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Preface

In June of 1796 the Literature Gazette, published at that time in Jena, offered

to its readers the following note (in German):
New Discoveries.

Every novice in geometry knows that it is possible to construct geometrically,
i.e., by ruler and compass, various regular polygons, namely, a triangle, a pentagon,
a 15-gon and the polygons one can obtain from each of these by consecutive doubling
the number of its sides. This was known already in the time of Euclid and, it seems,
that the reigning belief, starting from that time, is that the domain of elementary
geometry does not surpass these limits: at least I do not know any successful attempt
to expand it in this direction. Hence, the discovery that, apart from these regular
polygons, it is possible to geometrically construct a multitude of other polygons, for
ezample, a 17-gon, seems to me worth noting. This discovery is essentially a mere
corollary of a far-reaching theory not completely finished yet. The moment this
theory is completed it will be offered to the public.

C. F. Gauss from Bmunschwezg,
student of mathematics in Gotlingen.

The theory was completed five years later and published by Gauss in the 7th
section of the famous Disquisitiones Arithmeticae ( Arithmetical Studies), which ap-
peared in 1801. Gauss proved that if the number n of sides of a regular polygon
is of the form n = 2%p; - - - px, where the p; are distinct Fermat primes, i.e., prime
numbers of the form 22" +1, then the polygon can be constructed by ruler and com-
pass. In algebraic language this statement means that for the numbers n indicated
the equation z™ — 1 = 0 is solvable in quadratic radicals.

The proof of Gauss’ theorem is based on a neat algebraic theory which served
as the cornerstone for Galois theory created thirty years after Arithmetical Studies
was published.

In the 7th section of Arithmetical Studies, apart from the theory of division of
the circle, i.e., the algebraic theory of circular functions, there is a short remark, also
by Gauss, to the effect that the method he developed is also applicable to certain
higher transcendental functions; in particular, to functions related w1th integrals of
the form f

This remark beca,me a starting point for the studies of Abel, who in 1827
proved that for the same values of 7 as mentioned by Gauss, it is possible to divide
Bernoulli’s lemniscate by ruler and compass into n equal parts. To do that, Abel
had to considerably improve Gauss’ method and, what is most important, create a
new mathematical discipline — the theory of elliptic functions.

The theory of elliptic functions and its geometric twin — the theory of elliptic
curves — occupies one of the central places in mathematics having unified several
of its branches. In spite of its senior age, the theory of elliptic functions and elliptic

ix
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curves remains an alive and rapidly developing domain of mathematics; it is an
inexhaustible source of techniques, problems, and conjectures for the researchers.

In the past decade elliptic functions and curves became the subject of close
attention by experts in such nonclassical fields as algebraic topology and quantum
field theory; quite recently with the help of the elliptic curve theory Fermat’s Last
Theorem was finally proved.

The main topics of this book are the geometry of cubic curves, elliptic functions
and their properties, elliptic integrals, addition theorems for elliptic functions and
integrals, arcs of algebraic curves expressible via elliptic integrals, Abel’s theorem
on lemniscate, arithmetic properties of elliptic curves, Mordell’s theorem, theta
functions, and solutions of equations of the fifth degree.

In other words, the book is an introductory course on the theory of elliptic
functions and elliptic curves and is aimed at those who encounter this topic for the
first time. However, we hope that the book will be of interest to the experts as
well.

The book is based on three lectures written by one of us (Yu. S.) in 1991-1992
as part of lectures for students organized by the Moscow Mathematical Society.
The material of the book was collected for the optional course given by the second
author (V. P.) in 1992-1993 at the Independent University of Moscow.

In writing this book we used a vast selection of literature, both classical treatises
and various modern papers. We were greatly influenced by a remarkable paper
by M. Rosen from American Mathematical Monthly [C14] that contains a modern
proof of Abel’s theorem. We have also borrowed a lot of useful facts from wonderful
books of Husemoller [B10}, Koblitz [B12] and Stepanov [B22].

The book does not assume from the reader any knowledge beyond the limits
of beginning courses of mathematics majors in universities and is oriented to the
widest range of readers: students of mathematics and physics, teachers, and even
high school students. We hope that, having been acquainted with the subject of this
book, the reader will be able to feel the charm of the fine art that we experienced
while deciphering the works of old masters.

While the book was being written V. Prasolov benefited from a grant from the
Russian Fund for Basic Research (95-01-00846).



CHAPTER 1

Geometry of Cubic Curves

§1.1. Addition of points on a cubic

A plane algebraic curve is the set of points (z,y) € R? satisfying the equation
f(z,y) =0, where f(z,y) is a nonzero polynomial.

On certain plane curves, there exist natural laws for addition of points. For
example, such laws exist on any straight line and on the unit circle 22 +9y? =1. To
be able to add points of the line, one should fix a point O on 1t and then the sum
" of the points X and Y can be defined as the point Z such that 07 =0X + OY.

It is natural to define the sum of the points (cos @, sina) and (cos 3,sin ) on
the unit circle to be the point (cos(a + 3), sin(a + £)). This law of addition of
points can be geometrically interpreted as follows. Let E be the point (1,0), A
and B arbitrary points of the unit circle. Let us draw through E the straight line
parallel to the straight line AB; the newly drawn line intersects the circle at the
point C. Let us define the sum of the points A and B to be C.

' In this form this definition works for any conic (a second order curve). Namely,
fix a point F on a conic and consider the point at which the straight line drawn
through E parallel to AB intersects the conic for the second time to be the sum
of the points A and B. The commutativity of the operation obtained is obvious;
the point F serves as the zero element. To find the element —A, one should draw
through A the straight line parallel to the tangent at £. Only the associativity

(A+B)+C=A+(B+C)

is unclear. To prove it, denote the points A+ B and B+C by P and @, respectively.
The associativity is equivalent to the following statement: If A, B, C, E, P and
Q are points on the conic such that AB || EP and BC || EQ, then AQ || CP.

This statement is a particular case of Pascal’s theorem on a hexagon inscribed
in a conic.

EXAMPLES. a) For the parabola y = z? with the fixed point E = (0,0) the
sum of the points (z1,v1) and (z2,y2) is the point (z1 + z2,y1 + ¥z + 2x122).

b) For the hyperbola 22 — y? = 1 with the fixed point £ = (1,0) the sum
of the points (x1,v1) and (x2,y2) is the point (z122 + Y1¥y2, ¥1%2 + y221). Under
the parameterization = cosht and y = sinht this addition corresponds to the
addition of the parameter ¢.

A cubic is a plane algebraic curve Z cq;;z'y? = 0, where the greatest value
of 4+ 7 is equal to 3. On any nonsmgular cubzc, there also exists a quite natural
law of addition of points. (We will discuss in detail what a nonsingular cubic is in
§1.3.) The law of addition of distinct points of a cubic can be defined as follows.

On a cubic, fix an arbitrary point £ (it will turn out to be the zero element).
In order to add the points A and B, draw the straight line AB. It intersects the

]



2 1. GEOMETRY OF CUBIC CURVES

FIGURE 1

cubic at the point X. The point of intersection of the line X E with the cubic will
be considered as the sum of A and B (Figure 1).

In the definition of the addition we used the following property of a cubic twice:

If a straight line intersects a cubic at two points, then the line intersects the
cubic at precisely one more point.

This property seems to be almost obvious. Indeed, solve the equation of the
straight line ax + by + ¢ = 0 for z or y and substitute their values into the equation
of the cubic. We get a third degree equation. By the hypothesis, it has two real
roots and, therefore, there should exist a third real root.

In reality everything is not that simple. And the problem is not only that the
polynomial can have multiple roots. The degree of the polynomial can also turn
out to be lower than 3. In the latter case the operation of addition is degenerate:
we cannot add any pair of points and this case is for now of no interest to us. We
will discuss in §1.2 how it is possible to define addition for all points.

The commutativity of the obtained operation is obvious. It is also easy to
verify that E is the zero element. The associativity of the operation is, however,
not obvious. The equality (A+ B)+C = A+ (B+C) is equivalent to the fact that
the intersection points of the straight lines connecting the point A + B with C and
also B + C' with A lie on the cubic (Figure 2).

Denote the straight lines depicted in Figure 2 as follows:

pi=AB, py=E(B+C), ps=C(A+B)
q1 = BC, q2 = E(A+ B), g3 = A(B + C).

Assume that all the intersection points of the straight lines p; and g; are pairwise
distinct. Then the statement to be proved can be formulated as follows.

1.1.1. THEOREM. Let A;; be the intersection point of the straight lines p; and
g5, where 1 < 4,5 < 3 and the points Ai; are pairwise distinct. Suppose that it is
known that all the points A;;, except, perhaps, Ass, lie on a cubic. Then Ass also
lies on this cubic.



§1.1. ADDITION OF POINTS ON A CUBIC : 3

p A+B

FIGURE 2

PrOOF. Let p;i(z,y) = 0 and g;(z,y) = 0 be the equations of the straight lines
p; and g;. Then the third degree equation pipaps = 0 determines the triple of lines
1, p2 and p3 and the equation g;¢oq3 = 0 determines the triple of lines ¢4, g2 and
g3. The cubic apipaps + Bq1g2qs = 0 passes through all the points A;;.

It turns out that one can represent in this way the equation of any cubic passing
through eight of the nine points A;;. Let us prove this.

Choose the straight lines p; and ¢; as coordinate axes, i.e., assume that p1(x,y)
=y and ¢1(z,y) = z. Let the given cubic be determined by the equation P(z,y).=
0. The functions P(0,y) and yp2(0,y)p3(0,y) vanish at the three points A,
As; and Az on the y-axis (Figure 3). Moreover, these functions are polynomi-
als of degree not higher than 3. Therefore, P{0,y) = ayp2(0, y)ps(0,y). Similarly,

O/Au {Am [A13 T

FIGURE 3



4 1. GEOMETRY OF CUBIC CURVES

P(z,0) = fzrqa(z,0)g3(x,0). Consider the polynomial
Q(z,y) = Pz, y) — aypz(z, y)p3(z,y) — Brae(z, y)gs(z,y).

Clearly,

Q(0,y) = P(0,y) = ayp2(0,)p3(0, ) = 0.
The polynomial ao(y) + a1(y)z + az(y)z? + - - - vanishes identically at = = 0 only if
ap(y) is identically equal to zero, i.e., if this polynomial is divisible by z.

Similar arguments show that Q{z,y) is divisible by y as well, i.e., Q(z,y) =
zyQ1(z,y). The degree of Q(z,y) does not exceed 3, hence, @1 (z,y) is either a
linear function or a constant. Now, let us recall that the polynomials P, pyps and
g2qs vanish at the points Agy, A2s and Az and, therefore, the polynomial Q also
vanishes at these points. Since at all these points zy # 0, the linear function Q
must vanish at them. The points Agp, Asz and Aszs do not lie on one line, and
for a nonzero linear function f the equation f(z,y) = 0 determines a straight line.
Hence, Q1 = 0, i.e., P = ap1paps + Bg1429s.

In particular, the point Ass lies on the curve P(z,y) = 0. We have also proved
that any cubic passing through the points A;; is given by the equation

Capi1peps + Bg1¢2q3 = 0.

In other words, such curves constitute a one-parameter family. The proof of Theo-
rem 1.1.1 is now completed and, together with it, the proof of associativity of the
addition of points on a cubic. O

From Theorem 1.1.1, one can get a very simple proof of

PASCAL’S THEOREM. The intersection points of opposite sides of an inscribed
hezagon lie on one straight line (Figure 4).

FIGURE 4



§1.1. ADDITION OF POINTS ON A CUBIC 5

PROOF. Let py = AB, ¢ = BC, po = EF, o = DE, p3 = CD, g3 = AF. As
a cubic let us take the curve cut out by the equation QI = 0, where @ = 0 is the
equation of a circle and ! = 0 is the equation of the straight line UV (here U and V
are the intersection points of the lines p; with g2 and pp with ¢, respectively). Let
W be the intersection point of the lines p3 and g3. Of the remaining intersection
points of the lines p; and ¢; it is known that they lie on the curve QI = 0. The
point W also lies on this curve and it must then lie on the straight line {, since it
is not on the circle.

Instead of the circle (2 = 0 one can take any second degree curve. In particular,
we may assume that ¢} = pg, where p and ¢ are linear functions. In this case we
get

PAPPUS’S THEOREM.  Assume the points A, C and E on the straight line p
as well as the points B, D and F on the straight line q are given. The lines AB
and DE, BC and EF, AF and CD intersect at the points U, V, W, respectively
(see Figure 5). Then the points U, V and W lie on one straight line. U

FICGURE 5

Sometimes we have to apply Theorem 1.1.1 when several of the points A;;
coincide. Hence, we have to understand how we should reformulate the theorem
so that it remains true in such circumstances. In the course of the proof of the
theorem we twice made use of the possibility to distinguish the points A;;:

1) the function zy is nonzero at points Asg, Agz and Ass and, therefore, the
linear function @ vanishes at them;

2) these points do not lie on one straight line; hence, @1 = 0. (Hereafter

“ig

the sign = is sometimes used not as a congruence but to express the notion
identically equal to”.)

During the proof of Theorem 1.1.1 we only made use of the restriction of the
polynomial P to the lines p; and q;. Hence, we may expect that instead of requiring
that the points A;; are distinct, it suffices to assume that

If two (or three) of the points A;; on the line p; or q; coincide, then the re-
striction of the polynomial P to this line has at the point of coincidence a root of
multiplicity two (or three). '

This modification also concerns the point Ass.

Let us show that the formulation of Theorem 1.1.1 can indeed be modified in the
way required. The proof of the fact that the polynomial @ = P —apipaps — Fq192¢s
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is divisible by zy = p;q; works without changes. If A;; = Az = A, then at the point
A the restriction of P to p; has a root of multiplicity 2, the restriction of p;paps
to p; is identically zero and the restriction of ¢1g2¢3 has a root of multiplicity 2
because ¢;(A;;) = 0 and g (Asx) = 0. Therefore, the restriction of @ to p; has a
root of multiplicity 2 at A.

The arguments are similar for the line g; and also in the case of three coinciding
points. Hence, it is clear that the linear function (7 still vanishes at points Ass,
A23 and A32.

If several of these points coincide, we use the fact that no nonzero linear function
on the straight line can have a root of multiplicity 2. '

As for the statement of Theorem 1.1.1, it is clear that for the restriction of the
function apipops + Bq19293 to the line ps the multiplicity of the root at the point
Ass is equal to the number of lines ¢; passing through the point Ass.

For the line [ tangent to the curve F(X) = 0 at a point Xy the restriction of
F to 1 is of multiplicity 2 at the point X;. Indeed, let a point X; move along this
curve towards the point Xj. The restriction of the function F' to the straight line
XX has roots Xy and X;. In the limit position the straight line XX coincides
with [ and the roots Xy and X; merge into one root of multiplicity 2 (Figure 6(a)).
The merging of three roots takes place on the tangent to the inflection point (Figure
6(b)). In §1.3 we will discuss in detail points of multiple intersection of a straight
line with a cubic.

+1

o

(a) | (b)
FIGURE 6

For curves of degree n > 3 Theorem 1.1.1 can be generalized as follows.

1.1.2. THEOREM. Let A;; be the intersection point of the straight lines p; and
q;, where 1 < 14,7 < n; let points A;; be pairwise distinct. Suppose it is known that
all points A;;, where i+j < n+3, lie on a curve of degree n. Then the other points
A;; also lie on this curve.

PRrROOF. Let us take the straight lines p; and ¢; as coordinate axes. Let the
curve in the formulation of the theorem be given by the equation P,(z,y) = 0.
Then P,{0,y) = apy---pn and P,(z,0) = Bqy---qn. Consider the polynomial
Qn =P, —apy--pn — Bq1---q,. It suffices to demonstrate that @, = 0. It is
easy to verify that @), is divisible by zy = p1qq, i.e., Qn = p1¢i1 @n_2. It remains to
prove that the nonzero polynomial Q,,_s of degree not greater than n — 2 cannot
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FIGURE 7

vanish at the points A;;, where 4,7 > 2 and i 4+ j < n+ 3. (We shall prove this
statement by induction on n.)

Suppose that such a nonzero polynomial @,_o exists. Its restriction to the
straight line p; vanishes at n—1 points Agg, Ags, ... , Aon. Therefore, the restriction
of Q,—2 to this line is identically zero, i.e., Qp.2 = P2@n—3. The polynomial Q.3
vanishes at points forming a similar configuration of lesser size (on Figure 7 these
points are encircled with a thick curve).

These arguments illustrate the inductive step. The base of induction (n = 3)
is considered in the proof of Theorem 1.1.1. U

* )k Ok

A method of proving geometric theorems using the family of curves

(1.1) P1P2p3 + pq192q3 = 0

was developed by German mathematician Julius Pliicker (1801-1868). The idea
to represent a triple of lines as a degenerate cubic turned out to be quite fruitful.
This representation allowed one to reduce the proof of various complicated geomet-
ric theorems to an ingenious selection of the coefficient v in (1.1); this pu started to
appear often in Plicker’s papers.

Such an algebraization of geometry did not appeal to everybody. Jacob
Steiner (1796-1863) — one of the most prominent geometers of that time —
even flatly refused to ascribe signs to geometric quantities and preferred to con-
sider instead distinct variants of the points’ positions. In spite of the complicated
way of treating the subject that Steiner chose, he succeeded several times in getting
finer and deeper results than Pliicker. Steiner referred unfavorably to new algebraic
methods in geometry.

PROBLEMS

1.1.1. The straight lines AB and C'D intersect at the point P, the straight lines
BC and AD intersect at the point Q. A cubic passes through the points A, B, C,
D, P, Q. Prove that the tangents to the cubic at the points P and @ intersect at
a point that lies on the cubic.



8 1. GEOMETRY OF CUBIC CURVES
- HINT. Apply Theorem 1.1.1 in the case when Az; = Azp and Ai3 = Ag;.

1.1.2. A straight line intersects a cubic at the points A, B and C. The tangents
to the cubic at the points A, B and C intersect the cubic at the points 4;, B; and
C'y. Prove that the points Ay, B; and C) lie on one line.

HINT. Apply Theorem 1.1.1 in the case when p; = ps.

1.1.3. An octagon with sides Iy, ..., lg is inscribed in a conic. Prove that the
eight intersection points of the lines I; and ;, where j —i =3 (mod 8), lie on one
conic.

HiNT. Let p; = lp;—1, ¢; = lz;, C1 = 0 be the initial conic, and Cs = 0 be the
conic passing through 5 of the 8 remaining intersection points of the straight lines
p; and q;. Apply Theorem 1.1.2 to the curve C1Cy = 0.

1.1.4. Let the intersection points of the straight lines py =0, ..., p, = 0 be
distinct. Prove that the equation of any curve of degree n — 1 passing through all
intersection points is of the form

A An
pl_...pn(_.}__i_..-—'wm):o,
D1 Dn

where Ay, ..., A, are certain constants.

HINT. Let C' = 0 be an equation of such a curve. Consider a straight line [
not passing through the intersection points of the straight lines p;. It is possible to
select numbers A; so that at all n intersection points of I with the lines p; we have

A An
prl"'pn <_1.+.+._) :.0’
Y51 Dn

The same equality holds then at n points of any of the lines p;.

§1.2. Lines and curves on the projective plane

In the preceding section we wrote that the addition of points on a cubic is
defined, generally, not for all points. Let us illustrate this with an example of the
curve

(2.1) v =x(z—1)(z - 2)

plotted in Figure 8. Substituting the equation of the line z =  into (2.1) we get

y? = 2. The degree of this equation is equal to 2, not 3. Hence, the line z = 3

8
intersects the curve (2.1) at two points only, and the intersection points are not
multiple ones. An attempt to add these points will not be successful.

If (x,y) is a point on the curve (2.1), then

lim = = lim —— = lim — = 0.
z—00 Y T—00 /3 L2000 4/
A suspicion arises that both the curve (2.1) and the line z = % pass through an
infinite point in the direction of the y-axis. The lacking intersection point may turn
out to be situated on the line at infinity.
Let us try to augment the collection of the points of the ordinary plane with
points at infinity, thinking about these points as intersection points of parallel
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lines. Another reason for doing this is that otherwise even our formulations and
proofs of Pappus’s and Pascal’s theorems would be inaccurate. Indeed, we have
always assumed so far that the lines under consideration do indeed intersect. But
they might be parallel as well. We can certainly consider, separately, the cases
when certain lines intersect and certain lines are parallel, but this is quite tiresome
because every case requires not only a separate formulation but a separate proof.

Put the plane 7 in a three-dimensional space and consider a point O outside the
plane 7. With every point A € 7 associate the straight line OA. To the linel € w
this correspondence assigns not the whole plane Ol, i.e., the plane that contains the
point O and the line [, but the part of Ol without the line I’ that passes through O
parallel to [. If the line [y € w is parallel to the line {, then the planes Ol and Ol
intersect along a straight line, I’. It is also clear that if the point A runs along the
line [ to infinity, then the limit position of the line OA is the straight line I’.

Define the real projective plane RP? as follows. The points of RP? are the linés
passing through O. Let the lines in RP? be the planes passing through O. In this
picture the lines parallel to a plane 7 correspond to the infinite points of m and the
plane parallel to 7 corresponds to the line at infinity in 7. On the projective plane,
any two straight lines intersect at one point. The projective lines corresponding to
parallel lines in 7 intersect at a point of the line at infinity. When we forget about
7, the infinite points do not differ from the other points.

To deal with algebraic curves we have to introduce coordinates on the projective
plane. Assume that the point O is the origin of the coordinate system in a three-
dimensional space and the plane « is given by the equation z = 1. A line passing
through O consists of the points of the form (Az, Ay, Az), where z, y, z are fixed
and A runs over R. Therefore, we may consider the nonzero triples of real numbers
(w,y,z) as points of RP?; here the triples (z,y,2) and (Az, Ay, Az), A # 0, are
considered to be equivalent, and RP? is the quotient of the set of triples modulo
this equivalence relation. The line at infinity is given by the equation z = 0.

In the definition of the projective plane x, y, z and A can be taken to be complex
numbers. In this way we get a definition of the complex projective plane, CP*. The
geometry of algebraic curves in CP? is considerably simpler than that in RP2.
This phenomenon is related to the fact that over C every nth degree polynomial
has precisely n roots (multiplicities counted).
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To the curve
(2.2) v? = 2(z - 1)(z —2)
we can assign the curve
(2.3) v’z = z(z - 2)(z — 22)

on the projective plane. Indeed, equation (2.3) actually defines a curve on the
projective plane because the points (z,y, z) and (Az, Ay, Az) either simultaneously
satisfy (2.3) or not. Moreover, on the plane =, given by the equation z = 1, both
equations, (2.2) and (2.3), coincide.

Similarly, to any algebraic curve 3" a;;2'y? = 0 we can assign the curve

Z ai;z'y? 2" = 0,  where n = max(i + 7),

on the prOJecﬁive plane. Now we can verify our hypothesis that the line z = 22
and the curve y?z = z(z — z)(z — 22) meet at the infinite point in the direction
of the y-axis. Substituting the expression z = % into the equation of the curve we

get y2z = 3—;: This equation has three types of solutions, namely, (1) z =0, y is
arbitrary; (2) y = kz and (3) y = —kz, where k¥ = /3/8 and z is arbitrary. In
other words, each time we get a family of solutions, each family corresponding to

one point of CPZ.
Therefore, the line z = %z on the projective plane does, indeed, intersect the

curve considered at the three points: (1, \/—g, 1), (3, w—\/g, 1), (0,1,0). The third
point is the infinite one in the direction of the y-axis.

It is even possible to draw a sketch of what the line z = %z and the curve
considered look like in a neighborhood of the infinite point (0,1,0). To this end,
instead of the plane z = 1 one should take a plane passing through the point (0,1,0)
and not passing through the origin. Take, for example, the plane y = 1. On it, we
get the curve z = z(z — 2)(z — 22). For small = and z our curve looks almost like
the curve z = 2% (Figure 9).

FIGURE 9

‘The passage to the projective plane is helpful not only in the case considered
above. Let us show, for example, that any line on the projective plane either
entirely belongs to the cubic or intersects it (multiplicities counted) at precisely
three complex points; if we consider real points only, then it intersects the cubic at
either one or three points.
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We can find the intersection points of the straight line ax + by + ¢z = 0 and
the cubic Y7, -\ 1 qas;7'y 2¥ = 0 on the projective plane as follows. One of the
numbers a, b, ¢ is nonzero. Let, for instance, ¢ # 0. Then z = axz + [y, where
o = —afc and § = —b/c (the case @ = f = 0 is not excluded). Inserting this
expression into the equation of the cubic we get an equation of the form @ = 0,
where Q(z,y) = > b,aPy® P. The following two cases are possible:

1) All the coefficients by, are zero. Then the line az + by + cz = 0 is entirely
contained in the curve, i.e., @ is divisible by ax + by + cz.

2) Not all the coefficients b, are zero. Then

Qz,y) = bz"y* (x — t1y) - - - (T — tmy),

where r + s + m = 3. To the factor & there corresponds the intersection point
(0,1, 8) of multiplicity r; to the factor y® there corresponds the point (1,0, a) of
multiplicity s; and to the factor o — ¢;y there corresponds the point (¢;, 1, at; + 3).

A cubic polynomial ¢} with real coefficients can have either three real roots or
one. Therefore, any line on the projective plane intersects a cubic either at three
real points or at one point {multiplicities counted). Therefore, we have almost
managed to clarify how to add noncoinciding points on a cubic.

We only have difficulties with points of self-intersection or with cusp points.
The problem is that any line passing through such a point has a multiple intersection
with the curve (cf. Problems 1.2.2 and 1.2.3). Therefore, taking the sum of such a
point with any other point we never get any new points. We will discuss singular
cubics in more detail in §1.5.

Now, it only remains to investigate the addition operation for coinciding pomts
and figure out what the geometric meaning of the multiplicity of the intersection
point is. We will do this in the following section.

PROBLEMS

1.2.1. Prove that the curve 42 = z3 + pz -+ q intersects the infinite line z =0
at one point and the multiplicity of the intersection is equal to 3.

1.2.2. Prove that at the point (0,0) any line intersects the curve y* = z%(z+1)
with multiplicity not less than 2 and for the lines y = &z the multiplicity is equal
to 3.

1.2.3. Prove that at the point (0,0) any line intersects the curve y* = z*® with
multiplicity not less than 2 and for the line y = 0 the multiplicity is equal to 3.

1.2.4. Prove that on the complex projective plane any circle (z—a)?+(y—b)% =
R? passes through the infinite points (1,,0) and (1, —i,0).

§1.3. The tangents and inflection points

To add points A and B on a cubic we have to draw the line AB. How should
one act if the points A and B coincide? Let us assume that the point A is fixed and
the point B moves towards A along the given curve. Then, under certain conditions
(point A should be nonsingular), the line AB tends to a fixed line, the tangent at
A. Therefore, to find the sum A + A, instead of the line AB, we should draw the
tangent at A (provided the tangent is uniquely defined at this point).

If the curve passing through points A and B is given by an equation F' = 0, then
the restriction of F to AB has roots at points A and B. In the limit position, when
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points A and B coincide, the restriction of F to A has a multiple root. Therefore,
the restriction of F' to the tangent has a multiple root at the tangent point. This
property can be used in order to get the equation of the tangent.

Let the point P = (p;, po, ps) belong to the curve F = 0, i.e., F(P) = 0, and
let X = (z1,29,23) be an arbitrary point. The points of the projective line PX
are of the form AP + pX. The points of this line distinct from X are of the form
P +tX. Let us consider the restriction of F' to the line PX as a function of . In
the case of interest to us F is a polynomial of degree 3, hence,

F(P+1tX) = F(P) +at + bt* + ct® = Q(t),

where F(P) =0, a = 3] Fi(P)x;, and b = 3 Y Fy;(P)x;z; (here F; is the partial
derivative of F' with respect to the ith variable). The point P corresponds to
the value ¢ = 0. The polynomial Q(¢) has a multiple root at zero if a = 0, i.e.,
Z FZ(P ).’EZ = (}. 7

A point P for which at least one of the numbers F;(P) is nonzero is called a
nonsingular point of the curve. For a nonsingular point P the equation Y F;(P)x; =
0 uniquely determines the line [ tangent to the curve at P.

The tangent to the curve is geometrically uniquely defined regardless of the
coordinate system. In our approach it is not yet clear that the definition of the tan-
gent and the singularity of a point does not depend on the choice of the coordinate
system. Let us prove the invariance of these definitions.

Now we show what happens under the change of coordinates (x1,z3,z3) —
(u1,u2,us), where r; = Zj aiju;. Let G(ui,ug,uz) = F(z1(u), z2(u), z3(u)). Then

oG oF 833-& _
Gj - b—t;; - ; Bscz Buj - ZFﬁaU'

T

Since the matrix J = (a;;) is nonsingular, the triple (G, Ga,G3) is nonzero if
and only if the triple (Fy, Fy, F3) is nonzero. If f and g are rows (Fy, Fy, F3) and
(G1,G2,G3), and z and u are columns (x1, T2, 23)7 and (ug,uz, us)”, respectively,
then x = Ju and g = fJ. Hence gu = (fJ)(J™'z) = fz and the equations fr =0
and gu = 0 determine the same line.

To pass from the projective coordinates (z1,z2,73) to the Cartesian ones
(z1,72) we have to set z3 = 1. Assume p; = 1. To satisfy the condition z3 = 1
for a point of the line P, we have to express the points of the line PX in the form
P + (X — P). The expansion

F(P+4(X - P))=> Fi(P)(m; —pi)t + -
allows us to express the equation of the tangent in the form
Fl(P)$1 -+ FQ(P).CL'Q - Fl (P)pl - FQ(P)pz.

In the projective coordinates, i.e., for a homogeneous function F', the expression
> Fi(P)p; is equal to zero. The point is that for any homogeneous polynomial F
of degree n the Fuler formula

Y Fi(X)z; = nF(X)

holds. Consider a monomial M = zi* 25?25, where Y P; = n. Clearly, for the
nonnegative p; we have z;0;,(M) = p; M. It remairs to recall that p+q+r = n.
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Let P be a nonsingular point on the curve F' = 0. Then the tangent ! at the
point P is defined. The restriction of F to [ has a multiple root at P. If the multi-
plicity of this root is not less than 3, then P is called an inflection point. In other -
words, the condition a = 3 F;(P)z; = 0 must imply that b = 1 3" Fj;(P)ziz; =0,
i.e., the quadric Y F};(P)z;z; = 0 should contain the line ) I;(P)z; = 0.

Recall that the second degree polynomial 27 Az (expressed here in the matrix
form) is divisible by the linear function 271 only if z7 Az = z¥Im”z for some m.
This means that the matrix A = Im7 is the product of a column by a row, i.e.,
is of rank 1. In particular, det A = 0. Thus, if P is an inflection point, then
det(Fq;j (P)) = 0.

Let us show that for a nonsingular point on the curve the converse is also true,
i.e., if P is a nonsingular point and det(F;;(P)) = 0, then P is an inflection point.
Let us consider the quadric ¥ F;;(P)z;z; = 0. The point P belongs to it since by
the Euler formula

ZFij(P)Pipj = ZZFB'(P)PJ' = 6F(P) =0.

Moreover, the line >, F;(P)z; = 0 is the tangent to this quadric at P. Indeed, the
equation of the tangent to the quadric }_ Fi;j(P)z;xz; = 0 at P is of the form

ZFM (P)xipj =0

and by the Euler formula Z Fyj(P)z:p; = 23, F;(P)x;. We did not yet use the
degeneracy of the quadric; in any case the tangent to the curve at P is at the same
time the tangent to the quadric }_; ; F3; (P)z;z; = 0. But in the case when this
quadric consists of a pair of lines it ent1re1y contains the tangent.

Let us summarize. The set of intersection points of the curves F = 0 and
H =0, where H(X) = det(F;;(X)), contains all the inflection points of the curve
F = 0 {among these intersection points only singular points of this curve will not
be inflection points). The curve H = 0 is called the Hesse curve or the Hessian
of the curve F' = 0. If F is a homogeneous polynomial of degree n, then Fj;
is a homogeneous polynomial of degree n — 2. Therefore, H is a homogeneous
polynomial of degree 3(n — 2). For a cubic polynomial F' the polynomial H is also
a cubic one.

The invariance of the notion of the inflection point and of the Hesse curve can
be proved almost in the same way as we proved the invariance of the tangent.

Let G(ui,up, uz) = F(zy(u), z2(u), z3(u)), where z; = a;;u;. Then

e O?F Oz; Oz,
Gpg = 55 = Z B L= ZaipF’;jajq’
. ; ij

OuyOug 2015 Ouy Oug

ie., (Gpg) = JT(Fi;)J, where J = (a;;). Therefore, det(Gpq) = (det J)? det(Fiy).
Hence, the conditions det(F;;) = 0 and det(Gpq) = 0 are equivalent.

The search for the inflection points of the curve reduces to the search for the
intersection points of the curve with the Hessian. So we have to find the intersection
points of the two curves. We have already done this in the case when one of the
curves is a straight line. The equation of the straight line enables us to express one
variable in terms of the other one. Substituting this expression into the equation
of the curve we can exclude one of the variables. For the curves of arbitrary degree
we can also exclude one variable, but it is more difficult to do. To make the
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representation more visual, we will first consider curves in the Cartesian coordinates
(x,y) and only afterwards pass to the projective coordinates (z,y, z).

For simplicity, let us confine ourselves to the third degree curves. It is possible
to express the third degree polynomials F(z,y) and H(z,y) in the form

F(z,y) = aoy® + a1(z)y* + a2(x)y + as(z),
H(z,y) = boy® + b1 ()Y + ba(z)y + bs(x),

where ax(z) and bi(x) are polynomials of degree not greater than k, 0 < k < 3.
If (%0,%0) is a common point of the curves F(z,y) = 0 and H(z,y) = 0, then
polynomials f(y) = agy® + a1y? + agy + a3 and h(y) = boy® + biy® + bay + b, where
ar = ay(z) and by = by(x), have a common root yo; the converse is also true: if the
polynomials have a common root g, then the curves have a common point (o, %o)-

Over C, two polynomials have a common root if and only if they have a common
nonconstant divisor (over R the common divisor may have no roots). If apby # 0,
then the polynomials f(y) and h{y) have a common divisor if and only if there exist
polynomials h; and f; such that fh; = hf;, where the degrees of hy and f; are
lower than the degrees of H(z,y) and F(z,y), respectively.

Indeed, if f and & have a common divisor d, then we may set fi = fd~! and
hi = hd™ 1. If fh; = hf; and deg f; < deg f, then all prime divisors of f should
occur in the prime factorization of A f;; moreover, they enter with the same degrees.
On the other hand, not all of them occur in the factorization of fi.

The restriction agbg # 0 is, no doubt, bothersome but in the projective case it
is easy to satisfy. .

Let hi(y) = uoy? +ury+uz and f1(y) = voy? +vi1y+va. The equality fhy = hfi
can be expressed in the form

apug —boug =0,
a1ug  FaoUy ~bivg  —bovy = U,
astg +aiuy  +agus  —bovg  —biuy  —bpve =0,
asug “+agu; +ajup —bzvg —bouy —biva =0,
asur  +aguy —bzvy  —byva =0,

agis -"bg’Uz = 0.

This system of linear homogeneous equations with respect to v and v has a nonzero
solution if and only if its determinant vanishes, i.e.,

apg a3 dz Aag
o @1 Q9 4z
ag a3 4az ag

(3.1) bo by by b =0.
by by by bs
bo by by b

This determinant is called the resultant of the polynomials f and h. The coeflicients
ai and by depend on z and, therefore, the determinant (3.1) is a polynomial R of
z, perhaps the zero one. For every root xo of the polynomial R(x) the curves
F(z,y) = 0 and H(z,y) = 0 have a common point (zg,yo). (Observe that in the
real case the fact that zp € R does not necessarily imply that yo € R.) If the
polynomial R(z) is the zero one, then the curves have a common component.



§1.3. THE TANGENTS AND INFLECTION POINTS 15

Now, let us repeat the above arguments for the projective coordinates. Ex-
pressing the polynomials F' and H in the form

F(z,y,2) = ao2® + a1 (z,y)2° + az(z,y) + as(z,y),
H(ﬁ?, Y, Z) = b02’3 + bl(may)zz + bg(ﬂ?,y) + bB(xay):

where a; and by are homogeneous polynomials of degree k for 0 < k < 3, it is
possible to choose coordinates so that the curves F' = 0 and H = 0 do not pass
through the point (0,0,1). Then the condition we need, aoby # 0, will be satisfied.

In the projective case the determinant (3.1} is a polynomial in two variables,
R(z,y). Let us prove that R is either the zero polynomial or a homogeneous
polynomial of degree 9 (for curves of degrees m and n the degree of R(z,y) is equal
to mn). Indeed,

ap M1 Aas MNas
ap )\a1 )\2&2 )\36L3
agp )\al )\2a2 /\3a3
bo Aby A%by  A3hy
bo  Abr A%hy A%hs
bo Abr A%y A3hs |

Let us multiply the second and fifth rows by A and the third and sixth by A2, As
a result, we get a matrix for R(z,y) in which the kth column is multiplied by AF,
Therefore, A R(Az, \y) = A5 R(z,y), i.e., R(Az, \y) = AR(z, y).

In the general case

Rz, Ay) =

MPHR(Az, Ay) = A"R(z, ),

where p = 1+2+---~|—(n—1) = w—n(nzml), o= 1_;_..‘+(m+n__1) _ (m+n)(;n+n—1)

and ¢ = ’—n——(—'f%:—ﬂ

It is easy to verify that r —p — g = mn.

9 .
The nonzero polynomial R(x,y) can be represented in the form [ (yiz — z:y),
=1

where z; and y; do not vanish simultaneously. For every one of the nine pairs
(z;,y;) there exists z; such that (w;,¥;,2) is the intersection point of the curves
f = 0 and h = 0. The polynomial R(z,y) can have multiple roots, i.e., certain pairs
(5,1:) can be proportional. Therefore, not every pair of cubics has nine distinct
common points. But in the complex projective plane every two cubics have at least

one common point. Hence,

any nonsingular cubic has an inflection point
(nine inflection points, multiplicities counted).

This is precisely the property we will need in the next section.

PROBLEMS

1.3.1. Prove that a point (2o,%o) on the curve y = f(x) is an inflection point if
and only if f"(zo) = 0.

1.3.2. Prove that all points on the curve y? = (z — z1)(z — x2)(z — x3) are
nonsingular if and only if the numbers z; are distinct. '
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1.3.3. Prove that on the curve y = (z — z1)(z — 22)(x — x3) all points except
(0, 1,0) are nonsingular.

1.3.4. Let A and B be inflection points on a cubic, and C the third intersection
point of the straight line AB with the cubic. Prove that C is an inflection point.

HiNT. Apply Theorem 1.1.1 to the case when p; = py = p3 = AB and the
lines ¢1, g2 and g3 are the tangents at the points A, B and C, respectively.

1.3.5. The tangents to a cubic at the points A and B intersect at an inflection
point P and the line AB intersects the curve at C. Prove that PC is a tangent to
the curve. :

HinT. Apply Theorem 1.1.1 to the case when p; is the tangent at P, py =
p3 = AB, ¢q1 and g3 are tangents at points A and B, and ¢35 = PC.

§1.4. Normal forms of the nonsingular cubic

A cubic curve is called nonsingular if all its points are nonsingular. In this
section we prove that over C the equation of a nonsingular cubic can be reduced
by linear changes of homogeneous coordinates to any of the following forms:

1) y?z = z® + px2? + g2 (Weierstrass’ form);

2) 23 + 9% + 2% = 3\zyz.

In the first case the polynomial z® + pz + ¢ has no multiple roots (otherwise the
curve is singular) and in the second case A* # 1 (otherwise the curve consists of
three lines). '

Consider a nonsingular cubic Y a;;z'y’2*~*"7 = 0 over C. In the preceding
section we have shown that it has an inflection point. We may assume that the
coordinates of the inflection point are equal to (0,1,0) and the tangent to this
point is given by the equation z = 0. In other words, the restriction of the function
F(z,y,2) =Y a;;2°y? 2 7% to the line z = 0 (i.e., the polynomial aggz® +ag1z2y+
a127y? + ao3y®) has a root z = 0 of multiplicity 3. It follows that as, = a2 =
ags = 0 but agy # 0, since otherwise the curve considered would have contained
the whole line z = 0. The tangent at (0, 1,0) is given by the equation

F,(0,1,0)z + F,(0,1,0)y + F,(0,1,0)z = 0.

Hence, F;(0,1,0) = F,(0,1,0) = 0 but F,(0,1,0) # 0, since otherwise the point
(0,1,0) would have been singular. The value of the homogeneous polynomial
F,(z,y,2) of degree 2 at (0,1,0) is equal to agy and we may assume that ags = 1.
In Cartesian (not projective) coordinates the equation of the curve then takes the
form ' '
y* — 2(az + b)y + Ps(x) = 0,

where P; is a third degree polynomial. Making the change of variables y; = y—ar—b
we get ,
Y — (az +b)* + Ps(z) =0,
ie., ¥} = Q3(z), where Q3(x) = (ax +b)? — Ps(z) is a third degree polynomial. By
a change of the form z = Azy + u the polynomial Q3 can be reduced to the form
23 + pz1 + q.

The polynomial @3 has no multiple roots, since otherwise the equation of the
curve could have been reduced to the form y? = z%(az + 3) and for such a curve
the origin is a singular point.
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In the preceding section we proved that any cubic has 9 inflection points, multi-
plicities counted, but we could not determine whether or not all of them are distinct.
If the equation of the nonsingular cubic is expressed in the form y? = Q3(z), then
it is easy to find the intersection points of the cubic with the Hessian and show that
all of them are distinct.

1.4.1. THEOREM. The nonsingular cubic y* = Qz(x) in CP? has precisely 9
distinct inflection points.

Proor. We may assume that the polynomial ()3 has a root z = 0, i.e., the
curve considered is given by the equation f(z,y) = 0, where f(z,y) = y? — 2% —
ax? — bzx. Since the polynomial ()3 has no multiple roots, it follows that b # 0 and
a? — 4b # 0. To get an equation of the Hessian, pass to homogeneous coordinates:
F(z,y,2) = y*z — 2% — az?z — bzz®. Then

—6x —2az 0 —2az—2bz
H(z,y,2) = 0 2z 2y
—2ax — 2bz 2y —~2bx

= 8[(y? + bxz)(3z + az) — (az + bz)?2],
i.e., (dividing by 8) we have
h(z,y) =42 (32 + a) + bz (3z + a) — (az + b)>.

It is easy to find the intersection points of the curves f = 0 and A = 0. Let us
express the equation f = 0 in the form 3? = z® + az? + bz and substitute this
expression into the equation h = 0. As a result we get

(® + ag® + be)(3z + a) + bx(3z + @) — (az + ) =0,

ie.,

g(z) = 3z* + daz® + 6ba® — b* = 0.
Let us prove that the polynomial g(z) has no multiple roots. Its derivative is equal
to 12(z3 + ax? + bx). Therefore,

¢ (z) b\ _ 2y,.2
q(z) 75 (3x+a . = (4b — a*)z".
Suppose that ¢(zo) = ¢’(zg) = 0. Then zg # 0, since g(0) = —b? # 0. On the other
hand, (4b — a?)x3 = 0, where 4b — a? # 0. Hence, zo = 0. Contradiction.

We have proved that the polynomial ¢(z) has four distinct roots ;. To every
root z; there correspond two distinct values of y because y? = z3 + az? + bz; =

2,—](%2 # 0. Thus, the curves F' = 0 and H = 0 have 8 intersection points in the
finite domain z # 0. Since F(z,y,0) = —z* and H(z,y,0) = 24zy?, it follows that
on the infinite line z = 0 the curves F = 0 and H = 0 have precisely one common
point, (0,1,0). The proof of Theorem 1.4.1 is completed. 0

Any straight line passing through two inflection points contains one more in-
flection point. Indeed, we may assume that the coordinates of one of the inflection
points are (0,1,0). If (zg, o) is 2 common point of the curve y* = z® + az® + bx
and its Hessian 4 (3z +a) +bz(3z+a) = (az+b)?2, then (zo, —yo) is also a common
point. The points (0,1,0) and (zg, £y, 1) lie on the line z = zyz.
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FIGURE 10

Schematically the configuration of the nine inflection points and the twelve
straight lines that host them is depicted in Figure 10(a). A more symmetric scheme
of this configuration is shown in Figure 10(b).

Recall one of the important notions of the projective geometry. Four points
in CP? are called generic points if no three of them lie on one straight line; four
straight lines in CP? are called generic lines if no three of them meet at one point.

Points with homogeneous coordinates (z;,1;,2) = e€;, where i = 1, 2, 3,
4, are generic if and only if the vectors e;, es, e3 are linearly independent and
es = A1er + Agez + Azes, where AjAoA3 # 0. It is not difficult to show that
for any 4-tuple of generic points in CP? there exists a projective transformation
(i.e., a linear transformation of homogeneous coordinates) that maps this 4-tuple
into any given 4-tuple of generic points.

Indeed, let {e;};_; and {e;}1; be two 4-tuples of generic points. Then e, =
Arer+ Ases + Agez and g4 = H1€1 + Uag2 + Uzes, where A1 g3 #£ 0 and pipops # 0.
The projective transformation required is as follows:

i .
e; — ;€;, Where oy = X and 7= 1,2,3.
i

There is a one-to-one correspondence between the sets of points and the set of
straight lines in CP?%: to the point (a, b, ¢) there corresponds the line az+by—+cz = 0
(projective duality). If the points A and B lie on the line [, then the lines a and b
dual to A and B meet at the point L dual to the line .

To the line ax+by+cz = 0 there corresponds the point (a, b, ¢) = a. Therefore,
if CP? is subjected to the projective transformation (z,y,2) — (z,y,2)A, where A
is a nonsingular matrix, then the straight line (z,y, 2)a” = 0 turns into the straight
line (z,y,2)Aa” =0, ie., (z,y,2)(€AT)T = 0. Therefore, the transformation law
of the coordinates on the line is a ~ aA?. This transformation is also a projective
one. Hence, the projective duality makes it possible to prove that any 4-tuple of
generic lines can be turned into any other 4-tuple of generic lines by a projective
transformation.
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1.4.2. THEOREM. By a change of coordinates the 9 inflection points of a cubic
curve can be transformed into the following set of 9 points:

(0: 17 """1) (0,82, E) (0151 —52)
( 1,0, 1) (W527 07 1) (*5) 0, 1)
(1,-1,0) (-&,1,0) (—£21,0),

wheree® =1 ande # 1, de, €2 +e+1=0.

PROOF. The straight lines 189, 463, 527 (Figure 10(b)) cannot intersect at one
point. Indeed, let B be a common point of these lines. Any 4-tuple of generic
points in CP? can be transformed by a projective transformation into any other
four generic points. Therefore, we may assume that the points R, 1, 5 and 6 are
real ones. Then all the other points of the configuration are also real. It is easy to
see that this is impossible.

Adding the line 145 to the indicated triple of lines we get a 4-tuple of generic
lines. Therefore, we may assume that the lines 145, 189, 463 and 527 are given
by the equations z+y+ 2 =0, x =0, y = 0 and z = 0, respectively. Then the
coordinates of the inflection points are of the following form:

(0,1,-1) (0,a,—b) (0,¢,—d)
(4.1) (-1,0,1) (-d’,0,1) (~c',0,1)
(1:"110) (—b,1170) (-—d’,l,O),

where all the numbers a, b, ... , d’ are nonzero.

The points (0, a,—b), (—a’,0,1), and (—¥',1,0) lie on one straight line, namely,
on line 862. Therefore, ab’ = ba’ and we may assume that ¢ = o’ and b = b,
Similarly, ¢ = ¢ and d = d'.

Considering the lines 167 and 123 we get ¢ = d and b = ¢, respectively. Con-
sidering the lines 538 and 596 we get a = bc and ¢ = ad, respectively. It follows
that 8% = 1 and a = 2. It is also clear that b # 1. Substitutinga =¢e?,b=¢,c=¢
and d = £ into (4.1) we get the points required.

It is easy to verify that the remaining eight lines containing triples of given
points are given by equations of the form x + ay + B8z = 0, where « and (§ take
values 1, € and £2. O

With the help of Theorem 1.4.2 it is easy to prove that any nonsingular cubic
can be reduced to the form z3 +1y° + 23 + 3 zyz + 0. Indeed, let the inflection point
of the given curve have the coordinates indicated in the formulation of Theorem
1.4.2. These points belong to both the triple of lines zyz = 0 and the triple of lines

(z+y+z2z)(xz+ey+ £2z)(x + &2y 4-ez) = 0.
Therefore, any cubic passing through these nine points is given by the equation
pryz 4+ v(z +y+ 2)(z + ey +e22)(z + 2y +e2) = 0.
It remains to note that

(x+y+2)(x+ey+e22)(x+ %y +ez) = 2° +4° + 2° — 3zye.



20 1. GEOMETRY OF CUBIC CURVES

PROBLEMS
1.4.1. Prove that there is a linear change ' = ax + b that reduces the curve
v’ = (z - 21)(@ — 22)(z — x3)
to the form
v =2'(z' — 1)@’ — ), where A= (z3—z1): (z2—z1).
In this way we can get 6 distinct values of A for the same curve, namely,
A AL 1= =0T =DaTh, ap =1L

1.4.2. Let F = 0 be the equation of a cubic, and H = 0 the equation of its
Hessian. Prove that AF'+pH = 0 is the equation of a cubic with the same inflection
points as the initial curve (assuming that the initial curve is nonsingular).

1.4.3. Prove that the curve z® + 9% + 2% = 3\zyz is nonsingular if and only if
A3 1,

1.4.4. Prove that the curve z3 + y*z + azz® = 0 is the Hessian of its own
Hessian.

1.4.5. Prove that the curve z3 + 32 + 23 = 3uzyz is the Hessian of the curve

z% + 12 + 2% = 3Axyz if and only if p = —43—"3)‘;.

§1.5. Singular cubics
The equation of a nonsingular cubic curve can be written in the form
Yy’ = (2 —z1)(z - 22) (2 — 23),

where the numbers z1, 22 and 23 are distinct. In the real case such a curve is shown
in Figure 11.

Ji

TN\

uﬂz? % ;

FIGURE 11

Let z; < 29 < 3. When the roots x; and xz; merge, we get a curve of the form
y? = z?(z — 1) (see Figure 12(a)); when the roots x5 and 23 merge, we get a curve
of the form y? = z*(x + 1) (see Figure 12(b)). Over R these curves are distinct,
but over C the distinction between them disappears.

If all the three roots merge we get the curve y? = z® (see Figure 12(c)). For
all three curves the origin is a singular point.

Any straight line y = kz intersects the curves y? = z?(x £ 1) and 3% =
at the singular point with multiplicity at least two. Indeed, for the equations

3
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FIGURE 12

k*z? = z?(z + 1) and k2% = 2° the root z = 0 is at least a double one. Therefore,
for any straight line connecting the singular point with another point on a cubic
the third intersection point is the singular point. Therefore, the addition of the
singular point to any other point should always give the singular point. Hence, we
cannot define addition for the singular point. But if we exclude the singular point,
then for either of the curves y? = z?(z + 1) or y* = z° the addition of points is -
well defined. If for the zero element we take the infinite point in both cases, then
the curve 42 = z?(x + 1) over R turns into the group of nonzero real numbers
with respect to multiplication and the curve y? = z* turns into the group of real
numbers with respect to addition.

(Over C we get the group C\ {0} with respect to multiplication and C with
respect to addition, respectively.)

Let us start with the curve y? = 3. This curve admits a rational parame-
terization £ = ¢~2, y = ¢t~3. The intersection points of this curve with the line
ax + by + ¢ = 0 are determined by the relation ct® + at +b = 0. If the line does not
pass through the singular point, then ¢ % 0. In this case we get a cubic equation
with the zero coefficient of 2. The sum of the roots of such an equation is equal
to zero: t3 + &2 +t3 = 0. Let us take for the zero element F the infinite point
corresponding to the parameter tg = 0. Assume t4 and {5 to be the values of
parameter corresponding to the points A and B of the given curve. The straight
line AB intersects the cubic at a point X; we have t4 +tg +1tx = 0. The line
EX intersects the curve at the point A + B, ie., tg +tx +tatrp = 0. Hence,
ta+rp = —tx = ta +tp. Hence to add points on the curve y? = z2, we must add
the corresponding values of the parameter . Observe that to the singular point
there corresponds the value t = oo of the parameter. _

The curve y? = z?(x + 1) also admits a rational parameterization. Indeed, let
y = tz. Then t?2? = 2%(x + 1), ie, 2 =t? — 1 and y = tz = t* — t. The straight
line az + by + ¢ = 0 intersects the curve y? = z%(x + 1) at the point whose value of
parameter satisfies the relation

3

a(t® = 1) +b(t* —t) +c = 0.

If b # 0, then after the division by b we get a cubic equation with coefficient 1 of ¢
and —1 of t. The roots of such an equation satisfy the relation t1to+tota+t3t; = —1.
A simpler relation can be obtained after the reparameterization

t=(14+7)(1-7)""
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Indeed, it is easy to verify that 7573 = 1. For the zero element £ take the infinite
point corresponding to the value of parameter 7y = 1. To find the sum A + B,
we must consider the point X at which the straight line AB intersects the cubic.
Since TaTTx = 1 and Tx7TgTarp = 1, it follows that 7448 = Ta7. When we -
add points of the curve y? = z?(x + 1), we multiply the corresponding values of
parameter 7. To the singular point there corresponds not one but two values of
each of the parameters ¢ and 7, namely, t = 1 and 7 = 0, oo (see Figure 13).

r
f + 00 +1
+1
0 -1 0
-1 00
— 0 +1
FIGURE 13
PROBLEMS
1.5.1. Prove that the points (£72,£7°%), ..., (t52,15°) on the curve z® = 32 lie

on a second degree curve if and only if ¢t; +--- +t = 0.

1.5.2. The curve y? = z%(z — 1) has a rational parameterization z = % + 1,
Y = t3 +¢. Prove that the points corresponding to the values of parameter ¢, t;
and t3 lie on one straight line if and only if ¢1ty + tots + t3t) = 1.

§1.6. No nonsingular cubic admits a rational parameterization

The singular cubics that we studied in the preceding section admit a rational
parameterization. Now we prove that none of the nonsingular cubics admits a
ra,tlonal parameterization. Recall that a nonsingular cubic can be reduced to the
form y? = z(z — 1){z — ), where \ # 0, 1.

THEOREM. If A £ 0,1, then there are no polynomials Py, P, Q1, Q2 such that
the nonconstant functions y(t) = P1(t)/Pa(t) and =(t) = Q1(1)/Q=(t) satisfy the
relation y* = x(z — 1)(z — A).

Proor. Suppose that Py(t)/Pa(t) and Qq(t)/Q2(t) are not constants and

Pl & N O S

P} Q@ Q2 Qe

Then we may assume that the polynomials P; and P, are relatively prime and so
are ()1 and (). Since

PEQ3 = PEQ(Q1 — Q2)(Q1 — AQ2),

it follows that the polynomial P2, which is relatively prime to PZ, is divisible by Q3
and the polynomial Q3, which is relatively prime to Q1, Q1 — @2, and Q1 — AQa,
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is divisible by P?. Hence, the polynomials Q3 and P¢ are proportional to each
other. Therefore, by replacing Py with a proportional polynomial we can obtain
the equality

(6.1) P? = Q1(Q1 — Q2)(Q1 — AQ2).

Moreover, the polynomial Q3 is the square of a polynomial; hence, Q2 is also the
square of a polynomial.

The polynomials @1, ¢1 — @2 and @1 — AQ2 are pairwise relatively prime and,
therefore, the equality (6.1) implies that each of them is a perfect square. Thus,
in the family of polynomials of the form a@); + 8Q2, where o, 8 € C, there are 4
perfect squares, namely, @1, Q2, @1 — Q2 and @1 — AQ2; these polynomials are not
proportional and they are distinct because A # 0, 1.

To get a contradiction let us show that on the projective line a@; + 8Q2, where
Q1 and @, are relatively prime, not more than three points can be perfect squares.
Indeed, suppose that on this projective line there are four perfect squares:

R?, R?, oiR?-pBR: and «R; - BRj.

Since the polynomials R; and R, are relatively prime, it follows that the polyno-
mials ,/0; Ry + +/B; Ry should be perfect squares. As a result, from the projective
line a@Q; + BQ, on which there are four perfect squares we come to the projective
line o Ry + @R, on which there also are four perfect squares. From this projective
line we can come to another projective line, etc. But each such passage decreases
the maximal degree of every polynomial of the form a(} + Q)2 at least by a factor
of two. Contradiction. O

PROBLEMS

1.6.1. Give an example of relatively prime polynomials ¢; and (2 for which
the polynomials @1, @1 + Q2 and Q; + 2Q)2 are perfect squares.






CHAPTER 2

Elliptic Functions

The addition of points on the circle is related to its parameterization by the
functions sine and cosine. Indeed, consider the map f : R — S given by the
formula f(t) = (cost,sint). This map parameterizes the circle by real numbers in
such a way that the addition of points on the circle corresponds to the addition of
real numbers. A

A similar parameterization exists for cubics. It is obtained by means of elliptic
functions. Under this parameterization the addition of points on a cubic defined in
Chapter 1 corresponds to the addition of the values of the parameter.

In this chapter we will study the main properties of elliptic functions and show
how one can parameterize a nonsingular cubic with their help.

The name elliptic functions stems from ellipse, but the relation is rather indi-
rect. It is elliptic integrals that are in direct relation to the ellipse. The length of
an arc of the ellipse is expressed by an elliptic integral of a particular form. This is
precisely where the name elliptic integrals stems from. Elliptic functions appeared
in the process of inversion of elliptic integrals of another particular form not related
to the computation of the arc length of an ellipse.

Elliptic integrals appeared as early as the seventeenth century in calculations of
arc lengths of certain curves, primarily ellipses. Apart from the ellipse an interesting
example is Bernoullz' ’s lemniscate whose arc length is given by an integral of the
form fo \/1*3"7’ It was for this integral that the Italian mathematician Count

Fagnano obtained in the first half of the eighteenth century the addition theorem

¢ dx o de (7 dz
where
iy 2y Ve
14?52
Euler was interested in Fagnano’s studies. Euler managed to obtain the addi-
tion theorem for integrals of an even more general form,

/ az where P(z) = 14 ma® + na*.
0

VP(z)

Namely, he proved that

/\/F(x‘ ﬂ\/g‘m‘):f iﬁm)

25
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where
VP(B) + By/Pla)

1 —na?3? '

Euler also obtained addition theorems of an even more general form.

After Euler, Legendre tirelessly worked for many years on the development
of the theory of elliptic integrals. He summarized the results of his studies in
the book Ezercises de calcul intégral (Ezercises on Integral Calculus), published in
1811-1819. A revised edition of this book was issued in 1827-1832 under the name
Trailé des fonctions elliptiques et des intégrales eulériennes (Treatise on Elliptic
Functions and FEuler Integrals). These are three large volumes that contain a vast
number of theorems on properties of elliptic integrals and their applications.

Legendre called elliptic functions what are nowadays called elliptic integrals.
After works of Abel and Jacobi the importance of Legendre’s book dwindled. Abel
and Jacobi themselves, however, referred to Legendre’s book with great respect, as
befits it. '

Elliptic function theory proper began with Abel’s work Recherches sur les fonc-
tions elliptiques (Studies on Elliptic Functions) published in 1827-1828 in Crelle’s
journal. Abel showed that the inversion of an elliptic integral of the first kind,

(84
")/:

é:f dx
V(1 —cz?)(1+ eo:z)’

gives rise to a function @(«) that has two periods in the complex domain. Abel
meticulously studied the equations that relate p(«a) with ¢(na). Jacobi started to
study elliptic function theory almost simultaneously with Abel. This led to a tense,
albeit short, competition between them. Without a permanent position, almost
in poverty, Abel finished the second part of the Recherches ... and continued his
intensive studies. But soon he became seriously ill and died in 1829 at the age of
27.

Long before Abel and Jacobi, Gauss had known much of what was discovered
by them. But Gauss did not publish his results.

* ok %

It is convenient to consider elliptic functions as functions of a complex variable.
Many of their properties are developed only on the complex plane' C, and not on
the real line R. The parameterization of a cubic curve is also more graphic over
C. Therefore, we will start with the investigation of the topology of a nonsingular
cubic in CP?. It turns out that from the topological point of view all such curves
are alike: all of them are two-dimensional tori.

§2.1. The topological structure of nonsingular cubics in CP?

The equation of any nonsingular cubic in CP? can be reduced to the form

(1.1) v Y2z = (x — a12)(z — apz)(x — azz),

IIn algebraic geometry this set is usually referred to as complex line; but the authors use the
term more usual among geometers. Translator.
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where the numbers a; are pairwise distinct. This equation determines a complex
curve in CP? whose complex dimension is equal to 1 and whose real dimension is
equal to 2.

To find the topological structure of the curve (1.1) in CP2, consider the pro-

jection

o p:CP?\ {(0,1,0)} — CP!, (z,y,2) (z,2).

The complex projective line CP! (a one-point compactification of C) is homeomor-
phic to the two-dimensional sphere S?. For b # 0 the equation y? = b has precisely
two distinct solutions. Therefore, if z # 0 and x—a;z # 0, then a point (z, z) € CP!
has exactly two preimages that belong to the curve (1.1). If z 5 0 but z/z is equal
to one of the numbers a;, then there is only one preimage. For z = 0 the equation
(1.1) turns into the equation 2> = 0. Therefore, the point co = (1,0) also has only
one preimage, namely, (0,1,0). More exactly, the preimage of the point (1, z) also
tends to (0,1,0) as 2 — 0.

THe projection p of the curve (1.1) on CP! is described as follows. If we exclude
from CP! the points ay, as, as, and 0o, then all points have exactly two preimages.
The structure of the map in vicinities of points a; and oo should be studied in more
detail. For simplicity, assume that a; = 0. Consider affine coordinates, i.e., set
z = 1. The projection of the curve {1.1) on CP! in this coordinate system can be
described as (z,y) — x. Then (1.1) takes the form

Y’ = z(z — az)(z — aa),

where asas # 0. For points z close to zero the quantity (z — ag)(z — a3) is almost
a constant, i.e., we have almost the equation y? = cz. This equation has solutions
of the form z = c\2e?*,y = che??. As @ varies from 0 to m, we perform a full
revolution around the point (0, 1) on CP!. Under such a revolution, y changes
sign. Lifting the revolution around (0, 1) on CP? to the curve (1.1) we do not get
back the initial point (see Figure 14). But by performing the revolution once again
we return to the initial point, since by changing the sign of yg twice we get yp. .

(xo’ 'yo)

(wo:"‘yo)

Ly
Figure 14

The structure of the projection of the curve (1.1) on CP! in a vicinity of co is the
same as that in the vicinities of the a;. Indeed, let z = 1. Then in a neighborhood
of z = 0 the equation (1.1) looks approximately as y? = % and, hence, the sign of
y changes under a full revolution about the point z = 0.
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Let us cut CP! from a; to ap and from as to co. The liftings of these cuts to
the curve (1.1) divides it into two parts. Indeed, advancing along any closed path
in CP! that does not intersect the cuts we will circumvent the points a1, as, a3
and oo only in pairs and under the passage around two points the value of y does
not change. Therefore, it is impossible to get from one preimage of a point of CP?
into its other preimage without intersecting the cuts.

/ in CP?

CP!

Ficure 15

If we cut CP! from a; to az and from a3 to co, then the remaining part of
CP? can be represented in the form of a plane with cuts, as in Figure 15. The part
of the curve (1.1) that lies above this plane consists of two pieces. We only have
to understand how to glue these pieces. Traversing a cut in CP! we go from the
boundary marked with a plus sign on one piece of the curve (1.1) to the boundary
marked with a minus sign of the other piece. Hence, when the boundaries are glued,
we get a torus (Figure 16). ‘
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FIGURE 16

A parameterization of a cubic in CP? can be determined by means of a map
f: Ct — CP?, where f(z) = (Fi(2), F2(z),1). The image of this map should be
a torus. The simplest map of C! to a torus is obtained by the identification of all
points of the form z + nw; + mwy. In other words, w; and wo are periods of the
functions F; and Fb. '
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§2.2. The elliptic functions

A function f is called doubly periodic if f(z + nwi + mws) = f(z} for any
m,n € Z and some w; and wy such that w; Jwa &€ R; for definiteness, we assume
that Im(w; /we) > 0. This means that the rotation from w; to wy on the complex
plane? is performed clockwise (Figure 17).

Wy

FIGURES 17

In what follows we will only be interested in meromorphic doubly periodic
functions. Recall that an analytic function is called meromorphic if in the finite
domain of C it has no singular points other than poles. In a vicinity of any finite
point @ a meromorphic function f can be expanded in the series

f(2) =colz—a) +ec(z—a) T+,

where ¢y # 0 and r is an integer. A meromorphic doubly periodic function is called
an elliptic function.

FIGURE 18

Any complex number z can be represented in the form z = ajwy + asws, where
a; € R. The number a; can be represented in the form of the sum of its integer and
fractional parts and, therefore, an elliptic function is completely determined by its
values in the fundamental parallelogram (Figure 18)

{0110.)1 -+ Qiolg l 0<a,ay < 1}.

The image of the fundamental parallelogram under any parallel translation will also
be called the fundamental parallelogram.

2.2.1. THEOREM. An elliptic function without poles is o constant.

2By the complex plane we mean the real plane R? with a complex structure, i.e., the complex
plane is a 1-dimensional complex vector space.
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PROOF. Suppose that an elliptic function f(z) has no poles. Then the function
| f(2)| is continuous on C. Since the fundamental parallelogram is compact, | f(z)| <
M for a number M. But then |f(z)] < M for all z € C. Thus, f is a bounded
analytic function on C. By Liouville’s theorem, f is a constant. !

All finite singular points of a meromorphic function are isolated. Hence, the
fundamental parallelogram contains only a finite number of singular points. There-
fore, there exists a parallel $ranslation of the fundamental parallelogram such that
there are no singular points on its sides. In what follows we will assume that there
are no singular points on the sides of the fundamental parallelogram.

STATEMENT. Let P be the fundamental parallelogram with the vertices o, a +
Wi, 4wy +we and a+ws, and 8P its boundary (Figure 19). Then [y, f(z)dz =0
for any elliptic function f(z).

a+w1+w2

a—i—wl
Oz+w2

FiGUuRrE 19

ProOF. Indeed, this integral is the sum of certain expressions among which
there are, e.g., f;+w1 f(z)dz and ff:;ﬁwz_ f(z)dz with signs plus and minus, re-
spectively. These integrals are equal, since f(z+ws) = f(z). Similarly, the integrals

along the other pair of sides also cancel. 0

This statement allows us to get essential information on zeros and poles of an
elliptic function.

2.2.2. THEOREM. a) The sum of the residues of an elliptic function f(z) at
singular points inside the fundamental parallelogram is equal to zero.

b) For an elliptic function, let a; be those of its zeros and poles that lie inside
the fundamental parallelogram, and r; their orders (positive for zeros and negative
for poles). Then >.r; = 0 and > ria; = 0 (mod A), i.e., D ria; = mwi + nwy,
where m and n are inlegers.

PrOOF. As we know from complex analysis, if on the boundary of the funda-
mental parallelogram P there are no singular peints of a meromorphic function g,

then .
Z resg=— | g(z)dz.
5 2mi Jsp

To prove part a) it suffices to use this identity for g = f. :

To prove that > 7; = 0 and >_75a; =0 (mod A) we set g(z) = f'(2)/f(z) and
g(z) = zf'(2)/ f(2), respectively.

If f(z) is an elliptic function, then the function g(z) = f'(2)/f(z) is also an
elliptic function. Moreover, if f(z) = co(z — a)” + c1(z — @)™ + - - -, then g(z) =



§2.2. THE BLLIPTIC FUNCTIONS 31

r(z—a) ' +di +da(z — a) + - - and, therefore, the residue of g(z) at the point a
is equal to r. Thus, > r; = 0.

To prove the identity > r;a; = mw; +nws we must perform certain calculations,
.since the function g(z) = zf'(2)/f(z) is not necessarily an elliptic one. First,
observe that if f(2) =co(z —a)" +ec1{z —a)""1 + .- then

a+(z—a) reg(z—a)y" 14

—1
=ar(z —
z-~a = cplz—a)r 4. (z=a)

g(z) =

hence, the residue of g(z) at the point a is equal to ar. Now, let us compute the
integral [, ap 9(2)dz. The difference of the integrals

[

and

ez, [T e)f()
/m ) dz""/a (CH

contributes to this integral. This difference is equal to

a+wy gt P
——wgfa J}((z)) dz = —wq In f(2)|2Fwr,

Since f(a+ wi) = f(a), the logarithm of f(z) can change only by 2kwi as z varies
from & to @ +w;. As a result we see that contribution to the integral

. |
— d
2 3P9(z) ‘

from one pair of sides of the parallelogram is nwa, where n is an integer. Similarly,
the contribution from the other pair is mw;. D

As we have already said, a nonconstant elliptic function must have at least one
pole inside the fundamental parallelogram. But since the sum of the residues at
the singular points that lie inside the fundamental parallelogram is equal to zero,
the function cannot have exactly one pole of order 1 there. For an elliptic function,
the number (multiplicities counted) of poles inside the fundamental parallelogram
is called the order of the elliptic function. The minimal possible order is thus equal
to 2; and there are two ways for such a possibility to realize itself:

1) one pole of order 2, i.e., of multiplicity 2 (this takes place for the Weierstrass
function that will be discussed in the next section);

2) two simple poles (this takes place for the Jacobi elliptic functions that will
be discussed in §2.8).

By Theorem 2.2.2 b), for an elliptic function the sum of orders of the zeros
inside the fundamental parallelogram is equal to the sum of orders of the poles,
i.e., is equal to the order of the function. It is also clear that the poles of the
function f(z) — ¢ are the same as those of f(z). Therefore, an elliptic function of
order r takes any finite value inside the fundamental parallelogram exactly r times
(multiplicities counted).
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PROBLEMS

2.2.1. The elliptic functions f and g have the same periods and at every pole
they have the same principal parts

er(z—a) +erpi(z—a) M+ teq(z—a)! (here r < 0).

Prove that the difference of these functions is a constant.

2.2.2. The elliptic functions f and g have the same periods and their zeros and
poles (multiplicities counted) coincide. Prove that the ratio of these functions is a
constant.

§2.3. The Weierstrass function

We have already proved certain properties of elliptic functions but we have not
yet established that there exist nonconstant elliptic functions. It is time to give
an example of a nontrivial elliptic function. Let us show that for any lattice A the
function

(%) Y )

where the sum runs over all nonzero elements w € A, is an elliptic function. (The
fact that the summation runs over nonzero elements only is denoted by a prire.)
The grouping of terms in square brackets is essential, since each of the series
Sz —w)™? and 3 w=? diverges.

First, let us prove that the series (3.1) does indeed define a meromorphic func-
tion. On any compact set K that does not contain the points of the lattice, this
series converges uniformly and absolutely. Indeed,

2 1

1 1 2aw—22  w 2z-z%w”
(z—w)? w2 W(z-w)? Wt (awl-1)2

2

If |w| is sufficiently large, then %% ~ 2z. Therefore, for all w € A’ with a
sufficiently large value of |w] and for all z € K there exists a constant C' such that
1 1 C
(z—w)® W] WP

Moreover, |z —w| > ¢ for all z € K and w € A’; hence, such a constant exists for
all w € A’ as well. Tt is easy to verify that the series 3" |w|™® converges. Indeed,

Z |~ Z Z lpws + qua| ™ <> 8n(nh)~?,

n=1 max(p,q)=n n=1

where h = min(jw; |, jws|) is the smallest of two sides of the fundamental parallelo-
gram. Thus, p(z) is a meromorphic function with poles at the nodes of the lattice.
1t is called the Weierstrass function. Let us prove the periodicity of g(z). For that,
let us consider its derivative

P(2)=-2) (z—w

Here the summation runs over all the nodes of the lattice. Clearly, w; and ws are
periods of the function g’(2). Hence, the functions p(z + w;) and p(z) can only
differ by a constant ¢. Substituting z = —w; /2 into the equality p(z+w;) = p(2)+c
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we get p(w;/2) = p(—w;/2)+c. But from formula (3.1) it is clear that the function
p(z) is even. Hence, ¢ = 0, i.e., w; and wy are periods of p(=z).

The function p has double poles at the nodes of the lattice; and it has no other
singular points. Inside the fundamental parallelogram there is exactly one node of
the lattice. Therefore, inside the fundamental parallelogram the sum of the poles
of p is congruent to zero modulo A. By Theorem 2.2.2, inside the fundamental
parallelogram, there are two zeros of p, call them u and v, such that u+v = 0
(mod A). For any constant ¢ the poles of the function p(z) — ¢ coincide with the
poles of the function p(z) and, therefore, inside the fundamental parallelogram there
are exactly two points, v and v, for which p(u) = p(v) =candu+v =0 (mod A).
If u = —u (mod A), then these two points coincide, i.e., the corresponding value
of p is attained twice. At the points where the two zeros of p(z) — ¢ merge the
derivative p'(z) vanishes. It is possible to select the fundamental parallelogram so

that it contains exactly four points for which v = —u (mod A), namely, the points
wi. Wwa W+ we
0, —, — and
2’ 3 ™ 2

(Figure 20). The first of these points is the pole of p and the other three points are
zeros of g’.

Ficure 20

Thus, the values

wi w1 + wa Wo
wmp(2), emp(252) i e (2)

of p are of multiplicity 2 and there are no other values of multiplicity 2. The values
of multiplicity 2 correspond to the zeros of the derivative; hence, g'(2) = 0 if and
only if

1 1 1
7= g, §(w1 + ws), Swa (mod A).

Observe that the numbers e1,es and ez are distinct. Suppose, for example, that
e1 = ez. Then the function p(z) — e; has zeros of multiplicity 2 at the points w, /2
and wy/2, i.e., inside the fundamental parallelogram there are at least 4 zeros of
this function. This is impossible.

The Weierstrass function not only gives an example of an elliptic function but
enables one to describe the structure of all elliptic functions.
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THEOREM. Let f(z) be an arbitrary elliptic function and p(z) the Weierstrass
function with the same periods. Then there exist rational functions R and Ry such
that

f = R(p) + Rip)p'-

ProoF. It is possible to represent f(z) as the sum of the even function g(z) =
5(f(2) + f(—2)) and the odd function h(z) = 1(f(2) — f(—=2)). Since p'(2) is an
odd function, h1(z) = h(z)/p’(z) is an even function and for the even functions g
and h; we have ’

f(z) = 9(2) + ha(2)6(2).

Therefore, it suffices to prove that any even elliptic function can be represented -
as a rational function of p.

First, let us prove certain properties of zeros and poles of an even elliptic
function. |

1°. Let f be an even function, and u its zero (resp. pole) of order m. Then
—u is also a zero (resp. pole) of order m. Indeed, in the case of zeros it suffices to
observe that for an even function f we have

FB(=2) = (1) E)(2).

In the case of poles we may consider % instead of f.

2°. If f is an even elliptic function and 4 = —u (mod A), then the order of a

zero or pole of f at u is even. We will prove this for zeros (since for poles we may

consider % instead of f). The condition v = —u (mod A) is equivalent to the fact

that +

u =0, 9—}2—1—, ud 5 ng ?2—2 (mod A).
Moreover, the periodicity of f/ implies that f'(u) = f'(—u). But the derivative of
an even function is odd; hence, f'(u) = 0. Therefore, if the function f has a zero

at u, then this zero is of multiplicity at least two. For any of the cases

w

D UTE 2 (mod A)
the function F'(2) = p(z) — p(u) has a zero of order 2 at u and if w =0 (mod A),
then the function F'(z) = 1/p(z) has such a property. Using F', we can construct
an even elliptic function fi(z) = f(z)/F(z) for which the order of the zero at u is
less by 2 than that of f. Hence, if f;(u) # 0, then the order of the zero of f at u
is equal to 2 and if fi(u) = 0, then we can apply the same arguments to f; instead
of f, etc.

By the above properties of zeros and poles of the even elliptic function f they
can be divided into pairs of the form (z,—z). Select a representative from each
such pair with a4, ..., ar the representatives of the zeros and by, ..., by the
representatives of the poles. Consider the elliptic function

_ _ (e(z) — plas))
Q) = R = (o) = per))

Il

u

where we take only those a; and b; that are distinct from the nodes of the lattice
(since at the nodes the function p takes infinite values). If we disregard the nodes
of the lattice, then the complete system of zeros and poles of @) is the same as that
of f, since p(2) = p(a) if and only if 2 = +a (mod A). But by Theorem 2.2.2 b) for
an elliptic function the sum of orders of its zeros and poles inside the fundamental
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parallelogram is equal to zero; hence, the order of a zero or a pole at a node of the
lattice is uniquely determined by the orders of the other zeros and poles. Therefore,
f(2)/Q(z) is an elliptic function without poles, i.e., a constant. As a result, we see
that f(2) = cR(p(z)). O

PROBLEMS

2.3.1. All the poles of an elliptic function f lie at the nodes of the period lattice.
Prove that f = P(p)+ Pi(p)p’, where P and P; are polynomials.

HinT. From the decomposition f = R{p) + R1(p)g’ we can derive that
2R(p(2)) = f(2) + f(=2) and 2¢'(2)Ri(p(2)) = f(2) = f(~2).

Prove that the functions R and R; do not take infinite values at finite points.

§2.4. A differential equation for the Weierstrass function p(z)

In the preceding section we proved that an even elliptic function can be ratio-
nally expressed in terms of p(z) and the expression was explicitly described. This
can be applied to the even function (p'(2))%. It has zeros of multiplicity 2 at %,

5’—1—‘”*"2—92, %z and a pole of multiplicity 6 at a node of the lattice. Hence,

(4.1) (8(2))* = clp(2) — e1)(0(2) — €2)(s0(2) — ea),

where e; = p(4), e = p(LE92) and e5 = p(*2). Since p(z) = 272+ --- and
©'(z) = =227 + - .- it follows that ¢ = 4.

There is also another way to obtain a differential equation for p(z). It not only
gives us a new method to deduce this equation, but also provides another form of
this equation. We will use the fact that if the coeflicients of nonpositive powers of
z in the Laurent expansions of the functions (p'(2))? and ap®(z) + bp?(z) +cp(z) +
d coincide, then these functions are equal. Indeed, their difference is-an elliptic
function without poles and at 0 its value is equal to 0. Hence, their difference is a
constant equal to 0.

Since )
1 d 1
= =1 2 2 [P
(1_3;) e (1_$) +2z +3z" + -,
it follows that
1 ) 1 1
0=+ X (oo )
1 1 z z\2 1
=5+, (:}5 (1+2;+3(;) +--->—~;—2—)

1 .
=;5+3G4z2+5G6z4+~--,

where Gy = >_‘w™F (for k odd this sum is equal to zero). Hence,
plz) =272 4 P (2) =27 +6Ga+ e,

©2(2) = 278 + 9G4z + 15Gg + - - -,

(¢'(2))% = 4270 — 24G42™% — 80Gg + - -
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(only the terms of the Laurent expansion of interest to us are written). Thus,
ap® (2)+bp®(2) +ep(2) +d = az 8 +bz74 +(9aGy+¢) 2 2 +(15aGs +6bG4+d) +- -
Therefore, ap® + bp? + cp + d = (p)? if

a=4, b=0, 9aGy+c¢=-24G; and 15aGg+ 6bG4+ d = —80Gs,
ie.,

a=4, b=0, c=-60Gy and d=—140Gs.

Set g2 = 60G4 =603 ‘w=* and g3 = 140G = 1403w~ 6. Then
(4.2) (9'(2))* = 40°(2) — g2p(2) — gs.

Comparing (4.1) with (4.2) we see that

er1t+ext+e3=0, eex+eses+eze = ~243 and ejeges = —%?i.

It is easy to verify that
g5 — 27g§ = 16(e; — e2)*(eg — e3)*(e3 — e1)?.

In the preceding section it was shown that the numbers e, s and es are distinct.
Therefore, g3 — 2792 # 0. A natural questlon arises:

Given numbers g2 and g3 such that g8 # 27¢2, is there a lattice for which
g2=060>""w™* and g3 = 1403 "w6?

The answer to this question is an aﬂirmatlve one; see, e.g., [B9].

PROBLEMS
2.4.1. Prove that " = 6p? — g2/2 and " = 12¢'p.
HinT. Differentiate (4.2). |

2.4.2. Prove that "= (z) and p®"+V)(2)/p'(2) are polynomials in p(z) of
degree n.
2
2.4.3. Prove that e? + €2 + €2 = 2. ed+ed+ef= g’%"- and ef + e + e = 2.

HinT. Use the fact that a + b + ¢ divides both a® + b + 3 — 3abc and
(a® +b% 4 c*)? — 2(a* + b + ¢2).

§2.5. A parameterization of the cubic
with the help of the Weierstrass function

The differential equation for g enables us to clarify the nature of the addition
of points on the cubic. To this end we have to use the fact that we left the following
without proof earlier:

- For any numbers g and g3 such that g5 # 27g3 there exists a lattice for which
the Weierstrass function satisfies the equation

(0)? =49 — gap — gs.
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The cubic curve y° = 4z — g2z — g3 can be parameterized with the help of p
setting z = p(z) and y = p'(2). Passing to homogeneous coordinates in CP? the
map f : C/A — CP? can be defined as

e { e D for 2 0,
(22p(2), 2%p'(2),2%) = (0,1,0) forz = 0.

Obviously, this map is analytic at all points distinct from the nodes of the lattice.
Expressing it in the form
1
Z (go,(z) 1, — )
P'(z)" " ¢'(2)

we can verify that it is analytic in a neighborhood of the node of the lattice as well.
The map [ is a one-to-one map of the torus C/A to the cubic 4%z = 42® — gox2® —
g32% in CP2,

Indeed, on the infinite line 2 = 0 there lies only the point (0, 1,0) of this curve;
the nodes of the lattice which correspond to one point on the torus are mapped into
this point. For all other points we can consider an affine curve y? = 423 — gy — g3
and the map z — (p(2), p'(2)).

The equation p(z) = ¢ may have either one or two solutions. It has two
solutions if p’(z) # 0. The solutions then are of the form +2z. The images of these
two points under the map z — {p(2), £'(z)) do not com(:lde, since the nonzero
numbers p'(2) and p'(—z) = —p'(z) differ by a sign.

The addition of complex numbers induces an addition of the points on a torus
which, in turn, with the help of the map f induces an addition of the points on a
cubic. It turns out that this is precisely the addition of points on a cubic defined
in §1.1 if for the zero element we take the infinite point (0, 1, 0).

Let the points P, and P, on a cubic correspond to the points z; and zp in C,
ie, P, = (p(z), 9 (2:1)). Let us draw the straight line y = ax + b through P, and
P,. Then p'(2) = ap(z;) + b, where i = 1, 2. '

At the point z = 0 the elliptic function p'(z)—agp(z)—b has a pole of muitiplicity
3 and it has no other poles at the other points of the fundamental parallelogram.
Therefore, the order of this function is equal to 3, i.e., it has precisely 3 zeros,
namely, the already known zeros z; and z; and a third zero z3. Since the sum
of the poles and zeros is equal to zero, we have z) + 23 + 23 = 0 (mod A), ie,
23 = —21 — 29 (mod A). Thus, the third point of intersection of the line Py P, with
the cubic is the point

P; = (p(z3), p'(23)) = (p(=21 — 22), 9" (21 — 22))
= (p(21 + 22), —p(z1 + 22)).

Therefore, the point Ps = (p(z1 + 22), (21 + 22)) corresponding to the sum of z;
and 2y is symmetric to P§ with respect to the z-axis (see Figure 21 on the next
page). In other words, P; is the point of intersection of the cubic with the straight
line PE, where £ = (0,1,0) is the infinite point on the cubic. This is precisely
what we wanted to establish.

By extending the above arguments a bit further, one can show that there exists
an algebraic addition theorem for p, i.e., p(z1 + 22) can be algebraically expressed
in terms of p(21) and p(z3). Indeed, the line y = ax + b passing through the points
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to

z

TN\
o

FiGure 21

P, and P, intersects the cubic y? = 4z° — gox — g3 at the three points (x;, y;), where
z1 = p(21), T2 = p(z2) and z3 = p(z; + 22). Therefore, the cubic equation
(az +b)? = 42> — gox — g3

has the indicated roots @, z2 and z3. Expressing the coefficient of z? in terms of

these roots we get
2

Zw
Since p'(21) = ap(z1) + b and p'(22) = ap(z2) + b, it follows that a =
Therefore,

p(21) + p(22) + plz1 + 22) =

@' (z1)— ' (22)
i@(zl)—@(?z) ’

§(z1) — 59'(22))2
p(z1) — p(22)
Thus, g(z + 22) can be rationally expressed in terms of the p(z;) and p'(z),

i = 1,2. It remains to recall that p'(z;) can be algebraically expressed in terms of
©(z;), namely:

ol +22) = —plan) - plen) + 5

o' () = V4p3(z:) — gap(z:) — ga.

With the help of the Weierstrass function one can also parameterize the curve
y2 - G4 (IE )7

where G4(z) = apz* +a172 + az? + asz + a4 is a fourth degree polynomial without
multiple roots. To this end let us make the change of variables z = 27" + o,
Y= yla;i"z. We get

iyt = byt 4 bsx + boxy? + byt + Gula).

If a is a root of Gy, then y? = b1z} + box? + bszy + bs. This cubic can be pa-
rameterized with the help of the Weierstrass function. Notice that the change of
variables

r=x7" +oa, y=ypr"
enables us to pass in a similar way from the curve y* = Ga,(z) to the curve
y? = Gan_1(x).
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§2.6. The elliptic integrals

The Weierstrass function p(z) satisfies, as we have seen, the differential equa-

tion \
d

(d—p) = 4p° — gag — ga.

\ dz
Therefore,

dz = dp ,

V4p® — gap — g3

ie.,

Vaud — gau— g3’

where u = p(z). Thus, z = p~1(u), i.e., the inversion of the integral

/ du
VAud — gau — g3

gives rise to the Weierstrass function.
An elliptic integral is an integral of the form

/R(m, v G(z))dz,

where G(z) is a polynomial of degree 3 or 4 without multiple roots and R(z,y)
is a rational function of two variables. At first, such integrals appeared in the
calculations of arc lengths of various curves, for instance, ellipses. Only later it
was noticed that for certain elliptic integrals the inverse functions possess more
interesting properties, primarily, double periodicity.

Elliptic integrals can be reduced to certain simpler integrals. Let us prelimi-
narily consider integrals of a form less involved than that of elliptic integrals. First
of all, let us prove that if R(z) is a rational function, then [ R(z)dz is the sum of
a rational function and a certain number of summands of the form ¢; In(z — a;). It
suffices to prove that a rational function R(z ) can be represented in the form

where A(x) is a polynomial. Let R(z) = P(z)/Q(z), where P and @ are polyno-
mials. Dividing P by @) with a remainder we can pass to the fraction S/@Q, where
deg S < deg@. Let Q = @Q1Q2, where @1 and @, are relatively prime polynomi-
als. Then there exist polynomials a and b such that a(z)Q1(x) + b(2)Q2(z) = 1.
Therefore,

h _ a1 50 + a25Q)> o a1S n a2S
Q1@ Q1Q2 Qo Q1
In the fractions obtained one should also divide the numerator by the denominator
with a remainder. After several such operations we arrive at the sum of a polynomial
A(z) and several fractions of the form p(z)(x—a)~", where deg p(x) < n. The proof
is completed by expressing the polynomial p(z) in the form

plz) =bi(x—a)" P+ by(z—a)"" 2+ + b,
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Leibniz was the first to study integration of rational functions. He only consid-
ered factorization of polynomials into factors with real coeflicients and, therefore,
he faced the question: whether or not it is true that any real polynomial can be fac-
tored into factors of degree 1 and 2 with real coefficients. In 1702 Leibniz published
a paper in which he claimed that it is impossible to factor the polynomial z* + a*
in the required fashion since

gt + ot = (2% + a?v-1)(z? — a®>v-1)
= (z + av/v—-D{z — av/vV—1)(z + av/—v/~1)(z — a/—/-1)

and the product of any two of these factors cannot be, as he believed, a quadratic
with real coeflicients. Only 17 years after that Nicholas Bernoulli (1687-1759)
indicated that

2t 4+ at = (22 + 0®)? — 26°2% = (@ + V2az + a®)(2? — V2az + a?).

In their correspondence Leibniz and Jacob Bernoulli also discussed integrals of
irrational expressions that appear in the study of various physical and mathematical
problems. Many of these integrals are elliptic ones.

Let us now pass from rational functions to the simplest irrationalities. To .

calculate the integral
f R(z, \/G(@))dz,

where G(z) = ax + b is a linear function, we first thake the change of variables
u = ax + b. As a result we get an integral of the form

]R1(% Vu)du,

where R; is again a rational function. Now, set ¢t = y/u. Then du = d(t?) = 2tdt
and, therefore,

f Ry (u,u)du = f R1(t%,t)2tdt = / Ry (t)dt,

where Ry is a rational function. :
Now, let G(z) = az® + bz + ¢. As has been said in the preceding section, with
the help of the change of variables z = acl_l +a,y = nry ! we can pass from the
curve y* = G(z) to the curve y? = Gy(z1), where Gy is a linear function. Let us -
apply this change of variables in order to calculate the integral f R(z,y)dz, where
y? = G(z). Let z = z7 '+« and y = 5127}, where G(a) = 0. Then dx = —z] %dz;
an:

d _
]R(a:,y)dm = _/R(ml—l +C¥,y1$1_1)$1_2d$1 - /Rl(ml,yl)dﬂh,

where y§ = Az, + B.

Thus, the integrals of the form [ R(z,y)dz, where R is a rational function and
y = 1/G(x), can be expressed in terms of elementary functions if deg G < 2. In the
case when deg G = 3 there may appear functions which are inverse to elliptic ones.
The integral [ R(z,y)dz, where y = \/G4(x), reduces to the integral [ Q(z,y)dz,
where y = \/ 4x3 — gox — g3. Indeed, using the change of variables z = :cl_l + «,
Yy = ylazl_?‘ we can pass from the fourth degree polynomial G4 to a third degree
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polynomial and from an arbitrary third degree polynomial we can pass with the
help of a linear change to a polynomial of the form 4x3 — g3z — g3.

We could have confined ourselves to the calculation of integrals of the form
[ R(z,y)dz, where y? = 423 — gox — g3, but in many cases certain other forms of
elliptic integrals are convenient. Therefore, we will first calculate elliptic integrals
in the general form and later on we will study certain special forms.

Let I = [ R(z,y)dz, where R is a rational function, and

y? = aoz? + da1z° + 6azz® + dazz + ay,
where at least one of the coefficients ag and a, is nonzero.

THEOREM (Legendre). The elliptic integral I can be represented as a linear
combination of a rational function in x and y, the integral of a rational function of
x, and of the integrals

fdx /:cd:z: /mzdm / dx
— | and |
Y Y ( (x—cly

PRroOF. Since 4° can be polynomially expressed in terms of z, we can assume
that a rational function R does not contain y* for & > 2. Moreover,

a+by:(a—|—by)(c—dy) é+B
ct+dy (c+dy)e—dy)y vy

where A and B are rational functions of z. Therefore, the calculation of the integral
[ R(z,y)dz reduces to the calculation of the integrals [ B(z)dz and [ _’—Ll(g;lg. The
rational function A(z) can be represented in the form

Az} = Zanm —I—Z x%:

Hence, it remains to consider the integrals of the type

Jnm/‘”nd”’(nzo) and Hmzfﬁam(mgn.

Y Y
Since
d m . m—1 mdy - 1 m—1,2 1 md(yz)
d:z:(z y)=mz™ y+zx dm_y[mx Yy +2x .
m-+3 m-2
= (m + 2)ag +2(2m + 3)a;
me-1 m m—1

+ 6(m + l)agm

+2(2m + 1)a3%— + may

it follows that

2™y = (m+ 2)aoImys + 22m + 3)ar o
+ 6(m + L)agJm41 + 2(2m + VagJm + maadm—1.

Using these identities for m = 0,1,2,..., we can consecutively express J3; in terms
of Jy, Ji, Jo (and a rational function of z and y), then Jy in terms of Jy, Ji, Ja,
etc. (In the case when ag = 0 we will express Jy in terms of Jy and Jy; next, J3 in
terms of Jy and Jp, etc.)
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To compute the integrals H,, = f ooy C)my, let us write the polynomial G(z) in
the form

- G(z) = by(x — &)* 4+ 4by (2 — €)% + 6by(x — ¢)* + 4bs(z — ¢} + by,
where by = ag. As in the preceding case, we get the identity

L o —ey = (m o 2p = o

(z — )™+t

+ 6(m + 1)by

Integrating these identities for m = —1, -2, -3, ... we get

Y _
y - bO/ (= =9 4y 4 b, f = — 2b3Hy — byHy,
T—c Yy Y
(a: iyc)2 — — 2b1Jy —6bo Hy — 6bsHy — 2b4H3,
(x _yc)-‘i = —boJo - =6y - 120y Hp — 1063 H3 — 3y Hy,

These identities enable us to express Ho, Hsz, Hy, ... T terms of Jy, J1, Jo, Hy
and rational functions of z and y. : U

As we have already mentioned, any elliptic integral can be reduced to the
integral [ R(z,y)dz, where

y* = da’ ~ gz — g3

This form of elliptic integrals is called the Weierstrass form. Since in this case
ap = 0, it follows that J; can be expressed in terms of Jy and Jy; therefore, there
are three types of integrals from which the rest may be calculated:

/ dz / rdx Cand / dz
\/4533”9239‘-93’ \/4$3"9233—93, (33“0)\/4333—9%—93.

Another widely used form of elliptic integrals is the Legendre form. For it the
equation
y? = (1—2%)(1 - k)
is used. One can pass from the Weierstrass form to the Legendre form as follows.
Using linear change of variables z = ax; + b we pass from 4z3 — gox — g3 to

z1(xy — 1){z1 — k?). Next, let us make the change of variables ¢2 = 2!, 7% =

yPay . We get n? = (1— €2)(1 — k2€2),
For the Legendre form, all four types of integrals appear:

/\/%’ mdm /F ] .'c——c)\/@(;
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where G(z) = (1 — 2%)(1 — k?z?). But, since

j xdx 1 f du
Vi-2)0-E2) 2J) JI-ui-Fu)
where © = 22, this integral can be expressed in terms of elementary functions.

To simplify somewhat the form of the integrals in the Legendre form, make the
change of variables z = sin . Then

dx = cos dyp, V1—2z?=cosyp, V1 — k222 = /1 — k?sin” .

Therefore, the above mentioned (nonelementary) integrals take the form

/ de f sin? pdyp dy
1~k2sin2(p’ 1vkgsin2<p’ (sinw—c)\/l——kQSichp'

These integrals are called elliptic integrals of the first, second, and third kind, -
respectively. '
sin? pdyp

5= We may take the integral
1 —k2sin® ¢

Observe that instead of the integral
1 — k2 sin® pdy because

.2 -
R pdp  _ dp - 1 — k2sin? pdo.
-2
1 —k2%sin® ¢

1 —k?sin o

sin® ody
1—k2sin’ @
the elliptic integral of the second kind because in the literature this term is applied
to the integral [ /1 — k2 sin® pdyp '

REMARK. We abuse the language a bit when we refer to

For the elliptic integrals of the first and second kind Legendre’s notations are
used: o

@ d ® .
F(p) = / _ and E(p) = / v/ 1 — k2 sin® pdp.
0 1—k2sin’ @ 0

PROBLEMS

2.6.1. Prove that a change of variables reduces the integral [(1+ 28)~13dx to
an elliptic integral. ‘

HINT. Set 273 + 23 = 2¢=3/2

2.6.2. Prove that a change of variables reduces the integral [(1—z*)~2/3dz to
an elliptic integral.

HINT. Set t(1 —z) = (1 — 2%)1/3.
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§2.7. Addition theorems for the elliptic integrals F(p) and E(yp)
Set

Fio) = [ 555 and B() = | At

where Ayp) = /1 —k2sin® . If F(p) + F(1) = F(w), then siny can be alge-
braically expressed in terms of sin¢p and sint. To prove this, consider the differ-
ential equation ‘

(* s s

+ =0
V1-k2sing /11— k%sin®
Its integral is F'(p) + F () — F'(u) = 0, where 4 is a constant. Taking into account
that F'is an odd function, the integral can be expressed in the form F(y)+ F (1)) +

F{~p) = 0. Let us show that the integral of the differential equation (x) satisfies
the relation h

(7.1) cos p cosyP — sinpsiny/1 — k?sin? p = cos
“which can be rewritten after squaring in a more symmetric form:
(7.2)  cos®p + cos? o + cos®  — 2 cos @cos 1 cos p + k* sin? psin? ¢ sin? 4 = 1.

The term “symmetric” means that not only is (7.1) satisfied but also the relations

(7.3) cos pucos ¢ + sin psin /1 — k2 sin® 9 = cos 1),
(7.4) cos 1 cos 7 + sin psinyiy/1 — k2 sin” p = cos ¢,

since the arguments ¢, 1 and —u enter (7.2) symmetrically.
Divide both sides of (7.1) by sinsiny and differentiate the obtained expres-
sion. The result can be expressed in the form

COS 1Y — COS 4 COS COS (¢ — COS [4 COS Y
d = 0.
"”( Y )“w( sin )

Making use of formulas (7.3) and (7.4) we get
d d
% + Y —0
V1—k2sin?¢ /1 —k2sin®4)
Thus, (7.1) is indeed an integral of the differential equation (x). But it cannot have

two independent integrals and, therefore, the equality F'(¢) + F(¢b) = F(u) implies
that

cos pcosy — sinpsinyy/1 — k? sin? p = cos j.

This provides us with an implicit expression for cos u. It is not difficult to get an
explicit expression also. Let z = cos y1; then sin® g = 1 — 22. Relation (7.2) can be
considered as a quadratic expression in z. By solving it for z we get
cos g cos Y — sin @ sin PA () A()

1 —k2sin? psin® 9 '
(The sign is chosen so that the formulas (7.5) and (7.1) are compatible for small ¢
and 1.)

(7.5) COS fi =
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By direct algebraic transformations we can derive from (7.5) the following ex-
pressions for sin x and A{p):

sin @ cos PA (1) + sin 9 cos pA(yp)
1 — k2 gin? © sin? ¢

H

(7.6) sin p =

_ A(p)A(Y) — k?sin psiny cos pcos
(7.7) Alw) == 1 — k2sin? psin '

Dividing (7.6) by (7.5) we get

tan @A (p) + tanpA(r)

1 — tan ptan PA(Q)A(W)

The latter formula can be interpreted as follows. Let the angles ¢’ and 4’ be such
that tan ¢’ = tan pA(p) and tanvy’ = tanpA(e)). Then p = o' + 9.

In applications the case when y = %w is quite important. In this case cosp = 0
and sing = 1. From (7.3) and (7.4) we get sing = cos9/A(y) and siny =
cos p/A(p), and from (7.1) we get cospcosy = bsinypsiny, i.e., btanptany =1,
where b = /1 — k?. It follows from (7.5) that

cos p cos P = A(p)A(y) sinpsin
and, therefore, A{p)A(y) = b. Hence,

cos p = sinPA(p) = I?As?r;z)b and cosy = I)AS?;;D

(7.8) tan u =

Formulas (7.5) and (7.6) resemble, to some extent, the formulas for the cosine
and sine of the sum of two angles. With their help we can obtain expressions similar
to expressions of cos ny and sinny in terms of cos ¢ and sin . Let F'(v,) = nF{yp).
Then

_ 2 sin @ cos A () 1 —2sin® o+ k2sinp -
s = : cos = - ,
e 1—k2sin* e 1 —k2sin* @
1 —2k%sin% p + k%sin* 2 tan A{p)
A = , tan = .
(#2) I~ kst g & [ (tan pA(¢)?

To find ¢ from a given g9, we can use the fact that tan(£?) = tan o A(p) and may
also solve the equation
1— 222 + k%2t
1—k2z4
where x = sin . This equation corresponds to the division of F'(y¢2) in halves.
To divide F'(3) into three equal parts, we must solve the equation

3z — 4(1 + k2)2® + 6k%x® — kix®
1 — 6k2z4 + 4k%(1 + k2)x8 — 3k428’

COS g =

siny =

where z = sinp. For ¥ = 7 we get the equation
(1+ z)(1 — 2z + 2k*z® — k*2*)? = 0,

i.e., the division of F(w/2) into three equal parts reduces to the solution of the
equation
1 — 2sin + 2k? sin® p 4+ k? sin® o = 0.
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For the elliptic integral of the second kind, E(p), there is only an addition
theorem with an extra algebraic term. It is directly connected with the addition
theorem for the elliptic integral of the first kind, F(y).

THEOREM. If F(p)+ F(¢) — F(u) =0, then
E(p) + E(¢) — E(u) = k? sin 'sin 1/ sin p.

ProoF. Let E(p)+E(y)—E(u) = Py, 1, u). Let us differentiate this equality
for a constant value of u. '
As a result we get
Alp)dy + A()dy = dP.
But by (7.3) and (7.4)

CO8 (p — COS 7 COS [4 and A(w)mcos1,b«~~»coscpcos,u

A
() = sin 1 sin p sin @ sin p

Hence,

JP — (cosgoimcosgbcos,u) d(p+(cosv,b——cosgocos,u) b

sin ) sin p sin w sin
_ d(sin® p + sin® 9 + 2 cos p cos 1 cos ,LL)
B 2sinsinysin p

By (7.2) we have
1 —sinp+1—sin®4 —2cospcostpcosp = 1 — cos® u — k2 sin® @ sin? ¢ sin? p.
Hence,
AP — d(k sin @ sin 1 sin p)?
" 2singpsinysinp
Since both P and sin ¢ sin 1 sin u vanish at =0, we get P=k? smtpmm,bsm po

= k2d(sin @ sin sin p).

This addition theorem enables us to get the following expressions for nE(p) —
E(pn), where F(p,) = nF(p):

2E(ip) — E{ps) = k* sin g sin @ sin s,
3E(p) — E(ps) = (2E(p) — E(p2)) + (E(p2) + E(p) — E(ps))
= k? sin o(sin @ sin @y + sin @, sin @3),

etc. In Chapter 3 we will apply the formulas obtained in this section to solve various
problems on arc lengths of an ellipse.

§2.8. The elliptic Jacobi functions

The function considered in the preceding section

N dx ; # dp
Flo) = f _ /
#) o /(1 —z2)(1— k2z2) 0 V1—k2sin?¢p

where z = sin p, is in many ways analogous to the function

arcsinac*fm de —/(pd
Jo VI—a? ; 28
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where z = sin . For example, if F(p) + F(¢) = F(p), then sinp is expressed in
terms of sin ¢ and sin by the formula

sin @ cos YA () + siny cos YA ()
1 — k2sin? @ sin? ¢ ’

(8.1) sin =

and if arcsinx + arcsiny = arcsinz, where z =sing , y = siny, and z = sinpy ,
then

(8.2) sin p = sin ¢ cosy + sin 4 cos .

This analogy is not accidental: for £ = 0 the function F(¢) becomes the function
arcsinz = ¢ and formula (8.1) turns into (8.2).

For many reasons it is more convenient to consider not the function ¢ = arcsinx
but the inverse function x = siny. The function inverse to the function F(yp) is
also in many respects more convenient than the function F'(¢) itself. Let us replace
Legendre’s notation F'(y) with the Jacobi notation: set u(p) = F(p). The function
(u) inverse to u{yp) is called the amplitude of uw and is denoted by p = am u. In
the preceding section we obtained formulas (7.5)—(7.7) for the functions sin ¢, cos ¢

and A(p) = /1 — k2 sin? . Introducing the functions

snu = sinamu, cnu = cosamu and dowu = A(am u)

we may express formulas (7.5)—(7.7) in the following way:

cnuecnv —snusnvdnudnv

(8.3) en(u+v) = e ’
snucnvdnv +snvenudnuy
(8.4) sn{u +v) = T ety ’
L2
(8.5) dn(u +v) = doudnv —k snusnvenucny

1 —k2%sn?usn?v

The functions snu, cnu and dnw are usually called elliptic Jacobi functions al-
though many properties of these functions had been established, to some extent,
by Legendre and Abel before Jacobi.

One of the most important properties of the functions snu, cnu and dnwu is
their double periodicity. The existence of one period for these functions is quite
obvious. Indeed, the functions sing and cos¢ have period 2r = 4(%) and the
function sin® ¢ has period 7 = 2(%). Therefore, the functions snu and cnu have

period 4K, where
K= / i dp
0 1—k2sin® @

and the function dnu = 4/1 — k? sn? « has period 2K.

With the help of the addition formulas (8.3)-(8.5) we can figure out how the
functions snu, cnw and dn u behave if the argument is increased by a quarter of the
period, K, and by a half period, 2K. Substituting

snK=1, cn K=0 and dnK =+/1-k?
into (8.3)—(8.5) we get

V1-—k? V1-—k2
SH(U"‘}"K): 21_" Cn(umi-—K)mw—MﬂfPﬁ, dl’l('UJ‘l—K): .
dnu dnu dou



#
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Since sn 2K =0, cn2K = —1 and dn2K = 1, it follows that
sn(u+2K) = —snu, cn(u+ 2K) = —cnu, dn(u -+ 2K) = dnu.

It is somewhat more difficult to figure out what the other period of the elliptic
Jacobi functions is. Let us first recall that the integral

[ %
1 — kZsin® ¢

was obtained from the integral

dx
./ V({1 = 22)(1 — k?z?)

with the help of the change of variables z = sin . It will be more convenient now
to work with the original integral. On the complex plane C, the function

M/” dz
Jo VI =221 - k2?)

is not defined in general because the value of u(x) depends on the contour of
integration. The values of the function u(z) at the same point can differ by numbers
of the form

/ dxz

L= ,

o /(1 —z2)(1 — k*z?)

where the integral is taken along a closed contour C. Here any such number L is a

period of the inverse function z(w). The integrand has singular points 1, £k~
Let us see how the choice of the path around these points affects the values of

the functions snu = z,cnu = V1 — 22 and dnu = 1 — k?z2.

Let

and

. dz . X dx .
e R v e

The path shown in Figure 22 shows that the values of the integral at the point
X are equal to o and K + (K — a) = 2K — o. Indeed, on the last part of the
path both the sign of the function v/1 — 22 and the direction of the segment of
integration change; as the result of two such changes the sign of the integral does
not change. Therefore, sno = sn(2K — «). Furthermore, the sign of the function
v/1 = 22 changes under this passage and the sign of +/1 — k2?z% does not change.
Hence, cna = —cn(2K — o) and dna = dn(2K — o). Replacing o with —a we get
| sn(a + 2K) = sn(—a) = —snq,
en(a + 2K) = —cn(—a) = —cna,
dn(a+ 2K) =dn(—a) =dna.

We have already obtained these formulas by another method.

FIGURE 22
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X 1 k!

0

FIGURE 23

Now, let us consider the passage along the curve shown in Figure 23. Let

-1
: dz
=iK'.
f1 V1 — 1221 — k222

{The number K’ is real since the number /1 — z? is purely imaginary for = €
(1,k71).) Therefore, the values of the integral at point X are equal to o and
K+iK'+iK’ — (K —«). Here only the sign of the last summand needs elucidation.

Observe that there occurred three changes of sign: the direction of the inte-
gration contour had changed, and so did the signs of both functions v/1 — z? and

V1 —k?z2. As a result, we get

sna = snf{a + 2iK'),
cna = —cnf{a + 2iK'),
dno = —dn(a + 2iK").

Therefore, the functions snu, cnu, and dnu have periods 2:K’, 4iK’, and 4iK’,
respectively. Moreover, the function cnu has a period 2K + 2¢K’. Indeed,

en(a+ 21K’ +2K) = —cn(a + 2iK') = cn o

Thus, the function snu has periods 4K and 2:K; the function cnu has periods 4K
and 2K + 2¢K’'; and the function dnu has periods 2K and 4iK’.

PROBLEMS

! dt -
N fo \/(1"~t2)(1mk/2t2)9 where k’2 + k2 =1.

HINT. Make the change k't = /1 — k2?22, where k’ is chosen so that kvz? — 1
= kVIZ £

2.8.1. Prove that K’

§2.9. The Weierstrass theorem on functions possessing
an algebraic addition theorem

We will say that a meromorphic function ¢(z) possesses an algebraic addition
theorem if there exists a nonzero polynomial F' in three variables such that

Flp(z1+ 22), 0(21), 0(22)) = 0;

this identity means that (21 + z2) can be algebraically expressed in terms of ¢(z;)
and (z3).

For example, the function sn z possesses an algebraic addition theorem. Indeed,
if a =sn{z; + 2z2),b = sn z; and ¢ = sn z3, then

b1 =21 — k2% + V1 — b2y/1 — k2b?
@= 1= k222 '
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Squaring twice we can get rid of the radicals and get a polynomial relation
F(a,b,c) =0.

The Weierstrass function g(z) also possesses an algebraic addition theorem.
Indeed, if a = p(z1 + 22), b = p(z;) and ¢ = p(z), then

2
3 — gob — G — /A0S — goe —
a:~b~c+~§i(\/4b gab g?,_;/c gac 93).

By simplifying this formula we get a relation of the form F(a,b,c) = 0, where F'is
a polynomial.
As we saw in §2.3, any elliptic function f can be represented in the form

f=R(p) + Ri(p)¢

where R and R, are rational functions (see §2.3). This representation enables us to
get an algebraic addition theorem for an arbitrary elliptic function if we take into

account that
(9')? = 46° — gap — 3.
Indeed, if By # 0, then ¢’ = f—%%é%l. Hence,

(%}%@)2 = 4p°® — gapp — ga.

This relation can be rewritten in the form P(f, p) = 0, where P is a polynomial
(its degree with respect to f is equal to 2). If Ry = 0, the relation f = R(p)
can also be expressed in the above form. Let A = f(z + 22), B = f(z1), and
C = f(22). From the relations F'(a,b,c) = 0 and P{A,a) = 0 we can get a relation
F1(A,b,c) = 0 by calculating the resultant of the polynomials f(a) = F(a,b,c) and
gla) = P(A, a).

Next, from the relations Fy(A4,b,¢) = 0 and P(B,b) = 0 we get Fu(A,B,c) =
0 and from the relations Fy(A, B,c¢) = 0 and P(C,c) = 0 we get a relation
G(A, B,C) = 0, as required.

Not only elliptic functions possess .algebraic addition theorems. For instance,
the ezponential function e? possesses the algebraic addition theorem, since e**7*2 =
e*te*2. Moreover, if u = R(f), where R is a rational function, then P(u, f) = 0,
where P is a polynomial (linear in u). Hence, from the relation F(a,b, c) = 0, where

a—(b+c) if f=2
Fla,be) = { a —be if f=e*,

we may get, as above, a relation G(4, B,C) = 0, where A = R(a), B = R(b), and
C = R(c). Therefore, any rational function and also any rational function in **
possesses an algebraic addition theorem.

It turns out that the above examples exhaust all meromorphic functions pos-
sessing an algebraic addition theorem.

THEOREM (Weierstrass). Any meromorphic function ¢(z) possessing an al-
gebraic addition theorem is either an elliptic function or is of the form R(z) or
R(e**), where R is a rational function.
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ProoF (W. S. Osgood). In the finite domain the meromorphic function has no
singular points other than poles. If the limits

. . 1
el o ot

exist, then the function ¢(z) is rational. Indeed, let us subtract from ¢ the sum of
its principal parts at all the poles (if the point oo is a pole, then the principal part
of the function at this point is of the form a,z" + a,112*T! 4 ..., where r > 0).
As a result, we get a function f without singular points; the point oo is also a
nonsingular one. Therefore, f is a constant and the initial function ¢ is rational.

In what follows we will assume that the function ¢ is not rational, i.e., the point
oo is an essential singularity. To prove the Weierstrass theorem, we will need the
following theorem on the behavior of a function in a neighborhood of an essentially
singular point.

PICARD’S BIG THEOREM. Any analytic function ¢(z) assumes in an arbitrary
neighborhood of an essentially singular point any finite value except, perhaps, one
value.

Proof of this theorem can be found, e.g., in [B16].

Let F(p(z1+22),9(21), p(22)) = 0, where I is a polynomial whose degree with
respect to the first argument is equal to n. We have to prove that ¢ is a periodic
function and if it is not doubly periodic, then p(2) = R(e*?). Picard’s big theorem
implies that in a neighborhood of an essentially singular point the function ¢ takes
a certain value ¢ infinitely many times.

Let ay, ..., any1 be points at which ¢ takes value c¢. The singular points of ¢,
together with the points z for which the points z + a; are singular, form a set of
measure zero. Therefore, there exists a nonsingular point zy of the function ¢ for
which all points a; + zg are also nonsingular ones. Then the points z and a; + z for
values z sufficiently close to 2 are also nonsingular. For such points z consider the
equation

(9.1) F(z,¢(z),c) = 0.
It has n + 1 roots z; = w(z + a;), because

Fp(z+ ai), p(2),€) = Flp(z + a:), p(2), plas)) = 0.

Equation (9.1) is a nonzero polynomial in z of degree n and, therefore, it has
at most n distinct roots. 1t follows that ¢(z + a,) = ¢(z + a,) for certain distinct
p and ¢q. Such a relation is satisfied for any point z from a neighborhood of zg, but
the pairs (p, ¢) can differ. '

Nevertheless, there are only finitely many pairs (p,q) and, therefore, some
relation ¢(z + ap) = @(z + a4) holds for an infinite set of points z. These points
have a limit point z; and the function ¢ is regular at z;. By the uniqueness theorem
we see that the functions (2 +a,) and p(z + a4) coincide, i.e., ap — a4 is a period
of .

We have proved that ¢ is a periodic function; for definiteness, we may assume
that the minimal period of ¢ is equal to 2n. Let us assume that ¢ has no other
periods and then show that ¢(z) = R(w), where w = e** and R is a rational

function. The map z — w = €** sends the strip 0 < Re z < 27 into the plane with
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the cut from 0 to 4+co. The function ¥(w) = ¢(z) is meromorphic on the plane
with points 0 and oo punctured. If these points are not essentially singular ones,
then the function v is rational.

Suppose that at least one of these poles is essentially singular. Then by Picard’s
big theorem there exist points by, ..., b,y1 for which %(b;) = ¢. The preimages
B1, -+, Bnt+1 of these points with respect to the map z —— w are distinct and
belong to the strip 0 < Rez < 27. The equation F'(x,@{z),c} = 0 has roots z; =
¢(B;+2). Repeating the same arguments as above, we see that the function ¢ has a
period B, — @, where 0 < Ref,, Ref, < 2m. Therefore, either ¢ has another
period in addition to the purely real period 27 or it has a real period smaller than
2m. The latter case is impossible, since the period 27 is the smallest one by the
assumption. O



CHAPTER 3

Arcs of Curvés and Elliptic Integrals

For a circle it is easy to construct an arc whose length is equal to the sum of
lengths of two other arcs of this circle. Generally speaking, this is related to the
fact that sin(p + ) is expressed in terms of sin ¢ and sin% by the formula

sin(yp + 1) = siny/1 — sin® ¢ + sin /1 ~ sin? .

For the elliptic integrals F'(y) and E(yp) there also exist addition theorems, al-
though more cumbersome, as we have seen. This means that for curves whose arc
lengths are expressed in terms of F'(y) and E(¢p) the operation of addition of arc
lengths is also possible, although it is more involved; moreover, for E{y) it is not,
strictly speaking, the straightforward addition, but an addition with a certain extra
algebraic term.

In this chapter we will study curves whose arc lengths can be expressed in terms
of elliptic integrals. In many respects the lemniscate is the most interesting of all
such curves. However, the lemniscate deserves special study and we will study it in
the next chapter. '

§3.1. Arcs of the ellipse and the hyperbola

The ellipse z—z + %; = 1 can be given parametrically by the formulas z =
acosip, y = bsinw. The differential dl of the length of an arc on the ellipse is

equal to v/dz? + dy? = dp+v/a?cos? o+ b2sin? . If a = 1 and b = /1 — k2, then
1 — k2 sin? . In this case the length of the arc on the ellipse between the
end point of the small half axis, B, and the point M = (cosp, bsing) is equal to

(see Figure 24)
7
E{p) -_—f \/1— k%sin® ¢ dip.
0

N

FIGURE 24

53
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Therefore, the length of an arc on the ellipse can be expressed in terms of an elliptic
integral of the second kind. This is precisely the reason why the integral gets the
name elliptic. ,

The simplest parameterization of the hyperbola 3; — %3 =1 is obtained using
hyperbolic functions x = acosht, y = bsinh¢. To express the length of an arc on
the hyperbola in terms of F{ip) and E(p) we, however, need a parameterization of
the hyperbola by trigonometric functions. One such parameterization is given by

the formulas a

T = , y=>btaney.

"~ cos¢
Under such a parameterization the differential of the are length is equal to

12 1/ a2sin? o + b2 dyp
cos?

and this formula does not lead to the expression desired. Therefore, let us consider
another parameterization setting y = b? tan . Then

2 = ( 2 )2(1— (1 - b%)sin® ).

cos

In particular, if a? = 1 — % = k? we get
T == k \/1—k2sin? ¢ and y=(1—k*)tane
COs

(1—k*)dy

cos? py/1 — k2 sin® o

y
M
I'(e)
@) A x

FIGURE 25

so that

dl =

Hence, the length of the arc —AM on the hyperbola (Figure 25) is equal to
F( ) - /¢ (1 - kz)d"/) _ ¥ (1 - kz)d¢
v 0 cos? /1 — k2sin 9 o cos?PA(y)’

where A(1) = /1 — k2 sin® ). Since A'(¢)) = —F—ZSiZ———(%gi—%-[-}—

_k’sin’y  A(p) 1k 1k N
A(p)  costyp  cos?PA(Y)  AY)

, it follows that

(A(y) tany)' = AY)
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so that

I'(p) = Alp) tanp — /; A()dy + (1 — k?) /Ow 0P

A(Y)
= Afp) tang — E(p) + (1 - k*)F(p).
Thus, the arc length of the hyperbola can also be expressed in terms of the elliptic

integrals E(y) and F(p) (and the elementary function A(p)tan¢), although this
expression is more cumbersome.

§3.2. Division of arcs of the ellipse

Let us consider the ellipse

2 2
x
,_2_+.y_
o b2

where a = 1 and b = v/1 — k?. The length of its arc —BM (Figure 26) is equal to
E(p). In §2.7 we showed that if F(p)+ F(¢) = F(u), then

=1,

E(p) + E(¢) — E(u) = k* sin psin g sin y,

where ¢, ¥, and p are subject to the constraint

cos ¢ cos 1 — sin psinpr/1 — k2sin® pu = cos p.

We do not repeat all the formulas from §2.7, although we will need many of them
now to obtain relations between the lengths of the ellipse arcs of the ellipse.

y
B M)

N
N2

FiGcure 26

Let us start with the study of the case u = 7/2. In this case sin u = 1 and the
angles ¢ and 1 are related by the formula btan ¢ tani = 1. Let the points M and
N correspond to the angles @ and 1 (see Figure 26). Denote the length of the arc

—BM by BM. Then
E(p) = BM, E(4)=BM+MN, E(u)=BM+MN +NA.

Therefore,

— ~—~

E(p)+ E()) — E(p) = BM — NA.

As a result, we get the following statement.
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THEOREM (Fagnano). Let the angles ¢ and i be related by the formula
btanptany =1,
and let M and N be the points of the ellipse corresponding to these angles. Then
BM — NA = k2 sin @ sin .

(Recall that ¢ = 1 and b = /1 — k2.)

Let us consider in detail the case when the points M and N ggincider,\ ie.,
w =1 = 6. Then taxf@ = i):l and sin’f = (1 + b)~!. Hence, BM — AM =
k?sin®0 = 1 — b and BM + AM = E' = E(%) is the quarter of the arc length of

the ellipse. Therefore, BM = %El + %—(1 ~b)and AM = %El — %(1 —b), i.e., up to
an extra algebraic term %(1 — b) the point M divides the arc by half. The presence
of the extra term k? sin ¢ sin ) sin 1 in the addition theorem for elliptic integrals of
the second kind leads to this, not quite natural, division “by half”.

A similar division of the arc “by half” can also be performed not only for the
quarter of the arc of the ellipse but for an arbitrary arc —BM. If = 1 = 6 and

F(g) + F(4) = F(u), then
2E(0) — E(u) = k? sin? @ sin p,
where the angles € and u are related by the formula
| cos? 8 — sin® A (i) = cos p.

To find the angle p from a given angle # (this problem is called the duplication of
the arc) we can make use of any of the formulas

2sin 6 cos 0A(6) wy
iy " tan (5) = A(f) tan 6.

To find the angle 6 starting with a given angle p (the division of the arc “by half”)
we can use the formula

sinp =

. 9 1—cosp
sin” § = m«)—
The equation
2E(0) — E(u) = k*sin® @sin
means that N .
2BM — BN = k? sin” 6 sin s,
where the points M and N correspond to the angles ¢ and p. Hence,
BM = %B/}V + %kzz sin? @ sin p = %B?V + L—:wg}@ tan -g
Suppose we want to construct an arc —M N whose length should be equal to a
half of AB (Figure 27). Then the problem of the division of the arc can be solved
explicitly without an extra algebraic term.
First, construct the point K that divides ~—AB “by half” and is expressed with
an extra algebraic term (see above). For the angle 8 corresponding to K we have

sin?f = (1+b)"*and E(f) = %El + %(1 —b).
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B M(g)

y
K@)
/ \\N W)
A
NP2
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For the angles ¢ and v the relation

B($) - E(p) = 5 B

should be satisfied. Using the freedom in the choice M, let us impose on the angles
@ and 2 an additional constraint

F(e)+ F(0) - F(¢) =0
from which it follows that
E(p)+ E(#) — E(y) = k®sin psinesin 8

and
cos @ cos 9 + sin psin YA(f) = cosf.

Then '

1

-2—E1 = E(¥) — E(p) = E(0) — k*sinpsinsind

= -;—El + -;—(1 —b) — k*sin@sinesin 8,
so that 1
k?* sin psine sin @ = 5(1 —b).

Taking into account that k2 = 1 — 4% and sin® 0 = (14 b)~', we get

‘sincpsinﬂ,b:(lmm Lo ! 1sin0.

2(1-6%)  2/i+b 2

Since A(f) = /b, the relation
cos @ cos ¥ + sin p sin wA(G)‘ = cos f
can be rewritten in the form

1
cOSs (p cos Y + 3 sin @vb = cos .

But sin 8v/b = cos 8; hence, cos @ cos ) = % cos . As a result, we get equations for
w and Y

1
singosinwz—;-sinﬁ and cosgocoswzé—cosﬁ.

It follows that

cos({p + ¢) = -;—(cosﬁ Fsind) = cos g oS (0 + g) :



58 3. ARCS OF CURVES AND ELLIPTIC INTEGRALS

These formulas enable us to find ¢ and %. Moreover, from the same equations we
can also derive expressions

1
sin @ = Z\/3+4sin9—i—231n29- %i\/3~—4sin9+25in29,

. 1 1 - X
sinty = Z\/3+4sin6’+28in26’+ Z\/3~ 48in 6 + 2sin® 6.

These expressions show that given an ellipse in which the major and minor semi-
axes OA and OB are drawn, then with a ruler and compass we can construct an
arc of the ellipse whose length is equal to a half length of the arc —AB.

Should the semi-axes not be given, they still can be constructed with a ruler
and compass.

This can be done, for example, as follows. First, let us construct a pair of
conjugate diameters of the ellipse. To this end we can use the fact that the
midpoints of parallel chords of the ellipse lie on one diameter AA’ of the ellipse,
while the midpoints of chords parallel to AA’ lie on the diameter BB’ conjugate
to AA’. Let O be the center of the ellipse. Let us draw the perpendicular from B
on the straight line QA and on the perpendicular mark points P and @ such that
BP = BQ = OA. Then the bisectors of the angles between the straight lines OP
and OQ) determine the principal azes of the ellipse we were looking for.

Indeed, let us consider the coordinate system whose axes are directed along
the principal axes of the ellipse. Then the coordinates of the points A and B are
(acosy,bsiny) and (asinp, —bcos ¢), respectively. Therefore, the coordinates of
the points P and Q are ((a+b) sinp, —(a+b) cos ) and ((a —b) sin p, (a —b) cos p),
respectively. It is clear now that the bisectors of the angles between the straight
lines OP and OQ are the coordinates axes.

Now, let us investigate the division of an arc of the ellipse into three equal
parts. First of all, consider the division with an extra algebraic term. Recall that
if F(4) = 3F (i), then

3z — 4(1 + k%)z® + 6k*z° — kiz®
1~ 622t 1 4k2(1 + k2)26 — 3kiz®’

where z = sin ¢; for 1 = % this equation reduces to the equation

siny =

(2.1) 122+ 2k%° ~ kPt = 0.
If F(pa) =2F(p) and F(p3) = 3F(p) (i.e., w3 = 1), then
3E(p) — E(x) = k* sin p(sin @ sin @3 + sin s sin ¢3).

In order to get rid of the extra algebraic term on the right-hand side and solve
the problem of the division of an arc of the ellipse into three equal parts in the
strict sense, let us again construct the arc with an arbitrary beginning point. Let
us confine ourselves to the division of the arc —AB into three equal parts, where O A
and OB are the major and minor semi-axes, respectively. In this case ¢ = 3 = 3;
hence, sin 3 = 1 and

3E(p) — E(3) = k*sin psin pa(sinp + 1),
ie.,
1

(2.2) E(p)= 2B + 1

3 3k2 sin @ sin g (sing + 1).
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Let x = sin ¢ be a root of equation (2.1). Let us find the angles 1) and w satisfying
equations
(2.3) Bw) - B) = 3 B,
(2.4) Flp) + F(¥) = F(w) =0.
From (2.4) it follows that
E(p) + E(y) — E{w) = k* sin @ sin ¢ sin w.
Taking (2.2) and (2.3) into account, we get
(2.5) sinysinw = %sin w2(1+sinp).
Moreover, it follows from (2.4) that

cos 1 cosw + sin ¥ sin wA(p) = cos

and, therefore,

1
COS 1 COSWw = COS (P — 3 sin wo A(p)(1 + sin ).

Making use of the relation
COS g COS 3 + sin g sin w3 A(p) = cos p,

where 3 = ., we obtain sin @y = cos ¢/A(p). Taking into account relation (2.1)
with © = sinyp, it is also possible to express this relation in the form cospy =
1 — sin; to this end we should express (2.1) as

1 — z?

A
1 — k222

= (1—z)2
Hence,
1 . 1
COS 7 COSW == COS @ — 3 cos(l +siny) = 3 o0s (1 + cos @2).

The last relation together with (2.5) leads to the following formulas:

1
cos(vp £ w) = —?;(cos © -+ COS P COS (P2 F sin s F sin p 8in ¢2)

= %(cosgo F sin g + cos(p £ p2)).

Thus, if a root of equation (2.1) can be constructed with a ruler and compass,
then for any ellipse with the ratio of its axes equal to 1 : v/1 — k? we can construct,
using a ruler and compass, an arc whose length is equal to a third of the length of
the arc — AB. An example of such an ellipse is an ellipse with the ratio of axes
1: /2 for which k% = 1. Indeed, in this case equation (2.1) is of the form

24 —22% 442 -2 =0.
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Making the change of variables z = /1 — z we get the equation
21+ I —z=2—(1-2)%
Squaring both sides we get
A 4622 —-3=0, ie, z°=-3+2V3.
Finally, z = /2v/3 — 3 and sin ¢ = z = v/1 — 2, i.e., the angle o can be constructed
with a ruler and compass.

REMARK. The whole material of this section is borrowed from the classical
treatise by Legendre [A12].

PROBLEMS

3.2.1. Let the angles ¢ and % be related by the formula btanptany = 1. By

Fagnano’s theorem BM — NA = k? sinpsint. Prove that this difference is also
equal to the length of the segment MM, as well as to that of NNj, where M; and
N; are the projections of the center of the ellipse on the tangent lines at the points
M and N (see Figure 28). -

B M
L Mlp)
N(y)
N,
|
FIGURE 28

§3.3. Curves with elliptic arcs

The ellipse is an example of a curve whose arc lengths can be expressed in
terms of an elliptic integral of the second kind. For a curve whose arc lengths
are expressed via elliptic integrals of the first kind the addition of arc lengths can
also be performed even without an algebraic extra term. Are there curves whose
coordinates are sufficiently simple functions of a parameter ¢ and whose arc length,
as a function of o, is an elliptic integral of the first kind?

Consider the curve z = z(p), y = y(i) such that the length of the arc from the
point with parameter 0 to the point with parameter ¢ is equal to

4 d
Fp) = f L =
0 v1-—k%sin®o
For k = % such a curve was known already to Fagnano; this is the lemniscate.

Legendre attempted to construct an example of such a curve for an arbitrary k.
If ‘

—bsin ¢ dy

g — cos @ dip pdp
1—k2sin” ¢

= 2P and dy =
“remig 0 W
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where b = v/1 — k2, then

dy* dp \* /
2 d 2 =] fouesy o= e b2 o} 2 .
dz” +dy T ks (A(go)) , where A(yp) 1—k?sin” @

Therefore, as the functions z(p) and y(y) we may take primitives of the functions

COS and —bsing

1 — k2sin? ¢ 1—k2sin®

The corresponding integrals are easy to calculate using the change of variables
u =sing and v = cos . As a result, we get

3::—1— 1+ku__1_1n1+k:smcp

% "1—ku 2 1—ksing’

= E arctan _]?_E = } arctan keosp
YTk bk b
It is easy to verify that
b
cosky =
V1 —k?sin? ¢
and
kx —kax
1
cosh kx = e te = ,
2. 1 — k2sin? o

i.e., cosky = bcosh kx.
Legendre found this example easily but he was not satisfied since the curve

cos ky = bcosh kx

is not an algebraic one. He also succeeded in constructing an example of an algebfai(;
curve with the arc length equal to F{p) (with a certain algebraic extra term).

These studies of Legendre led mathematicians to the problem of finding all
algebraic curves whose arc length is an elliptic integral of the first kind. Legendre’s
problem was solved by the French mathematician Joseph-Alfred Serret. In three
papers published in Liouville’s Journal de I’Ecole Polytechnique he managed to
construct a family of plane algebraic curves S, depending on a positive rational
parameter p whose arc length is exactly F(¢). (For an exposition of these papers
see [A14], §§563-565.) Moreover, Serret proved that in this way one gets all the
algebraic curves with required properties.

Serret’s curves are obtained in the following way. Let p be a fixed number.
Consider the triangle OPM with the length of the sides OFP and PM equal to /p
and +/p+ 1, respectively, and the angles at the vertices O and M equal to o and
3, respectively. Let

(3.1) cosw = cos(pa — (p+ 1)B).

Let us introduce a Cartesian coordinate system Ozy with the origin at the vertex
O of the triangle OPM and the angle between the z-axis and the side OM equal
to w (Figure 29). '
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Let us vary the triangle OPM so that the point O is fixed, the lengths of the
sides OP and PM are constants and the angle w between the z-axis and the side
OM is determined by relation (3.1) at all times. Then the point M will plot a
certain curve S,. Let z = pcosw and y = psinw be the coordinates of M; we may
assume that x and y depend on a parameter o.

THEOREM (Serret). The length of an arc of S, as a function of the parameter

o is equal to
“ dep [ P
D f , where k= ,/——.
VP 0 /1—kZsin®¢ p+1

The curve Sy is algebraic for any positive rational p.

PROOF. Let OM = p. By the law of cosines p+ 1 = p + p? — 2p,/pcosa and
p=p+1+p%—2p/p+ 1cosf, ie.,

: p?—1 o +1
(3.2) cos & N and cosf3 IV ES
Thus, p and cos « are related by a (polynomial) constraint F'(cos, p) = 0, where
F(z,y) = 2zy/p — ¥* + 1. Moreover, if p € Q, then cosa and cospa are also
connected by a polynomial relation. It follows that p and cospa are related by a
polynomial dependence. Similarly, p and cos(p + 1) are related by a polynomial
dependence. Since x = pcosw = pcos(pa — (p+ 1)5) and y = psinw, it follows
that  and p, and also y and p, are related by polynomial dependencies. Therefore,
x and y are related by a polynomial dependence, i.e., the curve S, is an algebraic
one.

It follows from (3.2) that

R and sing@ = _ R
2p\/P 20v/p+ 1

sino =

where

R=+/—p"+2(2p+ 1)p® - 1.
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Differentiating the equality cosw = cos(pa — (p + 1)8) we get
—sinw dw = —sin(pe — (p+ 1)B)(pda — (p + 1) dB).
Since sinw = =+ sin(pa — (p + 1)8), it follows that
+dw = pda — (p+ 1)dg.

Making use of the fact that

21 R
cosa = p and dcosa-—smada~—-——-——doz
204/p 20/p
we get do = e 4ldo, Similarly, df = _pi=ldp Therefore,
R p R p

p*=(2p+1)dp

+dw = pda — (p+1)df = R -

Let dl be the differential of the arc length. Then
dp?
R2’

ie,dl =£2/pp+1)%. Since 25 = —2\/p+1 1%, it follows that +dl = /P 225,

Moreover, sin§ = 1/23+1 sin o; hence, cos 8 = \/1 — k2sin® o, where k = 1/p+1’

Finally, up to a sign, we get

di? = dp® + pPdw? = dp(p+ 1) —=5

bl
1—k? sin? o

as was required. O

The curve S, possesses the following remarkable property. Let the points O,
A, and B correspond to the values of the parameters 0, o, and [, respectively.

Consider a point C' such that OC OA + OB. In other words, C' corresponds
to the value of the parameter v such that F(vy) = F(a) + F(8). Then cosvy can
be algebraically expressed in terms of coso and cos 3. Moreover, it is also clear
that the coordinates of the points A, B, and C' can be algebraically expressed in
terms of cosa, cos 3, and cos~y, respectively. Hence, the coordinates of C' can be
algebraically expressed in terms of the coordinates of A and B. Thus, the addition
and the division of arc lengths on the curve S, are algebraic problems. In particular,
we may write an equation for the division of an arc (with the beginning point at
O) of the curve S, into n parts of equal length.
Now, let us consider in more detail the curve S, for p = 1. In this case

2_1 2
and cosf = P +1.
2v/2p

Cos (¥ — d

Easy calculations show that

z.= peos(a — 20) =
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where R = \/—p* +6p% —1; hence, £ — 1 = pycosfB and y = —p; sin B, where
2

01 = P—ﬁTp—l. Moreover,

2-1\* 1
cosQﬁm<p2p ) = —p3

i.e., the curve is the lemniscate.

= 2/917

§3.4. Curves whose arc lengths can be
expressed in terms of arc lengths of the circle

In the preceding section we constructed a series of curves for which the addition
of arc lengths is an algebraic operation. There are other examples of such curves.
It was Euler who already constructed them. He wrote that he had found these
curves only after long study. The coordinates of points on these curves are algebraic
functions of the argument tan s, where s is a parameter proportional to the length
of the arc of the curve. The addition of arc lengths of such curves is an algebraic
operation since tan{a + 3) can be algebraically expressed in terms of tano and
tan (. :

Later on, Serret generalized the examples constructed by Euler. Serret even
gave a complete classification of such curves. We will confine ourselves to the
simplest example.

Let z+1y = %, where n is an integer or a rational number, and a and
o are complex numbers such that a = @. As ¢ varies from —oo to 400, the points
with coordinates (z,y) form a curve. This curve is an algebraic one, because z and
y were algebraically expressed in terms of ¢.

It is easy to verify that

(t — )" (pt + g)
(t— )"t i(t +1)3

It is possible to select numbers a and « = @ so that pt + ¢ = k(t —4). We can even
assume that |a| = 1, namely,

dz + idy = dt.

n(n+ 2) i
n+1 n+1

For this value of a we get pt + g = k(¢ — 1), where

_ 2y/n(n+2)
a4+l

In this case :
P (t - a)”""l(t +1)

dz — idy = dt.
R Y PR TR Y R
Therefore,
i dt \?
di? = dz? + dy? = k? =lk—-] .
| vy (t+9)2(t —14)2 241
Hence,

¢

d

l:ik/ 27 = +karctant.
o T +1

Thus, if the parameter s is equal to 7% of the arc length of the curve, then ¢ = *tans
and the coordinates z and y of the points of the curve can be algebraically expressed
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in terms of t. The lengths of arcs are measured from the point corresponding to
the parameter ¢ = 0.

PROBLEMS

3.4.1. Prove that for n = 1 the equation of the curve considered above can be
expressed (after a homothetic transformation) in polar coordinates in the form






CHAPTER 4

Abel’s Theorem on Division of Lemniscate

A lemmiscate is a curve whose equation in the polar coordinates is of the form
7% = cos 26 (Figure 30). The name “lemniscate” stems from the Latin word lemnis-
catus — decorated with ribbons. In Cartesian coordinates (z,y), where z = rcosé,
y = rsinf, the equation of this curve is

($2 _i_yQ)Q — 3:2 . y2'

Indeed, 22 + y? = r? and 2% — 3% = r2 cos 20.

FIGURE 30
The French astronomer of Italian origin Jean-Dominique (Giovanni Dominico)
Cassini (1625-1712) was the first to study the lemniscate. He considered even

more general curves for whose points the product of the distances to the two fixed
points F; and I is a constant (Figure 31).

=)

FIGURE 31

On the basis of astronomical observations Cassini believed that with the help
of such curves the movement of planets could be described more precisely than with

67
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the help of ellipses. Now these curves are called Cassini’s ovals. But Cassini’s book
Eléments d’astronomie (Foundations of Astronomy), in which they were studied,
was published in 1749, many years after his death. To the mathematical community
the lemniscate became known through papers by J. Bernoulli and I. Bernoulli
published in 1694 and, therefore, it is usually called Bernoulli’s lemniscate.

The most remarkable properties of the lemniscate were discovered by an Italian
mathematician Count Fagnano (1682-1766). By the way, it was Fagnano who
coined the term elliptic integrals. Fagnano discovered that the arc length of the
lemniscate can be expressed in terms of an elliptic integral of the first kind. He
obtained an addition theorem for this integral and, therefore, demonstrated that
the division of arcs of the lemniscate into n equal parts is an algebraic problem.
In 1750 Fagnano published a collection of his papers under the name Produzioni
matematiche. The Berlin Academy asked Leonard Euler to write a review of
this book. Fagnano’s works stimulated Euler’s interest in elliptic integrals. In his
numerous studies Euler considerably developed and generalized Fagnano’s methods
and results.

Already Fagnano knew that the division of the lemniscate could be reduced to
a solution of an algebraic equation. However, methods for investigating solvability
of equations in quadratures (i.e., via square roots) were not yet developed at that
time. The first to achieve essential progress in this field was 19 year-old Gauss
(in 1796). He found that a regular 17-gon can be constructed with a ruler and
compass, i.e., the equation z'7 — 1 = 0 is solvable in square roots. Later, Gauss
showed that with a ruler and compass one can construct a regular n-gon for any
n of the form 2%p; - - - py, where p; are distinct Fermat primes, i.e., the primes of
the form 22" + 1. Gauss wrote that for all other n it is impossible to construct a
regular n-gon with a ruler and compass but we have no substantiation of the claim
that he could actually prove this.

Gauss was also interested in the equation for the division of the lemniscate. For
example, he showed that an equation of 25th degree related to the division of the
lemniscate into 5 equal parts is solvable in square roots. His arguments were based
on the fact that 5 can be represented as the product of 2 + i by 2 — ¢ (for details
see §4.3). Gauss did not publish these investigations but in his book Disquisitiones
Arithmeticae (Arithmetical Studies), which appeared in 1801, he mentioned that
the methods he developed were applicable not only to trigonometric functions but
also to the functions related to the integrals of the form [ \f]?——:f‘—_«ﬂ. .

This claim intrigued Abel. Abel investigated in detail the equation for the
division of the lemniscate and proved that the lemniscate can be divided into n equal
parts for all numbers n of the form 2%p; - - - pg, where the p; are distinct Fermat
primes. Abel considered this theorem as one of his most important results. It is
contained in the second part of his large work Recherches sur les fonctions elliptiques
(Studies on Elliptic Functions). Abel’s proof is quite long and complicated.

" Later, Eisenstein (1823-1852) obtained a simpler proof. In doing so he dis-
covered certain interesting properties of polynomials related to the division of the
lemniscate. Eisenstein’s proof is still quite cumbersome.

Relatively recently Rosen (see [C14]) found an elegant proof of Abel’s theorem.
His proof is rather simple and, moreover, it distinctly demonstrates the decisive role
played by the invariance of the period lattice of lemniscatic functions with respect
to multiplication by 7. '
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To help the reader to feel the style of Abel’s era and, at the same time, become
acquainted with the modern interpretation of the subject, we will reproduce both
proofs: the one that Eisenstein obtained one and a half centuries ago and the one
recently found by Rosen.

Abel only proved the possibility of the division of the lemniscate into n equal
parts with a ruler and compass for the indicated values of n. He did not prove that
for the other values of n this is impossible. In [C14] it is shown that for the other
values of n it is impossible to construct the coordinates of the points that divide the
lemniscate into n equal parts with a ruler and compass. This, however, does not
mean that for the other values of n it is impossible to divide the lemniscate into n
equal parts with a ruler and compass if the lemniscate is already drawn. Indeed, use
of the lemniscate itself provides us with additional possibilities for constructions.
Considering the points of intersection of the straight lines and circles with the
lemniscate one can, in general, construct more than just quadratic irrationalities.

* % ok

Before we plunge into the study of the equation for the division of the lemnis-
cate, let us consider a simpler equation for the division of the circle. First, we will
show how to solve in square roots the equation z!7 — 1 = 0 by a quite elementary
method, though this solution cannot be generalized to the equation for the division
of the lemniscate. Next, we will discuss the approach to the study of the solvability
of the equation 2™ — 1 = 0 in square roots that can be generalized to the equation
for the division of the lemniscate.

84.1. Construction of a regular 17-gon.
An elementary approach

The roots of the equation ™ —1 = 0 are the vertices of a regular n-gon. Indeed,
if € = exp(2mi/n), then ¢,¢2,...,e" = 1 are the roots of this equation. Dividing
the polynomial 2™ — 1 by = — 1 we get the polynomial 2! + 2" 2 + ...+ + 1.
Thus, if the equation

(1.1) "l g b2+ 1=0

is solvable in square roots, then it is possible to construct a regular n-gon with a
ruler and compass.

For n = 3 there is no problem, since the quadratic z2 + z + 1 = 0 is, without
doubt, solvable in square roots. For n = 5 equation (1.1) is also easy to solve.
Indeed, the substitution v = z + z~! turns it into v> +u —1=0.

For n = 17 it is not that easy to solve equation (1.1) in square roots. To do
so, Gauss used a special partition of the numbers ¢, €2, €, ..., €'% into groups,
where £ = exp(2mi/17). To get such a partition, we enumerate the given numbers
so that for a fixed I the root €;4; is obtained from g in the same fashion, namely,

by raising to a fixed power: g4 = (&x)%:
EkEl = Ek4l-

Such a numeration can be obtained by setting e = £9°, where the residues of the
numbers 1, g, g%, ... , g'° after the division by 17 take all values from 1 to 16. It is
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easy to see that g = 3 possesses this property. For g = 3 the numbers €o, ..., €15
and their respective values are written one under another in the following table:
e £ g9 g0 g3 5 15 11 16 14 8 T g4 12 g2 &6
€0 €1 €2 €3 €4 &5 €& €7 €3 €y €10 €11 €12 €13 €14 €15
Let z; be the sum of the numbers ¢, with even indices k, and zp the sum of
the nurnbers £ with odd indices %, i.e.,
pp =4+ 4el®el®ped e+
zo =2 +e0 e +ell el e+ + 0
The sum of all the roots of the equation z!7 — 1 = 0 (the root & = 1 included)

is equal to zero, hence, z; + zo = —1. Simple calculations show that ziz2 = —4.
Indeed, let o = 27/17. Then £® = cos ka + 1sin ko; hence,

g+e'® =2cosa, e + &% = 2cos8ay,
e® + et =2cosde, €' +e* = 2cos2a,

ie.,
z1 = 2(cos a + cos 8a + cos 4o + cos 2a).

Similarly,
xg = 2(cos 3a + cos Ta + cos b + cos 6ax).

Using the formula
2 cos pa cos gor = cos(p + q)a + cos(p — ¢
we get
Z19 = 8(cos a + cos 20 + cos 3a + - - - + cos 8a) = 4(z1 + ®2) = —4.

Thus, we can find z; and z; from the quadratic equation

(1.2) : 2+ —-4=0
Since T
cos o + cos 2o > QCOSZ =2 > — cos8a
and cosda > 0, it follows that x; > 0. Hence, zg = —;34? < 0, i.e., x1 is the positive

root of equation (1.2) and x5 is the negative root.
Denoting by v1, ¥s, y2 and y4 the sums of the numbers &5 with indices whose
residues modulo 4 are equal to 0, 1, 2 and 3, respectively, we get

y1 =€ + e + 18 4 ¢* = 2(cos o + cos da),
yo =& + ¥ + €% 4 &% = 2(cos 8ax + cos 201),
Yz =€ +&° + el + €'? = 2(cos 3a + cos bar),
ys =0 4 et 47 + % = 2(cos Ta + cos 6ar).

It is clear that y1 +y2 = x; and yll > 19, because cos @ > cos 2« and cos 4o > cos 8.
Moreover,

y1y2 = 4(cos o + cos 4a)(cos 8a + cos 2cx) = 2(cos o + - -+ + cos 8a) = —1.

Therefore, v, and ¥, satisfy the equation y* — z1y —1 = 0. It is easy to verify that
ys and y, satisfy the equation y? — zpy — 1 = 0; moreover, y3 > Y.
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Finally, let us consider z; = € + €% = 2cosa and zy = &!® + ¢ = 2cos4da,
i.e., the sums of numbers ¢, with indices whose residues after the division by 8 are
equal to 0 and 4, respectively. Then z; > 29, 21 + 22 = Y1 and

2122 = 4cosacosda = 2(cos Sa + cos 3a) = ys3.

Therefore, z; is the largest root of the equation 2% —y; z-+ys = 0. Thus, the segment

of length z, = 2cos(27/17) can be constructed with a ruler and compass. Now it
is clear how to construct a regular 17-gon.

§4.2. Construction of regular polygons.
Elements of Galois theory

In the preceding section we showed how to solve in square rocts the equation
z'” — 1 = 0. Now we prove that for all numbers n of the form 2"p; - - - pi, where
the p; are distinct Fermat primes, the equation ™ — 1 = 0 is also solvable in square
roots. Our exposition will be such that a good deal of it can be generalized to the
case of the lemniscate almost without changes.

Assigning to every real number ¢ the point with coordinates (cost,sint), we get
a parameterization of the unit circle C' by real numbers. As a result, C turns into
an abelian group with unit element (1, 0).

Since
cos(t + s) = costcoss —sintsins and sin(t + s) =sintcoss + costsins,
the law of addition of points on this circle can be expressed as follows:
(a,b) + (¢, d) = (ac — bd, ad + be) = (f(a,b, ¢, d), g(a, b, e, d)).
It is easy to verify that '

2(z,y) = (2,9) + (z,9) = («° — y*, 2zp)

and
3(z,y) = (2° — 3wy®, 3%y — o).
Similarly,
n(xa y) - (fn(x, y),gn(m; y))a
where f, and g, are polynomials with integer coefficients. From the relation
cosny + isinnp = (cosp + isiny)” we get
z+ )" + (z—iy)” z+iy)" — (z —diy)"
RV N S A ) ARG A 7 P R G Dt A
2 21

Let C}, be the set of points (z,y) € C such that n(z,y) = (1,0), ie., fo(z,y) =1
and g,(z,y) = 0. These points can serve as vertices of a regular n-gon. It is also
clear that C,, is a subgroup of C' isomorphic to Z/nZ, the additive group of residues

modulo n.
Over C, in addition to the points of C}, there are other solutions of the system

fn(x;y) = 17 gn(m,y) —_ 0

Let us find all these solutions. Using formulas (2.1) we can pass to an equivalent
system of equations
(@i =1, (z—iy"=1

Y
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Therefore, z +1y = &P and x — iy = €9 for € = exp(2ni/n). In particular, 22 +y* =
ePed; hence, the equality 2 + y? = 1 holds if and only if e = ¢~9. Thus, C, can
be characterized as the set of all solutions of the system of equations

(2.2) - fal@y) =1, gu(z,y) =0, 2°+3y*=1

Let us consider the field K,, generated over Q by the Cartesian coordinates
of all the points of C,,. For example, Cj consists of points (1, 0) and (-3, iw@);
and, therefore, K3 = Q(v/3); Cy4 consists of the points (+1,0) and (0, £1); hence,
Ky =Q.

Let o be an automorphism of K, identical on Q. Since the coefficients of
the polynomials f, and g, are integers, ¢ sends any solution of system (2.2) in
another solution of this system, i.e., ¢ determines a permutation of points of C,.
The automorphism o can be uniquely recovered from this permutation because the
coordinates of points of C), generate the field K,,. It is also elear that

o ((a,b) + (¢, d)) = o(ac — bd, ad + bc) = o(a,b) + o(e, d),

i.e., it is not an arbitrary permutation of points of C,, that corresponds to ¢ but
an automorphism of the group Z/nZ. Therefore, the group G,, of automorphisms
of K, over Q is isomorphic to a subgroup of the group Aut(Z/nZ).

The idea of the remaining part of the proof is as follows. First, we will show
that if n = 2%p; - - - px, where the p; are distinct Fermat primes, then the order of
the group Aut(Z/nZ) is a power of 2. In particular, the order of G,, is also a power
of 2.

Next, we will prove that if the order of the group G is equal to 2, then there
exists a sequence of subgroups

G=G"2G' >...>G"={e}

such that G? is a subgroup of G*~! of index 2 fori =1, ..., k.

Finally, using this sequence of subgroups we will construct a sequence of qua-
dratic field extensions beginning with @ and terminating with K,. The existence
of such a sequence of extensions implies that all elements of K, (in particular, the
coordinates of points of C,,) are quadratic irrationalities, i.e., can be constructed
using a sequence of square roots.

4.2.1. LEMMA. The order of the group Aut(Z/nZ) is equal to a power of 2 if
and only if n = 2%p; - - - px, where the p; are distinct Fermat primes.

PROOF. As is known, all automorphisms of the additive group Z/nZ are of the
form x —— max, where m is a number relatively prime with n. Therefore, the order
of Aut(Z/nZ) is equal to ¢(n), where ©(n) is the number of positive integers that
do not exceed n and are relatively prime with n. If numbers p and ¢ are relatively
prime, then ¢(pq) = ¢{p)p(q). Indeed, let 0 < a<p—1and 0 <b<qg—1. Then
the residues after the division of n = pg numbers of the form aq-+ bp by n form the
complete system of residues modulo n.

To prove this, it suffices to observe that a;q+ b1p = aaq + bap (mod pg) if and
only if (a1 —ag)g = (ba—b1)p (mod pq),i.e., ay = az {(mod p) and b; = by (mod q).
It is also clear that the numbers aq + bp and pq are relatively prime if and only if
a and p and also b and ¢ are relatively prime.
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If n = p*, where p is a prime, then ¢(n) = p*~!(p — 1). Indeed, among the

numbers that do not exceed n only the numbers p, 2p, ..., p*~1p have a common
divisor with n. The total number of such numbers is equal to p*—1.
Let n = p’fl - . Then ¢(n) is the product of the numbers Py Npi — 1)

The number p “‘1( -»~ 1) can be a power of 2 only in the following two cases:

a) p =2 and k is an arbitrary positive mteger

b)p—1=2°and k= 1.

In the second case the number ¢ cannot have odd divisors. Indeed, if d is an
odd divisor of ¢, then 2¢ + 1 = 2% 4 1 is divisible by = + 1. Hence, p is a prime of
the form 22" + 1. O

4.2.2. LEMMA. If the order of a group G is equal to 2%, then there ezists a
sequence of subgroups

G=G">G' D 2G* ={e}
such that G is a subgroup of G*~1 of index 2 fori=1,...,k.

Proor. Let us apply induction on k. For k = 1 the statement is obvious.
Suppose that the statement is proved for all groups of order 2°~1. For every element
z € G consider the class of elements conjugate to it, i.e., the set [gzg—!] of elements
of the form gzg~!, where ¢ € G. Any two such classes either coincide or are disjoint,
i.e., G is divided into the union of nonintersecting classes of conjugate elements. The
equality g1xg; ! = 922Gg ! is equivalent to the equality zh = hz, where h = 9y L.
Consider the subgroup ‘

= 1{h € G| zh = hzx}.
The elements g1zg; L and gaxgy Lare equal if and only if g1 € g2G,. Therefore, the
number of elements in the class [gzg~!] is equal to the index of the subgroup G,
in G; hence, it is of the form 2°.

The class [grg™!] contains exactly one element only if z commutes with all
elements of G, i.e., = is an element of the center of G. Suppose that the center of G
consists of the unit element only. Then the sum of cardinalities of all the conjugacy
classes is equal to 1 + 2% + ... 4 2%, where s; > 1. Hence, this sum is an odd
number. On the other hand, it is equal to the order of G, i.e., it is equal to 2.
This contradiction implies that the center of G contains an element a # e.

The element a generates a cyclic subgroup of order 2". Let us consider an
element b = @™, where m = 27!, The element b generates a subgroup H of order
2 that belongs to the center of (7; in particular, H is a normal subgroup. By the
induction hypothesis for the group F' = G/H of order 2571, there exists a sequence

F=F'2>F' >...0FF1={le}
where F is a subgroup of F*~! of index 2 fori =1, ..., k— 1. To get the required
sequence of subgroups, set G* = H and G* = F* UbFt fori =0, ..., k~ 1. N
Let n = 2%p; - - - p,,, where the p; are distinct Fermat primes. Then the group
G, of automorphisms of the field K, over Q has a sequence of subgroups
Gn=G'DG'>. . - 25G* = {e},

where G* is a subgroup of G*~1 of index 2 fori =1, ... , k. To the subgroup G* we
assign the set L consisting of the elements of K,, that are fixed under the action
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of all the automorphisms in G*. Since the sum, difference, product, and ratio of
elements from I* belong to L?, it follows that L* is a field. It is clear that L* = K,
and L D L1,

We can show that L? = Q, i.e., for any x € K,,\Q there exists an automorphism
of the field K, over QQ that moves z. In general, not every extension of Q) possesses
such a property. For example, the field

(p+qV2+7r4|pqreqQ

has no automorphisms distinct from the identity one. Indeed, the element /2 can
only pass into a root of the equation z* — 2 = 0, but only one root of this equation
belongs to the field considered.

The reasons why L° = Q will be given a little later. For the moment let us
assume this without proof.

All automorphisms in G* preserve the elements of L*. Moreover, G*! = G* U
oG*, where o € G~1. Hence, o2 € G* because o2 cannot belong to ¢G*?. Therefore,
the automorphism o of K, is such that if z € L?, then %z = z. Moreover, oz = z
if and only if £ € L*~!. Any element x € L' can be represented as the sum of
elements z; = %—(:1: + oz) and zg = %(a: — ox), where oz; = 71 and oz = —xs.
Therefore, z1 € L' ' C L and 2y =z — 21 € L%

Suppose that L' # L~} Let a € L'\ L*"! and o = 0a — a. Then oa = ~q,
where o # 0. Moreover, o(ax;) = (—a)(~z2) = oz, ie., azg € L1 and x5 €
a 1L~ Therefore, I’ = Li~1 + o~ 1L*1. Hence, if z € L?, then the elements 1,
z, z° are linearly dependent over I~1; therefore, 2% +pz+q = 0, where p,q € L1
It follows that any element from K, is a quadratic irrationality over LY.

Now let us prove that LY = Q. First, observe that K, is an algebraic extension
of @, i.e., the coordinates of points of C,, are algebraic numbers. Indeed, the

solutions of the system of equations

falz,y) =1, gnlz,y)=0

are algebraic; in order to prove this, it suffices to consider f,(z,y) — 1 and g(z,y)
as polynomials of y and examine their resultant.

Let @ be the set of all algebraic numbers (over Q). It is easy to verify that
Q is a field. Indeed, let o,3 € Q. Then of = ag + a1 + -+ + ap_lozp"l and
Be=by+ b+ +b,_189", where a;,b; € Q and agbp # 0. Therefore, any
element of the ring generated over Q by elements « and 3 can be represented in
the form of a linear combination with rational coefficients of elements a’3’, where
0 <i<pand0<j < q. Inparticular, each of the elements 1, a+23, ..., (a+ )¢
can be represented as a linear combination of the pg elements indicated; hence, they
are linearly dependent over Q, i.e., a + 8 € Q.

We similarly prove that o8 € Q. Moreover, ago™
hence, ! € Q.

Any automorphism 7 of the field Q over Q sends K,, into itself. Indeed, the
field K,, is generated by coordinates of points of C,, and (), coincides with the set
of all solutions (over C) of the system of equations

2.

1 fusced O{pwi_al_. . .__ap_lap—' ;

fn(m’y) =1, gn(az,y) =0, z? +y2 = 1.



§4.2. CONSTRUCTION OF REGULAR POLYGONS 75

The equality L°® = Q means that
if a € K, \ Q, then there ezxists an automorphism o : K, —> K, for which
o{a) # a.

To prove this, it suffices to indicate an automorphism 7 : @ —s Q for which
7(a) # a.

4.2.3. THEOREM. Let a and b be two roots of an irreducible polynomial over
Q. Then there exists an automorphism 7 : Q — Q such that 7(a) = b.

PROOF. Let K be a field, o a root of an irreducible polynomial P over K, and
K () the field generated by o over K. Then an arbitrary isomorphism f : K — K’
can be extended to an isomorphism g : K(a) — K’(8), where [ is a root of the
polynomial f(P). Indeed, the field K(a) consists of the elements of the form
> kjol, where j > 0 and k; € K. Set g(3> k;a?) = 3 f(k;)87. This map is
well defined because the equality )  k;a/ = 0 is equivalent to the fact that the
polynomial F'= Y k;z7 is divisible by P.

Let us first construct an isomorphism 7 : Q(a) — Q(b). Then select an
element ¢, € Q \ Q(a). It is a root of an irreducible polynomial P; over Q(a). Let
t; be a root of the polynomial 1 (P,).

Next, we can construct an isomorphism 7 : Q(a,tz) — Q(b, ). Select an ele-
ment £3 € Q\Q(a, t3) and construct an isomorphism 73 : Q(a, ta,t3) — Q(b,th,5),
etc. Since the dimension of Q over Q is countable, we can construct a basis

{1,617 = a,e9,&3,...} of Q over Q. The elements t3, t3, ... can be chosen so
that the field Q(a,tq,...,tx) contains a subspace generated by elements 1, 1, ...,
Ek.

As a result, we get a monomorphism 7 : Q — Q such that 7(a) = b. It
remains to verify that 7 is an epimorphism. Let v, € Q be a root of an irreducible
polynomial R over Q and let «, ..., 7, be all the roots of this polynomial. Then
(%) € {71,- .Y}, where all the numbers 7(y1),...,7(7,) are distinct. Hence,
the sets {v1,...,m} and {7(v1),...,7(7,)} coincide. In particular, v; = 7(7;) for
some j. O

It is possible to significantly generalize Theorem 4.2.3. First observe that @ is
algebraically closed. Indeed, let zp be a root of the polynomial a+fz+- - -4wa™ = 0,

where o, 3, ...,w € Q. Let us consider a polynomial R irreducible over Q and with
a root a. Let o, ..., ap be all the roots of R. Then all elementary symmetric
polynomials of ay, ..., a, can be expressed in terms of the coefficients of R and,
therefore, are rational. Let us similarly define G4, ..., B4 ... ; w1, ..., w, and

consider the polynomial

P@@)= [] (ai+fm+- +wia").
% T -

This polynomial is nonzero and all its coefficients can be expressed in terms of the
elementary symmetric polynomials os(cv,...,0p), ..., ot{wi,...,w,); hence, its
coeflicients are rational. Since P(zy) = 0, it follows that z € Q.

In the general case the following statement holds for the automorphisms of an
algebraically closed field 2 over its subfield K.

4.2.4. THEOREM. If the elemenis x,y € Q are transcendental over K, then
there exists an automorphism of ) over K that sends x into y. If the elements
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z,y € ) are roots of the same irreducible polynomial over K, then there erists an
automorphism of 1 over K that sends x into y.

We will not prove this theorem for arbitrary fields (for the proof see [B3], Ch.
IV, §6, Prop. 3), but for the most interesting case — the automorphisms of C
over Q — we will prove not only this theorem, but several of its generalizations.
For example, we will prove that the cardinality of the set of automorphisms of C
coincides with the cardinality of the set of all maps C — C (i.e., it is greater than
the cardinality of C). Our exposition follows [C15, C18]).

First, observe that a field isomorphism ¢ : F' — G can be extended to an
isomorphism ¢’ : F(a) — G(8) if and only if the following conditions hold:

1) if an element ¢ is algebraic over F and P is an irreducible polynomial over
F' with root «, then f is a root of the polynomial ¢(P);

2) if « is transcendental over F', then J is transcendental over G.

For our arguments we will need Zorn’s lemma. The point is that proofs by
induction are only applicable to countable sets whereas the dimension of C over
Q is uncountable. Therefore, to work with automorphisms of C over Q we need
another technique and Zorn’s lemma is sufficiently convenient for this purpose.

Before we formulate Zorn’s lemma, let us give several definitions. Let g be a
set. Denote by 29 the set of all the subsets of g. A set A C 29 is called a chain
if for any pair of its elements a,b € A either a C b or b C a (recall that @ and b
are subsets of the same set g). A set B C 29 is called Zorn closed if for any chain
A C B the set B contains also the union of all the elements of A. An element
m € B is called mazimal if the set m C g is not contained in any other subset a C g
which is an element of B (i.e., a € B).

4.2.5. ZORN’S LEMMA. Every nonemply Zorn closed set B C 29 contains at
least one mazimal element m.

With the help of Zorn’s lemma we can extend any automorphism ¢ of a subfield
of C to an automorphism of the whole field C. For that, we have to apply Zorn’s
lemma to the family of automorphisms that extend . But there is one difficulty.
It might happen that an extension of an automorphism of the field F to the field F”
containing F' does not leave F" invariant, so that an extension of an automorphism
is not an automorphism of F’ but an isomorphism of F’ with some other field.
For example, consider the automorphism of the field Q(+v/2) given by the formula
a+ bv2— a — bv2. Its extension to Q({‘/_Z_) is as follows:

a4+ b2 L ev2+d¥8 s at+ibv2 — V2 —id V8.

This map is an isomorphism of Q(¥/2) to Q(i+/2) but not an automorphism of
Q(v2). |

To overcome this difficulty let us first prove the following statement.

4.2.6. THEOREM. Any field isomorphism @ : F — G can be extended to an
1somorphism F — G of algebraic closures. :

PrOOF. Consider all possible extensions of the isomorphism ¢ to an isomor-
phism ¢, : F,, — G4, where F,, C F and, therefore, G, C G. Let us show that
the set

S = {the subsets of F' x G of the form {(a, pa(a)) | a € Fo}}
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is Zorn closed. Consider an arbitrary chain in S. By the definition of a chain, for
any two of its elements the corresponding isomorphisms ¢, and ¢z are such that
one of these isomorphisms is an extension of the other. This means that to the
union of all the elements of the chain an isomorphism corresponds, i.e., their union
belongs to the set considered.

By Zorn’s lemma the set S has a maximal element. To this element there
corresponds an isomorphism ¢ : F' — G’, so we must prove that F/ = F and
G =G. Suppose that an element a € F does not belong to F’. But a is algebraic
over F and G is algebraically closed. Therefore, ( contains an element b which is
the root of the image (under 1) of the minimal polynomial of a over F. Hence, it
is possible to extend this isomorphism ¢ : F — G’ to an isomorphism F’(a) —
G'(b), but this contradicts the maximality of the element corresponding to .

Thus, F' = F. Tt remains to prove that G’ = G. The field ¢’ is isomorphic
to F; hence G’ itself is algebraically closed. In addition, G’ contains G. Hence,
G =G. O

Now we can prove the theorem on extension of automorphisms of subfields of
C. '

4.2.7. THEOREM. Any automorphism ¢ of a subfield in C can be extended to
an- automorphism of the C.

Proor. Consider all possible extensions of the given automorphism ¢ : F —
F' to automorphisms ¢, : Fy — F,, where F,, C C. As in the proof of Theorem
4.2.6, we see that the set consisting of sets of the form {(a,¢q(a)) | @ € F,} has a
maximal element. To this element there corresponds an automorphism ¢’ : F* —s
F'. We must prove that F' = C. |

Suppose a complex number a does not belong to F’. If a is algebraic over F”,
then by Theorem 4.2.6 there exists an extension of ¢’ to an automorphism of the
algebraic closure of I and the latter is strictly bigger than F”. If a is transcendental
over I, then there exists an extension of ¢’ to an isomorphism F’(a) — F'(a)
sending a to a. In both cases we get a contradiction with the maximality of F’.
Hence, £’ = C. O

Observe that it is not always possible to extend an isomorphism of two subfields
of C to an automorphism of C. For example, there exists an isomorphism C —
F C C, where F' # C. Such an isomorphism is constructed as follows. Let a1, as, . . .
be a countable set of complex numbers algebraically independent over Q. The map
a; + @;41 determines an isomorphism

@(a;,az,...) — Q(ag,ag,...) C Q(al,ag,...).

Consider all possible extensions of this isomorphism to isomorphisms 6, : F,, —
Gq (Fa,Go C C) such that aq is transcendental over G,.

By Zorn’s lemma, the set {F,, } has a maximal element which, as is easy to show,
coincides with C. Therefore, we get an isomorphism C — F C C, where the field
F' does not contain a; and, therefore, F # C.

The proof of Theorem 4.2.4 for the case of automorphisms of C over Q is not
a problem now. Indeed, if the complex numbers z and y are transcendental, we
can consider an automorphism of the field Q(z,y) that interchanges = with y. By
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Theorem 4.2.7 it is possible to extend this automorphism to an automorphism of
the field C. If 2 and y are roots of the same irreducible polynomial over @, then
there exists a field isomorphism Q(z) — Q(y) sending z to y. By Theorem 4.2.6
this isomorphism can be extended to an isomorphism of the algebraic closures of
Q(z) and Q(y). But the algebraic closures of these fields coincide and, therefore,
we get not just an isomorphism, but an automorphism. This automorphism can be
extended to an automorphism of C.

It is crystal clear now that the cardinality of the set of automorphisms of C is
not less than the cardinality of the continuum. It turns out that the cardinality of
the set of all automorphisms of C is, actually, greater than the cardinality of the
continuum.

4.2.8. THEOREM. The cardinality of the set of all automorphisms of C coin-
cides with the cordinality of all maps C — C.

PROOF. We have to prove that the cardinality of the set of all automorphisms
of C coincides with the cardinality of the continuum. It suffices to prove that the
cardinality of the set of all the automorphisms of C is not less than the cardinality
of the set of all the subsets of the continuum. A set B C C is called a basis of
transcendentality over Q if B is algebraically independent over Q@ and B is not
contained in any other set of complex numbers algebraically independent over Q.
The maximality of B implies that C is algebraic over Q(B). Therefore, in particular,
the cardinality of B is equal to that of the continuum.

Let us show that to any subset S C B we can assign an automorphism g of
C such that to different sets there correspond different automorphisms.

Consider an automorphism of Q(B) over Q that sends z € Btoz if z € S
and to —z if x € S. By Theorem 4.2.7 this automorphism can be extended to an
automorphism g of the whole C. Clearly, if z belongs to one of the sets S or 7' and
does not belong to the other set, then pg(z) = —@r(z) and, therefore, pg # 7.0

PROBLEMS
4.2.1. Prove that any automorphism of the field R is the identity one.

HINT. Any automorphism ¢ of R should preserve the elements of Q. Moreover,
the inequality z > v is equivalent to the fact that z —y = a? for a € R.

4.2.2. Let f be an irreducible polynomial over Q and cos(2kmw/n) be a root.
Prove that all the roots of f are real ones.

HINT. Any automorphism of @ over Q preserves the field K,, ¢ R. (For the
definition of K,, see the beginning of §4.2.)
§4.3. The equation for the division of the lemniscate

Let us compute the arc length of the lemniscate 72 = cos 26. If z = rcosé and
y = rsind, then

dz? + dy?® = (cos Odr — sin 0rdf)? + (sin fdr + cos Ordf)® = dr® + r2462.

Therefore, the differential ds of the arc length can be computed in polar coordinates
by the formula ds® = dr? 4 r2df?.
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In our case 2r dr = —2sin @ df. Therefore,

rtdr? _ dr?
1—cos220 1—r%

dr? + r2do? = dr® +

Hence,
T dx / " dz
s(r)y = — = ,  where k% = —1.
(r) j(} vi—zt Jo /(1 —22)(1 - k22?)
Thus, = sn s is the elliptic Jacobi sine function for k% = —1. It is true that.ene

does not usually consider the Jacobi sine with such a modulus &; still, the addition
theorem is, actually, true in this case as well:

sn uecn vdn v+snven udn u
1+sn?usn?v

where cn © = V1 —sn? v and dn v = V1 +sn?u.

In what follows we set

sn(u+v) =

k)

p(s)=sns fork?=-1.
The relation
_dr dp(s)
S VI=rE 1= ¢%(s)

means that ¢’ = /1 — ¢?%. Therefore, the addition theorem can be expressed in
the form '

ds

e(u)e'(v) + p(v)¢' (u)

1+ ¢*(u)p?(v)

The function ¢ possesses a very important property which we will repeatedly
use:

o+ ) =

p(tu) = ip(u).
Indeed, setting = = iy we get

0 \/1-334 0 \/1-y4.
Hence, if

v / T dy
0o /1—7%
then r = () and ir = p(4u). The relation ¢(iv) = i(u) implies that ¢'(iu) =
p(u) and ¢'(—u) = o(u).
The relation ¢(iu) = ip(u) means that the lattice of periods of the function ¢
turns into itself under the map u —— 2u. Let us find out what the lattice of periods
looks like. Let

w / Vode

2 o vV1—zt
Then the length of the lemniscate is equal to 2w. The number w plays the same
role for the lemniscate as the number 7 plays for the circle.
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By definition, p{w/2) = 1 and ¢'(w/2) = 0. The properties of the function
sn imply that ¢(u + w) = —p(u). Hence, p(u + iw) = —¢(u) and, therefore,
olu+w tiw) = p(u), i.e., w(l 4 1) are periods of .

Let us now find the zeros and poles of ¢. Let o, 3 € R. Then

()¢ (8) + g’ () B(5)
1—-@2(a)p?(B)

where all the quantities in the numerator and the denominator are finite. Hence, the
equation ¢(a-+i8) = 0 holds only when ¢(a)¢’(8) = ¢'(a)B(8) = 0. The real zeros
of the functions ¢ and ¢ are, respectively, of the form mw and (m + %)w, where
m € Z. Hence, the zeros of ¢ should be of the form mw-+niw or (m—+2)w+(n+3)iw.
Clearly, @{mw + niw) = 0. The equation

W w "(u i’ (1) .
go(u-i-g)cp(u-}—?) a 1:—09(02%10 ' 1w¢¢2(u) =t

ola+if) = £

shows that if (u+ %) = 0, then p(u+ %) = co. Hence, (m+ 3)w + (n+ 3 )iw are
the poles of the function ¢. The system of zeros and poles of ¢ is plotted on Figure
32 (the poles are denoted by crosses); the parallelogram formed by the periods is
shaded.

FIGURE 32

Let us return to the problem of dividing the lemniscate into equal parts. Let
the length of the arc of the lemniscate between the origin and the point (r,8) be
equal to s. Then r = ¢(s). The length of one petal of the lemniscate is equal to w
and, therefore, the points for which s = kw/n, where 0 < k < n, divide it into n
equal parts (Figure 33). '
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Ficure 33

To construct these points, it suffices to construct segments of length r = ¢(a),
where o = kw/n. Indeed, since cos26 = r?, it is possible to construct the point
(r,0) with a ruler and compass if the segment r is known. Since na = kw, it
follows that @(na) = 0. The addition theorem for the function ¢ enables us to
express p(na) in terms of p{a), i.e., p(na) = F,(p), where ¢ = p(a) and F, is an
algebraic function. The problem of the division of the lemniscate reduces then to
that of solving the equation F,(p) = 0, and the division of the arc of the lemniscate
between the origin and the point (r,8) into n equal parts reduces to the problem
of solving the equation F,,(p) = r.

Let us show that the equation Fy(¢) = r can be solved in square roots, i.e.,
that the arc of the lemniscate can be divided in half with a ruler and compass. By
the addition theorem

20(a)p(a 2 1 — ot
Fa(p) = ¢(20) = fi;f(fx )) _ wg |

Squaring the equation 2¢+/1 — @* = r(1 + ¢*) and setting x = ¢? — =2 we get
2 +4r~2z4+4=0.

We define odd complex numbers to be numbers of the form a+4b, where a and b
are integers such that a+ b is odd. The function F,, () is, generally, algebraic. But
if n is an odd complex number, then this func’clon is actually rational. To verify
this, observe first that

B

Y =platio)=(1+1) T

and

y . ; 1 + o

Y (tatia)=+1-9t= A

(In the latter formula the sign of the root is determmed by the condition ¢'(0) = 1.)
Moreover, adding together the expressions for ¢(z + y) and ¢(z — y) we get

20(z)¢’ (y)
14+ p%(z)e?(y)

plz+y) +elr—y) =

Let y = 4o & 4. Then

20(2)(1 + ¢*)
Tt & 2ig2 (@) 2

plz+y)+telz—y) =
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Therefore, if p(z) and @(x — y) are rational functions of ¢, then ¢(x + y) is also a
rational function of ¢ = ¢(a). For instance, setting z = a and y = a & i, we get
it + (2 —1)

1— (14 28)p*

—ip* + (2 +14)
1—(1—2)pt’

(20 +ia) = @- o(2a — i) =p-

Similar arguments show that if a 4 b is an odd complex number, then

Ply*)
Q)
where P and () are polynomials with coefficients from the ring Z[i] = {p-+¢i | p,q €
Z}. If b= 0in (3.1), then the coefficients of P and @ are integers.
The polynomials P and @ possess certain interesting properties. But before

we start discussing these properties in the general case, let us compute p(3a) and
¢©(5a). Since

(3.1) olla+bi)a)=p-

2p(2a)¢ ()
2 200 — o) = ,
v(2a + ) + ¢(2a — a) T+ 2o (@)
it follows that :

3a) = —p- .
p(3c) v 14 6p* — 38

Therefore, the division of the lemniscate into three equal parts is reduced to solving
the equation ¢® + 6p* — 3 = 0. Clearly, this equation is solvable in square roots.
To compute ©(5a), we can make use of the fact that

2¢(30)¢' (20)
1+ ¢?(30)¢*(20)

P(3a+ 20) + ¢(3a — 20) =

Simple but cumbersome calculations show that

02+ 50020 — 12506+ 30002 — 10508 — 62 + 5
14501 — 12508 + 30012 — 10516 — 6220 + 524~

(32)  p(5a) = p-

To solve the equation F5(¢) = 0 in square roots, Gauss used the fact that over Z[i]
the number 5 factors into the product of 2 +4 and 2 — 4. Let 8 = (2 + i)a and
B =1{(2—1%)a. Then

el Rk o it (2-9) -
_ w20 i 4 (249)
POO=V T g POV T g

Observe that the numerator in (3.2) is divisible by the numerators of the fractions
1 and 1. Dividing the numerator of (3.2) by

(—ip® + (2 +0)(ip* + (2—1)) = " — 20" + 5,
we get the polynomial

©'% + 5201 — 26¢° — 12¢* + 1.
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The solution of ¢(5a) = 0 (if we disregard the obvious case ¥ = 0) can be
obtained by, first, solving the equation i9? + (2 — 4) = 0 and, next, solving the
equation

—ipt+(2+3) ., :
(3.3) (Pl—w—(lv—flz')cp’* =1 = 1+ 2i.

—4 .
One can, alternatively, solve the equation —iyy + (2+14) = 0 and then the equation

i+ (2-40) -
(3.4) (le(1+2i)¢4m¢~\/1 23.

Dividing (3.3) by (3.4) we get a quadratic equation for p*.

Now we prove certain properties of the polynomials P and @ for arbitrary odd
complex numbers m = a + bi. Any such number m is, up to a summand of the
form 2(#1 + %), equal to either +1 or 4, i.e., is equal to °.

WP+ AP Ay e

= ?, »
T A+ H Ay
¢(a) and p = a? + b? is the square of the norm of m.

4.3.1. THEOREM. ¢(ma) =

where @ =

Proor. Let us make use of the relation

v ( ’2“’) v (u + is?") = (—1)"

Set z = p(u+ %) and y = p(u+ ). Then zy = ¢ and

N | ce-+1
7 (mu+ 32_“’) 72 (mu+ : 5 w) = (—1)%4,

ie.,
Pl) P) _ .,
Q@ Q) ~ V"
Hence, Plz) Pliz™) = (=1)*. Moreover, P(iz™1) = P(z™!) and Q(iz™!) =

Qz) Qiz~)
Q(z™1), since P and @ only depend on z*. Therefore, both P and Q are of the
same degree r and Q(z) = Az"P(z~!). We can find the coefficient \ using the fact
that ©(%) =1 and ©(7%”) = i°. Indeed, this means that ¢ = %((%, ie, A=14"°
It remains to demonstrate that » = @? + b°> — 1. Under the transformation
z +— = the lattice generated by w and iw passes into the lattice of zeros of the
function @(ma). Therefore, the zeros of p(ma) form a lattice with the area of
the fundamental parallelogram equal to w?|m|~2. The area of the parallelogram of
periods of the function () is equal to 2w?; hence, it contains 2w? : w?|m|=? =
2/m|? zeros of the function p(ma) = ¢ Q?p% Since the degrees of P and () are equal,

it follows that ¢(ma) = 0 holds if and only if either ¢ = 0 or P(y) = 0. Each
equation (o) = a for various a has precisely two solutions inside the parallelogram

of periods and, therefore, the degree of P is equal to 21_@;:2 = |m|? — 1. 1

The roots of the equation P(p) = 0 for odd complex m can be described as
follows. Let = w(1 — i) and ' = w(1 + 7) be the periods of ¢(a). The equation
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w(ma) = 0 implies that
. 'y
ma = (a + bijw = pQ + p'Y,

where p = Qg—b, p = Q‘—z'ib-—. Since ) = £, it follows that ma = (p+ip’)Q. Denoting
the complex number p + ip’ € Z[i] by v we get ma = v}, ie., a = ";? Let v
run over the complete system of residues modulo m except the origin. Then the
numbers (22) are the roots of equation P(y) = 0. All these roots are distinct.

Indeed, the equality
v\ V'
P\ ) T\

is possible in two cases only: either when v = ¢/ (mod m) (which is excluded) or
when 2(v+1v') = (1+414)(1 — 2iv)m, which is also impossible because the right-hand
side is only divisible by 1+1% whereas the left-hand side is only divisible by 2. Thus,
all the roots of equation P(y) = 0 are of the form

v}
Iy :(p(_')’f-?/_),

where v runs over the complete system of residues modulo m without the zero
residue.

The example of calculations of p(ma) for m = 5 already demonstrates that the
arithmetic properties of m over the ring Z[¢] are more important than those over
Z. This observation is supported by the following theorem proved by Eisenstein.

4.3.2. THEOREM. Let m = a+ bi be an odd complex number, prime over Zlt].
Then the numbers Ai, ..., Ap—1)/4 are divisible by m.

PROOF. Dividing the polynomial A(,—1y/4 + A(p—5)y/a@? + -+ ¢?~" by the
polynomial 1+ Ayp* + - + A(p_l)/4app_1 we get

(3.5) p(ma) = plco + 19 + cop® + - +),

where c; € Z[i] and co = Agp_1)/4.
Another expression for ¢p(ma) can be obtained if we use that

(3.6) ¢'(@)=VI-pHe) =1+ s;¢Y(a),

where s; € Q. Indeed, since ©(0) = 0 and ¢'(0) = 1, it follows that p(a) =
a(l+ Y p;a?). The equation ¢'? = 1 — p* can only be fulfilled if p; = 0 for j # 0
(mod 4). Hence, p(a) = a(l+dia' +dza®+---), where d; € Q. Replacing o with
me, we get '

(3.7) o(ma) = ma(l + di (ma)* + da(ma)® + -+ -).
To compare (3.7) with (3.5), observe also that

o = (o) = (1 + drot + dpa - )
Therefore, (3.5) can be rewritten in the form

(3.8) p(ma) = coar(l +dia* +dga® +-++) +c10°(1+e1a” +e0® +-- )+ -+
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Comparing (3.7) and (3.8), we get

m = Cy,
dim® = cody + ¢4,
dgmg = ¢ods + c181 + C39,

dsm*® = cods + c1ea + ca f1 + c3, ete.

It follows that ¢y = mHg(m)l™!, where Hj is a polynomial of degree 4k with
integer coefficients all of which are relatively prime with an integer {. The formula
nH(n)l~' = ck(n) holds for any odd complex n € Z[i] (not necessarily prime);
and ci(n) € Z[z]. Hence, nHy(n) =0 (mod I).

Let ¢ € Z[1] be a prime odd complex divisor of [. Then nHy(n) =0 (mod q)
for any odd complex number n. On the other hand, the congruence zHy(z) = 0
{mod ¢) cannot have more than deg(zHy (z)) = 4k+1 distinct (modulo ¢) solutions.

For any odd complex ¢ the residues after the division of odd complex numbers
by q form a complete system of residues, because if ny is even, n = ny + ¢ is an odd
complex number. The lattice of numbers proportional to g is generated by vectors
g and ig. The area of the fundamental parallelogram of this lattice is equal to |g|?;
hence, the complete system of residues modulo g contains |g|? elements. Therefore,
lg|? < 4k + 1. Thus, if 4k -+ 1 < |m|?, then [ is not divisible by m. Since mHy(m)
is divisible by [, it follows that Hy(m) is divisible by { and c;, is divisible by m.

Thus, if m is an odd prime, then ci, ¢z, ..., C(p—5)/4, Where p = |m|® are
divisible by m. The relation

Ap—1y7a + Ap—syja®” + -+ |
= (14 A1 + -+ Ap1ya9” ) (co + crp® + ca® + )

implies
Afp—1)/4 = o,
Ap—5y/s = o1 + a1,
Ay = coAp-1)/a+ 1 Ap-s)/a Tt Cp-s)/a-
Hence, the numbers A1, Ay, ..., Ap—1)/4 = m are divisible by m. O

PROBLEMS

4.3.1. Prove that if a,b,z,v,€ R and = + iy = +v/a+%b, then z and y are
expressible in terms of a and b using only square roots.

4.3.2. (Eisenstein’s theorem) Assume that f(z) = ao@™ + a12" 1 + - + ag,
where a; € Z[i], and for a number m prime over Z[i] the coefficients a1, ..., an
are divisible by m whereas a,, is not divisible by m? and ag is not divisible by m.
Then f is irreducible over Z[g].

4.3.3. Prove that if m is an odd complex number prime over Z[i], then the
polynomial pP~! 4+ Aj@P~5 4 .- + Ap—1)/4 from Theorem 4.3.1 is irreducible.
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$4.4. Proof of Abel’s theorem on the division of the lemniscate

In this section we give two proofs of Abel’s theorem. One of them — the classic
one — belongs to Eisenstein, another — the modern one — to Rosen [C14]. The
cornerstone of these two proofs, as well as of the original proof of Abel, is the
fact that the lattice of periods of the function ¢(c) is invariant with respect to
multiplication by the complex unit 7. This manifests itself most transparently in
Rosen’s proof. Therefore, we will start with it.

~ In Rosen’s approach, instead of the lemniscatic function o(a) the Weierstrass
function p(z) is used. It corresponds to the lattice A = {2aw + 2biw | a,b € Z}.
Observe that this lattice is contained in the lattice of periods of ¢ but does not
coincide with it. At the end of this section we will show that for A we have g; = —%
and g3 =0, i.e,,

1
02(2) = 46°(2) - (2).
The possibility to pass to the function p(z) is related to the following statement.

4.4.1. LEMMA. If a segment of length p(c) can be constructed with a ruler
and compass, then o segment of length w(c) can also be comstructed with o ruler
and compass.

PROOF. Modulo A, the zeros of ¢ are of the form 0, w , tw, (1 +4)w and its
poles are of the form (H;)“’, (34;)”, (Hg%)“’, (3+§”)“’. The function p'(z) also has
zeros w, iw, (1 + 4)w, whereas 0 is a pole of p'(z). Moreover,

10 \__(3+3 (B N (L8
plmgw) =\ @) e Pl ) =R T )

Consider the function

N AC)
g(z) = 3 3 .
(p(2) — p(}5°w)) (p(2) — p(Hf'w))
In a neighborhood of zero we have p(z) = 272+ -+ and @'(2) = =227+ hence,
g(0) = 0. It follows that g has the same zeros and poles as . Hence w(z) = Cyg(z).

Now we prove that it is possible to construct segments of length (%), p(=3* H" w)
and p(#tw). First of all, observe that segments of length p(w), plivw) and
p((1+ z)w) can be constructed, since these numbers are the roots of the equation
4z% — Lz = 0. Moreover, it is easy to verify that

i 40°(2) — §

¢

Let p(o ) be given. Let us consider # = 75 and y = % # 5= = 2. To find p(5), it
suffices to solve the quadratic equations

i 4p°(x) — §

plo)=—g £~ T 1 R
8 p(z) 8 py) |

If it is possible to construct (), then it is also possible to construct (o) =

+J4pd(a) — % Hence, it is possible to construct g(%) and, since p(%) = 1, the

constant C can also be constructed. As a result, we see that if it is possible to

and p(z) =



§4.4, PROOF OF ABEL’S THEOREM 87

construct p(a), then it is possible to construct g(a); thus, it is possible to construct
p(a). u

Therefore, to prove Abel’s theorem, we must verify that if n = = 2%p1 - D,
where the 102 are distinct Fermat primes, then the segments of length p( k“’) where
k=1, — 1, can be constructed.

The map z > (p(2),0'(2)) can be consuiered as a homeomorphism of the
torus C/A to the curve E deﬁned by the equation 7?2 = 423 — la; The addition of
the points on the torus induces under this map an addition of points on E. The
elements of the group E whose order divides n form a subgroup

: 9 ohi
En:{(p(Qaw+szw)’ p,( awj; bw))lﬂga,b<n}.
n

The zero element corresponds to a = b = 0; this is the infinite point.

The group E, is analogous to the group C,, for the circle (for the definition of
Ch see the beginning of §4.2). By extending the analogy, let us show that if (a, b)
and (c,d) are points of E, then

(a,b) + (¢,d) = (f(a,b,c,d), g(a, b, c,d),

where o f(u) = f(ou) and og(u) = g(ou) for any automorphism ¢ of the field C.
The addition theorem

(4.1) @(Zl + 22) — “@(31) . 50(22) n E (gg’(zl) - go’(Zz))Q
4\ p(z1) — p(z2)
shows that f(a,b,c,d) = — 4(b d)2 for a # c. By differentiating equation

(4.1) and taking into account that P"(2) = 6p*(2) — 392 = 6p*(2) — L we can
represent g as a rational function of a, b, ¢, d with ratlonai coefficients. In the case
21 = 7z (mod A) we can use the formuIa

179"(2)\*
o25) = 200+ 7 (58))
If 21 = —z (mod A), then formula (4.1) remains valid; one only has to consider
the expressions in both parts as infinite ones.

With the help of the functions f and g we can get functions f,, and g, for
which (f.(z, ), gn(2,¥)) = n- (z,y). The points of E,, are given in this way by the
equations fn(z,y) = oo and g,(z,y) = co. For the finite points this means that
the denominators of the fractions fn and g, vanish.

Now we can consider the field K,, generated over Q by the coordinates of the
finite points of E,. Repeating for £, the same arguments as for C,, we see that
the group G, of automorphisms of K, over Q is isomorphic to a subgroup of the
group Aut(E,). Since

E, = %A/A = A/nAZZ/nZ®L/nE,

it follows that Aut(E,) & GLy(Z/nZ). In the case of a prime n the order of
GLy(Z/nZ) is equal to the number of bases of (Z/nZ)?, in other words, is equal to
(n? —1)(n? — n). This number is divisible by n(n + 1) and, therefore, for n > 2 it
cannot be a power of 2. OQur arguments have reached a dead end!
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We can only salvage it by a trick which we have repeatedly used in studying
polynomials for the division of the lemniscate, namely, the invariance of the lattice
of periods under multiplication by i. In our case this means that p(iz) and g'(i2)
can be expressed in terms of p(z) and p'(2). Let us prove that p(iz) = —p(z) and

©'(iz) = ip'(z). Indeed,
=224+ 3 (=02 =272,
AEA

"The invariance of A with respect to multiplication by ¢ implies that p(iz) = —gp(z).
By differentiating this equation we get ip/(i2) = —gp'(2). Therefore, the action of %
on the torus C/A induces the i-action on E given by the formula i(z,y) = (—z, iy).
On the group A/nA isomorphic to E, the action of k + il € Zl[i] is given by the
formula

(20w + 2biw) (mod n) — (k + il)(2aw + 2biw) (mod n).

This action can be translated to the group F,,.

Let F = Q(i), F,, be the field generated by the coordinates of the points of
E, over F', and G, be the group of automorphisms of F,, over F. If o € G,,, then
o (i) = ¢ hence, o(i(z,y)) = (—oz,ioy) = io(z,y). Furthermore, o{(a,b)+(c,d)) =
o{a,b) + o(c,d). It follows that G, is a subgroup of the group of automorphisms
of the Z[i]-module A/nA. _

The inverse to the map a + tb — (k + il)(a + ib), where a and b are taken
modulo 7, is the map :

~ il
a4+ ib — z%ﬁ(a—l—ib).
This map is defined if and only if the number k% + 12 is relatively prime to n. To
obtain distinct maps, we have to assume that 0 < k, [ < n — 1. Thus, the order
of the group of automorphisms of the Z[i]-module A/nA is equal to the number of
pairs (k,1), where 0 < k, I < n —1 and k% + 2 is relatively prime to n. Let ®(n)

be the total number of such pairs. We break the computation of ®(n) into several
lemmas.

4.4.2. LEMMA. If p and q are relatively prime, then ®(pg) = ®(p)®(q).

- PrOOF. Let 0 < a1,b; < p~1and 0 < ag,bs < ¢ — 1. Then the pairs
(a,b) = (a1q + asp, big + bop) constitute a complete system of the pairs of residues
modulo pg. Moreover, a? + b? = (a? + b?)¢? + (a3 + b2)p?. Therefore,’

(a’ +bzin)”_"1<::>{(a‘1+blap):1 and (a2+b2:Q)= 1} B

4.4.3. LEMMA. If p is a prime of the form 4k + 3, then ®(p) = p* — 1.

PRrROOF. We must prove that if a? + 82 is divisible by p, then both numbers
a® and b? are divisible by p. Suppose that a2 + b2 is divisible by p but at least
one of the numbers ¢ and b is not divisible by p. Then both numbers a and b
are not divisible by p; hence, by Fermat’s small theorem, a?~! = 1 (mod p) and
5~! = 1 (mod p), consequently, a®~! + b*~1 = 2 (mod p). On the other hand,

1For brevity we denote the greatest common divisor GCD{(a1,...,an) of a1, ..., an by
(a1,...,an). In the next formula n = 2.
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aP~l B = gdR 2 g ptkt2 = (¢2)2RF1 4 (p2)2RF i5 divisible by a? + b%; hence, it
is divisible by p. O

4.4.4. LEMMA. If p is a prime of the form 4k + 1, then ®(p) = (p — 1)2.

PRrOOF. First of all, let us prove that any prime p of the form 4k + 1 can be
represented as the sum of two squares. The simplest known proof of this statement
was suggested by D. Zagier [C19].

Consider the set of all solutions of the equation z?-+4yz = p in natural numbers.
It suffices to prove that this equation has a solution for which y = z. In other words,
the involution o(z,y, z) = (z, z,y) defined on the set of solutions has a fixed point.
(Recall that an involution is a map f such that f(f(x)) = z for all z; if f(zy)} = =0,
then z, is called a fized point.) On a set consisting of an odd number of elements any
involution has a fixed point. Therefore, it suffices to prove that the total number of
solutions of the given equation is odd. To this end, it suffices to construct another
involution 7 of this set that has exactly one fixed point. Namely, we define:

(x+2z,2,y —x—2z) for T <yY-— 2z (A)
T(m,y,Z)E (Zy—a:,y,z—y-i—z) for y—Z<fL‘<2y, (B)
(x — 2y, —y+2zy) for 2y < x. (C)

It is easy to verify that z # 2y and x # y — z; besides, any solution is indeed
transformed by 7 into a solution.

Let us divide the solutions into three types (A)—(C) according to which of the
following three inequalities is satisfied:

r<y—2, Y—z<zx<2y 2y<z

The map 7 sends solutions of type {A) into solutions of type (C), solutions of type
(B) into solutions of type (B), and solutions of type (C) into solutions of type (A).
Now it is easy to verify that 7 is an involution. Only a point of type {B) can be
fixed. The equation (z,v, z) = (2y — z,y, T — y + z) implies that y = x. Therefore,
p = z(x + 4z2), i.e., x = y = 1 (here we have used the fact that p is prime). Thus,
there is exactly one fixed point; namely, the point (1,1, %) (here we make use of the
fact that p is of the form 4k + 1).

Now we prove that for a fixed a # 0 the equation z% + ¢* = 0 (mod p) has
precisely two solutions. Indeed, there exist nonzero numbers b and ¢ such that
b +c? =0 (mod p). Multiplying this inequality by (ac™!)? we see that b? +a? =
(mod p), where b; = abc™!. Therefore, z2 = b? (mod p); the solutions of this
equation are z = 4b;. Thus, only 2(p — 1) pairs with nonzero a and b and the pair
(0, 0) do not enter ®(p). It follows that

®p)=p’-1-2(p-1)=@-1> 0O

It is also obvious that ®(2) = 2.
4.4.5. LEMMA. Let p be a prime, k > 1. Then ®(p*) = (p*~1)28(p).

PROOF. The numbers a+a1p, where 0 < ¢ < p—1land 0 < a; < pF~1~1, form
a complete system of residues modulo p*. The number (a+a1p)? + (b+byp)? is not
relatively prime to p® if and only if it is not relatively prime to p, i.e., a® +b* =0
(mod p). It remains to observe that to every pair (a,b) that enters ®(p) there
corresponds (p*~1)? pairs that enter ®(p*).
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Now it is easy to verify that ®(n) is a power of 2 if and only if n = 2%p; - - - ppn,
where the p; are distinct Fermat primes. Indeed, <I>(2“p}1cl ... pFm) can be a power
of 2onlyifky = =kpn =1. if p=4k+1, then ®(p) = (p — 1)?. This number is
apowerof 2onlyif p=1+4+2° Let p=4k+3and ®(p)=p*—1=(p—-1)(p+1)
be a power of 2. The consecutive even numbers p — 1 and p+ 1 can be powers of 2
only if p = 3. 0

To complete the proof of Abel’s theorem it remains to verify that for the lattice
considered, i.e., A = {2aw + 2biw|a, b € Z}, we have

! 1 /
wzdeZ(mm+aer4:z and g3 =140  (2aw + 2biw)~® = 0.

The second equality is obvious since g3(A) = —g3(iA) and in our case A = A. The
main difficulty is to prove that 3 (aw + biw) ™ = &.
Consider the three lattices

Ly = {aw + biw},

Ll:{gl—g——;—b—ZE a andbareodd},
Lgx{gﬁi—gj& a—2b isodd}.

Then %Lo =LogULi ULy and Ly = %@Ll. Define |[L| = ZieLl“‘i. Then

4
2
= [L()l + iLll + ]Lzl and leI == (——-—) JL}I = ~*~4IL1];

1
16|Lo| = |=
6| Lol lzLO 1+1

hence, |L1] = —5|Lo|. To prove the desired equality |Lo| = 7z let us derive one
more relation between |Li| and |Lo|. For this we use the fact that Ly is the lattice
of zeros of ¢(z) and L is the lattice of its poles. Taking into account that ¢’(0) = 1

we get
' ! -1
plz) =z H (1—2—) H (1——%) )
o€ lLg Bely
where the infinite products should be understood as limits of finite products over
|a|,]8] < N as N — co. The nonzero elements of the lattices Lo and Ly can be
divided into 4-tuples of the form {%-y, +iv}; hence,

/ prt AN 7T
so=IT (- )M 5)
where 0 < arga, arg 8 < . Therefore,

2 #2082 np(s) = 1+ (Ll = |Lol)#* + -

The function 2~ p(z) does not vary under the change of z to —z or to &iz; hence,
@(z) = z(1 + cz* + - -+). Moreover, {¢'(2))? = 1 — ¢*(z). Hence,

(1+5CZ4+"')2:1."‘24(1‘{‘624—1-"')4
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and, therefore, ¢ = —75. It follows that
¢’ (2) 4 2 4
(4.3 z =144e" +- =1—--2"+....
) ©(2) 5
Comparing (4.2) with (4.3) we deduce that |L;| — [Lg| = —2. Since |L;| = —5|Ly|,
it follows that |Lo| = +%. O

Now let us briefly reproduce Eisenstein’s proof, more exactly, a modified ver-
sion suggested by Melnikov (see [C10]). This proof is based on the study of the
properties of the polynomials associated with the division of the lemniscate.

Thus, consider the numbers gp(k—f-) for k =1,...,n — 1, where n is a natural
number. By the addition theorem, it suffices to confine ourselves to the case when
n is a prime. For n = 2 the theorem was proved in §4.3, where we found an explicit
form of the division equation and solved it in quadratic radicals. Therefore, suppose
that n is an odd prime. If n = 3 (mod 4), then n remains prime in the ring Z[3]
whereas if n = 1 (mod 4), then n factors in Z[i] in the product of two prime
conjugate factors m = a + bi and m’ = a — bi.

After calculating go(%) and 4,0(%2,—) we can find (%) using the addition the-
orem. Thus, suppose that n is a prime in Z[i], and consider the equation of the
division of the lemniscate

(4.4) ®(z) =271+ A12? %+ Apa” 4+ A =0,

By Theorem 4.3.2, for a prime Gauss number 7 all the coefficients 4; are divisible
by n and, moreover, A =l = . Applying Eisenstein’s criterion we see that &(z) is
irreducible for n prime. Let g be a primitive root modulo the prime n. Clearly, ¢
can be selected odd.

Denote the roots of equation (4.4) by

Y 0 "
Lo =@ P » L1 =@ Q'E reeyTp-2 =@ | g o

We see that each of the roots is the same rational function of the previous root,
ie.,

Dy (z1)
Wy (@) ,
This means that the equation of the division of the lemniscate into n parts is
abelian, hence solvable in radicals (for an exhaustive theory of abelian equations
see the two-volume treatise by Burnside and Panton [B5]). All these radicals are
quadratic if and only if p = 2%+ 1. If n is a prime Gaussian number, then p is also
a prime and is of the form p = 220 4 1. If p is the square of a prime ¢ such that
g =3 (mod 4), then the identity ¢° = 2% -+ 1 is only possible for g = 3.

Ti41 = 2y =1,...,p—3.

§4.5. Several remarks on Serret’s curves

“ ‘Wenn die Konige baun, haben die Kérrner zu tun’ (When kings are building,
says a German poet, carters have work to do. — A line from xenia “Kant and his
followers” ascribed to Schiller. — But carters need roads. Not seldom, in the
history of our science, has it happened that the king opened up a new road into
the promised land and that his successors, intent upon their own paths, allowed it
to be overrun by brambles and become unfit for transit.”
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This maxim of Andre Weil (cited from [B25]) is quite applicable to Serret’s
curves. It suffices to say that even in the famous Lectures on the History of Math-
ematics in XIX Century by Felix Klein we encounter Serret’s name only once and
in a quite different context.

The only mention of these curves that we managed to fish out in the mathe-
matical literature is due to Salmon and is from Victorian times.

About two years ago Serret’s curves drew the attention of the Yugoslavian
mathematician A. Lipkowsky. Below we reproduce some of his results. We need
certain properties of plane algebraic curves. We list these properties only briefly,
referring for more details to [B23, B4].

Choose a projective coordinate system in the complex projective plane. Con-
sider an irreducible homogeneous polynomial f(z,y,z) of degree n in variables
z,y, z with complex coefficients. If one triple of coordinates (a1, as2,a3) of a point
P satisfies the equation f(z,¥, z) = 0, then any other triple of coordinates of P also
satisfies this equation since f (raj,rag,raz) =r"f (a1, a2,a3). The set of all points
P with this property is called an érreducible algebraic curve of degree n.

Let C be a curve given by the equation f(z,y, 2z) = 0. The polynomial f(z,y, 2),
being irreducible, is not divisible by z, so it is uniquely determined by the corre-
sponding nonhomogeneous polynomial f(z,y,1). Denote it by F(z,y). The equa-
tion F(z,y) = 0 is called the equation of the curve in the corresponding affine
coordinate system. It is clear that the solutions of the equation F'(z,y) = 0 corre-
spond to those points of the curve C' that do not lie on the infinite line z = 0.

Let A = (a1,as,a3) and B = (b1,bz,b3) be two distinct points of the curve
C. A point P = (x1,%9,%3) lies on the line L joining A and B if and only if
z, = sag + thy, k = 1,2, 3, for some s and ¢t. The values of s and t such that the
corresponding point lies on the curve C are the solutions of the equation

fsa +tb) = f(say + tby, saz + tha, saz + tbs) = 0.

Since f is an irreducible polynomial, f(sa+1b) does not vanish identically in s and
t. Therefore, it is a homogeneous polynomial of degree n in these variables, and the
equation f(sa -+ tb) = 0 is satisfied for exactly n values of the ratio s : ¢ provided
we take into account the multiplicities. Each such value of s : ¢ determines an
intersection point of the line I and the curve C. It is convenient to regard a point
corresponding to a root of multiplicity r as a multiplicity 7 intersection point of L
and C.

Now let us analyze in more detail the intersection of the curve C with a straight
line L passing through a given point P of C. Let f (z,y) = 0 be the equation of
C in an affine coordinate system in which P has the coordinates (a,b). Then L is
given by the equations

T = a+ A,
y = b+ ut,

and any line L passing through P is completely determined by the ratio A : p. The
intersection points of C' and L correspond to the roots of the equation

fla+ At, b+ ut) = 0.
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Expanding the right-hand side of this equation in powers of ¢+ and taking into
account that f(a,b) = 0 we obtain

t2
(faA + fyp)t + (f:cm/\2 + 2 ey Au + fyy,UF)E + =0,

where f;, fy, etc., are the values of the partial derivatives of f at P. Two cases are
possible.

(a) First, let us assume that f, and f, do not vanish simultaneously. Then
almost all lines passing through P intersect €' at P with multiplicity 1. The only
exception is the line corresponding to the ratio A : u such that

faA + fyﬂ' =0.

This line is the tangent line to C at P.

(b) Now let us assume that all partial derivatives up to order r — 1 vanish at P
and at least one derivative of order ¢ does not vanish at P. Then each line passing
through P intersects C with multiplicity at least r, and exactly r lines have the.
intersection of multiplicity higher than r. These exceptional curves are tangent to
C at P and correspond to the solutions of the equation

r — r
(f:l;,...,mAr + (1) fm,.‘.,m,y)\r 1/-1' +o fy,...,yN ) = 0.

Note that each exceptional line should be counted as many times as the multiplicity
of the corresponding root. In case (b) P is called a multiplicity r point of the curve
C. _

A multiplicity one point of the curve C is called a simple point. Points of
multiplicity two and more are called singular points. A point of multiplicity r is
called an ordinary point of multiplicity r if at this point the curve admits r distinct
tangent lines. A necessary and sufficient condition that (a, b, c) is a singular point
is given by the equations

fla,b,c) = Bf(g;gb, c) _ 8f(g;lb, ¢ _ 8f(g; byc) _ .

in projective coordinates or by the equations

OF (a,b) _ OF(a,b) _

oz Oy 0

F(a,b) =

in affine coordinates.

The singularity criterion can be expressed in projective coordinates as follows.
A point P of the curve C is a point of multiplicity r if and only if all derivatives of
f of order r — 1 vanish at P and there exists a derivative of order r that does not
vanish at P.

Now let us consider two projective planes: Pl; with coordinates (z1, z2,23) and
Pls with coordinates (y1,y2,ys). Define a mapping T': Pl; — Ply by the formula

Yi — LjTk,

where (4,7,k) = (1,2,3) and all three indices ¢, j, k are distinct. The mapping T
is called the quadratic transformation or blow-up of the plane Ply to Pls. This
mapping has the following properties.
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(1) Each point of Pl; with the exception of the points (1,0,0), (0,1,0), and
(0,0,1) is mapped to a certain point of Pl;. The exceptional points are called the
fundamental points of T'; the images of these points are not defined.

(2) All points of the line z; = 1, i = 1, 2,3, except the fundamental points are
mapped to the point y; = 1, y; = yx = 0. Three lines z; = 0 are called irregular
lines of T'.

Denote by t' the mapping

Ly = YiYk
of Ply to Ply. Clearly, it also possesses properties (1) and (2). Furthermore, we .
have the following property.

(3) If & = (1,2, 23) is a point that does not lie on an irregular line of the
‘mapping T, then the point y = T'(z) does not lie on an irregular line of the mapping
T, and T'(y) = z. '

Since 1” has a similar property, we can say that T" and T” define a one-to-one
correspondence between points of the planes Pl; and Ply that does not lie on the
corresponding irregular lines. '

If f(z1,z2,23) = 0 is the equation of a curve on the plane T', then the images
of the points of this curve under 7" satisfy the equation

9(y) = fy2ys, v1y3, y1y2) = 0.

The curve g = 0 is called the algebraic image of the curve f = 0 under the mapping
T. Let f be an irreducible polynomial and let g be the algebraic image of f. If
9(y) = p(y)f'(y), where p(y) is the product of certain powers of y; and f’ is not
divisible by any y;, then the curve f/ = 0 is called the image of the curve f = 0
under the mapping T'.

The following fundamental theorem holds: any irreducible curve can be made an
irreducible curve with only ordinary singularities by applying consecutive quadratic
transformations.

To analyze singular points of a curve it is convenient to parametrize parts of
this curve by formal power series. Denote by Cl[[t]] the field of formal power series in
variable t over complex numbers. Each nonzero element u € C[[t]] can be uniquely
written in the form ‘

u={ag+ayt+---)/t",
where k is an integer and ag # 0. The number k is called the order of the series u
and is denoted by O(u). :

Let f(x1,72,23) = 0 be the equation of an irreducible curve C in the complex
projective plane. Elements u;,ug, u3 € C[[t]] define a parameterization of the curve
C if

(1) f(u1,u2ou3) = 0)

(2) there does not exist a nonzero element e € C[[t]] such that eu; € C for
1=1,2,3.

Let u = (u1,ug2,u3) be a parameterization of the curve C and h = —min O(u).
The elements (v1,vs,vs) defined by the formula v; = thu; determine the same
parameterization of C. Moreover, v; € C[[t]] and at least one of the numbers
;(0) = a; does not vanish. In this case the point a = (a1, az,a3) is called the center
of the parameterization. It is clear that under a transformation of coordinates the
coordinates of the center transform in the same way as the coordinates of points.
Therefore, the center of the parameterization is defined uniquely.
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If u = (uy,us,u3) is a parameterization and s € C[[t]] is such that O(s) > 0,
then v = (u1(s), u2(s),u3(s)) is also a parameterization with the same center. If
0(s) = 1, the two parameterizations are called equivalent.

Let us assume that u; € C[[t"]] for some r > 1. Then we can use power series in
the new variable 7" = ¢". In this case the parameterization u = (u1,uz,u3) (and any
equivalent parameterization) is called reducible. Otherwise the parameterization is
called #rreducible. An equivalence class of irreducible parameterizations of the curve
C is called a branch of C. The common center of these parameterizations is called
the center of the branch.

If u = (w1, uq,us) is a parameterization of a branch of P such that O(u;) > 0 for
all ¢ and O(u;) = 0 for at least one 4, and if g(x1, 22, 3) is an arbitrary irreducible
polynomial, then we can define the order Op(g) of g as the order of the power series
g(u1,ug,u3). The positive nurmber r = min Op(L), the minimum being taken over
equations of all lines L passing through the center of the branch P, is called the
order of the branch.

One of the most important applications of the notion of a branch and of the
order is the following statement.

STATEMENT. (1) If Q is o multiplicity r point of the curve C, then the sum of
orders of all branches of C with the center QQ equals r.
(2) A point of C is simple if and only if it is the center of just one branch.

Now we continue the study of Serret’s curves.

Recall once again the definition of Serret’s curves. Let p be a fixed rational
number. Consider the triangle OPM with the vertex O at the origin, the lengths
of the sides OP and PM equal to ,/p and VD + 1, respectively, and the angles at
the vertices O and M equal to o and 3 (see Figure 29).

Let us vary the triangle OPM so that the point O is fixed and the lengths of
the sides OP and PM are fixed, whereas the angle w between the z-axis and OM
is determined from the equation

(5.1) cosw = cos(pa — (p + 1)5).

Then the locus of vertices M is called Serret’s curve corresponding to the parameter
p. We denote this curve by Sp,. '

Let p be the length of the segment OM. Then the coordinates of M are
z = pcosw, y = psinw. The law of cosines implies that

2 1 2 1
p_,_,_,_,_,_,_,_, COSIB - L.
2p\/p 2p\/p+1

Therefore, for p rational, the expression (5.1) can be represented as a polynomial
in cos e, cos 3, sina, and sin 4. In other words, there is a polynomial dependence
between the variables z, p and v, p, i.e., a system of polynomial equations

(5.3) P(z,p)=0, Qy,p)=0.

Eliminating p from these equations we get the following polynomial equation
for S

(5.2) coso =

(5.4) Flx,y) =0.
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The following are several examples of equations (5.3) for different values of p:

(5.5) p=1, = 452 r 22 4 y? = o
1 —12p% + 27p* + 4p°
(5.6) p=2 = z= W , Byt =k
(57 p=3 o Tk + 24p? — 162p* 4 25605 + 27p° 2 4y = o
¥ 96\/§p6 bl
—2+6p% + p8
(5.8) p=1/2,  o=—rus P, Py=p%
V3(—9 4 24p? — 2p* + 3p°
(590 p=1/3, z= ( 3’;’94 E30) g

The simplest Serret’s curves are plotted in Figures 34-36.

FIGURE 34. Curve 5

U

Ficure 35. Curve Ss

FiGURE 36. Curve S3
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Let p = $ (s, € N) be the representation of a positive rational number p as
the fraction reduced to its lowest terms. It is possible to show that relations (5.3)
are of the form

oo Gtap’+--+anp™
bp™

where n = s+t and m = 2s + (t — 1). Besides, ag = (—t)® and a, = s°. For odd
denominators ¢ the form of the polynomial F(z,y) in equation (5.4) is, therefore,
as follows:

(5.11) F(z,y) = ba(z? +y?) T2 g5 — a1 (22 +9%) — - — asqe(2® + 7)) T

» x2+y2gp2’

(5.10)

In this case the degree of the curve is equal to a = 2n = 2s + 2¢.
For t even the form of the polynomial F'(z,y) is more complicated:

(5.12) F(z,y) = b*a”(@®+¢%)* 707V ~ a0 — a1 (2 +1%) + - +asie(2® +97) ]

Its degree is equal to 4s - 4¢.

Here we will only consider Serret’s curve S, with integer values of p, i.e., the
case of £t = 1.

Recall (see §3.3) that for the length of an arc of Serret’s curve S, one has

« do
| = /_——
VP 0 1 — k2sin?

where k = 5%.
On the other hand, changing the notation, one has

dl = (coefﬁcient)%vm,

where
y:=at - 2(2p+ 1)z + 1.
Since the right-hand side can be factored,

y? = (x—a)(z+a) (m——i—) (x+"i~),

where ¢ = +/p+ 1 + /P, we can apply some birational transformation, first to
lower the degree from four to three (the transformation z — a = %;, y = %) and
then to normalize the roots of the third degree polynomial on the right-hand side
(a translation to have 0 as one root and a rescaling to make 1 another root). All
transformations are combined together in the explicit formula '

A—z i
2i(a® + 1) "5
eIy yr 2ila+ )()\+x)2’
where \ = Zzﬂ = p‘;l = +, and we obtain the elliptic curve

v =z(x — 1)(z — 2?).

This curve is called the elliptic curve, associated with Serret’s curve Sp. It is
clear from the previous consideration that this curve is uniquely determined up to
standard automorphisms of root.



98 4. ABEL’S THEOREM ON DIVISION OF LEMNISCATE

It is well known that the lemniscate is a rational curve, i.e., that the lemniscate
admits a rational parameterization. It turns out that all Serret’s curves S, have
this property for positive integer values of p.

4.5.1. THEOREM. The curve Sy is rational for any positive integer p.

Proor. This proof is based on the following statement which, in turn, follows
from Hurwitz’s theorem [B8]:
- Let the plane algebraic curve be determined by the equation F(x,y} = 0. Let
d = deg F' and let v be the multiplicity of a singular point. Set

_(d—-1)(d~2) viv—1)
g= 2 - z 9 3
where the summation is over all singular points, infinite ones included. The curve
F(z,y) = 0 is rational if and only if g = 0.
The number g is called the genus of the curve,
Thus, consider the polynomial (5.11),

F(%?J) = bﬂf(fﬂ2 + yg)p —ag — al(ib’2 -+ yg) T ap+1(932 + yg)pM-

First of all, let us study its behavior at infinity. For this, split it into homogeneous
summands

(513) F(way):FO(may)++Fd(may)’ d:2p+2a
and pass to the homogeneous polynomial of %, Y, 2
(514) f(xaya Z) - ZdFo(Qj‘, y) e ZFd—1($7 y) + Fd(mu y)
The system of equations for the singular points of f(z,y, z) is as follows:
af _8f _or
5.15 O R R Y
(5.15) Or Oy Oz f=0

Therefore, the singular points on the infinite line z = 0 are of the form (z : y : 0),
where (z,y) is a solution of the equations
0F4(z,y) _ OFy(=,y)

Oz Jy

(516) = Fd_l(ﬂi,y) = (.

Here 7
Fy(z,y) = —app1 (@ +42)PT and Fy_i(z,y) = bz(z® + ¢)*.
Therefore, equations (5.16) can be reduced to the system
z(z® +y°) = y(2® +y°)F = 0,

which yields exactly two points: (+3;1;0).

Let us study the behavior of the curve at these singular points. Consider the
homogeneous polynomial (5.14) in the chart y = 1 and translate the origin to the
point (z,z) = (%¢,0) (for the details concerning the technique used below see, for
example, [B23] and [B4]). Since in both cases the calculations are similar, let us
carry them through only for (¢;1;0), i.e., for (z,2) = (4,0). In this case after the
transformations indicated we get the polynomial

(5.17) b(z +8)2P (2 +20)P2 — apz+? — 4y z(z + 20)2% — - - - — app 1P+ (@ + 20)P
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The initial form of this polynomial at the point (0;0), i.e., the sum of monomials
of minimal degree, is

5.18 VaPz—ahz?Pt? — gl 52?P — .o — gl 2P2% —q/ |  gPt!
0O 1 pel p+1 ’

where the coeflicients ¥/, ay, . .. , aj,,, are determined from the coefficients b, ag, ... ,
ap+1- In this way we get the singular points of multiplicity p+ 1 with characteristic
monomials 2Pz, z22*2, zP*1, The Newton diagram corresponding to these singular
points is of the form plotted in Figure 37.

2P +2 ¢

FIGURE 37

Clearly, on the sides of this diagram there are no points with integer coordi-
nates. This means that the singularity has two branches. To compute how the
genus of the singularity diminishes, we can resolve the singularity by means of
blowing up. In this case just two blowups suffice. The first blowup is of the form
T+ xz, 2z — z. This implies that

2Pz + 222 L ppHl el (zP + L Z,p-i—l).

In the chart x — =z, z — 2z there are no singularities, because the form
aPz + 222 4 gPHL furns into 2P+ (2 4 2P2% + 1). Thus, as a result of the first
blowup we get one singular point of the form zP + zP*! + zP+!; its multiplicity is
equal to p. The second blowup yields simple points. Indeed, for z — zz, 2 — 2 we
have

aP 4 2P Pt zp‘(:vp +z 4+ 2PT12).
If z+ z, z+— 2z, then
zP + 2P 4 2Pt 2P (1 4 22t ).
The tree of infinitesimally close points is of the form
(b+1) () — (1),

and, therefore, the contribution of the two infinite points (44 : 1 : 0) to the genus
g is equal to

.+.

_g ((]9"21)29 P(P; 1)) -
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Therefore, when these singularities are resolved the genus g becomes equal to

— —_ ! — ! —
(5.19) g= (d 1)2(d 2) ‘"Z I/(I/2 1) 9y :p_z z/(z/2 1) <p,
where 3~ denotes the summation over all singular points lying in the finite part
of CP2. In particular, the inequality (5.19) implies that in the finite part the
contribution of Z ”(” L from the singular points of S, is not greater than p.

Now let us find the finite singular points of Sp. Makmg use of the symmetry
of the curve, we may suppose that these singular points lie on the z-axis and,
therefore, satisfy the system of equations

OF(z,0)
Oz

This assuraption becomes justified if we can 3ust1fy that the contribution Z
of these singular points is exactly equal to p.

In order to analyze the system (5.20), it is convenient to make use of the relation
(5.1). The equation F(z,0) = 0 is equivalent to the fact that w = 0 or 7 which, in
turn, is equivalent to the equation

(5.20) = F(z,0) = 0.

V(J/ 1)

(5.21) cos(pa — (p+1)8) =
which implies that
(5.22) pa— (p+1)F = g, g € Z.

Adding the constraints

(5.23) ' sin 8 = 1sina and 0<a,f,a+ <

to (5.22) we get the system of equations:

{ﬁ"pﬂo‘“pﬂ”’ q€Z,

(5.24) B = arcsin( sin a)

For g = 0 the straight line 8 = %5 o intersects the curve 3 = arcsin(, /J—’w sin a)

at exactly two points. All the other straight lines 8 = 5 +1oz ot
intersect the curve at all (for ¢ < 0 and for ¢ > p) or intersect it at exactly one
point (for ¢ = 1,...,p). The coordinates of the last intersection point are (m,0).
Therefore, our system (5.24) or, which is the same, the initial system (5.20) has
exactly 2 simple and p double roots. This means that there are no other singular
points and the genus of the curve is g = 0. Hence, all the curves S, for positive
integer p are rational. U

171' elther do not

We have mentioned above that the crucial moment in the proof of Abel’s the-
orem on the lemniscate’s division is the invariance of the period lattice of the
lemniscatic function (o) with respect to the multiplication by the complex unit
7. 'This invariance is a manifestation of an important general property of certain
elliptic curves: the presence of so-called complexr multiplication.

Let E be an elliptic curve; as a group manifold it is isomorphic to the quotient
of C modulo the lattice A spanned by the periods wy,ws. The curve E is also
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isomorphic to the quotient of C modulo the lattice spanned by zw, zws for any
z € C and, therefore, we may assume that w; =1, we =7 and Im7T > 0. Any en-
domorphism of F can be lifted to an automorphism of C and, therefore, it induces
a multiplication by a complex number z such that 27 € A. The endomorphisms
of E constitute the ring A(F) containing the subring of the so-called trivial auto-
morphisms, which is a subring isomorphic to Z. The remaining endomorphisms, if
any, are determined by complex numbers and are called complex multiplications. If
A(FE) # Z, we say that E possesses complex multiplication. A generic elliptic curve
E has no complex multiplications.
Indeed, suppose that z determines a nontrivial endomorphism of E. Then

z=a+br, zr=c+dr (a,b,c,dare integers, b # 0)
and, therefore,
(5.25) at + br* = ¢ + dr.

Hence, 7 must belong to the imaginary quadratic field K and z must belong to the
ring of integers O(K) of K, because z determines an endomorphism of a Z-module
of finite rank. Therefore, A(F) is a subring of O(K) containing Z and has rank 2
when considered as the Z-module. Conversely, any such subring R in the imaginary
quadratic field K can be obtained in this way: it suffices to set £ = C/R.

The so-called .j-invariant is the most convenient way to express that an elliptic
curve E has complex multiplication. If E is determined by an equation in the
Weierstrass form y? = 23 + ax + b, then its j-invariant is given by the formula

4a
4a® + 2702

Two curves are isomorphic if and only if their j-invariants are equal. If F is
defined over Q, i.e., if a,b € Q, there is a very simple criterion for the existence of
complex multiplication: E possesses complexr multiplication if and only if j(E) is
an integer ([B12], [B20]). It is possible to show ([B20]) that there are exactly 13
classes of elliptic curves with complex multiplication and rational j-invariant. The
values of j-invariant for them are

(5.26) (B =1728

26 . 33, 26 . 53, 0’ __33 . 537 _215,
.,,.21533’ m218 . 33 . 53’ W215 . 33 . 53 s 113’
—218.33.53.233. 293, 28 .38 . 118, 24.3%. 53
38.5%-17%, —3.215.5%

4.5.2. THEOREM. Among the elliptic curves associated with Serret’s curve
Sy only the elliptic curve corresponding to the lemniscate S; possesses complex
multiplication.

PrOOF. Let
1 p+1

=z(z-1)(z -2, N=-—= ,
P =al-De-N), N=g=2

be the elliptic curve associated with Serret’s curve S,. Its j-invariant is equal to

(A% = A2 +1)? _28(p2+p+1)3

2 j =28 =
(520 IEE e T
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Since
s+ +1)’ 3.928 28
=2 3 = + 29
(p(p+1)) r+1)  plp+1)
it follows that 7 can only be integer for p = 1. In this case j = 26 . 33, Thus, only

the elliptic curve corresponding to the lemniscate 51 admits complex multi-
plication. O

28p(p+1)+3-28+p

In conclusion let us formulate several problems.

First of all, it would be very useful to find rational parameterizations for Serret’s
curve S, with positive integer p similar to the lemniscate’s parameterization.

The main problem, however, is the study of the structure of Serret’s curves for
noninteger values of p. Here we have two very different families: with odd and with
even values of the denominator ¢. It seems very plausible that for odd ¢ all Serret’s
curves are rational. At the same time the computer experiments demonstrate that
for even ¢ irrational curves can occur.

Further on, it is very important to compute the j-invariants of all the corre-
sponding elliptic curves and study whether or not they admit complex multiplica-
tion. '

Finally, it would be very interesting to check whether Eisenstein’s proof can be
generalized to curves without complex multiplication.



CHAPTER 5

Arithmetic of Cubic Curves

In this chapter we consider certain well-known diophantine equations. Recall
that a diophantine equation is a polynomial equation

flz1,...,2,) =0

whose coeflicients are integers. If this equation has a solution {x1,x2,...,2z,} in
integers, we will say that {z1,z,...,2,} is an integer solution. A solution of this
equation in rational numbers is called a rational solution. 1t is clear that if f is a
homogeneous polynomial, then the problem of the search for rational solutions is
equivalent to the problem of the search for integer solutions.

The sources of the theory of diophantine equations can be traced to the math-
ematics of antiquity. Fuclid developed a method for finding the greatest common
divisor d of two numbers a, and ay. This method leads in general to solving the
diophantine equation?!

a1 + aoxo = d.
If a number b is divisible by d, we can multiply =, and x5 by b/d, getting a solution
of the equation a12z; + asxe = b. Euclid also had a method for finding the greatest
common divisor (a1, as,as) of three numbers; this method fits n numbers as well.
It is based on the fact that

(a1, Gn-1),0n) = (a1,...,an).

The ancient Greek mathematicians never made use of equations when they
solved geometric problems. The notion of quantities as geometric objects that they
developed did not allow them to do this. Consequently, the mathematicians of
classical Greece were not very interested in equations. (It was Descartes who
started to use equations systematically for the solution of geometric problems.)

After Euclid’s time, no new methods for the solution of equations in integers
were developed until the third century by Diophantus, an Alexandrian mathe-
matician. He developed methods for solutions in integers and rational numbers
of quadratic and certain cubic equations with two and more unknowns and thus
constructed a foundation for a new mathematical discipline now called the theory
of diophantine equations in his honor. He summarized his studies in a vast treatise
in 13 books under the common title Arithmetics.

The fate of this treatise is remarkable. Soon after it was written it disappeared
for more than a millennium and was considered to be lost forever. It was only
in 1464 that a German scientist Regiomontanus accidentally found 6 of the 13
books of Arithmetics. It was first published in a Latin translation in 1575. After the

1Buclid himself did not, however, deal with solutions of such equations.

103
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French edition, prepared by Bachet de Mesiriac, was published in 1621 it became
a desk-top book for many mathematicians, Pierre Fermat and René Descartes
among them. It was on the margins of his copy of Diophantus’s Arithmetics that
Fermat wrote one of the most notorious scholia in the history of mathematics:

Cubum autem in duos cubos, aut quadrato-quadratum in duos
quadrato-quadratos, et generaliter nullam in infinitum
ultra quadratum potestatem in duas ejusdem nominis fas est

divedere; cujus rei demonstrationem mirabilem sane detexi.

Hanc marginis exiguitas non caperet.

“Tt is impossible to expand a cube into two cubes or a bisquare into two bisquares
or, generally, any power greater than 2 into two powers with the same exponent;
I have found a truly remarkable proof of this fact but the margins here are too
narrow for it.”

The collection of methods developed by Diophantus is still valuable. It is known
under the name of the method of secants. This method allows one to completely
investigate any quadratic equation and serves as a prototype for the study of cubic
equations.

§5.1. Diophantus’ method of secants.
Second degree diophantine equations

Before we consider the general situation, let us illustrate the method of secants
with a concrete example, one of those that Diophantus considers in his Arithmetics.
Given the equation

(1.1) 22—y =1,

we have to find all its rational solutions. Equation (1.1) singles out a hyperbola
(Figure 38) in the zy-plane.

FIGURE 38
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We immediately see that (1,0), i.e., the intersection point P of the curve with
the z-axis, is a solution. Let us draw the secant

(1.2) _ y=k(z —1)

through this point and find the second intersection point of the secant with the
curve (1.1). To do so, substitute (1.2) into (1.1) and solve the quadratic equation
obtained for . As a result we get
R
1,2 — 1 — kz .

The root 1 = 1 is known to us. It corresponds to the point (1, 0); the second root
T9 corresponds to the second point required,

k%41 2k
(1.3) (m_l, kz_l).

For any rational k # =£1 this formula determines a point on our curve; hence,
it determines a rational solution of the given equation; for k = =41 the secant
intersects the curve at point P only (see Figure 38). Conversely, for any rational
solution, i.e., a rational point M on the curve, the secant PM is given by equation
(1.2) with a rational k& (because the legs of the acute triangle PM H are rational).
Thus, formula (1.3) for all rational k£ 5 +1 gives all solutions of equation (1.1) in
rational numbers.

This method is applicable not only to the polynomial 2% — y? — 1 but to any
second degree polynomial of two variables

p(z,y) = Ax® +2Bay + Cy* + Da+ Ey+ F

with integer or rational coefficients provided the curve p(x,y) = 0 has at least one
rational point Py = (zg,y0). Indeed, let us draw the line

(1.4) | Yy — Y0 = k(z — o)

through this point and find the intersection points of the curve p(z,y) = 0 with
this line. That is, substitute (1.4) into the equation p(z,y) = 0. The polynomial

o(z,yo + k(z — x9))
is of degree 2 with respect to z; if we set _
p(z, 90 + k(z — 30)) = r(k)2® + s(k)z + t(k),
where r(k), s(k), t(k) are polynomials of k, then for z we get an equation
r(k)z? + s(k)z + t(k) = 0.

We know one of the roots of this equation, namely, £ = zy. Therefore, the other
root, T = 2, can be found using the relation

To+ 2 = _ (k)
O}
Substituting the expression z; = —zg — ﬁég in (1.4) we get

y1:y0-k(2xo+%%)-).
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Thus, the coordinates of the second point are of the form

(1.5) (w1, y1) = (—"me - ;%» Yo — Kk (2560 + ;%3")) :

Since s(k) and r(k) are polynomials with rational coeflicients, it follows that for any

rational k such that (k) # 0 formula (1.5) gives a rational solution of the equation
p(z,y) = 0 and, since for rational z; and y; the slope coefficient

L= U1 — Yo
I — X

is also rational, we deduce that this formula gives all rational solutions, provided
we know at least one rational solution. '

The problem of existence of a rational point on a second degree curve p(z,y) = 0
is quite tough. It is not always the case that such points exist; for instance, there
are none on the circle 22 + 32 = 3 or on the ellipse z? + 82y? = 3. If the curve
p(z,y) = 0 is reducible over Q, then the problem of finding a rational point can
be reduced to the study of a linear diophantine equation and, therefore, we can
confine ourselves to the study of curves p(z,y) = 0, where the polynomial p(z,y) =
Az? +2Bxy+ Cy? + Dz + Ey+ F is irreducible over Q. It is well known that if the
discriminant A = AC — B? of the quadratic form Az?+2Bzy-+ Cy? vanishes, then
the polynomial p(z,y) can be reduced, by an invertible linear transformation with
rational coefficients, to the form az? +y, where a # 0, or to the form x? — ¢, where
c is not a perfect square. If A # 0, then the polynomial p(z,y) can be reduced to
the form

(1.8) ax? 4+ by? + ¢, ab # 0.

Obviously, the curve 2 — ¢ = 0 has no rational points; it is also obvious that

on the curve az? + 7 = 0 there is a rational point (0,0). Thus, it remains to study
the curve (1.6). If ¢ = 0, then (0,0) is a rational point of the curve (1.6). Hence, we
may assume that abe # 0. First of all, for equation (1.6) to be solvable in rational
numbers, it is necessary that not all of the coefficients a, b, and ¢ be of the same
sign. Performing, if necessary, the change of variables

1 1 1 1

T, Yo yr T or Te— Yy, Yy,
we can reduce the equation (1.6) to the form
(1.7) ez’ +by? —c=0, where a >0,b>0,c>0.

Here we can assume that a, b, and c¢ are relatively prime and square-free integers.
If x = p/r, y = q/r, where p,q,r € Z, is a rational solution of equation (1.7),
then the equation

(1.8) ax® +by* —cz? =0

has a nonzero integer solution {z,y,z} = {p,q,7}. Conversely, if equation (1.8)
has a nontrivial integer solution {z,y, 2}, then z # 0 (otherwise we would have
obtained a nontrivial solution of the equation az® + by? = 0, where a > 0, b > 0)
and equation (1.7) is solvable in rational numbers.

Therefore, provided that the above necessary condition is satisfied, the problem
of existence of rational solutions of equation (1.6) can be reduced to the problem on
nontrivial solvability in integers of equation (1.8). The numbers a, b, and c can be
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assumed to be not only relatively prime, but also pairwise relatively prime. Indeed,
let, for example, a and b be divisible by p. Then

plaz? + by® ~ c2?) = ay2? + by — 122,

where x1 = pz, y1 = py, a1 = a/p, by = b/p, c1 = pc.
Already Legendre elaborated a criterion for the existence of a nontrivial so-
lution of equation (1.8). It goes as follows.

5.1.1. THEOREM. If a, b and ¢ are pairwise relatively prime and square-free
natural numbers, then the equation

az? +by* —cz® =0

has a nontrivial integer solution if and only if all three of the following congruences
are solvable:

22 —bc=0 (mod a),

z? —ac =0 (mod b),
22 4+ ab=0 (mod ¢).

It will be more convenient to pass from equation (1.8) to the equation.

acz® + bey? = 22
If (x,y, 1) is a solution of this equation, then z; is divisible by ¢ since ¢ is square-
free. Therefore, (z,y, z1/c) is a solution of equation (1.8). Thus, instead of Theorem
5.1.1 it suffices to prove the following statement.

5.1.2. THEOREM. Let a and b be square-free natural numbers. The equalion
(1.9) az? +by? = 2°

has a nontrivial integer solution if and only if there exist integers o, B and v such
that ‘

(i) o?=a=0 (modb),

(i) B2 —b=0 (mod a),

(iif) 2?4+ ab/h? =0 (mod h), where h = (a,b).

PROOF. First, suppose that equation (1.9) has a nontrivial integer solution
(z,y,z). We may assume that GCD(z,y, z) = 1. It follows from (1.9) that az® = 2?
(mod b). Let GCD(b,z) = d. Then x = dz; and b = dby; hence, ad?z? +db y? = 2°.
Therefore, z = dz;. Thus, b3? is divisible by d, where d is square-free since b is. As
a result, we see that all the numbers z, y, z are divisible by d, i.e., d = 1. Therefore,
there exists a number z’ such that zz’ = 1 (mod b). Then a = o (mod b), where
a = z'z. The solvability of the congruence b = 3? (mod a) is similarly proved.

The congruence (iii) can be rewritten in the form 4% + a1b; = 0 (mod &),
where a = haq, b = hb;. Here the numbers ay, b1, h are pairwise relatively prime
and square-free. Since a and b are divisible by h, it follows that z = hzy; hence,
a12? + biy* = hz?. If (z,h) = d, then y and z; are divisible by d. Therefore,
d = 1 and there exists a number 2z’ such that 2’ = 1 (mod k). By multiplying
the congruence ayx? + byy?> = 0 (mod h) by biz'? we get a1b) ++2 = 0 (mod h),
where v = biz'y.

Now suppose that all the three congruences (i)—(iii) are solvable. If a = 1, then
the theorem is obvious. Moreover, we may assume that a > b because if & > a
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it suffices to interchange z and y. If @ = b, then by (iii) we have v +1 = 0
(mod a). Suppose that one of the prime divisors of a is of the form p = 4k + 3.
Then 42 +1 =0 (mod p) and

(72)35_1 = (ml)‘l%l = (-1)**1= -1 (mod p).
On the other hand, thanks to Fermat’s small theorem, (v?)3 = 7! =
(mod p). This leads to a contradiction; hence, a is the product of primes of the
form 4k + 1 and, perhaps, 2. Each prime factor of a can be, therefore, represented
in the form of the sum of two squares (Lemma 4.4.4). Recall the formula

= 1

(% + y?) (22 + 1) = (zz — yt)® + (wt + y2)°.

Hence, a = r? 4 s® for some integers r and s and there is a solution of equation
(1.9) of the form
{x’ y7 z} = {T7 S’ 7"2 + 32}'

The rest of the proof of Theorem 5.1.2 may be sketched as follows. If a > b > 1,
then starting with equation (1.9) we construct a new equation Az?+by? = 22, where
0 < A < a and for this A the congruences similar to (i)—(iii) are solvable. After a
finite number of steps and interchanging A with b if A < b we get either A = b or
b = 1. In each of these cases we have already shown that a solution exists. From
this solution we will now construct a solution of equation (1.9).

By (ii) there exists a number 3 such that 32 —b = aAk?, where A is square-free.
Here we may assume that |8| < a/2. First, let us show that 0 < A < a. Since
B? = aAk? + b < a{Ak? + 1), it follows that A > 0. Moreover, b # 1 and b is
square-free. Hence, 32 # b and, therefore, A # 0. It is also clear that

T g B> _a
akz(ﬁ b)<g'k—25""a""_<_z<a

Let us now prove the solvability of the congruences required. Since 82 — b =
aAk?, we have 32 = b (mod A); hence, the congruence similar to (ii) is solvable.
Moreover, 8 = hf;, where h = (a,b); hence,

(1.10) hB? — by = ai Ak?.

In particular, 28? = a1 Ak? (mod b;). It follows from (i) that a; = haf (mod by).
Hence, h3? = hA(o1k)? (mod by). Since h, k and a; are relatively prime with by, it
follows that A = p? (mod by). Moreover, it follows from (1.10) that a;Ak* = —b;
(mod k). Hence, A(a1k)?> = —a1b; = 42 (mod h). Therefore, A = ¢* (mod h).
The numbers h and by are relatively prime; hence, hu -+ b;v = 1 for certain integers
u and v. Consider a number = = hup + byvq. Since Au =1 (mod b;) and bjv =1
(mod h), it follows that # = p (mod b;) and # = ¢ (mod A); hence, A = z°
(mod b;) and A = z? (mod k). It follows that A = 2% (mod b).

Now consider H = GCD(A4,b). Let A = HA and b = Hbo. Then 8 = Hf
and HB3Z — by = adzk?. Hence, —Axby = a(A2k)? (mod H). It follows from (iii)
that @ = o (mod H). Hence, —Asbs = 72 (mod H).

Now suppose that the equation AX? 4 bY? = Z? has a nontrivial integer
solution. Let us multiply both sides of the equation AX? = Z? — bY? by aAk® =
(3% — b term-wise. As a result, we get

a(AXE)? = (72 — bY?)(B% — b) = (BZ + bY)? — b(BY + Z)*.

A=
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Hence, equation (1.9) has an integer solution z = AXk, y = 8Y + Z, z = 8Z + bY.
This completes the proof, since X # 0. O

In 1950 the Canadian mathematician Holzer refined Legendre’s theorem as
follows (cf. [C7]). Holzer showed that if equation (1.8) has a nontrivial root, then
it possesses.a nontrivial solution {z,y, 2z} such that

lz| < Vbe, |yl <+ae, |2| <Vab.

This provides us with an effective algorithm for finding a nontrivial integer solution
of equation (1.8) and, therefore, for finding a rational solution of equation (1.7).

5.1.3. THEOREM. Let a,b and c be pairwise relatively prime square-free num-
bers such that a,b > 0 and ¢ < 0. Then if az? +by? +cz? = 0 has a nonzero integer
solution, then it also has a nonzero integer solution for which

z® <bld, y*<ale, 2z*<ab

PrOOF. (We follow Mordell [C13].) It suffices to prove that z2 < ab. Indeed,
then ax® + by* < ablc|, hence, z2 < bjc| and y* < al¢|. Consider a solution
{0, v0, 20} for which (zg,y0) = 1 and 2% > ab. It suffices to prove that with the
help of this solution one can construct a new solution {x,y, 2} for which |z| < |z].

The triple zg + tz1, Yo + ty1, 2z + 21 is a solution if and only if the numbers
t, %1, Y1, 21 satisfy the relation

(azf + by + c2})t* + 2(azozy + byoy: + cz021)t = 0.

For ¢ # 0 we can divide this relation by ¢ and as a result we get ¢ = m/n, where
m = ~2(axox: + by + czp2z1) and n = az? + by? + cz?. After multiplication by
the denominator n we get a solution

o +x1Mm, Yo +yim, zZpn + zm.

Let us show that these three numbers are divisible by A = (¢, z190 — y1%0).
Indeed, by the hypothesis (c,ab) = 1 and (zo,y0) = 1. Therefore, the identity
axg + byd + cz = 0 implies that (c,abzoyo) = 1, hence, (A,abzoyo) = 1. In
particular, it is meaningful to speak about z; ! and Yo ! modulo A, i.e., there exist
integers 5 " and y5 ' such that zoz; ' =1 (mod A) and yoy; ' =1 (mod A). Since
T1yo — 120 = 0 (mod A), it follows that z1 = y1zoyy * (mod A). Now it is easy
to show that

P=aror1 +byoy: =0 (mod A) and Q=az®+by=0 (mod A).
Indeed, ‘
P = azo(y12oy7 ") + byoys = yilazi + byd)yy > =0 (mod A),
Q = a(yizoyy )* + by = (azf + byd)yiye* =0 (mod A).
Therefore,

zon + z1m = zo(ax; + bys + cz) — 221 (azozy + byoyr + czo21)
= zo@Q + cxng — 221 P — 2c212p21 = 0 (mod A).

We similarly prove that the other two numbers are divisible by A.
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Let & be a divisor of A. Then the triplé
z=(zon+z1m)6Y, y=(yon+wum)dl, z=(on+zm)é "

is an integer solution. We have to select this solution so as to satisfy the inequality
|z] < |z0|. Clearly,

—6z (Z 4 OToT + b’yoy1)2 (aa:m:l + byoy1)2 az? + byf
— =z — it SNG4

Czy czg CZp c
Taking into account that cz2 = —(az? + by3) we get
—0z azoz1 + byoys 2 ab 9
1.11 — =z —=(YoT1 — T .
1) 2 (e SIS s )

Now we are ready to construct the solution required. For z; and y; take an
arbitrary solution of the equation yoz; — zoy1 = 6. Then only one condition is
imposed on &, namely, ¢ divides c.

Cuase 1: ¢ is even. Set 6 = %c and select z; so that

2 + BT + dyoys < 1
CZp 2
Then (1.11) yields
Lzl Ly ab
20z 4 428

By the assumption, 22 > ab, hence, |z| < |zg|.
Case 2: ¢ is odd. In this case we require the condition

(1.12) ' ax; +by; +cz; =0 (mod 2).

This condition corresponds to the choice of a definite parity of z;. Relation (1.12)
is equivalent to
n=ar? +byf +cz¥ =0 (mod 2).

Therefore, the numbers zon+x1m, yon-+y1m, zgn+ z1m are divisible by 26. Hence,
if instead of § we take §’ = 26 it will also satisfy (1.11), which in this case takes the
form :

—26z -azoxi + b 2 ab

_ (2’1 L 9%oT1 yo?/z)

2
YoZ1 — LoY1) -
CcZo czo c2z2 ( )

Set § = ¢ and select z; of the parity required (i.e., such that relation (1.12) holds)
and such that
b
n azoT1 + OYol1
CZy

<1

z1

Then
b
2|2 <1+ 5 <2,

ie., |z| < |z O
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PROBLEMS

5.1.1. Which of the following equations have nontrivial integer solutions?
a) 3z° — 5y? + 722 = 0.

b) 7z? + 11y? — 1922 = 0.

c) 8z% — 5y — 322 = 0.

d) 11z% — 3y? — 4122 = 0.

5.1.2. Find rational pomts of the following curves:

a) 2 — 3y? = 1;
b) 22 +2y% = 9;
c) z? — 6y? = 1.

5.1.3. Prove that the equation z2 — 2y? = 3 has no integer solutions.

5.1.4. Let d be a square-free natural number.

a) Prove that if (x1,y;) is an integer solution of equation z* — dy* = 1 and
(1 + 11vVd)™* = zn, + ynV/d, where z, and y, are integers, then (n,,) is also a
solution of this equation.

b) Prove that if the equation 2 — dy? = —1 has an integer solution, then the
equation 22 — dy? = 1 also has an integer solution.

c) Prove that equation 2% — dy = 1 has at least one integer solution.

d) Prove that if the equation 22 —dy? = n, where n # 0, has at least one integer
solution, then it has infinitely many of them.

§5.2. Addition of points on a cubic curve

In his Arithmetics Diophantus did not confine himself to the second degree
equations. He succeeded in solving certain cubic equations as well and gave a
general method for finding rational solutions of the equation

y(6—y) =2’ — .

However, a steady interest in third degree diophantine equations first appeared, it
seems, only in connection with a problem from antiquity on congruent numbers; the
study of these numbers was initiated by Arab mathematicians in the tenth century.

A positive number r € Q is called congruent if it is equal to the area of an acute
triangle with sides of rational lengths. For example, 6 is the area of the triangle
with sides 3, 4 and 5; hence, 6 is a congruent number. Let r be congruent and
a,b,c € Q be the lengths of the sides of an acute triangle with area r. For any
r € Q we can find s € Q such that s?r is a square-free integer. But the area of
the triangle with sides sa, sb, and sc is equal to s?r. Therefore, without loss of
generality, we may assume that r is a square-free positive integer.

It is worth observing that in the definition of a congruent number the sides of
the triangle can be rationals, not necessarily integers. Whereas 6 is the least possible
area of the triangle with integer sides, it is possible to find an acute triangle of area
5 with rational sides. Indeed, the triangle with sides 3,22, 4 has such an area.
One can prove that 5 is the smallest congruent integer.

It turns out that the problem of description of all congruent integers can be
reduced to a third degree diophantine equation. Namely, the following statement
holds.

5.2.1. THEOREM. Let n be a square-free natural number. Then the following
three conditions are equivalent.
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(1) n is a congruent number;

(2) there exists a rational number x such that the numbers x, x +n, and £ —n
are squares of rational numbers;

(3) on the curve y* = z* — n’z, there exists a rational point (z,y) whose
coordinate x is the square of a rational number such that the denominator of x is
an even number and the numerator of x has no common divisors with n.

PROOF. Let ¢ < b < ¢ be a triple of positive rational numbers such that
a®+b? = c? and n = lab. Set x = Lc®. Thenz+n = (a+b)? and z—n = 3(a—b)’.
Hence, z,  +n and z — n are the squares of rational numbers. On the other hand,
if z satisfies condition (2), then set ¢ = 24/z and find a and b from the system of
equations

(a+b)? = 4(x +n),
(@ —b)? = 4(x — n).
In other words, if = satisfies condition (2), then the desired triangle has sides of

lengths
a=+VIT+n—+z—mn, b=vVe+n+vr—n, c=2V/z.
In order to prove the equivalence of (2) and (3), let us consider a rational

number z such that =,z +n and = — n are squares of rational numbers. Then
z =u? and (z 4+ n)(x — n) = u* —n? = v% Set y = uv. Then

(2.1) y? = 2® —n’z,

i.e., the point (z,y) belongs to the cubic (2.1). Since z = %—cz, the denominator of

z is divisible by 2. Moreover, it is clear that the numerator of x has no common
divisors with n.

Conversely, if z = u? = (¢/2)? and z® — n?

x = y?, then

v? Iy2/$:$2—n2 = (z+n)(x—n)

2 2

and we have a Pythagorean triple v2 +n? = 2. The numbers 2> and v* = z? —n
have the same denominator ¢* and the number q is even by the assumption. Hence,
the numbers g%v and g2z are integers and ¢°n is an even number such that ¢°z and
¢*n have no common divisors and

(@°0)” + (¢n)® = (¢°z)”.
Hence, ¢°v = s —t2, ¢?n = 2st and ¢?z = s* +?, where s and ¢ are integers. Since
(25/9)% + (2t/q)* = 4z = (2u)*,

the triangle with sides 2s/q, 2t/q and 2u is a right one and its area is equal to
2st/q® = ¢*n/q?® = n.
Theorem 5.2.1 is completely proved. _ L

The problem on congruent numbers and also certain other classical problems,
for example, the problem of finding rational solutions of the equation z® + 98 =1,
are particular cases of the problem of finding rational solutions of the general cubic
equation f(z,y) = 0 for two unknowns, i.e., of finding rational points on the curve
C' defined by the equation f(z,y) = 0.

First, suppose that the cubic f(x,y) = 0 has a singular point O and that
this point is rational. Any line passing through a singular point intersects the



§5.2. ADDITION OF POINTS ON A CUBIC CURVE 113

curve with multiplicity at least two. This implies, in particular, that a cubic curve
cannot have two singular points, O and O, because otherwise the straight line OO,
would intersect the cubic with multiplicity at least 4.

Let us draw a rational straight line z = zo+4at,y = yo+0bt, a,b € Q, through the
point O = (zg, ). The intersection points of this line with the cubic correspond
to the roots of the polynomial F(t) = f(zo + at,yo + bt). The coefficients of F’
are rational and for almost all lines the degree of F' is equal to 3 (the degree is
smaller than 3 only for the lines passing through infinite points of the curve). The
polynomial F' has the root ¢t = 0 of multiplicity 2 corresponding to point O. Hence,
the third root of F is rational, i.e., it corresponds to a rational point on the curve.
It is also clear that the straight line that connects O with a rational point on the
curve is rational. This gives a complete description of the set of rational points of
a singular cubic curve.

In what follows we will only consider nonsingular cubic curves. Recall that in
Chapter 1 we defined addition of points on a nonsingular cubic curves as follows.
Let E be a fixed point on the given curve, A and B points on the curve and X the
intersection point of the straight line AB with the curve. The sum of points A and
B is the intersection point of the straight line EX with the given curve. It is easy
to verify that if the cubic curve is given by a polynomial with integer coefficients
and the point E is rational, then the sum of two rational points is a rational point.

The curve y° = z® + az? + b is nonsingular if and only if its discriminant
A = —(4a® + 27b%) is nonzero. If we take the infinite point as the zero element,
then for such a curve it is easy to get explicit formulas for addition of points. Let
the straight line y = pz + q intersect the given curve at points (z;, ), ¢ = 1, 2, 3.
Then

(pz+q)=2+ax+b

for £ = x1, 2, 3. The sum of the roots of this equation is equal to p?; hence,

2
$3=—$1—$2+p2:—$1'—$g+ (u) s
r1 — T

W — Y2
T — Iy

Y3 =pz+q= (z3 — z1) + 1.
Clearly, the coordinates of the sum of the points {z1,y1) and (z3,y2) are (z3, —ys3). -
If 21 = x5 and y1 = ¥y, it suffices to notice that

. Y1 — i /
]_ r———— I prvas
982%-1301 1 — &g 4 (331) 2y1

We should separately consider the case x1 = z2 and y1 # y2. In this case the
sum of points is the infinite point of the curve.

The formulas obtained show that knowing one rational point P of the curve
y? = 2%+ az+b we can find the rational points 2P, 3P, etc. Consider, for example,
the curve y? = 2° — 2 and point P = (3,5). Then

129 383
b= (166’ “1000)

is a new rational point. We can now compute 3P, 4P, etc. With every step the
volume of calculations steeply increases. If we denote by x,, the first coordinate of
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the point nP, then

- 129 164323
179 27 9000 8T 50047
12340922881 307326105747363

T4 = TE3ETE600 1 0 160280942564521

The numerator of z1; has 71 digits.
It is worth observing that the points P, 2P, 3P, etc. are not necessarily distinct.

If some of them coincide, then the least number m € Q for which mP is the zero
element of the group, i.e., the infinite point, is called the order of the point P.

PROBLEMS

5.2.1. Prove that the point P = (0,2) on the curve y* = z® + 4 is of order 3.
5.2.2. Prove that the point P = (2,4) on the curve y? = z° + 4z is of order 4.

Each of the points in Problems 5.2.3 — 5.2.9 is of finite order on the correspond—'
ing curve. Find this Order

5.2.3. P = (0,4) on 3 = 42% + 16.

5.24. P=(2,8) on y% = 43: + 16z.

525 P=(2,3)ony?=z°+1.

5.2.6. P=(3,8) on y2 = 3 — 43z + 166.

5.2.7. P =(3,12) on y = g3 — 1422 + 8lz.

5.2.8. P=(0,0) ony? +y=1°— 372

52.9. P=(1,00ony?>+zy+y=2a®—2*—-3z+3.

5.2.10. Let f, be the functions on the curve
y? =a3 +ax+b, where 4a® + 276 #0,
determined by the relations

Ji=1,

f2 =2y,

f3 = 3z* + 6az? + 12bx — a?,

£y = dy(z® + Saz? + 200z® — 5a’z? — dabz — 8b° — a?),
o = 2fm (fma2fm—1 — foyalm1) form > 3,

Jom+1 = fm+2f7§1 — fm—1 fnﬂ for m > 2.
Further, let

gn = mf’r% — fn-1fny1 and  dyh, = fn+2f721~1 - fn—1f721+1'

n hn

Prove that
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85.3. Several examples

In this section we consider several examples of nonsingular cubic curves deter-
mined by the equation in the normal form

=z +azx+b

or by the equation
1 +2cy=2+ar+b
which can be reduced to the preceding one by the change of variables y — y + c.
We will be mainly interested in the set of rational points on the curve E; it will
be denoted by E(Q). This set, as we have already said, is an abelian group whose
zero element is the infinite point on the curve. This is why it is also convenient to

consider the infinite point of the curve as a rational point. The first three examples
are taken from [B10].

ExampLE 1. Consider the following problem: Represent the product of two
consecutive integers y(y -+ 1) in the form of the product of three consecutive integers
(x — V)z(z + 1) = z® — z. This problem leads to the curve E determined by the
equation

(3.1) Vv 4+y=z -z
On this curve, there are six obvious points with integer coordinates (cf. Figure 39):

(0,0, (1,0), (-1,0), (0,-1), (1,-1), and (—1,-1).

3P =(~1,-1)%

FiGURE 39



116 ' §. ARITHMETIC OF CUBIC CURVES

Set P = (0,0). Then all the points indicated are generated by the point P:
(1,0) = 2P, (—1,0) = —3P, (0,—1) = —P, (1,—1) = —2P, (—1,~1) = 3P.

The point P actually generates an infinite cyclic group.

All the points of the form (2n + 1)P belong to the closed component of the
curve containing P; the points of the form 2nP lie on the noncompact component
and tend to infinity as n grows. :

EXAMPLE 2. The curve E given by equation
(3.2) vty =2’ o
has four obvious points with integer coordinates (cf. Figure 40):
(1,0),(0,0), (0,—1) = ~(0,0), and (1,—1) = —(1,0).

The tangent to the curve E at {1,0) intersects E at the point (0, —1); this means
that 2(1,0) = (0,0); hence, 2(1, 1) = (0,—1).

. yA
3P = (Ox-1)
\\

N\

Ficures 40

The tangent to E at the point (0,0) intersects E at the point (1,0); this means
that 2(0,0) = (1,—1). The equations 2(1,0) = (0,0), 2(0,0) = (1,-1) = —(1,0)
imply that 4(1,0) = (1,-1) = —(1,0), i.e., 5(1,0) = 0. Hence, the subset

{07 (190)5 (0’0)7 (0:—1)7 (1’*1)}

is a cyclic subgroup of order 5 in E(Q). Using a more advanced technique one can
show that there are no other rational points on this curve.

ExaMPLE 3. Consider the curve E given by equation
(3.3) P +y =23+ 2%
This curve has four obvious points with integer coordinates (cf. Figure 41):

(0,0), (=1,0), (0,—1) = —(0,0) and (—1,—1) = —(~1,0).
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YA 4

4P =(23)

&-RV

FIGURE 41

The point P = (0,0) generates an infinite cyclic subgroup in E(Q).
For instance, it is not difficult to calculate that

3 9
2P = (-1,-1), —-3P=(1,1), 3P=(1,-2), 4P=(2,3), 5P = (-Z, -§) :
The tangent T to the curve at the point —2P intersects the curve at the point 4P
and the line L passing through 2P and P intersects E at the point —3P; the point

—5P is constructed either using the straight line L; through P and 4P or using the
straight line Ly through 2P and 3P.

EXAMPLE 4. The curve E of this example is given by Fermat’s equation
(3.4) ud + 08 =wd
The triples _
(u,v,w) = (1,-1,0), (1,0,1)and (0,1,1)
are nonzero integer solutions of this equation. All the other integer solutions are

proportional to these solutions. The cubic equation (3.4) is not given in its normal
form; however, the transformation

3w 9fu—v 1
(3.5) w_u+v’ y—ﬁ(u+v)+§
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reduces F, or rather, its equation, to the normal form:
(3.6) ' v —y=2*-7

The transformation (3.5) sends the point (1, —1,0) into the infinite point; the point
(1,0, 1) into (3, 5) and the point (0, 1, 1) into (3, —4). Thus, E(Q) is a cyclic group
consisting of three elements {0, (3,5), (3, —4)} because if £(Q) had contained other
rational points (z,y), then there would have existed nontrivial solutions (u, v, w) of
Fermat’s equation u® + v = w? corresponding to them. _

Let us establish that 3P = 0 for P = (3,5) by computing —2P using the
tangent to E at point P. From the equation for the tangent

(2y - 1)y’ = 32
we find the coefficient of the slope of the tangent to E at the point (3, 5):

3z? 27
A= = — == 3.
2y—1 9 &

Hence, the tangent is given by the equation
y=5+3(z—3) =3z -4

The tangent intersects the curve (3.6) at the points whose abscissas satisfy the
equation

3z —4)? — 3z —4) =2° 7,
ie.,
z® — 922 + 272 — 27 = (z — 3)* = 0.

Thus, the abscissa of the point —2P is z = 3. Hence, —2P = P, and so we have
3P =0.

ExXAMPLE 5. Consider the curve
(3.7) v =a3 + k,

where k is an integer.

The corresponding diophantine equation was first considered in the seventeenth
century by Fermat and Bashe de Mesiriac in the particular case k = —2 and
was later the subject of intensive study. It is as yet unknown for which integers
k equation (3.7) has at least one rational solution. Bashe claimed (without proof)
that if a rational solution (z,y) with xy # 0 exists, then the method of tangents
leads to an infinite number of rational solutions.

In modern terms this means that if the group E(Q) of rational points of the
curve (3.7) is nonzero, then it is infinite. With certain restrictions this statement
was proved in 1930 by the German mathematician Fueter. In 1966 a remarkably
short proof of Fueter’s result was discovered by the English mathematician Mordell
(see Problem 5.3.2 below).
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PROBLEMS

5.3.1. Let Py = (z9, yo), where yp # 0, be a rational point of the curve

Ve =% +k.
Show that the tangent at P, intersects this curve at the point P, = (z1,y1), where
2 = 9z — SlL'oyz, = 278 — 36x3y3 + Syé.
3 85

In particular, show that the curve y* = z® — 2 has rational points Py = (3,5) and

A= (13, )
5.3.2. (Mordell, [C12]) Let k be an integer free of 6th powers and distinct from

1 and —432. Further, let the curve

have a rational point Py = (¢, y0), where zoyg # 0.
a) Set Ty = q% and yo = 7, where (p,q,7) =1, (p,¢) = 1 and (g,r) = 1. Show
that the coordinate z; of the point P; = (z1,y:1) from Problem 5.3.1 is given by

the relation .

oo
472
2
b) Prove that if %1’;— is not an integer, then Py # P,.

¢) Prove that if %p; is an integer, then, applying the process indicated in the
preceding problem to the point P;, we get a rational point P # B.

d) Using the results of a)—c) prove that the curve y? = z® + k has infinitely
many rational points.

5.3.3. a) Prove that the equation y? = 2% 4+ 1 has no rational solutions distinct
from (—1,0), (0,£1), (2,£3).

b) Prove that equation % = x® — 432 has no rational solutions distinct from
the solution. (12, +£36). |

2 —
q I =

§5.4. Mordell’s theorem

In 1901 the great French mathematician A. Poincaré conjectured [A13] that
all rational points E(Q) of an elliptic curve can be obtained as sums of a finite
number of points. In algebraic terms, this statement can be formulated as follows.

9.4.1. THEOREM. The group E{Q) of rational points of any rational elliptic
curve E is a finitely generated abelian group.

Poincaré himself considered this statement obvious. In 1922 the English math-
ematician Mordell [C11] obtained the first rigorous proof of Poincaré’s conjecture.
During the following seven decades various generalizations and new variants of the
proof of this theorem appeared. We will give one of them here. Our proof has
a small gap; in order to fill in the gap we need the machinery of the theory of
divisibility in rings of integer algebraic numbers; this goes beyond the scope of our
book (see [A13]).

Consider the curve

(4.0) y? = 2% 4+ az + b,
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where a,b € Q and A = —(4a® + 27b%) # 0. We may assume that ¢ and b are not
just rational but integer numbers. Indeed, let

a=-, b= il
q q
(we do not suppose that the fractions are irreducible). Set

¢’ 7
Then the initial equation takes the form (with integer coefficients in the right-hand
side):

yi = 75 + pgizy + g’

Let oy, aa, as be the roots of equation (4.0). Since by assumption a,b € Z, it
follows that a1, ao, o are integer algebraic numbers. Thus,

(4.1) Y’ = (z— o)z — a)(z — az).

It suffices to keep track of the coordinate z only since two values %y correspond
to every value zo. Let us consider, for example, the elliptic curve y* = 3 — 2. The
point Py = (3,5) lies on this curve. In the preceding section we have shown that

129 383
2P = | ==, ——— | .
0 (100’ 1000)

Moreover,

2
129 9 —6y2—~2v4
:v1—~a1—*—166—\3/§:=( \/1;) \/—')»

i.e., the point 2P = (x1,1) has the following property: the number z; — o1 is a
perfect square in the field @(4/2). This property plays a decisive role in the proof
of Mordell’s theorem. Let us show that if E is a rational elliptic curve (4.1) and «
is one of the integer algebraic numbers a1, ag, a3, then the map E(Q) — Q(o)
that sends the point (zo,y0) € F(Q) into zg — o € Q(e), can be included in the
commutative diagram (the proof of commutativity will be given shortly)

E(Q) — Qo)

| |

E(Q)/2E(Q) —— Q(e)/Q()?

in which the addition of points in E(Q) corresponds to the multiplication of cosets
in Q(a)/Q()2.

The fact that the image of the set F(Q) in Q(a)/Q(c)? is finite (we will not
prove this fact) is of extreme importance.

Let us first obtain explicit formulas for addition of points on the curve y? =
2% +ax+b in the form most convenient for our goals. Let the straight line y = px+q¢
intersect the curve y? = % 4+ ax + b at three points (z;,¥;), ¢ = 1,2,3. Then

P +ax+b~ (pr+q) = (z —z1){z — z2) (T — x3).
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In particular, if z = « is one of the roots of the polynomial 23 + ax + b, then taking
into account that o® + ao + b = 0, we get

(21 — ) (w2 — a)(z3 — ) = (po + ¢)*.

It is also clear that
y1(®2 — @) = ya(71 — )

pa +g= p—— )
Therefore,
1 N _ 2
(4.2) T3 — o= (91(5'32 ) — ya(z oz)) '
(331 - a)(il?g - Cl!) Ty — 1

If 1 = x2 (i.e., for the tangent ) we get

3’ +a

2y, ‘

Hence,
(4.3)

1 322 +a 1o, 22 \\?
o= - =(-— (3 B
T3 — & (z1 — a)? ( 201 (a—1x1) +yl) (29‘1 ( T +a+ o— a1

If we make use of the relations

yi = (z1— a)(z1 — o) (21 ~ a3),

a+az+oag =0, aogagz=—b, a3+aa+bzo,

then (4.3) can be reduced to the form

(4.4) xs—a:(3$%—0—2a$1“2a2)2

21

Now we are ready to prove the commutativity of the above diagram. In the
group Q(a)/Q(c)? the order of any nonunit elements is equal to 2. Therefore,
formula (4.2) shows that if the classes A, B € Q(a)/Q(x)? correspond to the points
P and Q, then the class AB corresponds to the point P+ Q. Formula (4.4) implies
that the unit class E corresponds to the point 2P.

This statement can be inverted: if the point ¢ corresponds to the unit class,
then ) = 2P. In proving this fact we will confine ourselves to the case when the
elements 1, o and o? are linearly independent over Q. Let

z—a=(uy + ura + uge?)?
= ud + 2upurc + (U2 + 2upur ) + 2uiuze® + uia

= (ud — 2buyuy) + (2ugu; — 2auuy — bul) + (u1 + 2ugug — qug)cﬁ.

4

Then
(i)  ui-—2buyuy =z,
(ii) 2u0u1 - 2&?.&111,2 - bu% = —1,

(111) U -+ 2'LL()’lL2 - O,‘U,% = 0.
Let us multiply (ii) and (iii) by —u> and u,, respectively, and add the equations
obtained. We get
ud + auyui + bui = us.
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Since uy # 0, it follows that

1
i.e., the point P = (z’, 1), where 2’ = %1 and y' = —, lies on the curve considered.
U U
Let us prove that @ = 2P. Relation (iii) implies that
z'? 4 2upy —a=0,

G“‘(Elz 1 /

| 8

hence, up = —. Moreover, ug = -—, U1 = z'ug = —. Therefore,
2y 2y Yy
, a—z'?% 1, z'? — a — 20z’ — 202
Ug + U+ Up” = - —i——,a—l-«—;a = — ; .
2y (] Y 2y

By (4.4), this implies that Q = 2P. Therefore, if the points P and @ correspond
to one class, then P + @ corresponds to the class E and, therefore, there exists a
point R such that P+ @ = 2R. This completes the proof of commutativity of our
diagram.

As we have noted above, one can prove that the image of the group E(Q) in
Q(e)/Q(ex)? is finite. (We skip the proof in order to avoid a rather long excursion
into the theory of divisibility in rings of integer algebraic numbers.) Therefore, the
rational points of our curve belong to a finite number of classes from Q(«)/ Q(a)?;
let the points Q1,...,Qm be representatives of these classes. Let us take an arbi-
trary rational point P on the curve. This point belongs to the same class as one
of the points @;,; hence, Py + Q;, = 2P1. Similarly, P1 + Qy, = 2P;. Therefore,

Py + Qi +2Qs, =2(P1 + Qs,) = 4P
By continuing similar arguments we find that
(4.5) Po+ Qi +2Qu, + -+ +2°Qs,, = 21 Peys.

In what follows we will show that for any point Py after finitely many steps we get
a point Py.1, for which the numerators and denominators of its coordinates are
bounded by a constant C' independent of Py. There are finitely many such points
and, therefore, any point Py belongs to the group generated by the union of the
points Q1,...,Qm with a finite set of points. This is precisely the statement of
Mordell’s theorem.

Thus, it remains to prove that the procedure (4.5) leads to a point Pyy1 of the
type desired.

We can represent any point (zg,%o) on the curve y* = z° + ax -+ b in the
form (%, ;tg), where % and 513 are irreducible fractions. Indeed, let z¢ = % be an
irreducible fraction. Then

(%09®)* = a(p* + apg® + bg°) = gr,
where (q,7) = (g,p%) = 1. Therefore, ¢ = 8%, r = 1? and y3s® = %1%, ie., y = %.
Since (p,q) = 1 and (g,7) = 1, it follows that (p,s) = 1 and (t,5) = 1.
Let Ao = max(|p|, s2). Then > < A3(1 + |a| + |B]), i.e., [t| < c1AY*. Thus, for
the point Py = (z9, o) we have determined the number Ao.
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Similarly, let us determine the numbers p, A; and w for the points Q;,, P; and
2Py, respectively. We would like to estimate A; in terms of \g. First, let us estimate
w. For convenience, designate the coordinates of the points as follows:

(% Y (P q _(T1 N (s 1
PO—(Z_zag)a Qil‘—(;‘z_aﬁ)a Pl“‘(;g)*z"?)a 2P1_"(:J§:'?I§)

Here the numbers p, ¢, r can be assumed to be bounded by a constant (the numbers
s, t, u are only used as an intermediary result of computations; the final result is
the triple z1, y1, 21).

The formula for addition of points on the cubic curve can be transformed to
the following form:

2
- 129 +a){xy + x0) + 2b— 2
$3:—$1‘“x2+(y1 yz) 2(12 ) (z1 2)2 y1y2.
T1 =2 (z1 — z2)

Therefore, from the equation Py + @Q;, = 2P, we derive

s (pz+ar?2®) (r’z 4 p2?) + 2brz* — 2qryz

v (ra — p22)°

The orders of « and 2? are both equal to Ao, the order of z* is equal to A3, and the
order of yz is equal to /\8/ 2/\(1)/ ? = X2, hence, w < ep A2,

Now we show that \; < cgw?/4 < c4)\(1)/ 2 Then )\ < 04031/ 2/\(1)/ * and, therefore,
A < eAY?", where ¢ = max (1,¢f). Hence, for any A and for sufficiently large n
the number A, is bounded by a constant C. It is possible to express formula (4.4)

in the form
s 1/2 z? T 2\ 25
— - =|—s—-a—2a—5 —2a" ) =,
(7 ) 27 21
ie.,
1/2 U
(s — au?) /2 - (23 — azf — 20m127 — 20%21) = eo + e10 + €20,
2171
where
3
u uT1 2 uz
ep = (z3 —az), e =——"1, e=—L.
21z (1 v1

The expression on the left-hand side is an algebraic integer; hence, eg + e; o + ega®
is also an algebraic integer.

5.4.2. LEMMA. Let ey + e1a+ ega?, where e; € Q and o® +ac+b=0, be an
integer algebraic number. Let A be the discriminant of the polynomial 3 + ax + b.
Then Ae; € Z.

PRrROOF. Let al,dg,ag be the roots of the polynomial z° + az + b, and oy,
032, 03 be the automorphisms of C that send o into a3, a3, as, respectively. For
v € Q(ax) define its trace, tr(y), by setting

tr(y) =01 (v) + o2 (7) +o3 (7).

Then tr(y) € Q and if 7 is an algebraic integer, then tr(y) € Z.
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Let us multiply the equation v = eg + e1a¢ + es0? by o and o and take the
traces. We get:

tr(y) = 3eg + ertr(a) + extr(a?),
tr(ay) = egtr(a) + ertr(a?) + egtr(a®),
tr(a?y) = eptr(a®) + estr(a®) + eatr(at).

These three equations can be considered as equations for eg, €1, ez (with integer
coefficients). The determinant of this system is equal to

3 o +og +az of +ad+ad

o fagt+as o +oi+al oftad+ad

o2+o2+ad ad+al+taod of+oeltos
1 1 1|1 a1 of

= |1 Qo «Ggz]- 1 oo (0751

of o2 ol |1 as of

= (al - a’2)2 (051 - 053)2 (az - 053)2 = A.

Therefore, Lemma 5.4.2 is proved. (]

Thus, the numbers A(Zeo — aeg) = yAglxl and Aez = yAz Z} are 1ntegers

Since the fractions —% and % are irreducible, it follows tha
Indeed, if the latter fractlon were irreducible Wlth the denommator divisible by 1
(resp. zl), then this factor could not cancel z% (resp. z3). Therefore, both z7 and
z} are divisors of the numbers A(2ep — aeg) and Aes.

Consider the equality (4.5) for the numbers ai, a2, and az. We see that

A(2ep — aez) and Aey can be linearly expressed in terms of (s — au 2) V2 tor i = 1,

2, 3 and, therefore, they are of order w'/2. Thus, we have shown that A1 < cl)\o/ 2
and, in other words, we have established that the set of points Pgy1 is finite, as
required. 0

§5.5. The rank and the torsion group of an elliptic curve

Consider an elliptic curve E determined over Q. By the results of the pre-
ceding section the group E(Q) of the rational points of E is a finitely generated
abelian group. As any finitely generated abelian group, E(Q) admits the following
decomposition:

E(Q) =7Z"" x Tors E(Q),

where 7 is the rank of E(Q) and Tors E(Q) is the subgroup of elements of finite
order in E(Q). The number rg is called the rank of the elliptic curve & and the
subgroup Tors E(Q) the torsion group of this elliptic curve. It is possible to prove
that the rank of an elliptic curve is preserved under birational transformations.

The rank 75 is calculated for many elliptic curves over Q. In the majority of
cases it is rather small: most often it is equal to 0, 1, 2 or 3. As an illustration
let us give the values of the ranks of the curves y? = z° + az and y* = z® +a for
several values of a (cf. [B10]).
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Table 1. The ranks of elliptic curves E given by equation y? = z3+az.

rank the values of a

0 1,2,4,6,7,10,11,12,22, -1, -3, 4, -8, =9, —11, 13, 18, —19
1 3,5,8,9,13,15,18,19,20, -2, 5, 6, —7, —10, —12, —14, —15, —20
9 14,33,34,39, 46, —17, —56, —65, —77

3 ' —82

Table 2. The ranks of elliptic curves E given by equation y? = 13 +g4.

rank the values of a
0 1,4,6,7,13,14,16,20, 21, -1, -3, -5, —6, ~8, —9, —10, — 14, —432
1 2,3,5,8,9,10,11,12,18, -2, —4, -7, -13, ~15, —18, —19, —20, —21
2 15,17,24,37,43, -11, —26, —39, —47

3 113,141, 316, 346, 359, —174, —307, —362

It is yet unknown if there exist elliptic curves of arbitrarily large rank. In 1986
the French mathematician Mestre constructed examples of elliptic curves of ranks
3 to 14. For example, the curve

Y2 + 9767y = x® + 357622 + 425z — 2412
is of rank rg > 9, and the curve

y? + 357573631y = ° + 259705522 — 5490822 — 19608054

is of rank rg > 14.

One of the most famous conjectures in modern number theory relates the num-
ber rg to the order of the zero at s = 1 of the analytic function corresponding to
E. This conjecture was made in 1965 by the English mathematicians Birch and
Swinnerton—Dyer. In order to formulate it, we need some prerequisites. Let

v =2 +tar+b A=—(4a®+276%) £0

be an elliptic curve. As we observed in the preceding section, we may assume
without loss of generality that a and b are integers. Let p be a prime. Consider the
congruence

v=23+axr+b (mod p),
or, equivalently, the equation

(5.1) v’ =2°+ar+b, where a,beZ/pZ=TF,.

If the prime p does not divide the discriminant A, then equation (5.1) determines
an elliptic curve E, over I, called the reduction of & modulo p. Denote by N, the
number of points of E, with coordinates in F,, the infinite point included.

For example, the solutions of the equation y* = 2 4 3z considered over F5 are

(0,0), (1,%2), (2,%2), (3,%1), (4,41), oo;
hence, N5 = 10.
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What can one say about N, for an arbitrary curve y* = z° + az + b over Fp?
Any such curve contains at least the infinite point. On the other hand, each element
z from F, produces not more than two values of y and, therefore, we see that Np
does not exceed 2p + 1, counting the infinite point. Thus, we have the following
obvious inequalities: -
1< N, <2p+1.
These inequalities can be rewritten as follows:

lp+1-Ny| <p. ‘
Tn 1934 the German mathematician H. Hasse obtained a finer estimate [C6]:

|p+1“Npt 52\/15'

Starting from the numbers N, define the so-called L-function of a rational
elliptic curve E by setting

L(E,s)=]] (Tj"i—p;;) 11 (1 —app?1~*+p1“25) :

plA pAA

where a, = p+ 1 — N, and A is the discriminant of the given curve.

From Hasse’s estimate it is easy to derive that the above infinite product con-
verges for Res > % Conjecturally the function L(E, s) can be analytically contin-
ued to the whole complex plane.

5.5.1. CONJECTURE 1 (Hasse-Weil). For any rational elliptic curve B there
exists a positive integer N and a sign € = %1 such that the modified L-function

A(E,s) = N32(27)"°T(s) L{E, s),
where T'(s) is the Buler T-function, satisfies the functional equation
AE,s) = —eA(E,2 - s).

In spite of titanic efforts of many first-rate mathematicians, until the summer
of 1993 this conjecture was only proved in certain particular cases. In June of
1993 a wonderful development occurred: Princeton University professor A. Wiles
announced the proof of the Weil-Taniyama conjecture for semistable elliptic curves.
The Weil-Taniyama conjecture implies the Hasse~Weil conjecture.

In this small book we cannot discuss Weil-Taniyama’s conjecture; we will only
observe that it states that every elliptic curve can be parameterized in a special
way by the so-called modular functions. One can judge how deep the propertiés of
the numbers mentioned in Weil-Taniyama’s conjecture are from the fact that the
conjecture implies, in particular, the proof of Fermat’s Last Theorem.

Using vast empirical material on curves of the form y* = z°+az and y? =a*+a
and assuming that L(E, s) can be continued to the whole complex plane, Birch and
Swinnerton-Dyer came to the following conjecture.

5.5.2. CONJECTURE 2 (Birch-Swinnerton-Dyer). Let E be a rational elliptic
curve. Then its rank 75 is equal to the order of the zero of the function

. 1
L(E’ S) = H —s 1-2s
pia Lo+

at point s = 1.
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At the moment the Birch—-Swinnerton-Dyer conjecture is only proved in certain
particular cases.

Now we pass to the torsion group Tors E(Q). To illustrate the possibilities that
might occur, let us compute the torsion group for the family of curves y* = 22 +az.
As before, by substituting 2 +— ¢%z,y — ¢y we get for this family the equation

e
o-e(22(3)7)

This means that we may assume a to be a nonzero integer free of fourth powers.

5.5.3. THEOREM. Let E be an elliptic curve determined by the equation y? =
x® + ax, where a is an integer free of fourth powers. Then

Z/2®Z]2 ifa is a perfect square distinct from 4;
Tors E(Q) = ¢ Z/4 if a =4,
\z/2 otherwise.

PRroOF. In all cases the order of the point (0,0) is equal to 2 since an arbitrary
point of order 2 is of the form (z,0), where z is a root of the cubic equation
z3+az = 0. In particular, three points of order 2 exist if and only if —a is a perfect
square,

Now we consider the equation 2(z,y) = (0,0). For such a point there exists
a straight line L : y = Az passing through (0,0) and tangent to the curve E at
the point (z,y). Therefore, (A\z)? = z® + ax so that z(z* — A%z + a) = 0. Since
L is the tangent to E at the point (z,y), it follows that the quadratic equation
2% — X2z 4 @ = 0 has a double root, i.e., its discriminant A\* — 4a vanishes. Since a
is free of fourth powers, the equation

M —4a=0

has a rational solution if and only if @ = 4. In this case the points (z,y) satisfying
the equation 2(z, y) = (0,0) are of the form (2,4) and (2, —4). Therefore, the points
of order 2 and 4 in E(Q) form, depending on a, subgroups of Z/2 & Z/2, Z/4 or
Z/2. So to prove the theorem, it suffices to show that there are no points of odd
order in E(Q).

We will carry out the proof of this fact by contradiction. Suppose that E(Q)
has a point p # 0 for which 3P = 0, i.e., 2P = —P. Then the tangent y = Az +
to B at P if substituted into the equation

y2 =z 4+ az
should give a perfect cube, i.e., the equation
(5.2) 0=2%4+azx— Az +8)? = (z—7)

where 7 is the first coordinate of P, should be satisfied. By removing parentheses
in relation (5.2) we get '

0 =z® — \?2? + (a — 20)\)z — (°

= g3 — 3ra® + 3r’z — 3,
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from which 3r = A2, r® = 32 or, equivalently, 8% = 12\-; Moreover, the third relation
between the coefficients,

3r? =aq — 26,

o(5)-+-2(25)

which is impossible for rational @ and \. Therefore, Theorem 5.5.3 is proved. [

leads to the equation

In a similar way we can prove that if E is the elliptic curve given by the equation
y? = 2% + ax, where a is a number free of sixth powers, then

Z/6Z - ifa=1,

Tors £(Q) Z/3Z il a is a perfect square distinct from 1 or a = —432;
ors ==
Z/2 if a is a perfect cube distinct from 1;

0 otherwise.

The structure of the group for ‘the curves in the Weierstrass form v = f(x)
with integer coeflicients is considerably clarified by the following statement.

5.5.4. THEOREM. Let E be the elliptic curve y? = f(z), where
flo) =23 +az? + bz +c
is a third degree polynomial with integer coefficients. If (z,y) s a point of finite
order of E, then z,y € Z and y divides the discriminant A of f(z).

This theorem implies the existence of an effective computation algorithm for
calculating the group Tors E(Q) of E. Namely, consider the finite set of all divisors
Yo of the discriminant

A = 18a%b? — 4a®c + 18abc — 4b° — 27¢*, a,b,c € Z,
and find all integer solutions zg of the cubic equation
2%+ ar® +br+c—yd = 0.

Then all the nonzero points of finite order are contained among these.
In 1976 the American mathematician B. Mazur proved a wonderful theorem
on the structure of torsion groups of elliptic curves [C9]:

5.5.5. THEOREM. Let E be an elliptic curve defined over Q. Then Tors E(Q)
is isomorphic to one of the following fifteen groups: Z/mZ for m < 10 or m = 12,
and Z/27 & Z/2mZ for m < 4.

In the following table we give examples of rational elliptic curves for which
these torsion groups are realized.
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Table 3. Examples of torsion groups of elliptic curves E.

E Tors £(Q)
W =x342 0
Yy =z +8 Z/2
o? = a3 44 /3
y? =% + 4z Z/4
Yy +y=2z3—2° Z/5
y:=a3+1 7./6
y? — zy + 2y = 2% + 222 z]7
y? + Tzy — 6y = z° — 62° Z/8
y? + 3zy + 6y = z° + 622 Z/9
y? — Tzy — 36y = 23 — 1822 Z/10
y? + 43zy — 210y = 2% — 21022 Z/12
yV:=x3—z L2 Z)2
y? =2® + 52 + 4z Zj26Z/4

y? — by — 6y = 3 — 322 Z2®Z/[6
y? = 2% 4 33727 + 20736z Z/2@Z/8






CHAPTER 6
Algebraic Equations

The remaining part of the book is devoted to the solution of algebraic equations
of fifth degree by means of theta functions. Originally this problem was solved by
the famous French mathematician Charles Hermite in 1858. We divide the- cor-
responding material into two chapters. Chapter 6 is devoted to common properties
of algebraic equations, Lagrange’s resolvents, Abel’s theorem on unsolvability in
radicals of the general equation of fifth degree, and Bring’s form of the fifth degree
equation. Regarding Lagrange’s resolvents and roots of unity we follow [B6]. In
Chapter 7, following the famous book by Weber [B24], we describe the scheme of
solution of an arbitrary fifth degree equation (given in Bring’s form) with the help
of theta functions.

§6.1. Solving cubic and quartic equations

There are many known methods for solving third and fourth degree equations
(also called cubic and gquartic equations) in radicals. In this section we will only
discuss the simplest of them. Certain other methods for solving cubic and quartic
equations will be discussed in §6.3 and §6.6. _

Let us first observe that the equation 2™ + a;z" 1 4+ --- 4+ a, = 0 can be
reduced to the form y™ + bay™ % + .- + b, = 0 with the help of the change of
variables y = x + 2%, Therefore, it suffices to consider cubic equations of the form
z3 + ax + b = 0 and quartic equations of the form z* + az? + bz + ¢ = 0.

Cubic équations. Let us try to represent the roots of the equation
(1.1) 8+ azx+b=0
in the form z = ¥p+ ¥q. Then
2P =p+q+3¥pg(¥p+ ¢q) =p+q+3¥pgz.

Therefore, we should select p and g so that

3
33 = —q —ma_
{ f L, = Pi= "5y
pra= p+q=—b.

Thus, we have derived a quadratic equation whose solutlons are p and ¢. The roots
of the quadratic equation are of the form

‘ b b2 @l
(1.2) P = -5 o

The formula x = ¥p + ¢ gives 9 distinct possibilities. To obtain the right three
values we should make use of the relation ¥/p¥/q = —%.

131

ey
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From this it follows that (1.1) has the solutions

(1.‘3) z={p-—

a
3¢/p’

where p is found by formula (1.2). Here the value of x does not depend on the
choice of the sign in front of the radical in (1.2).

(It is easy to verify that the values of x determined by formula (1.3) are actually
the roots of equation (1.1).)

Quartic equations. First method. Let us try to represent the polynomial
z* + az? + bz + c as the difference of two squares. To this end, let us use the
identity

2 2
' +az? +br+c= (:c2+g-+t) - (2ta:2—ba:+ (t2+at—c+%_)).

Select t for which the discriminant D = % — 8¢ (t2 +at —-c+ -"-g-) vanishes. Then
2 b\ 2
t+ar?+br+c= (a:2+9~+t) ~2%lz——1 .
2 4t
Therefore, the equation
(1.4) | it ez’ +bz+c=0

can be solved as follows. First, solve the cubic equation for ¢
o2
b? — 8t (t2+at—c+ ——2—) =0.
Let £y be one of its roots. Then equation (1.4) can be expressed in the form

b
2+ 2ty = 00 (2 — — ).
2 4t,

Second method. (Euler) Let z1, z2, =3, £4 be the roots of equation (1.4). Set
U =2 + 23 = — (X3 + x4). Then

2zt +az? + bz +c= (2% ~ux + a) (z° +uz + 6),

ie.,
a+fB-u=a, ula—-B)=b aB=c

From the first and the second of the above equations we get

1 2 b 1 , b
a—z(a—i—u —1—;), ﬁ~2(a+u u)

Substituting these expressions into the third equation we get

(1.5) u + 2a0u* + (a® — 4c) u? — b* = 0.
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Equation (1.5) is a cubic equation for u2. First, we solve this cubic equation; then
we find the 6 roots of equation (1.5). They are of the form Lwu;, fus, tus. We
may assurne that

1 +x22u1, T3 + T4 = —UL,
1 + T3 = Uy, g + T4 = —Ug,
Ty + Tqg = U3z, Lo -+ Ty = —U3.

Then uy + ug + us = 2x1. _
Third method. Instead of equation (1.4) we may solve the system of equations

f;y—g;2=0, '
g=y*+ay+br+c=0.

The second equation of this system can be replaced by Af + g = 0. The second
degree curve Af + ¢ = 0 represents a pair of straight lines if and only if

-A 0 ¢
(1.6) 0 1 221=0
b atA c
2 2

If Ay is a root of the cubic equation (1.6), the equation Agf + g = 0 factorizes into
two linear equations and, therefore, the system

f=0
{)\of+9:—~‘0

is easy to solve.

§6.2. Symmetric polynomials

A polynomial f (Z1,...,2,) is called symmetric if for any permutation
(i1,--,%n) we have f(zi,...,z;,) = f(z1,...,2n). The elementary symmetric
polynomials 04(21, . .., Zn), defined by the relation

(@ —x1) (2 —2p) = 2" — 128"t + opx™ 2 — o+ (=1)" oy,

are the most important examples of symmetric polynomials. Thus if z4,...,z, are
the roots of the polynomial £™ 4 a;z" "1 + - - - + ap, then o;(z1,...,2,) = (—1)" a;.
It is convenient to set ox(z1,...,2zs) = 0 for k > n.

6.2.1. THEOREM (Main theorem on symmetric polynomials). Any symmet-
ric polynomial f(xz1,...,2zn) can be represented in the form of a polynomial in
elementary symmetric polynomials, i.e., f(z1,...,Zy) = g(o1,...,04), where g is
a uniquely defined polynomial.

PROOF. It suffices to consider the case when f is a homogeneous polynomial.
Let us order monomials lexicographically, i.e., say that ax{” --- x5~ is greater than
bzt -z if ay = By, ...,k = Bk, 0gr1 > Pr+1 (k can be equal to 0). The great-
est monomial of a polynomial is called its leading term. The following properties
of lexicographic order are easy to verify:

(1) The leading term of the product of two polynomials is equal to the product
of their leading terms.

(2) If az$* - --x2 is the leading term of a symmetric polynomial, then a; >
Qg 2t 2 Ol
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Let the leading term of a homogeneous symmetric polynomial f be equal to

ax$t .-z, Let us consider the polynomial acy'™*?¢5?”* ... o5». By property
(1) its leading term is equal to
a]— Qe g~z (X — &3 (o 7% (e 7 N (03] (s
azy (21 T3 ) e (zf e znt) = emyt 2T

Therefore, the degree of the leading term of the polynomial

— — Qp—@z Op—ay &
fi=f—aoy T2 on"

is lower than that of f. Let us apply to fi the same operation as to f, and so
on. Since the number of monomials whose degree is lower than that of the leading
term of f is finite, it follows that after finitely many operations we get the zero
polynomial. This means that

f:aaill—aza.gz—as...o-:n+...:g(gl,___,.gn), |

Now we prove the uniqueness of the representation f = g(c1,...,0,). It suffices
to verify that if g(o1,...,0,) # 0 for any collection 21, ...,Z,, then g is the zero
polynomial. Let g be a nonzero polynomial (over a field of zero characteristic). Then
glay,...,a,) # 0 for a collection {as,...,an}. It is also clear that if z1,...,z, are
the roots of the polynomial

" — a1z a2t — o 4+ (—1)" an,

then o;(x1,...,2n) = a;. O

REMARK. In Theorem 6.2.1, if the coefficients of f are integers, then the coef-
ficients of g are also integers.

The main theorem on symmetric polynomials plays an important role in the
theory of algebraic equations for the following reason. Let z,,...,z, be the roots
of the polynomial 2" 4+a12™* +- - - +a,. Suppose a polynomial f(z1,...,2,) does
not change under any permutations of its roots. Then it can be represented as a
polynomial of the coefficients a1, ..., a,. We will often use this property.

PROBLEMS
6.2.1. Let sg(z1,...,2n) = zF +--- + 28, Prove that

Sp — 8p_101 + Sp_o09 — -+ -+ (—“1)k koy = 0.

§6.3. The Lagrange resolvents
We can solve the quadratic equation 22 + az + b = 0 as follows. Let z; and

be the roots of this equation. Then

(3.1) Ty = % [(z1 + 22) + (21 — 22)] = % [(wl + x2) + /(1 — .’132)2} .

Here x; + zo and (z1 — w2)2 are symmetric functions of the roots and, therefore,
they can be expressed in terms of the coeflicients a and b. The explicit expressions
are as follows:

1+ T2 = —a, (x1 — z2)? = (z + x2)? — dxyy = a’ — 4b.
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Thus,
7 = % [—a+ Va2 —4b].

The root va? — 4b has two values. One of them yields one root of the equation,
the other value yields the other root,.

We can apply a similar approach to the solution of a cubic equation. Here,
instead of square roots, we get cubic roots. Let o be a primitive cubic root of unity,
ie, a®=1and a#1.

For the roots of the cubic equation z® + az? + bz + ¢ = 0 the analog of formula
(3.1) looks as follows:

T = [(an +x2 +x3) + (a:l + axy + azxg) + (a:1 + azg + 0(5333)]

(3.2)

Q|

17T
=3 [(ml +zo +z3) + {/(a:l + azg + a2x3)3 -+ {’/(:1:1 + a?xy + CK:E3)3:f )

To make use of this formula we have to calculate
3
U = (a:1 + azg + 042333)

and
v= (21 +a s + ax3)3 .

Under any permutation of the roots, u turns either into itself or into v. (To
verify this, factor out o from z; in the expression obtained after permutation
of roots.) Thus, u + v and uv are symmetric polynomials of z1,zs and x5 and,
therefore, they can be expressed in terms of the coefficients of the cubic equation.
After these expressions are obtained, solving the cubic equation reduces to solving
a quadratic equation.

This method for solving a cubic equation was independently suggested by two
French mathematicians, Lagrange and Vandermonde. They offered it simul-
taneously in 1770. Vandermonde presented his work to the Paris Academy, while
Lagrange, who worked during 1766-1787 in Berlin, reported his results to the Berlin
Academy.

Vandermonde's work Mémoire sur la résolution des équations contained a new
approach to the solution of the third and fourth degree equations and also to certain
other equations, in particular, the equation z'* — 1 = 0. Vandermonde’s paper
was not published until 1774. During this time, in 1771 and 1773 two parts of
Lagrange’s fundamental treatise Réflexions sur la résolution des équations were
published. This treatise contained almost the same ideas as Vandermonde’s but
these ideas were considerably more elaborate. Having acquainted himself with the
works of Lagrange, Vandermonde never returned to this topic.

On the base of the example above, introduce the following definition. Let
" + 012" 1 + -+ + a, be a polynomial with rational coefficients, zg,...,Zp_1 its
roots. The Lagrange resolvents are expressions

~1
r{zg,@) =xo+az + -+ a" " Tp_1,

where o is the nth root of unity, i.e., o™ = 1.
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The points o satisfying o™ = 1 form the vertices of a regular n-gon and the
points o form the vertices of a regular m-gon, where m = n/(n, k). Therefore,

v [n k=0 (modn),
;a"{o k0 (mod n).

Hence,

o = o,
nry = Z(Jé .’I,'0,

Thus, if the Lagrange resolvents are known, the roots of the equation can be cal-
culated by formulas (3.3).

Lagrange suggested a method for calculating resolvents that we will illustrate
with the cubic equation. Let r = zg + az; + o?z2 be a Lagrange resolvent for
the cubic polynomial. Six possible permutations of the roots zg, z1, T2 give us six
values r1,...,7s. Let us consider the sixth degree polynomial

gty =t —=r)(E—ra)---(t—7e).

The coefficients of g are symmetric polynomials of r; and, therefore, they are sym-
metric polynomials in g, 2; and z3; hence, they can be expressed in terms of the
coefficients of the initial equation.

Lagrange called the equation g(¢) = 0 the Tesolmng equation. The pomt is that
this equation is easy to be solved in radicals. Indeed, let vy = o + az1 + alzo and
74 = To + @y + a?zq. Then the remaining r; are equal to

(3.3)

‘ Ty =aQry, Trs+- C€2’J"1, s = Qrg, Te = O!Z’I‘4.
Hence,
(t — 'rl)(t — Tz)(t - 7‘3) = t3 — ’I":l)’,
(t—r)t—7r5)(t—76) = 3 —rd

and, therefore, g(t) = (t* —r$) (t3 — r}). Thus, the resolving equation g(t) = 0 is
a quadratic equation for ¢3.

Now let us find the resolving equation for the fourth degree polynomial. Here
for the fourth degree root of unity it is convenient to take @ = —1 instead of the
primitive root o = =#i. Then the resolvent r = xp — x1 + T2 — =3 takes, under
permutations, only 24/4 = 6 rather than 4! = 24 distinct values and each value is
taken exactly 4 times. These values are as follows:

r1 = (zo + 1) — (x2 +x3) = —T4,
ro = (Cb‘o + z2) — (21 + z3) = =75,
rg = (g + 23) — (21 + T2) = — 7%

Thus, g(t) = h*(t), where h(t) = (¢2 —r2) (t* —r3) (> —r3). Hence, the equation
g(t) = 0 is equivalent to the equation h(t) = 0, which is a cubic equation for 3.

There is no necessity to give the calculations of the resolvent for the primitive
roots a = =+i. Indeed,

($0+£U1 +$2+$3)+7’1+7‘2+?‘3:4mo-
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For the 5th degree polynomial the resolving equation is of degree 5! = 120. Let
r =z + oz + ozs + o’y + atay,

where a® = 1. If r) is one of the values of 7, then ary, a?ry, a®r; and or; are also
values of r. Therefore, the resolving polynomial g(¢) can be factorized and

h’(t) = (t*m)'(t—am)'--(t—a‘lr;) mtﬁ—fr?

is one of the factors. It is easy to see that g(t) is the product of 24 factors of this
form. Hence, g(¢) is a polynomial of degree 24 in ¢°.

In spite of considerable efforts, Lagrange did not succeed in solving the equation
g(t) = 0. This failure convinced him that it is impossible to solve a generic quintic
equation in radicals. ‘

Nevertheless, for the equations that can be solved in radicals Lagrange’s method
of resolvents turned out to be an important method for their solution. In the next
section we will use it to solve in radicals the equation z" — 1 = 0.

§6.4. Roots of unity

The equation 2" — 1 = 0 admits an obvious solution in radicals: z = ¥/1. This
solution is, however, unsatisfactory for the following reason. Dividing 2™ — 1 by
T — 1 we get the polynomial

folz) =" +2" 2 4. 4z 41

The degree of f, is equal to n — 1 and, therefore, the formula o = /1 provides us
with n roots, one root more than we would like to have. We would like to get a
formula for the roots of f,, which does not involve roots of degree higher than n— 1.
This will be obtained in this section.

First, let us consider several examples. The formulas for the roots of the poly-
nomials f3(z) = 2? + 2 +1 and f4(z) = (z + 1) (z® + 1) are elementary to obtain.
So let us immediately pass to the polynomial fs(z) = z* + 2° + 22 + z -+ 1. Set
y = x+2z~!. Then the equation f5(z) = 0is equivalent to the equation y2+y—1 = 0.
The roots of the latter equation are

1445
hp=——pb—),

and the roots of equations 1 = z +z~! are

VE—-1+v/-2v5-10 —+/5—-1++/2v/5-10
4 ’ 4 ‘

The number « is called a primitive nth root (or a root of degree n) of unity if
a®=1and a® £ 1for k=1,2,...,n— 1. In this case the numbers a, o2, ..., a""!
are distinct. It is easy to verify that if o and [ are, respectively, pth and gth
primitive roots of unity, where p and g are relatively prime, then o is a primitive
pqth root of unity. Therefore, it suffices to consider equations f,,(z) = 0, where m
is a power of a prime.

For the equation f7(x) = O we can, as before, make the change of variables
y=1xz+z 1. As a result we get the equation

¥y -2y —1=0.
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Its roots are given by the formula

_ - —
“Hi/ 7+21\/ 3+{/ 7 61\/_3

Y123 = §

Now the roots of the equation f7(z) = 0 are obtained as solutions of the quadratic
equations z? — y;x + 1 = 0.

For the polynomial fi;1(x) the change of variables y = x + ™! does not give
the desired result since this change of variables leads to a quintic equation, which
is unclear how to solve. Lagrange’s method of resolvents enables one to overcome
these difficulties. The numbers o, a2, ..., o', where « is one of the primitive 11th
roots of unity, are the roots of equation

(4.1) fu@) =z +2%+.. . +z+1=0.

The degree of the polynomial fi; is equal to 10, hence, to construct its Lagrange
resolvents, we need a 10th root of unity. Let 8 be a primitive 10th root of unity.
Let us order the roots of equation (4.1) so that each next root is the square of the
preceding one:

(4.2) a, 2, at, af, a® o' &, o, o, of.

Consider the Lagrange resolvent constructed from this sequence of roots:
r1=r(a, B) = Ol'f‘,@az +ﬁ2054 -I—ﬁSaS + ... +,38a3 +,89016.

Under the change of the primitive root 8 with the root 8%, where i = 1,..., 10, we
get the Lagrange resolvents r; = r{a, 8%), where i = 1,...,10. It is easy to verify
that

7 r1+re+---+1r19 = 10
Therefore, the 11th root of unity, «, will be found if we succeed in calculating
T15---,710-

First, we calculate the r}%. Since a'' = 1 and $° = 1, it follows that r; can
be represented in the form 37 . aijuBa”, where 0 < j < 9,0 < k < 10, and r;°
can be represented in the form Ej’k bijkﬁjak, where 0 <7 <9,0<k <10.

Here a;;, and b;;) are nonnegative integers. Let us express 7;° as a polynomial
of a, where the degrees of v are ordered as in (4.2):

(4.3) ri® = p;0(B) + pi1 (B + pi2(B)e? + piz(Bat + - + pi,10(B)a’.

Let us prove that r}° does not depend on o, ie., 7{° = p;(f), where p; is a
polynomial with integer coefficients. It is easy to verify that r(a?, 5*) = 87 (o, £Y),
ie., r;(a?) = B7r;(a). Hence, r}°(a?) = r1°(a). Thus, denoting for brevity p; «(5)
in formula (4.3) by pr we get

po + proc+ p20” 4 psa’ + pac® + -+ + poa® + proo®
= po+p16® +poa’ + pso® +pac® + -+ poa® + proc.

Therefore,

(4.4) (p1o — p1) @+ (p1 — p2) &® + (p2 — pa) &* + -+ + (pg — p10) &° = 0.
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The following statement holds.

6.4.1. THEOREM. Letp be a prime, and let o and 3 be primitive roots of unity
whose degrees are p and p — 1, respectively. Then the equation

a1 (B)a+ @(B)e® + - + gp_1(B)aP ™! = 0,

where qu,...,q,—1 are polynomials with integer coefficients, implies that a(B) =

2(B) = =gp1(8) = 0.

Although this statement (there are no nontrivial relations between o and g,
something like linear independence) seems almost obvious, its proof is rather com-
plicated. It requires elements of Galois theory and, therefore, we will omit it, see
[B6], p.97.

Applying Theorem 6.4.1 for p = 11 to equation (4.4), we get p1g = p; = py =
p3 = -+ = pg. Therefore,

0 =po(B) +p1(B) (a+ o +a® + - +a'%) = py(8) — p1(B).

Let us summarize. It is possible to represent a primitive 10th root of unity in
the form of the product of primitive roots of degrees 5 and 2. Therefore, 8 can
be expressed with the help of quadratic radicals. Next, we can represent 7"10 as a
polynomial in § with integer coefficients. It remains to use the formula

1
10( ri0 4 .. +10r1)

This formula gives.100 values instead of 10, as we would have liked. We have to
select the 10 values needed among all the values obtained. Therefore, the formula

1 1 Tzrf 7"37"{
4.5 e —
( ) o 10(7‘1+ +T10) 10(14— 1 + —= 7 + -
is more convenient. The point is that the values r;r;° % as well as 19, do not

depend on «. To prove this, it suffices to observe that

ri(@®)ri®= (o?) = (@) (B (@) = ri(a)r®7i(a).

Therefore, formula (4.5) determines o uniquely after any one of 10 values of r; =
/710 is chosen.

We can similarly solve the equation f,(z) = 0 for any prime p > 2 as well.
Resolving the equation fii(z) = 0 we made use of the fact that the primitive
11th roots of unity can be ordered so that each next root is the square of the
preceding one. Such an ordering of roots is possible because the numbers 2%, where
k=0,1,...,9, have distinct residues modulo 11. A similar statement for residues
modulo, for example, 7 is false but for any prime p there exists a number g, called
a primitive element, such that the residues of the numbers g*, where k = 0,1, .. .,
P — 2, modulo p are distinct. In other words, the multiplicative group of nonzero
residues modulo p is the cyclic group generated by g. We will not prove this well-
known statement.

Let o and 3 be primitive roots of unity of degrees p and p — 1, respectively. If
the residues modulo p of the numbers g* for k= 0,1,...,p — 2 are distinct, then
the numbers

2 p—1
a,af af ..., af
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exhaust all primitive pth roots of unity. Therefore, for a polynomial f,(z) we can
consider the Lagrange resolvent

=a+paf+ B2 4+ ﬂp_lozgpd.

Set r; = r1(a, B“) It is easy to verify that r1(of, 3°) = 87 r1(a, 5*). Hence, the
quantities ”’"21) and r;r? ~1~% 46 not vary when « is replaced with a9. Asin the case
p = 11, we can prove with the help of this property and Theorem 6.4.1 that r¥
and r;ry ~17% are polynomials in 3 with integer coefficients. For 8 an expression
in radicals can be obtained by the induction because J is a root of unity of degree
p— 1 < p. The formula for « is as follows:
oL (T . rgris N rgrflo; N )
p—1 ry ry

This formula gives an unambiguous expression for « after one of the values of

_ -1 .
ry = *4/r?7" is chosen.

£6.5. The Abel theorem on the unsolvability
in radicals of the general quintic equation

Lagrange’s works spurred many geometers (this was the common name for all
mathematicians of that time) to begin searching for a proof of the impossibility to
solve in radicals the general quintic equation and higher degree equations. In 1788—
1813 there appeared several papers of the Italian mathematician Paulo Ruffini
(1765-1822). Following Lagrange, he considered substitutions of roots of equations
and it was he who coined the term the group of substitutions. His series of papers
culminated in the proof of the theorem on impossibility to solve in radicals the
general equations of the fifth and higher degrees.

Regrettably, this proof had an essential gap. Without justification Ruffini as-
sumed that the radicals can be rationally expressed in terms of the roots of the
initial equation (cf. Theorem 6.5.4 below).

The Norwegian mathematical genius Niels Henrik Abel (1802-1829) was the
first to give a complete proof of the theorem on unsolvability of the general quintic
equation. He exposed his proof in the memoir Proof on Impossibility of an Algebraic
Solution of General Fifth Degree Equations published in the first issue of Crelle’s
journal in 1826.

We say that the equation

(5.1) Faz)=z"4+cz" '+ +¢ =0

is the general nth degree equation if its coefficients ci, ..., ¢, are independent vari-
ables over the ground field L. In what follows we will assume that L = Q.

Adjoining c1,...,cn to Q, we get the field A = Q(c1,...,¢n). This fleld is
called the mtzonalzty field of equation (5.1).

Having attached to A the roots ai,...,a, of equation (5.1) we get the field
A(F) = Alaa, ..., &), called the normal ﬁeld of equation (5.1) or the Galois field
of this equation. '

We will say that equation (5.1) is solvable in radicals if A(F') is contained in
the extension R of A obtained after attaching to A certain radicals

= a1, p2= Y42, ..., Pm = /Om,
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where

a1 € Aa az € A(pl)a as € A(php2): vy O € A(:Ola" ':pm—l)'

EXAMPLE. Let F(z) = z®+c1z+cz. Then A = Q(c1,¢p) and A(F) = A(\/a7),
where a1 = ¢ — 4ep € A,

Observe that the exponents p,q,..., s of the radicals p1, P2, - - -, Pm CaN be as-
sumed to be primes. Indeed, if p = Im, then instead of adjoining the radical
p1 = /a1 we may consecutively adjoin the radicals p = ay and p; = p.
Therefore, in what follows we will only consider adjoining the radicals with prime
exponents.

Suppose that equation (5.1) is solvable in radicals. Adjoin to A the primitive
roots of unity €1,...,6, whose degrees are equal to the degrees of the radicals
P1, .-, Pm, respectively. Denote the obtained field by K.

Since A C K, it follows that

A(F) CA(plavpm) CK(plv‘)pm)

To prove Abel’s theorem, we will need four auxiliary statements, Theorems 6.5.1—
6.5.4.

6.5.1. THEOREM. Let p be a prime and k a field of zero characteristic. The
polynomial xP — a is reducible over k if and only if a = b® for some b € k.

PROOF. Suppose z” —a = f(x)g(z), where f(z) and g(z) are polynomials over
k. Let € be a primitive pth root of unity and 8 = #a. Then

f(x):wr+clﬂ3r—1+"‘+07::(m—enlﬁ)...(m_snrﬁ)_

Hence, +£¢'8" = ¢, € k, where | = n; +--- + n,.. Since (\)? = 1, it follows that
(£B7)F = (¢-)", ie., a” = (£c,)”. The number p is prime and 1 < r = deg f < p;
hence, rs + pt = 1 for certain integers s and t. Therefore, a = a™*aP* = (£erat)f =
b?, where b = te.at € k. | '
It is also clear that if a = bP, then zP — q is reducible because it is divisible by
z —b. _ J

6.5.2. THEOREM. Let s be a prime and a; € k = K{p1,...,p;_1). If p; =
/a; ¢ k, then pt € k if and only if I is divisible by s.

PROOF. If | = ns, then p! = a? € k since a; € k. Now suppose that pl=ack
and | = sq+ r, where 0 < r < 5. Then a = pé = (a;)? pI and, therefore, p; = b,
where b = a (a;)"? € k. '

Over k, the polynomials z° — a; and 2" — b have a common root pi; hence,
they have a common divisor whose degree does not exceed r < s. In particular, the
polynomial z° ~ a; is reducible over k. Theorem 6.5.1 implies that a; = b®, where
b € k. Clearly, b = gp;, where € is a primitive root of unity of degree s. Since
e € K Ck, it follows that p; € k. Contradiction. O

We may assume that p1,...,pm is a minimal sequence of radicals (of prime
degrees) required to compute a root « of equation (5.1), i.e., any other such sequence
contains at least m radicals. In what follows we will only consider minimal sequences
of radicals. Under this assumption the following statement holds.
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6.5.3. THEOREM. Let p1,...,pm be a minimal sequence of radicals needed to
compute a root o of equation (5.1). Then a can be represented in the form

o =ug+p+ugp? o+ U105

where s is the dégree of pm,p = v/a,a €k =K(p1,...,Pm-1) ond u; € k.
PROOF. Since a € K(p1,...,pm) = k(pm) and p}, € k, we have

(5.2) @ = by + bipm +b2p?, + -+ bs10h
where b; € k. The only difficulty is to ensure that &, = 1. By the assumption,
o ¢ k so that at least one of the numbers bi,...,bs; is nonzero. Let b; # 0 for

some [ such that 1 <1 < s. Set p = bp! . Since s is a prime, ul+vs = 1 for certain
integers v and v. Moreover, we have

Pt = b = b pe, = baT" pm,
i.e., pm = cp¥, where ¢ = b “a" € k. Since pm, € k, it follows that p ¢ k. It is also
clear that p® = b5pls = bial € k.
In (5.2) replace p,, with cp¥ taking into account that b pl, = p. As a result,
we get

(5'3) o = by + blcpu -+ bzcz,oz“ i+ p+-+ bs~1CS—1p(S“1)”.

Theorem 6.5.2 implies that p* € k if and only if ¢ is divisible by s. Since v and s are
relatively prime, the elements 1, p%, p?*, ..., pl*~1% are linearly independent over
k and the set of these elements coincides with the set 1, p,0%,...,p° ' (perhaps,
ordered differently). Thus, formula (5.3) gives the required expression for a:

a=by+p+bypt+---+b_pt O

6.5.4. THEOREM. The minimal sequence of radicals p1,...,pm necessary to
calculate a root o of polynomial (5.1) can be selected so that p1, ..., pm are polyno-
mials over K of the roots ay,...,an of polynomial (5.1).

PROOF. Start with an arbitrary minimal sequence pi,...,pm. By Theorem

6.5.3 we can replace p,, with a radical p of the same degree s so that

o =g+ pt+uipt oo U1

where u; € k = K(p1,-.-,pm-1) and p° = a € k. Let us show that for any root £
of the polynomial z° — a

a(€) =up + & +w€ + - +us1
is a root of polynomial (5.1). Substitute z = a(€) in the polynomial
F(z)=2"+eaa" '+ +cn
Taking into account that £ = a € k we get an expression of the form
b + b€+ + b6,

where b; € k. The polynomials x° —a and by +biz+- -+ b,_12°~! have a common
root p; hence, they have a common divisor over k. By Theorem 6.5.1 the polynomial
7% — @ is irreducible over k; hence, by = by = - - = bs—; = 0. This means that if &
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is a root of the polynomial z° — a, then a(§) is a root of polynomial (5.1). Let
be a primitive root of unity of degree s. Then £ = £"p; hence,

Qi1 = Ug + Erp + u2627‘p2 dee us_lg(s_l)rps—l
forr=0,1,...,s — 1 are roots of polynomial (5.1).
For example, for s = 3 we get

a1 =ug+p+ UQPQ,
o = Ug +Ep+ uz€2p2,

ag = ug + €2p + ugep”.
Since 1+ ¢ +¢? = 0, we have

a; + ag + az = 3uyg,

1 2

a1 4€ “ag+€ Oi3=3p,

oy + 6_2042 + 6_1053 = 3’062p2.

Therefore, p = § (o + €%y + €az). For s > 3 we get more cumbersome formulas
but the arguments remain the same. The proof of the theorem for the last radical
Pm is completed.

Let us now turn to p,,—1. We have shown above (for s = 3) that the expressions
Ug, Py U202, . . ., Us—10° "1 can be polynomially expressed in terms of roots ay, . . ., v,
of polynomial (5.1). Moreover, they lie in the field K{(p1,..., pm_1), so that each
of the values indicated can be represented in the form

Vo + V1Pm—1 T ?12P72n—1 +oot Utm—lpiy:—ll’

where v; € K(p1,...,pm—2). The sequence of radicals pi,..., o is minimal, so
that the equations vy = vy = --- = v;—; = 0 cannot be simultaneously satisfied for
all the quantities because otherwise we could have excluded p,,_1. Therefore, there
exists a relation of the form

2 £l
Vo + V1Pm—1 T+ V201 - F V1 pp g = (00, ),

where v; € K(p1,..., pm—2), not all elements vy,...,v;—1 vanish and 7(ay,...,an)
is a polynomial over K. Consider the polynomial

G(:E) = H (:U - T(ao(l), ceey ag(n))) s

where the product runs over all the permutations o € S,,. The coeflicients of G are
the symmetric polynomials of the roots of polynomial (5.1), so that they can be
polynomially expressed in terms of the coefficients of polynomial (5.1). Thus, G is
a polynomial over K and

B = v+ vipm-1 + -+ Ut—lpin_jl

is a root of this polynomial. It is also clear that the root 8 can be expressed
by means of the radicals (with the help of the sequence of radicals py,...,pm_1)-
By Theorem 6.5.3 replacing p,,—1 with the radical p’ of the same degree we may
assume that v; = 1. We can now apply to p’ the same arguments as we applied
to p. lterating the arguments for p,_2, and so on, down to p; completes the
proof. N
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Now we can pass to the proof of Abel’s theorem proper.

6.5.5. THEOREM (Abel). Forn > 5 it is impossible to express the roots of the
general nth degree polynomial in radicals.

PROOF. Suppose that a certain root oy of the general nth degree polynomial
T R

can be expressed in radicals. Then by Theorems 6.5.1-6.5.4 there exists an expres-
sion of @y in radicals of the following particular form. The root a; is obtained by
consecutively adjoining the radicals p1, . . ., pm of prime degrees to the ground field,
and these radicals, in their turn, are polynomials in the roots e, . . ., &, of the initial
polynomial. More precisely, let &1, ..., &, be primitive roots of unity whose degrees
are equal to the degrees of the radicals py, .. ., pm, respectively, A = Q(ci, - - -, ¢n),
and
K=A(e1,...,6m) =Q(e1,...,Em,C1y. -, Cn)-

Then ¢y can be polynomially expressed over K in terms of py,..., pm, L€,

a1 =7(P1y- s PmsCly---1Cn)y
where 7 is a polynomial over Q(g1,...,&m). In their turn, p1,- - Pm can be poly-
nomially expressed over K in terms of o,...,ay, i.e.,

pi = 1i(Q1, ..., QnyCly ooy Cr),
where r; is a polynomial over Q(e1,...,&m). Since we deal with the general poly-
nomial of degree n, we may assume that oy, ..., oy, are independent variables and
€1,...,Cn are {up to a sign) the elementary symmetric polynomials of cy, ..., an.

Let us show that for n > 5 the assumption on solvability in radicals of the
general algebraic equation of degree n leads to a contradiction. To this end consider

the permutation
T = 123456...n
~ \234516...n

that cyclically permutes the first 5 elements, the others being fixed. Let us prove
that under the action of 7' on the roots ¢, ..., a, the first radical p; does not
change. Since

pr=r1(Q,...,0n,C1, ... Cn) = a1,
where a; is a polynomial of ¢i,...,¢c, over the field Q(e1,...,em), the equation
P} = a1 can be considered as a relation of the form

@(a, ..y QnyClyneeyCn) =0,
where ¢ is a polynomial over Q(e1,...,&m)- 7
Let us show that any relation of this form is preserved under any permutation of
the roots a1,...,0n. Let B = a4y, ..., B = Qi,, where i1, ...,1, is a permutation

of the numbers 1,2,...,n. Then

(P(ﬁlﬂ"')ﬁnid].’"‘)dﬂ) 207

where d; = ¢;(B1,- .-, 5n). Clearly, d; = ¢i(on,...,an) = ¢; because the functions
¢; are symmetric. Hence,

c,o(ail,...,ain,cl,...,cn) = 0.
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Thus, the relation p] = a; is preserved under the action of T' on the roots
Qi,...,0n, Le., T(p)) = T(a1). Clearly, T(s}) = T(p1)P. Since a; only depends
on the symmetric functions of roots, T'(a1) = a1. Therefore, T(pl) = g}p; and
T™(p1) = 8 Ap1. But T® = I is the identity substitution, hence, £5*p; = T%(p;) =
o1, ie., e = 1.

Let us now turn to the substitutions

U= 123456...7?, V= 123456...n
©\124536...n/)" ~  \231456...n)’
It is easy to verify that U3 = V3 = 1; hence, U{p1) = &{'p; and V(p1) = €¥p1, and
e* = €3 = 1. Moreover, UV = T; hence,

T(p1) = VU(p1) = e pr.

Hence, e} = e 50 that e = 867 = 5™ = | because e3* = e = & = 1.
As a result we get T'(p1) = p1.
Passmg consecutlvely to the radicals pg, .+, pm we similarly get T'(p;) = p; for
1=2,.
Smce pi =7ri(a1,...,Qn,C1,...,6p), it follows that the equation
a1 = T(pla vy PmyCly - 7cn)
can be considered as a relation between ay,...,an,c1,...,¢cq over Qe1,...,em).

This relation is preserved under the action of T, i.e.,

T(ou) = r(T(p1), - .., T(cn)) = r(p1, - .-, cn)

since T'(¢;) = ¢; and T(p;) = p;. Therefore, T(a;) = a;. On the other hand, by
the definition of T" we get T(ay) = ag; hence, oy = ay. The relation a1 = oy
contradicts the independence of the roots of the general equation. O

§6.6. The Tschirnhaus transformations.
Quintic equations in Bring’s form

In 1683 in the journal Acta Eruditorum E.W. von Tschirnhaus! (1651-1708)
published a method for transformation of algebraic equations which, Tschirnhaus
believed, enabled one to solve in radicals the equation of any degree. Leibniz
immediately announced that Tschirnhaus’ claim on the universality of this trans-
formation was not valid. The catch is that in order to solve a quintic equation with
the help of the Tschirnhaus transformations one has to solve an equation of degree
24.

Still, the Tschirnhaus transformation has important applications. For example,
with its help any quintic equation without multiple roots can be reduced to the form
¥° + 5y = a and in the process we only have to solve equations of degrees 2 and 3.
In Chapter 7 we will show that equations of such a form can then be solved using
theta functions.

1The mathematicians often write Tschirnhausen, but as is clear from the works of historians of
mathematics, the correct spelling is Tschirnhaus. (Regrettably, his original works were inaccessible
for us.) The authors.



146 ‘ ' 6. ALGEBRAIC EQUATIONS

The Tschirnhaus transformation of the equation 2™ + e 4. +e,=0is
as follows. Let zy,..., 2, be the roots of this equation. Let us con51der a rational
function ¢ that is ﬁmte at the points z1,...,Z,.

Set y; = @(z;) and let

VU ay T g =0

be the equation for which 4, ..., ¥, are the roots. Further on, we will show that
if this equation has no multiple roots, then the z; can be expressed in terms of the
y;. By selecting an appropriate ¢ we may assure that the coeflicients ¢1,...,¢n—1
become zeros. But to do this we have to solve an equation of degree {(n — 1)! and
this was precisely the objection of Leibniz.

Without loss of generality we can use a polynomial of degree not higher than
n — 1 instead of the rational function ¢. We can do this because of the following
statement. ‘

6.6.1. THEOREM. Let x1,...,%, be the roots of a polynomial f whose degree
is equal to n and @ = P/Q, where P and Q are polynomials such that Q(z;) # 0
fori=1,...,n. Then there exists o polynomial g of degree not higher than n — 1
for which the values of g at points x1,...,T, coincide with the values of ¢ at these
points.

PROOF. By the assumption the polynomials f and (2 have no common roots,
hence are relatively prime. Therefore there exist polynomials a and b for which
af +bQ = 1. Since f(z;) = 0, we have b(z;) = 1/Q(z;). Hence, |

() = P(2:)/Q(z:) = Plz:)b(z:).
Thus, for g we can take the residue of the division of Pb by f. O

In the sequel we will assume that to the equation-
flx)=a"+cz" 1+ +e, =0

the transformation

y=g(x) =po+prz+--- + Pz

is applied. Let us show how to calculate in this case the coefficients of the polyno-
mial y™ + qv" ! + -+ + ¢, whose roots are y; = g(x;),% = 1,...,n. For simplicity,
we confine ourselves to the case n = 3.

If 2 = —c12? — coz — c3, then

yz = poz + p17° + P2 (—c12% — a2 — ¢3) = pj + Pix + pha®.
Similarly, yz? = = pjl + pijx + pjz?, where the p/ are linear functions of the
parameters p;. Therefore, if z; is a root of f and ¥; = g(z;), then the system of

equations
(po =~ Y)zo + p121 + P2z2 = 0,

(6.1) | po2o + (Py — y)z1 + phza = 0,
pizo +piz + (ph —y)z2 =0
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: 2
has a nonzero solution (29, 21, 22) = (1, z;,z7). Set

Po P1 P2
A=|p P Pl
Py Pl Py
Then det(A —yI) = 0 for y; = g(z;). If the polynomial det(y — A) has no multiple
roots, it coincides with the desired polynomial y™ + q1y™ ! + - 4 g,. Since the
elements of A linearly depend on the parameters p;, the coefficient gy, is a kth degree
polynomial of the parameters p;.

If y™ + 19" ' + - - + g5, has no multiple roots, 4 has no multiple eigenvalues.
Therefore, to each eigenvalue of A there corresponds a unique (up to proportion-
ality) solution of system (6.1). This means that from a root y; of the transformed
polynomial a root a; of the initial polynomial is uniquely recovered and that the
root z; can be rationally expressed in terms of the root y;.

The Tschirnhaus transformation enables one to solve in radicals the equations
of degrees 3 and 4. A cubic equation can be reduced to the form y* + ¢3 = 0 after
we solve the system depending on the parameters pg, pi, ps consisting of a linear
equation ¢; = 0 and a second degree equation g = 0. To do this, we have to solve
a quadratic equation.

A fourth degree equation can be reduced to the form

v+ gy’ +qa=0.

To do so, we have to solve a-system consisting of a linear equation ¢; = 0 and a
third degree equation g3 = 0, which reduces to solving a cubic equation.
A fifth degree equation can be reduced to the form

Y+ quy+gs =0

after the system of equations ¢; = g2 = g3 = 0 is solved. To this end we have to
solve an equation of degree 6. A more detailed analysis was performed in 1789 by
the Swedish lawyer, historian and mathematician Bring, who demonstrated that in-
this case instead of a sixth degree equation it suffices to solve equations of degrees 2
and 3. Indeed, in order to satisfy the equation g; = 0, express one of the parameters
Do, - - -, P4 88 a linear function of the other parameters. Then the coefficient ¢, is a
quadratic form with respect to four of the parameters p;. This quadratic form can
be reduced to the form uf + u2 — v¥ — vZ, where u; and v; are linear functions of
the p; (to perform the reduction, we have to calculate square roots). To satisfy the
equation g = 0, it suffices to solve the system of linear equations u = vy, ug = vs.

This leaves us two parameters and the equation ¢3 = 0 for them is a third
degree equation. As a result, we get an equation of the form y° + quy + g5 = 0.

If g4 # 0, then with the help of a linear change of variables we can reduce this
equation to the form y° 4 5y = a.






CHAPTER 7

Theta Functions and
Solutions of Quintic Equations

§7.1. Definition of theta functions

Theta functions are entire functions with one genuine period and one quasiperi-
od (though under addition of the quasiperiod to the argument the function changes,
but this change is subject to a sufficiently simple law).

Setting ¢ = ™" one can map the upper half plane H = {7.€ C|Im7 > 0} in
the interior of the unit disk D = {g € C||q| < 1}. Indeed, let 7 = z + iy, where
z,y € R. Then g = €™~ ™ = e~™e"™® and |q| = e~™¥. Hence, |g| < 1 if and only
ify>0,ie,Im7>0.

‘Fix a number 7 € H and consider the series

63(7)'7-)3 i e(m27+2mv)7ri: Z q 27rzmv

m=—0o0 m=—00

The absolute value of the ratio of the consecutive terms of this series is equal to
|2m+1emiv| < |g*™ T €20l Since limm-oo |g|”™" " = 0, it follows that ©3(v | 7)
is a series of entire functions of v converging uniformly in the domain |v| < ¢, where
¢ is a constant. Therefore, @3(v | 7) is itself an entire function of v. For brevity we
will often denote this function by ©3(v).

By replacing v with v + 1 we get the same series, since e?™(v+1) = 2mimv,
This means that O3(v + 1) = O3(v). Moreover, O3(v + 7) = AO3(v), where
A=qg"1le 2™, Tndeed,

’U+T qu 2mimuv 2m

— qwlew?ﬁw Z q(m+1)2€27ri(m+1} — q—le—Qﬂ-ive?) ('U)

It is also convenient to consider the functions

1 2 2mimu mim m _m? 2wimv
Bp(v) = 63 (U—E-:?—) =qu e’ e =Z(—1) g™ e ;
o, 1 —
01 (v) = ie (v~ %)@, (v + T)
— 'fl"L("U— ) Z qm 2mimu Tr'Lme—ﬂ'zmT

=3 Z 1) q m—%)zem(Qmwl)v
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(the function ¢* is multivalued for A\ ¢ Z; we take ¢ = et™7); and

©9 (’U) = e-"”(vwg)@?) ('U - %) — 6—171'(1)——2-) qu262mmfue—wimv
= Z q(m-%)2em'(2m_1)v_

The functions Qg, ©1, O and O3 are called theta functions.

PROBLEMS

7.1.1. Prove that ©(v+ 1) = Ox(v) for £ = 0,3 and Ox(v + 1) = —O(v) for
k=1,2.

7.1.2. Prove that (v +7) = AO(v) for k = 2,3 and k(v + 1) = —AO(v)
for k=20,1.

§7.2. Zeros of theta functions

Let the numbers m and k be related by the formula 2m —1 =12k, le, k=
| —m. Then (=1)™ = — (=1)* and ¢(m~#)" = ¢(+=%)" 50 that ©;(~v) = -6, (v).
In particular, ©1(0) = 0.

Since 1 (v+1) = —04(v) and ©1(v+7) = —AB;(v), we have ©1(m+n7) =0.
Let us show that the function ©; has no other zeros. It suffices to verify that the
function ©; has only one zero inside the parallelogram II with vertices 5‘:—12*—7

Clearly,

v+l _ ©1(v)

Gt D) Oy
(w+71)  —A0)01(v) — A(v)©1(v)

O1(v+7) —A()O1(v+1)
AW G, Oi0)
=T T e - T ey

Therefore, if C is the boundary of IT oriented counterclockwise, then

1 [ @iz

—2}—% o @l(z)dz = 1.

Indeed, the sum of the integrals along the horizontal sides is equal to 27, since
the lengths of these sides are equal to 1, whereas the integrals along the other two
sides of I1 cancel.

If f(z) =ck(z— ak)k + -, then j;((j)) = z_kak + ---. Therefore, for an entire

function f the value
1 7/
1 [ @,
271 Jo f(2)
is equal to the number of zeros (multiplicities counted) inside C'. Therefore, inside
I1, the function ©; has exactly one zero.
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Sta,rting’from the expressions for the functions &g, ©; and O, in terms of O,
we can easily get the following table for zeros of theta functions:

function O (v) ©1(v) O3(v) O3(v)

its zeros m—}—(n—i——%)'r m+ nr m+%+n7' m—l—%—l—(n—l—%)T

PROBLEMS

7.2.1. Prove that the functions ©q, ©@5 and @3 are even.

§7.3. The relation 0 = 05 + 6}

The quantities ©; = 0;(0) for 1 = 0,2,3 and ©} = ©/(0) are called theta
constants. Recall that they depend on the parameter 7.
Consider the function

1 _ 263(v) + bO3(v)
f( ) - @(2)(,0) 3

The numbers 1 and 7 are periods of f; hence, f is a doubly periodic function with
fundamental parallelogram II. The fundamental parallelogram can be shifted so
that only one zero of the function ©g(v) lies inside it; assume that it is 7. If we
select numbers & and b so that a©?(%) + bO3(Z) = 0, then, inside II, the elliptic
function f(v) has a pole of multiplicity not greater than 1 and, therefore, f(v) is a
constant.

Substituting v = % and v = 0, respectively, in the relation

where a,b € C.

Oy(v) = e—"i(”_£)93 (v - 22-)
we get
S (%) = 6;%1:@3(0), resp. .@2(0) :.ew‘if.@g (-—-g—) = ézr%@g (-;—-) :

- Hence, a®3(%) + b0%(%) = aB?©3% + bB20%, where B = e~ "¢ . Set a = —©32
and b= ©2. Then aB?0% + bB?0O3% = 0 and

—02(v)02 + O%(v)02 = cOi(v).

To compute ¢, set v = %— The function ©» vanishes at this point, so to calculate
1

©3(3) and ©y(3) we can substitute v = 0 and v = 3 in the relation ©y(v) =
O3(v+ 3). We get ©p = O3(3) and Og(3) = O3(1) = O3. Therefore,
0207 = 03,

ie., ¢ = ©2. Thus,
03(v)03 ~ 83 (v)0; = 65 (v)Oy.

In particular, for v = 0 we get
03 = 03 + 65,
ie.,

(1+2q+2¢"+2¢°+ - )* = 16¢(1+¢" 2 +¢*°+¢>* +- - ) + (1 -2¢+2¢* — 2"+ - - )*.
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§7.4. Representation of theta functions by infinite products

The numbers m + % + (n+ %) T are zeros of the function

Z qk 27r7,k:v

k=—o0
Set s = ™. This substitution sends the zeros of ©3(v) to the points

e2wi(m+%)62ﬂ-i(n+%f) — _q2n+1’ where g = e'n"i'r

Let us put these points into the two sets:

(41) _q—I, ”q-S: ___q~—5,‘“7
(42) —g' =~

The limit point of the set (4.1) is 0o and the limit point of the set (4.2) is 0.
The series Yo ; |¢**| converges; hence, the function

o)
H 1+q2k 13

is an entire function of s with zeros at the points (4.1). Similarly, the function

o0

fls) =TT (1 +¢57)

k=1

is an entire function if we consider it as a function of s~ (as a function of s it has
a singularity at the origin). The zeros of f,(s) are the points (4.2).

Consider the function f(s) = f1(s)fa(s). The function g(v) = f(e2"®) = f(s)
has the same zeros as the function @3(v). Under the change of variables v — v+ 1
the value s = €>™ does not change and, therefore, g(v + 1) = g(v). The change of
variables v — v + 7 replaces s with e?™¥e2™7 = s¢?: hence,

1+q-—1s—1 ‘

glv+7) = — s g(v) = g e g(w).

Therefore, the ratio of the functions ©@3(v) and g(v) is an entire doubly periodic
function, i.e., a constant. Therefore,

oo

(4.3) H g1 27rw) (1 +q2k—1e—2'n"w) §

Similar expansions can be obtained for the remaining theta functions. Since
e2mi(v3) e 2™ it follows that

(4.4) @O(U) = @3 ( ) H 2k 1 271'11)) (1 - q2k—le—27ri'u) )
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Since g2F—1e2m(vt3—F) = _g2h—2g2miv gng g2h—1p-2mi(v+i-F) = _g2ke—2miv o
have
Tiv 1 T
01(0) =ik 05 (v + S — T
2 2
00
=1 (1 - 8271'7/1; —miv i H Zk 27rw (1 _ q2(ce_2niv) )

It is also clear that 4 (1 — e2™?) e=™ = 2sin 7y, s0 that

(e o]

(4.5) @1('1)) = 92 (Sin ﬂ'U % H 2k 2'irw (1 _ q2k;e-27réfu) .

It is easy to verify that ©2(v) = ©1(v + 3); hence,
1 s .
(4'6) @2(’0) = 2 (COS 'n"U) ip H 1 + q2k 27m) (1 + q2k6—2ﬂ“’m}) .

Now, let us prove that

(4.7) = H (1 _ qzk) .

k=1
Consider the sequence of functions
n T
F.(s) = H (1 - qzk"ls) (1 — q%_ls—l) = Z ax(n)s®.
k=1 k=—n

This sequence converges uniformly to the function

H .(1 _ q‘Zk:—lS) (1 _ q2k-ls——1) Z ( 1)k
k=1 Ic-—oo

Comparing the coefficients of degree zero in s, we get % = limy 00 Go{nN).
Clearly, a,, (n) = (=1)ngt+3++Cn~1) = (_1)ng"" . Moreover,

Fo.(q%s) . (1 — q2n+1s) (1 — q—ls—l)  1—gtls

Fu(s) — (I-gs)(Q—g1s7h) — gs—g*
hence,
n n
(Q'S _ q2n) Z ak(n)qzk B _ (1 . q2’n+18) Z ak(n)sk,
k==—n k=—n
ie.,
n n
Z an(n) (1 _ qz(n+k)) o — Z k() (g2 — g1 gL,
k=—n ke=—n
Therefore,

gt T (= 209) T, (1 0)
a = o= oy
¢ [Teoy (g3R+E — g2ntl) [Teey (1 —q%)
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Let 'Q'iz = @ < 1. Then 1 — a™ < ]1 — qz(”'*"“)[ < 1+ o™. Moreover,
limp oo In (1 £ ™) = 0. Hence limy—o0 [[5y (1 — ¢3™*)) =1 and

o0
c:nlingol/ag(n) 1:[ 1—g**

§7.5. The relation ©(0) = 760,(0)©2(0)03(0)
Formulas (4.4)-(4.7) imply that

(5.1) ©0(0) = ¢ H (1- q2k—1)2 ;
k=1

(52) — 211' ﬁ 1+ q2k :

(5.3) 03(0) = ﬁ (1+ qkal)Q;
k=1

(5.4)

IE
w:-lr-'

i ,::] 8
T
=N

To prove the last formula, it suflices to observe that ©}(0) = hmvHo 91(”)

Since []ro; (1 - q%)2 = ¢2, we have ©/(0) = 2rgic3. Therefore, to prove the
relation ©7(0) = 70, (0)02(0)O3(0), it suffices to verify that

ﬁ (1 . q%ml‘) (1 +q2k) (1 +q2k—l) =1.

k=1
Clearly,
0 o0 1
[Ta-&Y=[a-™ -
k=1 nw=1
o+ 0+ =[]0+
k=1 n=1
Therefore,
H (1 q%*l) (1 + qzk) (1 + qzk—l) — H (1 _ qn) (1 +qn) (1 . qzn)—l
k=1 n=1
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§7.6. Dedekind’s n-function and the functions f, fi, fo

Formulas (5.1)—(5.4) together with (4.7) enable us to represent the theta con-
stants in the following form:!

01(0) =2mn’(r),  nlr)=¢7= [] (1-¢*);

03(0) = n(r)f2(r), f(r)=g¢ % J] (1+a*Y);

k=1
O0(0) = n(r)fE(r), filr) =g = [ (1-¢*);
k=1
02(0) = n(1)f5(r), falr) =v2q% [] (1 +4%).
k=1
The relation ©4(0) = ©3(0) + ©2(0) implies that

(6.1 =i
In §7.5 we have shown that

T ) (4 @) =1,

Hence,

(6.2) Fhif=V2.

The functions f, f; and f, can be expressed in terms of n as follows:

Hp (),

(63) f('r) = 77(7,) y
_n(3).
(64) fl (T) - 77(7-) H
~ sn(27)
(6.5) h@—ﬂmﬂ-

Let us prove, for instance, formula (6.3). It is easy to verify that

N 2k
7](7') = @24 12 (e 3 ) H __.1._:_q_§_k_.m

2 x(l+ (-3 1+ (1-¢%)...
1-¢)(1—g)...

i mﬁﬁ _ 2k—1
q (1—g*1).

It is even easier to prove formulas (6.4) and (6.5).

i
®

1Observe that the functions f(r), f1(), f2(7) introduced below and the functions f {(s), f1(s),
f2(s) from §7.4 are different functions.
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§7.7. Transformations of theta functions
induced by transformations of 7

In §7.1 we have seen how the functions ©,(v|r) behave under the replacement
of v with v+ 1 or v+ 7. It turns out that under the replacement of 7 with 7+ 1 or
—1 the functions ©;(v|r) are also transformed according to relatively simple laws.
For the change of parameter 7 =+ 7+ 1 this is no wonder, since under such a change
of parameter ¢ = ™" turns into ¢/ = —g. Therefore,

Bo(v|T + 1) = B3(v|r), ©O3(v|T + 1) = BOp(v|7),

Oi(vjr+1) = e%@i(vh) fori=1,2.

The change of parameter 7 — 7/ = —2, however, sends ¢ = €™ into ¢’ =
e~ ™/T = exp(—7?/Ing). It is surprising that there is a transformation law for
the theta function for such a change of parameter. To find this law consider the
function

i y? @3(7’”0[’1”)

g(’U) - @3('0]7') '

Simple calculations show that g(v + 1) = g(v) and gv + 7) = g(v), ie., g is
a doubly periodic function. The zeros of the denominator are of the form v =
(m + 2) 74+ (n + %) and the zeros of the numerator are determined from the relation

T,'U = (m+ %) TI -+ (n+ %)) i'e'?

()3

Therefore, the zeros of the numerator coincide with the zeros of the denomina-
tor; hence, g is an entire doubly periodic function. Therefore, ¢ = A, where A is a
constant.

. , . 1 1 :

By replacing v consecutively with v+ 3, v+ % and v+ +£%, we derive from the

equation

(7.1) O3(T'vl7’) = Ae~™ V" Q4 (w|T)

the following equations:

(7.2) Oy (r'vlr') = Ae™™" V" Q4 (v|7),
(7.3) Oo(r'v|T’) = A~ O (v|7),
(7.4) O1(r'v|r) = iAe ™V O (v]T).

Taking the product of equations (7.1)—(7.3) and setting v = 0 we get
(7.5) 02(0|7")03(0]7")00(0]7") = A302(0]7)O3(0|7)0o(0]|7).
The derivative of (7.4) with respect to v yields at v =0

(7.6) 7'01(0|r") = iAO].
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Since O] = 100,03, equations (7.5) and (7.6) imply that A% = —ir, ie.,
A = F+/—it. As a result we get
O3(0|7") = £v/—iTO3(0|7).

It is also clear that for a purely imaginary 7 both ©3(0|7) and ©3(0]7’) are positive.
Therefore,

(7.7) O (m - %) = v/—it@3(0|7).

Transformations of Dedekind’s n-function. Transformations of the theta,
functions as the parameter 7 varies lead to transformations of Dedekind’s n-function
since

21n3(1) = @4 (0|7).
From the relation ©1 (0|7 + 1) = &% ©1(0|7) we get
(7.8) n(r+1) = “_577(7").

If we take into account that A = /—i7 and 7' = —1, then (7.6) takes the form
01 (01 - 1) = (v=inyel ol
Hence,
(7.9) n (——Tl-) = V—irn(7).
With the help of formulas (7.8) and (7.9) we can obtain the transformation

laws for the functions f, fi and fs under the change of parameter 7 — 7 + 1 or
7+ —1. For example,

By () e EHn(3)  w
(7.10) flr+1) = o) e s B fi(r)
Similarly, we get
(i) Alr+1) = e #f(7),
(7.12) folr +1) = €% fo (7).

Observe that f(7 4 2) = e~ % f(7) and, therefore, f(r +48) = f(7).
It is easy to verify that

1\ _n(-3) _ vV=2Zirp(2r)
1) 1) =0 - g

Replacing 7 with ——;1; we get

(7.14) f (1) =i,

Similar calculations do not yield an expression for f(-——) However, if we use
the fact that

F () fa(r) = V2
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(-2 aonm=s(-)n(-3)a(-5)=v2
we get

' 1
(7.15) 1(=3) =0
Now we prove the relation

(7.16) 'f('r)-f (T - 1) -2

and

T+1
Equations (6.4) and (6.5) imply that f;(27)f2(7) = V2. Since
fi(2r) = e f(2r — 1)

p =1 (-3) =efr (7).

then f(2r —1)f(—1) = v2. Set z =27 — 1. Then 1 — 1 = £ and the obtained
relation is equivalent to (7.16).

and

§7.8. The general scheme of solution of quintic equations

The remaining part of this chapter is directly concerned with the solutions of
quintic equations. The construction is rather complicated and is based on various
facts whose proofs often require cumbersome calculations. To help the reader grasp
this construction we first describe the general scheme: what is done and to what
purpose. :

Let f(7), fi(7), f2(7) be the functions defined in §7.6. Set

uw=f(1), ve=7Ff (T+C) and vy = f(BT).
The study of the behavior of u and v under the changes of parameter 7 — 7+ 2,
7+ —7" ! and 7 13,% shows that these changes transform uv and u/v as follows:
Uy =

T T 42 e yy /3L

1 . U

T p uv P
=1 2 v
T T+1 uY u©

The transformation law of the index ¢ of the function v, is the same as that of
7. Now it is not difficult to demonstrate that

(& + (2) = -

ub — uP® + duv + b = 0.
Let us consider u = f(7) as a parameter. For every value of this parameter we
get a sixth degree equation whose roots are explicitly expressed in terms of 7. We

or, equivalently,
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would like to do the same for the equation y° + 5y = a. It turns out that this can
be done as follows. Consider the fifth degree polynomial with the roots
('Uoo - 'Uz)('vz—}-l - 'Uz—i)('vz-t—Z — vz—l)

Y

Calculations will show that this polynomial is of the form

(8.1) w, = , wherez=0,1,2,3,4.

w(w? + 5)? — u*? 4 64u12,
After the substitution

) - )
®.2) YD) = ) (wi(r) -+ 5)

we get the equation

5 fr— 13
Thus, to solve the equation ¥ + 5y = a, we have to proceed as follows. First, let
us find a 7 for which f8(7) — f8(7) = af?(r). This problem reduces to solving a
quadratic equation (and calculation of the inverse of f). Then we compute w,{(T)
by formula (8.1), and compute y.(7) by formula (8.2). These are the roots of the
equation considered.

We begin with studying the behavior of w and v under the changes of param-
eter 7 (§§7.9-7.12). This is precisely the part of our program connected with the
most cumbersome calculations; the theoretical background for thiese calculations is,
however, quite simple..

§7.9. Transformations of order 5

To the matrix (Z

mation

d) we can assign a fractional linear or Mdébius transfor-

at -+ b

ct+d’
Under this assignment the transformation 7 — 7 + 1 corresponds to the matrix

T

T = (é i) and the transformation 7 + —% corresponds to the matrix S =

( (1) _61 ) It is easy to verify that the transformation 7 +— A(B7) corresponds to
1

the matrix AB and to the matrix F = 0 _01) there corresponds the identity

transformation. Formulas (7.8) and (7.9) can be rewritten as follows:

Sl

(9.1) | n(Tr) = e¥en(r),

(9.2) n(St) = v—irn(t).

Let SLy(Z) be the group of integer 2 X 2 matrices with determinant 1. One
can show that the group SLs(Z) is generated by

1 1 0 -1
r(2 1) was=(2 7).
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This means that if A € SLy(Z), then n(Ar) can be expressed in terms of 7(7)
with the help of formulas (9.1) and (9.2). This explicit expression in terms of
the elements of the matrix A was first obtained by Dedekind and this is why the
function n{7) is called Dedekind’s n-function.

One can also obtain a similar expression for f(A7), but it involves not only
f(7) but also fi(r) or fo{r). For example, '

F(TT) =e 5 f,(7).

We will only need these expressions for certain matrices A. We will prove these
expressions separately and will not deduce a general formula for them.
The solution of the fifth degree equations is based on the study of transforma-

tions f(r) + f(PT), where P = f Z is an integer matrix with determinant

equal to 5. If A € SLy(Z), then f(APT) can be expressed in terms of f(PT) (or
fi(PT) for ¢ = 1,2). Therefore, one has to find the simplest form to which P can
be reduced by left multiplications by a matrix 4 € SLy(Z).

Let ¢ and d be relatively prime numbers such that cp + dr = 0. There exist
integers a and b such that ad — bc = 1.

This means that

(2 &)esm (23)(9)=(5 %)

where p’s’ = 5. Using the fact that

1 n\({p g\ _(p qg+mns
0 1)\0 s/ \O0 s )’
P q
0

we see that P can be reduced to one of the following forms:

(5 0 (10 (1 #1 (1 2
Poo—<0 l)? PO_(O 5)7 P:i:l_(o 5)7 P:l:Z_(O 5)

Let ve = f(PeT), 1.6., Voo (T) = f(57) and v.(7) = f(7 4+ ¢/5) for ¢ # oco. Let us
try to find out how v, behaves under the change of parameter 7 — B7. This change
of parameter corresponds to the right multiplication of P, by B. By multiplying
P.B from the left by a matrix A € SLy(Z) we can obtain the matrix Py, ie.,
f(P.BT) can be expressed in terms of vy = f(Py7) (or fi(Far)).

The next three sections are devoted to the derivation of these expressions for

the changes of parameter 7+ 7 +2, 7 — —+ and 7 — Z_}

we can reduce the matrix P to the form- , where —5 < g < 5. As a result

87.10. The change of parameter 7 — 7+ 2

The change of parameter 7 > 7 + 1 sends f(7) into e~ 3 fy (7). Therefore, in
order not to appeal to the function f;, let us confine ourselves to the change of
parameter 7 — 7 + 2. This change of parameter sends, for example, f(57) into
F(57 4+ 10) = e~ %5 f(57) and f(Z) into f(E2). |

These transformations look different: in one case we have a factor of e_%,
whereas there is no factor in the other case. The point is that our notations are ill
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adjusted. Selecting the functions v. more adequately we can make all transforma-
tions look alike.

As was noted in §7.7, the period of the function f is equal to 48. Therefore,
varying the integer ¢ we only have 240 distinct functions f(7£¢). Residues modulo
240 are divided into 48 five-tuples consisting of numbers with the same residue
modulo 48. Select the numbers ¢ from the same five-tuple by demanding that they
be divisible by 48. This can be done by changing the notation:

T+C
Uc:f< 5 )7

where ¢ = 0 (mod 48). We directly see that v, = vg4 if ¢ = d (mod 5). This means
that for the index of v we may take the residue after the division of ¢ by 5. Since
48 = —2 (mod 5), it follows that

Ui2=f(T:l;48); Vg1 =f(T:E96)-

For vy and vo we preserve the previous notation, i.e., vo = f(%) and vee = f(57).
This is the notation that we will use in the sequel. The change of parameter
T+ T+ 2 replaces the function v, with

T+24¢ T+50—48 +¢ _Bmi T4+
() = () = (),

where ¢ = ¢ — 48 =0 (mod 48) and ¢ = ¢+ 2 (mod 5). Thus, v, is replaced with
e_%%vc+2 and this also holds for ¢ = co. Miraculously, the index c is transformed

by the same rule as the parameter 7. In the next two sections we will see that this

is also true for the changes of parameter 7 — ——% and 7 :—ﬁ—

§7.11. The change of parameter 7 — —1

‘The change of parameter 7 — —2 replaces the function ve = f(57) with

D)5 =

It is also easy to verify that vg is replaced with v.,. Therefore, v, is replaced
with v_y,. for ¢ = 0,00. For the other values of ¢ this is also true but the proof
requires cumbersome calculations.

To figure out the behavior of the functions v, for ¢ # 0, 0o, we have to represent
the matrices from SLy(Z) in the form of the product of the matrices S and T. This
is most easy to perform for matrices with small elements; therefore, we will use the

fact that
T 48 T4+ 2 i T+2
?):h2:f< :{; )“—“f( z ¢1O>:e¢512f( 3 ),

U:H:f(’r:i;96) :f(T?__):4i20) :ez'zsgif(’r:gél).

The change of parameter 7 — ——;} induces maps of functions

mi +27 —1 ni 47 — 1
Vig > eF T f ('—g;“”> and vy —eTE f (“:E;,—) .
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Let us start our calculations with the function f(74*2) = v_,. For this function,

we have to reduce the fractionally linear function —”—% to one of the six main forms.
Following the reduction algorithm described in §7.9 we get the relation :

(5 5)(F 9)=6 )

Therefore,
=27 —1 T2
(75) (4 (%)
where ’
-1 2 1\ 2 qrp—2
A :(wS _2) = —8T*8T*S.
Hence,

! (_2;_ 1) ~ (STQST“QS (T - 2)) .

It is easy to verify that

R

F(ST2ST2503) = fF(T2ST258) = e 13 f(ST™25P) = e~ T2e™ f(B) = f(0).

Therefore, the function f (I%‘»@) is replaced with

e _2 ik 48 48
() - (5 )= (59)

Similar calculations demonstrate that the function f(*=*) goes into f (1‘35@).

Hence, v, turns into v, for ¢ = £2. 1t is also clear that —1 — ¢ for ¢ = +2. For the

E pammat
function f (—T——%g—@) calculations are somewhat lengthier. Since

DG )0 %)

-1
4 3\ | oot
(5 4) = 8TST*5T*,

¥ (“” - 1) = f (}s*.'rssr*‘&s*:r—1 (T + 4)) .
5T 5

It is easy to verify that

and

1t follows that

F(STST ST 'p) = f(TST—‘lST?lﬁ) =e 3 f1(ST4ST13)

= e H L (TI8T Q) = e~ 5 fo(ST 1)
= e~ [(T0) =e 5 f(B).
Therefore, the function f (ﬂggﬁ) becomes e~ 5~ f (%’—4—) Clearly,

T4+ 4 T — 96 _ 5mi 7 — 96
1(75) o (5] e (7).

Since -g + 31— +—g = 2 and e~?™ = 1, we see that v; = f(f—*g—%-) turns into f(1_5—9§) =
Vee1.
Similar calculations show that v_; becomes v;.
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Thus, the change of parameter 7 — —% sends the function v, into v_1 for all

c.
§7.12. The change of parameter 7 — %%
Let us prove that the change of parameter 7 — ;—ﬁ sends the function v, into

‘/5, where d = ¢-1. In the proof of this statement the relation (7.16), i.e.,

T g o1
1 (T’ 1) -3,

T4+ 1

plays an essential role. For the calculations we need a relation of the form

e )G D=6 6 D0

b) is given and the matrix (?; B) € SLo(Z) is selected

. a
where the matrix ( 0 d 5

Y

so that the lower left element of the matrix is indeed 0. By multiplying

z
0

(12.1) from the left by ( 1 1) we reduce this condition to the following one:

-1 1
(~a+7)(a+b) + (6= A4)d=0.

The relations for vy and vy are the easiest to obtain; they are of the form
1 -1 1 -4\ (1 -4 5 0 1 -1
1 1 0 5 /) \0 1 0 1 1 1)
1 -1 14y (1 0 1 0 1 -1
1 1 0 5) \—4 1 0 5 1 1 /-

Therefore,
| s} ”"1 P -
e (sI), s e (3.
J(&==) T+ 1 f(552) 5741

where in deducing the second formula we used the fact that

T 4r —1 _Ami
o) = (57) = %o,

Taking into account that e = —1 we get

(1) ey (GE5) - ey

The relations for vy and v4 are of the form

e (PG -GN,
m (DED-GHEDHE T
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Let us perform the calculations for v;. Under the change of parameter 7+ ;;—i

the function vy = f (%96) becomes

f (04-296) =7 (a;l +19) :e_lggifl (a;—]-) ze_l_‘gﬁrifl(ﬁ)’

where o = T3 and § = L. Relation (12.2) means that

f(3) ~26+1
It is easy to verify that
361 i ¢ i 1) 5mi
_— e | = e%4 —_—  } = 2 22— — ) =2
f(*Qﬁ—i—l) fl(~2ﬁ+1) f2( 5 H(B)

Hence,

_1gmi _5mi V2

e f(B) = —e" F f1(B) = — e,

f(E)
i.e., the function v, turns into — f\({?_) = —{52—. Similar calculations demonstrate
5

that vs becomes —W\/z) = —Z\g'

For vy we get the relation

1 -1 -1 -2\ (-2 1\/[/1 2 1 -1\

1 1 0 -5/ \3 —-2/\0 5/\1 1)’
and then it is not difficult to verify that ve turns into —%—f. We similarly prove
that vs turns into —‘,U/—f.

The results of the calculations performed in §§7.10—7.12 can be arranged in the
i S5n3

following table, where ¢ = e~ 15 ;

U Voo Vp U Vo V3 V4

3
o,

H

T T+2 €71

[

U EVs EVg €U  EU4  EY X0

1

THE 7T — p Vo Voay V4 Vg V3 U1

T
r—1 VZ V2 V2 V2 V2 V2 V2

T+1 -

T
vl V4 : vy () 3 Voo

§7.13. Functions invariant with respect to the
changes of parameter 7 — 742, 7+~ —1 and 7 — I}

The function f#4(r) is fixed under the changes of parameter 7 — 7 + 2 and
12
T = ——%, whereas under the change of parameter 71— g;—i it turns into f—fgm
If we consider the function

04 912
F(r) = £40) + i

— ¢! H (1 +qzk-—l)z‘l + 212qH (1 +q2k—1)“24 LY
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then, as is easy to verify, it does not change under the transformation of parameter

71— I3, as well. Indeed, this change of parameter turns %7 into f24(7).

We can prove that if the function g(r) is meromorphic in the upper half plane
ImT > 0 and does not change under the transformations 7 +— 1742, 7 +— —% and
T —Zf_—}, then, under a certain condition, g(7) = R(F(7)), where R is a rational
function. The condition in question is that the function g{q), where q¢ = €™7,
should be meromorphic. For a meromorphic function g(7) the condition reduces to
the fact that the point ¢ = 0 is not essentially singular, i.e., there are only finitely
many nonzero coefficients ¢, with negative n in the expansion g(q) =3 .. eng™
(887.16-7.19 are devoted to the proof of this statement.)

Moreover, the equation F(r) = c is solvable for all complex ¢ # 0 (we will
prove this in §7.19). If R(F(7)) is finite for all 7 such that F'(v) # oo, then R is a
polynomial. Indeed, let R be a fraction with a nonconstant denominator. Then its
denominator vanishes for some F(7) # co. If R(F) is finite for ¢ = 0 as well (i.e.,
F' = 00), then R is a constant. :

We will use these facts first to deduce the modular equation and then to solve

quintic equations.

§7.14. Deduction of the modular equation

With the help of the transformation table (see §7.12) we can easily verify that
the transformation law of the functions uv and u/v, where u(7) = f(7), is as follows:

uv
v
i i
THT+H2 e Tuw ed
1 w
T T — = Uy =
T
T-1 2 v
TMT—Fl . UV u

Under these transformations the index ¢ of the function v. changes in the same
way as T.

Consider the functions A, = (u/v.)® + (v./u)® and B, = (uwv.)? — (4/(uv:)?).
They transform as follows:

As a result we see that the function [], (Ac — B_.)?, where the product is taken
over ¢ = 00,0,1,2,3,4, does not vary under all the above transformations of 7,
since these transformations only permute factors.

It is easy to see that

A =q 3 (1-2¢+-), Boo=g (1 —2¢+:).
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Hence, Ao — By vanishes at ¢ = 0, i.e., as Im7 — 0. Let us demonstrate that
Ac — B, vanishes at ¢ = 0 for all ¢. Clearly,

w57 — ¢) = f(57) = v (1), ’U;(5T —c)=f (i————gcﬂ) = f(r) = u(r).

(Recall that in these formulas ¢ = 0 (mod 48).) Moreover, A and B do not vary
under the interchange of u with v. Hence,

(14.1) Ac(57 — ¢) = Aoo(T), Be(57 — ¢) = Boo(7).
Since the conditions Im(57 — ¢) — oo and Im 7 — co are equivalent, it follows that
Ac — B. = 0 vanishes at ¢ = 0.

As a result, we see that the function J], (A, — B.)” is a constant that vanishes

at ¢ = 0. Therefore Ac — B, = 0 for some ¢. Formulas (14.1) show that then
A; — B, =0 for all ¢. Therefore,

u\ 3 2\3 9 4
(5) + () =)~ )
ie., l
(14.2) v® — uP0® + duw 4+ ub = 0.

Equation (14.2} relates v = f(r) with v = f(57); it is called the modular
equation. Fixing v = f(7) and considering (14.2) as an equation for v, we find that
its roots are veo = f(57) and v, = f(Z£2) for c = 0 (mod 48). The Viéta theorem?
implies, in particular, that

(14.3) v =+"

We will need this relation to solve the quintic equations.

§7.15. Solving quintic equations

In §7.14 we have shown that the coefficients of a sixth degree polynomial with
roots v, can be expressed in terms of u. Let us now prove that the coefficients of a
fifth degree polynomial with roots wy, w,, ws, w3 and ws, where

(Uoo - ’Uz)('Uz+1 - 'Uz——l)('vz-l—Z - 'Uz—2)
V5u? ’
can also be expressed in terms of u and find the explicit form of this polynomial.

With the help of the transformation table for v. we can compose the following
transformation table for w,:

(15.1) w, =

Wy wy wWao wsg w4

T T+2  —wy —ws —wg —wy ~wp

T -—-% wWo wsa w1 Wy W3
T—1

T ¥ —Wy —Ws —Wqg —We —Un

2In Soviet mathematical schools the Viéta theorem was the statement that if z1 and x2 are
the roots of the quadratic equation 22 -+ bz +c¢c = 0, then 21 + 22 = —b and z129 = c¢. Translator.
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To calculate how w, transforms under the change of parameter 7 — T—+i~, we must
use relation (14.3).
Consider the polynomial

(15.2) H(w —w;) = w® + Ayw® + Apw® + Agw? + Aqw + As.

Its coefficients are finite at u # 0,00. Moreover, the functions A3, Ay, A3, Ay

and AZ do not vary under the changes of parameter T — 7 -+ 2, T — *; and
7+ I71. Therefore, they are polynomials of u?4 + 22524 = ¢=1 4 24 +.... Such
a polynomial is nonconstant only if its power series expansion in g begins Wlth the
term cq”, where r < —1.

Let us calculate the first term in the expansion of w,. Since

o0

J) = % [[(1+¢*7"), where g =™,
k=1

_i .

the first term in the expansion of v, is equal to (¢') " 24, where ¢’ = €™ for ¢ = 0o
wi(7t4c) . . Tic 7

and ¢ = e 5 for ¢ # 00.. It is easy to verify that e~ 345 = o°, where o = e~ *&*.

(Recall that ¢ = 0 (mod 48).) Therefore, the first term in the expansion of w, is
equal to

q—g—zq—ﬁﬁ (az-f-l — azml) q — 155 ( 242 _ z—2) L
\/gq_% = Ag~ 10,
2% (of_ -1 -3
where \ = G \/‘? +o”’) = %, because

o’ —a—at+ a7 = 2(cos36° + cos72°) = V5.

Thus, the expansion of A, begins with ¢~ (or with the term cq”, where

7 > —55). Therefore, the functions A2, A,, A2, and A, are constants whereas A
linearly depends on u24+212 24 = q"1 +24+- - because its expansion begins with- -

g, where py = (a2a4a6a8)2 = 1. Comparmg the first terms of the e‘xpansmns -

of the functions u** + 2'%u~%* and A2 we get
o _.oa, 27
R - R

To calculate the constants C', A;, Ay, Az and Ay, it suffices to calculate the value
of v, for one 7. Most convenient for calculations is 7 = 4. Indeed, —1 / i=1 and by
(7.14) we get i

(15.3) f1(@) = fold).

It is also clear that for a purely imaginary 7 the functions f, fi and_'.-:fz"as'sume
positive values. Therefore, (15.3), (6.1) and (6.2) imply that u = f (2) = v'2. Using
the fact that (2 —i)(2 +4) = 5 we get e

-+ 48 — 9 som, (i22)
’Ug:f(z 5 ):f(z5 —}—10)*‘6 g4f( 5)
tomi . o o i
24

) =e % f(i) = —iv2.

Similarly, vy = i+/2.
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For 7 = ¢ the modular equation takes the form
(15.4) 08— %’ +aSv+af =0,
where a = /2. We have already found two roots of this equation, namely, vs = —ia
and v; = ¢a. Dividing the polynomial (15.4) by (v — v2)(v — v3) = v? + a? we get
vt —a®1® + 0?0 +aTv 4ot = (v — @) (v - B)2,

where a+0 = a and af = —a?. Assuming that & > 0 and /8 < 0 weget a = —Ci(-%\/_—s)

and ,6 _ a(l;\/g

). It is also clear that

Voo = F(50) = F(=1/58) = [(i/5) = vo

and we additionally have vy, > 0 since f(r) > 0 for any purely imaginary 7.

Therefore,
3 (14 V5) 7201 v5)

Up = Voo =, Uy = Uy = 5
Substituting the value of v, at 7 =i into (15.1) we get
wy =0, wy :wgmz’\/g, ws = wq = —iV5.
‘Therefore, for 7 = 4 the polynomial (15.2) is of the form
w(w — iv5)*(w + iv5)? = w(w? + 5)2.
Thus, A2(3) =0, ie.,

C:—< Sl () S Rpm— 2” ):~(26+26):~27.

u24( 3
Hence,
212 26 2
2 .24 7 _ (.12
ie.,
26 '
As =+ (u!? - = ).
o= (- )
It 1s easy to verify that the expansmns of functions As = —wowiwswsw, and

— 264712 begin with —¢% and g%, respectively. Hence, As = —u!2 4 264,12
and, therefore, equation (15.2) is of the form :

w (w® + 5)2 = ul? — 640712
The relations f8 = f2 + £ and ffif2 = v/2 imoply that
2
w2 __6i _ f2(r) — 64 — (f18(7') - f28(7)> ‘

u? =) 72(7)
Hence, '
fi(r) = £(7)
V) = R W) + 5
Set
(15.5) y(,r) — flg(T) B fZS(T) |

FA7) (w(r) + 5)
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Then

8 8

If (f — /%) /f?* = a, then the roots of the equation
(15.6) | ¥+ 5y =a

can be calculated as follows. First, calculate v.(7) for ¢ = 00, 0, 1, 2, 3, 4. Next with
the help of formula (15.1) calculate w,(7) for z = 0, 1, 2, 3, 4. Finally, calculate
y.(7) for z =0, 1, 2, 3, 4 by formula (15.5). These are the roots of equation (15.6).
To learn how to solve equation (15.6) for any value of the parameter a, we only
have to learn how to solve equation

(15.7) i) = () = af*(7).

Taking into account that ff + f§ = f® and ffifo = V2 and squaring (15.7) we
reduce it to the form

(15.8) A -ad®f? —64=0.

Equation (15.8) is a quadratic equation for f12. One of its roots gives a solution
of equation (15.7), the other root gives a solution of the equation obtained from
(15.7) under the change of parameter a + —a.

* %k %k

In §7.13 we have formulated certain properties of functions invariant under the

changes of parameter 7 +— 742, 7 —«% and 7 — :T_]lL We used these properties

to solve quintic equations. Let us now prove these properties.

§7.16. The main modular function j(r)

In this section we will construct a function j(7) invariant under the changes
of parameter 7 +— 7+ 1 and 7 — —1. The function j(r) is of interest thanks
to the fact that any function invariant under these changes and satisfying certain
meromorphicity conditions can be represented as a rational function of j.

First, consider the functions

©3(0j7) 63(0l7)
k(r) = =2 , k()= =2 :
=6z * = 8i0m
They are related by equation k% + k> = 1 (cf. §7.3). The transformation

formulas of the theta functions with respect to the parameter 7 obtained in §7.7
enable us to verify that

k(r+1) = i%%, K(r+1)= ﬁ;

k(—1/7)y =k (), K(-1/7)= k(7).

Now, consider the function A(r) = (&'(r))°>. The changes 7 — 7 + 1 and
7 — —1 send X into A~! and 1— ), respectively. We want to obtain a function 5(7)
invariant under these changes of parameter. To this end it suffices to construct a
rational function of A invariant under the interchanges of A with A=t and 1 — \.



170 7. THETA FUNCTIONS AND QUINTIC BEQUATIONS

Such a function can be obtained as follows. Under the action of the above
transformations, the number A can become one of the following numbers:

1 1 A A=1
Ao, 1= .
A

Therefore, the function
| 1 A \2 /a-1\?
J(A) =A%+ = 2 ——
W)= +)\2+(1 g +(1*/\)2+(1~,\) +( X )

is invariant under the transformations indicated.
The two other functions obtained from J; by linear transformations, namely,

J+3  (A2-x41)’
2 A2 (1= N)?

Jg =

and

27 [+ (-2 (A= 21))
Jo=Jo— = ( A(1=2) )

are often more convenient. The function Jz is, actually, the most convenient one
for our purposes. Set

1-2+22)° (11— k22)°
Ag (1 . )\)2 - k4kl4.

3 3 3
5 (05 —0505)" (217)8 (05 —©365)" _ (716 — f8f8)3 - (f** - 16)
CHEHC . o8 - 1/2 JEZ

Using the fact that f24(r) = ¢ '] (1 + q%_l):24 we can obtain the following
expansion for j:

3
i(r) = (flS _ _Jlg) — q—zn ( +q2k-1)48 — 487" H (1+ qzk«1)24

o _
+3.16% — 163qH (1 + q%“l)~24 =g % 4+ 744 + Z cnq”.

n=1

Glr) =280y = 28 (

The function j(7) is invariant under the changes of variable 7 — 7+ 1 and
T —-%. Since the change of variable 7 — 7 + 1 sends ¢ = €™ into —gq, the
function j(g) is even. Hence, all the coefficients ¢, with odd indices vanish.

§7.17. The fundamental domain of j(r)

The function j{7) is defined on the upper half plane H = {r € C | Imr > 0}.
At the points obtained from each other under the transformations 7 — 7 4 1 and
7 +— —1 the values of j coincide.

Let us show that the set D = {r € H||7| > 1,|ReT| £1/2} possesses the fol-
lowing two properties:

1) Any point 7 € H can be sent into a point 7/ € D by a composmon of

transformations 7+ 7+ 1 and 7 w;l;.

2) No two distinet inner points of D can be transformed into each other by a
transformation indicated in property 1).
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Let G = SLq (Z) /{£I} be the group of fractional linear transformations of the
form
ar+b
er+d’
ie., a,b,c,d € Z and ad — bc = 1.

The transformations S : 7 — 33[;1 and T : 7+ 7+ 1 belong to G. Therefore
the group G’ generated by S and T is a subgroup of G. This remark enables us
to prove that for a fixed 7 € H one can select among all points ¢'7, ¢’ € G’, the
one with the maximal imaginary part (and it is impossible to select one with the

a b
where (c d)ESLz(Z),

T =

minimal imaginary part since lim,—~ Im (——;ql:g) =0). If g € G, then
ar +b adt + beF Im~r
Im(gr) = Im = Im - = —
cr +d ler + d ler + d

Therefore, the inequality Im(g7) > Im(7) is equivalent to the inequality |er+d| < 1
which is only true for finitely many pairs of integers (c,d). Thus, Im(gr) takes
finitely many values larger than or equal to Im(r) (although each such value is
taken for an infinite set of elements g € G). As a result we see that in the search
of an element g € G for which the imaginary part of g7 is maximal we can confine
ourselves to a finite set of elements. These arguments hold not only for the whole
group G but for any subgroup of G as well.

Let 7" have the maximal imaginary part among the images of 7 € H under the
G'-action. Since the transformations 7/ + 7/ 41 do not change the imaginary part
of 7/, we may assume that [Re /| < 2. Let us show that in this case 7/ € D, i.e.,
|7'| < 1. Indeed, the condition Im7’ > Im (¢'7’) implies, in particular, that

Im7 >Im (—i) = 1 Im7/,

ie, || > 1. _ _ ;

Now we prove a refined version of property 2). Namely, we show that under the
action of the elements of G’ the boundary points of the domain D are identified as
shown on Figure 42, i.e., the rays QP and SP are glued (under the transformations

FIGURE 42
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7 — 7 £ 1), the arcs — QR and — SR are also glued (under the transformation
T ,_%) No other boundary points are glued. Observe that if the infinite point
P belongs to D, then after the indicated gluing DD becomes a sphere, i.e., 7 can be
considered as a function on a sphere.

In the following section we will show that j defines a one-to-one map of this
sphere onto C U co.

Suppose that 7/ = g'T, where ¢’ € G’, and let 7 and 7’ be two distinct points
of D. We may assume that

, ar + b (a, b

First, let us consider the case ¢ = 0. In this case ad = 1, i.e., the transformation
is of the form 7 — 7 £b. For case b = 0 the points 7 and 7’ coincide. If b # 0, then
the image of D intersects with D only for transformations 7 — 7 % 1, and their
intersection belongs to the set |[Ret| = =

Now suppose that ¢ # 0. Then

, art+b a 1
e = = -
er+d ¢ cler+4d)
ie., '
a d 1
17.1 =2+ =5
(17.1) TG T%c c?

The numbers ¢ and -‘g are real, and, therefore, the imaginary parts of the numbers

7' — 2 and 7 + % are equal to the imaginary parts of the numbers 7’ and T, and,

therefore, the absolute values of 7/ and 7 are not less than @ Hence, |¢] < —\%

Since ¢ is a nonzero integer, we have ¢ = +1. Therefore, (17.1) can be expressed
in the form |7 Fa|- |7+ d|=1. If 7 € D and m € Z, then |t +m| > 1, where the
equality takes place in the following cases only:

1) |r|=1,m =0;

2) 7 = exp(mi/3), m = 0,—1;

3) T =exp(2mi/3), m= 0,1,

Therefore, if ¢ £ 0, then only points whose absolute value is equal to 1 can be
glued; moreover, to glue to the points other than exp(kmi/3) is only possible via
the map 7 +— —=. It is also possible to giue to the points exp(kni/3) via the maps
T —Z i 1.

Let us notice that we have proved one more refinement of property 2). Namely,
of T is an inner point of D and g1 € D, where g € G, then g is the identity trans-
formation. With the help of this property we can prove the following statement.

7.17.1. THEOREM. The group G = SLy(Z) /{XI} is generated by elements S
and T, 1.e., G' =G.

Proor. Let g be an arbitrary element of G. Consider an inner point 74 of D.

Since I
mT
m(gr) =
Im(gr) = o1 df

it fOllows that gr9 € H. Therefore, there exists an element ¢’ of G’ such that
g’ (gmo) € D. As a result we see that the inner point ¢ of D turns into a point
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of the domain D under the transformatlon ¢’y € G. Hence, ¢g'g is the identity
transformation, so that g = (¢) ' € &', a

If we wish the domain D to have no distinct points obtained from each other
under transformations from &, we can achieve this, for instance, by excluding the
ray PQ and the arc — QR from D (the points P,@Q and R themselves are not
excluded). The obtained set is called the fundamental domain of the group G. If
we do not distinguish the points obtained from each other under the transformations
S and T, then the domain D itself can be called the fundamental domain. The
fundamental domain can be endowed with the structure of a topological space, since
it is the quotient of H modulo the G-action.

The value of j at any point 7 € H coincides with the value of j at the corre-
sponding point 7/ € D. Moreover, as we will show in the next section the values of
J at distinct points of the fundamental domain of G are distinct. This is why D is
also called the fundamental domain of the function j.

§7.18. How to solve the equation j(7) = ¢

The function j(7) = ¢™%+ 744+ - - has no singularities in the upper half plane
H = {t | Im7 > 0}. Hence, the function j has no poles in the upper half plane H.
For Im 7 = oo the function j(7) is infinite.

We start solving the equation j(7) = ¢ by computing the values of j at the

“vertices” of the fundamental domain, i.e., at the points i, = % and 2. Recall
that j(r) = (f16 ﬁ) and f(i) = /2 (cf. §7.12). Hence, j(i) = 123 = 1728. To

calculate j(e) = j(¢*), we can make use of the fact that ¢ = 1 — 1. Indeed, this
relation immediately implies:

& =1(1-1) = #nE, AE©=1 (1—§)= “H(e)

Hence, v2 = f(e) f1(e) f2(e) = f3() and, therefore, f24(e) = (\/_2_)8 = 16. Hence,
jle) = 0.

7.18.1. THEOREM. The function j(r) takes every value c in the fundamental
domain ezxactly once.

b

PROOF. First suppose that ¢ is distinct from 0 and 1728. If the value ¢ is
taken on the boundary of the fundamental domain, we can modify the fundamental
domain as indicated in Figure 43 (on the next page). More exactly, if the value ¢
is attained at a boundary point, then we cut a neighborhood U of this point and
attach to D the image of U under one of the maps S or TF!. Such an operation
is impossible to perform for the “vertices” but we cannot encounter them since
c#0,1728. _

If the meromorphic function g(z) has no poles in G and no zeros on the bound-
ary 0G, then the number of zeros of g inside G is equal to

: g,

2mi ]ac g(z)

fadeed, e 9) = clz —a)" +ex(s ) + - Then
9'(2)/g9(z) =r(z—a)" 1+
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Fiqure 43

Therefore, the sum of residues at the singular points of ¢’ /¢ belonging to G is equal

to the number of zeros of g (multiplicities counted).

ion j(z)—c.

in plotted in Figure 44, and for g take the functi

For G take the doma

-

=a

Imz

-

FIGURE 44

FIGURE 45
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It is easy to verify that

J'(2)dz 72 j(2)de  fieE i
fac;j(z)—c —/pl i(z) —¢ —__/m_% dIn(j(z) —c).

Indeed, j(z + 1) = j(z) and, therefore, the integrals along the line segments P, Q
and SP, cancel. Moreover, j(—1/z) = j(2) and the integrals along the arcs —QR
and RS also cancel. (This statement remains true even if we have to modify the
boundary of the fundamental domain as well.)

Since j(7) = ¢ 2+ 744 + - = e~ 2"7 L 744 + ... for sufficiently large a and
z € [ia — ,4a + 1], we have

Therefore, |
1 'I,G;—?_]S‘
al_lﬂ‘rgo 53 " dln(j(z) —c) = 1.

If ¢ = 0 or 1728, we can proceed as follows. Consider the domain ¢ plotted in
Figure 45. (If the value ¢ is attained on the boundary, then we have to modify the
domain as before.)

The number of zeros of the function j (z) — ¢ belonging to G is equal to

1 / F&dz __r(i) _rle)

21 Jo §(2) —c - 2 3’

where 7(7) and 7(e) are the multiplicities of the zeros of the function j(z) —c at
the points 7 and ¢, respectively. To prove this statement, it suffices to observe that
for ¢ we take the integral over the half circle, whereas for the points € and 2 the
integral is taken along a third of this circle and the circle is circumvented clockwise
which leads to the minus sign.

If ¢ = 0 or 1728, then either 7(¢) # 0 or () # 0. In this case the number of
zeros of j(7) — ¢ belonging to G is strictly less than 1, i.e., jlr) £ cfor 7 € G.-
Observe also that if ¢ = 0, then r(¢) = 3, and if ¢ = 1728, then r(4) = 2. This
means that the function j has a zero of multiplicity 3 at ¢, whereas j — 1728 has a
zero of multiplicity 2 at 1. : ' U

§7.19. The functions invariant under the
changes of parameter 7 +— 7+ 1 and 7 — —;1;

Any function g(r) defined in the upper half plane H and invariant under the
changes of variables 7+ 7+1 and 7 —% can be represented in the form (7(1))
for some function G. Indeed, as was shown in the preceding section, 7 determines
a one-to-one map of D U oo onto C U co. Therefore, there exists an inverse map
577 CUoo s DUoo. Set G(z) = g(j*(2)). Then G(j(r)) = 9(G™H((r)) = g(7).

Now suppose that the function ¢ considered as a function of g = €™7 is mero-
morphic in the disk |g] < 1. Then G is a rational function. Indeed, since g is
meromorphic, the finite singular points of G can only be poles. The value 7 = 0o
corresponds to ¢ = 0; hence, by the assumption on g the point co cannot be an
essentially singular point for G. Therefore, in C U oo the function G does not, have
singular points other than the poles. Let us subtract from G the principal parts
of its power series expansions at the singular points. As a result we get a function
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without singular points in C U o0, i.e., a constant. Since all the principal parts of
the expansions of G at singular points consist of finitely many terms, we deduce
that G is a rational function.

§7.20. The functions invariant with respect to
the changes of parameter 7 +— 7+ 2 and 7 ""%

To solve a quintic equation we needed a description of the functions invariant
with respect to changes of parameter 7 +— 7+ 2, 7 — —% and T —:_—3:—}— So
far, we have only described the functions invariant with respect to the changes of
parameter 7 — 7+ 1 and 7 — —%. Now it is easy to get a description of the
functions we are interested in.

Recall that

o= CL = (FR) = (- 5)

The function f24(7) is invariant with respect to the changes of parameter 7 +— 742
and 7 —;;1;. In the class of functions stable under these changes it plays the same
role as the function 7(7) plays in the class of functions stable under the changes
of parameter 7 +— 74+ 1 and 7 — -%. Namely, any function g invariant under
the changes of parameter 7 — 74+ 2 and 7 — ——% is a rational function of f2
(provided the function g considered as a function of ¢ = ™" is meromorphic in the
disk |g|] < 1). This can be proved by the same method that we used in §7.19. We

have only to prove the following statement.

7.20.1. THEOREM. a) The fundamental domain of the group G1 generated by

the transformations T+ 7+ 2 and T — __% 18

={reH||r|>1, |Rer| <1}
b) In the domain Dy the function f** attains each nonzero value c exactly once.

PROOF. Let 7/ be the image of 7 € H under the action of G; with the maximal
value of Im7’ (the existence of such a point 7/ is proved in §7.17). Since the
transformation 7 +— 7/ £+ 2 does not change the imaginary part of 7', we can
assume that |Rer’| < 1. In this case 7/ € Dy, i.e., |7/| > 1. Indeed, since Im 7’/ is
maximal, it follows that

, -
Im7’ > Im 1 = Im7'/|7'|%
T

hence, |7/| > 1.

We proved that any point 7 € H can be mapped to a point 7/ € D; under
the action of some g € G;. To prove that distinct inner points of D; cannot be
transformed into each other under the action of elements from G; it suffices to
verify b). Let us do this.

It is convenient to complete the domain D; (Figure 46) with the points &1
(corresponding to the value ¢ = —1). For these points ¢ we get

H 1+q2k 1 =0
k=1
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FIGURE 46

and this zero is of infinite multiplicity, i.e., for the function j = (f¢ — 16/ f8)3 the
points 7 = +1 are essentially singularities. In the domain D; the function j has
no poles, therefore, the function f24 does not vanish anywhere in D;. Moreover,
for Im 7 = co the values of the functions j and f?* are equal to co. It remains to
consider the nonzero values of f24.

FicuRrEg 47

Let G be the domain plotted in Figure 47. Taking into account the gluings
shown in Figure 46 we get for ¢ #£ 0

ja— %

dln(f24(z)—c):] " din(f4(z) — o).

oG iat+2
Since f2(r) = g1+ =€ ™" 4 .-, it follows that
dln(fM(Z) —oy=d{-miz+ ) = —midz + - .

Hence,
.1

lim —}— [Za_g dIn(f?*(z) — c) = 1.
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This means that in D; the function f?* assumes each nonzero value exactly
once. 0

Now, suppose that the function g satisfying the rmeromorphicity condition is
invariant not only with respect to the changes of parameter 7+ 742 and 7 — ——}

but also with respect to the change 7+ I=5. Then g(7) = R(f**(7)), where R is
212

a rational function such that R(f**(Z51)) = R(f**(7)), i.e, R(%x) = R(f*).

Set f24(7) =z and 2'? = q, and let R(z) = 5 ;o cxz®. Then
R (E) = i cpatz k.
x
k=00
Hence, cya® = c_y, so that
=0 k
fla) = +(3) )
(z) =co +i;ck (JB + p

Considering the differences (:c'—f— %)k - (a:k + (%)k) it is easy to prove by induction

on k that z* + (%)A can be polynomially expressed in terms of x + 2. Therefore,
R(x) = G(x+ 2) for some function G. Since R is rational, G has no singular points
other than poles, i.e., G is a rational function. As a result, we see that the function

g(7) can be rationally expressed in terms of the function f24(7) + —f,ﬁ: (?;)-
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function, meromorphic, 29
function, Weierstrass, 31, 32
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