SPINOR-OSCILLATOR REPRESENTATION

metric and the induced metric depends on the embed-
ding. At the Hamiltonian level there are four first class
constraints (like the super Hamiltonian and supermo-
mentum ones of ADM canonical gravity) consequences
of the local diffeomorphism invariances of the action:
they imply the independence of the description from
the choice of the 3 4 1 splitting of Minkowsk: spacetime.

Through gauge fixings one can restrict the hypersur-
faces to spacelike hyperplanes and the constraints to ten
global ones. Moreover, for all the configurations of the
isolated system with conserved timelike four-momentum
it is possible to restrict the description to those special
hyperplanes orthogonal to the configuration momen-
tum. On them only four first-class constraints survive:
i) one identifies the invariant mass of the isolated system
as the effective Hamiltonian; ii) three says that the total
three-momentum of the isolated system vanishes (rest-
frame conditions). It can be shown that these hyper-
planes, named Wigner hyperplanes for covariance
reasons, allow the definition and separation of the rela-
tivistic canonical center of mass (noncovariant New-
ton—Wigner-like position) of the isolated system and
give the intrinsic rest-frame Wigner covariant descrip-
tion of its relative degrees of freedom. The rest-frame in-
stant form of relativistic particles requires a well defined
sign of the energy for each one of them, since the inter-
section of a timelike worldline with a spacelike hypersur-
face (equal-time surface) is determined only by three
coordinates. Therefore, there is no mass-shell constraint
p* —m? = 0, but two different descriptions for the two
disjoint branches of the mass spectrum,

p° ~ +\/m? +

For the spinning particles of pseudoclassical mechanics
[5] the semiclassical description of spin is done by using
five Grassmann variables £,, &5 generating the Dirac
matrices ysy,, s respectively after quantization and
one has the two first-class constraints p> — m? ~ 0 and
put — més =~ 0.
To get their rest-frame instant form description [6]
one has to separate the positive and negative energies.
This can be done by boosting at rest the particle
(Chakrabarti representation) and by describing it with
the constraint
€—(£m) =0,

where ¢ is the invariant mass) and its spin only with
three Grassmann variables (£ with p,&* = 0 when we
put the gauge fixing &5 = 0, giving the Pauli matrices
after quantization. In this way one gets a description
of the (3,0) (for positive energy) and (0,3) (for negative
energy) massive representations of SL(2,C) (relativistic
Pauli particle without spinor equation except in the
massless case).
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The particle wave equation is the square root
Klein—Gordon equation for Pauli spinors y and is

10, =

In the case of scalar particles this pseudodifferential op-
erator has been studied by Lammerzahl [7].

m2 + Ay.
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SPINOR-OSCILLATOR REPRESENTATION — A descrip-
tion of spinor and oscillator representations from a uni-
fying point of view of Lie superalgebras, cf. [2]. These
representations are examples of the Howe duality [1]
which explains many facts of representation theory
(classical invariant theory, Capelly identities, parallel-
ism of primitive differential forms and spherical har-
monics, etc.; for more example see [2].)

To describe the representations, consider the Poisson
Lie superalgebra po(2n|m) whose elements can be
labelled by functions K[g, p, ®] over the field K in 2n
indeterminates ¢, p and m indeterminates ® the Poisson
bracket {-,-}, given by the formula

(habn =Y (5t 52— o 0)-

i<n

N~ Of 9y

(-1) o 5 for any f,g € C[p, ¢,0].
= 00; 00;

For simplicity we consider here m = 2k and subdivide
the ®’s into pairs of &’s and #’s; the case of m = 2k — 1
is even more interesting [2] and reflects a specifics of
“super”” but formulas and explanations are too long. In-
troduce: Q@ =(¢, &), P=(p,n) and set deg@; =0,
deg P; =1 for all .

Consider the following quantization, so-called QP-
quantization, given on linear terms by the formulas:

0
P—h—

g ()
where Q is the operator of left multiplication by @; an
arbitrary monomial should be first rearranged so that
the @’s stand first (normal form) and then apply (¥)
term-wise.

Q:Qw 0,



The deformed Lie superalgebra Q(po(2n|2k)) is the
Lie superalgebra of differential operators with poly-
nomial coefficients on K™*. Actually, it is an analog of
gl( V). This is most clearly seen for n = 0. Indeed,

Q(po(0]2k)) = gl(A*(£)) = gl(2" 1| 2"7).

In general, for n # 0, we have
Q(po(2n| 2k)) = “gl*(F(Q)) = diff(K"").

The Lie superalgebra q(V) = q(V, J) that preserves the
“complex structure” in V given by an odd operator J
such that J? = 1 (the two algebras corresponding to
different signs are isomorphic over C but not over R),
is another, “queer” version of the general linear Lie
algebra. For m = 2k — 1 we consider po(0|2k —1) as a
subalgebra of po(0]2k); the quantization sends
po(0 |2k — 1) into q(2¥1). For n # 0 the image of Q is
an infinite dimensional version of q, indeed (for F' equal
to either J = i(0 + ) with i* = —1 or for IT = (6 + 2)):

Qr(po(2n |2k — 1)) = qdiff(K"'¥)
= {D e »iff(K"¥) : [d, F] = 0}.

Setting deg;,. f =deg f—2 for any monomial
f€K[p,q,0], where degp, =deggq; =deg®; =1 for
all 7,5, we obtain the standard Z-grading of g =
po(2n|m); clearly, g, =osp(m|2n). Let
osp(m|2n) be a representation. The Lie superalgebras
diff(K™*) and qdiff(K"*) have indescribably many irre-
ducible representations even for n = 0. But one of the
representations, the identity one, in the superspace of
functions on K"lk, is the “smallest” one. Moreover, if
we consider the superspace of diff(K™*) or qdiff(K"*)
as the associative superalgebra (denoted Diff(K"*) or
QDiff(K™¥)), this associative superalgebra has only
one irreducible representation — the identity one. This
representation is called the Fock space.

As is known, the Lie superalgebras osp(m|2n) are
rigid for (m|2n) # (4|2). Therefore, the through map

g———)

b — gy = 0sp(m|2n) C g = po(2n| m)Q—Diff(R"F)

sends any subsuperalgebra b of osp(m|2n) (for
(m]2n) # (4]2)) into its isomorphic image. One can
also embed any rigid (e.g., simple) b into diff(K™F) di-
rectly, not necessarily into g,. The irreducible subspace
of the Fock space which contains the constants is called
the spinor-oscillator representation of . In particular
cases, for m =0 or n = 0 this subspace turns into the
usual spinor or oscillator representation, respectively.
We have just given a unified description of them.
Spinor representation is just one of n fundamental
representations of the finite dimensional orthogonal
Lie algebra of rank n, the role of spinor-oscillator repre-

SPINORS

sentations grows when we pass to infinite dimensional
algebras: all irreducible highest weight representations
representations of distinguished stringy (super)algebras
and the most interesting fundamental representation of
Kac—-Moody algebras are constructed in terms of spinor-
oscillator representation [4,6-8]. Spinor-oscillator
representation is a key ingredient in calculation of
semi-infinite cohomology [3,8,9], and manifests itself in
realization of Lie algebras and superalgebras via cre-
ation and annihilation operators [14]. See also [10-13].
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SPINORS — Let us consider D-dimensional Minkowsk:
spacetime Mp with flat metric #,, = diag(—+---+),
w,v=0,1,...,D—1. The Lorentz group is SO(1,
D —1) and the generators of the Lorentz algebra J,
obey the standard structure relations

[T, Jpo) = =iMup s + My Jus
— MygJup + e Jp

The Dirac spinor representation, denoted Sp, is defined
in terms of the standard Clifford—Dirac matrices I'y,

%
Jﬂ" = Z[rll’ FV]? {Fﬂ’ rV} = 2’1;4\}

Its (complex) dimension is given by dim¢ Sp = 2lD/2,
For D even, the Dirac spinor representation is always
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