the symmetric Christoffel symbol) is determined by two
conditions, namely the covariant constancy of the met-
ric (Guvip = OpGuv — Ffm G — I’f,v ¢, = 0) and the absence
of torsion (I'h, = I%,). The Levi-Civita connection
appears in Einstein’s theory of gravity based on the
Equivalence Principle [2], but more general connections
(with, for example, torsion [3]) may appear in certain
supergravity theories [4].
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Frans Klinkhamer

LEVI-CIVITA SYMBOL — A pseudotensor defined for
d-dimensional orientable manifolds, whose components
€4, -, aYe completely antisymmetric and normalized
to, say, €12.¢ = +1. In two dimensions, for example,
the components are €12 = —¢g; = 1 and €11 = €22 = 0.
The Levi-Civita symbol is a pseudotensor rather than
a tensor, since it picks up a Jacobian factor under gen-
eral coordinate transformations z* — ¥, cf. [1].
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LIE ALGEBRA — A vector space g in which an ad-
ditional operation, called a commutator of elements, is
defined. A commutator for elements X and Y of a Lie
algebra g is denoted as [X, Y]. A commutator is a
bilinear operation on g satisfying the following con-
ditions:

(a) [X,Y]egforall X,Y €g;

(b) [X,Y]=—[Y,X] (anticommutativity);

(© X[V, Z]+[2,[X, Y] +[Y,[2,X]| =0
(Jacobi identity).

Instead of “commutator” also the term ““ Lie bracket”
is used. If X;, Xo,..., X, is a basis of the vector space g,
then the relation [X;, X;] =3, cZ-Xk, where cfj are num-
bers, determines structure constants of the Lie algebra.
Structure constants determine their Lie algebra uni-
quely up to an isomorphism. Anticommutativity of the
commutator and Jacobi identity are equivalent to the
following relations for structure constants:

Z(cfscjk + C;;C]Sm- + C‘Zscfj) = 07

k]

k k

Cij = ~Cjis

respectively. The subspace of even elements of any Lie
superalgebra is a Lie algebra.

Anatoli Klimyk

LEVI-CIVITA SYMBOL

LIE SUPERALGEBRA — Any Zs-graded (super)algebra
whose product, denoted [--], satisfies the generalized
Jacobi identity and

[a, 8] + (1) I*[b, a) = 0,

where |a|, |b| are the degrees of a, b € A (either 0 or 1). It
reduces to some ordinary Lie algebra when A is
ungraded, i.e., if all its elements have degree 0. (see

e.g. [1)).
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Gert Roepstorff

LIE SUPERALGEBRA gl(oco|oo) — An infinite dimen-
sional and super version of gl(n). There are several types
of infinite dimensional gl’s that differ a lot in their
properties. In order to describe them, let us identify
any linear transformation with its matrix having chosen
a basis in the space V of the identity representation of
the Lie algebra gl( V). We thus replace the Lie algebra
of operators gl(V) by the Lie algebra of matrices
gl(dim V) and for an infinite (countably) dimensional
V = C* we get three definitions:

gl(co) = {X | X is a linear endomorphism of C*};

gl,(00) = {X € gl(co) | nonzero entries of X belong
to a stripe of finite width containing the main diagonal
and parallel to it};

gl;(00) = {X € gl(co) | X has finitely many nonzero
entries}.

Any of these three Lie algebras of infinite in both
directions matrices has a subalgebra of matrices whose
rows and columns are only labelled with positive inte-
gers. Denote these subalgebras by gl}r, etc. The algebras
gl;(00) are limits of gl(n) as n—oo0. These algebras are
generated by countably many Chevalley generators sub-
ject to the relations governed by the Cartan matrix cor-
responding to one of the following infinite Dynkin
diagrams (that describe sl) corresponding to the two
ways to tend n to oo:

O e — O
— (O~ ( corresponds to glf (c0))
and
O e — O
—s ++-—(Q — -+ ( corresponds to gl¢(c0))

Penkov proved that the Lie algebras gl;(co) and
gl(oc0) are isomorphic, 0f+(2oo) and os(200 + 1) are iso-
morphic, and similar statements hold for Lie super-
algebras.

227



LIE SUPERALGEBRA gl(00|c0)

For some applications these algebras turn out to be
too small, cf. [5-8]. Moreover, they have no nontrivial
central extension, so it is desirable to enlarge them so
that the enlarged Lie algebra has a nontrivial central
extension. This central extension is needed in “quantiza-
tion”.

On the other hand, the algebra gl(o0), though a natu-
ral enlargement of ng(oo), is too large for the modern
technique to handle it.

For the above-defined intermediate Lie algebras
gl,(00) and gl (co) the central extension gl with the
center z is given by the cocycle

X, Y+—tr JIX, Y] for any X, Y € gl (c0),

where J =diag(...,1,—1,...) with the 1’s occupying
the negative positions and the —1’s the remaining
positions.

A simple finite dimensional Lie superalgebra g can
possess several bases (systems of simple roots) not
equivalent with respect to the Weyl group of g;. Serga-
nova suggested several superizations of the Weyl group
all of which act by permutations of all the bases of a
simple Lie algebra g (either finite dimensional or a
(twisted) loop one) with Cartan matrix [3].

As was first noted by M. Saveliev, in applications of
Lie superalgebras to integrable dynamical systems the
base of a simple Lie superalgebra that only consists of
odd elements plays a distinguished role, [3]. In Table 6
of [3] there are listed Lie superalgebras with which there
are associated by a superization of a method by Drinfeld
and Sokolov, also described in [3], super versions of
KdVs and (with infinite diagrams) KPs, see a pioneering
paper [4] and later works [1].

Note that only a method to recover an equation from
a superalgebra is written in [3], the exceptional super
KdVs themselves corresponding to exceptional diagrams
from Table 6 of [3] were never written explicitly.

Not every Lie superalgebra possesses such a basis.
Serganova’s result implies that if the Lie superalgebra
is finite dimensional or a, perhaps, twisted loop one, or
a Kac-Moody one, it does not matter which base we
start with as long as the superalgebra possesses a dis-
tinguished base since we can reach any of the bases from
any given one with the help of any of Serganova’s super
Weyl groups.

Is it true for gl (oo|oo) which was chosen so far [1] to
study a superized version of KdV and KP with that
there is just one class of bases with respect to an ana-
logue of the Weyl group? G. Egorov showed [2] that
the answer is no and offered several versions of
gl(oo|oo) for which the answer is yes.

In what follows gl := gl(co) and an arbitrary map
p: Z—7,/2 will be called a parity function. We often
encounter the following two parity functions:
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1
pi(z) = {O,
and py(z) = z(mod2). On gl;, introduce a Lie super-
algebra structure by defining the supermatrices with
the help of a fixed parity function p and by setting
[a, b]ij = Z(aikbkj

k ) )
_ (_1)(P(Z)+P(k))(l’(])+l7(k)) bikakj) (%)

fz>0
otherwise

and denote the obtained Lie superalgebra by gl ;. The
Dynkin diagrams corresponding to p; and pg are (one
grey node and all grey nodes), respectively:

...__O ....... O__

®__O _______ O__
and

..,__® _______ ®__

Consider the following four enlargements of gl, ; with
the bracket defined by the above formula (x):

gl,, = {a=(ay) € gl |for any ido,jy there exists a
¢ = c(i,Jo) > 0 such that a; = a; =0 for all i,j such
that (i — i) — §) > c}.

There are finitely many entries in every row and
every column as well as in the first and the fourth quad-
rants of every matrix from g, .

Propesition. The supercommutator makes the super-
spaces gl, ., where x =g, [, o, or ¢, into Lie super-
algebras, i.e., [a,b] € gl,, for any a,b€ gl ,

Weyl groups for gl,  and its subalgebras. Let there
be two different parity functions p; and p; on Z. To find
out what are the conditions for these two functions to
determine isomorphic Lie superalgebras of classes ng o
glpu, ngl and glpg for p = p; and p = py, we need the
following infinite permutations groups that will serve
as analogues of the Weyl group of gl(n). In what follows
we will only consider isomorphisms of the Lie super-
algebras of classes x = g, [, 0, or ¢ which transfer their
common Lie subsuperalgebra of finite matrices gl into
itself.

Let Sz be the group of all permutations of 7, i.e. the
group of all one-to-one maps o¢: Z—7:; define the
groups

Sy, = {0 € 5z | for some ¢, > 0 we have
all ¢ such that [i| > ¢, };

Sy={o €8, |limy_
4> 0};

Sn={0e8,| limsupM_mW < 00, and
lim inf\?l\—»oo lo(0) T =l > 0}

Sp = {‘7 €5z I hmlz’[—»oo r, =l = 0}

So = {0 € 7 | lim); o MLI)\ =0 for all 1 > 0};

S.={o€ 57 ||o(i) — 1| < ¢, for some ¢, > 0 and all
i€ 7}

(7(7

> 0 for

la_(ll)Ti—o for some A, =




The following inclusions
S, cScS,CS,C8CS,CSy

hold valid. Define the action of Sy on parity functions
by setting (op)(i) = p(a(i)).

Proposition. Let p and p’ be parity functions, ¢ € S
and p' = ¢ p. Then the following formulas determine an
isomorphism ¢,: g}Ip’y—>g~IT/79:

(150(2) =z ¢a(aij) = (a’“(f/)vﬂ(j)) + StI‘(J¢(l)Z,

where (Jg); = Jo15 15 — Jiy-

Ifo € S (or S, S.), then ¢, induces an isomor-
phism of g}lpkwith élp’,l (respectively of élp’a with élp,’o,
or gl, . with gl ).

The following theorem shows that the isomorphism
problem for Lie superalgebras g}IM, gilm, gflpyo, g}Ip,c can
be reduced to the equivalence problem for the parity
functions on 7, with respect to permutations groups
Sgs i, S, and S, respectively.

Theorem Let 7€ 9, be given by the formula
1(7) = —i — 1. The Lie superalgebras g~IPh , and élm’g (re-
spectively, gl, ;and gl ,,orgl, ,and gl,, ., or gl, . and
glpw) are isomorphic if and only if there exists o € S,
(resp. Sy, or S,, or S.) such that p, = ¢(p1) (respectively
p2 = 0(p1)).

Description of equivalence classes of parity functions.
For an arbitrary parity function p and —oco < a<
b < 400 set:

0dd(p; a,b) = card{i € Z | a <4 < b, p(i) = 1},

Even(p; a,b) = card{i € Z

a<1i<b, p(i) =0},

d(p; a,b) = d(p, b, a) = %ﬂ

We will call a parity function p finite if either of the
following holds: either

0dd(p; —o00, +00) < 00
or

Even(p; —00, +00) < 00.

Both Odd(p; —00,+00) and Even(p; —oo,400) are
invariant with respect to any of the permutation
groups defined above.

On the other hand, two finite parity functions p, p’
are S.-equivalent if and only if

0dd(p; —o0, +00) = Odd(p’; —o0, +00)

Even(p; —00, +00) = Even(p’; —00, +0).
Denote the superalgebras corresponding to a finite
parity function p by

gl,,,(m]oo), where m = card(Even(p; —o0, 00))

LIE SUPERALGEBRA gl(co|oo)

or by

gl . (co|n), where n = card(Odd(p; —o0, %))

Proposition For finite parity functions the cardinalities
0dd(p; —o0, +00) and Even(p; —oo, +00) give the com-
plete system of invariants of the bases (systems of simple
roots) of gl ,(co) with respect to S..

Non-finite parity functions are subdivided into five
Sg-invariant classes according to how many infinite
values (0 to 4) are there among

Odd(pa — 00, 0>7 Even(p; —00, 0),
0dd(p; 0, +oc0)Even(p; 0, +00).

Denote by Inf the set of parity functions for which all
the four values are infinite.

Continuous invariants of certain parity functions.
Let {a;}, {b;} be two arbitrary series such that

lim a; = lim b; = £oo, lim (a; — b;)) = 00. (%)

We will say that o is a left (right) density point for p if
there is a — (respectively, +) sign in (*) and « is a limit
point of d; = d(p; a;, b;). We will call the set of all left
(right) density points for all such series the left (right)
density spectrum and denote it by Dy(p) and D.(p),
respectively.

Proposition Both D; and D, are subsegments of [0, 1].

Let d be a limit point of D,, i.e., lim d; = d for some
d; € D,. For each d; select matrices

{(ay, by): ]li)néo d(p, aij, by) = di}

as in definition of D,. Then d is a density point for
{ @i, bai}-

Let d,d € D, and {(a;, b))}, {(a}, b))} be some series
converging to d and d', respectively. Then for any
a:0<a<1l we can select (a”,b") such that
a<d <d, <y <V.

Theorem 1) D; and D, are S.- and S,-invariant; i.e., if
D, = [, ,Bl], D, = [o", f"] and parity functions p and p/
are S,-equivalent, then ol =al, o =op, /3; = ﬁ;,,
By =5y

) If0<al=p <1and 0<oa"=p" <1 for both p
and p/, then these two functions are Sy-equivalent if
and only if they have the same density spectrum.

NI0<a <p<land0<ao <p <1 for both p
and p/, then these two functions are S,-equivalent.

4) Any two non-finite parity functions that belong to
the same invariance class are Sy-equivalent.

Consider the smallest of the permutation groups, S..
The main reason to investigate it, is that for p = 0 the
Lie algebra g~IW possesses various nice properties, stud-
ied in [6], and our gl,, . for p not identically zero is its
straightforward generalization.
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For 0 € S, we have |o(a) — a| < ¢, and, therefore,
obviously

|d(a(p); a, b) — d(p; a, b)| < for any p.

2¢,
la— b
Thus, for any two series g, and b; such that |a; — b;]—o0
as 1—o00 all density limit points are o-invariant.

Conjecturally, one can describe parity functions from
Inf in terms of the density spectrum only for non-finite
functions with the property that for some ¢, > 0 there
is no interval (a, b) with b — a > ¢, on which p is con-
stant. In other words, the density spectrum b — a >of
such p should be separated from 0 and 1. We will call
such parity b — a > functions tight.

A larger group, S,, enables us to progress further:

Proposition If two parity functions have coinciding
one-point left and right density spectra and are tight,
these functions are S,-equivalent.

Applications: super Kadomtsev—Petviashvili hier-
archy, see [1].
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Dimitry Leites

LIE SUPERALGEBRA gl(4) — The Lie algebra of
“matrices of compler size” A, as the Lie algebra con-
structed on the space of the associative algebra B;, the
quotient of U(sl(2)) modulo the central character (the
ideal generated by Cs-const), where C; is the quadratic
Casimir element), by means of replacing the dot product
with the bracket [1]. The associative algebra B; was
known earlier [2].
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The associative version, B;, did not draw much
attention until recently when identified as a central sim-
ple algebra, see [4] for construction of central simple
superalgebras important for Morita equivalence which,
in turn, is important in M-theory [8].

The Lie version, gl(4), was interpreted as a simplest
example of a new class of simple (modulo center) Lie
(super)algebras: filtered of polynomial growth, see [3],
where interpretations and defining relations are given;
for representation see [5].

There can be several supertraces on generalizations of
gl(4) [9]. Apart for such unexpected features, many pro-
perties of finite dimensional gl(n) have analogs for gl(1).

In higher spin gauge theories superanalogs of gl(4)
(quotient of U(osp(1|2)) modulo the central character)
naturally appear [7]. For applications to orthogonal
polynomials see [6].
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Dimitry Leites

Likhtman, Evgeny Pinkhasovich — (b. Jan. 12, 1946,
Moscow, USSR) Together with Yuri Golfand con-
structed the first four-dimensional supersymmetric field
theory, supersymmetric quantum electrodynamics
with the mass term of the photon/photino fields, plus
two chiral matter supermultiplets [1] (a more detailed
version was published in [2]). Likhtman was the first
to observe that the vacuum energy vanishes in super-
symmetric field theories. On page 8 of [3] one can read,
in particular: ““As is known, in relativistic quantum field
theory, in transforming the free energy operator to the
normal-ordered form there emerges an infinite term
which is interpreted as the vacuum energy. It is also
known that the sign of this term is different for the par-
ticles subject to the Bose statistics and Fermi statistics.
The number of the boson states is always equal to the
number of the fermion states. From this it follows that
the infinite positive energy of the boson states in any



