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Indecomposable representations of quivers are in 1-1 correspondence with positive
weight vectors of Kac-Moody algebras. The collection of indecomposable representations
of the quiver is tame if the quiver corresponds to a Kac-Moody algebra of polynomial
growth. What corresponds to positive roots of Lie algebras of polynomial growth different
from Kac-Moody algebras? The classification problem for tame representations of quivers
associated to Lie superalgebras is a natural step towards the answer to this question. As
an aside we announce a classification of simple graded Lie superalgebras of polynomial
growth.

To Ernest Borisovich Vinberg

Introduction

This is a short announcement, the details will be given elsewhere.

Classical results ([1] and refs. therein). A problem. Lie superalgebras as a step
towards its solution.

(A) I. Gelfand and V. Ponomarev showed that virtually all tame problems of
finite dimensional linear algebra can be reduced to classification of gquadruples of
subspaces. This is one of numerous problems (ranging from perverse sheaves to
quantum groups ({2]), to magneto-hydrodynamics ([3]), and so on, see [4]) that
can be expressed in terms of representations of quivers, i.e. directed simple graphs
(without edges-loops and multiple edges).

I. Gelfand and V. Ponomarev further demonstrated that unsolvable (wild) prob-
lems contain the classification problem for a pair of commuting linear operators as
a subproblem and observed that wild problems can be classified, to an extent, in
terms of representations of quivers.

(B) showed that only simply laced Dynkin diagrams (corresponding to Lie al-
gebras sl(n), 0(2n) and ¢;) have finitely many indecomposable representations and
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established a 1-1 correspondence between the set of indecomposable representa-
tions of the Dynkin graphs and the set of positive roots of the corresponding Lie
algebras. Nazarova obtained a result similar to that of Gabriel.

(C) J. Bernstein, I. Gelfand and V. Ponomarev found a way to construct any
indecomposable representation of the simply laced quiver of the Dynkin diagram
type from the simplest representations, thus clarifying Gabriel’s result. J. Bern-
stein, I. Gelfand and V. Ponomarev also showed that classification of quadruples
is connected with an extended Dynkin diagram but did not carry over their corre-
spondence to such graphs.

(D) Dlab and Ringel extended the BGP correspondence to any Kac-Moody
algebra of polynomial growth by replacing each Dynkin diagram with a valued
graph and Kac [5] extended the BGP correspondence to any Kac-Moody algebra
with Dynkin diagram, even to diagrams with edges-loops.

(E) Kac further showed [6] that tame problems of quiver representations are in
1-1 correspondence with the quivers equal to Dynkin diagrams of affine Kac-Moody
algebras, i.e. the ones of polynomial growth.

(F) The above BGP correspondence is executed by Cozeter functors. These
functors can be defined even in the absence of quivers {7].

Result (F) makes the following problem natural:

Problem Several simple Lie algebras of polynomial growth have no Dynkin dia-
gram (e.g., Lie algebras of vector fields, Lie algebras of matrices of compler size
[8]). Is there anything like Cozeter functor corresponding to such algebras?

Our result

We will demonstrate how Lie superalgebras with Dynkin-Kac diagrams (these are
graphs with vertices of three or four different types) constitute a natural interme-
diate stage in the general construction of Coxeter functors for Kac-Moody algebras
and superalgebras with an arbitrary Cartan matrix, not necessarily corresponding
to a Dynkin diagram, and describe via BGP method their tame indecomposable
representations. We deduce that the superization of the classification problem for
quadruples of subspaces is wild.

1 Quivers

A directed graph @, 1.e., a family of vertices Qo and ordered pairs (arrows) @, =
{(i,7) : 1,5 € Qqo} is sometimes called a gquiver. Not all orientations are allowed:
people who used arrows for hunting hardly ever kept their quivers untidy; neither
do modern mathematicians: they do not let arrows be stuck in the quiver pell-mell:
each vertex should be either a sink or a source for all arrows it belongs to. (This
requirement, natural, perhaps, for hunters seems to be mathematically ad hoc.)
Certain feebleness of mathematicians occasioned by excessive studies manifested
itself in allowing the mathematicians’ arrows degenerate into loops. Orientations
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of the whole graph that bring about loops composed of neighboring arrows are,
however, forbidden.

A representation of the quiver is a collection of vector spaces V;, ¢ € Qg, and their
homomorphisms ¢;; : V; — V; for every (i, j) € Q1. The sum of representations
(U, %) and (V, ) of the same quiver Q is the collection (W, 8) with W; = U; & V;
and ¢ = ("gj ¢0” . A representation of @ is called indecomposable if it can not

ij
be represented as a direct sum of nonzero representations.

Having in mind the study of quivers’ representations we can confine ourselves

to the connected quivers.

1.1 Gabriel’s discovery. A trick of Dlab and Ringel.

Gabriel found out two amazing facts:

1. an indecomposable representation of a quiver does not depend on its orien-
tation (we only consider admissible orientations).

2. Quivers with only finitely many indecomposable representations are the ones
called Dynkin diagrams of types A, D, E, corresponding to finite dimensional Lie
algebras sl(n), o(2n + 1) and eg, ¢z, es. There is a 1-1 correspondence between the
set of indecomposable representations of an ADE quiver and the set of positive
roots of the corresponding Lie algebra.

By a trick Dlab and Ringel extended this correspondence to any Dynkin dia-
gram. They suggested a sophisticated cheating: to replace multiple edges and arrows
with a rig — a pair of number — over the corresponding edge and call the simply
laced (but rigged) graph obtained a valued graph.

At this stage we need precise formulations.

1.2 Valued graphs <= Kac-Moody algebras

A valued graph Q on the set Qg of its vertices is a function d : Qo X Qo — Z4 such
that (we write d;; instead of d(7, 7)) (i) di; # 0 <> dj; # 0; (ii) if Qo is infinite,
then for every i there is only finitely many j’s such that d;; # 0.

An edge connects vertices ¢ and j if and only if d;; # 0; we rig the edge (3, j)
with a pair of numbers as follows: d;; over the i-th end of the edge and d;; over its
j-th end.

Since a valued graph is completely recovered from its matrix D = (d;;), we will
not distinguish in what follows between the matrix D and the quiver it determines.

A Cartan matriz is a matrix A = (A;;) such that

(i) A,'j € ~Zy4 fori# j and A.'j #0 &= Aj,' #0;

(i1) Aii = 2 or, for a generalized Cartan matriz, A;; is an even integer < 2.

Additionally, if A is an infinite matrix, then for every i there is only finitely
many j’s such that A;; # 0. The 1-1 correspondence between valued graphs and
Cartan matrices is as follows: A;; = —d;j; Ay =2 —2d;;.
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1.3 Tame and wild representations of quivers

For a quiver Q, the dimension of its representation (V, ¢) is a collection (dim V4, ...
...,dimV,), where n = cardQp.

Kac showed [5, 6] that if the number of parameters p, of the set of indecom-
posable representations of dimension @ = (ai,,...,a,) is > 1, then the problem
of classification of the indecomposable representations of the quiver is wild. Con-
trarywise, if the number of parameters is < 1, it is tame. Kac gave an ingenuous
proof of the fact that the number of parameters puq is equal to

po =1 —(a, pa),

where (-, -) is the invariant bilinear form on the root system of the Lie algebra g(A).

1.4 Coxeter transformations. A way to get any root from a simple one.

Let @ be a simply laced graph, Eq the linear space over Q, consisting of collections
z = (za : @ € Qo). For each B € Qo let eg be the basis vectors of Eg. We say that
z>0ifz # 0 and z, > 0 for all a. Let B be the Cartan-Tits quadratic form on
Eq given by the formula B(z) = 3,0, 22 — 3 icq, TiwTeq), where i(l) and (1)
are the initial and terminal points of the edge l. Let < -,- > be the bilinear form
associated with B. For each § € Qo denote by o4 the linear transformation of Eq
given by the formulas

Ty if 8=+,
(05(2))y = —zg+ ), z4(I) otherwise,
leQ,

where z,(l) is the endpoint of ! different form . Finally, let W be the semigroup
generated by the reflections 05. A miracle happens: W is actually a group (called
the Weyl group). Important properties of W: it preserves the integer lattice in Eq
and < -, >.

We say that ¢ € Eq is a root if £ = weg for some # € Qo and w € W. The
basis vectors are called simple roots. Let ay, ..., a, be an enumeration of Qo. The
element

C=0q4, - Oay

is called Cozeter transformation. Clearly, since C depends on the enumeration of
Qo, there are n! Coxeter transformations, generally.

Gabriel’s theorem classifies indecomposable representations of Dynkin graphs
of ADE type in terms of one discrete invariant: the vector of dimension. For more
general graphs we need continuous invariants and these are the eigenvalues of the
Coxeter transformations. Regretably, a review of (rather numerous) results on Cox-
eter transformations exists only in a pretty hidden form [4] and the results reviewed
are also buried in the same depositions.
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2 Lie superalgebras of polynomial growth

The classics considered various tame problems of linear algebra expressible in
terms of quiver representations and associated them with positive roots of certain
Kac—Moody algebras. These Lie algebras are qualified as simple Lie algebras of
polynomial growth but not all such algebras. We recall what is known about the
Lie superalgebras of the same type. In Sect. 3 we recall the definition of the analog
of Weyl group for Lie algebras and Lie superalgebras without Cartan matrix.

2.1 Simple Z-graded Lie algebras of polynomial growth

About 1966, V. Kac and B. Weisfeiler began the study of simple filtered Lie algebras
of polynomial growth. Kac first considered the Z-graded Lie algebras associated with
the filtered ones and classified simple Z-graded Lie algebras of polynomial growth
under a technical assumption. It took more than 20 years to get rid of the as-
sumption: see very technical papers by O. Mathieu, cf. [9] and refs. therein. Kac’s
list contains: finite dimensional Lie algebras and twisted loop algebras (these alge-
bras possess Cartan matrices and, therefore, Weyl group). The remaining algebras
from Kac’s list are: Lie algebras of vector fields with polynomial of formal coeffi-
cients (vect(m) = ver Clz] for z = (z1, ..., £m) and its subalgebras of divergence-free,
Hamiltonian and contact fields) and the Witt algebra mwitt = der C[t~*, t]. It seemed,
they have no analog of the Weyl group.

Recent attempt [10] to classify filtered Lie algebras of polynomial growth pro-
vided us with a wealth of new algebras, some of them known (?iff(n), the Lie
algebra of differential operators in n indeterminates; gl(A), the algebra of matrices
of complex size). Do they have an analog of Weyl group? Superization helps to
answer, cf. [11].

2.2 Simple filtered Lie superalgebras of polynomial growth

Simple Z-graded superalgebras are classified in several papers: [12] (finite dimen-
sional ones); [13] and [14] (twisted loop algebras, without and with symmetrizable
Cartan matrix, respectively); [15] (vectorial Lie superalgebras, i.e., homogeneous
subalgebras of vect(m|n)) and [16] (“stringy”, the analogs of ritt).

For the list of examples of simple filtered superalgebras see [10].

3 System of simple roots. From the Weyl group to a skorpenser.

Superization naturally intermixes the classes considered in Subsect. 2.1: some
vectorial superalgebras are finite dimensional; these are not the only simple finite di-
mensional Lie superalgebras without any Cartan matrix, there is also a queer series;
the outcome of twisting of the loop algebra with values in a superalgebra without
Cartan matrix can be an algebra with a Cartan matrix, though nonsymmetrizable
one; the outcome of twisting of the loop algebra with values in a superalgebra with
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Cartan matrix can be an algebra without any Cartan matrix; the Cartan matrix
of a finite dimensional Lie superalgebra can have complex entries and, therefore,
have no Dynkin-Kac graph, etc. Therefore, in supersetting the question of what is
an analog of Coxeter transformation in the absence of Dynkin-Kac graph or even
Cartan matrix is most natural.

Even if the Lie superalgebra has Cartan matrix, there are at least four different
types of simple roots; we depict the vertices of Dynkin-Kac diagram corresponding
to sl(2), osp(1{2), s1(1]1) by white, black and grey circles, respectively, cf. [12]; it is
natural to denote the node corresponding to sq(2) by a square circle, cf. [17).

For the Lie superalgebras composed of these building blocks, the notion of the
representation of the quiver, which, usually, is a valued graph, is naturally defined:
with each vertex we associate a superspace, the rest is routine, provided the vectors
of dimension abide certain selection rules: the vectors of dimensions corresponding
to simple roots of types s[(2), osp(1]2), sl(1|1) and sq(2) are: 1, 0|1, 0|1, and 1|1,
respectively.

I. Skornyakov, I. Penkov and V. Serganova introduced, first in presence of a
symmetrizable Cartan matrix A, the notion of odd reflections, see [18, 19]. Thus,
with one Lie superalgebra of the form g(A) there were associated several competing
analogs of the Weyl group, see [20]. (Actually, the Weyl group appears in various
instances and superization of each of them brings about several versions, each with
its own weak and strong points.)

In 1990 Vinberg said that to consider the fact that one can multiply reflections
in disconnected (on the Dynkin diagram) simple roots a miracle; he said that he
only saw neighboring systems of simple roots. But it is so tempting to consider the
universal group formally generated by the reflections!

It is also important for applications to quivers’ representations to be able to real-
ize this universal group or its quotient linearly on weights, or at least, roots. Observe
that in addition to the constructions of I. Skornyakov, I. Penkov and V. Serganova,
for whose purposes the reflections in odd roots need not generate a group, there is
an alternative approach by Manin [18] whose analog of the Weyl group is always
a group. We suggest to call the collection of reflections skorpenser (after 1. Sko-
rnyakov, I. Penkov and V. Serganova}, if it is not a group. If the skorpenser s a
group, it can be interpreted geometrically and identified. It turned out that only in
rare cases, say for gl(m|n), almost all superizations of the Weyl group considered
above are identical and linearly act on the space of weights. Usually, even if a su-
perization of the Weyl group preserves the root lattice it does not preserve the set
of roots; or, if it does preserve the set of roots, it does not act on weights at all, or,
at least, it does not act in the space of weights linearly.

Further studies brought Penkov and Serganova to a remarkable notion of an
analog of the Weyl group for ANY Lie algebra, see [19], where this notion is con-
sidered in super setting. This notion — skorpenser — was further developed in
[21] to match the infinite dimensional case. Therefore, we can apply it to the Lie
(super)algebras of vector fields and LU,(A) — the generalizations of g(A).
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We started with the task to find out all the cases when it is possible to define a
linear action of skorpenser on the space generated by roots and found several new
cases.

4 Skorpenser — an analog of Weyl groups in super setting ([20])

Here are descriptions of the analogs of the Weyl group in presence of Cartan
matrix A = (a;;). For the definition of such an analog in the absence of Cartan
matrix see [19, 21].

4.1 The universal skorpenser

Let g be a simple Lie superalgebra, b its maximal torus, B a base, ng the nilpotent
subalgebra generated by root vectors corresponding to B. A subalgebra of the form
bg = np @ b is called a Borel subalgebra. Let L(A, B) be the finite dimensional
irreducible g-module with b-highest weight A; let A = Ap be the set of b-highest
weights of all the finite dimensional irreducible g-modules and I'y the set of weights
of L(A, B).

Denote by So(7y) for any a € R,y € I'y the a-string through v, i.e., the set

7_qa)'-'77_a;7:7+ax"',7+pa

such that y — (¢+ 1)a,y+ (p+ 1)a € I'. The number I, = p+ ¢ — 1 is called the
length of the a-string.

Set ro () = v+ (p—¢)a. Since the weight r(7) is defined for any v € I'y, there
exists a map rq : Iy — I'y. This map will be called the reflection with respect to a.

Let Fgr be the free group with generators f, for every « € R. Then for any
A € A there is defined an Fgr-action on Iy by the formula f,(y) = ro(y).

Let Iy r be the normal subgroup of Fp singled out by the formula

Lr={f€Fr:f(y) =7~ forall ye N}

The group UWg = Fr/Igr, where Ig = Nxealx g, will be called the universal
skorpenser of the root system R (or of g and we denote it by UWg or UW,).

Denote by r, the image of fo under the natural projection. By construction,
UW, acts on I') for any A € A, in particular, it acts on R.

Lemma a)r2=1.
b) r_o = r4.
c) The Weyl group W, of the Lie algebra g5 is naturally embedded into UW,,.
d) Let w € Wy,. Then ry(q) = wrow™? .
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4.2 The linear skorpenser

Under the notations of the previous section, define the reflections r, by the formulas

—aj for i = j,
Q; — Qij; for ¢ #] and as; = 2,
ra‘(aj) = aj; — 20,']'(1,' for 7 ;\’:] and aj; = 1,
aj + o fori;éjanda;g:O,aj;;60,
a; for i # j and a;; = a;s = 0.

Let LWg be the group generated by such reflections when o runs over simple roots
of all bases of g. We will call LWg the linear skorpenser of R (or of g).

5 Conclusion

It turned out that for the distinguished stringy Lie superalgebras of series &~
and ¥M (for their definition see [16]) this skorpenser is a group that linearly acts
on the root space and the geometric picture is identical to that for one of the Kac-
Moody superalgebras with symmetrizable Cartan matrix provided we forget that
the multiplicities of the roots are different. To compute the Coxeter transforma-
tion in the case of g(A) with a symmetrizable A, even with complex entries, and
the above distinguished stringy superalgebras is routine but tedious. It turns out
that even for finite dimensional Lie superalgebras the Coxeter transformation does
not vanish identically. The complete description of the continuous invariants is in
progress.

Observe that from classification of simple Lie superalgebras of polynomial growth
it is clear that not all problems of linear algebra depicted by a quadruple of sub-
spaces are tame: the corresponding Dynkin-Kac diagram can not have nodes of
arbitrary colors or be square ones to describe the Lie superalgera of polynomial
growth.
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