where € and € are the spinorial parameters of the super-
symmetry transformations. The supersymmetry algebra
closes off-shell on each component.

The free dynamic of a massless chiral superfield is
described by the action

So = / d'zd*0d*0 D (1)
which reduced in components, reads
S = / d'z [pT1 — Y id* + FF)

The auxiliary field F' does not interact with the dynami-
cal fields and it is governed by an algebraic equation of
motion, F = 0. Therefore, it can be set to zero without
affecting the dynamics of the physical components.

The class of chiral superfields defined on a given
superspace is closed under tensor product: given two
chiral superfields ®; and ®,, the product ®;®; is still
chiral. A consequence of this property is that a mass
term can be added to the action (1) as a chiral integral
of a chiral quadratic expression

Stmass = %/ d4$d29 (D2 + %L/ d4$dzé&)2

The action Sy + Spess describes the free motion of a
massive boson and a massive Dirac fermion.

Interacting theories can be constructed as theories
with potential, by adding a superpotential term. The
well-known Wess—Zumino model given by S = Sy+
Simass + Sints Where

Sint :%/ d4$d20q)3 +%/ d4$d2é&)3

describes the dynamics of a self-interacting massive sca-
lar superfield. After elimination of the auxiliary fields,
the component action contains a massive scalar with cu-
bic and quartic self-interactions, and a massive fermion
coupled to the scalar through a Yukewa potential.

Another class of highly interacting theories in four
dimensions is the class of N=1 supersymmetric non-
linear sigma models, which are described in terms of a
Kihler potential [3], function of m chiral and m anti-
chiral superfields

S, = / d*zd*0d*0 K (0", ;)

Requiring supersymmetry implies the 2m scalar super-
fields to be the holomorphic coordinates of a Kahler
manifold.

The chiral superfield in 4d allows for a consistent
coupling to the supersymmetric Yang-Mills vector mul-
tiplet. It is then suitable for describing scalar matter in a
given representation, coupled to a gauge field. Coupling
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of chiral superfields in the fundamental represen-
tation to the vector multiplet describes supersymmetric
matter coupled to a gauge field. Coupling of a chiral
superfield, Lie—algebra valued in the adjoint represen-
tation of the gauge group, with Yang-Mills multiplet
gives an off-shell realization of pure N=2 super Yang-
Mills theory [2]. Coupling of three chiral superfields,
Lie—algebra valued in the adjoint representation of the
gauge group, with Yang—Mills multiplet gives an on-shell
realization of pure N =4 super Yang—M:lls theory [2].
Chiral superfields can be used as building blocks for
reducible representations of supersymmetry. In fact,
by the use of superprojectors [4], a generic superfield
realizing a reducible representation of supersymmetry
can be decomposed in terms of chiral field strengths.
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Silvia Penati

CLASSICAL LIE SUPERALGEBRA — The term ‘‘classi-
cal” is applied to simple Lie (super)groups (and their
Lie superalgebras) over C that constitute series (sl, o,
sp) and to selected real forms thereof, e.g., unitary
(but not other forms, even pseudo-unitary). The experts
in finite groups widen the range of applicabillity of the
term, leaving out sporadic groups, and counting the per-
mutation group S, as classical.

Though gl is not simple, it is always considered as
classical over any field.

More tolerant approach is to consider (over complex
numbers, reals) “relatives’” of simple Lie superalgebras
— their nontrivial central extensions or algebras of dif-
ferentiations, and all their real forms, like unitary and
pseudo-unitary series and extend this definition to any
field. The notion of classical object changes with time
as some used-to-be new objects become more familiar
and classical. For example, Cartan’s list of simple Lie
groups (algebras) is now divided into series and excep-
tional all of which are now classical and familiar. The
former monclassical algebras of series E are the main
characters in approaches to GUTs and what we con-
sider as monster algebras [6] might be the classical alge-
bras of M-theory.

For examples of serial and exceptional Lie superalge-
bras of various types, all of which should be regarded as
classical, see [1-5].
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CLASSICAL SUPERALGEBRA — G of rank 7 is charac-
terized [1-4] by a Cartan matrix (a;) and a subset
tCI={1,...,r} that identifies the odd generators.
The Cartan matrix can be normalized so that a; = 2 if
i¢tand a; =1 or 0 if ¢ € 7. The algebra G can be con-
structed from the 3r generators &;, fl and ﬁi, 1 € I, which
satisfy the relations

[éi,fj] = & hi, [hiy hy] = 0,
[hi, 8] = ay &,
with the following assignments of parity:
p(h) = 0; p(&:) =p(f) = 0, i¢r
p&)=p(f)=1, ier
In order to obtain a finite-dimensional algebra, the ana-
logs of the Serre relations need to be enforced; they read

(ad &) @& =0, (adf)'™™f = 0, for i#j

(&, 8] =0, [fi,fl=0, if az=0,

where (d;) is the matrix obtained from the Cartan
matrix (a;) by substituting —1 for the strictly positive
elements in the rows with 0 on the diagonal entry and
setting a; = 2 ay; if a; = 1 [4]. Further, when an odd root
is bordered by two even roots in the Dynkin diagram,
extra relations need to be imposed. For instance, the
Lie superalgebras of type A(m,n), B(m,n), C(n+1)
and D(m, n) admit a basis (system of simple roots) such
that card(t) = 1; any result obtained in this basis can be
re-expressed in any other basis with the help of the super
Weyl group, that acts transitively on the set of all basis.
(4] Then, for © = {m}, the extra relations involve the
generators (&p—i, ém, &m+1) and (fm_l, fm, fm+1) associa-
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ted to the odd root and its two nearest even neighbours
and read:

[(ad &1)2m, (ad i) en] = 0,
[(a'dfm%)fm,(adfm+1)fm] = 0.
For a complete set of defining relations see [5].
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Roberto Floreanini

CLIFFORD ALGEBRA — CIliff (p, ¢) of signature (p, q)
is the real (or complex) associative algebra with a unit
generated by elements aj, ag, ..., a,, n = p+ g, satisfy-
ing the defining relations

i # 7,
a=1, i=12,...,p, =1, j=p+1,p+2,...,n

Clifford  algebras are finite-dimensional  and
dim Cliff (p, g) = 2°*4. The elements

{ai, a;} :== a;a; + aja; = 0,

a, t=1,2,...,n, aa;, 1<j,

aiajag, 1<j<k,..., aa---a,

constitute a basis of Cliff (p, ¢), p+ ¢ = n. The Clifford
algebra Cliff (p, q) is a Z,-graded associative algebra and
Cliff (p, g) = Cliff’(p, ¢) + Cliff'(p, q) is its gradation,
where Cliff’(p, ¢) and Cliff! (p,q) are spanned by
products of even and odd numbers of elements a;,
respectively.

The Clifford algebra Cliff (1,3) is generated by 4
elements which are denoted by y;, v, ¥3, 74. The well-
known Dirac matrices yy, v, 73, 74 realize defining rela-
tions for the algebra Cliff (1, 3). The Pauli matrices o1,
o2, o3 realize the defining relations of the algebra
Cliff (3,0). We have Cliff’(3,0) =~ Cliff (2,0). The last
Clifford algebra is isomorphic to the algebra of quater-
nions.

Anatoli Klimyk

CLIFFORD SEMIGROUP — A semigroup that is both
an inverse and a completely regular semigroup. A sim-
ple consequence is that a Clifford semigroup is a semi-
lattice of groups. This means that the set of mazimal
subgroups {Sy : « € A} can be indexed by the members
of a commutative semigroup of idempotents A such that
S={S:ae€ A} and S,5 C S, for each a, € A.
The details of the multiplication in S can be readily



