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Results pertaining to the theory of representations of "classical" Lie super- 
algebras are collected in the survey. 

PREFACE 

A new area of mathematics -- the theory of supermanifolds -- arose in the 1970s. Its 
rapid growth was stimulated by fantastic prospects in physics: the possibilities of com- 
bining bosons and fermions into a single multiplet, of combining groups of inner and dynamical 
synlnetries, and, finally, of combining all fundamental forces into a single field theory (see 
[13, 45, 47, 49, 50, 59, 62, 64, 90]). Moreover, in 1982 it was found that it was possible 
to formulate a model of field theory not containing singularities in the language of super- 
symmetries. An introduction to the theory of supermanifolds is presented in [5, 6, 32]. 
For an improved and corrected exposition and a list of some problems pertaining to this sur- 
vey see [39, 45, 46]. The part of the theory of supermanifolds which now finds the greatest 
number of applications is the theory of Lie supergroups and superalgebras. Here we shall 
give a brief survey of results concerning the theory of representations of "classical" Lie 
superalgebras. For facts from linear algebra on superspaces see [32, 39]. We assume that 
the elements of the theory of representations of Lie algebras are known (see [12, 15, 21]). 

The basic features of the theory of representations of simple Lie superalgebras make 
them kindred to Lie algebras in characteristic p, while if p = 2 there is almost no differ- 
ence between algebras and superalgebras (see Ill3]). In particular, there is no complete 
reducibility and the Laplace--Casimir operators, which are of great help in describing repre- 
sentations of Lie algebras, play a modest role in the case of superalgebras [4, 82- 86]. 
Methods from the theory of representations of infinite-dimensional Lie algebras of vector 
fields -- the special vectors of Rudakov [53, 54] and analogues of Poincare's lemma -- occupy 
center stage. By means of these methods it was possible, at least in principle, to determine 
how to solve the problem of O. Veblen on describing invariant differential operators acting 
on tensor fields on a manifold [22, 23], to refine it, to greatly generalize it, and in some 
cases to obtain a complete answer (see [9-II, ]4, 26-29, 33-38, 65-72]). 

0. Recollections 

Regarding Algebras. As usual, we write C, R, Z, Z +, N, H and 0 for the complex numbers, 
real numbers, integers, nonnegative integers, positive integers, quaternions, and Cayley 
numbers, respectively. We denote by ISI the power of a set S and by <S> the linear space 
generated by the set S. The base field is C. 

Any finite-dimensional Lie algebra over C is the semidirect sum of a semlsimple algebra 
and a maximal solvable ideal, while the semisimple algebra is the direct sum of simple alge- 
bras. The simple Lie algebras form the 3 classical series ~I, 0 and ~ and 5 exceptional Lie 
algebras. 

All simple Lie algebras have the same structure. The Cartan subalgebra ~ in a simple 
Lie algebra g (i.e., the maximal nilpotent subalgebra coinciding with its normalizer) is com- 
mutative, and all Cartan subalgebras are conjuEate relative to the action of the adjoint 
group. The Cartan subalgebra ~ prescribes an b*-gradation in g----- ~ g= and in finite-dimen- 

=ER 

sional g-modules M =~pMa, whereby dim g==dimg_~, where =E~*. The elements of the sets R, P C 

~* are called the roots and weights, respectively. 

The ~-gradation in g can be extended to a natural Z-gradation (in ~ (n) the degree of an 
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element g is the number of the diagonal on which g lies over the main, zeroth diagonal), and 
it is possible to choose elements X~, where1<i~rkg of degree• which generate g, whereby 

if H i = [Xi +, Xi-] , then 

[X~*, Xfl=6,~H~, [H~, HA=O, 
(ad X~) '-a'I (X~) =0. (DR) 

The matrix (aij) is called the Cartan matrix and is conveniently assigned a Dynkin 
graph. The equations (DR) are the defining relations in g. 

The weights are lexicographically ordered (relative to a fixed basis in ~). In each 
finite-dimensional, irreducible module over a simple Lie algebra g there is a l-dimensional 
space (of leading vectors) corresponding to the highest (leading) weight. 

The leading weight of a finite-dimensional module satisfies conditions that it be inte- 
gral. For example, for ~I(~) the Cartan subalgebra consists of diagonal matrices; the index 
of the leading weight relative to the basis {eii -- ei+1,i+z} must belong to Z +. The leading 
weight uniquely determines the irreducible modules; in particular, on the basis of X it is 
possible to compute the character of the g-modules L(X) with leading weight X, i.e., the func- 

tion r x, where L(X)~ is the eigensubspace of the weight ~ and e~(h) = e ~(h) 
xEP 

for h G~ �9 Let W(g) be the Weyl group of the Lie algebra g, i.e., the group generated by re- 
flections in hyperplanes of the space b given by the roots. Then the following formula of H. 
Weyl holds: 

chM(x)=~sgn~e~(Z+P)/ ~Ewsgn~e~P= II (l +e-=)dSmg=~sgn~e~,wherep(Ht)=l. 
=Ew =ER+ wE~ 

I t  was found that  f i n i t e - d i m e n s i o n a l  representa t ions of simple Lie algebras are most 
simply described within the framework of the category G consisting of infinite-dimensional 
modules satisfying some natural conditions [15, 93]. An analogous category of modules can 
also be defined over Kac--Moody algebras. It is composed of nontrivial central extensions of 
Kac algebras consisting of the following two series of infinite-dimensional simple Lie alge- 
bras: 

1) algebras of currents or loops gO)=~g| -x] (the first name came from physicists, 
while the second is explained by the fact that g(1) = {mappings of the circle S z § ~ which can be 
expanded in a Fourier series where g is a simple, finite-dimensional Lie algebra }); 

2) the Lie algebras ~--~gt m1§ k = 0, m-- l; je Z ~ is an outer automor- o~ - - k , J  ) " " " " ' 

phism of order m of the simple, finite-dimensional Lie algebra g, and gy={gEg[~(~=e~tl/~g}. 
For a survey of Kac--Moody algebras see [ll0]. In particular, simple Kac algebras are 

given by the formula (DR) with an extended Cartan matrix (Dynkin graph), and for irreducible 
modules over them an analogue of H. Weyl's formula holds with the necessary alteration in 
the definition of W and restrictions on the leading weight. 

In 1966 Kac distinguished an important class of Lie algebras related to the most dif- 
ferent areas of mathematics and physics: simple Z-graded algebras of finite growth. (We 
recall that the growth or Gel'fand--Kirillov dimension of a Z-graded algebra A is llm((Iog 

dim ~ I=~ InAi, while simplicity of the algebra A means that there are no graded ideals). 
} i ~ < n  i 

are: 
Conjecture []07, 109, I]0]. The simple Z-graded Lie algebras of finite growth over C 

ally reflected in the theory of representations. 

1) simple, finite-dimensional algebras; 

2) Kac algebras; 

3) Lie algebras of formal vector fields of types W, S, H, K; 

4) the Witt algebra W = Der C[t, t-l]. 

The structure of the Lie algebras of these 4 classes is very different, which is natur- 
The simplest representations -- irreducible 
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representations -- have been best studied, while for infinite-dimensional algebras the choice 
of the class of representations from which we extract irreducible representations is itself 
nontrivial [15, 80, 89, 90]. 

It turns out that finite-dimensional representations of finite-dimensional simple Lie 
algebras are completely reducible, i.e., it suffices to study irreducible modules. This and 
a large part of the other results regarding Lie algebras and modules over them were obtained 
by means of (co)homology theory (see [64]). For irreducible objects L X of the category O it 

is possible to construct a resolution of Verma modules, i.e., of modules induced from the 
character of the maximal solvable (or parabolic) Lie subalgebra ,§ , and by means of this 
resolution we compute the cohomology of the Lie algebra n+ with coefficients in L X. Here a 

major role is played by the elements of the center Z(U(~)) of the universal enveloping Lie 
algebra g (the Casimir operators), and frequently a single quadratic operator is sufficient 
which can be canonically constructed both for a finite-dimensional Lie algebra and for a Kac 
algebra (see [93, 110]). 

It recently became clear that the objects of the category ~ are conveniently studied 
within the framework of a broader approach -- as part of the theory of sheaves of modules 
over rings of differential operators [80, 90]. This approach has so far been developed only 
for finite-dimensional Lie algebras, but it has yielded very strong results, among which is a 
proof of the Kazhdan--Lusztig conjecture regarding the structure of Verma modules. 

Simple Lie algebras ~of formal vector fields have a structure quite different from Lie 
algebras of types I) and 2). In particular, for them Z(U(~)) = C. In these Lie algebras 
there is a natural (Weisfeiler) filtration of the form 

~=~_eD... D-~o~.~D .... 
where ~0 is the unique maximal subalgebra of finite codimension d = I or 2, and in the adjoint 
graded simple Lie algebra L =@Li, where Li =~i/~t+1, there are no generators of degree • 
Nevertheless, setting n• it is possible to compute the defining relations in n• these 

are H2(n• (they are naturally considered as an Lo-module). For n- this computation is tri- 
vial, while for n, it is more involved. It was found that if the dimension of the space on 
which C~is realized as a space of vector fields is greater than a certain amount, then the 
degree of all elements of /-f2(n+) is equal to 2, i.e., all relations are "trivial." For part 
of these results see [63]; the cases of low dimensions have also all been treated. 

Rudakov [54, 55] developed the theory of representations of Lie algebras of formal vec- 
tor fields. He and Kostrikin [26, 27] described all irreducible modules over these Lie alge- 
bras in two natural classes of modules -- spaces with discrete or linear-compact topology. It 
was hereby found that all such irreducible representations are produced (or induced) from 
finite-dimensional representations of Lie algebras of linear vector fields with the exception 
of representations in the space of differential forms, which is related to the existence of an 
exterior differential. It was also found that the problem of describing invariant diEferen- 
tial operators is part of the problem of describing irreducible modules over Lie algebras of 
vector fields and the problem of resolving a tensor product of modules over these algebras 
into irreducible components [11]. For finite-dimensional modules over finite-dimensional 
simple algebras resolutions of a tensor product of irreducible modules into irreducible com- 
ponents are known [12]. If the algebra or module is infinite-dimensional, then the problem 
abruptly becomes more complicated [14]. 

Modules of tensor fields over Lie algebras L =~Li of types 3) and 4) have finite func- 
tional dimension. Over these algebras there are further the modules M(V)=Homu(~_)(U(~),V), 

where ~_----~ Ll, and V is a finite-dimensional Lo-module having infinite functional dimension. 

Irreducible representations in the modules M(V) have been described only for the algebra W 
(see [61]). 

Moreover, Kac and Witt algebras have other natural representations: in tensor fields on 
the circle (to these belong such an important representation as the adjoint representation), 
and s central extensions have spinor representations with which Feigin and Fuks associated 
semiinfinite forms [44, 61]. 

It is important to note that in applications not only and not so much are simple Lie 
algebras of types I)-4) of interest as their "derivatives" -- central extensions, deformations, 
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Lie algebras of differentiations, nilpotent and solvable subalgebras, and also real forms of 
these Lie algebras and modules over them. 

Finally, irreducible finite-dimensional modules over finite-dimensional solvable Lie 
algebras are described by Lie's theorem. 

On Superspaces. The elements of the field Z2 -- the residue field modulo 2 -- are denoted 
by O and 1 in order to distinguish them from the elements of the ring Z. We set (--I) ~ = 1 
and (--I) i- = --I. In working with Z2-graded objects it is useful to remember the following 
rule of signs: "when something of parity p is moved past something of parity q the sign 
(--l)Pq jumps out," while it suffices to define formulas only on homogeneous (relative to the 
Z2-gradation) elements and extend by linearity to other elements. This rule makes it possible 
to immediately "super" the definition of a Lie algebra, commutativity, the Leibniz rule, etc. 

A linear space V is called a superspace if it is equipped with a Z2-gradation, i.e., an 
expansion V = VE @ VT. The nonzero elements of the spaces Vo and V7 are called homogeneous 
(even and odd respectively) elements of the superspace V. If vE Vi, where i@ Z2 and v~k 0, 
then we write p(v) = i and call p(v) the parity of the element v. A subsuperspace is a 
Z2-graded subspace W c V such that Wi = W N Vi. Let V and W be superspaces. The structure 
of a superspace on V@[V, V| and Hom(V, W) is introduced in the natural manner. We denote 
by ~(V) the superspace defined by the formulas ~(V)i = Vi+7; its elements are noted by ~(v) 
where v @ V. A superalgebra is a superspace A equipped with an even homomorphism mult: 

A | A § A. A morphism of superalgebras ~ : A § B is an even algebra homomorphism of A into B. 

Examples of Commutative Superalgebras. I) The superalgebra C[x] consists of polynom- 
ials in the variables x = (u, ~), where u = (ul, ..., Un) are even and ~ = (~i, ..., ~m) are 
odd, with the relations 

XlXy-----(-- 1)P(xl)P('rJ) XjXl~ 1-.<ij ~<n-q- rn. 

For n = 0 the superalgebra C[x] is finite-dimensional. It is called the Grassmann super- 
algebra, which we also denote by A($) or A(m). 

2) The center Z(A) of an associative superalgebra A consists of the set of its elements 
which commute with any element of A. 

3) If V is a superspace, then T(V) denotes the tensor algebra of the superspace V, i.e., 
the superspace @ Tx(V) where Ti(v) = V |174 V (i times) for i > 0, while T~ = C, with the 

i>0 

natural Z-gradation, which is called the degree, and with multiplication given by the formula 
v-w = v | w, where v, w~ T(V). The symmetric algebra S(V) of a superspace V is defined as 
the factor of the superalgebra T(V) by the ideal generated by the elements~|174 
where v, w~ V. The exterior algebra E(V) of the superspace V is the superalgebra S(H(V)). 
If C is a commutative superalgebra and V is a superspace, then we set C[V] = C | S(V). It 
is obvious that if the superalgebras A and B are commutative, then A | B is a commutative 
superalgebra. 

A left module over an associative superalgebraAisa superspace M with an even homomor- 
phism al: A| M § M such that a(bm) = (ab)m, where a, b ~ A, m E M. 

If M is an A-module, then the structure of an A-module in the superspace ~(M) is intro- 
duced by the formula a(~(m)) = (--l)p(a)~(am) where a E A, m @ M. 

A Lie superalgebra is a superalgebra 8 with multiplication denoted usually by [,] which 
satisfies (rule of signs[) the conditions 

[x ,  yl  = - ( -  1) p('~)p(y) [Y, x] ,  
Ix, [y, z l l - - [ [x ,  y], z l + ( - 1 )  p(xm(y> [y, [ x, z]]. 

Below we shall encounter only Lie superalgebras or associative superalgebras with a I. 
We shall call the latter simply superalgebras. 

We note the important circumstance that modules over commutative superalgebras are two- 
sided. Namely, suppose M is a left (respectively, right) module over a commutative super- 
algebra C. We convert it into a right (respectively, left) module by setting mc = (--I)P(m)P(c) 
cm where c E C, m E M (see also [39]). 

The universal enveloping algebra U(8) of a Lie superalgebra g is defined by the rule of 
signs and satisfies the obvious analogue of the Poincare--Birkhoff--Witt theorem [15]. 
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A (left) module over a Lie superalgebra g is a superspace M equipped with a g~action, 
i.e., a homomorphism g| M § M denoted simply (g, m)~-~ gm, such that [gl, g2]m = g1(g2m) -- 
(--])P(gl)P(g2)g2(glm) , where gl, g2~g, m E M. 

A homomorphism of A-modules (over a superalgebra or Lie superalgebra A) or an A-invar- 
iant mapping is a homomorphism F:M § N such that F(am) = (--I)P(a)P(FJaF(m) where ~A, mGT~. 
We denote the superspace of such homomorphisms by HomA(M , N). If A is a commutative super- 
algebra, then, setting (Fa)m = F(am), we convert HomA(M, N) into an A-module. 

We note that if M is a module over a Lie superalgebra g, then M is equipped with a natu- 
ral structure of a U(g)-module. 

Let C be a commutative superalgebra, and let M be a module over C. Let I = Io U 11 be a 
set consisting of the union of nonintersecting subsets Io and 11-- A basis of the C-module M 
is a collection of homogeneous elements miE M such that P(mi) = 0 if i@ Io and p(mi) = T if 
i 6 17, whereby each element m ~ M can be written uniquely in the form m = Zcimi, where ci~ C, 
and all c i except a finite number are equal to zero. A module M over C is called free if it 
has a basis. The dimension of a free module takes its value in the ring Z[E]/(e 2 -- I). It 

is defined by the formula dim M = p + cq where p = ]lol, q = 1 11[" In particular, for 
modules over a field there is the formula dim M = dim MTo + E dim M~. The motivation for this 
definition comes from K-theory. Usually we write for brevity dim M = (p, q) or PIq" The 
dimension of a free module does not depend on the choice of basis. 

Let {m i} and {nj} be bases of the C-modules M and N, respectively. To each operator F: 
M § N we assign the matrix mF = (mFij), where Fmi=Xnj(mFi; ). 

7 

A supermatrix structure (or simply a matrix) is a matrix with a prescribed parity for 
each row and column. Usually a supermatrix structure will be chosen so that even rows and 
columns go first and odd rows and columns after. (This structure is called a standard struc- 
ture.) We denote the parity of the i-th row by Prow(i) and the parity of the j-th column by 

Pcol (j) . 

For a matrix mF we set Prow(j) -- p(nj), Pcol(i) = p(mi). 

If a matrix contains r even and s odd rows and p even and q odd columns, then we say 
that the dimension of the matrix is equal to (r, s) • (p, q). The order of a matrix of dimen- 
sion (p, q) • (p, q) is the pair (p, q). The set of matrices of order (p, q) with elements 

in a superalgebra A we denote by Mat(plq; A). 

In Mat(p]q; A) we introduce the structure of a superspace by setting for a matrix X = 

RS~ 

(r U ) 

. p (X)=O,  if p(Ri~)=p(Urs)=-O, p ( S t s ) = p ( r ~ j ) = l ;  

p ( X ) ~ ,  if p(R~j)=p(Ur,)=~, p(S~)=p(T~j)=O,, 

L e t  X:M § M and Y:N -~ N be two ( even)  a u t o m o r p h i s m s  o f  t h e  modules  M and N w i t h  m a t r i c e s  
mx and my, r e s p e c t i v e l y  ( i n  b a s e s  {mi} and {n~}, r e s p e c t i v e l y ) .  Then the  m a t r i x  (mF) '  o f  t he  
o p e r a t o r  F d e f i n e d  r e l a t i v e  to  t h e  b a s e s  {Xmi) and {Ynj} can  be  e x p r e s s e d  i n  t e r m s  o f  t he  
m a t r i x  mF by  t h e  f o r m u l a  

(mF)'  = (mY) -~ .mF.mX. 
The module  M* = Homc(M, C) o v e r  a c o m u t a t i v e  z u p e r a l g e b r a  C i s  c a l l e d  a d j o i n t  o r  dua l  

t o  t he  module  M. The p a i r i n g  o f  the  modules  M* and M we d e n o t e  by  ( , ) ,  i . e . ,  (m *,  m) i s  t he  
image  i n  C o f  t h e  e l e m e n t  mE M unde r  t h e  a c t i o n  o f  t h e  f u n c t i o n a l  m*O M*. 

To e a c h  o p e r a t o r  F O Homc(M, N) t h e r e  c o r r e s p o n d s  an a d j o i n t  o p e r a t o r  F* E Homc(N*, M ~) 
d e f i n e d  by the  f o r m u l a  

( F ' a * ,  m ) = ( - -  1) p(~*)p(r) (n*, Fra). 

L e t  {mi ~} and {nj ~} be  b a s e s  i n  M ~ and N ~ d u a l  to  the  b a s e s  {m i}  and {nj}  o f  t he  modules  
M and N, i . e . ,  (mi* ,  m l )  = ~ i l  and ( n j * ,  ns)  = 6 j s .  I t  f o l l o w s  f r o m  t h e  d e f i n i t i o n s  t h a t  t h e  
m a t r i x  o f  t h e  o p e r a t o r  F ~ i n  t h e  b a s e s  {mi~} and {nj ~} h a s  t h e  fo rm ( m F ) s t ,  where  t he  s u p e r -  

R S  
t r a n s p o s e  s t  i s  d e f i n e d  by the  f o r m u l a s  ( f o r  X = (T U ) )  
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X,t  = (R t -  Tt~ 
kS' Vq' ~ p(X)=Y. 

We note that supertransposition has order 4. 

Let M and N be free modules over a commutative superalgebra C. A bilinear form is a 
mapping B:M • N -~ C linear in each argument such that B(mc, n) = B(m, cn), B(m, nc) = B(m, 
n)c, where m6M, n~N, c6C. 

We d e n o t e  t h e  s u p e r s p a c e  o f  b i l i n e a r  forms  by  B i l c ( M  , N) o r  s'im~ply B i l c ( M ) ,  i f  M -- N. 
I f  {mi} and {n j}  a r e  b a s e s  o f  the  modules  M and N r e s p e c t i v e l y ,  t h e n  t h e  m a t r i x  o f  t he  fo rm 
B is the matrix roB, where (mB)ij = (--l)p(m)p(B)B(mi, nj). 

Let X:M + M and Y:N -~ N be two (even) automorphisms of the modules M and N with matrices 
mx and my, respectively�9 Then the matrix (mB)' of the form B relative to the bases {Xm i} and 
{Ynj } has the form 

(roB)'--~-(mX)st (roB) ("Y). 

Let u:Bilc(M , N) § Bilc(N , M) be the inversion of bilinear forms given by the formula 

B'(n, m)=(--1)~ (rn, n). 
R S  

I n  t e r m s  o f  m a t r i c e s ,  u i s  g i v e n  by  t h e  f o i l o w i n g  f o r m u l a .  L e t  (naB) = (T U )"  Then 

and 

Rt -- T t 
(~ ,f 

A b i l i n e a r  fo rm B EBi lc (M)  i s  c a l l e d  (skew) s y m m e t r i c  i f  B u -- (--)B. We a s s i g n  to  a b i -  
l i n e a r  fo rm B 6 B i l c ( M  ) i t  i t s e l f  b u t  c o n s i d e r e d  a s  an  e l e m e n t  o f  t h e  s u p e r s p a c e  B i l c ( ~ ( M ) ) .  
Under t h i s  c o r r e s p o n d e n c e  s y m m e t r i c  forms  become s k e w - s y m m e t r i c ,  and c o n v e r s e l y .  

1. C l a s s i c a l  L i e  s u p e r a l g e b r a s  o v e r  C 

I .  M a t r i x  L i e  S u p e r a l g e b r a s .  The L i e  s u p e r a l g e b r a s  g~(rn]n)=Mat(m]n,C) and ~l(mln)= 
B {XE~[(rnln)lstrX=O }, where  s t r (  A D ) = t r  A -  t r  D, a r e  c a l l e d  t he  g e n e r a l  and s p e c i a l  l i n e a r  

0 1 

L i e  s u p e r a l g e b r a s  The L i e  s u p e r a l g e b r a  q(n)={Xe~[(nln)l[X, J2.]=0} where  J2n  = ( ; n )  p r e -  
�9 , - - I n  ' 

serves the complex structure given by the odd operator Jzn- This Lie superalgebra is called 
B 

the general strange algebra, and its Lie subalgebra ~q(n)={XEq(n)IotrX=0 } , where otr( A A) = 

tr B, is called the special strange subalgebra. 

If d is a Lie algebra of scalar matrices, and gcgl(nln ) is a Lie subsuperalgebra contain- 
ing d, then the projective Lie superalgebra of type g is ~G=~/d. Projectivization sometimes 
leads to new Lie superalgebras: ~gI(t~In), ~[(~In), Pq(t~), P~q(n). 

Let Bm,= n -- diag(am, Jn), where o m = antidiag(l, .�9 l) (m times)�9 The Lie superalgebra 

o~ (ml2n)  ={Xe~t  (m l 2n) l X~tB,.,~. + B,.,2.X=O}, 

p r e s e r v i n g  the  e v e n  n o n d e g e n e r a t e  b i l i n e a r  f o r m  w i t h  m a t r i x  Bm, in  , i s  c a l l e d  t h e  o r t h o g o n a l -  
symplective algebra, while the Lie superalgebra 

n (n)={Xer (nln) IX"J~n +(-- 1)Pcx} J~nX =% 

preserving the odd nondegenerate bilinear form with matrix Jan, is called the Palamodov alge- 
bra. L e t  Sl i (n)  ={XE~I (n)[ s t r  X=0}. 

2. E x c e p t i o n a l  L i e  S u p e r a l g e b r a s  (See  [103,  112, 127, 1 3 0 ] ) .  D(a)  i s  a d e f o r m a t i o n  o f  
t h e  L i e  s u p e r a l g e b r a  0~ (4] 2). We i d e n t i f y  D ( a ) ~  w i t h  ~[ (2)@~1 ( 2 ) ~ l ( 2 ) = { ( a t ,  a o, aa)}, and D ( a ) 7  w i t h  
id~|174 3 w h e r e  i d j  i s  t h e  i d e n t i t y  r e p r e s e n t a t i o n  o f  t he  j - t h  copy  o f  ~! ( 2 ) .  L e t  r be  an 
invariant form on id with matrix Jz. We define the mapping p:id| by the formula 

"11, 0 l" 



p(u�9 v)w = %(~(v�9 w) u--~(w �9 u)v)�9 where XE C. We define [�9 ]:$2D(~)7 § D(a)~ by the for- 
mula 

[UI|174 eOl|174 ~ ~ ~t~l (Ul, "DI) 1~1 (~j, cO./) Pk (Uk, "Ok) 
( l , ]  ,k)=o(I,2,3),11~S= 

E x e r c i s e .  I )  The J a c o b i  i d e n t i t y  h o l d s  i f  and o n l y  i f  Zx + ;~a + Z3 = 0.  

2) The numbers (~z ,  ;~a, Z3) a re  d e f i n e d  up to  p e r m u t a t i o n  and a common f a c t o r .  We s e t  
= Z x / Z a .  For  ~ = 0,  --1; = the  L i e  s u p e r a l g e b r a  D(~)  i s  n o t  s i m p l e  and i s  s i m p l e  f o r  ~ # 0�9 

- - ]  �9 oo. 

3) D(~)  = D ( ~ ' )  i f  ~ '  = a - ,  o r  ~ '  = - - ~ / ( ~  + 1) .  I n  t he  L i e  s u p e r a l g e b r a s  D( - - I )  and D(0)  
t h e r e  are  the  i d e a l s  p~(212) and ~[(2) r e s p e c t i v e l y ,  w h i l e  D(--1)/~(212)-~(2), and D(O)/sI(2)~--- 
.l~t (212). 

AGa: L e t  0 b e  t h e  a l g e b r a  o f  C a y l e y  n u m b e r s  ( o c t o n i o n s ) ,  a n d  l e t  G= = Der  O. The f o r m  
( x ,  y )  = xy + y x  w h e r e  x ,  y ~ 0 i s  n o n d e g e n e r a t e  a n d  G a - i n v a r i a n t  on  0 a n d  0 ~ = O / R ' I .  

L e t  L x ( y )  = x y ,  R x ( y )  = y x .  Then  t h e  f o r m u l a  D x , y  = [Lx ,  LoY] + [Rx,  Ry] + [Lx ,  R y ] ,  
where x, y E ' O ,  gives a Ga-invariant relation D:O| Let D = D/O ~  We set (AG=)~ = 
~(2)@O~, (AO=)v----id| and define [,] :S~(AGa)7 § (AGa)7 by the formula 

[x| y| y) p(u, v)--~(tt, v)D~ 

where p and ~ were defined in the description of D(~). 

ABe: We set (AB~)~=~[ (2)@0 (7), (AB~)~=id| , see [12]. The mapping [,] :S=(AB~)7 § 
(ABs)o we define by the formula 

w h e r e  p and  ~ w e r e  d e f i n e d  i n  t h e  d e s c r i p t i o n  o f  D ( ~ ) ,  and  ( , )  i s  a n  i n v a r i a n t  f o r m  on ~inz, 

YiYj + YjYi = ~ij for ] ~< i, j ~< 7. 

We shall describe the rough structure of some Lie superalgebras. Let |d((I)) be the 
standard (trivial) representation�9 and let cg be the trivial central extension of the Lie 
algebra 0. We call the following Z-gradations standard: 

I1 fl-= g-, go 01 g= 

~I (n I m) 
~ p  (n 12m) 
o~  (2 ! 2m) 
(S) n (n) 

AG= 
ABs 

( 1 > | * 

<I> 
(i> 

Id| 
td| 

ld* 
A~ld * 

ld* 
Id* 

~t (n)@a! (m) 
o (n)@zp (2m) 

r (2m) 
(~t) at (n) 

CO, 
co (4) 

td*| 
l d l~ td  

td 

( 1 > | 

i> 

3. Lie Superalsebras of (Formal) Vector Fields. The presence in simple Lie superalge- 
bras of vector fields of some maximal subalgebras of finite codimension is unexpected and 
surprising. 

Standard Realizations. The Lie superalgebra W(n[m) = Der C[[x]], where x = (ul, ..., 
Un, ~x, ..., ~m), is called the general Lie superalgebra of vector fields. The divergence 

field D= g]0~i is the series divD=~tJcZ(--1~P(gJ)#gl, j ~. The Lie superalgebra of the 

S (hi m) ----- {DEW (nlm) lLow~=O}={DEW (n I m) I div D =0} ,  

where v x is the volume form with constant coefficients in the coordinates x [8�9 39] �9 is 
called a special or divergence-free Lie superalgebra. 

Let 

a , = d t +  ~ (p,dq,--q~dp,)+ ~ ~jd~j 
l<l<n l<]<m 

(sometimes in place of ~x it is more convenient to take 

2 4 8 7  



The Lie superalgebra 

~, = at q- ~a (p,dq, --  q,dp,) q- ~ (~,d~h -}- ~hd~,) (-}- ode)), 
l~l~n l<it~r 

r~o=d~ q- ~ (q~d~-~-~dq~), ~ 0 = d ~ t  
l~l~n 

( resp. ~o=d~t) ,  (ol=d~o. 

K (2rt + 11 m) = {DO.W (2n q- 1 I m) I Locz, = fo~x,} 

is called a contact superalgebra, while the Lie superalgebra 

M (rt) = {D~W (rt I n + 1) 1 Logo = fo%} 

i s  c a l l e d  an odd c o n t a c t  s u p e r a l g e b r a .  The L i e  s u p e r a l g e b r a  

Po ('2n l m ) =  {DEK (2n + I I m) l Loa, =0}  

i s  c a l l e d  the  P o i s s o n  s u p e r a l g e b r a ,  w h i l e  

B (n)={DEM (n) I Lore0 = 0} 

i s  the  Butane  s u p e r a l g e b r a .  The L i e  s u p e r a l g e b r a s  

SM (n) = {DEM (n) ]div D = 0}, SB (n) = {DEB (n) I dtv D = 0} 

a r e  c a l l e d  d l v e r g e n c e - f r e e  odd c o n t a c t  and Butane  L i e  s u p e r a l g e b r a s .  

The L ie  s u p e r a l g e b r a s  o f  the  s e r i e s  K, M, SM, PO, B, SB a r e  more c o n v e n i e n t l y  g i v e n  i n  
terms o f  g e n e r a t i n g  f u n c t i o n s .  For  K(2n + l/m) we s e t  

o o 0 o 0 o 
KPl=Pi 0l ~ '  KqJ=ql- '~-+J-~l '  K ~ l ~  at O~' 

w h i l e  f o r  a s e r i e s  f ~  C [ t ,  p ,  q ,  ~]] we s e t  

K /=2 f -~fq-~ (Koi(f)Kq , --Kq,ff)Kp,)-I-(--1)p(t) ~ K~iff)Kt,. 
i~n j(tn 

For  any s e r i e s  f s  C[ [T ,  q ,  r  we s e t  

/HI = 2 / ~  q- ~ ,  (M~., 0 r) JHq, q- ( - -  1)Pff)A4q, (f).M~q), 
l<.n 

0 o o 0 
where }dq~.-~--~t--qt - ~ , Mh  = ~ - - ~  ~ - ~ .  

To the commutator of vector fields --elements of Lie superalgebras of the series K and 
M-- there correspond contact brackets in the generating functions 

Oq o/ 
{ f  , g}~. ~. = A ( f )  ~ - -  ~i- A (g) --  { / ,  g}p. ~. 

and 

{/ ,  g}M.B.--~ I:~ a--~--g - -~ - -  l~pm o / A  ~ ) - { / ,  g}B.B., 

af 
where A ( / ) = 2 / - - E y ~ - ~ T  , y are a l l  coo rd ina tes  except  t ( r e s p e c t i v e l y ,  r ) ,  and the Po isson 

and Butane b racke ts  are g iven ,  r e s p e c t i v e l y ,  by the formulas 

{ f , g } p . B . = ' W  {~ Of Og Of Og ] '~--t--D"~~ ~Jq Of Og 
Opi dql Oqi Opj " ~ 0[i 0[i l~.m 

( i n  the  r e a l i z a t i o n  w i t h  form ~o)  and 

) 
t<:n 

The Lie superalgebras of the Hamiltonian fields 

H (2n I m) = {O0~ (2n I m) I Lo~0 = 0} 
and their analogues 
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Le (n) ---- {O0V/ (n I n)I Lo~ t = 0 }  and SLe (n)={DELe (n) I div D = 0 }  

a r e  c o n v e n i e n t l y  g i v e n  i n  t e r m s  o f  g e n e r a t i n g  f u n c t i o n s  by s e t t i n g  

{ Of o_~ O/ 0 ]q--{--1)o~t) "~  o/  o 

),~m 

Le/=V{O/~..~ O O/ 0 
dqt )" Oql Ogt ~- ( -  ])P(f) 

Then /(" (2n-f- 1 [ re) ---- < K / > ,  A4 (n) = </lll t >, 1-1 (2n I m) ----- ( l - I / ) ,  Le (n) ----- < Le t ) ,  SLe (n) ---- 

< Le/[Ed-~-----0>, SM(~)= <M/ 0(A(/)--/)O~ =0) where f runs through C[[x]]. 

a 
We denote by SLe0(tt)-----SLe(n)/ ( Le~ .... ~, > and S ~ (n) = S(I In)/ ( lJl.--~J, ~ > the ideals in 

SLe(n) and S(IIn), respectively. 

Remarks. l) It is obvious that the Lie superalgebras of the series W, S, H and Po for 
n = 0 are finite-dimensional. 

2) A Lie superalgebra of the series H (respectively, Le and SLe) is a factor of the Lie 
superalgebra Po (respectively, B and SB) by the one-dimensional center Z which in the rea- 
lization by generating functions consists of constants. We set 

N o n s t a n d a r d  R e a l i z a t i o n s .  Le t  ~0  be a maximal suba]gebra  o f  f i n i t e  codimension i n  a 
Lie superalgebra of formal vector fields ~. Let ~_i~ be the minimal subsuperspace contain- 
ing ~0 which is ~0-invariant. For i > 0 we set 

s',+~={t~s',llt, s'_,lcs',}, s'-.+~)=Is'-,, s'-d us'_~. 
We set /~=s',/s'~+I. The filtration by superspaces s'~ is called with Weisfeiler filtra- 

tion. We shall enumerate all Z-gradations in s'associated with the Weisfeiler filtrations 
constructed on the basis of a maximal subsuperalgebra of finite codimension. The standard 
realization is labeled (>~); we note that to it there corresponds the case where the codimen- 
sion of the algebra s ' o  is minimal. 

We set deg x = ~ and note that the gradation in the series W (respectively, M or K) in- 
duces a gradation in the series S, S ~ (respectively, SM, Le, SLe, B, SB or Po, H). Suppose 
that the contact structure is given by the form ~. The Z-gradations are: 

Lie superalgebra Z-gradation 

oui = o~l = 1 ( , )  
W ( n l  m) 0 ~ i = 0  for l ~ ] . . < r ~ m ,  ~176 for i>11 

K ( l l 2 n )  o t = , ~  l = l ,  O~n+l=0 for 1-.<l~n 

o r=2 .  o q l = ~  (*) 
o v = o u ~ = l ,  o ~ = 0  

M (n) ~ ~ ~or i ..< i-.< r ~< n. 
ou=+i=*~r+i= 1 

or=2. op l foq j=o~]=  1 (,) 
K(2n+llm) o l=o~=2 ,  ~ for l ~ i ~ r ~ [ m l 2 ]  

*pi = oqi = O~,r+ ] = 1 for ] :~ l 

The Lie superalgebras corresponding to nonstandard realizations we denote, respectively, 
by W(nlm; r); K(l]2n; 0); M(n; 0), M(n; r); K(in + llm; r), where r ~ |. 

Digression: the Cartan and Shchepochkina Extensions, We recall that the Cartan exten- 
sion of the pair (g-l, ~0) , where g-t is a module over the Lie superalgebra go , is the Lie super- 
algebra (g-t, go), or briefly g.=t~_igl where for i > 0 

~,+1 ----- {Fl~Hom (ILl, I~l)] F Co) (w) = ( - -  1)pc~,)p0,,) F (,w) (,o)} 

with the obvious commutation given by the imbedding ~.cllT(dimg_0. 
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We shall now describe a generalization of the construction of the Cartan extension- the 
Shchepochkina extension. Let g~g_~)~ 0 be a Lie superalgebra. Then a conformally go-invariant 
skew-symmetric form m on fl_~ gives an extension Eg of depth 2 with center of dimension eP(m) 
where 

E~o----~ o, E~_~=g_~, E~_~=Cy 

and 

[v ,~ l=~(v ,~ )y ,  if v,~E~_~, [u,y]=~(~)y, 

where uEEg 0 and a(u)~ = urn. 

Let m be a nondegenerate form. Then Fg is contained in K(dim g-l) if p(m) = 0 or in 
M(n), where dim g-1 = (n, n), if p(m) = I. We call the maximal graded subalgebra b of depth 
2 in K(dim g-x) or M(n) such that bl--_Eg i the Shchepochkina extension of the pair (g-l, go) and 
write (g-i, g0) ME or simply (~0) MK. 

4. Exceptional Lie Superalgebras (see [l~ 73]) and Deformations. We set W,(n; %) = 
(U(T(X)), W(Oln)),, W,(n)=W.(n;O); CW,(n)=(II(T(O))I (I>, CW(0In)).. The Lie superalgebras 
W,(n; %) are deformations of the Lie superalgebra B(n) (to see this it is necessary to go 
over to the nonstandard realization in which ~ i = 0) and are simple for n > 1 and ~5 A O. It 
is obvious that W,(2; %) = H(2[2 ; ~) (see [68]). 

LEMMA. CW,(2)_~-- W(2 If), while CW,(3) is an exceptional, simple Lie superalgebra. For 
n > 3 we have CW,(n) = W,(n) • Cz where z[W,(n) i = i.id. 

We set I) g0=CW(01• ), 8-1=H (T (-- I /2)), and suppose that z is an element of the center of 
the Lie superalgebra g0, such that zlg-,=--id ; 2) x = Z(i(~/8$ i) (this is a grading operator 

in S(0ln)), T~ ={/er(0)lJ'f=0 } and g-,=[l(T~ (I)). Let Se,B(n) = S(Olzl) @ C(ax + Bz), 

where z is the same kind of element as in l). 

In cases l) and 2) we define a form ~ on g-, by setting m(f, g) -- 0[ fg and ~ fgv$ respec- 

tively. 

Among the Lie superalgebras Sa,B(n)MK and CW(0In) MK only three are simple: $6,-5(4) MK, 

CW(0[2) MK =~ K(312) and CW(0[3) MK. 

We set 
S, (012n) ={DEW (012n) I D [(1 + t~, . . .  ~2n) ~ ]  =0} ,  

S t (0 [ 2n -6 1) = {De,~_ [B] P7 (012n + 1) l D [( 1-6 t B:~ . . .  ~2~) ~a ] = 0 }. 

E x e r c i s e .  St------- S t , f o r  t ,  t ' = ~  0.  We s e t  S ' ( n )  = S ~ ( 0 ] n ) .  

A d e f o r m a t i o n  Qh w i t h  p a r a m e t e r  h o f  the  P o i s s o n  s u p e r a l g e b r a  Po(2n[2m) i n t o  t he  L i e  
s u p e r a l g e b r a  D i f f ( n [ m )  L o f  d i f f e r e n t i a l  o p e r a t o r s  on a space  o f  h a l f  t h e  number o f  d i m e n s i o n s  
we call a quantization. In particular, 

Qn (Po (ol2m))~(Cliff~ . (2n))L~/(2"- '  12 n-') for h4=O, �9 

where CliffB(n) is the Clifford superalgebra of (0, n)-dimensional superspace with a skew- 
symmetric even form having matrix B. 

What to do if there areanodd number of odd variables? Let ~E Diff(nIm)7 with u = 1 
(for example, ~ = ~ + ~/~). Let QDiff(nlm)={D~Dlff(nIm)][D, ~]~0}.  Then Qh(Po(2n]2m- 

I)) = QDiff(nIm) for h ~= 0. In particular, QDiff(0] m)~(2~-~)----Cliff +(2n-61)), where ~+n = 

diag(l, Wn)- This a new interpretation of the Clifford algebra considered as a superalgebra 
[4O]. 

There is so far no complete description of deformations (see only [l, 73]). 

5. Lie Superalgebras of String Theories [44, 74, 75, 126]. In recent years in physics 
the idea has arisen that elementary particles can sometimes be considered very elastic 
springs -- strings (see [47]). The Witt algebra W -- the Lie algebra of vector fields on the 
circle S with coefficients expandable in a finite Fourier series -- is used in describing 
these models. Let t = exp(ia), where a is the parameter on the circle. The algebra W can be 
realized as the Lie algebra of differentiations of Laurent polynomials C[t -~, t]. This alge- 
bra has several series of superanalogues. 
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On the superspace R(n) = C[t -~, t, ~ ..... ~n] we define a contact bracket, and the 
Lie superalgebra obtained we denote by ~(n). Let 

~ (~) ~ D e r  R (~) ,  ~ (~) ---- {OEe/~ (n) [ dtv O = 0}, ~o (n) = ~ (~) / ( ~, . . .  ~ ~ ) .. 

These Lie superalgebras preserve the structure on the supermanifold ~,n, associated with 
the trivial bundle over S. The Mobius bundle gives one more example: the contact structure 
is reduced from ~.n to the supermanifold associated with the Whitney sum of the trivial bun- 
dle of rank n -- 1 and the Mobius bundle. The corresponding bracket has the form 

{f ,  g}~.~.----A(f) Ot Ot A ( g ) - - ( - -  ~ ~-, . o ~ , o ~  0~,,0~,1 
' i ~ ' l - - !  

and the Lie superalgebra obtained is denoted by ~"+(n). 

The most interesting thing to physicists in these (super) algebras is that they some- 
times have nontrivial central extensions. They have all been enumerated [44, 126]. The cen- 
tral extensions for ~(n) and ~+(n) are given by the same cocyle Res c(f, g), where Res f is 
the coefficient of ~i/t, and all the c are 

n 0 1 2 3 

c fK~ 3 (g) fK~K~ ~ (g) fK~,K~,K, (g~ fK~,K~,K~= (g). 
The c o c y l e s  f o r  ~ ( 2 ) ,  ~ ( 2 )  and 5 ~~ (2) can be  found  i n  [44], and t h e r e  a r e  no o t h e r  e x t e n -  
s i o n s .  

G e l ' f a n d  and Fuchs and V i r a s o r o  found a c e n t r a l  e x t e n s i o n  f o r  ~ ( 0 ) ,  f o r  ~ ( | )  one was 
found by Nev ieux  and Schwar tz ,  and f o r  ~ + ( 1 )  one was found by Ramon; the co r respond ing  L ie  
supe ra lgeb ras  are  denoted by V, N S ( I ) ,  and R( I )  i n  t h e i r  honor .  We denote by NS(n) and R(n) 
f o r  n = 2, 3 the e x t e n s i o n s  o f  the L ie  supe ra lgeb ras  ~ ( n )  and ~ + ( n ) ,  r e s p e c t i v e l y .  Ade- 
mo l lo  and o t h e r s  [74, 75] found e x t e n s i o n s  o f  the L ie  supe ra l geb ra  ~0  (2 ) .  We denote the 
central extensions of the Lie superalgebras ~ (2), ~(2) and g0 (2) by A~ ~ A~ and AS ~~ 

6. Kac Superalgebras 0~ m; and Kac--Moody Algebras [43]. Let g be a simple, finite- 

dimensional Lie superalgebra. Let G~ be the associated group of the Lie algebra 0 F. The 
elements of the group Out 3̀ = Aut `3/GT, where the group G~ is imbedded in the group Aut 3̀ of 
automorphisms of the Lie superalgebra ,3 is a natural way, are called outer automorphisms. 

We call the superalgebra 0,~ 'm the Kac superalgebra connected with the automorphism ~, 

and its nontrivial central extension with cocyle c -- the Kac--Moody superalgebra -- we denote 

by c̀ 3~ ~). 

We define d3EAut D((--I + i~)/2) by setting d3(a, u) = ((a3, al, a2), (--I + ir174 

ul | u2/2)_. If a + a = --I, then we define d23EAut D(a) by setting d23(a, u) = ((a~, a3, 
a~), u,. | u~ | u~)). 

We define A, BEAut Sh(012n) by setting A($i) -- (--l)6zi~i, B(~ i) = $i + (3~x .-. ~2n)/ 
3~i for i = I, ..., 2n. 

We define ~x~Aut W(01n) by setting 6X($i) = X~i, where k~C\0. 

Let Jk,n = diag(A, 12n), where A is an orthogonal transformation of 2n-dimensional space 

such that det A =--I. 

A B --A t C t D C A XB. where ~C\0. 
For X = (C D ) we set st(X) = (_B t _Dt), ~(X) -- (B A )' ~x(X) -- (X-XC D )' 

Let q = --sto~r and let (g) be the cyclic group generated by the element g. We carry 

over an automorphism from an algebra to a subfactor algebra without special mention and de- 
note the automorphism obtained by the same symbol. 

THEOREM. If'~ is in the series W, S', 0~(2~+1{2m), O(=) for =~-I, (--2)+--I, 
(--I + i~)/2 and AG= and AB3, then Out ~ = I. In the remaining cases Out G is defined from 
the following table 

0 ~T(n/m), n4=m o~ (2n 1 2m) ~q (n) O ((--1+]/3")/2) 
Out O Z= = ( - -s t )  Z= = (AdJn,m) Z ,  = (q)  Z~ = (d, )  

O S~ (n) S (01 n) S H  (2n+ 1) 
OutO s } C*={6x[~,'n=/=l} C*={6~,[Z=/= ___I} 
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and the exact sequences (I)-(3): 

] ~ C ~ O u t  SH(O] ~ ) - - , - Z ~ C *  --+ 1, (1) 

where C is the one-parameter subgroup generated by the automorphism B, Zz = (A), and C* = 
{~xI~c, ' ~n@ I}; 

1 ~ C*--> Out ~ !  (nln)~Z2@Z~ 1, (2 )  

where n> 9, C*~-{6xIM~C*, ~"v -  ~ 1}, and Z~@Z~(zO@(__st); 

1 -+SL (2) / ( - -  12)-+Out ~ t (2  [2)~Z2-+ 1, (3) 

where  Za ~ ( u ) ,  and t h e  a c t i o n  o f  the  L i e  a l g e b r a  ~! (2) o f  t h e  group SL)2)  on ~[  (212) i s  de -  
fined as follows. We realize the superalgebra ~((212) by matrices of order (2, 2) with 
bracket [X, Y] = XY-- (--I)P(X)P(Y)Yx - 2 str XY. Then 

0 aB + bJ, CtY-[ ') 

We note that the order of the automorphism st in the group Out~[(t~In ) is equal to 2 
(respectively, 4) if n -- 2k (respectively, n = 2k + l). 

THEOREM. Let g be a simple, finite-dimensional Lie superalgebra. If ~Aut0g (the con- 

nected component of the identity, then gSm~=g(,). Moreover, ~g(n)~=~g(tz)(,~ ). The remaining Lie 

superalgebras Sgm) are the following (in row 3 for n = m we take the projection of the auto- 
morphism indicated in column 2, while (m, n)~ (I, 2), (2, 2); in row 5 n > 2 and in the last 
row of the ~0-module fl, (respectively, g2) is irreducible with leading (odd) even weight 2 
(respectively 3). (I) denotes the trivial module; we set 

S = {(A, B)6S z (id| 1)@S~ (1 | [ tr  A - -  tr B = (3}): 

g~ra) go g~ 8= 8~ 

o~p (9m I 2n) (2) 
,,~(2) (~) ~t (ml '~ 

~)~t (n I n)(~ "~) 

o~q (n) (2) 
~q (n)q (4) 
SH (o 12~)(f ) 
D ((--] + iV~)/2)13) 

oa~ (2m--I I 2n) 
~,(m)@o (n) 

l~g (n) 
S~ (n) 

~! (n) 
o (n) 

H (0 [ 2n--l) 
o~p (I. 2) 

td 
~ (ld| 

ad* 
ad* 

~(ad) 
(Aatd) 
T* (0) 
L (2) 

S 

S2id/ ( I ) 

(L (3)) 

~(id~Id) 

Sqd/( I > 

These Lie superalgebras fit=) are simple. 

Exercise. 1) Which of the Lie superalgebras of this section are simple? For an indi- 

cation see [I, 103, 104]. 

2) List the Lie superalgebras of differentiations of simple Lie superalgebras using [36, 

57, 73, ]04]. 

The Kac--Moody superalgebras associated with simple, finite-dimensional Lie superalgebras 
have a much more interesting structure than Kac--Moody algebras. In particular, if a simple 
Lie superalgebra g has a nontrivial central extension ~g given by the cocycle m, then ggm) 
has infinitely many central extensions with cocycles 

c (oh :(X, Y) ~ Res o (X, Y) P, whereiEZ, X, rEs~ m). 

If B is an invariant, nondegenerate, syrmmetric form on g, then an extension of the Lie super- 
algebra 8g m) is given as for Lie algebras by the cocycle 

"a'~ )' F,N,e X, Y~8~ m), c (B): (X, Y) ~+ Res B (X, d r  

T h e r e f o r e ,  to  d e s c r i b e  Kac--Moody s u p e r a l g e b r a s  we make the  c o r r e s p o n d i n g  d i g r e s s i o n :  we 
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describe invariant bilinear forms on simple, finite-dimensional Lie superalgebras and their 
central extensions, and all central extensions of Kac superalgebras can be constructed by 
one of the two methods indicated. 

THEOREM. The Killing form (x, y) = str ad x-ad y is nondegenerate on ~[(tt[m) for n ~f= m, 
on 0~(~12m ) for n 7-2m + 2, and on AG2 and AB3. The even form str xy (respectively, 

J'jc(~)y(~)~ ) is nondegenerate on ~gt(ttltt) and 0~(2aq-212~) (respectively, on Po(0[2n)), while 

the odd form otr xy (respectively, j'~c{~)y($j)v~), -- - is nondegenerate on q(n) (respectively, 

Po(012n + l)). On ~I, ~q and SH the forms induced by those described are nondegenerate. 
All the forms enumerated above are symmetric and invariant. On Lie superalgebras of the 
series SH, W, S, S' there are no nonzero invariant forms. 

There are invariant skew-symmetric forms only on the following simple Lie superalgebras 

g Cocycle w Extension ~fl 

I~! (2[2) 

n > 2  
~ g  (n) 
SII (4) 
SH (n) 

for n>4 

" - ' B '  " [ t r C C  ~ 
A , ~ tr (c ) 

I~,D,)~-+tr (CB' + B C ' )  
(A,  B), r  B'),--*tr BB'  

A B  
(C - - A t )  , ; ' ' B '  " (~ ,_A,+) , -+ t r  CC ' 

I-t t, H t , ~  ~  o.f' ~"~0~ ~ J O~ (0) 

SH (4) 
~1 (2f2) 
SH(4) 
~I (nln) 
~g (n) 

AS 

SPo (n) 

The extension AS is named in honor of its discoverer A. Sergeev. 

A description of contragradient Lie superalgebras and systems of simple roots is pre- 
sented in [42] where the Coxeter automorphismsare also listed in those cases where it was 
possible to assign a meaning to superpositions of them. 

7. Real Forms. Any real Lie superalgebra is either a complex Lie superalgebra g con- 
sidered as a real algebra gR or a real form ~ of a complex Lie superalgebra g, i.e., ~| 
Each real form ~ of a complex Lie superalgebra ~ has the form ~'P={~Egl~(g)=g,where ~ is an 
antilinear automorphism of order 2. 

In the finite-dimensional case Serganova [56], correcting [104, 125], described all auto- 
morphisms for simple Lie superalgebras. Moreover, she described automorphisms of order 2 of 
real Lie superalgebras (to such automorphisms there correspond symmetric superspaces) and 
automorphisms of order 4 involutive on g~ ; physicists investigate such structures. There was 
not room in [55] for a description of the automorphisms for AG2 and ABa which has also been 

completely carried out (see [39]). 

V. V. Serganova also described real forms and automorphisms for Kac superalgebras and, 
apparently for the first time, for Kac algebras [55] and Lie superalgebras of string theories 
[57] sad also automorphisms of order 2 (and 4) of real forms of the Lie superalgebras of 
string theories -- infinite-dimensional (semi) symmetric spaces (cf. [116-I18]). 

Real forms of simple Lie superalgebras of formal vector fields, their automorphism, and 
Lie superalgebras of their differentiations are described in [36]. 

2. Modules over Lie Superalgebras of Vector Fields 

|. Two Categories. We consider two categories of modules over infinite-dimensional Lie 
superalgebras ~ of vector fields with the Weisfeiler filtration: discrete and topological. 
A discrete~-module I is a module such that dim U(~0)i < ~ for any vector i E I. To each dis- 
crete module I there corresponds a topological module I* = Homk(l, k) with a topology having 
a basis of neighborhoods of zero formed by the annihilators of finite-dimensional subsuper- 
spaces of the module I, and I = Homk c (I*, k), where Hom c is the superspace of continuous 
homomorphisms. It is obvious that the categories of discrete and topological~-modules are 
dual If~is a finite-dimensional Lie superalgebra with the standard gradation, ~= ~ L~, �9 j ~ l  

then both these categories coincide with the category of finite-dimensionalS~-modules. This 

indicates that these categories are natural. 
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The superspace T(V) of formal tensor fields of type V constructed on the basis of a 
finite-dimensional L0-module V is an example of a topological ~-module: we set ~iV=0 and 
T(V) = Homu(~0)(U(~ ), V). For the Poisson and Butane superalgebras and their regradations it 

is natural to alter the definition slightly so that the center goes over into the operator 
of multiplication by a scalar. Generalizing what is called prequantization or geometric 
quantization, we describe also irreducible modules over the Poisson superalgebra in the 
modules Tn(V)=Hom~(~o)(U(.5~)l(Ka--h), V) and over the Butane superalgebra in the modules Th(V) = 

Homu(@~llvl (U (.~P) [~] (Mid - -h ) ,  V), w h e r e  h ~ k ,  p (~)----- 1, ~ = 0 .  

For the Lie superalgebras of string theories (the Kac superalgebra g~)) we define the 

series of modules ~-i~i(V) (respectively, V(~)). We denote by ~- (V) the module C[t-I]T(V). We 

set ~-~(V)=l~o)-(V) (respectively, V(1)==V| /], where V is a g-module). 

2. Integrodifferential Forms. Together with the variables x, we introduce variables 'x 
suchthat p('xi) = p(xi) + l, and we call elements of the commutative superalgebra ~ = C[[x]] 

(formal) differential forms. We define a Z-gradation on the superalgebra ~ by setting deg 
x i = O, deg'x i = I. It is obvious that ~__@~l. 

i >0 

We define the exterior differential d:~ i -> ~i+i by setting d(x i) = 'xi, d'xi = O, 
d(w~wa) = dream= + (--;)P(m~)mld~a. For any vector field D = ~f~/~xi we define interior mul- 
tiplication iD: ~i _> ~i-~ on the field D by setting i D = (--I)P ( )Efi3/3 x i. We define the 
Lie derivative L D along the field D by setting L D = [d, iD]. In the coordinates x, 'x we 
have d = 2'xi(~/3xi). 

Remark. In some works using differential forms another definition is given of differ- 
ential forms in which ~ coincides with C[[x]] ['x] as a space, where deg'x i = I, deg xi = 0, 
but p('x i) = p(xi) , and multiplication satisfies the condition 

~t*~z = ( - -  1 )degtgidegt~i'bP (~')P(/P')q02*qO 1, 

where ~i, ~96fL We go over from the multiplication * to the new multiplication 

by setting simultaneously pnow(~)=deg~(modi)q-pojd(~) ; we find that ~ is a commutative super- 
algebra, which is considerably more convenient (cf. [39, 129]). 

Let J be the commutative superalgebra consisting of operators generated by operators of 
multiplication by series f EC[[x]] and by interior multiplications i D where DE~ ~ Since i o 

(--1)"<xi>O x " i t  f o l l o w s  tha t  J = C [ [ x ] ] L ~ , x  ]. ~ j' 

On the superalgebra J we introduce a Z-gradation by setting deg x i = O, deg(~/~'x i) = I. 

On J we define the structure of a ~-module by setting 

r ~ 1)(P('q)+4(P(~sl+46~s. 

In other words, 

0 
' x t = ( - - l ) P ( X i ) + ~ O ( O l O , x i  ) . 

We d e n o t e  by  E~-  @ Z l t h e  Z - g r a d e d  J - m o d u l e  w i t h  g e n e r a t o r  Vx, w h e r e  d e g  v x = n -- m and  
i ~ n - m  

p ( v  x) = ( n - -  m) mod 2 .  We c a l l  t h e  e l e m e n t s  aft  2 i  i n t e g r a l  f o r m s  o f  d e g r e e  n -- m - -  i .  ( T h i s  
name is occasioned by tbe fact that elements of the s uperspace E are formal analogues of forms 
which can be integrated; see [8].) 

On E we define the structure of a ~-module by setting 'xi(PAx) = ('xiP)x , where PEJ. 
It is easy to see that this structure is consistent with the action of the operators d, iD, 
and L D according to Leibniz's rule. 

Special cases: a) m = O. Then ~i = 0 for i > n, while ~i = 0 for i < O. Moreover, the 
mapping v x~txl.., txn gives an isomorphism of the superspace ~i with the superspace 2 i which 
preserves all structures. 
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S b) n = O. In this case there is a homomorphism of the ~-modules :l m + C which we 

call the Berezin integral in honor of its discoverer F. A. Berezin. The integral is defined 

by the formula S ~"" ~m~=l, and S ~""~vm~=O' if ~=0. We denote by ~ also the com- 

position of the Berezin integral with the natural imbedding ~._ -~Cr 

c) m = I. We generalize fli and l" to superspaces ~%, where %~C. Let x = (u~, ---, ~n 3 
~). We define the ~-module ~)= @ (D ~ (we assume that deg'x i = 1 E C) as a module generated by 

~c 

by the generators '~%, where %~ C and deg'~ ~ = ~, p('~%) = O, while '~'~ = '~+~. Setting 

~x~-%t~-~ (and ~'~== ~ ~ t ~=0) we define the action on ~ of the operators d, i D and 

L D. It is not hard to see that ~ is a commutative superalgebra, while the action of the 
operators d, i D and L D on ~ satisfies the Leibniz rule. 

We define homomorphisms a:~ + @(D r and ~:~r->~'@z by setting 
r@z 

(u,.. .  

It is easy to see that the sequence 

0~o-~ ~ ~r~E ~0 
r@z 

is exact, while the homomorphisms a and B are consistent with the structures of the ~-module 
and the actions of the operators d, i D and L D. 

The construction of ~-modules ~ admits the following generalization for m =~ I. (Formal) 
pseudodifferential forms of degree ~, where ~C, are elements os the superspace ~(~) = T 
(EA(id)), where Ek(id) is the k-th exterior power of the standard (n, m)-dimensional Lo-module 
id. They have the form 

/ ( x ) ' u p . . .  . .  . 

where a i = O, ! and BjE C, and Ial + IB] = % (as usual, ]a I = al + -.. + an, and [BI = BI + 

�9 - .  + Bm)- 

Similarly, (formal) pseudointegral forms of degree n- m- ~, where %EC, are elements of 
the superspace Y.(n_m_~)=T(E~(Id*)| They have the form 

where ~i = O, I and Bj E C, and l~[ + IB] = %- 

We set f]c*)= @g(~) and Y(*)=~@Y'(n-m-~)-Ec ~Ec 

Remark. It is also convenient to consider pseudoforms such that BiE C and BjE Z for j # 
i. Such pseudoforms correspond to Lo-modules induced from parabolic subalgebras larger than 
(Lo)~ (see [69, 70]). 

The Lo-modules E%(id) are infinite-dimensional with the exception of the case m = I, so 
that the pseudoforms are not tensor fields. However, on restricting to a Lie subsuperalgebra, 
the superspace of pseudoforms can be expanded in an infinite sum of superspaces of tensor 
fields (with finite-dimensional fiber). 

We note that Y.(,) is a ~(*)-module with a consistent action of the operators d, i D and 

LD. 

3. Connections. The formal constructions we introduce imitate the following geometric 
picture: ~" is a space of functions on an open domain U, Der ~-is the Lie algebra of vector 
fields on U, M is the ~--module of sections of a vector bundle on U with finite-dimensional 
fiber, and ~ is the algebra of exterior forms on U; see [46]. 

Suppose now that ~-=C[[x]] (or ~-is any commutative superalgebra with a I), ~Der~" is 
a Lie subsuperalgebra, M is a free ~'-module of finite rank, and ~ is a commutative super- 
algebra of differential forms. 

A connection on M is an odd C-linear mapping ET:J~-+f]~| satisfying the condition 

V (fro) =dr| (-- l)~(f) f V  (m), where f@9 v, m@M. 
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Since as a superspace DerSV=~(Hom~(~t,~v)), then dualizing and applying the functor N we 

arrive at the following equivalent definition: a connection on M is an even mapping 

v4:.~XM-+M, (D,m)~ v(D)m 

which is if-linear in the first argument and additive in the second and is such that 

V (D)(fro)= D (f)m +(--  1)P([)P(D)fv (D)(m), 

where f~v, m~Nl, D~.~. We call the operator V(D) the covariant derivative along the vector 
field D. We call an element V-horizontal if V(D)m = 0 for all D@~F . It is easy to see that 
if M is a free ~V-module, then on M there exists at least one connection (we set V(fim i) = 
df i | m i where {m i} is a basis of the module M and fi ~)- The set of connections of a 
module M forms an affine superspace isomorphic to ~ |  We fix some connection Vo (in 
a free module it is convenient to fix a flat connection, i.e., a connection relative to which 
all elements of some basis of this module are horizontal). Then any connection has the form 
V = Vo + s, where =@~@~-End~-/~. In a fixed basis of a module M of dimension n + me a form s 

can be considered an element of Mat(n[m; fl). We call this matrix ~ the form of the connec- 
tion V. 

We extend V to mappings 

V;~i|174 and" V:M| 
by setting 

and 

(o~| ==dco| + (-- 1)p('~ co| (m) 

v (re| r (V (m))| +(--I) p(m~ m| 

where T:~I|174 l is the twisting isomorphism. We call the curvature form of the con- 

nection V the operator Fv~_ �89 , ~7]=E72. 

Obviously, a connection extends also to pseudodifferential and pseudointegral forms. 

Suppose that a _m~ M is "linear," i.e., has one generator. Suppose that the parity 
of the generator is 0. It then follows from the Darboux theorem for supermanifolds that a 
connection form with a nondegenerate curvature form has in some coordinates the form 

cz,'= Z (p,dq,--q~dp3-1- ~ !ijd~j. 
l ~ i ~ t l  l ~ j ~ m  

If the generator of the module M is odd, then it follows from the Darboux theorem that the 
connection form So' has the form 

~o'-----0 X (~;dq;-l--q~dd3, 
l ~ i ( n  

where 8 is an odd auxiliary coordinate. Usually it is convenient in place of a:' and ao' to 
consider the forms sl = dt + st' and so = (~/~e)(edT + ao'). 

4. Primitive Forms. The space of i-forms (differential or integral) with constant co- 
efficients is irreducible over Lo only if Lo is of the series ~I or gl . In other cases it is 
reducible. The decomposition of this space into irreducible components, for example, on a 
symplectic manifold, is achieved due to the fact that the Lie algebra ~I(2) acts on forms 
and commutes with the action of Hamiltonian vector fields. The vectors of the ~I (2)-action 
of lowest order are called primitive forms. We shall describe an analogous structure in the 
supercase. 

a) Suppose there is given a canonical, even, closed 2-form mo in 2n even and m odd vari- 
ables. The following operators act on the superspaces ~, ~(*), E and E(,): X+ -- multipli- 

cation by mo, X_ -- interior multiplication by the bivector dual to mo, H = [X+, X_], d, and 

= [X_, d]. We note that as H(2nIm)-modules the superspaces ~ and E as well as ~(*) and 
E(,) are isomorphic; therefore, it suffices to consider, for example, only (pseudo) differen- 
txal forms. 

THEOREM. The operators X+, X_ and H define on ~ and ~(*) structures of ~l(2)-modules 
invariant relative to H(2n[m). 
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Proof. Invariance of the operators X+, X_ and H follows from the definitions. In 
canonical coordinates the operators X+ and X_ have the form 

We now note that it suffices to carry out all computations in the (2, 0)- and (0, l)-dimen- 
sional cases separately and in~ediately find that 

H = X §  - -  X_ X+ = ( m - -  ~n) / 2 - -  E'x~O / a'x+, 

where  ' x  = ( ' p ,  ' q ,  ' ~ ) .  Hence ,  [H, X• = •177 which  was r e q u i r e d  to  p r o v e .  

We call the vectors of lowest order relative to the ~ (2)-action in ~ primitive forms. 
It is not clear what to consider primitive forms in ~(*). The structure of the ~[(2)-module 

for (2n -- m)/26 N is quite complex (see [65-71], where it is completely described)�9 

b) Suppose there is given a canonical, odd, nondegenerate, closed 2-form ~ in n'even 
and n odd variables. 

It is easy to compute the homologies of the operator m~ in forms with constant coeffi- 
cients: these are <'~t ..... '~n>. From this we obtain a description of irreducible Lo-submodules 
in integrodifferential forms with constant coefficients�9 Indicating the Lo-submodule by a 
dashed arrow and the action of the operator ~ by a solid arrow, we represent the module 
as a graph 

a ~ ~ ~ ~ ~ �9 .. ~-I ~ ~n+1 ... 

I 
I 
! 
! I ~'~ ~+... ~ n  > 

for n > I ,  while for n = I it has the form 

, t 
. . .  

The g r a p h s  w i t h  r e v e r s e d  a r r o w s  d e s c r i b e  t h e  s t r u c t u r e  o f  t he  J o r d a n - t t o l d e r  s e r i e s  i n  the  
space of integral forms. 

Elements of modules corresponding to vertices of the upper (lower) row in the graph of 
(respectively, E) we call primitive forms. As in a), it is not clear what to consider the 

analogue of this concept for pseudoforms. 

c) Primitive forms with values in a linear bundle with a connection. Let 

h t h 1 

be the connection form V+ = d + (h/2)m1' in a (|, 0)-dimensional 9r-module. Let Th(0) = ~o 

be the superspace of sections of this ~r-module. Since ~h=~| ~, it follows that the 

operators X+, X_ and H extend in an obvious manner from ~ to ~h" We set V_ = [X_, V+]. 

THEOREM (Bernshtein; see [35]). The operators X+, X_, H, V+ and V- define on ~h and 

(*) for h=/= 0 structures of0~p(112)-modules invariant relative to Po(2nlm). 
~h 

Proof. Invariance follows from the definitions. In canonical coordinates we have 

' , , 

As above, it suffices to carry out all computations in the (2, 0)- and (0, l)-dimensional 
cases separately. Elements of the superspace ~/~=Ker~7_nPh' we call V+-primitive r-forms 
with torsion h. 

The case of a bundle with a connection whose curvature form is hSml can be considered 
in a similar but more intricate way (see [35]). 
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d) The contact case. Suppose there is given a (0, l)-dimensional ~--module with genera- 
tor which is the |-form 

~t=dt + ~ld (p,dq,--qidp,) + l ~ ~jd~j. 

For  m = 0 we i d e n t i f y  f l2n+~-r and E2n+ l - r -  We s e t  Kfl r = f l r / ( a l ~ r - ~  + da~fl r - 2 )  f o r  r--< n 
i f  m = 0 and f o r  a l l  r i f  m 5 0 ,  w h i l e  /(X2,+l_m_r=KeralNKerdatNE2n+t-~-2 f o r  r > n i f  m = 0 and 
f o r  a l l  r i f  m ~ O. We r e p r e s e n t  the  s t r u c t u r e  o f  submodules  i n  fir and ~ '2n+l-r  by means o f  a 
graph whose v e r t i c e s  a r e  i r r e d u c i b l e  ~ - m o d u l e s ,  w h i l e  the  a r rows  i n d i c a t e  t he  submodules .  
By i n d u c t i o n  i t  i s  e a s y  to  p rove  the  f o l l o w i n g :  

V ' 
aL+ (~+)r-+K'O'+ ) 2  .~ "O'2r'22r-1 ffi .~2r 

o41 

�9 K+O. Zr+4 

J ~ ' - ' -  +m'l K~2r't = .0. 2r++ 

�9 ~ o r  2r 
r o 

Proposition. The graphs F(~ r) for m~0, (2n -- m)/2~ N arid m = O, r~ n are shown 
above�9 The superspace K~ r is equal to 0 if m = l, r > 2n. The graphs for integral (2n + l -- 
m- r)-forms are obtained from the graphs F(~ r) by replacing K~ by KF and reversing the 
arrows. 

We call elements of the superspaces K~ and KE primitive forms. The structure of the 
Jordan--Holder series in the superspaces ~r and Y r for (2n -- m)/2~ N can be derived from re- 
suits of G. S. Shmelev; the case of the form So is analogous to part b). 

3. Irreducible Representations, Invariant Operators, 

and Analogues of the Poincare Lemma 

We shall show that each irreducible topological module over a Lie superalgebra ~ of 
vector fields can be realized as a submodule in some T(V). Our purpose is to describe this 
submodule as explicitly as possible. For this we study ~-homomorphisms T(V~) § T(V2) and 
find that our submodule is the kernel of one such homomorphism. We present the description 
of irreducible modules in three steps. 

]) We describe all ~-invariant differential operators c: T(Vl) + T(V2) where VI and 
V= are irreducible Lo-modules. The conceptual part of the description is the basic lemma 
formulating the problem in terms of special vectors. It is found that all invariant opera- 
tors arrange the spaces of tensor fields on which they are defined into complexes genera- 
lizing the de Rham complex. 

2) We prove that these complexes are exact, that is, we generalize the Poincare lemma. 

3) On the basis of a resolution of modules of the type T(V) for any irreducible ~- 
module it is not difficult to compute its character. If the Lie superalgebra ~ is contra- 
gradient, then it is possible to describe the character by a single formula generalizing the 
formula of H. Weyl. For noncontragradient (super) Lie algebras there is no single formula 
for the character. 

Remark. For Lie superalgebras of vector fields also, of course, it is possible to 
define modules M(V) which are analogues of Verma modules. Nothing is known about such 
modules. 

|. The Main Lemm~. It is more convenient to obtain a description of invariant opera- 
tors in terms of induced modules l(V) = U(~)| where V is an irreducible ~0-module 
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such that ~i V = 0. It follows immediately from the definitions that I(V) = T(V*)*. It is 
easy to see that a description of homogeneous differential operators c: T(V~) § T(V2) of 
order i is equivalent to a description of homogeneous vectors of degree --i in the module 
I(Vt*) such that ~i f = 0: such vectors are the images of elements of the space Va* under 
the mapping c*. 

LEMMA. I) T(V)* = T(V* | str), where str is the representation of the Lie superalgebra 
gI(dim L_~) in the l-dimensional superspace denoted by str; the representation is given by 

the supertrace. 

2) If M is a nontrivial ~-module, then M~,=/=0 and M ~ is an Lo-module. 

3) H o m ~  (I (V), Al)=HomLo (V,  A I ~ , ) .  

4) The mapping ~:[ (/~4~')-+/14, given by the formula ~:u| um where uEU(~?) and mE~4 ~,, 
is an epimorphism if M is an irreducible ~-module. 

For a proof see [11]. Thus, the description of invariant operators has been reduced to 

the description of the superspaces I(V) ~' . Elements of this superspace A. N. Rudakov called 
special vectors. It follows from Shur's lemma and the theory of the leading weight that it 

suffices to describe the leading vectors of the superspace I(V)~, relative to Lo. We shall 
formulate the description of invariant differential operators which follows from such a 

description. 

2. The Case W(n[m). THEOREM. The sequences 

d d 

O ~  C - + ~ o ~ t - +  . . . .  

d d d d d 

�9 . .  ~ - l - m ~ - m - - >  �9 �9 �9 - - > ~ , l - m - - > O  ~ r  

are exact everywhere except at E_ m. 
0 0 

by the element ~ ; l ' ' ' i l m - ~ - ~  . ' '  O ,u ,  v x  �9 

For m = I the sequence 

(I) 

m ~ O  (2) 

In this term the space Ker d/Im d is generated over C 

_~d(D~._l d ~ d ~. 1 d . . .  . . .  -+(D -+(I) + -+ (3) 

is exact for any %@ Z For %E Z there is the exact sequence 0 + ~ -> ~) ~ § I § 0. 
�9 x ( ~ z  

For n = 0 the sequence 

a a 5 a d (4) 
... -+ E_m_l-+ Y. m-+ ~0--v ~I -+... 

, O 0 
is exact, where ~=v~ ...~ is the Berezin integral. 

If c: T(VI) § T(V2) is a W(nlm)-invariant differential operator and VI and V2 are irre- 
ducible fl{ (nim)-modules, then up to application of the functor ~ either the operator c is a 
scalar operator or T(Vt) and T(V2) are neighboring terms in the sequences (I)-(4) and c is 

proportional to the corresponding operator. 

If V is an irreducible gl (nlm)-module, then in the W(nim)-module T(V) there is the irre- 
ducible submodule irr T(V) = T(V) if T(V) is not contained in the sequences (I)-(4), while in 

theother cases irrflZ----KerdNf~ ', irrOX----Kerdfl@ ~ for ;~r irrY.~----ImdN~:v 

The m o d u l e s  i r r  T(V) and  II i r r  T(V) a r e  p a i r w i s e  i n e q u i v a l e n t  and  e x h a u s t  a l l  i r r e d u c i b l e  
t o p o l o g i c a l  W(n I m ) - m o d u l e s .  

The c h a r a c t e r  o f  t h e  i n d u c e d  modu le  I ( V )  can  b e  c o m p u t e d  v e r y  s i m p l y :  

where N =l-[(l+seOO/(1--e=O, c q  is the weight of the vector ~/~ui, andBj is the weight of the 
i,7 

vector ~/~j. The resolutions (I)-(4) make it possible to compute the character of any 
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discrete irreducible module. In particular, in the finite-dimensional case we obtain three 
formulas: for irr T(V) = T(V) and the two 

ch dflr" ~= N_N ~ sgn ~ew(P +'~'1 (1 +sewP') -I, 
D 

chdEr= Nzm+' ~.~ sgn,e~(~ -1, D 

where W i s  the  Weyl group o f  the  Lie  a l g e b r a  Lo = fl! (m), 0 i s  d e f i n e d  f o r  Lo,  and ~ = Z8 i .  

3. Case S ( n l m ) .  One f u r t h e r  o p e r a t o r  i s  added to  the  i n v a r i a n t  o p e r a t o r s :  dvx -Zd :  
En_m_x + f i t .  The d e s c r i p t i o n  o f  i r r e d u c i b l e  S ( n ] m ) - m o d u l e s  i s  o b t a i n e d  f rom p a r t  2 by a 
s t r a i g h t f o r w a r d  m o d i f i c a t i o n  which  we l e a v e  to the  r e a d e r ;  s ee  [ 3 8 ] .  

4. S e r i e s  H and Po. In  t h i s  c a s e  the  s p a c e  o f  i n t e g r o d i f f e r e n t i a l  forms o f  g i v e n  d e g r e e  
w i t h  c o n s t a n t  c o e f f i c i e n t s  i s  no t  an i r r e d u c i b l e  L o - m o d u l e .  The i r r e d u c i b l e  componen ts  c o r -  
r e s p o n d  to  p r i m i t i v e  forms (see  Sec .  2) and to  s o m e t h i n g  unknown f o r  s p a c e s  o f  p s e u d o f o r m s .  

We n o t e  t h a t  f o r  t he  s e r i e s  Po the  d e g r e e  o f  a s p e c i a l  v e c t o r  i s  d e f i n e d  o n l y  modulo 2, 
and the  g r aded  Po-module  gr  Ih(V)  i s  i s o m o r p h i c  to  t he  H-module I ( V ) ;  h e n c e ,  t h e r e  a r e  no 
more t h a n  I(V) s p e c i a l  v e c t o r s  i n  I h ( V ) .  The s p e c i a l  v e c t o r s  o f  d e g r e e  --l a r e  the  same,  
while those of degree --2 differ by the leading vector of degree 0. The fact that a vector 
is special does not mean for the series Po that it generates a proper submodule. For the 
corresponding investigation and a description of the vectors for the series H see [65-7]]. 

The only H-invariant operator is d (and in the finite-dimensional case f ), to which there 
is added a scalar operator -- multiplication by the conserved form mo. Since fli----~-En_m-i, the 
differential in the space E can be considered to act in ~; in this case it is called a codif- 
ferential. 

Remark. In [68] a description is obtained of the irreducible representations of the Lie 
superalgebra H(212 ; A) - a deformation of the Lie superalgebra H(212) which preserves the 
exotic form d~! *-2A)/~ • (dpzdq~ + d~d~2). 

5. We present a description of the special vectors in the cases H(2nl]) and K(2n + ]Im) 
for m 5A 0 that remain unpublished. 

Let V be an 0~(l[2n)-module, let fi =~H~j,...Hxji~J .... Ji' where vj~...jiE V, and let x = 

(q, p) be a special vector of degree -i in the H(2n[ |)-module T(V). 

I) n = I. Let f, = Hqvq + Hpvp + H~v$. The condition that f, be a special leading 

vector has the form Hq3f, = Hp~fz = 0, whence 

We represent the Lo-module V as a graph whose vertices are weight vectors, ~[ (s) acts along 
horizontal lines, and the weight increases to the right. We obtain 

. . .  

From t h i s  i t  i s  e v i d e n t  t h a t  t he  f o l l o w i n g  c a s e s  a r e  p o s s i b l e :  l) V q @ 0 ;  2) Vq = 0 ,  v~ # 0 ;  

3) Vq = v~ = O, Vp # 0 ,  i n  which  ( •  d e n o t e s  the  w e i g h t  o f  the  v e c t o r  v) l) X(Vq) = l ,  x ( f z )  = 

0, 2) X(V$) = x(fz) = I, 3) X(Vp) = 0, x(fz) = I. 

Let fa = Hqavq= + HqHpvqp + Hpavpa + HqH~vq + HpH~vp. Restricting the representation 

in the module T(V) to H(210) , we find, considering [54], that Vq~ = 0. The conditions that 

the vector fa be special and a leading vector give 

Hq,~p = 0, Hq=op, = O, Hq,Oqp = -- 2Op,. 
From the d e s c r i p t i o n  o f  0~P(ll2)-modules (which i s  very s i m i l a r  to the d e s c r i p t i o n  o f  ~ ( (2 ) -  
modules) i t  fo l lows tha t  Vq = 0. Therefore,  only  the case Vpq=~ 0 i s  poss ib le  and then 
• = • = I. 
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2) We find by induction that the special vectors for H(2n I I) are 

a) f~=~F[q~+~-[~=-~I~fa~, where X(Vs) = (I, ..., I, 0 .... , 0) (s ones), while 

x(f:) = (I, ..., I, 0 ..... 0) (s- 1 ones); 

b) /,-~]-]~U-l-~_aH&~h where X(U) = x(fz) = (1, ..., 1); 

c) /~-----~pt~r where X(Wr) = (l ..... ], 0 .... , 0), x(fx) = (] ..... ], 0 .... , O) 

(r- ] and r ones, respectively); 

0) (s ones). 

Suppose now that V is a c0~ (m I 2n)-module and f=s+r=~K]~Kxj, ... Kxjr~j,...je, is a special 

vector of the K(2n + ]Im)-module T(V). 

We note first of all that there is the imbedding W(II 0) -v K(2n + I Im) given by the for- 

mula f(1)-~/(/. It therefore follows from the description of W(II0)-modules that the spe- 

cial vectors have the form 

~.~ K~K. , ,  ] ,  . . .  K . % ' o  ] . . . .  4. + ~,~ K~.~, . . . K , ~ , +  "o~ . . . .  , , . , , .  

Below X = (c; Xo), where c is the value on Kt, and Xo is the label of the weight rela- 
tive to the standard basis of the Cartan subalgebra in 0~p. 

a) m = I, n = 0. Let fx = K~v. Then Kt~f~ = Ktv. Hence, X(V) = 0, x(fl) =--I. Let 

f= = K1v. Then Kt~f= = --K~v. Hence, v = 0. Let f3 = K~K~v. Then Kt~fx = (K~K t -- 2k~)v = 

K,(Kt- l)v and Kt2$f3 =--4KtsK~v =--4Ktv. Hence, v = 0. 

b) m = 2, n = 0. Let f~ = aK$ + bKnv , where ab = 0 (otherwise f~ is not a weight vec- 

tor). Then Kt~f~ = b(K t -- K~)v, Ktnf~ = a(Kx + K~)v. Hence, one of the following two 

cases is possible: 

1) a=O, xCv)=(~., ~.), ~(. f , )=C~--L ~.--1); 
2) O=O, ~(~,)=(--X, ~.), ~ ( / , ) = ( - - x -  ~, X+D.  

Let f2 = aKsKnv + bK1v. Then 

K , ~ / 2  = - -  a K ~  ( K f -  K~n) v - 2 b K ~ v ,  

K t  ~ f  2 ---- a K n  (K, - -  K i n  - -  2) "o - -  2 b K . v ,  

K l a n / 2  = a ( K , ~ K n - -  K g K t n )  ~ - -  2bK~Ko  = a ( K ,  - -  K~,l) v - -  2bKg, i~ .  

Let Ktv = Ev, K~nv = Hv. Then 2b = (H -- g)a, 2b = (H + E -- 2)a, 2bg = (g -- H)a. Hence, the 

following three cases are possible: 

I) a = 0 and hence b = 0; 

2) b = 0, and hence X(V) = (I, I), x(f2) = (--I, I); 

3) ab ~ 0, and hence a = --b and • = (I, --I), x(f2) = (--I, --I). It is not hard to 

see that to the operator d~xld:Y._2-+~ z there correspond precisely two special vectors -- one 

on each subsuperspace of type T(X). 

Let f3 = aKiK~v + bKIK~v where ab = 0 (otherwise f3 is not a weight vector). Then 

Kt~f 3 = --2aK~v + ... = aK1v + ..., where the terms ... are not proportional to KI. Hence, 

a = 0. Applying Ktn, we obtain b = 0. 

Let f4 = K~K~Knv. Then 
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K,~f 4 = -- KIK~ (K, -- KSn) ~, 

Ktnf 4 = KtKn (Kf -- Ksn -- 2) v, 

K, saf 4 = -- [2K~K~Ksn + KI (Kt -- K~n)] v. 

Hence, v = 0. Thus, there are no singular vectors of degree--<--3. 

c) m = 3, n = 0. Let f, = K~v~ + KDv~ + Kov o. Then 

K~o f l = KsKsov~ + (-- Ko q- KnK~) v~ + (k~ 4- leoles~) ~o, 
K t v f  l = (Ks,1 + K,) v~ -- 2K,0ve. 

K~,o f l = -- Ksov~ + K, ov~ + Ks,vo. 

Thus, the following three cases are possible: 

I) X(Vrl) = (n + 2, n ) ,  x ( f~ )  = (n + 1, n -  1); 

2) X(VS) = (I, -- I), x(fl) = (0,- I), but the leading weight does not satisfy the 
necessary conditions: in this case V is an infinite-dimensional superspace; 

3) X(Vr = (--n, n ) ,  x ( f l )  = ( - - n -  1, n + 1).  

Let f2 = K1v + K~Knv~ + K~Knv~8 + K~Kovqs. Then 

Kso /2 = K,Ksov + Ks (-- Ko + K~K~o) vs~ + K sK oKsov~o + (-- K~ + 2K,1K~ + 2K~KoK~e) v~o, 

3 (l) 

i.e., v = cow, v~n = bw. 

K , n f  2 = K n [ - -  2a + (Kt + Ks~ --  2) bl w :4- 2K,1K~v,~o + 2K~K~ov~o + Ko (K, + Ks~ --  1) v~0, 

Ks,o/~. = (Ko -- K~K~o-- K~K~o) v~, _ (Ks + KoKso + K~K~,) Vso + (K, -- KoK,o -- K~K~,) V,o. 

Let E and H be the same as in part b). Then 

[ - -  2a + (E + H - -  2) b] w - -  2K,~ovn~ = O, (2) 

( E + H - -  1) v~0=0, (3) 

Kno~Oso = O, ( 4 )  

(H-- l ) v s o - - K ~ o b w = O  ' (5) 

Ksov~o + K~qv~ - -  b~  = O, (6) 
(1 - -  H )  V , o  - -  K i o b m  = O. 

(7) 

It follows from (7) and (1) that (I --H)vn0- 2v~0 = 0. Hence, Hvn8 =--vno. It follows from 

(3) that E = 2. We thus obtain three cases: 

l) X(Vn8) = (2,- I), x(f=) = (0,- 2). If vn8 = 0, then 

Kto [(1 + H)v~o + KnobW] = (2 + H) Ksov~o + HOrn = 2 (1 -{- H) b w. 

I f  b = 0 ,  t h e n  i t  f o l l o w s  from (2) t h a t  a = 0.  Thus ,  c o n s i d e r i n g  (2 ) ,  we o b t a i n  

2) • = (2, --I), b = 2a, x(f=) = (0, --l). 

If v~8 = w = 0, then 

3) X(V~8) = (2, --l), x(f~) = (0, 0). In all cases the fiber in the bundle is infinite- 
dimensional. 

d) n = m = |. The special vectors relative to H(2 II) and Po(2[ I) of degree --I have the 
same form. The Lo-module in L~, where ~ = K(3]I), which is "extra" as compared with Po(2Jl), 
is generated by the operator Ktq; therefore, the condition that f~ be special is Ktqf ~ -- 0. 
From it we immediately find that there are three possible cases: 

1) vq@O, X(vq)=(--2, 1), X( / , )=(--3,  0); 
2) vo=O,  v~=#O, X ( v O = ( - - 1 ,  1), x ( f , ) = ( - - 2 ,  1); 
3) vq----~s=O, *o=/=0, X(vp)=(O, 0), x ( f~) -=( - -1 ,  1). 
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Imbedding K(I[I) in K(3] I) in the obvious manner, we see that there are no special vec- 
tors of degree--2. 

We find by induction that the special vectors for K(2n + I[ 1) are in form and weight 
relative to 0~(|]2n)the same as for H(2n[l), and their weights on the center are 

a) z(v.,)------2n+s--1, z(f,)------2n+s--2; 
b) z (u)---- --n,  z( fx)=--n--1;  
c) z ( ~ v , ) = - - r + l ,  z(.f,.)-------r. 
e) n = 1, m = 2. We use the d e s c r i p t i o n  of  the s p e c i a l  vec to r s  fo r  H(212) of [69, 70]: 

I) f1=Hv~I+Hp~v2+H~q-H~v2, where X(~2)=(~, 0), % (/,) ---- (~ -- 1, 0); 

2) fl = HEvx, where X(vl)-----(~, 0), X(/,)-----(~+l, 0); 

3) f,=Hqm'q-Hpm=q-H~v,, where %(~')-----(--I, I), X (/x) ----- ( -- l, 0); 

4) /,=How2+H~v,, where %(~v2)-----(--I, 0), %(/i)=(--I, 1). 

Then the condition Ktqf I = 0, where Hf is replaced by Kf, and the conditions Ktnf x = 

Kt~f x = 0 following from it give in these four cases 

1) z(v~)=l~, z ( / , ) - - ~ - - l ;  

2) Z(Vl)=la, z{/ , )=l~-+-l ;  

3) z ( 'w ' )= - -2 ,  z { / l ) = - - 3 ;  

4) z(~o ~)=0, z ( f l ) - - - - 1 .  

Noting that the special vectors f2 relative to K(][2) have the form K~Knv or (K~Knv- 

K~)v, that relative to K(3[0) the special vector fa has the form K:v + Kp(Kqv1~ + Kpv=u), 

and observing the description of the special vectors fa relative to H(212) in [69, 70], we 
find that only K~v -- Kp(KqV~a + Kpv==) -- K$K~v can be a special vector. However, the opera- 

tions Kq~ and Kqq take this vector into a vector which on restriction to K(310) is not spe- 

cial. We find by induction that there are no special vectors of degree -.<--2 for K(2n + 1]2), 
while the vectors of degree --] have the same form as for H(2n]2) (see [69, 70]). 

f) m > 3. As shown in [69, 70], the special vectors relative to H(2n]m) for m 3 have 
the form a)-c) : 

a) f~=~Hq~v~nu~H~'q-~[-I~i~ i, where X(V m) = (l, 0, ..., 0), and x(f~) = (l- I, 0, 

. . . .  0 ) ;  

b) f~ = H~,v~, where X(V~) = (~, O, ..., 0), and x(f~) : (~ + 1, O, ..., 0); 

c) /~-H~,I~Hqi~-Z/-fp~vt-~- ~H~ivil, where X(Vm) = x(f=) = (~, 0, ..., 0). 
2~.j<m / 

From the theorem on the leading weight it follows that the fiber is finite-dimensional 
if ~ is an integer, while ~ > I in case a) and ~ >0 in cases b) and c). Replacing Hf by Kf, 

we find that 

i>2 

in case a), while in case b) Ktqlfl = -Kq~ v~. From the conditions on the vectors a) and b) 

in [69, 70] it follows that they are special. In order to find their weights, we compute 
Kt~mf2 in case a) and Kt~,f~ in case b). As for m = 2, we find that z(V) = %. 

Induction completes the description of the special vectors of degree --2; they are pos- 
sible only for K(2n + ]12n + 2) (since K(2n + l}2n + 2) preserves volume). 

6. ~ of the Series g(. ~I, N, SH and ~ For these cases see [I0, 33, 34, 37]. 

7. For a proof of exactness of the sequences (I)-(4) in the formal case see [11] and 
in the smooth case [39]. The proof of [II] goes through on the "horizontal" portions of the 
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sequences of .!P-modules for ~- W(nlm) (see 34 ), i.e., where the modules are connected by 
operators of order I. At other sites we consider the Cartan subalgebra ~ Lo. The elements 
of ~ act trivially on the homologies of the complexes considered. Since the elements of 
have all eigenvalues equal to 0 only for the sequence (4) considered as a sequence of ~- 
modules relative to the imbedding ~ W(0IN) , where N = dim L_~, the assertion regarding 
exactness of the sequence of modules has been proved. 

4. Characters of Irreducible Modules 

We note first of all that there exist two irreducible ~-modules with leading weight X: 
if one of them (with even leading vector) is denoted by VX, then the other is H(V X) and ch 
(V X) = e ch V• 

I. The characters of W(0[m)-modules are described in Sec. 3; for the finite-dimensional 
cases of the series S, SH, and their derivatives see [38, 66, 67]. We observe that by carry- 
ing N in the formulas of 3.2 under the summation sign we obtain the more symmetric expres- 
sions 

ch irr~r=- b- ~ s g n  , ch i r rE_ ,_ t=  ~ sgn ~ . w  eP- ' f , -*  ]-[ (1+Be ~') 
wE~ L ~§ D " 

2. For induced ~F-modules (-~ of the series ~, 91, e~(2]2n)) we obtain by carrying N 
under the summation sign in the numerator and introducing P = p -- (the half sum of positive 
roots corresponding to odd vectors) 

ch I (Lx)= ~'Ew 
E sgn w. e wP 

For e = I (respectively, --I) this formula becomes a "character" (respectively, "superchar- 
acter") in the sense of Kac [105, 106]. Using the resolutions for noninduced ~I (l|n)- and 
0~(2[n)-modules, we obtain the formula 

~7 sgnw.eW(X+v) I[ (1 +Be fji) 
chirr (Lz) = YE~" (Xq'P'~PI)@O 

~'~ sgn we wp 
~E~z 

where (,) is a nondegenerate invariant form on ~ . 

Conjecture. After appropriate modification in the definition of P this formula holds 
for modules over Kac--Moody superalgebras having a Cartan matrix. This conjecture has been 
proved when all odd roots are nonisotropic (see [105]). 

3. We shall show how to derive the formulas of parts I, 2. From the exactness of the 
sequence (4) and the fact that p(d) = I, we have 

chirr ~ ' = , ~  (--e)' ch ~'~r+i= ~ ~ ~ (__8)1 sgn ~e~'n +`'+imo 
t~O i>O wQW 

N ----'-D- ~'~ sgnwe ~Co+~e-,' ~ ( - - e e ' F , 9 =  N ~ sgn co eWl~ 
w f i ~  I>0 ~ E W  + 8e~0' " 

S i m i l a r l y ,  a f t e r  s h i f t i n g  byBP , the sequences  fo r  the  s e r i e s  ~[, a~(212rL) form geome t r i c  p r o -  
gressionswithdenominators e i with different i for different horizontal lines, but after 
averaging relative to the Weyl group W it is possible to compute the sequence for some one 
denominator. Together with the computations of the number (X + P, ~i) carried out in [106] , 
we obtain the required result. 

4. Theorem on the Leading Weight~ For Lie superalgebras ~l~o~(n~[2rt) for m ~ I, 2 the 
formula for the characters has not been proved as it has for AG~ and ABm. The theorem on 
the leading weight has been proved. Surprisingly enough, the conditions which must be im- 
posed on the leading weight do not coincide with the conditions for ~! These conditions, 
which are quite intricate, were found by Kac [103, ]04]. 

THEOREM. Let ~ be one of the simple, finite-dimensional, contragradient Lie superalge- 
bras, and let V be a finite-dimensional, irreducible ~-module. Then there exists a unique 
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leading weight vector X, i.e., one that is annihilated by operators corresponding to posi- 
tive roots, and if Xx = X2, then Vx ~ V2 or V~ ~ ~(V=). We normalize the Cartan matrix so 
that ~s,s+~ = I if ~ss = 0, and we let {hi} be the standard basis in the Cartan subalgebra 
of the Lie algebra ~ (see [12]). Then the labels of the leading weight Xi = x(hi) satisfy 
the following conditions: ~i ~ Z+ if i ~As, and for numbers k and b of the table 

0 k t~ 

o ~ ( 1  1 2 n )  
~ (2rn + 1 1 2n) 
o~:0 (2rn I 2n) 

D (ct) 
AG2 
AB~ 

an 112 
an--t.Zn+t-- am+n-t ~am+n I/2 
/~n - - / g r / +  I --/~m,n --(/~+n-i 

--ara+n)12 

1/2 (at --2a2--3a3) 
( 2 a x - - 3 a ~ - - 4 a 3 - - 2 a 4 ) / 3  

0 
m > l  
m>2 

2 
3 
4 

the following conditions are satisfied: k 6 Z + and k=#l for AG= and ABe, while if k <b, then 

For T h e  fo l lowing re la t ions  hold 

o~ ( 2 m +  1 12n) an+k+, . . . . .  am+n = 0  

O ~  (2m l 2n) an+k+, . . . .  = am,n for k ~ m - - 2  
m>2 am+n-t =am.n  for k = m - - I  

al=Ofor  k = O  
O (c~) (aa + 1) ~ = + (a~. + 1) for k ---- 1 

a l = 0  for k = 0  
AB3 a 2 = a 4 = 0  for kok=2 3 

a2 = 2a ,  + 1 for = 

AO2 at=0for k--0 
a~=0for k---2 

If g=~zq(rt--l) then the labels of the leading weight relative to the standard basis of 
the Cartan subalgebra in g-f are such that ai6 Z +, while if ai = 0, then al + 2a2 + ... + 

(i -- l)ai_1 = a n + 2an-x + ... (n- i)ai+x. 

For other simple, finite-dimensional g the restrictions on the labels of the leading 
weight are the same as for the Lie algebra g0 in the standard gradation of the Lie super- 

algebra 9. 

5. Other Results on Lie Superalgebras 

Structure. Kac [18-20] classified the simple, finite-dimensional Lie superalgebras 
over C. Part of his results were obtained independently by many others (see [104, 112, 127, 
130]). We indicate without proofs that the relations between the generators of a simple Lie 
superalgebrawithaCartanmatrixareanalogoust~ the relations (DR) of Sec. 0 for a Lie algebra 
if 05A~q or ~qo) For the noncontragradient Kac superalgebras ~q and ~qO) the relations have 

not been computed. 

For simple infinite-dimensional Lie superalgebras of formal vector fields and string 
theories the relations in ~§ have degree 2 for n + m ~ I0 (this estimate can sometimes be re- 

duced) where (n, m) is the dimension of the space on which the superalgebra is realized by 

vector fields. 

The classification of Lie superalgebras (infinite-dimensional, Z-graded algebras of 
finite growth) is apparently close to the stage of the classification of the analogous Lie 
algebras, and, other than the deformations and contractions of the examples of Sec. I, there 

are no other simple Lie superalgebras. 
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What is a semisimple Lie superalgebra? Let ~ be a principal bundle over a (0, q)-dimen- 
sional base ~ with gauge supergroup ~ whose Lie superalgebra g is simple. The Lie super- 
algebra of the supergroup of diffeomorphisms of the bundle ~ is S = Derg| Let 

0 0 
S i be a Lie superalgebra such that g|174 and S i (mod g| < ~ ..... ~ ). 

Then a semisimple Lie superalgebra is the sum of superalgebras of the form S i (see [104]). 

What conditions must be imposed in order that at least part of the semisimple Lie super- 
algebras can be described explicitly? Is it possible to require that Aut~c|%Y(01q ) be simple? 
The possibility suggested in [5] reduces to the direct sum of simple algebras, which is unin- 
teresting. 

An Analogue of the Lie Theorem [104]. Let g be a solvable Lie superalgebra. A linear 
form /6g* is called distinguished if l(gT)=l([gF, g~])=0. Let D be the space of distinguished 
forms, let Do={IEDll([g, g])-----0}, and let D] be the subgroup of Do generated by forms which are 
given by ]-dimensional factors in the adjoint representation of the Lie superalgebra g. 

Let d c Do be a subgroup with IEd, and let p be a representation of the Lie superalge- 
brag in the superspace V. The representations p and p% = p | I%, where I% is the ]-dimen- 
sional representation given by the character %, are called d-equivalent. 

For 16 D/Do we set gl~---{g6g]l([g, gl])-----O for gl(~g). It is obvious that g~Cgtcg,  gl is a Lie 
superalgebra, and l([g t, gt])=O. The Lie superalgebra ~cg is called subordinate to the func- 
tional Z if I([~, ~1)-----0 and gt~. 

A solvable Lie superalgebra for which all irreducible factors in the adjoint representa- 
tion are l-dimensional is called completely solvable. 

We denote by {g, l} the l-dimensional g-module defined on the basis of the form ZE D by 
the formula g(v) = l(g)v where v6{g, l}. 

THEOREM. If V is an irreducible, finite-dimensional g-module, then all irreducible 
factors of the module V considered as a gF-module are one-dimensional, while the linear forms 
on g (extended by zero to gT) corresponding to them belong to one class ZVE D/Do. 

Let [Z] s D/Do, and let ~ be a maximal Lie subsuperalgebra subordinate to the class [l]. 
Then the g-module [nd.g {~, [), where /E[/], is irreducible. Two such g-modules are Do-equivalent 
if [Z~] = [l=]. (),t} 

Any finite-dimensional, irreducible g-module V is isomorphic to a module of the form 
Ind~[~,/}, where Z 6 [ZV], while P is a maximal Lie subsuperalgebra subordinate to the func- 

tional Z. 

�9 If g is completely solvable, then everywhere above in the theorem Do can be replaced by 
D,. 

Nonsolvable Finite-Dimensional Representations. They are described for Lie superalge- 
bras of the series gi(|In), ~t(lln) and 0~(212n ) (see [37, 72]). This can be done by reduction to 
[]7] where nonsolvable representations of the superalgebra A(2) are described. 

Invariant Operators. Unary operators invariant relative to Lie superalgebras of vector 
fields have practically not been described in the nonstandard representation (see only [35]); 
almost all such operators are new, and it would be very interesting to give an interpretation 
of them. 

As we have seen, with unary operators there are associated complexes of free A(n)-modules. 
It can be shown that to such complexes there correspond bundles on pn (see [2, 3, 7]). A 
large number of natural examples of such complexes were presented above. What kinds of bundles 
correspond to them? 

P. Ya. Grozman described binary invariant differential operators in tensor fields. Lie 
superalgebras also crept into his list (see []4]). We shall consider them in more detail 
Let ~-----~i| ...,~), and let ~**= ~)f~ ; similarly, let e** = @ L~ where L~=E~{ (nl 

l>O,~c i>0.~6c 

0))| .... , ~). Then in local coordinates the Grozman operators P6 and P, are given by the 

formulas 

P6 (~,6 ~, ~.06 ~) = [v (do,) ~ -- ( -- l)~(~;l~Wo~) ] 6 ~+~ , 

Pa(X6", Ya*)=[ (v  - 1)(1~-5 v - -  1) d i v X . Y + ( - -  1)~ - 1) (9--~v-- l ) . d i v Y - - ( ~ - -  1)(v-- 1) dlv XYl 6"+~; 

2506 



where ~i, ~2E~*,-\', YEL*, 6 is the volume element, and 

div I I  D , = ~  (--1) '  dlv O, IID i. 

By m u l t i p l y i n g  the  o p e r a t o r  P6 ( r e s p e c t i v e l y ,  Ps)  by a s u i t a b l e  f u n c t i o n  o f  the  d e g ree  
o f  the  volume form, we d e f i n e  the  s t r u c t u r e  o f  a L i e  s u p e r a l g e b r a  on p a r t  o f  the  s u p e r s p a c e  

I 

H(~**) ( r e s p e c t i v e l y ,  H(L**)) .  For  example ,  Pol--!tpvv PG g ives  such a s t r u c t u r e  on II(~.**/d~*), 

Problem. Describe the domain of the operator Ps' = (I/(B + ~ -- I))Ps. Compute other 
functions f(~, ~) such that f(~, ~)Ps defines the structure of a Lie superalgebra on the part 
of the superspace L** and describe this part. 

We note that by considering twisted forms depending on ~ in such a manner that they 
decay rapidly as I~[ § ~ and passing to their Fourier transforms on ~ it is possible to 
define new operators P6' and P6" on the entire space obtained (the same goes for Ps), for 
example, 

Po' ( f ,  g ) = d ( f g ) - - ( - -  l)PCtldlf Og Of d ig ,  Ot Ot 
l 

f ,  g a r e  f u n c t i o n s  o f  x,  dx, and t ,  and I f  = --i ~ f ( x ,  dx,  t o ) d t o ,  i . e . ,  I = ( " d - l " ) /  where 

dt. 

Problem. Give an interpretation of the Lie superalgebras defined by operators obtained 
from P6 on ~** and its Fourier image (and the Same for P~). 

Grozman also described binary operators invariant relative to Lie algebras of the series 
S, H, and K. With several exceptions they reduce to W-invariant operators. Binary operators 
invariant under W(nIm) are obtained from Grozman's list if, aside from ~, we also consider 
the spaces ~ and E. 

Lie superalgebras of supersymmetry groups (the analogues of Poincare algebras) are con- 
tractions of the real forms of simple Lie superalgebras. Their extensions and representa- 
tions (including infinite-dimensional representations) are studied mainly by physicists. 
Various special results have so far been obtained [64, I19-124]. 

Cohomologies. For the definition see [31, 63]. Some cohomologies with trivial coeffi- 
cients for simple finite-dimensional Lie superalgebras have been computed in [63]. The co- 
homologies of nilpotent s ubalgebras of simple Lie superalgebras, which have a number of 
applications, have only partially been computed. The corresponding answers are presented 
above in the form of resolutions of the induced modules and in [52, I09]. 

Some cohomologies are computed in [39] in connection with the description in cohomo- 
logical terms of important differential-geometric concepts such as the Riemann and Weyl ten- 
sors, etc. 

Lie Superalgebras and Differential Equations. With the help of the point functor the 
scheme of Adler--Kostant can be carried over to Lie superalgebras without difficulty, but it 
aquires an unexpected feature: the mechanics can be described not only by the Poisson 
bracket but also by the Butane bracket [25, 41, 42]. Complete integrability of such equa- 
tions is guaranteed by the theorems of V. N. Shander (see [39]). Multidimensionalization 
has partially been considered in [30]. 

Characteristic p. Practically nothing has been done here. The definition of Lie super- 
algebras in a simple characterization requires additional conditions (see [39]). In char- 
acteristic 2 it is possible to not observe the difference between algebras and superalgebras, 
and some examples of such algebras were presented in [I]3]. 

Some Isolated Results. Invariant functions on Lie superalgebras are described in [40, 
58, 131]. Instantons are described in [16] in terms of the Grassmann superalgebra. In [24, 
39] a connection is indicated between Hill equations and "part" of KdV, orbits of the group 
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corresponding to the Virasoro algebra V, and the superalgebra ~(]). The description of 
irreducible representations of finite-dimensional Lie superalgebras [34] was later repeatedly 
rediscovered in partial form [76-78, 82-86, 88, 96, 99-102, 119-]24]. Another approach to 
the description of representations by means of analogues of Young diagrams was successfully 
applied in [79, 81]. In [115] a rather strange condition was distinguished -- congruence of 
representations of Lie superalgebras. Finally, the result of the notes [52, I]5, 128] is 
clear from their title. 

Very recently in a series of papers in Dokl. Akad. Nauk D. P. Zhelobenko obtained an 
explicit description of homomorphisms between Verma modules for simple, finite-dimensional 
Lie algebras which carries over to Lie superalgebras with a Cartan matrix and to some super- 
algebras of string theories, while I. Penkov and I. Skornyakov supered the results of [80, 
90] regarding ~)-modules by obtaining an analogue of the Borel--Weyl--Bott theorem. We note 
that another analogue of this theorem in the form of a result regarding the cohomologies of 
a maximal nilpotent subalgebra has so far been obtained (B. L. Feigin and D. A. Leites) only 
for ~! (fin) and 0~(212n) and the simplest root system in them-- with one gray circle [104, 
42] at the very end of the diagram. For subalgebras corresponding to other systems the 
answer is very complicated. Apparently, these difficulties are connected with the fact that 
it is so far unclear what serves as an analogue of the Weyl group for superalgebras. In the 
formula for characters over sl, for example, the terms are numbered by integral points of 
positive cones (z+)dim~ numbered by the Weyl group of the even part. Some isolated results 
have been obtained in [39, 5], 92]. 
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