Theta,\theta) \tag{46}$$

where $\theta = \{\langle [\xi_1], a_1 \rangle, \dots, \langle [\xi_n], a_n \rangle \}.$

Notation

$$(\lambda\{\xi_1,\ldots,\xi_n\}\Theta,\theta) \tag{47a}$$

$$\equiv \left(\lambda\{\xi_1,\ldots,\xi_n\}\Theta,\{T_1:[\xi_1]:a_1,\ldots T_n:[\xi_n]:a_n\}\right) \tag{47b}$$

$$\equiv (\{T_1 : [\xi_1] : a_1, \dots T_n : [\xi_n] : a_n\} : \lambda\{\xi_1, \dots, \xi_n\}\Theta)$$
 (47c)

Linear Notations

By assuming an order over the argument roles

$$(\lambda\{\xi_1,\ldots,\xi_n\}\Theta,\theta) \tag{48a}$$

$$\equiv (a_1, \dots, a_n : \lambda(\xi_1, \dots, \xi_n)\Theta) \tag{48b}$$

$$\equiv (\lambda\{\xi_1, \dots, \xi_n\} \Theta \{a_1, \dots, a_n\})$$
 (reminds application) (48c)

$$\equiv (\lambda\{\xi_1,\ldots,\xi_n\}\Theta:a_1,\ldots,a_n) \qquad \text{(reminds application)} \quad (48d)$$

Example (Complex proposition)

$$\left(\lambda\{\dot{x},\dot{y},\dot{l}_{1},\dot{l}_{2},\dot{l}_{3}\}\right[(s_{1}\not\models\ll book,\ \dot{y},\ \dot{l}_{1};\ 0\gg)$$

$$\land (s_{2}\models\ll writes,\ \dot{x},\ \dot{y},\ \dot{l}_{2};\ 1\gg)$$

$$\land (s_{3}\models\ll book,\ \dot{y},\ \dot{l}_{3};\ 1\gg)$$

$$\land (\dot{l}_{1}\prec\dot{l}_{2}\prec\dot{l}_{3})\right]$$

$$(49e)$$

Definition (Complex restricted parameters)

Given that

- ξ is a parameter and $\Theta(\xi)$ is a proposition
- T is the set of the types that are constraints over the argument roles in $\Theta(\xi)$ that are filled up by ξ
- x is a parameter of type τ , i.e., $\tau : x$, and τ is compatible with the types (constraints) T,
- then $x^{\lambda\xi\Theta(\xi)}$ is a complex parameter of type τ , which is called a parameter restricted by the type $\lambda\xi\Theta(\xi)$.
- An object a can be anchored to the parameter $x^{\lambda\xi\Theta(\xi)}$ $\iff a$ is of type τ , i.e., $\tau:a$, $T_i:a$, for each type $T_i\in T$, and $\lambda\xi\Theta(\xi):a$, i.e., the proposition $\Theta(a)$ is true.

- A set of infons that have the same location components is called a state of affairs (soa).
- A set of infons with multiple locations is called an event (course of events — coa).
- A situation is a collection (non-well founded set) of infons.
- Note: further refinement of these definitions, e.g., w.r.t.:
 - Sets of infons may include inconsistency, e.g., by modelling contradictory or circular information.
 - There are definitions of (in)consistent situations
 - How to distinguish between states and events based on

- A set of infons that have the same location components is called a state of affairs (soa).
- A set of infons with multiple locations is called an event (course of events — coa).
- A situation is a collection (non-well founded set) of infons.
- Note: further refinement of these definitions, e.g., w.r.t.:
 - Sets of infons may include inconsistency, e.g., by modelling contradictory or circular information.
 - There are definitions of (in)consistent situations.
 - How to distinguish between states and events based or

- A set of infons that have the same location components is called a state of affairs (soa).
- A set of infons with multiple locations is called an event (course of events — coa).
- A situation is a collection (non-well founded set) of infons.
- Note: further refinement of these definitions, e.g., w.r.t.:
 Sets of infons may include inconsistency, e.g., by modelling contradictory or circular information.
 - There are definitions of (in)consistent situations.

 How to distinguish between states and events based on

- A set of infons that have the same location components is called a state of affairs (soa).
- A set of infons with multiple locations is called an event (course of events — coa).
- A situation is a collection (non-well founded set) of infons.
- Note: further refinement of these definitions, e.g., w.r.t.:
 - Sets of infons may include inconsistency, e.g., by modelling contradictory or circular information.
 - There are definitions of (in)consistent situations
 - How to distinguish between states and events based on
 - kinds of relations that are components of infons (there are verbs classifications reflecting such differentiations)
 - models of processes?
 - space-time locations; models of space-time?

- A set of infons that have the same location components is called a state of affairs (soa).
- A set of infons with multiple locations is called an event (course of events — coa).
- A situation is a collection (non-well founded set) of infons.
- Note: further refinement of these definitions, e.g., w.r.t.:
 - Sets of infons may include inconsistency, e.g., by modelling contradictory or circular information.
 There are definitions of (in)consistent situations.
 - How to distinguish between states and events based on
 - kinds of relations that are components of infons (there are verbs classifications reflecting such differentiations)
 - models of processes?
 - space-time locations; models of space-time?

- A set of infons that have the same location components is called a state of affairs (soa).
- A set of infons with multiple locations is called an event (course of events — coa).
- A situation is a collection (non-well founded set) of infons.
- Note: further refinement of these definitions, e.g., w.r.t.:
 - Sets of infons may include inconsistency, e.g., by modelling contradictory or circular information.
 - There are definitions of (in)consistent situations.
 - How to distinguish between states and events based on
 - kinds of relations that are components of infons (there are verbs classifications reflecting such differentiations)
 - models of processes?
 - space-time locations; models of space-time?

$$(s \models \ll read, reader : x, readed : b, Loc : l_1; 1 \gg \land$$

$$\ll book, arg : b, Loc : l_2; 1 \gg \land$$

$$(50a)$$

$$(l_1 \circ l_2)$$

$$(50c)$$

• The proposition (50a)-(50c) is true iff

• x reads b in the location l_1 , in the situation s:

$$s \models \ll read, reader : x, readed : b, Loc : l_1; 1 \gg$$

• b is having the property book in b, in the situation s

$$s \models \ll book, arg: b, Loc: l_2; 1 \gg$$
 (52)

$$h \circ b$$
 (53)

$$(s \models \ll read, reader : x, readed : b, Loc : l_1; 1 \gg \land$$

$$\ll book, arg : b, Loc : l_2; 1 \gg \land$$

$$(50a)$$

$$(1 \circ l_2)$$

$$(50c)$$

- The proposition (50a)-(50c) is true iff
 - x reads b in the location l_1 , in the situation s:

$$s \models \ll read, reader : x, readed : b, Loc : l_1; 1 \gg$$
 (51)

• b is having the property book in l_2 , in the situation s:

$$s \models \ll book, arg: b, Loc: l_2; 1 \gg$$
 (52)

$$l_1 \circ l_2 \tag{53}$$

$$(s \models \ll read, reader : x, readed : b, Loc : l_1; 1 \gg \land$$

$$\ll book, arg : b, Loc : l_2; 1 \gg \land$$

$$(50a)$$

$$(l_1 \circ l_2)$$

$$(50c)$$

- The proposition (50a)-(50c) is true iff
 - x reads b in the location l_1 , in the situation s:

$$s \models \ll read, reader : x, readed : b, Loc : l_1; 1 \gg$$
 (51)

• b is having the property book in l_2 , in the situation s:

$$s \models \ll book, arg: b, Loc: l_2; 1 \gg$$
 (52)

$$l_1 \circ l_2 \tag{53}$$

$$(s \models \ll read, reader : x, readed : b, Loc : l_1; 1 \gg \land$$
 (50a)

$$\ll book, arg : b, Loc : l_2; 1 \gg \land$$
 (50b)

$$l_1 \circ l_2)$$
 (50c)

- The proposition (50a)-(50c) is true iff
 - x reads b in the location l_1 , in the situation s:

$$s \models \ll read, reader : x, readed : b, Loc : l_1; 1 \gg$$
 (51)

• b is having the property book in l_2 , in the situation s:

$$s \models \ll book, arg: b, Loc: l_2; 1 \gg$$
 (52)

$$_{1}\circ l_{2}\tag{53}$$

$$(s \models \ll read, reader : x, readed : b, Loc : l_1; 1 \gg \land$$

$$\ll book, arg : b, Loc : l_2; 1 \gg \land$$

$$(50a)$$

$$(b)$$

$$(50b)$$

$$(50c)$$

- The proposition (50a)-(50c) is true iff
 - x reads b in the location l_1 , in the situation s:

$$s \models \ll read, reader : x, readed : b, Loc : l_1; 1 \gg$$
 (51)

• b is having the property book in l_2 , in the situation s:

$$s \models \ll book, arg: b, Loc: l_2; 1 \gg$$
 (52)

$$l_1 \circ l_2 \tag{53}$$

Quantificational scheme in Situation Semantics

Semantic quantifiers as relations between types of situated objects:

$$\left(s \models \ll every, \left[x/(s_i \models \ll student, x, l_i; 1 \gg)\right], \qquad (54a)$$

$$\left[y/(s_j \models \ll walk, y, l_j; 1 \gg)\right], \quad l; 1 \gg \right)$$

$$\left(s \models \ll some, \left[x/(s_i \models \ll student, x, l_i; 1 \gg)\right], \qquad (54b)$$

$$\left[y/(s_j \models \ll walk, y, l_j; 1 \gg)\right], \quad l; 1 \gg \right)$$

$$\left(s \models \ll two, \quad \left[x/(s_i \models \ll student, x, l_i; 1 \gg)\right], \qquad [y/(s_j \models \ll walk, y, l_j; 1 \gg)\right], \quad l; 1 \gg \right)$$

$$\left(s \models \ll two, \quad \left[x/(s_i \models \ll student, x, l_i; 1 \gg)\right], \quad l; 1 \gg \right)$$

$$\left(s \models \ll two, \quad \left[x/(s_i \models \ll student, x, l_i; 1 \gg)\right], \quad l; 1 \gg \right)$$

• The proposition $pu(u, l, x, y, \alpha)$, where

$$pu(u, l, x, y, \alpha) \equiv (u \models \ll tells_to, x, y, \alpha, l; 1 \gg)$$
 (55)

 $pu(u, l, x, y, \alpha)$ states that the situation u is an utterance situation.

• The proposition $pu(u, l, x, y, \alpha)$ is true iff u supports the uttering act:

$$u \models \ll tells_to, x, y, \alpha, l; 1 \gg$$
 (56)

i.e., iff

- x is the speaker agent in u
- y is the listener agent in u
- ullet / is the space-time location of the act of x uttering lpha
- \bullet α is the expression uttered in u by the speaker agent x
- The type of an utterance situation is

$$ru(l, x, y, \alpha) \equiv [u \mid pu(u, l, x, y, \alpha)]$$
 (57)

• The proposition $pu(u, I, x, y, \alpha)$, where

$$pu(u, l, x, y, \alpha) \equiv (u \models \ll tells_to, x, y, \alpha, l; 1 \gg)$$
 (55)

 $pu(u, l, x, y, \alpha)$ states that the situation u is an utterance situation.

• The proposition $pu(u, l, x, y, \alpha)$ is true iff u supports the uttering act:

$$u \models \ll tells_to, x, y, \alpha, l; 1 \gg$$
 (56)

i.e., iff

- \bullet x is the speaker agent in u
- y is the listener agent in u
- ullet I is the space-time location of the act of x uttering lpha
- ullet α is the expression uttered in u by the speaker agent x
- The type of an utterance situation is

$$ru(l, x, y, \alpha) \equiv [u \mid pu(u, l, x, y, \alpha)]$$
 (57)

• The proposition $pu(u, l, x, y, \alpha)$, where

$$pu(u, l, x, y, \alpha) \equiv (u \models \ll tells_to, x, y, \alpha, l; 1 \gg)$$
 (55)

 $pu(u, l, x, y, \alpha)$ states that the situation u is an utterance situation.

• The proposition $pu(u, l, x, y, \alpha)$ is true iff u supports the uttering act:

$$u \models \ll tells_to, x, y, \alpha, l; 1 \gg$$
 (56)

i.e., iff

- x is the speaker agent in u
- y is the listener agent in u
- ullet I is the space-time location of the act of x uttering lpha
- ullet α is the expression uttered in u by the speaker agent x
- The type of an utterance situation is

$$ru(l,x,y,\alpha) \equiv [u \mid pu(u,l,x,y,\alpha)]$$
 (57)

• The proposition $pu(u, l, x, y, \alpha)$ that x tells α to y in u:

$$pu(u, l, x, y, \alpha) \equiv (u \models \ll tells_to, x, y, \alpha, l; 1 \gg)$$
 (58)

• the type of a speaker agent in *u* is:

$$rsp(u, l, y, \alpha) \equiv [x \mid pu(u, l, x, y, \alpha)]$$
 (59)

• the type of a listener agent in *u* is:

$$rlst(u, l, x, \alpha) \equiv [y \mid pu(u, l, x, y, \alpha)]$$
 (60)

the type of the utterance space-time location is

$$rdl(u, x, y, \alpha) \equiv [l \mid pu(u, l, x, y, \alpha)]$$
 (61)

$$u \models \ll tells_to, x, y, \alpha, l; 1 \gg$$
 (62)

• The proposition $pu(u, l, x, y, \alpha)$ that x tells α to y in u:

$$pu(u, l, x, y, \alpha) \equiv (u \models \ll tells_to, x, y, \alpha, l; 1 \gg)$$
 (58)

• the type of a speaker agent in *u* is:

$$rsp(u, l, y, \alpha) \equiv [x \mid pu(u, l, x, y, \alpha)]$$
 (59)

• the type of a listener agent in *u* is:

$$rlst(u, l, x, \alpha) \equiv [y \mid pu(u, l, x, y, \alpha)]$$
 (60)

the type of the utterance space-time location is

$$rdl(u, x, y, \alpha) \equiv [l \mid pu(u, l, x, y, \alpha)]$$
 (61)

$$u \models \ll tells_to, x, y, \alpha, l; 1 \gg$$
 (62)

• The proposition $pu(u, l, x, y, \alpha)$ that x tells α to y in u:

$$pu(u, l, x, y, \alpha) \equiv (u \models \ll tells_to, x, y, \alpha, l; 1 \gg)$$
 (58)

• the type of a speaker agent in *u* is:

$$rsp(u, l, y, \alpha) \equiv [x \mid pu(u, l, x, y, \alpha)]$$
 (59)

• the type of a listener agent in *u* is:

$$rlst(u, l, x, \alpha) \equiv [y \mid pu(u, l, x, y, \alpha)]$$
 (60)

the type of the utterance space-time location is

$$rdl(u, x, y, \alpha) \equiv [l \mid pu(u, l, x, y, \alpha)]$$
 (61)

$$u \models \ll tells_to, x, y, \alpha, l; 1 \gg$$
 (62)

• The proposition $pu(u, l, x, y, \alpha)$ that x tells α to y in u:

$$pu(u, l, x, y, \alpha) \equiv (u \models \ll tells_to, x, y, \alpha, l; 1 \gg)$$
 (58)

• the type of a speaker agent in *u* is:

$$rsp(u, l, y, \alpha) \equiv [x \mid pu(u, l, x, y, \alpha)]$$
 (59)

• the type of a listener agent in *u* is:

$$rlst(u, l, x, \alpha) \equiv [y \mid pu(u, l, x, y, \alpha)]$$
 (60)

the type of the utterance space-time location is

$$rdl(u, x, y, \alpha) \equiv [l \mid pu(u, l, x, y, \alpha)]$$
 (61)

$$u \models \ll tells_to, x, y, \alpha, l; 1 \gg$$
 (62)

• The proposition $pu(u, l, x, y, \alpha)$ that x tells α to y in u:

$$pu(u, l, x, y, \alpha) \equiv (u \models \ll tells_to, x, y, \alpha, l; 1 \gg)$$
 (58)

• the type of a speaker agent in *u* is:

$$rsp(u, l, y, \alpha) \equiv [x \mid pu(u, l, x, y, \alpha)]$$
 (59)

• the type of a listener agent in *u* is:

$$rlst(u, l, x, \alpha) \equiv [y \mid pu(u, l, x, y, \alpha)]$$
 (60)

• the type of the utterance space-time location is

$$rdl(u, x, y, \alpha) \equiv [l \mid pu(u, l, x, y, \alpha)]$$
 (61)

$$u \models \ll tells_{-}to, x, y, \alpha, l; 1 \gg$$

Speaker's References: referent agents

ullet the type of the speaker's referent agent of the expression lpha

$$r_{\alpha}(u,l,x,y) = [z \mid q(u,l,x,y,z,\alpha)] \tag{63}$$

where $q(u, l, x, y, z, \alpha)$ is a proposition such as (64a)

$$q(u, l, x, y, z, \alpha) \equiv \tag{64a}$$

$$(u^{ru(l,x,y,\alpha)} \models \tag{64b}$$

$$\ll$$
 refers-to, $x^{rsp(u,l,y,\alpha)}$, z , α , $I^{rdl(u,x,y,\alpha)}$; $1\gg$) (64c)

The proposition $q(u, l, x, y, z, \alpha)$ in (64a) states that

• in the utterance $u^{(u(t,x,y,\alpha)}$, the speaker $x^{(sp(u,t,y,\alpha))}$ refers to the referent agent z of the expression α

Speaker's References: referent agents

ullet the type of the speaker's referent agent of the expression lpha

$$r_{\alpha}(u,l,x,y) = [z \mid q(u,l,x,y,z,\alpha)]$$
 (63)

where $q(u, l, x, y, z, \alpha)$ is a proposition such as (64a)

$$q(u, l, x, y, z, \alpha) \equiv \tag{64a}$$

$$(u^{ru(l,x,y,\alpha)} \models \tag{64b}$$

$$\ll$$
 refers-to, $x^{rsp(u,l,y,\alpha)}$, z , α , $l^{rdl(u,x,y,\alpha)}$; $1\gg$) (64c)

The proposition $q(u, l, x, y, z, \alpha)$ in (64a) states that

• in the utterance $u^{ru(l,x,y,\alpha)}$, the speaker $x^{rsp(u,l,y,\alpha)}$ refers to the referent agent z of the expression α

Speaker's References: referent agents

ullet the type of the speaker's referent agent of the expression lpha

$$r_{\alpha}(u,l,x,y) = [z \mid q(u,l,x,y,z,\alpha)]$$
 (63)

where $q(u, l, x, y, z, \alpha)$ is a proposition such as (64a)

$$q(u,l,x,y,z,\alpha) \equiv \tag{64a}$$

$$(u^{ru(l,x,y,\alpha)} \models \tag{64b}$$

$$\ll$$
 refers-to, $x^{rsp(u,l,y,\alpha)}, z, \alpha, l^{rdl(u,x,y,\alpha)}; 1 \gg)$ (64c)

The proposition $q(u, l, x, y, z, \alpha)$ in (64a) states that

• in the utterance $u^{ru(l,x,y,\alpha)}$, the speaker $x^{rsp(u,l,y,\alpha)}$ refers to the referent agent z of the expression α

Denotation of a proper name, e.g., MARIA, as a referent agent

- a referent agent z^r determined by a reference restriction r,
- in an utterance situation (context) u,
- by a speaker agent $x^{rsp(u,l,y,\alpha)}$

where r may be

```
    general, sincere reference
```

```
r = [z \mid (u \models \ll refers\_to\_by, x^{rsp(u,l,y,\alpha)}, z, MARIA, l^{rdl}; 1 \gg)/(u \models \ll named, MARIA, z; 1 \gg)]
```

belief reference

```
r = [z \mid (u \models \ll refers\_to\_by, x^{rsp(u,l,y,\alpha)}, z, MARIA, l^{rdl}; 1 \gg) \land (u \models \ll believes, x^{rsp(u,l,y,\alpha)}, (s_{res} \models \ll named, MARIA, z; 1 \gg), l^{rdl}; 1 \gg)
```

Denotation of a proper name, e.g., MARIA, as a referent agent

- \bullet a referent agent z^r determined by a reference restriction r,
- in an utterance situation (context) u,
- by a speaker agent $x^{rsp(u,l,y,\alpha)}$

where r may be

```
    general, sincere reference
```

- $r = [z \mid (u \models \ll refers_to_by, x^{rsp(u,l,y,\alpha)}, z, MARIA, l^{rdl}; 1 \gg)/(u \models \ll named, MARIA, z; 1 \gg)]$
- belief reference
- $r = [z \mid (u \models \ll refers_to_by, x^{rsp(u,l,y,\alpha)}, z, MARIA, l^{rdl}; 1 \gg) \land (u \models \ll believes, x^{rsp(u,l,y,\alpha)},$
 - $(s_{res} \models \ll named, MARIA, z; 1 \gg)$

Denotation of a proper name, e.g., MARIA, as a referent agent

- a referent agent z^r determined by a reference restriction r,
- in an utterance situation (context) u,
- by a speaker agent $x^{rsp(u,l,y,\alpha)}$

where r may be

general, sincere reference

 $r = [z \mid (u \models \ll refers_to_by, x^{rsp(u,t,y,\alpha)}, z, MARIA, I^{rat}; 1 \gg)/(u \models \ll named, MARIA, z; 1 \gg)]$

belief reference

 $r = [z \mid (u \models \ll refers_to_by, x^{rsp(u,l,y,\alpha)}, z, MARIA, l^{rdl}; 1 \gg) \land (u \models \ll believes, x^{rsp(u,l,y,\alpha)}.$

 $(s_{res} \models \ll named, \text{MARIA}, z; 1 \gg), \ | I^{rdl} : 1 \gg | |$

Denotation of a proper name, e.g., MARIA, as a referent agent

- a referent agent z^r determined by a reference restriction r,
- in an utterance situation (context) u,
- by a speaker agent $x^{rsp(u,l,y,\alpha)}$

where r may be

general, sincere reference

$$r = [z \mid (u \models \ll refers_to_by, x^{rsp(u,l,y,\alpha)}, z, MARIA, l^{rdl}; 1 \gg) \land (u \models \ll named, MARIA, z; 1 \gg)]$$

belief reference

$$r = [z \mid (u \models \ll refers_to_by, x^{rsp(u,l,y,\alpha)}, z, \text{MARIA}, l^{rdl}; 1 \gg) \land (u \models \ll believes, x^{rsp(u,l,y,\alpha)}, (s_{res} \models \ll named, \text{MARIA}, z; 1 \gg), l^{rdl}; 1 \gg)]$$

Denotation of a proper name, e.g., MARIA, as a referent agent

- \bullet a referent agent z^r determined by a reference restriction r,
- in an utterance situation (context) u,
- by a speaker agent $x^{rsp(u,l,y,\alpha)}$

where r may be

general, sincere reference

$$r = [z \mid (u \models \ll refers_to_by, x^{rsp(u,l,y,\alpha)}, z, MARIA, l^{rdl}; 1 \gg) \land (u \models \ll named, MARIA, z; 1 \gg)]$$

belief reference

$$r = [z \mid (u \models \ll refers_to_by, x^{rsp(u,l,y,\alpha)}, z, MARIA, l^{rdl}; 1 \gg) \land (u \models \ll believes, x^{rsp(u,l,y,\alpha)}, (s_{res} \models \ll named, MARIA, z; 1 \gg), l^{rdl}: 1 \gg)]$$

• A restricted (constrained) utterance situation $u^{[u|pu(u,l,x,z,\alpha)]}$, by the proposition

$$pu(u, l, x, y, \alpha) = (u \models \ll tells_to, x, y, \alpha, l; 1 \gg)$$
 (65)

- ullet pure linguistic meaning of lpha
- interpretation of the utterance of α with respect to various agents:

• A restricted (constrained) utterance situation $u^{[u|pu(u,l,x,z,\alpha)]}$, by the proposition

$$pu(u, l, x, y, \alpha) = (u \models \ll tells_to, x, y, \alpha, l; 1 \gg)$$
 (65)

- ullet pure linguistic meaning of lpha
- interpretation of the utterance of α with respect to various agents:
 - the speaker (done in this paper)
 - various listeners (in extended work
 - actual vs. intended and (mis)understood agents
 - (in extended work)

• A restricted (constrained) utterance situation $u^{[u|pu(u,l,x,z,\alpha)]}$, by the proposition

$$pu(u, l, x, y, \alpha) = (u \models \ll tells_to, x, y, \alpha, l; 1 \gg)$$
 (65)

- ullet pure linguistic meaning of lpha
- ullet interpretation of the utterance of lpha with respect to various agents:
 - the speaker (done in this paper)
 - various listeners (in extended work)
 - actual vs. intended and (mis)understood agents (in extended work)

• A restricted (constrained) utterance situation $u^{[u|pu(u,l,x,z,\alpha)]}$, by the proposition

$$pu(u, l, x, y, \alpha) = (u \models \ll tells_to, x, y, \alpha, l; 1 \gg)$$
 (65)

- \bullet pure linguistic meaning of α
- ullet interpretation of the utterance of lpha with respect to various agents:
 - the speaker (done in this paper)
 - various listeners (in extended work)
 - actual vs. intended and (mis)understood agents (in extended work)

• A restricted (constrained) utterance situation $u^{[u|pu(u,l,x,z,\alpha)]}$, by the proposition

$$pu(u, l, x, y, \alpha) = (u \models \ll tells_to, x, y, \alpha, l; 1 \gg)$$
 (65)

- ullet pure linguistic meaning of lpha
- ullet interpretation of the utterance of lpha with respect to various agents:
 - the speaker (done in this paper)
 - various listeners (in extended work)
 - actual vs. intended and (mis)understood agents (in extended work)

• A restricted (constrained) utterance situation $u^{[u|pu(u,l,x,z,\alpha)]}$, by the proposition

$$pu(u, l, x, y, \alpha) = (u \models \ll tells_to, x, y, \alpha, l; 1 \gg)$$
 (65)

- ullet pure linguistic meaning of lpha
- ullet interpretation of the utterance of lpha with respect to various agents:
 - the speaker (done in this paper)
 - various listeners (in extended work)
 - actual vs. intended and (mis)understood agents (in extended work)

Existing and potential applications

- Type-theoretic syntax-semantics interfaces involving information representation
 - programming languages
 - algorithm specifications: higher-order type theory of algorithms
 - data basis
 - information representation systems, e.g., in
 - health and medical systems
 - medical sciences
 - legal systems
- Syntax-semantics interface in grammar systems for human language
- Applications to:
 - Human language processing
 - AI
 - Neuroscience
 - Life sciences

Some References I

Scenes and other situations.

The Journal of Philosophy, 78:369–397, 1981.

Jon Barwise and John Perry.

Situations and Attitudes.

Cambridge, MA:MIT press, 1983.

Republished as [3].

Jon Barwise and John Perry. Situations and Attitudes.

The Hume Series. CSLI Publications, Stanford, California, 1999.

Some References II

Logic and Information.

Cambridge University Press, 1991.

Keith Devlin.

Situation theory and situation semantics.

In Dov Gabbay and John Woods, editors, *Handbook of the History of Logic*, volume 7, pages 601–664. Elsevier, 2008.

Some References III

Roussanka Loukanova.

Situated Agents in Linguistic Contexts.

In Joaquim Filipe and Ana Fred, editors, *Proceedings of the 5th International Conference on Agents and Artificial Intelligence*, volume 1, pages 494–503, Barcelona, Spain, 2013. SciTePress — Science and Technology Publications.

Roussanka Loukanova.

Situation Theory, Situated Information, and Situated Agents.

Transactions on Computational Collective Intelligence (TCCI) Journal, TCCI XVII 2014, LNCS 8790, 2014. (to appear).

Some References IV

Jerry Seligman and Lawrence S. Moss.

Situation Theory.

In Johan van Benthem and Alice ter Meulen, editors, Handbook of Logic and Language, pages 253-329. Elsevier, Amsterdam, 2011.