LIE SUPERALGEBRAS

D. A. Leites UDC 512.554

Results pertaining to the theory of representations of "classical' Lie super-
algebras are collected in the survey.

PREFACE

A new area of mathematics — the theory of supermanifolds — arose in the 1970s. 1Its
rapid growth was stimulated by fantastic prospects in physics: the possibilities of com-
bining bosons and fermions into a single multiplet, of combining groups of inner and dynamical
symmetries, and, finally, of combining all fundamental forces into a single field theory (see
[13, 45, 47, 49, 50, 59, 62, 64, 90]). Moreover, in 1982 it was found that it was possible
to formulate a model of field theory not containing singularities in the language of super-
symmetries. An introduction to the theory of supermanifolds is presented in [5, 6, 32].

For an improved and corrected exposition and a list of some problems pertaining to this sur-
vey see [39, 45, 46]. The part of the theory of supermanifolds which now finds the greatest
number of applications is the theory of Lie supergroups and superalgebras. Here we shall
give a brief survey of results concerning the theory of representations of '"classical" Lie
superalgebras. For facts from linear algebra on superspaces see [32, 39]. We assume that
the elements of the theory of representations of Lie algebras are known (see [12, 15, 21]).

The basic features of the theory of representations of simple Lie superalgebras make
them kindred to Lie algebras in characteristic p, while if p = 2 there is almost no differ-
ence between algebras and superalgebras (see [113]). In particular, there is no complete
reducibility and the Laplace—Casimir operators, which are of great help in describing repre-
sentations of Lie algebras, play a modest role in the case of superalgebras [4, 82-86].
Methods from the thecry of representations of infinite-dimensional Lie algebras of vector
fields — the special vectors of Rudakov [53, 54] and analogues of Poincare's lemma — occupy
center stage. By means of these methods it was possible, at least in principle, to determine
how to solve the problem of O. Veblen on describing invariant differential operators acting
on tensor fields on a manifold [22, 23], to refine it, to greatly generalize it, and in some
cases to obtain a complete answer (see [9-11, 14, 26-29, 33-38,. 65-72]).

0. Recollections

Regarding Algebras. As usual, we write C, R, Z, 2%, N, H and O for the complex numbers,
real numbers, integers, nonnegative integers, positive integers, quaternions, and Cayley
numbers, respectively. We denote by |S| the power of a set S and by (S) the linear space
generated by the set S. The base field is C.

Any finite-dimensional Lie algebra over C is the semidirect sum of a semisimple algebra
and a maximal solvable ideal, while the semisimple algebra is the direct sum of simple alge-
bras. The simple Lie algebras form the 3 classical series 8L, o and sy and 5 exceptional Lie
algebras.

All simple Lie algebras have the same structure. The Cartan subalgebra b in a simple
Lie algebra g (i.e., the maximal nilpotent subalgebra coinciding with its normalizer) is com-
mutative, and all Cartan subalgebras are conjugate relative to the action of the adjoint

group. The Cartan subalgebra ) prescribes an b*-gradation in g= g%ﬂa and in finite-dimen-
[+

sional g—modules M =;8PMd, whereby dim g, =dimd_,, where a6b*. " The elements of the sets R, P C

p* are called the roots and weights, respectively.

The b-gradation in g can be extended to a natural Z-gradation (in s! (n) the degree of an
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element g is the number of the dlagonal on which g lies over the main, zeroth diagonal), and
it is possible to choose elements X*, where 1 i< tkg of degree t1, which generate g., whereby

if Hf = [%;%, X;7]1, then

X5 X 1=8,;Hy» [Hy Hj]=0,
(ad X )% (X 7)=0. (DR)

The matrix (al ) is called the Cartan matrix and is conveniently assigned a Dynkin
graph. The equatlons (DR) are the defining relations in g.

The weights are lexicographically ordered (relative to a fixed basis in ). In each
finite-dimensional, irreducible module over a simple Lie algebra g there is a l-dimensional
space (of leading vectors) corresponding to the highest (leading) weight.

The leading weight of a finite-dimensional module satisfies conditions that it be inte-
gral. For example, for sl(n) the Cartan subalgebra consists of diagonal matrices; the index
of the leading weight relative to the basis {eji = ei+, i+1} must belong to zt. The leading
weight uniquely determines the irreducible modules; in partlcular on the basis of x it is
possible to compute the character of the g-modules L(x) with leading weight ¥, i.e., the func-

tion qh/W(X)==:S dim L (y).e* where L(y)r is the eigensubspace of the weight A and er(h) = er(h)
AGP

for h6b . Let W(8) be the Weyl group of the Lie algebra 4, i.e., the group generated by re-

flections in hyperplanes of the space b given by the roots. Then the following formula of H.

Weyl holds:

ChM(‘)()—' zsgn .wew(x+p)/ E sgn wewr — 1__[ (1 +e—a)dlm o 2' sgn wew*, wherep (H )__1

wGW waW wGW

It was found that finite-dimensional representations of simple Lie algebras are most
simply described within the framework of the category O consisting of infinite-dimensional
modules satisfying some natural conditions [15, 93]. An analogous category of modules can
also be defined over Kac—Moody algebras. It is composed of nontrivial central extensions of
Kac algebras consisting of the following two series of infinite-dimensional simple Lie alge-
bras:

1) algebras of currents or loops 8)=g®C|[f{, '] (the first name came from physicists,
while the second is explained by the fact that gt) = {mappings of thecircle S*+ ¢ which can be
expanded in a Fourier series where g isa simple finite-dimensional Lie algebra 1});

2) the Lie algebras gi™ = C)etmlﬁ where k = .ve, m— 1; JEZ, 9 is an outer automor-
phism of order m of the sunple, flnlte dimensional Lie algebra g, and 8;={g€8|P(g)=e*!//mg).

For a survey of Kac—Moody algebras see [110]. In particular, simple Kac algebras are
given by the formula (DR) with an extended Cartan matrix (Dynkin graph), and for irreducible
modules over them an analogue of H. Weyl's formula holds with the necessary alteration in

-the definition of W and restrictions on the leading weight.

In 1966 Kac distinguished an important class of Lie algebras related to the most dif-
ferent areas of mathematics and physics: simple Z-graded algebras of finite growth. (We
recall that the growth or Gel'fand-Kirillov dimension of a Z-graded algebra A is lim((log

n—c

dim‘gln1==c?1r]A1' while simplicity of the algebra A means that there are no graded ideals).

Conjecture [107, 109, 110]. The simple Z-graded Lie algebras of finite growth over C
are:

1) simple, finite-dimensional algebras;

2) Kac algebras;

3) Lie algebras of formal vector fields of types W, S, H, K;
4) the Witt algebra W = Der C[t, t~'].

The structure of the Lie algebras of these 4 classes is very different, which is natur-
ally reflected in the theory of representations. The simplest representations — irreducible
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representations — have been best studied, while for infinite-dimensional algebras the choice
of the class of representations from which we extract irreducible representations is itself
nontrivial [15, 80, 89, 90].

It turns out that finite-dimensional representations of finite-dimensional simple Lie
algebras are completely reducible, i.e., it suffices to study irreducible modules. This and
a large part of the other results regarding Lie algebras and modules over them were obtained
by means of (co)homology theory (see [64]). For irreducible objects Ly of the category O it
is possible to comstruct a resolution of Verma modules, i.e., of modules induced from the
character of the maximal solvable (or parabolic) Lie subalgebra n,, and by means of this
resolution we compute the cohomology of the Lie algebra n, with coefficients in Ly. Here a

major role is played by the elements of the center Z(U(g)) of the universal enveloping Lie
algebra g (the Casimir operators), and frequently a single quadratic operator is sufficient
which can be canonically constructed both for a finite-dimensional Lie algebra and for a Kac
algebra (see [93, 110]).

It recently became clear that the objects of the category O are conveniently studied
within the framework of a broader approach — as part of the theory of sheaves of modules
over rings of differential operators [80, 90]. This approach has so far been developed only
for finite-dimensional Lie algebras, but it has yielded very strong results, among which is a
proof of the KazhdanLusztig conjecture regarding the structure of Verma modules.

Simple Lie algebras Zof .formal vector fields have a structure quite different from Lie
algebras of types 1) and 2). In particular, for them Z(U(Z))=C. In these Lie algebras &
there is a natural (Weisfeiler) filtration of the form

g=9_¢3.--3?0:}913..-1

where %, is the unique maximal subalgebra of finite codimension d = 1 or 2, and in the adjoint
graded simple Lie algebra L =®Li, where Li =%;/%;,, , there areno generators of degree *I.

Nevertheless, setting n,= @L; it is possible to compute the defining relations in n,; these
>0

are H,(*:) (they are naturally considered as an Lo-module). TFor n. this computation is tri-
vial, while for n, it is more involved. It was found that if the dimension of the space on
which & is realized as a space of vector fields is greater than a certain amount, then the
degree of all elements of H,(n) is equal to 2, i.e., all relations are "trivial." For part
of these results see [63]; the cases of low dimensions have also all been treated.

Rudakov [54, 55] developed the theory of representations of Lie algebras of formal vec-—
tor fields. He and Kostrikin [26, 27] described all irreducible modules over these Lie alge-
bras in two natural classes of modules — spaces with discrete or linear-compact topology. It
was hereby found that all such irreducible representations are produced (or induced) from
finite-dimensional representations of Lie algebras of linear vector fields with the exception
of representations in the space of differential forms, which is related to the existence of an
exterior differential. It was also found that the problem of describing invariant differen-—
tial operators is part of the problem of describing irreducible modules over Lie algebras of
vector fields and the problem of resolving a tensor product of modules over these algebras
into irreducible components [11]. For finite-dimensional modules over finite-dimensional
simple algebras resolutions of a tensor product of irreducible modules into irreducible com-
ponents are known [12]. If the algebra or module is infinite-dimensional, then the problem
abruptly becomes more complicated [14].

Modules of tensor fields over Lie algebras L =®Lj of types 3) and 4) have finite func-
tional dimension. Over these algebras there are further the modules M(V)=Homy g (U (£). V)

where .= @L, and V is a finite-dimensional Lo-module having infinite functional dimension.
i<0
Irreducible representations in the modules M(V) have been described only for the algebra W

(see [61]).

Moreover, Kac and Witt algebras have other natural representations: in temsor fields on
the circle (to these belong such an important representation as the adjoint representation),
and their central extensions have spinor representations with which Feigin and Fuks associated
semiinfinite forms [44, 61].

It is important to note that in applications not only and not so much are simple Lie
algebras of types 1)-4) of interest as their '"derivatives' — central extensions, deformations,
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Lie algebras of differentiations, nilpotent and solvable subalgebras, and also real forms of
these Lie algebras and modules over them.

Finally, irreducible finite-dimensional modules over finite-dimensional solvable Lie
algebras are described by Lie's theorem. :

On Superspaces. The elements of the field Z, — the residue field modulo 2 — are_denoted
by 0 and 1 in order to distinguish them from the elements of the ring Z. We set (—1)° =1
and (—1)T = —1. In working with Z,-graded objects it is useful to remember the following
rule of signs: '"'when something of parity p is moved past something of parity q the sign
(—1)P4 jumps out,”" while it suffices to define formulas only on homogeneous (relative to the
Z,-gradation) elements and extend by linearity to other elements. This rule makes it possible
to immediately "super'" the definition of a Lie algebra, commutativity, the Leibniz rule, etc.

A linear space V is called a superspace if it is equipped with a Z,-gradation, i.e., an
expansion V = Vo @ V;. The nonzero elements of the spaces V; and Vi are called homogeneous
(even and odd respectively) elements of the superspace V. If V€ Vi, where i€ Z, and v# 0,
then we write p(v) = i and call p(v) the parity of the element v. A subsuperspace is a
Z,-graded subspace W C'V such that Wi = W Vj. Let V and W be superspaces. The structure
of a superspace on VoW, VW, and Hom(V, W) is introduced in the natural manner. We denote
by m(V) the superspace defined by the formulas w(V)i = Vij47; its elements are noted by m(v)
where v ¢ V. A superalgebra is a superspace A equipped with an even homomorphism mult:
A® A~ A. A morphism of superalgebras ¢ : A > B is an even algebra homomorphism of A into B.

Examples of Commutative Superalgebras. 1) The superalgebra C[x] consists of polynom-
ials in the variables x = (u, &), where u = (u;, ..., up) are even and £ = (£,, ..., Em) are
odd, with the relations

x'xj=(_l)p(xg)l?(.rj)xjx” 1<ij<n+m.

For n = 0 the superalgebra C[x] is finite-dimensional. It is called the Grassmann super-
algebra, whichwe also denote by A(E) or A(m).

2) The center Z(A) of an assoclative superalgebra A consists of the set of its elements
which commute with any element of A.

3) 1If V is a superspace, then T(V) denotes the tensor algebra of the superspace V, i.e.
the superspace @ T (V) where T1(V) =V®...8 V (i times) for i > 0, while T°(V) = C, with the

natural Z—gradatlon, which is called the degree, and with multiplication given by the formula
v-w = v 8 w, where v, w€ T(V). The symmetric algebra S(V) of a superspace V is defined as

the factor of the superalgebra T(V) by the ideal generated by the elements v®w—(— 1)?®r® @2,
where v, w€ V. The exterior algebra E(V) of the superspace V is the superalgebra S(II(V)).

If C is a commutative superalgebra and V is a superspace, then we set C[V] = C ®¢ S(V). It

is obvious that if the superalgebras A and B are commutative, then A® B is a commutative
superalgebra.

A left module over an associative superalgebra A isa superspace M with an even homomor-
phism az: A® M > M such that a(bm) = (ab)m, where a, b € A, m € M.

If M is an A-module, then the structure of an A~module in the superspace II(M) is intro-
duced by the formula a(nw(m)) = (—J)P(a)n(am) where a € A, m € M.

A Lie superalgebra is a superalgebra g with multiplication denoted usually by [,] which
satisfies (rule of signs!) the conditions
[x, y]= -—-(__l)P(x)P(y) [y, x],
[ [y 2]l =[x y]s 2]+ (— D)@ [y, [, 2]].

Below we shall encounter only Lie superalgebras or associative superalgebras with a 1.
We shall call the latter simply superalgebras.

We note the important circumstance that modules over commutative superalgebras are two-—
sided. Namely, suppose M is a left (respectively, right) module over a commutative super-—
algebra C. We convert it into a right (respectively, left) module by setting mc = (—nP(mp(e)
cm where ¢ € C, m € M (see also [39]).

The universal enveloping algebra U(ﬂ of a Lie superalgebra g is defined by the rule of
signs and satisfies the obvious analogue of the Poincare-Birkhoff—Witt theorem [15].
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A (left) module over a Lie superalgebra g is a superspace M equipped with a g-action,
i.e., a homomorphism g® M + M denoted simply (g, m) —» gm, such that [g:, g2]m = g,(g.m) —
(—I)P(gl)P(gz)gz(glm), where g;, g266, m € M.

A homomorphism of A-modules (over a superalgebra or Lie syperalgebra A) or an A-invar-
iant mapping is a homomorphism F:M -+ N such that F(am) = (—I)P(a)P(F§aF(n0 where a6A, meM.
We denote the superspace of such homomorphisms by Homp(M, N). If A is a commutative super-—
algebra, then, setting (Fa)m = F(am), we convert Homa(M, N) into an A-module.

We note that if M is a module over a Lie superalgebra g, then M is equipped with a natu-
ral structure of a {/(g)-module.

Let C be a commutative superalgebra, and let M be a module over C. Let I = IoU I, be a
set consisting of the union of nonintersecting subsets I, and I,. A basis of the C-module M
is a collection of homogeneous elements mi€ M such that p(my) = 0 if 16 I, and p(mi) = 1 if
i € I7, whereby each element m €M can be written uniquely in the form m = Icimj, where ci€ C,
and all cj except a finite number are equal to zero. A module M over C is called free if it
has a basis. The dimension of a free module takes its value in the ring Z[e]/{(e* — 1). It
is defined by the formula dim M = p + e€q where p = |10|, q = IIII. In particular, for
modules over a field there is the formula dim M = dim Mg + € dim M,. The motivation for this
definition comes from K-theory. Usually we write for brevity dim M = (p, q) or plq. The
dimension of a free module does not depend on the choice of basis.

Let {mj} and {nj} be bases of the C-modules M and N, respectively. To each operator F:
M + N we assign the matrix MF = (™Fj4), where Fmi=2nj(”'F,j).
j

A supermatrix structure (or simply a matrix) is a matrix with a prescribed parity for
each row and column. Usually a supermatrix structure will be chosen so that even rows and
columns go first and odd rows and columns after. (This structure is called a standard struc-
ture.) We denote the parity of the i-th row by prow(i) and the parity of the j—th column by
Pcol(j).

For a matrix ™F we set prow(j) = p(nj), pcol(i) = p(mj).

If a matrix contains r even and s odd rows and p even and q odd colums, then we say
that the dimension of the matrix is equal to (r, s) X (p, q). The order of a matrix of dimen-
sion (p, @) x (p, q) is the pair (p, q). The set of matrices of order (p, q) with elements
in a superalgebra A we denote by Mat(plq; A).

In Mat(p|q; A) we introduce the structure of a superspace by setting for a matrix X =

=
=53

p(0=0 tf pR)=pU.)=0 p(Si)=p(T)=1
p(X)=1 i pR)=pU =1 pSi)=p(T:)=0
Let X:M - M and Y:N +~ N be two (even) automorphisms of the modules M and N with matrices

mY and MY, respectively (in bases {mj} and {nj}, respectively). Then the matrix (TF)' of the
operator F defined relative to the bases {Xmii and {¥nj} can be expressed in terms of the

matrix ™F by the formula
(mF)’ = (mY)-t.mF.mX.

The module M* = Home(M, C) over a commutative superalgebra C is called adjoint or dual
to the module M. The pairing of the modules M* and M we denote by (,), i.e., (m*, m) is the
image in C of the element m€ M under the action of the functional w*é€& M*.

To each operator F € Homc(M, N) there corresponds an adjoint operator F#* e Homg(N*, M¥*)
defined by the formula

(F*n*, m)y=(—1P"?") (n*, Fm).

Let {mi*} and {nj*} be bases in M* and N* dual to the bases {mj} and {nj} of the modules
M and N, i.e., (mi*, my) = §i7 and (nj*, ng) = 8j5. It follows from the definitions that the
matrix of the operator F* in the bases {mj*} and {nj*} has the form (®F)St, where the super-

transpose st is defined by the formulas (for X = (

2485



t Tt _
X“a(_§t Ut)v if p(X)=01
(Tt —
X“=(§, Ur), if p(X)=1.
We note that supertransposition has order 4.

Let M and N be free modules over a commutative superalgebra C. A bilinear form is a
mapping B:M x N - C linear in each argument such that B(mc, n) = B(m, cn), B(m, nc) = B(m,
n)c, where meM, neN, ceC.

We denote the superspace of bilinear forms by Bilg(M, N) or §‘i~mp1y Bilc(M), if M = N.
If {mi} and {nj} are bases of the modules M and N respectively, then the matrix of the form
B is the matrix ™B, where (MB)jj = (-1)p(mp(B)B(m;, nj).

Let X:M - M and Y:N + N be two (even) automorphisms of the modules M and N with matrices
My and ™Y, respectively. Then the matrix (MB)' of the form B relative to the bases {Xmj} and
{Ynj} has the form

(mBY =(mX)*! ("B) ("Y).

Let u:Bilc(M, N) + Bilg(N, M) be the inversion of bilinear forms given by the formula
Bt (n, m)=(— 1" B (m, n).

In terms of matrices, uis given by the following formula. Let (MB) = (1;

Rl
St

S
U) .  Then

(”‘B")=( _T(}), if  p(B)=0

and

eBy=(_& L) ¢ p®=T

A bilinear form B €Bilc(M) is called (skew) symmetric if BY = (—)B. We assign to a bi-
linear form B € Bilg(M) it itself but considered as an element of the superspace Bilg(m(M)).

Under this correspondence symmetric forms become skew-symmetric, and conversely.

. Classical Lie Superalgebras over C

l. Matrix Lie Superalgebras. The Lie superalgebras gl(m|n)=Mat(m|n, C) and sl(m|n)=

{Xegl(m|n)|str X=0}, where str(é g) = tr A — tr D, are called the general and special linear

Lie superalgebras. The Lie superalgebra 1(n) ={Xesl (n|n)|[X, Jon] =0} , where J,, = (__? (])n) s pre-
n

serves the complex structure given by the odd operator J.,p. This Lie superalgebra is called
A B
) =

the general strange algebra, and its Lie subalgebra s4(n)={X€9 (n)|otr X=0} , where Otr(B A

tr B, is called the special strange subalgebra.

If d is a Lie algebra of scalar matrices, and gcsgl(n|n) is a Lie subsuperalgebra contain-
ing d, then the projective Lie superalgebra of type 6 is yg=8/d, Projectivization sometimes
leads to new Lie superalgebras: ygl(n|n), vsl(n|n), pa(n), »39(n).

Let By, 2n = diag(op, Jn), where op = antidiag(l, ..., 1) (m times). The Lie superalgebra
osp (m | 2n) = {X €6l (m | 2n) | X*' B, 20+ Bm,2nX =0},
preserving the even nondegenerate bilinear form with matrix Bp,2pn », is called the orthogonal-
symplective algebra, while the Lie superalgebra
I (n) = {X€a! (1| 1) | X*' g+ (— )"0 Jp X =0},
preserving the odd nondegenerate bilinear form with matrix J.pn, is called the Palamodov alge-
bra. Let SIi(n) ={X€(n)|str X =0}.

2. Exceptional Lie Superalgebras (See [103, 112, 127, 130]). D(a) is a deformation of
the Lie superalgebra osp(4]2). We identify D(a)s with sl (2)@s! (2)@s! (2) ={(a,, @»» a3)}, and D(a)7 with
id,®id,®id; where idy is the identity representation of the j-th copy of sl (2). Let ¢ be an
invariant form on id with matrix J,. We define the mapping p:id®id—>sI(2) by the formula
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plu, Vw = A@(v, wu — Y(w, uv), where A€ C. We define [, ]:5°D(a)T + D{a)35 by the for-
mula

[4,®1,®;3, 1,80,@v5] —~ 2 Vi (%0, 0) 0y (4 V) Pr (s Vi)
(1,7, 8)=0(1,2,3),0GS,
Exercise. 1) The Jacobi identity holds if and only if A, + A2 + A5 = 0.

2) The numbers (A,, Az, As) are defined up to permutation and a common factor. We set
@ = Ay/Az. For o = 0, —1, = the Lie superalgebra D(a) is not simple and is simple for a # O,

—1, .

3) D(a) = D(a') if ' = ! or a' = /(e + 1). In the Lie superalgebras D(—1) and D(O0)
there are the ideals psl(2|2) and sl(2) respectively, while D(—1)/v1(2|2)=5!(2), and D (0)/#!(2)=
psl(2]2).

AG,: Let O be the algebra of Cayley numbers (octonions), and let G, = Der O. The form
(x, y) = xy + yx where x, y€ 0 is nondegenerate and G,-invariant on O and 0° = O/R‘1.

Let Lx(y) = xy, Rx(y) = yx. Then the formula Dy y = [Lx, Ly] + [Rx, Ry] + [Lx, Ryl,
where x, y€O0, gives a Gp-invariant relation D:090-+G,. Let D° = D/0°. We set (AGz)e =
s((2)®G,, (AGy);=id®00 and define [,]:5%(AG:)T + (AGz)s by the formula

[£®u, y®v]=(x, ¥) p (1, V)—b(#, ©) DS ,
where p and Y were defined in the description of D{a).
ABy: We set (AByy=31(2)@0(7), (ABy);-=1d®syin, , see [12]. The mapping [,]:S?(AB3)T
(AB3)o we define by the formula
[[®u,, Ty®uy]=(Ty, T)®p (41 u2)+2‘l’(u1’ #5) (1, v;¥el'2) (E o~ E'rj)s
ok
where p and y were defined in the description of D(a), and (,) is an invariant form on syin,,
Yivj + vyvi = 8ij for 1< i, j< 7.

We shall describe the rough structure of some Lie superalgebras. Let id((1)) be the
standard (trivial) representation, and let tg be the trivial central extension of the Lie
algebra 8.. We call the following Z-gradations standard:

) 8-2 8- 8o 81 82
sl(n| m) id®id* sl (n)@gl(m) | 1d*®1id
08y (n|2m) | (1) ®S%d*| id®id* o (n)®sp (2m) | 1d*®id | (1) @S:d
03y (2|2m) id* ¢sy (2m) id
(S) n (n) Az{d* (5[) gl (n) Sd
(1) T CG, id (1)
ABJ (1) id* o (4) id (1)

3. Lie Superalgebras of (Formal) Vector Fields. The presence in simple Lie superalge-
bras of vector fields of some maximal subalgebras of finite codimension is unexpected and
surprising.

Standard Realizations. The Lie superalgebra W(n[m) = Der C[[x]], where x = (uy, ...,
Uns E1, ---» Em), 1S called the general Lie superalgebra of vector fields. The divergence

of the field D=Zf,aim+2g,0—g—i is the series div D= 0f1+2( l)p(gl)ogl The Lie superalgebra

S (n|m)={DeW (n|m)| Lpv,=0}={DeW (n|m)|div D=0},

where vy is the volume form with constant coefficients in the coordinates x [8, 39], is
called a special or divergence-free Lie superalgebra.

Let

a;=dt+ 2 (pdg,— qzdpl)+ 2 §,d§;

1<ign

(sometimes in place of @, it is more convenient to take
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G=dt+ 3 (e —qdp)+ 2 Edni+ nids) (4 648)),

1<i<n I<igr

ay=dt+ Z (q.ds+54dq), wy=da,

I<ig<n
( resp. 60=dal), 0)1=d(10-

The Lie superalgebra
K @n+1|m)={DeW @n+1|m)|Loa,= fpo.}
is called a contact superalgebra, while the Lie superalgebra
M (n)y={DeW (n|n+1)| Lowg= fpeo}

is called an odd contact superalgebra. The Lie superalgebra

Po (2n|m)={DeK (2n+1|m)| Lpa, =0}
is called the Poisson superalgebra, while

B () —{DEM (1) | Lot =0}
is the Butane superalgebra. The Lie superalgebras
SM (n)={D€eM (n) | div D=0}, SB(n)={D€B (n)|div D=0}

are called divergence-free odd contact and Butane Lie superalgebras.

The Lie superalgebras of the series K, M, SM, PO, B, SB are more conveniently given in
terms of generating functions. For K(2n + 1/m) we set
0 /]

Kp,=PiW—m

0 7] . 0 0
v Ko=0i 5+ 557 K&f‘&z‘d—,—@v

while for a series f€ C[t, p, q, E]] we set

K,=2f Z43 (Kol NKay— KoK p)+ (=100 I K5 (K,

i<n j<m

For any series f€ C{[t, q, &]] we set
M;=2f 3+ 3 (Ms, () Mo+ (— 1O Mo, (/) My,
i<n

0 i} [ 2
where qul:d_gl—ql a7’ M§l=(§?¢.+§l 3

To the commutator of vector fields — elements of Lie superalgebras of the series K and
M — there correspond contact brackets in the generating functions

{fr Bx.o. =N 2L A ()1 gho.s.

and
s gms. =B (N E —(—1p0 L AR — (/s g5

where A(f)=2f—2y,g—;i, y are all coordinates except t (respectively, t), and the Poisson
and Butane brackets are given, respectively, by the formulas
of dg of og of og
frgen=2 (5L 55 —5L 25 )~ (-1 X 5K
,f,‘,(dm 0q: 0q; dpz) ign ot 0§
(in the realization with form wo) and
N (9f 98 \ (19 92
A 8}5.8.—3(041 ag T (=105 0q1)‘

The Lie superalgebras of the Hamiltonian fields
H (2n|m)={DeW (2n|m)|Lpwy=0}

and their analogues

2488



Le(n)={D€WV (n|n) | Lpw, =0} and SLe (n)={D¢€Le (n) | div D =0}
are conveniently given in terms of generating functions by setting
_S(of 8 _of o N 9r 9
H’—%(dl’l dq;  dq, 6Pz)+(—1)p( ) Z “0%; of; "
j<m
=V(L 0 . 9r 0
Ley= 2 (5 3 +(— P 5 77
Then K(?n—{—l[m):(}(,), M@n)y=(M;), HE@n|m)= (H;), Le(n)= (Les), SLe (n) =

o f (A (f)— oz
(Lef|2m5=0), SM@n)= (M, _(__(‘%_f)_ ‘_()q_léfg_l=0) where f runs through C[[x]].

We denote by SLe?(n)=SLe(n)/ (Le;s...;,) and S°(n) =S(1[n)/ (.. .5 gt' Y the ideals in
SLe(n) and S(I In), respectively.

Remarks. 1) It is obvious that the Lie superalgebras of the series W, 5, H and Po for
n = 0 are finite-dimensional.

2) A Lie superalgebra of the series H (respectively, Le and SLe) is a factor of the Lie
superalgebra Po (respectively, B and SB) by the one-dimensional center Z which in the rea-
lization by generating functions consists of constants. We set

SPo (m) ={1(,epo (0|m)\ S ng=O}, SH (1) =SPo (m)/ Z.

Nonstandard Realizations. Let &) be a maximal subalgebra of finite codimension in a
Lie superalgebra of formal vector fields &. Let Z_,c% be the minimal subsuperspace contain-
ing &, which is Z,-invariant. For i > 0 we set

La={leZ,] L ZalcZd Z_ay=[Lv ZNUZL .

We set L;=%:/%is1. The filtration by superspaces Z(is called with Weisfeiler filtra-
tion. We shall enumerate all Z-gradations in & associated with the Weisfeiler filtrations
constructed on the basis of a maximal subsuperalgebra of finite codimension. The standard
realization is labeled (k); we note that to it there corresponds the case where the codimen-
sion of the algebra @ is minimal.

We set deg x = °x and note that the gradation in the series W (respectively, M or K) in-
duces a gradation in the series S, §° (respectivgly, SM, Le, SLe, B, SB or Po, H). Suppose
that the contact structure is given by the form a,. The Z-gradations are:

Lie superalgebra Z-gradation

u; = °§[ =1 (*)

W (n|m) og; =0 for 1cjgr<m, ouy=0g,;=1for j»1

K (1{2n) = oE=1. =0 for 1<, <n

or=2, °q;=0E; =1 ()
oz =g 1, 08 =0

M(n) op—oy,=2, 08,—=0 fof l<i<r<n,

Ouzy j=%, j=1

=2, °PI=°‘]1=°%]=1 ()
K (2n+1/m) of =08 =2, %r; =0 for f<i<r<[m/2]

Spi=0gi="%y+j=110r j>1

The Lie superalgebras corresponding to nonstandard realizations we denote, respectively,
by W(nlm; r); K(]]Zn; 0); M(n; 0), M(n; r); K(2n + l|m; r), where r = 1.

Digression: the Cartan and Shchepochkina Extensions, We recall that_the Cart.:an exten—
sion of the pair (8.p 8) » Wwhere g, is a module over the Lie superalgebra g, , is the Lie super—
algebra (g, 9)y or briefly g*=l§®_]gl where for i > 0

810 ={FeHom (8.1, 8)) | F (0) (@) =(—1)>*() F (w) (0)}

with the obvious commutation given by the imbedding 8,cC W (dimsg_y).
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We shall now describe a generalization of the construction of the Cartan extension — the
Shchepochkina extension. Letgeg_;®g, be a Lie superalgebra. Then a conformally §, —invariant
skew-symmetric form w on g_; gives an extension Eg of depth 2 with center of dimension ep(w)
where

Eg():-'so, E§_1=9_1, EG_2=Cg

and

o, wil=w (v, w)y, 1if o, weEs,, [u,yl=0a(w)y,
where u€Eg;, and a(u)w = uw.

Let w be a nondegenerate form. Then F8 is contained in K(dim ¢_,) if p(w) =0 or in
M(n), where dim g_, = (n, n), if p(w) = T. We call the maximal graded subalgebra ) of depth
2 in K(dimg_ ) or M(n) such that b,=Eg, the Shchepochkina extension of the pair (g, and
write (g, 8)M% or simply (g)*X.

4. Exceptional Lie Superalgebras (see [1, 73]) and Deformations. We set Wx(n; A) =
(T @A), WO|n),, W n)=WV,(n;0); CW,n)=OT©0)/ (1), CW(0]|n),. The Lie superalgebras
We(n; A) are deformations of the Lie superalgebra B(n) (to see this it is necessary to go
over to the nonstandard realization in which °£i = 0) and are simple for m > 1 and A5 0. It
is obvious that Wix(2; A) = H(2|2; A) (see [68]).

LEMMA. CW,(2) = W(le), while CWx(3) is an exceptional, simple Lie superalgebra. For
n > 3 we have CWx(n) = Wx(n) @ Cz where zlw*(n)i = i.id.

We set 1) go=CW (0|n), 8-1=II(T (—1/2)), and suppose that z is an element of the center of
the Lie superalgebra g., such that z|g-1=—id; 2) x = LE{(3/3&{) (this is a grading operator

in $(0|n)), T°¢0) ={feT || f=0} and g:=I(TOQ) (1)). Let Sq,p(n) = S(O0|n) ® Clax + Bz),
where z is the same kind of element as in 1).

In cases 1) and 2) we define a form w on g1 by setting w(f, g) = J fg and f fgvg respec-
tively.

Among the Lie superalgebras Sa,B(n)MK and CW(OIn)MK only three are simple: Ss,-5(4)MK,
CW(0|2)¥K = K (3]2) and cw(0|3)MK.

We set
5,(0]2n)={DEW (0|2n)| D [(1+#& ... Ea) vl =0}

S,012n+13 ={DEA[8]W (01224 1)| D [(1+£651 . . . &1} D] =0}
Exercise. S¢ = S¢v for t, t'# 0. We set S'(n) = Sl(O|n).

A deformation Q, with parameter h of the Poisson superalgebra Po(2n|2m) into the Lie
superalgebra Diff(nlm)L of differential operators on a space of half the number of dimensions
we call a quantization. In particular,

Qs (Po (0] 2m))=(Cliftx_(2n) =6l (2|2"") for h+0,

where Cliffp(n) is the Clifford superalgebra of {0, n)-dimensional superspace with a skew-—
symmetric even form having matrix B.

What to do if there areanodd number of odd variables? Let 7€ Diff(n[m)} with 72 = 1
(for example, m = &, + 3/3¢,). Let QDiff(n|m)={DeDiif (n| m)|[D, n]==0}. Then Qp (Po(2n|2m —
1)) = QDiff(nlm) for hs+ 0. In particular, QDiff (0|m)gq(zm-l)_z‘Cliff“'_‘_(Qn+ 1)), where mth =

diag(l, mp). This a new interpretation of the Clifford algebra considered as a superalgebra
[40].

There is so far no complete description of deformations (see only [1, 73]).

5. Lie Superalgebras of String Theories [44, 74, 75, 126]. 1In recent years in physics
the idea has arisen that elementary particles can sometimes be considered very elastic
springs — strings (see [47]). The Witt algebra W — the Lie algebra of vector fields on the
circle S with coefficients expandable in a finite Fourier series — is used in describing
these models. Let t = exp(ia), where a is the parameter on the circle. The algebra W can be
realized as the Lie algebra of differentiations of Laurent polynomials C[t ', t]. This alge-
bra has several series of superanalogues.
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On the superspace R(n) = C[t™%, t, £y, ..., En] we define a contact bracket, and the
Lie superalgebra obtained we denote by #(n). Let

U (n)=Der R(n), & (n)={DEW (n)|divD=0}, PM)=2 ) (& ... g"d% y.

These Lie superalgebras preserve the structure on the supermanifold #!», associated with
the trivial bundle over S. The Mobius bundle gives one more example: the contact structure
is reduced from @!.# to the supermanifold associated with the Whitney sum of the trivial bun-
dle of rank n — 1 and the Mobius bundle. The corresponding bracket has the form

og  Of v Jf 0g af og
{fr &l e.=A0f) 55 — 37 AR)— (=1 <i<'l_‘5§ ottt ae, 55,)’

and the Lie superalgebra obtained is denoted by X% (n).

The most interesting thing to physicists in these (super) algebras is that they some-
times have nontrivial central extensions. They have all been enumerated [44, 126]. The cen-—
tral extensions for X (n) and X*(n) are given by the same cocyle Res c(f, g), where Res f is
the coefficient of [1&;/t, and all the c are

n 0 1 2 3
¢ fK3 (@) FKK2(Q) fKeKe K (g) fKe K Ks, (8)s

The cocyles for #°(2), #(2) and #° (2) can be found in [44], and there are no other exten-
sions.

Gel'fand and Fuchs and Virasoro found a central extension for #(0), for ¥ (1) one was
found by Nevieux and Schwartz, and for X*(l) one was found by Ramon; the corresponding Lie
superalgebras are denoted by V, NS(1), and R(I) in their honor. We denote by NS(n) and R(n)
for n = 2, 3 the extensions of the Lie superalgebras X (n) and #*(n), respectively. Ade-
mollo and others [74, 75] found extensions of the Lie superalgebra %Y (2). We denote the
central extensions of the Lie superalgebras # (2), #(2) and #° (2) by A¥’, A# and AP

6. Kac Superalgebras s{™ and Kac—Moody Algebras [43]. Let g be a simple, finite-
dimensional Lie superalgebra. Let G; be the associated group of the Lie algebra 8. The
elements of the group OQut § = Aut 8 /G5, where the group Go is imbedded in the group Aut g of
automorphisms of the Lie superalgebra 8 is a natural way, are called outer automorphisms.

We call the superalgebra g\" the Kac superalgebra connected with the automorphism ¢,

and its nontrivial central extension with cocyle ¢ — the Kac—Moody superalgebra — we denote
by <g{™.

We define ds; 6 Aut D((-1 + 1vV3)/2) by setting ds{a, u) = ({as, a,, az), (=1 + 1\/_)1.13

u; ® uz/2). If o+ a = —1, then we define dzs € Aut D(a) by setting d,s{a, u) = ((a,, as,
az), uy ® us ® uz)).
We define A, B €Aut Sh(0|2n) by setting A(&i) = (—1)‘51igi, B(£i) = & + (3&: ... Eap)/

9t for i =1, ..., 2n.
We define 6) € Aut W(0|n) by setting §3(£i) = A&j, where AEC\O0.

Let Jg o = diag(A, l,p), where A is an orthogonal transformation of 2n-dimensional space
such that det A = —1.

AB —at ct _ D¢ _ . AB
For X = (C o) vwe set st(X) = (ge _peds nx = G A)’ (X = (A-IC D)’ where AGC\ 0.
Let q = —st°§,,—, and let (g) be the cyclic group generated by the element g. We carry

over an automorphism from an algebra to a subfactor algebra without special mention and de-
note the automorphism obtained by the same symbol.

THEOREM. If '8 is in the series W, S', o99(2n+1[2m), D (a) for a1, (—2)+1,
(—1 + iV/3)/2 and AG:, and AB;, then Out g = 1, In the remaining cases Out G is defined from
the following table

G sl(n/m), n¥m 0sy (2n | 2m) psa(n) D ((=1+V3)/2)
OutG Z2={—st) Z,=(AdJ, ) Z,=(q) Z,=(dy)

S (n) S(0|n) SH (2n+1)
OutG C*={0, |MP£1}  C*={5, | A1) c*—{ah|x¢ +1}
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and the exact sequences (1)-(3):

1-C—~OutSH(Q| n)~Z,®C* 1, n
where C is the one-parameter subgroup generated by the automorphism B, Z, = (A), and C* =
{8y|r€cCx, Am £ 1};

1>C*-Outrsl(n|n) > Z,0Z, 1, (2)
where n>2, C*={8,|AeC*, A £1}, and Z2,0Z,=(n)®( —st);
1->SL (2)/(— 1) > Out ys1(2 |2) > Z, ~ 1, (3)

where Z, = (m), and the action of the Lie algebra 51(2) of the group SL)2) on;zl(ZIZ) is de-
fined as follows. We realize the superalgebra Isi (2[2) by matrices of order (2, 2) with
bracket [X, Y] = XY - (~1)PX)P(Y)YX — 2 str XY. Then

¢ _a) (€ g))=(”13’f(?)‘+ac a3+bglcurl).

We note that the order of the automorphism st in the group Outisl(n|n) is equal to 2
(respectively, 4) if n = 2k (respectively, n = 2k + 1).

THEOREM. Let g be a simple, finite-dimensional Lie superalgebra. If @gAutys (the con-
nected component of the identity, then 8{" =4g(). Moreover, Isg (n)g"_—_psg(n),(,‘i), The remaining Lie
superalgebras g‘(p”" are the following (in row 3 for m = m we take the projection of the autc-
morphism indicated in colummn 2, while (m, n) = (1, 2), (2, 2); in row 5 n > 2 and in thz last
row of the 8, -module 8, (respectively, §,) is irreducible with leading (odd) even weight 2
(respectively 3). (1) denotes the trivial module; we set

S={(A, B)eS2(id®1)®S?(1®id) | tr A —tr B=0)):

gt 8o g g 0
osp (2m | 2n) () 03y (2m—1|2n) id — —
(») sl (m| m)2), o(m)@o (n) | m(id@id) S n(1d®id)
pst(n|n) ps (n) ad* — -
psl(n| )2 S (n) ad* - —
30 ()@ ° sl (n) 7 (ad) — -
psa (n){H) o(n) m(A2d) | Sud/ (1) |Sd/{1)
SH (0 12n) H (0{2n—1) 79 (0) - —
D((—1+iV3)2® osp (1. 2) L(2) n (L (3)) -

These Lie superalgebras g™ are simple.

Exercise. 1) Which of the Lie superalgebras of this section are simple? For an indi-
cation see [1, 103, 104].

2) List the Lie superalgebras of differentiations of simple Lie superalgebras using [36,
57, 73, 104].

The Kac—Moody superalgebras associated with simple, finite-dimensional Lie §upera}gebras
have a much more interesting structure than Kac—Moody algebras. In particular, 1f a simple
Lie superalgebra g has a nontrivial central extension @; given by the cocycle w, then gg”
has infinitely many central extensions with cocycles

c(©):(X, Y)~Res @ (X,Y) ¢, wherei€Z, X, Yeg{".
If B is an invariant, nondegenerate, symmetric form on g, then an extension of the Lie super-
algebra gg” is given as for Lie algebras by the cocycle
ay
¢(B):(X,Y)~Res B (X, Zr ), rae X, Ve

Therefore, to describe Kac—Moody superalgebras we make the corresponding digression: we
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describe invar%ant bilinear forms on simple, finite-dimensional Lie superalgebras and their
central extensions, and all central extensions of Kac superalgebras can be constructed by
one of the two methods indicated.

THEOREM. The Killing form (x, y) = str ad x-ad y is nondegenerate on sl(n|m) for n = m,
on sy (n|2m) for n 5 2m + 2, and on AG: and ABs;. The even form str xy (respectively,
j x(g)y(g)vg) is nondegenerate on ygl(n|n) and lmp(2n—k2]2n) (respectively, on Po(0|2n)), while
the odd form otr xy (respectively,.yx(gy(azk) is nondegenerate on 4(n) (respectively,

Po(0|2n + 1)). On psl, y24 and SH the forms induced by those described are nondegenerate.
A11.the forms enumerated above are symmetric and invariant. On Lie superalgebras of the
series SII, W, S, S' there are no nonzero invariant forms.

There are invariant skew-symmetric forms only on the following simple Lie superalgebras

8 Cocycle w Extension wg

rpt tr CC’ SH (4)

psl(212) AB .‘%B,H%rWB%£C’ 1212

s (njn) (CAL;) (j Z,) tr BB ) ESP(lU)

n ’ .

?or n>9 ((; D)' (C,DI)»—»tr(CB +BC’) sl (nln)

ysg () (A, B). (A’. B')—tr BB’ sg (n)

SIL (4) éB_A;). (glﬁAH)»—»tr cc’ AS

SH (n) d af’

for n>4 Hy. Hf"-'zaé 0 ,,gfl ©) SPo (n)

The extension AS is named in honor of its discoverer A. Sergeev.

A description of contragradient Lie superalgebras and systems of simple roots is pre-
sented in [42] where the Coxeter automorphisms are also listed in those cases where it was
possible to assign a meaning to superpositions of them.

7. Real Forms. Any real Lie superalgebra is either a complex Lie superalgebra 8 con-
sidered as a real algebra gR or a real form b of a complex Lie superalgebra g, i.e., 1®gC=yg.
Each real form § of a complex Lie superalgebra ¢ has the form ¢®={g€s|9(g)=g ,where @ is an
antilinear automorphism of order 2.

In the finite-dimensional case Serganova [56], correcting [104, 125], described all auto-
morphisms for simple Lie superalgebras. Moreover, she described automorphisms of order 2 of
real Lie superalgebras (to such automorphisms there correspond symmetric superspaces) and
automorphisms of order 4 involutive on 85 ; physicists investigate such structures. There was
not room in [55] for a description of the automorphisms for AG: and AB; which has also been
completely carried out (see [39]).

V. V. Serganova also described real forms and automorphisms for Kac superalgebras and,
apparently for the first time, for Kac algebras [55] and Lie superalgebras of string theories
[57] and also automorphisms of order 2 (and 4) of real forms of the Lie superalgebras of
string theories — infinite-dimensional (semi) symmetric spaces (cf. [116-118]).

Real forms of simple Lie superalgebras of formal vector fields, their automorphism, and
Lie superalgebras of their differentiations are described in [36].

2. Modules over Lie Superalgebras of Vector Fields

1. Two Categories. We consider two categories of modules over infinite-dimensional Lie
superalgebras & of vector fields with the Weisfeiler filtration: discrete and topological.
A discrete F-module I is a module such that dim U(Zo)j < = for any vector i € I. To each dis-
crete module I there corresponds a topological module I* = Homk (I, k) with a topology having
a basis of neighborhoods of zero formed by the annihilators of finite-dimensional subsuper-—
spaces of the module I, and I = Homkc(l*, k), where Hom® is the superspace of continuous
homomorphisms. It is obvious that the categories of discrete and topological &-modules are
dual. If @ is a finite-dimensional Lie superalgebra with the standard gradationm, Zi= szL“

then both these categories coincide with the category of finite-dimensional ¥-modules. This
indicates that these categories are natural.
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The superspace T(V) of formal tensor fields of type V constructed on the basis of a
finite-dimensional Ly-module V is an example of a topological @ -module: we set £,V =0 and
T(V) = Homy(g,) (U (£), V). Forthe Poisson and Butane superalgebras and their regradations it
is natural to alter the definition slightly so that the center goes over into the operator
of multiplication by a scalar. Generalizing what is called prequantization or geometric
quantization, we describe also irreducible modules over the Poisson superalgebra in the
modules 7 (V)=Homy g (U (£)/(Ki—Hh), V) and over the Butane superalgebra in the modules Th(V) =

Homy g i (U (£) [1) (Myt—1h), V), where hék, p(1)=1, *=0.

For the Lie superalgebras of string theories (the Kac superalgebra g{") we define the

series of modules J (V) (respectively, V(‘)). We denote by J (V) the module C[t™*]T(V). We
set Ju(V) =g (V) (respectively, VW =V®C|¢t, t], where V is a g~module).

2. Integrodifferential Forms. Together with the variables x, we introduce variables 'x
such that p('xi) = p(xj) + 1, and we call elements of the commutative superalgebra Q = C[[x]]
(formal) differential forms. We define a Z-gradation on the superalgebra Q by setting deg

1

xi = 0, deg'xj = 1. It is obvious that Q::@é?.
We define the exterior differential d:Q' » @i*! by setting d(xi{) = "xi, d'xjf =0,

d{w,wz) = dw,ws + (—])pfwl)mldwz. For any vector field D = If;3/9xi we define interior mul-
tiplication ip: Q' - Q1! on the field D by setting inp = ()P D Zfia/a'xi. We define the
Lie derivative Lp along the field D by setting Lp = [d, ip]. In the coordinates x, 'x we
have d = Z'xi(a/axi).

Remark. In some works using differential forms another definition is given of differ-~
ential forms in which Q coincides with C[[x]]['x] as a space, where deg'xi = 1, deg xi = 0,
but p('xj) = p(xij), and multiplication satisfies the condition

@ P, = ( . ])deE‘deeg‘i’ﬁ-P((Pl)P(‘Pz)(PZ*(PU

where @,, 9,62. We go over from the multiplication * to the new multiplication

cplm: — ( . l)deg(ﬂxp(‘[‘z)q)l‘(pg
by setting simultaneously pPuew (?)=deg ® (mod2)+ poa(P) ; we find that Q is a commutative super-
algebra, which is considerably more convenient (cf. [39, 129]).

Let J be the commutative superalgebra consisting of operators generated by operators of
multiplication by series f€C[[x]] and by interior multiplications ip where D¢%. Since i 5 =

0 y - o i
(__Dp(ngia, it follows that J C[[x]][d,x].
On the superalgebra J we introduce a Z-gradation by setting deg xi = 0, deg(3/8'xy) = 1.
On J we define the structure of a Q-module by setting
7} HENEDIEENER
‘X, (oij)=(—l)( (x0)+1)(P(x ) )611-.
In other words,
fe g yPr)H 2
xl_( 1) ()(0/0/)(‘) -
We denote by 2= @ X, the Z-graded J-module with generator vy, where deg vy = n — m and
- i<n—m
p(vy) = (n — m) mod 2. We call the elements o€ i integral forms of degree n — m — i. (This

name is occasioned by the fact that elements of the superspace I are formal analogues of forms
which can be integrated; see [8].)

On I we define the structure of a Q~module by setting 'xj (PAy) = ('xiP)x, where PEJ.
It is easy to see that this structure is consistent with the action of the operators d, ip,
and Lp according to Leibniz's rule.

Special cases: a) m = 0. Then 91 = 0 for i > n, while Zi =0 for i < 0. Moreover, the
mapping U, ’'X;... ‘X, gives an isomorphism of the superspace Q' with the superspace Ii which
preserves all structures.
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b) n = 0. In this case there is a homomorphism of the Z-modules S :Ip + C which we
call the Berezin integral in honor of its discoverer F. A. Berezin. The integral is defined
by the formula Sgl... Emvr=1, and Sg}"_,,g,:mq;g:(), if H"!‘——‘O'v We dencte by jl also the comr

i>1
position of the Berezin integral with the natural imbedding z‘,_m—-I»Cc.QO,

¢) m= 1. We generalize ol and Ij to superspaces %*, where A€C. Let x = (U, ..., un ,
£). We define the Q-module @:A%C(D" (we assume that deg'x; = 1€C) as a module generated by
by the generators 'E*, where A€ C and deg'£>‘ = A, p('EA) =0, while '£'€>‘ = 'E>‘+1. Setting
2 . (/] . .

ﬂ’g’\:}\.’&"—‘ (and a,im'§’~=a7g’u,=0), we define the action on ¢ of the operators d, ip and
Lp. It is not hard to see that ¢ is a commutative superalgebra, while the action of the
operators d, ip and Lp on ¢ satisfies the Leibniz rule.

We define homomorphisms a:Q - (gz(D' and B: %)Z(D’—>2 by setting
r r
a(0)=0"t% B(u... ‘u,/E)="1,.
It is easy to see that the sequence

0> Qir%azcbriz N

is exact, while the homomorphisms « and B are consistent with the structures of the Q-module
and the actions of the operators d, ip and Lp.

The construction of Z-modules ¢ admits the following generalization for m=s 1. (Formal)
pseudodifferential forms of degree A, where A€ C, are elements of the superspace () =171
(EA(id)), where EA(id) is the A-th exterior power of the standard (n, m)-dimensional Lo-module
id. They have the form

Fxyut... uined | rgBm,

where a3 = 0, 1 and BjE C, and Ial + |B| = A (as usual, |a| =o; + ... + apn, and [BI =B, +
oo + Bm).

Similarly, (formal) pseudointegral forms of degree n — m — A, where A€ C, are elements of
the superspace Z—m-a)=T7 (E*(1d*)®str). They have the form

FO S ) ) () o

where aj = 0, 1 and Bj€ C, and la] + |B8] = A.
We set Q(’)=AGEDCQ(M and 2(*)=A%)cz(n—m—7»)'

Remark. It is also convenient to consider pseudoforms such that Bj€ C and B5€ Z for j #
i. Such pseudoforms correspond to Lo-modules induced from parabolic subalgebras larger than
(Lo)s (see [69, 70]).

The Lo-medules EA(id) are infinite-dimensional with the exception of the case m = 1, so
that the pseudoforms are not tensor fields. However, on restricting to a Lie subsuperalgebra,
the superspace of pseudoforms can be expanded in an infinite sum of superspaces of tensor
fields (with finite-dimensional fiber).

We note that Z(x) is a Q(*)~podule with a consistent action of the operators d, ip and
Lp.

3. Connections. The formal constructions we introduce imitate the following geometric
picture: & 1is a space of functions on an open domain U, Der & is the Lie algebra of vector
fields on U, M is the & -module of sections of a vector bundle on U with finite—dimensional
fiber, and 9 is the algebra of exterior forms on U; see [46].

Suppose now that F=C[x]] (or & is any commutative superalgebra with a 1), ZcDer¥ is
a Lie subsuperalgebra, M is a free ¥ -module of finite rank, and Q is a commutative super-—
algebra of differential forms.

A connection on M is an odd C-linear mapping V:M—>Q®zM, satisfying the condition
V (fm)=dfOm-(—1)pP f7(m), where feF, meM.
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Since as a superspace DerF=II(Homg (2, ¥)), then dualizing and applying the functor 1 we
arrive at the following equivalent definition: a connection on M is an even mapping

V:EXM->M, (D,my—({Dym
which is & -linear in the first argument and additive in the second and is such that
V (D)(fm)=D (f) m+(—1)phe® f (D) (m),

where fe&, meM, DEZL. We call the operator V(D) the covariant derivative along the vector
field D. We call an element V-horizontal if V(D)m = 0 for all DE¥ . It is easy to see that
if M is a free ¥ -module, then on M there exists at least one connection (we set V(fimj) =
df{ ® mj where {mj} is a basis of the module M and fi; €%). The set of connections of a
module M forms an affine superspace isomorphic to Q'®g EndgM. Wefix some connection Vo (in
a free module it is convenient to fix a flat connection, i.e., a connection relative to which
all elements of some basis of this module are horizontal). Then any connection has the form
V =V + a, where afQ2'®gz Endg M. In a fixed basis of a module M of dimension n + me a form a
can be considered an element of Mat(nlm; Q). We call this matrix o the form of the connec-
tion V.

We extend V to mappings
V:Qi®g-M—>QlH®g-M and V:M®$21+M®le+l
by setting
V (08m) =do®m -+ (— 1) 0®<7 (m)
and
v (m®0)=T (V (m))®c +(-— 1)ptm) m®da,
where T:Q'® ;M= M@z is the twisting isomorphism. We call the curvature form of the con-
nection V the operator FV=%[V’ V]=wv2

Obviously, a connection extends also to pseudodifferential and pseudointegral forms.

Suppose that a module M is "linear," i.e., has one generator. Suppose that the parity
of the generator is 0. It then follows from the Darboux theorem for supermanifolds that a
connection form with a nondegenerate curvature form has in some coordinates the form

\ TP
o' = 2 (pdg,— qidp)+ z 54
1<ign <jgm
If the generator of the module M is odd, then it follows from the Darboux theorem that the
connection form ao' has the form

oy’ =0 2 (6:d9:+ q.dsi)

ICi<n

where 8 is an odd auxiliary coordinate. Usually it is convenient in place of ;' and ao' to
consider the forms o, = dt + ;' and ao = (3/98)(0dt + ao').

4. Primitive Forms. The space of i-forms (differential or integral) with constant co-
efficients is irreducible over Lo, only if Lo is of the series sl or gl . In other cases it is
reducible. The decomposition of this space into irreducible components, for example, on a
symplectic manifold, is achieved due to the fact that the Lie algebra s (2) acts on forms
and commutes with the action of Hamiltonian vector fields. The vectors of the sl {2)-action
of lowest order are called primitive forms. We shall describe an analogous structure in the
supercase.

a) Suppose there is given a canonical, even, closed 2-form wo in 2n even and m odd vari-
ables. The following operators act on the superspaces 9, Q(*), L and Zx): X4 — multipli-
cation by wo, X_ — interior multiplication by the bivector dual to wo, H = [Xy, X_], d, and
6 = [X-, d]. We note that as H(2n|m)-modules the superspaces Q and I as well as Q(*) and
I(x) are isomorphic; therefore, it suffices to consider, for example, only (pseudo) differen—
tial forms.

THEOREM. The operators X+, X_ and H define on § and 2(*) structures of gl (2)-modules
invariant relative to H(2n|m).

2496



Proof. Invariance of the operators X4, X_ and H follows from the definitions. In
canonical coordinates the operators X4+ and X_ have the form

- 2 2 0 \?
X+=2ql'l71+z'§/21/2v X_=—[E olql d’pz +2(6’§i) 1/ 2]'

We now note that it suffices to carry out all computations in the (2, 0)- and (0, 1)-dimen-
sional cases separately and immediately find that

H=X X — X X,=(m—2n)2—3"x,0/0"x,,

where 'x = ("p, 'q, 'g). Hence, [H, X;] = #2X, which was required to prove.

We call the vectors of lowest order relative to the sl (2)-action in Q primitive forms.
It is not clear what to consider primitive forms in Q(*). The structure of the s (2)-module
Q for (2n — m)/2€ N is quite complex (see [65-71], where it is completely described).

b) Suppose there is given a canonical, odd, nondegenerate, closed 2~form w, in n-even
and n odd variables.

It is easy to compute the homologies of the operator w, in forms with constant coeffi-
cients: these are {E,...,’En?. From this we obtain a description of irreducible Lo-submodules
in integrodifferential forms with constant coefficients. Indicating the Lo-submodule by a
dashed arrow and the action of the operator w, by a solid arrow, we represent the module Q
as a graph

no 91 Slz 93 9." o Rn.-1 Qn nnH ..
e ~
! ' U
|
' |
b
¥e g’... §n>

for n > 1, while for n = 1 it has the form

2 of 2 2

The graphs with reversed arrows describe the structure of the JordanmHolder series in the
space of integral forms.

Elements of modules corresponding to vertices of the upper (lower) row in the graph of
Q (respectively, L) we call primitive forms. As in a), it is not clear what to consider the
analogue of this concept for pseudoforms.

¢) Primitive forms with values in a linear bundle with a connection. Let

h h 1 Q .

7“1'=7‘ [z (pdq,—q.dp)+ 5 2, Ejdﬁj]‘
be the conmnection form V4 = d + (h/2)e,' in a {1, 0)-dimensional F -module. Let Th(0) = a°
be the superspace of sections of this F-module. Since Q,=Q®g4R0, it follows that the
operators Xy, X_ and H extend in an obvious manner from Q to Q. We set V_ = [X_, V4].

THEOREM (Bernshtein; see [35]). The operators X4, X-, H, V4 and V- define on @ and
Qﬁ*) for h 0 structures of osp(1|2)-modules invariant relative to Po(2n|m).

Proof. Invariance follows from the definitions. In canonical coordinates we have

V.= 5 gty | Dern—ap+ 5 245 |

As above, it suffices to carry out all computations in the (2, 0)- and (0, 1)-dimensional
cases separately. Elements of the superspace /P, =Ker V.| P, Wwe call Vi-primitive r-forms
with torsion h.

The case of a bundle with a connection whose curvature form is hbw; can be considered
in a similar but more intricate way (see [35]).
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d) The contact case. Suppose there is given a (0, 1)-dimensional ¥ -module with genera-
tor which is the I-form

1 .
oy =dt+ E (pdg,—qdp)+ 5 Z E,dé;

For m = 0 we identify Q2oti-r gn4 Lanti~r- We set KQF = QF/(a,Q¥"' + da,0F"%) for r = n
if m = 0 and for all r if m %0, while KXsnt1—m—r=Ker aiffKer da;1Zontt4m-2 for r > n if m = 0 and
for all r if m # 0. We represent the structure of submodules in QF and Z,p4,-r by means of a
graph whose vertices are irreducible & -modules, while the arrows indicate the submodules.

By induction it is easy to prove the following:

ar
gk’ K

— lagka®? =a¥f

o, o S
ok1 K 92r-1
K n2r+1
oot
(@) KR N T

/. o

2r
—d KR
r 0 1, o2 1
u,(d.u1) KQ o&1(d.<x1) KR

Proposition. The graphs I'(QY) for m#% 0, (2n — m)/2¢ N and m = 0, r< n are shown
above. The superspace KQT is equal to O if m = 1, r > 2n. The graphs for integral (2n + 1 —
m — r)-forms are obtained from the graphs T(QY) by replacing KQ by KI and reversing the
arrows.

We call elements of the superspaces KQ and KE primitive forms. The structure of the
JordanHolder series in the superspaces QF and Iy for (2n — m)/2€¢ N can be derived from re-
sults of G. S. Shmelev; the case of the form oo is analogous to part b).

3. Irreducible Representations, Invariant Operators,

and Analogues of the Poincare Lemma

We shall show that each irreducible topological module over a Lie superalgebra & of
vector fields can be realized as a submodule in some T(V). Our purpose is to describe this
submodule as explicitly as possible. For this we study & -homomorphisms T(V,) - T(V.) and
find that our submodule is the kernel of one such homomorphism. We present the description
of irreducible modules in three steps.

1) We describe all & —-invariant differential operators c: T(V,) > T(V.) where V, and
V., are irreducible Lo-modules. The conceptual part of the description is the basic lemma
formulating the problem in terms of special vectors. It is found that all invariant opera-
tors arrange the spaces of tensor fields on which they are defined into complexes genera-
lizing the de Rham complex.

2) We prove that these complexes are exact, that is, we generalize the Poincare lemma.

3) On the basis of a resolution of modules of the type T(V) for any irreducible £~
module it is not difficult to compute its character. If the Lie superalgebra £ is contra-
gradient, then it is possible to describe the character by a single formula generalizing the
formula of H. Weyl. For noncontragradient (super) Lie algebras there is no single formula
for the character.

Remark. For Lie superalgebras of vector fields also, of course, it is possible to
define modules M(V) which are analogues of Verma modules. Nothing is known about such
modules.

1. The Main Lemma. It is more convenient to obtain a description of invariant opera-—
tors in terms of induced modules I(V) =U($)®U(90)V, where V is an irreducible Zy—module
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such that &,V = 0. It follows immediately from the definitions that I(V) = T(V¥)*, It is
easy to see that a description of homogeneous differential operators c: T(V,) =+ T(V:) of
order i is equivalent to a description of homogeneous vectors of degree —i in the module
I(V,*) such that &, f = 0: such vectors are the images of elements of the space V.* under
the mapping c*.

LEMMA. 1) T(V)* = T(V* ® str), where str is the representation of the Lie superalgebra
gl (dim L_,) in the 1-dimensional superspace denoted by str; the representation is given by
the supertrace.

2) If M is a nontrivial £ -module, then MZ1-£0 and MZ is an Lo-module.
3) Homg, (/ (V), M)=Hom, (V, MZ»).

4) The mapping @:/ (MZ1)>M, given by the formula @:u®m~ um where ucU (%) and meMZ,
is an epimorphism if M is an irreducible & -module.

For a proof see [11]. Thus, the description of invariant operators has been reduced to
the description of the superspaces [ (V)¥' . Elements of this superspace A. N. Rudakov called
special vectors. It follows from Shur's lemma and the theory of the leading weight that it
suffices to describe the leading vectors of the superspace [ (V)€ relative to Lo. We shall
formulate the description of invariant differential operators which follows from such a
description.

2. The Case W(n|m). THEOREM. The sequences

d d
0—7'C—->QO—->QI—-> ey (])
d d d d d :
oS g S>>0 for ms£0 )

are exact everywhere except at Z_p. In this term the space Ker d/Im d is generated over C

. . 2 [/}
by the element Gre e .("mW . .'d,—u" Uy
1 n

For m = | the sequence

d d d d
RN o BN | SBINY ) e R (3)

is exact for any A¢ Z. For A€ Z there is the exact sequence 0 > Q —>}%Z<D)‘ - +0,

For n = 0 the sequence

d d j_d d 4)
S g > By QL
0 0 . ..
is exact, where S='Ut'_‘_'.--‘_;.— is the Berezin integral.
s 05\ d‘5/11

If ¢c: T(Vy) »> T(V,) is a W(n|m)—invariant differential operator and V, and V, are irre-
ducible gl (n|m)—modules, then up to application of the functor I either the operator c is a
scalar operator or T(V,) and T(V.) are neighboring terms in the sequences (1)-(4) and c is
proportional to the corresponding operator.

If V is an irreducible gl (nlm)-module, then in the W(nlm)—module T(V) there is the irre-
ducible submodule irr T(V) = T(V) if T(V) is not contained in the sequences (1)-(4), while in
the other cases irr @=KerdNQ, irr® =Kerdn®* for A¢Z, irr 3, =ImdNZ;

The modules irr T(V) and Il irr T(V) are pairwise inequivalent and exhaust all irreducible
topological W(nlm)—modules.

The character of the induced module I(V) can be computed very simply:

chc[[j—x]]-chV=Nchv,

where N =H(1—{-seﬂi)/(l—e“‘), @, is the weight of the vector 3/3uj,andBj is the weight of the
1.j

vector S/BEJ-. The resolutions (1)-(4) make it possible to compute the character of any
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discrete irreducible module. In particular, in the finite-dimensional case we obtain three
formulas: for irr T(V) = T(V) and the two

chdQrl= % E sgn we® P+rB:) (1|-gevhi)l,

weW’
chds, — Nf)'"” ! sgn weeC+O-HIBR) (1 4 gg@my,
wEW

where W is the Weyl group of the Lie algebra Lo = gl (m), p is defined for Lo, and ¢ = IB;.

3. Case S(n|m). One further operator is added to the invariant operators: dvy 'd:
pn-m-1 * Q'. The description of irreducible S(nlm)—modules is obtained from part 2 by a
straightforward modification which we leave to the reader; see [38].

4. Series H and Po. In this case the space of integrodifferential forms of given degree
with constant coefficients is not an irreducible Lo-module. The irreducible components cor-
respond to primitive forms (see Sec. 2) and to something unknown for spaces of pseudoforms.

We note that for the series Po the degree of a special vector is defined only modulo 2,
and the graded Po-module gr IL(V) is isomorphic to the H-module I(V); hence, there are no
more than I(V) special vectors in Iy(V). The special vectors of degree —] are the same,
while those of degree —2 differ by the leading vector of degree 0. The fact that a vector
is special does not mean for the series Po that it generates a proper submodule. For the
corresponding investigation and a description of the vectors for the series H see [65-71].

The only H-invariant operator is d (and in the finite-dimensional case [ ), to which there
is added a scalar operator — multiplication by the conserved form wo. Since QL =3I, pn i, the
differential in the space I can be considered to act in Q; in this case it is called a codif-

ferential.

Remark. In [68] a description is obtained of the irreducible representations of the Lie
superalgebra H(2|2; 1) — a deformation of the Lie superalgebra H(2|2) which preserves the
exotic form dgfl‘zk)/x x (dp,dq, + d&.d&z).

5. We present a description of the special vectors in the cases H(anl) and K(2n + llm)
for m % 0 that remain unpublished.

Let V be an 99(1|2n)-module, let fj =:2f{xh...f{x“vjp_;f where le..,jie V, and let x =
(q, p) be a special vector of degree —i in the H(2n|l)—modu1e T(V).

1) n=1. Let £, = quq + Hpvp + HEVE‘ The condition that f, be a special leading
vector has the form anf1 = Hpgfl = 0, whence
Hp0,=0, Hpvg=—1vq, Hpv,=—7 Hpv,=0.

We represent the Lo—module V as a graph whose vertices are weight vectors, sl (s) acts along
horizontal lines, and the weight increases to the right. We obtain

v,
(]
VA
K
From this it is evident that the following cases are possible: 1) vq# 0; 2) vq =0, vg # 0;
3) vg =vg =0, vp #0, in which (x(v) denotes the weight of the vector v) 1) x(vq) =1, x(fi) =

0, 2) x(vg) = x(£1) =1, 3) x(vp) =0, x(£1) = 1.

Let f, = ququ + Hquvqp + szvpz + Hquvq + HpHgvp. Restricting the representation
in the module T(V) to H(ZIO), we find, considering [54], that Vqz = 0. The conditions that
the vector f, be special and a leading vector give

HPE'DG=Oa Hp&'vﬂp:‘_'vq, Hpg‘?Jp:—‘qu, Hpg'vpn=—-—'l)p,
Hq.'ap=0, anfa,,-=0, qu'vqp='—2'vpl-

From the description of°59(1|2)—modu1es (which is very similar to the description of sl (2)-
modules) it follows that vq = 0. Therefore, only the case qu=# 0 is possible and then

X(qu) = X(fz) = 1.
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2) We find by induction that the special vectors for H(Zn] 1) are

a) f1=2qu'Ui+H€u+2['[plwl7 where x(vg) = (I,

i<n i<n

x(£f:) = (1, ..., 1,0, ..., 0) (s — 1 ones);

., 1,0, ..., 0) (s ones), while

b) fu=H§u+2Hp,'wu where x(u) = x(£.) = (1, ..., 1);

ign

C) f‘=EH”lw“ where X(Wr) = (]’ ces ]: Os ceey O): X(fl) = (]’ veey ]’ 0: LI ] O)

i<r
(r — 1 and r ones, respectively);
d) f2=2[-[pr( 2 Hy,w,+ 2 H,,j'vj-}—Hq,'v-}—ng), where x(v) = x(f2) = (1, ..., 1, 0, ...,
r<s r<i<n s+1<j<n

0) (s ones).

Supposenow that V is a t%y (m|2n)-module and f2“,=2 KK, ...Kx/r'v,-,_,,,-,s is a special
vector of the K(2n + llm)—module (V).

We note first of all that there is the imbedding W(1|0) + K(2n + 1|m) given by the for~-
mula f(t)%HKf- It therefore follows from the description of W(1|0)-modules that the spe-

cial vectors have the form

Z KIKX,', N Kxir'vj,..,j,"}"z Kx,-‘ e Ky Uiy

r+2

Below x = (c; xo), where ¢ is the value on K¢, and xo is the label of the weight rela-
tive to the standard basis of the Cartan subalgebra in osp.

a) m =1, n=0. Let £, = Kgv. Then thfl = K¢v. Hence, x{v) =0, x(f,) = —1. Let
fa = Kyv. Then Kigfa = Kgv. Hence, v = 0. Let f5 = K.Kgv. Then Kegf, = K,K¢ — ZkE)v =
K; K¢ — 1)v and Kt2£f3 = -4thng = —4K¢v. Hence, v = 0.

]

b) m =2, n=0. Let f, =aKg + bK,v, where ab 0 (otherwise f, is not a weight vec-
tor). Then thfl = b — Kgn)"’ Kenfy = aX; + KEH)V' Hence, one of the following two
cases is possible:

0, x(v)=A4), x(f)=GF—1,42—1);
0, x(@)=(—4& A) x(f)=(—A=1,2+1).

I

1) a
2) b
Let f, = aKEKnV + bK;v. Then

K fo= —aKy (K;— Kgn) v— 26Ky0,
Kinfr=aKn(K;—Kgn—2)v—20Kyv,
Kfﬁﬂf?"':a(KfEKn’—KgKm)‘U-—QbKEn'I)=a(K,——Kgn)‘v—Qng-,"v.

Let Kyv = Ev, Kl»;nv = Hv. Then 2b = (H—E)a, 2b = (H+ E — 2)a, 2bH = (E — H)a. Hence, the
following three cases are possible:

1) @ = 0 and hence b = 0;

2) b = 0, and hence x(v) = (1, 1), x(f2) = (=1, 1);

3) ab # 0, and hence @ = -b and x(v) = (1, =1), x(f2) = (-1, =1). It is not hard to

see that to the operator dv;'d:Z_,—»Q! there correspond precisely two special vectors — one
on each subsuperspace of type T(x).

Let f3 = aKIng + bKiKnyv where ab = 0 (otherwise f, is not a weight vector). Then

Kegfs = —Zang + ... =akK,v+ ..., where the terms ... are not proportional to K,. Hence,
a = 0. Applying K¢, we obtain b = 0.

Let £, = KlKgKnv. Then
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Kifi= — KKy (K — Kin) 0,

Kinfs=K\Ky(K;—Kgn—2) v,
Kignfa= — [2KiKnKn+ K1 (K — Kin)] 0.
Hence, v = 0. Thus, there are no singular vectors of degree =—3.

¢) m=3, n=0. Let f; = Kgvg + Kyv, + Kgvg. Then
Ko f1=KKeovy+ (— Ko+ KnKye) vn+ (ks + ko ko) vo,
K 1=K+ K;) vg— 2K 1900,
Kgnaf1=— Kyo0 + K0y + Kynve.

Thus, the following three cases are possible:

D x(vp) = (o +2,n), x(£,) = (a + 1, n— 1);

2) x(vg) = (1, — 1), x(£f.) = (0, — 1), but the leading weight does not satisfy the
necessary conditions: in this case V is an infinite-dimensional superspace;
3) x(vg) = (m, n), x(f1) = (n— 1, n + 1).

ne . Then

Kiofoa=K K0+ K¢ (— Ko+ KqKyo) vgn + KK oK o004 (— Ko+ 2K oKy 4+ 2K KoK 56) U,

1
K@’U—F%'Uneeo, ng'vgn-——‘fz“l)ne, Kgo’vge='05m ng'vn9=01 (1
i.e., v = aw, Ven = bw.

Kinfo=Kn[—2a8+ (K4 Ktn—2) bl w4 2K 3K n90ns + 2K K nove0+ Ko (K + Ken— 1) Vg0
Kiynofr=Eo—KnKro— KeKno) Ugn — (K4 KoKpo+ KK gn) Vg0 4 (Kn— KoK no — K 1K tn) Uno.

Let E and H be the same as in part b). Then

[— 284 (E + H —2) 6] w— 2K yotq =0, @
(E+H—1)vy=0, (3)
Kﬂ971§0=0, ' (4)
(H—l)'vge—-Knob-w=O, (5)

K t00e0+ Knatna— bw =0, 6)

(1 — A)vn9— Kyobw=0. .

It follows from (7) and (1) that (1 — H)Vne — 2Vne = 0. Hence, Hvpg = —Vno- It follows from
(3) that E = 2. We thus obtaln three cases:

D x(vpg) = (2, = 1, x(f2) = (0, — 2). If Vhg = 0, then
Ko [(1 + HYyoro+ Knebw] =2+ H) Kyovpo+ How=2 (1 + H) bw.
If b = 0, then it follows from (2) that a = 0. Thus, considering (2), we obtain
2) x(w) = (2, ~1), b = 2a, x(f2) = (0, —1).
If vyg = w =0, then

3) x(vae) = (2, -1), x(f2) = (0, 0). In all cases the fiber in the bundle is infinite-
dimensional.

d) n =m =1, The special vectors relative to H(2[l) and Po(2| 1) of degree —1 have the
same form. The Lo-module in L,, where & = K(3|1), which is "extra" as compared with Po(2]1),
is generated by the operator K £qs therefore, the condition that f, be special is K f1 =0.
From it we immediately find that there are three possible cases:

1) ’Uq #0, x(©)=(—2, 1), x(f1)=(—3, 0);
2) v4=0, ‘U§+0 x(@=(—1 1), x(f)=(—2, 1);
3) ’04 v =0, v,#0, % (9,)=(0, O) x(f1)= (—1 1).

2502



Imbedding K(1]|1) in K(3|1) in the obvious manner, we see that there are no special vec-
tors of degree -2.

We find by induction that the special vectors for K(2n + 1]]) are in form and weight
relative to osp(l|2n) the same as for H(2n|1), and their weights on the center are

a) =z (v,)= —2n+s—l, Z(fl)= —2n+s—2;

b) z(j=—n, 2{(f1)=—n—1;
o) z(w)=—r+1, 2(fi)=—r.
e) n=1, m=2. We use the description of the special vectors for H(2|2) of [69, 70]:

1) fi=H'+Hyw?+ Hyo+Hqvy,  where 3 (0)=0), x(/i)=m—1, 0)

2) fi = Hgvy, where y(v))=(, 0) x(f)=@+1, O)

3) f1=qul+pr2+H§'vp where 'x('w‘)=(——1, l)s x(f\)=(—"11 O);

4) fi=H, w4 Hyo, where y(@)=(—1 0, x(f)=(—1 1.

Then the condition Kyqf, = 0, where Hf is replaced by K¢, and the conditions Kmfl =
thfl = 0 following from it give in these four cases

1) 2(@)=p 2(f)=p—1;

2) z@)=mw 2(f)=p+1;

3) z(@)=—2, z(f))=—-3

4) z(w9)=0, z(f))=—1.

Noting that the special vectors f, relative to K(1]/2) have the form KgKpv or (KgKpv —
K,)v, that relative to K(3|0) the special vector f, has the form K,v + Kp(valz + va“),
and observing the description of the special vectors f., relative to H(2l2) in [69, 70], we
find that only K,v — Kp(valz + vazz) — KF,KnV can be a special vector. However, the opera-
tions qu and an take this vector into a vector which on restriction to K(BIO) is not spe-

cial. We find by induction that there are no special vectors of degree < —2 for K(2n + 1|2),
while the vectors of degree —] have the same form as for H(2n|2) (see [69, 70]).

f) m > 3. As shown in [69, 70], the special vectors relative to H(2n|m) for m 3 have
the form a)-c):
a) fi= N Howi+ N Hpw+ D Hyv, where x(vg) = (A, 0, ..., 0), and x(£1) = (A =1, 0,
-5 0)3
b) £, = Hg v., where x{vi) = (A, 0, ..., 0), and x(f;) = (A + 1, 0, ..., 0);
c) fa=Hy, (ZH(,iwg-{—zﬁplw‘—}— Zng’ZJ,-), where x(vp) = x(f2) = (A, 0, ..., 0).

2<j<m

From the theorem on the leading weight it follows that the fiber is finite-dimensional
if A is an integer, while A > ! in case a) and XA >0 in cases b) and c¢). Replacing Hf by Kg,
we find that

K 1= '—ZKmq,‘wl-*‘(Kpm—Kx) wl—i; Kazp,'wl—qué,-'v}

in case a), while in case b) Keq,fr = —qulvl. From the conditions on the vectors a) and b)
in [69, 70] it follows that they are special. In order to find their weights, we compute
thmf1 in case a) and KtE,fl in case b). As for m = 2, we find that z(V) = A.

Induction completes the description of the special vectors of degree —2; they are pos-
sible only for K(2n + 1]|2n + 2) (since K(2n + 1|2n + 2) preserves volume).

6. & of the Seriesdl, s, I, SIT and ***(2|2n). For these cases see [I10, 33, 34, 37].

7. TFor a proof of exactness of the sequences (1)-(4) in the formal case see [11] and
in the smooth case [39]. The proof of [11] goes through on the 'horizontal' portions of the
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sequences of Y -modules for £+ W(n|m) (see 34 ), i.e., where the modules are connected by
operators of order 1. At other sites we consider the Cartan subalgebra bc Lo. The elements
of b act trivially on the homologies of the complexes considered. Since the elements of ¥}
have all eigenvalues equal to 0 only for the sequence (4) considered as a sequence of &£-
modules relative to the imbedding S?c:W(OIN), where N = dim L_,, the assertion regarding
exactness of the sequence of modules has been proved.

4, Characters of Irreducible Modules

We note first of all that there exist two irreducible Z-modules with leading weight Y:
if one of them (with even leading vector) is denoted by VX’ then the other 1is H(VX) and ch I
(VX) = ¢ ch V

1. The characters of W(O[m)—modules are described in Sec. 3; for the finite-dimensional
cases of the series S, SH, and their derivatives see [38, 66, 67]. We observe that by carry-
ing N in the formulas of 3.2 under the summation sign we obtain the more symmetric expres-—
sions

ch il'hQ':—lD‘ Z sgn 'w"w[e"“r‘ I (1+8€Bl) ) chirr2_, | =—%¢ e 2 sgn w-w | eP—rf—® IIG +ee
waEw f B wGW Bi#Es

2. For induced Z£-modules (¥ of the series sl, g,  09p(2|2n)) we obtain by carrying N
under the summation sign in the numerator and introducing P = p — (the half sum of positive
roots corresponding to odd vectors)

D sgnwew [ex+P I+ eeﬂ‘)]

o GW
ch I (Ly="2E :
(L) 3 sgnw-e®?
u'EW
For € = | (respectively, —I1) this formula becomes a 'character" (respectively, "superchar-

acter') in the sense of Kac [105, 106]. Using the resolutions for noninduced s! (1]n)- and
vsp(2|n)-modules, we obtain the formula

N osgnw-e@*HP) T (1 +eebt)
w@QW (4P, wf;)%0
> sgn we?? !
wEW

chirr (Ly)=

where (,) is a nondegenerate invariant form on &£ .

Conjecture. After appropriate modification in the definition of P this formula holds
for modules over Kac—Moody superalgebras having a Cartan matrix. This conjecture has been
proved when all odd roots are nonisotropic (see [105]).

3. We shall show how to derive the formulas of parts 1, 2. From the exactness of the

sequence (4) and the fact that p(d) = 1, we have
. . N .
chirr Q’=Z (—g)ichQrri= 2 2(—3)’ sgnwe™P+r+ify)
i>0 i>0 waw
N © " e®(ptrfy)
=5 :_)‘ sgnwew(0+'ﬁx)2(-—sewf =5 ngnw e
wGW >0

Similarly, after shifting by P, the sequences for the series ¢!, 8y(2|21) form geometric pro-
gressions with denominators ePl with different i for different horlzontal lines, but after
averaging relative to the Weyl group W it is possible to compute the sequence for some one
denominator. Together with the computations of the number (x + P, Bi) carried out in [106],
we obtain the required result.

4. Theorem on the Leading Weight. For Lie superalgebras €=08y(m|2n) for m5 1, 2 the
formula for the characters has not been proved as it has for AG, and ABs;. The theorem on
the leading weight has been proved. Surprisingly enough, the conditions which must be im-
posed on the leading weight do not coincide with the conditions for 95! These conditions,
which are quite intricate, were found by Kac [103, 104].

THEQOREM. Let 8 be one of the simple, finite-dimensional, contragradient Lie superalge-
bras, and let V be a finite-dimensional, irreducible g-module. Then there exists a unique
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1<?ading weight vector x, i.e., omne that is annihilated by operators corresponding to posi-
tive roots, and if ¥, = Xz, then V,= V, or V, = 7(V,). We normalize the Cartan matrix so
that as,s+1 = 1 if agg = 0, and we let {hj} be the standard basis in the Cartan subalgebra
of the Lie algebra 85 (see [12]). Then the labels of the leading weight xi = x(hj) satisfy
the following conditions: a; € Z* if i % s, and for numbers k and b of the table

g | k b

03y (112 n) a, 172 0
03y (2m +1|2n) An—dns1—8mip1—8man /2 m>1
08y (2m | 2n) n—anp1—8men—(8myn-1— m>2

—&myn)/

D () (1—a) (22, gy —aias) 9

AG, 1/2(a; —3a,—3a,) 3

AB, (2a,—3a,—4a,—2a,)/3 4

the following conditions are satisfied: k € zt and k# 1 for AG2 and ABi, while if k <b, then

For ‘ The following relations hold

l
osp (2m+1|2n) Bpihy1 = .o. =8myp =0
osy (2m 12n) Gnahsr =+ =8pun 0T RLm—2
m>2 Amyn-1=8men for k=m—1
D (@) a;=0for =0

(a;+1)a=x(a, +1) for k=1

a;=0for k=0
AB, @r=a,=0for £=2
ar=2a,+1for g=3

T

o

AG,

[
[

a;=0 k=0

a,=0 k=2
If g=y89(n—1) then the labels of the leading weight relative to the standard basis of

the Cartan subalgebra in 97 are such that ai€ zt, while if a3 = 0, thena, + 2a, + ... +

4 — 1aj-. =ap + 2ag-, + ... (n — i)ai+, .

For other simple, finite-dimensional ¢ the restrictions on the labels of the leading
weight are the same as for the Lie algebra 8, in the standard gradation of the Lie super-
algebra g.

5. Other Results on Lie Superalgebras

Structure. Kac [18-20] classified the simple, finite-dimensional Lie superalgebras
over C. Part of his results were obtained independently by many others (see [104, 112, 127,
130]). We indicate without proofs that the relations between the generators of a simple Lie
superalgebrawith a Cartan matrix are analogous to the relations (DR) of Sec. 0 for a Lie algebra
if gs£psa or vea()  For the noncontragradient Kac superalgebras ysq and ys9(1) the relations have
not been computed.

For simple infinite-dimensional Lie superalgebras of formal vector fields and string
theories the relations in n, have degree 2 for n + m > 10 (this estimate can sometimes be re-
duced) where (n, m) is the dimension of the space on which the superalgebra is realized by
vector fields.

The classification of Lie superalgebras (infinite-dimensional, Z-graded algebras of
finite growth) is apparently close to the stage of the classification of the analogous Lie
algebras, and, other than the deformations and contractions of the examples of Sec. 1, there
are no other simple Lie superalgebras.

2505



What is a semisimple Lie superalgebra? Let & be a principal bundle over a (0, q)-dimen-
sional base % with gauge supergroup ¥ whose Lie superalgebra g is simple. The Lie super-

algebra of the supergroup of diffeomorphisms of the bundle & is S = Derg®A(9)&¢W (0]g). Let
(/] i)
S; be a Lie superalgebra such that g®A(g9)cS;NScder9g®A(g), and Sj (mod 9®A (9))> ¢ e OE Y.

Then a semisimple Lie superalgebra is the sum of superalgebras of the form 5i (see [104]).

What conditions must be imposed in order that at least part of the semisimple Lie super-
algebras can be described explicitly? Is it possible to require that AutBcW (0|g) be simple?
The possibility suggested in [5] reduces to the direct sum of simple algebras, which is unin-
teresting.

An Analogue of the Lie Theorem [104]. Let g be a solvable Lie superalgebra. A linear
form [gg* 1s called distinguished if l(s7)=I([95 95])=0. Let D be the space of distinguished
forms, let Doy=({leD|l([9, 8])=0}, and let D, be the subgroup of Do, generated by forms which are
given by 1-dimensional factors in the adjoint representation of the Lie superalgebra g.

Let d — Do be a subgroup with A€d, and let p be a representation of the Lie superalge-
bra g in the superspace V. The representations p and p) = p ® 1,, where 1) is the l-dimen-
sional representation given by the character A, are called d-equivalent.

For 1€ D/Do we set g,={ges|l([g &])=0 for g€8}. It is obvious that g5Cg,c¢, §, is a Lie
superalgebra, and [([8p 9/])=0. The Lie superalgebra ycg is called subordinate to the func-
tional 7 if [([y, »])=0 and g,cv.

A solvable Lie superalgebra for which all irreducible factors in the adjoint representa-
tion are I-dimensional is called completely solvable.

We denote by {8, I} the I-dimensional g-module defined on the basis of the form L& D by
the formula g(v) = 1(g)v where vE{s I}

THEOREM. If V is an irreducible, finite~dimensional ¢-module, then all irreducible
factors of the module V considered as a g5 ~module are one—-dimensional, while the linear forms
on g (extended by zero to g7 ) corresponding to them belong to one class Zy€ D/Do.

Let [L]€ D/Do, and let » be a maximal Lie subsuperalgebra subordinate to the class [l].
Then the g-module Ind$  {», I}, where [¢[l],is irreducible. Two such g-modules are Do-equivalent

if [2,] = [L.]. fr.1)
Any finite-dimensional, irreducible g-module V is isomorphic to a module of the form
Indg{p, 1}, where 7 €[ly], while » is a maximal Lie subsuperalgebra subordinate to the func-
tional Z.
"If g is completely solvable, then everywhere above in the theorem Do can be replaced by
D,.

Nonsolvable Finite-Dimensional Representations. They are described for Lie superalge-
bras of the series gl(l|n), sl(1|n) and osp(2|2n) (see [37, 72]). This can be done by reduction to
[17] where nonsolvable representations of the superalgebra A(2) are described.

Invariant Operators. Unary operators invariant relative to Lie superalgebras of vector
fields have practically not been described in the nonstandard representation (see only [35]);
almost all such operators are new, and it would be very interesting to give an interpretation
of them.

As we have seen, with unary operators there are associated complexes of free A(n)-modules.
It can be shown that to such complexes there correspond bundles on PU (see [2, 3, 7]). A
large number of natural examples of such complexes were presented above. What kindsof bundles
correspond to them?

P. Ya. Grozman described binary invariant differential operators in tensor fields. Lie
superalgebras also crept into his list (see [14]). We shall consider them in more detail.

Let Q. =QQ,T(, ..., 1), and let Q¥ = Q. ; similarly, let L¥*j = L! where [L—=FL (W

m a1 (¢ B e % l>0@uec n arly * i)ﬁecu Ly FW(n|
0)®sT (#: ..., p). Then in local coordinates the Grozman operators Ps and Pg are given by the
formulas

Py (0,6%, 0,8%) =[v (d©,) 0, — (— )" po,do,)] 8,
Py(X8*, Y8)=[(v— D+ v—DdivX-Y +(=1)"P@—1) @+v—1)-divV —@—I)v—1)div X¥] **;

2506



where o, 0,6Q% X,Y6EL*, 8§ is the volume element, and
divII[D,=3) (—1rdivp, Il D,
i

By multiplying the operator Ps {respectively, Pg) by a suitable function of the degree
of the volume form, we define the structure of a Lie superalgebra on part of the superspace

. * — .
H(Q**) (respectively, N(L x)). For example, F%’:szv P; gives such a structure on I (Q* ./ d9¥),

Py'="=2 P on H(dQ*L@(u@&OQ;)).

e

Problem. Describe the domain of the operator Pg' = (1/(y + v — 1))P,. Compute other
functions f(p, v) such that f(u, v)Py defines the structure of a Lie superalgebra on the part
of the superspace L*; and describe this part.

We note that by considering twisted forms depending on u in such a manner that they
decay rapidly as [u| + = and passing to their Fourier transforms on p it is possible to
define new operators Pg' and Ps'" on the entire space obtained (the same goes for Pg), for
example,

0 0
Py (f,g)=d(fg)—(—1y"drf-% %L dig,
{
where f, g are functions of x, dx, and t, and If = —i | f(x, dx, to)dto, i.e., T = ("d7*")/

dt.

Problem. Give an interpretation of the Lie superalgebras defined by operators obtained
from P¢ on Q4* and its Fourier image (and the same for Pg).

Grozman also described binary operators invariant relative to Lie algebras of the series
S, H, and K. With several exceptions they reduce to W-invariant operators. Binary operators
invariant under w(nlm) are obtained from Grozman's list if, aside from f, we also consider
the spaces ¢ and I.

Lie superalgebras of supersymmetry groups (the analogues of Poincare algebras) are con-
tractions of the real forms of simple Lie superalgebras. Their extensions and representa-
tions (including infinite-~dimensional representations) are studied mainly by physicists.
Various special results have so far been obtained [64, 119-124].

Cohomologies. For the definition see [31, 63]. Some cohomologies with trivial coeffi-
cients for simple finite-dimensional Lie superalgebras have been computed in [63]. The co-
homologies of nilpotent subalgebras of simple Lie superalgebras, which have a number of
applications, have only partially been computed. The corresponding answers are presented
above in the form of resolutions of the induced modules and in [52, 109].

Some cohomologies are computed in [39] in connection with the description in cohomo-
logical terms of important differential-geometric concepts such as the Riemann and Weyl ten-—
sors, etc.

Lie Superalgebras and Differential Equations. With the help of the point functor the
scheme of Adler—Kostant can be carried over to Lie superalgebras without difficulty, but it
aquires an unexpected feature: the mechanics can be described not only by the Poisson
bracket but also by the Butane bracket [25, 41, 42]. Complete integrability of such equa-
tions is guaranteed by the theorems of V. N. Shander (see [39]). Multidimensionalization
has partially been considered in [30].

Characteristic p. Practically nothing has been done here. The definition of Lie super-—
algebras in a simple characterization requires additional conditions (see [39]). In char-
acteristic 2 it is possible to not observe the difference between algebras and superalgebras,
and some examples of such algebras were presented in [113].

Some Isolated Results. Invariant functions on Lie superalgebras are described in [40,
58, 131]. Instantons are described in [16] in terms of the Grassmann superalgebra. In [24,
39] a connection is indicated between Hill equations and "part" of KdV, orbits of the group
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corresponding to the Virasoro algebra V, and the superalgebra X (1). The description of
irreducible representations of finite-dimensional Lie superalgebras [34] was later repeatedly
rediscovered in partial form [76-78, 82-86, 88, 96, 99-102, 119-124]. Another approach to
the description of representations by means of analogues of Young diagrams was successfully
applied in [79, 81]. 1In [115] a rather strange condition was distinguished — congruence of
representations of Lie superalgebras. Finally, the result of the notes [52, 115, 128] is
clear from their title.

Very recently in a series of papers in Dokl. Akad. Nauk D. P. Zhelobenko obtained an
explicit description of homomorphisms between Verma modules for simple, finite-dimensional
Lie algebras which carries over to Lie superalgebras with a Cartan matrix and to some super-
algebras of string theories, while I. Penkov and I. Skornyakov supered the results of [80,
90] regarding £ -modules by obtaining an analogue of the Borel-Weyl-Bott theorem. We note
that another analogue of this theorem in the form of a result regarding the cohomologies of
a maximal nilpotent subalgebra has so far been obtained (B. L. Feigin and D. A. Leites) only
for 5I(I|n) and mﬂ(2|2n) and the simplest root system in them — with one gray circle [104,
42] at the very end of the diagram. For subalgebras corresponding to other systems the
answer is very complicated. Apparently, these difficulties are connected with the fact that
it is so far unclear what serves as an analogue of the Weyl group for superalgebras. 1In the
formula for characters over sl , for example, the terms are numbered by integral points of
positive cones (z*+)dimyp numbered by the Weyl group of the even part. Some isolated results
have been obtained in [39, 51, 92].
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