results in the unique action
[d*0 ¢dG~V2 + (A[d?0 ¢* + h.c.)

(choosing the scale weight of the “superdilaton” ¢ so
that it appears quadratically), where we have left the
conformal supergravity implicit. As usual, the sign of
the kinetic term determines which scalar multiplet is
physical. In this case the string gauge is G = 1, while
a standard gauge would choose ¢ = 1 instead. Choosing
these gauges does not eliminate the corresponding fields
from the theory, but only pushes them into the super-
gravity multiplet, which is no longer conformal after fix-
ing the superscale gauge. Since the two multiplets differ
in off-shell field content, the supergravity multiplet will
appear to have a different auxiliary field content; this
is clearly not the case, since the axion is physical, not
auxiliary as in new minimal supergravity. Of course, this
can be seen only from the action (or scattering ampli-
tudes), but the physical nature of the axion in string
theory follows from the direct product of the two trans-
verse vectors representing physical states in any two
open strings. Again, before choosing a gauge S-duality
SU(1,1) is manifest, but only after duality transforming
G into a second chiral multiplet.

As an example of the string gauge for coordinate
invariance, we again consider a physical scalar coupled
to gravity, starting with the string gauge for scale invari-
ance as described above. In string theory the actual dila-
ton field that appears through coupling to the ghosts
or curvature of the worldsheet is the combination
o= (—g)l/ %, absorbing the measure /=g for purposes
of T-duality invariance. (In the superstring case this
definition follows from just supersymmetry: The prepo-
tentials for compensators are necessarily densities, as is
clear from the above supersymmetric cosmological
term.) Now looking at just the part of the action quad-
ratic in the field perturbations h,, and g, for purposes of
producing the simplest propagators, the best gauge-fix-
ing function is simply 9%k, 4+ Oux (or its nonlinear ver-
sion Onm(e,"®)): Adding its square to the above
coordinate invariant action leads to the quadratic part
of the gauge-fixed action

Ly ~ —h*Thay + ﬁxmx

The fact that y is the dilaton, appearing with opposite
sign to a physical scalar, was necessary to simplify the
hay kinetic term: Now its trace appears with a physical
sign, identifying it as a physical scalar, whereas in pure
gravity the trace is the dilaton, requiring a separate
he,[Jh%, term to give it the opposite sign to the traceless
part. Similar remarks apply in the supersymmetric case,
where the y-trace of the gravitino becomes the physical
spinor.
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STRING THEORY — A theory in which the fundamen-
tal constituents are one-dimensional objects, called
strings [1]. The dynamics of a relativistic string is nat-
urally governed by a the Nambu—Goto action which is
proportional to the area of the “worldsheet”, the surface
swept by the string during its evolution.

For quantization purposes it turns out to be ex-
tremely more convenient to work with the so-called
Polyakov action that contains the worldsheet metric
as a Lagrange multiplier. For the bosonic string, that
contains a tachyon, the absence of BRS anomalies fixes
the critical dimension to D = 26. For the superstring the
critical dimension is D = 10 [1].

Bibliography
(1] M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory,
Cambridge University Press 1987; M. Kaku, Introduction to
Superstrings and M-Theory, 2nd ed., Springer, 1999.
Massimo Bianchi

STRINGY SUPERALGEBRA — A 7Z-graded algebra

o0
G=Epa

i=——d
(not necessarily simple but infinite dimensional and of
infinite depth d)such that there exists a root vector cor-
responding to a real root that does notact locally nilpo-
tently in the adjoint representation (if all root elements
actlocally nilpotently, the algebra is said to be of
Kac-Moody type [2]). For the list of simple ones and
their central extensions see [1].
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SUBGROUP — A subset H of a given group G closed
with respect to the group multiplication. In other words:
ifo: G x G — Gis the group multiplication in G then its
subset H is a subgroup iff H is a group with a multipli-
cation e: H x H — H, where e denotes the restriction
0|y g- This is equivalent to the following conditions:
(i) for each a € H itsinverse a~! (with respect to the mul-
tiplication o) belongs to H and (ii) for each pair a,b € H
their product @ o b belongs to H. Sometimes these con-
ditions are written together asV a,b € H ao b € H [1].
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