PROBLEMS AND THEOREMS
IN LINEAR ALGEBRA

V. PRASOLOV

ABSTRACT. This book contains the basics of linear algebra with an emphasis on non-
standard and neat proofs of known theorems. Many of the theorems of linear algebra
obtained mainly during the past 30 years are usually ignored in text-books but are
quite accessible for students majoring or minoring in mathematics. These theorems
are given with complete proofs. There are about 230 problems with solutions.
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PREFACE

There are very many books on linear algebra, among them many really wonderful
ones (see e.g. the list of recommended literature). One might think that one does
not need any more books on this subject. Choosing one’s words more carefully, it
is possible to deduce that these books contain all that one needs and in the best
possible form, and therefore any new book will, at best, only repeat the old ones.

This opinion is manifestly wrong, but nevertheless almost ubiquitous.

New results in linear algebra appear constantly and so do new, simpler and
neater proofs of the known theorems. Besides, more than a few interesting old
results are ignored, so far, by text-books.

In this book I tried to collect the most attractive problems and theorems of linear
algebra still accessible to first year students majoring or minoring in mathematics.

The computational algebra was left somewhat aside. The major part of the book
contains results known from journal publications only. I believe that they will be
of interest to many readers.

I assume that the reader is acquainted with main notions of linear algebra:
linear space, basis, linear map, the determinant of a matrix. Apart from that,
all the essential theorems of the standard course of linear algebra are given here
with complete proofs and some definitions from the above list of prerequisites is
recollected. I made the prime emphasis on nonstandard neat proofs of known
theorems.

In this book I only consider finite dimensional linear spaces.

The exposition is mostly performed over the fields of real or complex numbers.
The peculiarity of the fields of finite characteristics is mentioned when needed.

Cross-references inside the book are natural: 36.2 means subsection 2 of sec. 36;
Problem 36.2 is Problem 2 from sec. 36; Theorem 36.2.2 stands for Theorem 2
from 36.2.

ACKNOWLEDGMENTS. The book is based on a course I read at the Independent
University of Moscow, 1991/92. T am thankful to the participants for comments and
to D. V. Beklemishev, D. B. Fuchs, A. I. Kostrikin, V. S. Retakh, A. N. Rudakov
and A. P. Veselov for fruitful discussions of the manuscript.
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10 PREFACE

Main notations and conventions

ail PN A1n
A= ... ... ... denotes a matrix of size m x n; we say that a square

Adm1 .- Qmn
n X n matrix is of order n;

a;j, sometimes denoted by a; ; for clarity, is the element or the entry from the
intersection of the i-th row and the j-th column;

(ai;) is another notation for the matrix A;

Haij ||: still another notation for the matrix (a;;), where p < 1,7 < n;

det(A),|A| and det(a;;) all denote the determinant of the matrix A;

|a;; | is the determinant of the matrix | a;;|

n
p b
E;; — the (i,j)-th matriz unit — the matrix whose only nonzero element is
equal to 1 and occupies the (7, j)-th position;
AB — the product of a matrix A of size p x n by a matrix B of size n x ¢ —
n

is the matrix (c;;) of size p x ¢, where ¢;;, = > ai;bjk, is the scalar product of the

=1
i-th row of the matrix A by the k-th column]of the matrix B;

diag(A1, ..., A,) is the diagonal matriz of size n x n with elements a;; = A; and
zero offdiagonal elements;

I = diag(1,...,1) is the unit matriz; when its size, n X n, is needed explicitly we

denote the matrix by I,,;
the matrix al, where a is a number, is called a scalar matrix;

T T _ ! - .
A" is the transposed of A, A* = (aj;), where a;; = a;;;
A / /.

A = (a;;), where a}; = a;5;

A* = AT;
o= (k11 ;;n) is a permutation: o(i) = k;; the permutation (kll ,?n) is often

abbreviated to (k1 ...kp);
. 1 ifoiseven
sign o = (-1)7 = ;

—~1 ifoisodd ’
Span(eq,...,e,) is the linear space spanned by the vectors ey, ..., e,;
Given bases ej,...,e, and €1,...,&, in spaces V™ and W™, respectively, we
Z1
assign to a matrix A the operator A : V" — W™ which sends the vector
‘,I/.'Il
Y1 a1 . A1n X1
into the vector =
Ym Qm1 -+ Qmn T,
Since y; = 3 ai;x;, then
j=1

n

m n
A Jwie)) =Y aimses;
j i=1j=1

1

in particular, Ae; = " a;j€;;

in the whole book except for §37 the notation
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A>0,A>0,A<0or A <0 denote that a real symmetric or Hermitian matrix
A is positive definite, nonnegative definite, negative definite or nonpositive definite,
respectively; A > B means that A — B > 0; whereas in §37 they mean that a;; > 0
for alli,j, etc.

Card M is the cardinality of the set M, i.e, the number of elements of M;

Alw denotes the restriction of the operator A : V. — V onto the subspace
W cVv;

sup the least upper bound (supremum);

7Z,Q,R,C, H, O denote, as usual, the sets of all integer, rational, real, complex,
quaternion and octonion numbers, respectively;

N denotes the set of all positive integers (without 0);

1 ifi=y,
0ij = .
0 otherwise.
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DETERMINANTS

The notion of a determinant appeared at the end of 17th century in works of
Leibniz (1646-1716) and a Japanese mathematician, Seki Kova, also known as
Takakazu (1642-1708). Leibniz did not publish the results of his studies related
with determinants. The best known is his letter to I’Hospital (1693) in which
Leibniz writes down the determinant condition of compatibility for a system of three
linear equations in two unknowns. Leibniz particularly emphasized the usefulness
of two indices when expressing the coefficients of the equations. In modern terms
he actually wrote about the indices i, in the expression z; = > ; ijYj-

Seki arrived at the notion of a determinant while solving the problem of finding
common roots of algebraic equations.

In Europe, the search for common roots of algebraic equations soon also became
the main trend associated with determinants. Newton, Bezout, and Euler studied
this problem.

Seki did not have the general notion of the derivative at his disposal, but he
actually got an algebraic expression equivalent to the derivative of a polynomial.
He searched for multiple roots of a polynomial f(z) as common roots of f(z) and
f'(x). To find common roots of polynomials f(x) and g(z) (for f and g of small
degrees) Seki got determinant expressions. The main treatise by Seki was published
in 1674; there applications of the method are published, rather than the method
itself. He kept the main method in secret confiding only in his closest pupils.

In Europe, the first publication related to determinants, due to Cramer, ap-
peared in 1750. In this work Cramer gave a determinant expression for a solution
of the problem of finding the conic through 5 fixed points (this problem reduces to
a system of linear equations).

The general theorems on determinants were proved only ad hoc when needed to
solve some other problem. Therefore, the theory of determinants had been develop-
ing slowly, left behind out of proportion as compared with the general development
of mathematics. A systematic presentation of the theory of determinants is mainly
associated with the names of Cauchy (1789-1857) and Jacobi (1804-1851).

1. Basic properties of determinants

The determinant of a square matrix A = ||ain7ll is the alternated sum

Z(_l)oala(l)aﬂo@) -« Qno(n),

g

where the summation is over all permutations o € S,,. The determinant of the
matrix A = Hain? is denoted by det A or |a;;|7. If det A # 0, then A is called
invertible or nonsingular.

The following properties are often used to compute determinants. The reader
can easily verify (or recall) them.

1. Under the permutation of two rows of a matrix A its determinant changes
the sign. In particular, if two rows of the matrix are identical, det A = 0.

Typeset by ApS-TEX



1. BASIC PROPERTIES OF DETERMINANTS 13

‘61 g) =det A - det B.

3. ai;|T = Z?Zl(—l)“‘jaijMij, where M;; is the determinant of the matrix
obtained from A by crossing out the ith row and the jth column of A (the row
(echelon) expansion of the determinant or, more precisely, the expansion with respect
to the ith row).

2. If A and B are square matrices, det (

(To prove this formula one has to group the factors of a;;, where j =1,...,n,
for a fixed 1i.)
4.
Aoy +ppy ap ... ai, ap ajp ... Gin B1 a2 ... aig
: : CEA
Ay + 1Bn  Gnz .. Gun Ay Gpa ... Opn Bn Gna ... Gnp

5. det(AB) = det Adet B.
6. det(AT) = det A.

1.1. Before we start computing determinants, let us prove Cramer’s rule. It
appeared already in the first published paper on determinants.

THEOREM (Cramer’s rule). Consider a system of linear equations

wlaﬂ—}—-n—f—xnam:bi (i:L...,n),
i.e.,
$1A1++$nAn :B,
where A; is the jth column of the matriz A = Hain?. Then

x;det(Ay, ..., Ay) =det (Ay,...,B,..., An),

where the column B is inserted instead of A;.
PrOOF. Since for j # i the determinant of the matrix det(A4i,...,4;,..., An),
a matrix with two identical columns, vanishes,
det(Al,...,B7...,An) :det(Al,...,Zl'jAj,...7An)
= ajdet(Ar,..., Aj, ..., Ay) = zidet(Ay, ... Ay). O

If det(Ay,...,A,) # 0 the formula obtained can be used to find solutions of a
system of linear equations.

1.2. One of the most often encountered determinants is the Vandermonde de-
terminant, i.e., the determinant of the Vandermonde matriz

1 oz 22 zht
V(xlv 75571) = = H(xl x])
1z, 22 pn—t i>]

To compute this determinant, let us subtract the (k — 1)-st column multiplied
by x; from the kth one for £ = n,n — 1,...,2. The first row takes the form
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(1,0,0,...,0), i.e., the computation of the Vandermonde determinant of order n
reduces to a determinant of order n—1. Factorizing each row of the new determinant
by bringing out x; — 1 we get

1 xy 23 z) 2
V(l‘l,...,xn)ZH(l‘i—l‘l) :
i>1 1z, 22 an—2

For n = 2 the identity V(x1,x3) = 2 — x1 is obvious, hence,

V(zi,...,z,) = H(ml —zj).
i>7
Many of the applications of the Vandermonde determinant are occasioned by
the fact that V' (z1,...,2,) = 0 if and only if there are two equal numbers among
L1yeroy Ty

1.3. The Cauchy determinant |a;;|7, where a;; = (z; + y;)~", is slightly more
difficult to compute than the Vandermonde determinant.

Let us prove by induction that
T (s — 23) (i — )
1>7

[1(zi +y;)

,J

|aij|f =

For a base of induction take |a;;|i = (z1 +y1) "
The step of induction will be performed in two stages.
First, let us subtract the last column from each of the preceding ones. We get

ar; = (xi+y;) " = (@it yn) T = (g0 — i) (@i + yn) (@i +y;) 7 for j#n.

Let us take out of each row the factors (z; + v,)~ ' and take out of each column,
except the last one, the factors y, —y;. As a result we get the determinant |b;;|7,
where b;; = a;; for j #n and by, = 1.

To compute this determinant, let us subtract the last row from each of the
preceding ones. Taking out of each row, except the last one, the factors z,, — z;
and out of each column, except the last one, the factors (x, + y;)~! we make it
possible to pass to a Cauchy determinant of lesser size.

1.4. A matrix A of the form

0 1 0 0 0
0 0 1 0 0
0 0 O 1 0
0 0 O 0 1
ap a1 a2 cee Qp—2 Qap-—1

is called Frobenius’ matriz or the companion matriz of the polynomial
p(>\) = )\n - a/n71>\n71 - an72>\n72 —_ e — G’O'

With the help of the expansion with respect to the first row it is easy to verify by
induction that

det(AM — A) = A" —a, A" F —a, 2A"% — - —ag = p(N).
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1.5. Let b;,i € Z, such that by = b, if Kk =1 (mod n) be given; the matrix
||aij ||711, where a;; = b;—;, is called a circulant matriz.
Let €1,...,e, be distinct nth roots of unity; let

f(z)=by+brz+ -+ b,_12" L
Let us prove that the determinant of the circulant matrix |a;;|} is equal to

fle1)f(e2) ... flen).

It is easy to verify that for n = 3 we have

bo b2 by f(1) fa f(1
1 e &2 b1 by b fler) eif(er) €3f(er)
1 & 6% by b1 by f(52) 52f(52> E%f(52)

—
—_
—_

1 1 1
=f()f(e)f(e2) | 1 &1 €]
1 ey &2

Therefore,

V(1,e1,e2)ai;|} = f(1)f(e1)f(e2)V (1,1, €2).

Taking into account that the Vandermonde determinant V(1,e1,e2) does not
vanish, we have:

a7 = f(1)f (1) f(e2).

The proof of the general case is similar.

1.6. A tridiagonal matrix is a square matrix J = ||al-jH711, where a;; = 0 for
li — 7] > 1.
Let a; = a4 fori=1,...,n,let b =a;;41 and ¢; = a;1,; fori =1,...,n— 1.

Then the tridiagonal matrix takes the form

ay b1 0 . 0 0 0
c1 as by ... 0 0 0
0 ¢ az - 0 0 0
0 0 0 . Ap—2 bn_g 0
0 0 0 ce. Cp—2 Qp_—1 bn—l
o o0 0 ... 0 Cn-1 Qp

To compute the determinant of this matrix we can make use of the following
recurrent relation. Let Ag = 1 and Ay = |a;;|} for k > 1.

Expanding Haij Hlf with respect to the kth row it is easy to verify that
Ak = akAk_l — bk—lck—lAk—Z for k Z 2.

The recurrence relation obtained indicates, in particular, that A,, (the determinant
of J) depends not on the numbers b;, ¢; themselves but on their products of the
form b;c;.
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The quantity

ag 1 0 0 0 0

-1 ax 1 0 0 0

0 -1 as 0 0 0
(a1 .an) = '

0 0 O O —2 1 0

0 0 0 = -1 an, 1

o o0 0 ... 0 -1 a,

is associated with continued fractions, namely:

1 (ara2...a,)

a1 + = .
1
as + (a2a3 . .an)

az+.
. 1
+
An—1 +
a7l

Let us prove this equality by induction. Clearly,

1
a+— = (a1a2).
as (az)
It remains to demonstrate that
1 (a1a2 e an)

ai + =
' (agas .. an) (azaz...ap)’

(asaq ...an)

ie, ai(as...ay)+ (az...an) = (a1as...ay,). But this identity is a corollary of the
above recurrence relation, since (a1as...an) = (ay, ... a2a1).

1.7. Under multiplication of a row of a square matrix by a number A the de-
terminant of the matrix is multiplied by A. The determinant of the matrix does
not vary when we replace one of the rows of the given matrix with its sum with
any other row of the matrix. These statements allow a natural generalization to
simultaneous transformations of several rows.

Apr An
Az1 Az
order m and n, respectively.

Let D be a square matrix of order m and B a matrix of size n x m.

DA11 DA12 All A12
Aoy Ao Ag1 + BAyr  App + BAjs.

DAy, DA12>: D 0 (An Aqo and
Aoy Ao 0 I Ay Ag

Ay Aig _ (1 0 A A 0
Ag1 + BA1w Asx + BAj B I A1 Az )

Consider the matrix , where A1 and Aoy are square matrices of

THEOREM. = |A]

= |D| - |A| and ’

PROOF.
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Problems

1.1. Let A = ||aij||il be skew-symmetric, i.e., a;; = —a;;, and let n be odd.
Prove that |A| = 0.

1.2. Prove that the determinant of a skew-symmetric matrix of even order does
not change if to all its elements we add the same number.

1.3. Compute the determinant of a skew-symmetric matrix A,, of order 2n with
each element above the main diagonal being equal to 1.

1.4. Prove that for n > 3 the terms in the expansion of a determinant of order
n cannot be all positive.

1.5. Let a;; = a!"=7. Compute |aj;|}.

1 -1 0 0
1.6. Let Ag = xQ hoo =10 and define A, accordingly. Prove that
z* hx h -1 "
2 hz® hx h
A, = (z+h)™

1.7. Compute |c;;|7, where ¢;; = a;b; for ¢ # j and ¢;; = ;.

1.8. Let a; 41 = ¢; for i =1,...,n, the other matrix elements being zero. Prove
that the determinant of the matrix I + A+ A%+ ---+ A"~! is equal to (1 —¢)" 7!,
where c=c¢;...c,.

1.9. Compute |a;;|7, where a;; = (1 — z;y;) .

1.10. Let a;; = ("}"). Prove that |a;[5" = 1.

1.11. Prove that for any real numbers a, b, ¢, d, e and f

(a+b)de—(d+e)ab ab—de a+b—d—e
(b+cef—(e+ flbc bc—ef b+c—e—f|=0.
(c+d)fa—(f+a)ed cd—fa c+d—f—a

Vandermonde’s determinant.
1.12. Compute

1 = ... m?ﬂ (29 + a3+ + )" L

1 =z, ... xﬁ_Q ($1+£2+"'—|—Jjn_1)n—1

1.13. Compute

1 z ... x’f” ToT3...Tn
1 n—2
Tn Z‘n 1L ... Tpn—-1

1.14. Compute |a;1|, where az, = A\T7%(1 + \2)F.
1.15. Let V = ||aij||g, where a;; = wgfl, be a Vandermonde matrix; let Vj be
the matrix obtained from V by deleting its (k + 1)st column (which consists of the

kth powers) and adding instead the nth column consisting of the nth powers. Prove
that

det Vi, = op—p(x1,...,2,)det V.

1.16. Let a;; = (Zn) Prove that |a;;[7 = n""FD/2 for r < n.



18 DETERMINANTS

1.17. Given ki, ..., k, € Z, compute |a;;|7, where
1
aij:O for k;+j —i <O.

fork;+j—i>0,

1.18. Let s, = plx’f + .- —l—pnxﬁ, and a; ; = s;4;. Prove that

\aij 67'71 =P1..--Pn H((El — {Ej)z.

1>7
1.19. Let s, = a¥ + - + 2%, Compute
S0 S1 ‘e Sn—1 1
S1 S92 . Sn Yy
n
Spn Sp+1 .- S2n—1 Y

1.20. Let a;; = (z; + y;)™. Prove that

el = (1) -+ (%) - TLes = o)~ .

i>k

1.21. Find all solutions of the system

in C.
1.22. Let ok (xg, . .., x,) be the kth elementary symmetric function. Set: o¢ = 1,
O'k(fi) = Uk(l‘o, ey L1y L Ly e e - ,Jin). Prove that if Qi = O'i(./fj) then \aij|6L =

Hi<j(xi — IL']‘).
Relations among determinants.
1.23. Let bij = (71)i+jaij. Prove that |aij|’f = |sz|7f
1.24. Prove that

aic1 azdy aica  asds
aszCq CL4d1 aszCo a4d2
bicz bads bicy bady
b363 b4d3 bgC4 b4d4

ap a2
as  ag4

1 C2
C3 C4

|di de
ds dy

by by

1.25. Prove that

aj 0 0 by 0 0
0 a9 0 0 b2 0
0 0 a3 0 0 b3

bir b2 b1z ann a2 ais

bor baa basz a2 azy ass
b31 b3z b3z azr azzx ass

arair — bibii  agaiz — babia  azaiz — b3bis
= |a1ag1 — bibar agaszy — babay  azagz — bzbasz
ayazy — bibgr  azazz — babza  azazz — bzbsz
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1.26. Let s, = Y i, ag;. Prove that
S1 —ai S1 — a1np ail A1n

Sp—Qpl .. Sp— Gpn ap1 ... Qpn

1.27. Prove that

() G o G| [ Gn) G ()

(7:;) (7n;:l—1) to (m:—k) (nyzlk) (7;7;:1) to (T::kk)
1.28. Let A, (k) = |aijli, where a;; = (k;;’) Prove that

1.29. Let D,, = |a;j|g, where a;; = (;fll) Prove that D,, = 2n(n+1)/2,

1.30. Given numbers aq, ay, ..., ao,, let by = Zfzo(—l)i(lf)ai (k=0,...,2n);
let Ajj = Qj4j, and bij = bi+j. Prove that |aij|g = |b”|g

1.31. Let A = (AH A12> and B = Bu B , where A7 and Biq, and

A21 A22 Bs1  Ba
also Ass and Bas, are square matrices of the same size such that rank A;; = rank A
and rank By; = rank B. Prove that

= |A+ B[ |Au] - [Baal .

Az1 B

A B
By1 B

. ’Au Aio

1.32. Let A and B be square matrices of order n. Prove that |A] - |B| =
Sor_i |Ak| - |Bi|, where the matrices A and By are obtained from A and B, re-
spectively, by interchanging the respective first and kth columns, i.e., the first
column of A is replaced with the kth column of B and the kth column of B is
replaced with the first column of A.

2. Minors and cofactors

2.1. There are many instances when it is convenient to consider the determinant

of the matrix whose elements stand at the intersection of certain p rows and p

columns of a given matrix A. Such a determinant is called a pth order minor of A.
For convenience we introduce the following notation:

. X Qi ky Qigky -+ Qigk,
A ( 1 ... Zp> _
ki ... ky
Qipky  Qipks -+ Qiyk,
If iy = k1, ..., i, = kp, the minor is called a principal one.

2.2. A nonzero minor of the maximal order is called a basic minor and its order
is called the rank of the matrix.
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THEOREM. If A(}Z?) is a basic minor of a matrix A, then the rows of A
ok

are linear combinations of rows numbered i1,...,i, and these rows are linearly
independent.
Proor. The linear independence of the rows numbered i1, . .., i, is obvious since

the determinant of a matrix with linearly dependent rows vanishes.
The cases when the size of A is m X p or p X m are also clear.
It suffices to carry out the proof for the minor A(i :::g ) The determinant

aiy ce. Q1p Qi
ap1 cee Qpp  Apj
;1 . Qip Qi

vanishes for j < p as well as for j > p. Its expansion with respect to the last column
is a relation of the form

a1;5C1 =+ a2;C2 R QpjCp + a;;Cc = 0,

where the numbers ¢, ..., ¢,, ¢ do not depend on j (but depend on %) and ¢ =
A(} :::5 ) # 0. Hence, the ith row is equal to the linear combination of the first p
rows with the coefficients ;Cl, ey ;cp’ respectively. [

c c

2.2.1. COROLLARY. If A(ﬁ 2”) s a basic minor then all rows of A belong to
Vp

the linear space spanned by the rows numbered i1, ... ,%p; therefore, the rank of A is
equal to the maximal number of its linearly independent rows.

2.2.2. COROLLARY. The rank of a matriz is also equal to the mazimal number
of its linearly independent columns.

2.3. THEOREM (The Binet-Cauchy formula). Let A and B be matrices of size
n X m and m X n, respectively, and n < m. Then

det AB = Z Ay

1<ki<ko<--<kn<m

ki...k
1...]{3”B 1 717

where Ay, .., s the minor obtained from the columns of A whose numbers are
ki,...,kn and B¥Fr s the minor obtained from the rows of B whose numbers
are ki, ..., ky.

ProoOF. Let C = AB7 Cij = ZL:I a;kbri. Then

det C = Z(—l)a Zalklbklo(l) e Zbkna(n)
k1 kn

= Z Alky - - - ankn Z(fl)gbkla(l) N bkno(n)
ki,...;kn=1 o

m

ki...kn
= E alkl...anknB LeeeBin
k1,..kn=1
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The minor B¥~*» is nonzero only if the numbers k1, ..., k, are distinct; there-
fore, the summation can be performed over distinct numbers ki, ..., k,. Since
Bk m(kn) = (—1)TBk1“"‘”'" for any permutation 7 of the numbers kq,...,k,,
then

m
Eiokn _ ki..kn
Z Alkq - - - anknB ! = Z (—1)7-&17(1) e anT(n)B !
k1,..,kn=1 ki1<ko<---<knp
- Y A BbR O

1<ki1<k2<---<knp<m

REMARK. Another proof is given in the solution of Problem 28.7

2.4. Recall the formula for expansion of the determinant of a matrix with respect
to its ¢th row:

n
(1) |ag;|T = Z(—l)HjaijMij,
j=1
where M;; is the determinant of the matrix obtained from the matrix A = ||a1-j H?

by deleting its ith row and jth column. The number A;; = (—1)"7M;; is called
the cofactor of the element a;; in A.

It is possible to expand a determinant not only with respect to one row, but also
with respect to several rows simultaneously.

Fix rows numbered 41,...,%,, where ¢y < i3 < --- < 4p. In the expansion of
the determinant of A there occur products of terms of the expansion of the minor
A(ﬁ zp) by terms of the expansion of the minor A(;—.?+1 “'iﬁ), where j; < -+ <

—Jp Ip+1 ---Jn
Jpi pr1 < o0 <py Jpy1 < -+ - < Jjn and there are no other terms in the expansion
of the determinant of A.

To compute the signs of these products let us shuffle the rows and the columns

so as to place the minor A(;i :j:;f) ) in the upper left corner. To this end we have to

perform
=D+ 4=+ -+ +Up—p)=it+j (mod?2)

permutations, where ¢ =41 + -+ - 4+4p, J = J1 + - + Jp.
The number (—1)" A(%r+1 ) is called the cofactor of the minor A(%! 7).
Jp+1 ---Jn J1 - Jp

We have proved the following statement:

2.4.1. THEOREM (Laplace).  Fiz p rows of the matriz A. Then the sum of
products of the minors of order p that belong to these rows by their cofactors is
equal to the determinant of A.

The matrix adj A = (A;;)7 is called the (classical) adjoint' of A. Let us prove
that A - (adjA) = |A|-I. To this end let us verify that 337 a;jAp; = Oyl Al.

For k = i this formula coincides with (1). If k # ¢, replace the kth row of A with
the 7th one. The determinant of the resulting matrix vanishes; its expansion with
respect to the kth row results in the desired identity:

n n
2 : / 2 :

0= aijkj = a,»jAkj.
Jj=1 Jj=1

IWe will briefly write adjoint instead of the classical adjoint.
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adj A
1Al
2.4.2. THEOREM. The operation adj has the following properties:
a) adj AB = adj B - adj A;
b) adj XAX ! = X (adj A)X~!;
c¢) if AB = BA then (adjA)B = B(adj A).
PRrOOF. If A and B are invertible matrices, then (AB)~! = B~1A~!. Since for

an invertible matrix A we have adj A = A~!|A|, headings a) and b) are obvious.

Let us consider heading c).
If AB = BA and A is invertible, then

AT'B=A"Y(BA)A™' = A7 (AB)A™ = BA™!.

If A is invertible then A~1 =

Therefore, for invertible matrices the theorem is obvious.

In each of the equations a) — c¢) both sides continuously depend on the elements of
A and B. Any matrix A can be approximated by matrices of the form A, = A+e&l
which are invertible for sufficiently small nonzero €. (Actually, if a,...,a, is the
whole set of eigenvalues of A, then A, is invertible for all ¢ # —a;.) Besides, if
AB = BA, then A.B=BA.. O

2.5. The relations between the minors of a matrix A and the complementary to
them minors of the matrix (adj A)T are rather simple.

2.5.1. THEOREM. Let A= ||aij||?, (adj A)T = |A;|2, 1 <p<n. Then

A11 ‘e Alp Gp4+1,p+1 e Ap+1,n
= lap! -

pl e App An p+1 ce Apn

PROOF. For p = 1 the statement coincides with the definition of the cofactor
Aq1. Let p > 1. Then the identity

Ay Alp A17p+1 oo A
L. a1 e an1
Apl . App Ap,erl e Apn . s .
O ]— Aip ... Qnp
4] 0 0
0 Al
= a1,p+1 [N cee Opp4l
QA1n R e Ann
implies that

A11 N Alp Ap+1,p+1 cee Optin
JAl= AP :

Apl N App An,p+1 . Apn
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If |A] # 0, then dividing by |A| we get the desired conclusion. For |A| = 0 the
statement follows from the continuity of the both parts of the desired identity with
respect to a;;. O

COROLLARY. If A is not invertible then rank(adj A) < 1.

Proor. For p =2 we get

ass a3zn
=4 ... i |=0

an3 cee Qpnp

A A
Az Ago

Besides, the transposition of any two rows of the matrix A induces the same trans-
position of the columns of the adjoint matrix and all elements of the adjoint matrix
change sign (look what happens with the determinant of A and with the matrix
A~ for an invertible A under such a transposition). [

Application of transpositions of rows and columns makes it possible for us to
formulate Theorem 2.5.1 in the following more general form.

2.5.2. THEOREM (Jacobi). Let A = ||aij||;l, (adj A)T = || Ay 711, 1<p<n,
o= (" ) arbitrary permutation. Then
Ju. .- Jn
Ailjl Ailjp Qipi1gpr1 o Qippa,jn
: A e A
Aipjl Aipjp ainvjp-%-l e aimjn
PRrROOF. Let us consider matrix B = kulH?’ where by, = a4, 5,. It is clear that

|B| = (—1)?]A|. Since a transposition of any two rows (resp. columns) of A induces
the same transposition of the columns (resp. rows) of the adjoint matrix and all
elements of the adjoint matrix change their sings, By, = (—1)74;,,-

Applying Theorem 2.5.1 to matrix B we get

11Jp Qipy1,pr1 o Fipp1,jn

(=174, ... (-1)74A

(~1)7 4, (194

ipjp ainvjp+1 te a'in7jn
By dividing the both parts of this equality by ((—1)?)? we obtain the desired. O

2.6. In addition to the adjoint matrix of A it is sometimes convenient to consider
the compound matriz HMUH;L consisting of the (n — 1)st order minors of A. The
determinant of the adjoint matrix is equal to the determinant of the compound one
(see, e.g., Problem 1.23).

For a matrix A of size m x n we can also consider a matrix whose elements are

rth order minors A (Z.l ), where r < min(m,n). The resulting matrix

Juooeee
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C-(A) is called the rth compound matriz of A. For example, if m = n = 3 and

r =2, then
A1) () ()

=1 a1) a(i3) 4(3)

A1) (%) (%)

Making use of Binet—Cauchy’s formula we can show that C,.(AB) = C,.(A)C,(B).
For a square matrix A of order n we have the Sylvester identity

-1
det C.(A) = (det A)P, where p = <n 1).
r—
The simplest proof of this statement makes use of the notion of exterior power
(see Theorem 28.5.3).

27. Let 1<m<r<n, A= ||aij||il. Set A, = |ai|T, Am = |ai;|7*. Consider
the matrix Sy, ,, whose elements are the rth order minors of A containing the left
upper corner principal minor A,,. The determinant of Sy, ,, is a minor of order
(=) of Cr(A). The determinant of S}, , can be expressed in terms of A,, and

n-

THEOREM (Generalized Sylvester’s identity, [Mohr,1953]).
(1) |Sn| = AL AL where p = (n m ),q: (n m )
) r—m r—m-—1

PROOF. Let us prove identity (1) by induction on n. For n = 2 it is obvious.

The matrix S ,, coincides with C.(A) and since |C,.(A)| = Af, where ¢ = (7;:11)
(see Theorem 28.5.3), then (1) holds for m = 0 (we assume that Ay = 1). Both
sides of (1) are continuous with respect to a;; and, therefore, it suffices to prove
the inductive step when aq; # 0.

All minors considered contain the first row and, therefore, from the rows whose
numbers are 2, ...,n we can subtract the first row multiplied by an arbitrary factor;

this operation does not affect det(anyn). With the help of this operation all elements
of the first column of A except a1 can be made equal to zero. Let A be the matrix
obtained from the new one by strikinging out the first column and the first row, and
let g:n_,ll’n% be the matrix composed of the minors of order r — 1 of A containing
its left upper corner principal minor of order m — 1.

Obviously, Sy, ,, = allg:n—_ll’n_l and we can apply to E;__llyn_l the inductive
hypothesis (the case m — 1 = 0 was considered separately). Besides, if 4,, 1 and
A, _1 are the left upper corner principal minors of orders m — 1 and n — 1 of A,
respectively, then A,, = a11A,,_; and A,, = a;1A,_,. Therefore,

r _ t AP1 D t—p1—q1 Ap1 A1
|Sm,n| - allAm—lAn—l = a1 AmAn ’

where t = ("_m), P = ("_m_l) =pand ¢ = ("_m_l) = ¢. Taking into account

r—m r—m r—m—1

that t = p 4 q, we get the desired conclusion. [J

REMARK. Sometimes the term “Sylvester’s identity” is applied to identity (1)

not only for m = 0 but also for r = m + 1, ie., |SJH! = AR A,
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2.8 THEOREM (Chebotarev). Let p be a prime and € = exp(27mi/p). Then all
minors of the Vandermonde matriz Haing_l, where a;; = Y, are nonzero.

Proor (Following [Reshetnyak, 1955]). Suppose that

ghti 0 gkl
ghabi o gkl
=0.

il kil
Then there exist complex numbers cy, ..., c; not all equal to 0 such that the linear
combination of the corresponding columns with coefficients ¢, ..., c; vanishes, i.e.,
the numbers £*1, ... % are roots of the polynomial ¢zt + -+ c;zli. Let
(1) (x—ef)y (@ —eh)=af —bad ™ . LDy
Then
(2) izt 4+ Fejal = (bor? — byt 4 £ b)) (aset 4+ -+ ag),

where by = 1 and as; # 0. For convenience let us assume that by = 0 for t > j
and t < 0. The coefficient of 277*~¢ in the right-hand side of (2) is equal to
+(asby — as—1b—1 + -+ £ apbi—s). The degree of the polynomial (2) is equal to
5+ j and it is only the coeflicients of the monomials of degrees [,...,[; that may
be nonzero and, therefore, there are s + 1 zero coefficients:

asbt - as_lbt_l + - £ aobt_s =0 fort= t07t17 PN ,ts

The numbers ag, ..., as_1,as are not all zero and therefore, |cy|§ = 0 for ¢i; = by,
where t =t — [.

Formula (1) shows that b; can be represented in the form f;(¢), where f; is a
polynomial with integer coefficients and this polynomial is the sum of (i) powers
of €; hence, f;(1) = (Jt) Since cp = by = fi(e), then |ex|§ = g(e) and g(1) = |, |8,
where ¢}, = (tkj_l). The polynomial ¢(z) = zP~'+- - -4+z+1 is irreducible over Z (see
Appendix 2) and ¢(e) = 0. Therefore, g(x) = q(x)¢(x), where ¢ is a polynomial
with integer coefficients (see Appendix 1). Therefore, g(1) = ¢(1)p(1) = pp(1), i.e.,
g(1) is divisible by p.

To get a contradiction it suffices to show that the number g(1) = |c},;|§, where
Ch = (tkj_l), 0<tpr <j+sand 0<j+s<p-—1,isnot divisible by p. It is easy
to verify that A = |¢,|§ = |aki|§, where ax = (j;;l) (see Problem 1.27). It is also
clear that

(7)) O 5) () o)

Hence,
‘Psgtog <P571Et0§ o1
Py (i4s)|est) esmat) o 1) i )
A)]:[O( 2 > :t)\l:[)(( t )A)‘>J;[V(t# tu)a
‘ps(ts) ‘Ps—l(ts) o1

where Ay, A1, ..., As are the coefficients of the highest powers of ¢ in the polynomi-
als o (t), p1(t), ..., ps(t), respectively, where ¢o(t) = 1; the degree of p;(t) is equal
to i. Clearly, the product obtained has no irreducible fractions with numerators
divisible by p, because 7 +s <p. O
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Problems

2.1. Let A, be a matrix of size n x n. Prove that [A+ | = A"+ > 7 SpA"~k,
where Sy is the sum of all (Z) principal kth order minors of A.
2.2. Prove that

a1 . a1n I1

= inyinj,
QAn1 e Qpp Tp i.j
Yoo Yo 0

where A;; is the cofactor of a;; in ||as; ||;L
2.3. Prove that the sum of principal k-minors of AT A is equal to the sum of

squares of all k-minors of A.
2.4. Prove that

u1a11 ce.e UpQin a1 . QA1n
any e a2q, " " a1 ce aon ( " " )‘A|
ce . . = (uq N Up, .
anl R Ann U1an1 <o UpQnn

Inverse and adjoint matrices
2.5. Let A and B be square matrices of order n. Compute

-1

I A C

0 I B

0 0 I

2.6. Prove that the matrix inverse to an invertible upper triangular matrix is
also an upper triangular one.

2.7. Give an example of a matrix of order n whose adjoint has only one nonzero
element and this element is situated in the ith row and jth column for given ¢ and
j.

2.8. Let x and y be columns of length n. Prove that

adj(I —zy”) = 2y + (1 —yT2)1.

2.9. Let A be a skew-symmetric matrix of order n. Prove that adj A is a sym-
metric matrix for odd n and a skew-symmetric one for even n.

2.10. Let A,, be a skew-symmetric matrix of order n with elements +1 above
the main diagonal. Calculate adj A4,,.

2.11. The matrix adj(A — AI) can be expressed in the form ZZ;S Mk Ay, where
n is the order of A. Prove that:

a) for any k (1 <k <n—1) the matrix Ay A — Aj_; is a scalar matrix;

b) the matrix A,_s can be expressed as a polynomial of degree s — 1 in A.

2.12. Find all matrices A with nonnegative elements such that all elements of
A~1 are also nonnegative.

2.13. Let ¢ = exp(2mi/n); A = ||as|
AL

2.14. Calculate the matrix inverse to the Vandermonde matrix V.

1» where a;; = €". Calculate the matrix
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3. The Schur complement

A B
C D
order to facilitate the computation of det P we can factorize the matrix P as follows:

(1) A B (A O I Y\ (A AY

C D) \C I 0 X)) \C CY+X/"
The equations B = AY and D = CY + X are solvable when the matrix A is
invertible. In this case Y = A~™'B and X = D — CA~'B. The matrix D —CA~'B
is called the Schur complement of A in P | and is denoted by (P|A). It is clear

that det P = det A det(P|A).
It is easy to verify that

A AY (A 0 I'Y
C CYy+X) \C X 0 I)°
Therefore, instead of the factorization (1) we can write
A 0 I A7'B
@ 2= win) (@ ")

~(ea D)0 @) (6 757)

If the matrix D is invertible we have an analogous factorization

p_ I BD! A—BD7'C 0 1 0
—\0 I 0 D D-'C 1)
We have proved the following assertion.

3.1.1. THEOREM. a) If |A| # 0 then |P|=|A|-|D — CA™'B|;
b) If D| #0 then |P| = |A — BD='C|-|D|.

3.1. Let P = ( ) be a block matrix with square matrices A and D. In

Another application of the factorization (2) is a computation of P~!. Clearly,

!

This fact together with (2) gives us formula

i <A1 L ATIBXTICAY —A-lBX!

—X71CA71 Xil > 5 Where X = (P|A).

3.1.2. THEOREM. If A and D are square matrices of order n, |A| # 0, and
AC = CA, then |P| = |AD — CB|.

Proor. By Theorem 3.1.1

|P|=|A|-|D—-CA™'B|=|AD - ACA™'B| = |AD - CB|. O
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Is the above condition |A| # 0 necessary? The answer is “no”, but in certain
similar situations the answer is “yes”. If, for instance, CDT = —DCT, then

|P|=|A-BD™'C|-|DT| = |ADT + BCT|.

This equality holds for any invertible matrix D. But if
10 0 0 0 1 0 0
=(0) 2= (V) o= o) mar= (1 5).

CDT = —DCT =0 and |[ADT + BCT| = -1#1=P.

then

Let us return to Theorem 3.1.2. The equality |P| = |[AD — C'B| is a polynomial
identity for the elements of the matrix P. Therefore, if there exist invertible ma-
trices A. such that limo A. = A and A.C = CA,, then this equality holds for the

E—

matrix A as well. Given any matrix A, consider A, = A+ ¢l. It is easy to see (cf.
2.4.2) that the matrices A, are invertible for every sufficiently small nonzero ¢, and
if AC = CA then A.C = C'A.. Hence, Theorem 3.1.2 is true even if |A| = 0.

3.1.3. THEOREM. Suppose u is a row, v is a column, and a is a number. Then

A v

v a =al|A| — u(adj A)v.

Proor. By Theorem 3.1.1

12‘ Z = |Al(a — uA" ) = a|A| — u(adj A)v

if the matrix A is invertible. Both sides of this equality are polynomial functions
of the elements of A. Hence, the theorem is true, by continuity, for noninvertible
Aaswell. O

All A12 A13 A A
3.2. Let A = A21 AQQ A23 , B = ‘A;i A;z and C = A11 be square
Az1 Azz Ass

matrices, and let B and C be invertible. The matrix (B|C) = Az — A21A1_11A12
may be considered as a submatrix of the matrix

A22 A23 A21 1
A|lC) = - AT (Arg Aqs).
( ‘ ) <A32 A33) (A31> 11( 12 13)
THEOREM (Emily Haynsworth). (A|B) = ((4|C)|(B|C)).

ProOF (Following [Ostrowski, 1973]). Consider two factorizations of A:

A11 0 0 I k* K
(1) A=A I 0 ( 0 ) ,
As; 0 I 0 (41€)
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A11 A12 0 I 0 *
(2) A= Ay A 0 0 I *
A31 A32 I 0 0 (A|B)

For the Schur complement of Ay in the left factor of (2) we can write a similar
factorization

A11 A12 0 A11 0 0 I X1 X2
(3) Ay Asg 0= Ay I 0O 0 X3 X4
A31 A32 I A31 0 I 0 X5 X6

Since Aj; is invertible, we derive from (1), (2) and (3) after simplification (division
by the same factors):

<I * % ) I X7 Xo I 0 *
0 = 0 X3 X4 0 I *
0 (4C) 0 X5 Xg 0 0
It follows that
_ X3 X4 I *
(4lc) = (X5 XG) (0 (AB)> -

To finish the proof we only have to verify that X5 = (B|C), X4 = 0 and Xg =
I. Equating the last columns in (3), we get 0 = A3 Xo, 0 = A9 Xo + Xy and
I = A31 X5 + Xg. The matrix Ay is invertible; therefore, Xo = 0. It follows that
X4 =0 and Xg = I. Another straightforward consequence of (3) is

<A11 A12) _ <A11 0) <I X1)
Axp Agp Ay 1 0 X3/’
ie, X3 =(B|C). O
Problems
3.1. Let w and v be rows of length n, A a square matrix of order n. Prove that
|A+uTv| = |A] + v(adj A)ul.

3.2. Let A be a square matrix. Prove that

MT /Il‘:l—ZMerZMQQ—ZMng...,

where Y M2 is the sum of the squares of all k-minors of A.

4. Symmetric functions, sums z¥ + --- + 2z,
and Bernoulli numbers
In this section we will obtain determinant relations for elementary symmetric
functions oy (x1,...,r,), functions sg(xy,...,7,) = ¥ + - + 2 and sums of
homogeneous monomials of degree k,

pr(T1,. .. xn) = Z gc“x;{’

it tin=k
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4.1. Let ok(z1,...,x,) be the kth elementary function, i.e., the coefficient of
2"~ in the standard power series expression of the polynomial (z+xz1) ... (z+x,).
We will assume that oy (z1,...,z,) =0 for k > n. First of all, let us prove that

S — Sk_101 + Sg_209 — - -+ + (—1)kl€0'k =0.

The product s,_,0, consists of terms of the form x]-f_p(le coxg). Ifdo€

?
{j1,--jp}, then this term cancels the term zF 7 (z;, ...

Sk—pt+10p—1, and if ¢ & {j1,...,7,}, then it cancels the term xffp*l(xile S zy)
of the product sx_p—10p41.
Consider the relations

Ti...x;, ) of the product

g1 = 81
$101 — 20’2 = S9
S901 — 8102 + 303 = S3

as a system of linear equations for o1, ...,0,. With the help of Cramer’s rule it is
easy to see that

S1 1 0o o0 ... 0

S9 S1 1 0 0

1 S3 S92 S1 1 0

Sk—1 Sk—2 .. ... 1

Sk Sk—1 +++ e ... 81

Similarly,
o1 1 0o 0 ... 0
20‘2 g1 1 0 0
303 oo o1 1 ... 0
S —

(k—].)o’kfl Ok—2 1
k(fk Ok—1 ... 01

4.2. Let us obtain first a relation between p; and o and then a relation between
pr and sg. It is easy to verify that

L+ pit+pot? +p3t® + - = (1 +at + () + .. ) oo (Lt zpt + (wat)> +.00)
B 1 B 1
S (A —zt)...(1—ant) 1—oyt+oot2— -+ (=)ot
ie.,
p1—o1=0

p2 —p1o1 + 02 =0
p3 — p201 + p1o2 —o3 =0
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Therefore,
P1 1 0 N 0 g1 1 0 NN 0
P2 P1 1 ... 0 o9 o1 1 ... 0
o= : ot and pp = : : :
Pk—1 Pk—-2 .- ... 1 Ok—1 Ok—2 ... ... 1
Pk Pk—1 -+ .. Dk Ok Ok—1 -+ ... Ok

To get relations between py and s is a bit more difficult. Consider the function
f@®) =0 =x1t)...(1 — xz,t). Then

iy = () (=) ()]

_ T " n Ty 1
o\l -t 1—axut) f(t)

Therefore,

flt) = Ty,
ft) 1—x1t+.“+1—:1cnt

:Sl+82t+83t2+...

On the other hand, (f(t))~! = 1 + p1t + pat® + p3t® + ... and, therefore,

)

f'(t) 1 /_ 1 _1_ P14 2pat + 3pst® + ..
(@) 1+ pit + pat? + p3t® + ...

ie.,

(14 pit + pot® + pat® + ... )(s1 + sot + s3t> +...) = p1 + 2pot + 3pst® + ...

Therefore,
D1 1 0O ... 0 0 O
2p2 P1 1 e 0 0 0
sp = (—1)F! : : AT
(k=Dpx—1 pr—2 ... ... p2 p1 1
kpy. Pk—1 -+ --- P3 D2 P1
and
S1 —1 o ... 0 O 0
1 S92 S1 —2 0 0 0
Pk =0 K Do :
Sk—1 Sk—2 ... ... S9 81 —k+1

Sk Sk—1 ... 83 82 S1
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4.3. In this subsection we will study properties of the sum S, (k) = 1" +--- +
(k—1)™. Let us prove that

() Gl (1)1
TGS G ()

Sn—l(k):m k2 1 (s - (") 1.
k 0 0 0 1

To this end, add up the identities
n—1 n
D" —a" = “forz=1,2,...,k— 1.
(z+1)" -z ;(Z>x or x 2,
We get
n—1
n
k" = Si(k).
> (i)
The set of these identities for s = 1,2,...,n can be considered as a system of linear
equations for S;(k). This system yields the desired expression for S, 1 (k).
The expression obtained for S, (k) implies that S,—1(k) is a polynomial in k
of degree n.
4.4. Now, let us give matrix expressions for S, (k) which imply that S,(z) can

be polynomially expressed in terms of S1(x) and Sa(x); more precisely, the following
assertion holds.

THEOREM. Letu = S1(z) and v = Sa(x); then for k > 1 there exist polynomials
pr and q, with rational coefficients such that Sopy1(x) = u?pr(u) and Sop(x) =
vqg(u).

To get an expression for Soi11 let us make use of the identity

n—1

(1) -1 =) (@ (@+1)" —a"(z - 1))

z=1

—9 ((:) Sl 4 (;) D i (g) S0 4 ) ,

ie, [n(n— 1) =% (2(i7:;§+1)52j+1(n). For i = 1,2,... these equalities can be
expressed in the matrix form:
[n(n —1)]? 2 .0 0 Ss(n)
[n(n —1)]? 1 30 Ss(n)
0 4 4

[n(n —1)]* | =2 S7(n)

The principal minors of finite order of the matrix obtained are all nonzero and,
therefore,

5(n 1 -1 o it1
$:(n) | = gllasl mm—m4’wmm%_<w—ﬁ+J'
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The formula obtained implies that Sai41(n) can be expressed in terms of n(n—1) =
2u(n) and is divisible by [n(n — 1)]2.
To get an expression for S let us make use of the identity

n—1

nr+1(n o l)r _ Z( T($+ 1)r+1 o (:17 _ 1)T$T+1)

e () () s (3 6)
(5 () 2 (1) - (1)
() Oz ((5) () Z
-z (re
The sums of odd powers can be eliminated with the help of (1). As a result we get
i = O () (1)) 5
((5)-() 2

w(n—1) <2n2 1) =2 <(2(i i—t')lJr 1) * (2(1'—3‘) + 1)) 524 (1)-

Now, similarly to the preceding case we get

i.e.,

Sa(n) (n(n — 1)
Sa(n) om—1 1| [n(n = 1))
Ss(n) | = —5—Ilbasll = 1) |

where b;; = (z(zi—:;—l) + (2(i—3‘)+1)'

2 1 -1
Since Sa(n) = n-1 nn-1
by Sa2(n) = v(n) and the quotient is a polynomial in n(n — 1) = 2u(n).

, the polynomials S4(n), S¢(n),... are divisible

4.5. In many theorems of calculus and number theory we encounter the following
Bernoulli numbers By, defined from the expansion

o0

ik
= ZB’“H (for [t] < 2m).

k=0

It is easy to verify that Bp = 1 and B; = —1/2.
With the help of the Bernoulli numbers we can represent S,,(n) = 1™ + 2™ +
<-4 (n—1)™ as a polynomial of n.



34 DETERMINANTS

THEOREM. (m+1)S,,(n) = 1., (m;rl)Bknvalfk'

PRrROOF. Let us write the power series expansion of (e™ —1) in two ways.

On the one hand,

et —1

k=0 s=1
oo m
m+1 tmtl
S 3 N N LT
m=1 k=0 & (m+1)
On the other hand,
ent -1 n—1 . tm+l
tet—l :t;e =nt+ Z Zr
tm+1
=nt 1)Sn(n)——.
it T;ﬂ(m* )Sm () oy
Let us give certain determinant expressions for By. Set by = % Then b,
definition
z? 23 .
(e® —1) Zbk;z; x+—+§+ N1+ byx + box® + by’ 4 ...),
ie.,
1
bl - —5
b1 1
b1 bg 1
y + = —|— by = _I
Solving this system of linear equations by Cramer’s rule we get
1/2! 1 0o ... 0
1/3! /20 1 ... 0
k:k!bk:(_l)kk! 1/4! 1/31 1721 ... 0
1/(k+1)! 1/kY ... ... 1/2
Now, let us prove that Bar41 = 0 for & > 1. Let 'x 7= 7% + f(x). Then
el —
x x
f@) = f-e) = o + =7 T =0,
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B
i.e., f is an even function. Let ¢, = (22];!. Then
_ a? | 2° 1% 2 4 6
xr = ﬂc—|—§—|—§—|—... ( —§—|—clx + cox” + c3x —|—)
1
Equating the coefficients of 22, 2°, 27, ... and taking into account that eI
/Tt
Cn+ 1) 2@nt1) 08
1
R IET
C1 o 3
31 T2 =575
C1 Co o 5
TR RN
Therefore,
1/3! 1 0 ... 0
3/5! 1/3! 1 ... 0
—1)kL2K) | 5/7! 1/5! /30 ... 0
B = (2k)!cx, = % / / / . 0
2k — 1 1 )
1/3!
2k +1)!  (2k—1)! /

Solutions

1.1. Since AT = —A and n is odd, then |AT| = (—1)"|A| = —|A|. On the other
hand, |[AT| = |A|.
1.2. If A is a skew-symmetric matrix of even order, then

0 1 ... 1

LA

-1
is a skew-symmetric matrix of odd order and, therefore, its determinant vanishes.
Thus,

1 0 0 0o 1 .. 1 11 1
—X —X —X

[Al= A |+ : A = : A
-z -z —x

In the last matrix, subtracting the first column from all other columns we get the
desired.

1.3. Add the first row to and subtract the second row from the rows 3 to 2n. As
a result, we get |A,| = |An-1]|.
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1.4. Suppose that all terms of the expansion of an nth order determinant are
positive. If the intersection of two rows and two columns of the determinant singles

out a matrix (2 g) then the expansion of the determinant has terms of the

form zva and —yua and, therefore, sign(zv) = —sign(yu). Let a;, b; and ¢; be
the first three elements of the ith row (¢ = 1,2). Then sign(a1by) = — sign(azb),
sign(biea) = —sign(becy), and sign(cias) = —sign(cea;). By multiplying these
identities we get sign p = — sign p, where p = a1b1c1a2b3¢o. Contradiction.

1.5. For all ¢ > 2 let us subtract the (i — 1)st row multiplied by a from the ith
row. As a result we get an upper triangular matrix with diagonal elements a1, = 1
and a; = 1 — a? for i > 1. The determinant of this matrix is equal to (1 — a?)"~ .

1.6. Expanding the determinant A, ; with respect to the last column we get

Apy1 =xA, +hA, = (x 4+ h)A,.

1.7. Let us prove that the desired determinant is equal to

ibi
1_‘[(.%z — aibi) (1 + Z :leaalbz>

by induction on n. For n = 2 this statement is easy to verify. We will carry out
the proof of the inductive step for n = 3 (in the general case the proof is similar):

x1  aiby aibs x1 —aiby aiby aibs aiby  aiby aibs
a2b1 To a2b3 = 0 i) a2b3 + a2b1 i) a2b3
a3b1 agbg I3 0 as bQ X3 CL3b1 as bg I3

The first determinant is computed by inductive hypothesis and to compute the
second one we have to break out from the first row the factor a; and for all 7 > 2
subtract from the ith row the first row multiplied by a;.

1.8. Tt is easy to verify that det(I — A) = 1 — ¢. The matrix A is the matrix of
the transformation Ae; = ¢;_1e;_1 and therefore, A" =¢;...c,I. Hence,

IT+A+- A" HI-A)=T-A"=(1-¢)]

and, therefore,
(1—c)det(I +A+---+ A" =(1-c).

For ¢ # 1 by dividing by 1 — ¢ we get the required. The determinant of the matrix

considered depends continuously on ¢y, ..., ¢, and, therefore, the identity holds for
c=1 as well.
1.9. Since (1 — z;y;)" ! = (yj_1 - a:i)_lyj_l, we have |a;;|7 = o|b;|}, where

1

= (y1--.yn)" " and by = (y; — @:)7", ie., |bylf is a Cauchy determinant

o
(see 1.3). Therefore,
bis |7 = o [ Wi — wi) (@ — ) [ (1 = @iyy) "

>3 12

1.10. For a fixed m consider the matrices A,, = ||az-j Hgl, aij = (";H) The matrix

Ap is a triangular matrix with diagonal (1,...,1). Therefore, |[Ag| = 1. Besides,
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Apt1 = A, B, where b; ;41 =1 (for i <m —1), b;; = 1 and all other elements b;;
are zero.

1.11. Clearly, points A, B, ..., F with coordinates (a?,a), ..., (f?, f), respec-
tively, lie on a parabola. By Pascal’s theorem the intersection points of the pairs of
straight lines AB and DFE, BC and EF, CD and F' A lie on one straight line. It is
not difficult to verify that the coordinates of the intersection point of AB and DFE

e ((a—I—b)de— (d+e)ab  de—ab )

d+e—a—>b " d+e—a—-b

It remains to note that if points (z1,y1), (z2, y2) and (x3,ys3) belong to one straight
line then

1 y1 1
T2 Y2 1| =0.
z3 y3 1

REMARK. Recall that Pascal’s theorem states that the opposite sides of a hexagonll
inscribed in a 2nd order curve intersect at three points that lie on one line. Its proof
can be found in books [Berger, 1977] and [Reid, 1988].

1.12. Let s = 21 + --- + x,,. Then the kth element of the last column is of the

form
n—2

(s — )" ' = (—a)" '+ Y pial.
1=0

Therefore, adding to the last column a linear combination of the remaining columns

with coefficients —pg, ..., —pn—2, respectively, we obtain the determinant
1 ox ... 2l (—x) !

= (=) W(x1,...,z,).

1oz, oo a2 (—a,)" !

1.13. Let A be the required determinant. Multiplying the first row of the

corresponding matrix by x1, ..., and the nth row by x, we get
-1
v 22 ... af o
oA =|: ©|, where o =z1...2,.
T, x2 ... 2"l o

Therefore, A = (—1)"" 1V (z1,...,2,).
1.14. Since
AT AN = AT+ A"
then
laijle = Mo M)V (po, - - - s ftn), Where p; = A1+ \;.

1.15. Augment the matrix V with an (n + 1)st column consisting of the nth
powers and then add an extra first row (1, —z,22,...,(—2)"). The resulting matrix

W is also a Vandermonde matrix and, therefore,

detW =(zx+z1)...(x +x,)detV = (0, + o1z + - - +2™) det V.
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On the other hand, expanding W with respect to the first row we get
detW =det Vg +axdet Vi + -+ 2" det V,,_1.
1.16. Let x; = in. Then

(v — 1 (i —1) ... (x; — 1
ail:xi,am:%,...,aw:xl(m’ ) r'(xl r+ )7

i.e., in the kth column there stand identical polynomials of kth degree in ;. Since
the determinant does not vary if to one of its columns we add a linear combination
of its other columns, the determinant can be reduced to the form |b;|], where
k k
I
b = o= T 1. Therefore,

2

: n n" .
laix|T = bkl =n - o ﬁr!V(LQ, ) =nrr/2)

because [ [, ,<,.(i —j) =213l...(r = 1)!
1.17. For i = 1,...,n let us multiply the ith row of the matrix Hain;L by m;!,
where m; = k; + n — i. We obtain the determinant |b;;|7', where

(ki +n —i)!

bii = (ki +7 —1)!

:mi(mi—l)...(mi+j+1—n).

The elements of the jth row of Hbl]H? are identical polynomials of degree n — j
in m; and the coefficients of the highest terms of these polynomials are equal
to 1. Therefore, subtracting from every column linear combinations of the pre-
ceding columns we can reduce the determinant |b;;|7 to a determinant with rows
(m?*l7 m?*27 ..., 1). This determinant is equal to Hi<j(mi —m;). It is also clear
that ‘GUHL = \bUHL(ml'mg' . mn!)_l.

1.18. For n = 3 it is easy to verify that

2
) I 1 1 P1 P1T1 P1AY

_ 2

Haij ||0 =121 T2 @3 P2 p2T2  P2Zs
i @3 a3 ps  psrs  psa3

In the general case an analogous identity holds.
1.19. The required determinant can be represented in the form of a product of
two determinants:

1 ... 1 11 2 ... b0
1 Ty Y 1 a0 ... ;vg*l 0
3 Y : : :
: Do 1 =, il 0
] zy y"l |0 0 0 1

and, therefore, it is equal to [[(y — ;) [ [;5 (@i — z;)%
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1.20. It is easy to verify that for n = 2

, (1 2w =g\ (w5 vl v
fally={1 201 2% | [ w0 w v |;
1 2x9 a3 1 1 1

and in the general case the elements of the first matrix are the numbers (})zF.

1.21. Let us suppose that there exists a nonzero solution such that the number
of pairwise distinct numbers A; is equal to r. By uniting the equal numbers )\; into
r groups we get

ml/\’f+...+mr/\f:Ofork;:l,...,n.

Let x1 =mq A1, ..., £, = m;\,, then

)\Ifflm1+--~+>\f*1xr:0fork:L...,n.

Taking the first r of these equations we get a system of linear equations for z1, ..., x,
and the determinant of this system is V(A1,...,A) #0. Hence, 2y =--- =2, =0
and, therefore, Ay = --- = A\, = 0. The contradiction obtained shows that there is

only the zero solution.

1.22. Let us carry out the proof by induction on n. For n = 1 the statement is
obvious.

Subtracting the first column of Haij Hg from every other column we get a matrix
Hb”’ g, Where bij = O’Z‘(/.’E\j) — O‘i(aj\o) fOI‘ ] Z 1.

Now, let us prove that

or () — ok (T;) = (x5 — @i)op—1(2s, ;).
Indeed,
op(x1, ... xn) = 0k(Zi) + 2iok—1(T5) = 0k (Ts) + T0k—1(Z5, T5) + 220k —2(T4,T5)
and, therefore,
ok (Zi) + 2041 (23, %) = 0k(Tj) + 051 (Ti, T;j).
Hence,
bijlo = (w0 — 1) ... (20 — zn)|eis]5 ", where ¢;j = 04(Z0, 7).

1.23. Let k = [n/2]. Let us multiply by —1 the rows 2,4, ...,2k of the matrix
||bw||;l and then multiply by —1 the columns 2,4,...,2k of the matrix obtained.
As a result we get HaUH;L

1.24. Tt is easy to verify that both expressions are equal to the product of

determinants
ap as 0 0 ci 0 ¢ O

asz Qg4 0 0 . 0 dl 0 dg
0 0 by by cs 0 ¢4 O
0 0 b3 by 0 dg3 0 dy
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1.25. Both determinants are equal to

a1l G2 G13 air b2 b3 bir a2 bis
(10203 | @21 Q22  Go3 | + a1babs | as1  baa  bog |+ bragbs |ba1  azs  bos
a3 as ass asz1 by bas b31 asz b33

a1 a2 bis bin a2 ais bi1 bz bis

—aiazbz |az1  aga baz | —brazaz |bai  azx  as3| —bibabs|ba1 baa  ba3|.

ag1  az2  bssz b1 azz ass bs1 b3z b33

1.26. 1t is easy to verify the following identities for the determinants of matrices
of order n + 1:

S1 —ai S1 — Q1n 0 S1 — a1 S1 — Q1n (TL—].)Sl
Sp—Qpl ... Sp—apn O Sp—Qp1 ... Sp—Gpn (M—1)51
-1 -1 1 -1 -1 1—n
S1 — Qi1 N S1 — Q1np S1 —Qai1 ce —Q1n S1
—(n-1| i =@m-
Sn—Qn1  --. Sp— Qnn Sn —ap1 ... —Qpn  Sn
-1 -1 -1 0 0 -1

1.27. Since (2) + (qfl) = (”j}rl), then by suitably adding columns of a matrix

whose rows are of the form ((;)( ") () )) we can get a matrix whose rows

m—1 m—k
are of the form (:1) (":;1) . (mT;i_l)) And so on.

1.28. In the determinant A, (k) subtract from the (i 4+ 1)st row the ith row for
every i =n—1,...,1. Asaresult, we get A, (k) = A],_; (k), where Aj, (k) = |aj;[¢",

k+1 ) ki k+i (k—14+17\ .
a;j:<2j+1).Smce (2j+1):2j—|—1( 9 >71t follows that

N k(k+1)...(k+n—1)

n1 (k) = 1-3...(2n—1) An-1(k=1).

1.29. According to Problem 1.27 D,, = D}, = |aj|§, where aj; = ("1.*), ie.,
in the notations of Problem 1.28 we get

(n+1)(n+2)...2n
1-3...2n—1)

Dn = An<’l7, + 1) = An,l(n) = 2"Dn,1,

. (20! __ (2n)!
smce(n+1)(n+2)...2n—7and1-3...(2n—1)—m. /

1.30. Let us carry out the proof for n = 2. By Problem 1.23 |a;;|2 = |ai;13,

where aj; = (—1)"*7a;;. Let us add to the last column of Hangi its penultimate
column and to the last row of the matrix obtained add its penultimate row. As a

result we get the matrix

ag —a1  —Aiay
—aq a2 Ajay s
—Arar Aqas AN/
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where Ajar = ap — agy1, Apr1axp = A1(Apag). Then let us add to the 2nd row
the 1st one and to the 3rd row the 2nd row of the matrix obtained; let us perform
the same operation with the columns of the matrix obtained. Finally, we get the
matrix
ao Arag  Aszag
Arag Azag Asag
Asag  Azag  Asag

By induction on k it is easy to verify that by = Agag. In the general case the proof
is similar.
1.31. We can represent the matrices A and B in the form

(P PX _(WQV WQ
A_<YP YPX) a]“dB_<QV Q)’

where P = A1 and Q = Boy. Therefore,

Aip|=|PEWQV PX+WQ| | PoWQ| T X
T|YP+QV YPX+Q| |YP Q ||V I
_ 1 'P WQHP PX
PI-1QI|YP Q ||QV Q@

1.32. Expanding the determinant of the matrix

0 a2 . QA1n b11 e bln

o 0 Ap2 ‘e Ann bnl . bnn
C= a1 0 0 b11 bln
an1 0 .o 0 bnl ‘e bnn

with respect to the first n rows we obtain

n aio ... Q1n blk ail bu N /l;lk N bl'n,
Cl=3 (-1 Do :
k=1 Ano oo Gpp bpk an1 bn1 ... Enk e bun
blk a12 ... Q1n b11 ... Qar1 N bln

n
Sy
k=1

bnk an2 N Ann bnl e an1 N bnn

where e, = (1424+---4+n)+(24+---+n+(k+n)) =k+n+1 (mod 2), ap, =n—1
and By =k — 1, i.e., ex + ag + Bx = 1 (mod 2). On the other hand, subtracting
from the ith row of C the (i + n)th row for i = 1,...,n, we get |C| = —|A]| - | B].

2.1. The coefficient of A;, ... A;, in the determinant of A + diag(A1,...,\,) is
equal to the minor obtained from A by striking out the rows and columns with
numbers iy, ..., im.

2.2. Let us transpose the rows (a;1 ... an2;) and (y; . ..y,0). In the determinant
of the matrix obtained the coefficient of z;y; is equal to A;;.
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2.3. Let B= AT A. Then

. . bilil 11k
21 ... . .
By . )= . :
21 ... : :
ik’il e ikik
i1 Ajin i1 Qg1

= det

Qg1 Aipn Aiin cee Qiyn

and it remains to make use of the Binet-Cauchy formula.
2.4. The coefficient of u; in the sum of determinants in the left-hand side is

equal to aj1A11 + ...an1An1 = |A|. For the coefficients of us, ..., u, the proof is
similar.
2.5. Answer:
I —-A AB-C
0 I -B
0 O I

2.6. If i < j then deleting out the ith row and the jth column of the upper
triangular matrix we get an upper triangular matrix with zeros on the diagonal at
all places ¢ to j — 1.

2.7. Consider the unit matrix of order n — 1. Insert a column of zeros between
its (¢ — 1)st and ith columns and then insert a row of zeros between the (j — 1)st
and jth rows of the matrix obtained . The minor Mj; of the matrix obtained is
equal to 1 and all the other minors are equal to zero.

2.8. Since x(yTx)y"I = xyT I(y"x), then

(I —ay") ey +I(1—y ) = (1 -y 2)l.

Hence,
(I —ay") =2y’ (1 —yTa) + 1.

Besides, according to Problem 8.2
det(I —zy”) =1 —tr(zy’) =1 -y 2.

2.9. By definition A;; = (—1)**7 det B, where B is a matrix of order n— 1. Since
AT = —A, then A]1 = (—1)i+j det(—B) = (—l)nilAij.

2.10. The answer depends on the parity of n. By Problem 1.3 we have |Ag;| = 1
and, therefore, adj Aoy = A;kl. For n = 4 it is easy to verify that

0 1 1 1 o -1 1 -1
-1 0 1 1 1 0 -1 1 _ 7
-1 -1 0 1 -1 1 0 -1 ’
-1 -1 -1 0 1 -1 1 0

A similar identity holds for any even n.
Now, let us compute adj Agg41. Since |Agx| = 1, then rank Aoy = 2k. Tt is also
clear that Ay y1v = 0 if v is the column (1,—1,1,—1,...)7. Hence, the columns



SOLUTIONS 43

of the matrix B = adj Agx41 are of the form Av. Besides, b1 = |Agk| = 1 and,
therefore, B is a symmetric matrix (cf. Problem 2.9). Therefore,

2.11. a) Since [adj(A — AI)](A — AI) = |A — M| - I is a scalar matrix, then

n—1 n—1 n
(Z AkAk> (A=) => MNAA-> NAp 4
k=0 k=0 k=1
n—1

= AgA— N'A,_1 + Z N (ARA — Ap_y)
k=1

is also a scalar matrix.

b) A,—1 = £1. Besides, A,,_s_1 = ul — A,,_sA.

2.12. Let A = ||aij| s A7l = ||b”|| and aijabij > 0. If Qiry Ais > 0 then
>~ airbi; = 0 for i # j and, therefore, b,; = bs; = 0. In the rth row of the matrix B
there is only one nonzero element, b,.;, and in the sth row there is only one nonzero
element, by;. Hence, the rth and the sth rows are proportional. Contradiction.

Therefore, every row and every column of the matrix A has precisely one nonzero
element.

2.13. A~ = Hbii }, where b;; = n=le™¥.

2.14. Let o, = op_k(21,...,Ti,...,x,). Making use of the result of Prob-
lem 1.15 it is easy to verify that (adj V)7 = Hb,-jH;L, where

bij - (*1)i+j0'fl_jV(l'1, e ,fi, e ,xn).
T
3.1. |[A+uTv| = ‘21 iL = |A|(1 +vA ™).
I A T T .
32 |\ | = |[I — A" Al = (—-1)"|A" A — I|. Tt remains to apply the results

of Problem 2.1 (for A = —1) and of Problem 2.4.
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LINEAR SPACES

The notion of a linear space appeared much later than the notion of determi-
nant. Leibniz’s share in the creation of this notion is considerable. He was not
satisfied with the fact that the language of algebra only allowed one to describe
various quantities of the then geometry, but not the positions of points and not the
directions of straight lines. Leibniz began to consider sets of points A; ... A, and
assumed that {A41,...,A4,} = {X1,..., X,,} whenever the lengths of the segments
A;A; and X;X; are equal for all ¢ and j. He, certainly, used a somewhat differ-
ent notation, namely, something like Ay ... A, 8 X;...X,; he did not use indices,
though.

In these terms the equation AB 8 AY determines the sphere of radius AB and
center A; the equation AY 8 BY 8 C'Y determines a straight line perpendicular to
the plane ABC.

Though Leibniz did consider pairs of points, these pairs did not in any way
correspond to vectors: only the lengths of segments counted, but not their directions
and the pairs AB and BA were not distinguished.

These works of Leibniz were unpublished for more than 100 years after his death.
They were published in 1833 and for the development of these ideas a prize was
assigned. In 1845 Mobius informed Grassmann about this prize and in a year
Grassmann presented his paper and collected the prize. Grassmann’s book was
published but nobody got interested in it.

An important step in moulding the notion of a “vector space” was the geo-
metric representation of complex numbers. Calculations with complex numbers
urgently required the justification of their usage and a sufficiently rigorous theory
of them. Already in 17th century John Wallis tried to represent the complex
numbers geometrically, but he failed. During 1799-1831 six mathematicians inde-
pendently published papers containing a geometric interpretation of the complex
numbers. Of these, the most influential on mathematicians’ thought was the paper
by Gauss published in 1831. Gauss himself did not consider a geometric interpreta-
tion (which appealed to the Euclidean plane) as sufficiently convincing justification
of the existence of complex numbers because, at that time, he already came to the
development of nonEuclidean geometry.

The decisive step in the creation of the notion of an n-dimensional space was
simultaneously made by two mathematicians — Hamilton and Grassmann. Their
approaches were distinct in principle. Also distinct was the impact of their works
on the development of mathematics. The works of Grassmann contained deep
ideas with great influence on the development of algebra, algebraic geometry, and
mathematical physics of the second half of our century. But his books were difficult
to understand and the recognition of the importance of his ideas was far from
immediate.

The development of linear algebra took mainly the road indicated by Hamilton.

Sir William Rowan Hamilton (1805-1865)

The Irish mathematician and astronomer Sir William Rowan Hamilton, member
of many an academy, was born in 1805 in Dublin. Since the age of three years old

Typeset by ApMS-TEX
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he was raised by his uncle, a minister. By age 13 he had learned 13 languages and
when 16 he read Laplace’s Méchanique Céleste.

In 1823, Hamilton entered Trinity College in Dublin and when he graduated
he was offered professorship in astronomy at the University of Dublin and he also
became the Royal astronomer of Ireland. Hamilton gained much publicity for his
theoretical prediction of two previously unknown phenomena in optics that soon
afterwards were confirmed experimentally. In 1837 he became the President of the
Irish Academy of Sciences and in the same year he published his papers in which
complex numbers were introduced as pairs of real numbers.

This discovery was not valued much at first. All mathematicians except, perhaps,
Gauss and Bolyai were quite satisfied with the geometric interpretation of complex
numbers. Only when nonFEuclidean geometry was sufficiently wide-spread did the
mathematicians become interested in the interpretation of complex numbers as
pairs of real ones.

Hamilton soon realized the possibilities offered by his discovery. In 1841 he
started to consider sets {a1,...,a,}, where the a; are real numbers. This is pre-
cisely the idea on which the most common approach to the notion of a linear
space is based. Hamilton was most involved in the study of triples of real num-
bers: he wanted to get a three-dimensional analogue of complex numbers. His
excitement was transferred to his children. As Hamilton used to recollect, when
he would join them for breakfast they would cry: “ ‘Well, Papa, can you multiply
triplets?” Whereto I was always obliged to reply, with a sad shake of the head: ‘No,
I can only add and subtract them’ ”.

These frenzied studies were fruitful. On October 16, 1843, during a walk, Hamil-
ton almost visualized the symbols 4, j, k and the relations i2 = j2 = k? = ijk = —1.
The elements of the algebra with unit generated by i, j, k are called quaternions.
For the last 25 years of his life Hamilton worked exclusively with quaternions and
their applications in geometry, mechanics and astronomy. He abandoned his bril-
liant study in physics and studied, for example, how to raise a quaternion to a
quaternion power. He published two books and more than 100 papers on quater-
nions. Working with quaternions, Hamilton gave the definitions of inner and vector
products of vectors in three-dimensional space.

Hermann Giinther Grassmann (1809-1877)

The public side of Hermann Grassmann’s life was far from being as brilliant as
the life of Hamilton.

To the end of his life he was a gymnasium teacher in his native town Stettin.
Several times he tried to get a university position but in vain. Hamilton, having
read a book by Grassmann, called him the greatest German genius. Concerning
the same book, 30 years after its publication the publisher wrote to Grassmann:
“Your book Die Ausdehnungslehre has been out of print for some time. Since your
work hardly sold at all, roughly 600 copies were used in 1864 as waste paper and
the remaining few odd copies have now been sold out, with the exception of the
one copy in our library”.

Grassmann himself thought that his next book would enjoy even lesser success.
Grassmann’s ideas began to spread only towards the end of his life. By that time he
lost his contacts with mathematicians and his interest in geometry. The last years
of his life Grassmann was mainly working with Sanscrit. He made a translation of
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Rig-Veda (more than 1,000 pages) and made a dictionary for it (about 2,000 pages).
For this he was elected a member of the American Orientalists’ Society. In modern
studies of Rig-Veda, Grassmann’s works is often cited. In 1955, the third edition
of Grassmann’s dictionary to Rig-Veda was issued.

Grassmann can be described as a self-taught person. Although he did graduate
from the Berlin University, he only studied philology and theology there. His father
was a teacher of mathematics in Stettin, but Grassmann read his books only as
a student at the University; Grassmann said later that many of his ideas were
borrowed from these books and that he only developed them further.

In 1832 Grassmann actually arrived at the vector form of the laws of mechanics;
this considerably simplified various calculations. He noticed the commutativity and
associativity of the addition of vectors and explicitly distinguished these properties.
Later on, Grassmann expressed his theory in a quite general form for arbitrary
systems with certain properties. This over-generality considerably hindered the
understanding of his books; almost nobody could yet understand the importance
of commutativity, associativity and the distributivity in algebra.

Grassmann defined the geometric product of two vectors as the parallelogram
spanned by these vectors. He considered parallelograms of equal size parallel to
one plane and of equal orientation equivalent. Later on, by analogy, he introduced
the geometric product of r vectors in n-dimensional space. He considered this
product as a geometric object whose coordinates are minors of order r of an 7 x n
matrix consisting of coordinates of given vectors.

In Grassmann’s works, the notion of a linear space with all its attributes was
actually constructed. He gave a definition of a subspace and of linear dependence
of vectors.

In 1840s, mathematicians were unprepared to come to grips with Grassmann’s
ideas. Grassmann sent his first book to Gauss. In reply he got a notice in which
Gauss thanked him and wrote to the effect that he himself had studied similar
things about half a century before and recently published something on this topic.
Answering Grassmann’s request to write a review of his book, Md&bius informed
Grassmann that being unable to understand the philosophical part of the book
he could not read it completely. Later on, Mobius said that he knew only one
mathematician who had read through the entirety of Grassmann’s book. (This
mathematician was Bretschneider.)

Having won the prize for developing Leibniz’s ideas, Grassmann addressed the
Minister of Culture with a request for a university position and his papers were
sent to Kummer for a review. In the review, it was written that the papers lacked
clarity. Grassmann’s request was turned down.

In the 1860s and 1870s various mathematicians came, by their own ways, to ideas
similar to Grassmann’s ideas. His works got high appreciation by Cremona, Hankel,
Clebsh and Klein, but Grassmann himself was not interested in mathematics any
more.

5. The dual space. The orthogonal complement

WARNING. While reading this section the reader should keep in mind that here,
as well as throughout the whole book, we consider finite dimensional spaces only.
For infinite dimensional spaces the majority of the statements of this section are
false.
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5.1. To a linear space V over a field K we can assign a linear space V* whose
elements are linear functions on V, i.e., the maps f : V' — K such that

FAqv1 4+ Aawe) = A1 f(v1) + Aaf(ve) for any Aj, A2 € K and vy,vy € V.

The space V* is called the dual to V.

To a basis e1,...,e, of V we can assign a basis e], ..., e} of V* setting e} (e;) =
d;;. Any element f € V* can be represented in the form f > f(ei)er. The 11near
independence of the vectors e} follows from the identity (D" Aiel)(e;) = A;.

Thus, if a basis ey, . .. e, of V is fixed we can construct an isomorphism g : V. —
V* setting g(e;) = ef. Selecting another basis in V' we get another isomorphism
(see 5.3), i.e., the isomorphism constructed is not a canonical one.

We can, however, construct a canonical isomorphism between V and (V*)* as-
signing to every v € V an element v' € (V*)* such that v'(f) = f(v) for any
fev

REMARK. The elements of V* are sometimes called the covectors of V. Besides,
the elements of V' are sometimes called contravariant vectors whereas the elements
of V* are called covariant vectors.

5.2. To a linear operator A : V; — V5 we can assign the adjoint operator
A* V5 — Vi setting (A* fa)(v1) = f2(Avy) for any fo € V5 and vy € V;.

It is more convenient to denote f(v), where v € V and f € V*, in a more
symmetric way: (f,v). The definition of A* in this notation can be rewritten as
follows

(A" fa,v1) = (f2, Av1).

If a basis? {e,} is selected in V; and a basis {eg} is selected in V5 then to the
operator A we can assign the matrix ||a” || where Ae; =, a;;¢;. Similarly, to the

operator A* we can assign the matrix Ha” || with respect to bases {e},} and {e5}-

Let us prove that [|a};|| = ||as;|| " Tndeed, on the one hand,
(er, Aej) Zaw €5,61) = anj
On the other hand
(g%, Aej) = (A*e, ej) Zapk e €5) = aly

Hence, a;k = ag;-

5.3. Let {eo} and {e3} be two bases such that ¢; = ) a;je; and € = > bgper.
Then

(5p] = E ZCL” p 81 = Zaijbqpéqi = Zaijbip, i.e., ABT =1

The maps f,g : V. — V* constructed from bases {e,} and {eg} coincide if
f(gj) = g(gj) for all j, ie., > a;jef = b;je; and, therefore A = B = (AT)~!

2As is customary nowadays, we will, by abuse of language, briefly write {e;} to denote the
complete set {e; : ¢ € I'} of vectors of a basis and hope this will not cause a misunderstanding.
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In other words, the bases {e,} and {eg} induce the same isomorphism V' — V*
if and only if the matrix A of the passage from one basis to another is an orthogonal
one.

Notice that the inner product enables one to distinguish the set of orthonormal
bases and, therefore, it enables one to construct a canonical isomorphism V' — V*,
Under this isomorphism to a vector v € V' we assign the linear function v* such
that v*(z) = (v, z).

5.4. Consider a system of linear equations

fi(z) = b,
R S
fm(x) = bm
We may assume that the covectors fi,..., fr are linearly independent and f; =
Zle Xijf; for i > k. If 2o is a solution of (1) then f;(x¢) = Z?zl Aij fi(xo) for
1>k, ie.,
k
(2) b; = Z)\”b] for ¢ > k.
j=1

Let us prove that if conditions (2) are verified then the system (1) is consistent.
Let us complement the set of covectors fi,..., fx to a basis and consider the dual
basis ej,...,e,. For a solution we can take xg = bje; + --- + byex. The general
solution of the system (1) is of the form xg+t1ex11+- - +tn_re, where ty, ... ty_g
are arbitrary numbers.

5.4.1. THEOREM. If the system (1) is consistent, then it has a solution x =
(x1,...,2n), where x; = Z?Zl cijbj and the numbers c;; do not depend on the b;.

To prove it, it suffices to consider the coordinates of the vector g = bieq +---+
brer with respect to the initial basis.

5.4.2. THEOREM. If f;(z) = Z;‘L:1 ai;x;, where a;; € Q and the covectors
fis--, fm constitute a basis (in particular it follows that m = n), then the system

(1) has a solution x; = 377_, cijb;, where the numbers c;; are rational and do not
depend on b;; this solution is unique.

PrOOF. Since Ax = b, where A = Hain, then o = A~'b. If the elements of A
are rational numbers, then the elements of A~! are also rational ones. O

The results of 5.4.1 and 5.4.2 have a somewhat unexpected application.

5.4.3. THEOREM. If a rectangle with sides a and b is arbitrarily cut into squares
with sides x1,. .., 2, then - € Q and 5 € Q for all i.

PRrROOF. Figure 1 illustrates the following system of equations:

r1+To=a

r3t+Ta=a r1+r3+zat+a7=0
(3) Ty+To=a To+T5+x7 =0
T4+ Ts5+Te=a To + xg = b.

T +T7r=a
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FIGURE 1

A similar system of equations can be written for any other partition of a rectangle
into squares. Notice also that if the system corresponding to a partition has another
solution consisting of positive numbers, then to this solution a partition of the
rectangle into squares can also be assigned, and for any partition we have the
equality of areas 2% +...22 = ab.

First, suppose that system (3) has a unique solution. Then

i = Na~+ pband A\, p; € Q.

Substituting these values into all equations of system (3) we get identities of the
form p;ja + g;b = 0, where pj,q; € Q. If p; = ¢; = 0 for all j then system (3)
is consistent for all ¢ and b. Therefore, for any sufficiently small variation of the
numbers a and b system (3) has a positive solution x; = A\;a + u;b; therefore, there
exists the corresponding partition of the rectangle. Hence, for all a and b from
certain intervals we have

(32A7) a® +2 (3 Aipa) ab+ (3opi) b° = ab.

Thus, Y. A2 = > u? = 0 and, therefore, \; = pu; = 0 for all i. We got a contradic-
tion; hence, in one of the identities pja 4+ ¢;b = 0 one of the numbers p; and g; is
nonzero. Thus, b = ra, where r € Q, and z; = (A\; + rp;)a, where A\; + ru; € Q.

Now, let us prove that the dimension of the space of solutions of system (3)
cannot be greater than zero. The solutions of (3) are of the form

T = Na + b+ agity + -+ oty

where tq,...,t; can take arbitrary values. Therefore, the identity

(4) D (Nia+ b+ ity + -+ + agity)® = ab

should be true for all ¢1,...,¢; from certain intervals. The left-hand side of (4) is
a quadratic function of ¢1,...,t;. This function is of the form Y- a2;t> + ..., and,
therefore, it cannot be a constant for all small changes of the numbers ¢1,...,t;,. O

5.5. As we have already noted, there is no canonical isomorphism between V
and V*. There is, however, a canonical one-to-one correspondence between the set
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of k-dimensional subspaces of V' and the set of (n — k)-dimensional subspaces of
V*. To a subspace W C V we can assign the set
WH={feV*|{fyw)=0 forany we W}.

This set is called the annihilator or orthogonal complement of the subspace W. The

annihilator is a subspace of V* and dim W +dim W+ = dim V because if e1, . . ., en,
is a basis for V' such that e1, ..., ey is a basis for W then e}, ,,..., €], is a basis for
W,

The following properties of the orthogonal complement are easily verified:

a) if W, € Wa, then W3- ¢ Wik,

b) (WH)* =W;

c) (Wi + Wo)t = Wit n Wit and (W) N W)t = Wit + Wi

d) if V.= Wy @ Wa, then V* = Wi @ Wi

The subspace W is invariantly defined and therefore, the linear span of vectors
€ry1s- -+ €y does not depend on the choice of a basis in V', and only depends on
the subspace W itself. Contrarywise, the linear span of the vectors ej, ..., e} does
depend on the choice of the basis €1, . . ., e,; it can be any k-dimensional subspace of
V* whose intersection with W+ is 0. Indeed, let W7 be a k-dimensional subspace of
V* and Wy "W+ = 0. Then (W;)1 is an (n — k)-dimensional subspace of V' whose

intersection with W is 0. Let eg41,...,ex be a basis of (Wl)l-. Let us complement
it with the help of a basis of W to a basis e1,...,e,. Then ef,..., e} is a basis of
Wi.

THEOREM. If A :V — V is a linear operator and AW C W then A*W+ C
W,

PROOF. Let x € W and f € W+. Then (A*f,x) = (f, Ax) = 0 since Az € W.
Therefore, A*f ¢ W+. O

5.6. In the space of real matrices of size m X n we can introduce a natural inner
product. This inner product can be expressed in the form

tI‘(XYT) = Z xijyij~
l?j

THEOREM. Let A be a matriz of size m xn. If for every matriz X of size n xm
we have tr(AX) =0, then A = 0.

PROOF. If A # 0 then tr(AAT) = > a5 >0 0O

Problems

5.1. A matrix A of order n is such that for any traceless matrix X (i.e., tr X = 0)
of order n we have tr(AX) = 0. Prove that A = AI.

5.2. Let A and B be matrices of size m x n and k X n, respectively, such that if
AX =0 for a certain column X, then BX = 0. Prove that B = CA, where C is a
matrix of size k x m.

5.3. All coordinates of a vector v € R™ are nonzero. Prove that the orthogo-
nal complement of v contains vectors from all orthants except the orthants which
contain v and —w.

5.4. Let an isomorphism V' — V*(z +— x*) be such that the conditions z*(y) =
0 and y*(z) = 0 are equivalent. Prove that z*(y) = B(z,y), where B is either a
symmetric or a skew-symmetric bilinear function.
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6. The kernel (null space) and the image (range) of an operator.
The quotient space

6.1. For a linear map A : V — W we can consider two sets:

Ker A ={v € V| Av =0} — the kernel (or the null space) of the map;

Im A = {w € W | there exists v € V such that Av = w} — the image (or range)
of the map.

It is easy to verify that Ker A is a linear subspace in V and Im A is a linear

subspace in W. Let ej,...,er be a basis of Ker A and eq,..., ek, €x41,...,6, an
extension of this basis to a basis of V. Then Aejy1, ..., Ae, is a basis of Im A and,
therefore,

dimKer A +dimIm A =dim V.

Select bases in V and W and consider the matrix of A with respect to these bases.
The space Im A is spanned by the columns of A and, therefore, dim Im A = rank A.
In particular, it is clear that the rank of the matrix of A does not depend on the
choice of bases, i.e., the rank of an operator is well-defined.

Given maps A: U — V and B : V — W it is possible that Im A and Ker B
have a nonzero intersection. The dimension of this intersection can be computed
from the following formula.

THEOREM.

dim(Im ANKer B) = dimIm A — dimIm BA = dim Ker BA — dim Ker A.

Proor. Let C be the restriction of B to Im A. Then
dimKerC' + dimImC = dimIm A,
i.e.
dim(Im A NKer B) + dimIm BA = dim Im A.

To prove the second identity it suffices to notice that
dimIm BA = dimV — dim Ker BA

and
dimImA =dimV —dimKerA. O

6.2. The kernel and the image of A and of the adjoint operator A* are related
as follows.

6.2.1. THEOREM. Ker A* = (Im A)* and Im A* = (Ker A)*.

ProOOF. The equality A*f = 0 means that f(Az) = A*f(x) =0 for any z € V,
i.e., f € (Im A)*. Therefore, Ker A* = (Im A)* and since (4*)* = A, then Ker A =
(Im A*)*. Hence, (Ker A)* = ((Im A*)Y)* =Im A*. O
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COROLLARY. rank A = rank A*.

PROOF. rank A* = dimIm A* =dim(Ker A)* =dim V —dim Ker A =dimIm A =
rank A. O

REMARK. If V is a space with an inner product, then V* can be identified with
V' and then
V=ImA® (ImA)* =ImA® Ker A*.

Similarly, V' = Im A* @ Ker A.

6.2.2. THEOREM (The Fredholm alternative). Let A :V — V be a linear
operator. Consider the four equations

(1) Az =y forxz,yeV, (3) Az =0,
(2) A"f=g forf,geVr, (4) A f=0.

Then either equations (1) and (2) are solvable for any right-hand side and in this
case the solution is unique, or equations (3) and (4) have the same number of

linearly independent solutions x1,...,xx and f1,..., fr and in this case the equa-
tion (1) (resp. (2)) is solvable if and only if fily) = -+ = fe(y) = 0 (resp.
g(x1) = -+ =g(zx) = 0).

PROOF. Let us show that the Fredholm alternative is essentially a reformulation
of Theorem 6.2.1. Solvability of equations (1) and (2) for any right-hand sides
means that ImA = V and Im A* =V, ie., (Ker A*)* = V and (Ker 4)* =V
and, therefore, Ker A* = 0 and Ker A = 0. These identities are equivalent since
rank A = rank A*.

If Ker A # 0 then dimKer A* = dimKer A and y € Im A if and only if y €
(Ker A*)*, ie., fi(y) = - = fr(y) = 0. Similarly, g € Im A* if and only if
g(z1) =+ =g(xx) = 0.

6.3. The image of a linear map A is connected with the solvability of the linear
equation

(1) Az =b.
This equation is solvable if and only if b € Im A. In case the map is given by a

matrix there is a simple criterion for solvability of (1).

6.3.1. THEOREM (Kronecker-Capelli). Let A be a matriz, and let © and b be
columns such that (1) makes sense. Equation (1) is solvable if and only if rank A =
rank(A,b), where (A,b) is the matriz obtained from A by augmenting it with b.

PROOF. Let Ay, ..., A, be the columns of A. The equation (1) can be rewritten
in the form z1A4; + -+ 4+ 2, A, = b. This equation means that the column b is a
linear combination of the columns Ay, ..., A, i.e.,, rank A = rank(A,b). O

A linear equation can be of a more complicated form. Let us consider for example
the matrix equation

(2) C = AXB.

First of all, let us reduce this equation to a simpler form.
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6.3.2. THEOREM. Let a = rank A. Then there exist invertible matrices L and
R such that LAR = I, where I, is the unit matriz of order a enlarged with the
help of zeros to make its size same as that of A.

PROOF. Let us consider the map A : V™ — V™ corresponding to the matrix
A taken with respect to bases eq,...,e, and €1,...,&,, in the spaces V™ and V'™,
respectively. Let Y441, - .., yn be a basis of Ker A and let vectors y1, ... , Y, comple-
ment this basis to a basis of V™. Define a map R : V" — V™ setting R(e;) = y;.
Then AR(e;) = Ay; for i < a and AR(e;) = 0 for i > a. The vectors x1 = Ay,

., &q = Ay, form a basis of Im A. Let us complement them by vectors zg41, ... ,
Ty, to a basis of V™. Define a map L : V™™ — V™ by the formula Lz; = ¢;. Then

LAR(e:) g forl1<i<a;
€;) =
0 for i>a.

Therefore, the matrices of the operators L and R with respect to the bases e and
g, respectively, are the required ones. [J

6.3.3. THEOREM. FEquation (2) is solvable if and only if one of the following
equivalent conditions holds

a) there exist matrices Y and Z such that C = AY and C = ZB;

b) rank A = rank(A4,C) and rank B = rank (g), where the matriz (A,C) is
formed from the columns of the matrices A and C and the matrix (g) s formed
from the rows of the matrices B and C.

PROOF. The equivalence of a) and b) is proved along the same lines as Theo-
rem 6.3.1. It is also clear that if C = AX B then we canset Y = XB and Z = AX.
Now, suppose that C' = AY and C = ZB. Making use of Theorem 6.3.2, we can
rewrite (2) in the form

D =I1,WI,, where D=LsCRgand W = R,;'XL;".

Conditions C' = AY and C = ZB take the form D = I,(R,'YRp) and D =
(L AZL]_gl)Ib, respectively. The first identity implies that the last n — a rows of D
are zero and the second identity implies that the last m — b columns of D are zero.
Therefore, for W we can take the matrix D. O

6.4. If W is a subspace in V then V can be stratified into subsets
M,={zeV|z—-—veW}
It is easy to verify that M, = M, if and only if v — v’ € W. On the set
VIW ={M, |veV}

we can introduce a linear space structure setting AM,, = M), and M, + M,, =
My1. It is easy to verify that My, and M, do not depend on the choice of v
and v and only depend on the sets M, and M, themselves. The space V/W is
called the quotient space of V' with respect to (or modulo) W it is convenient to
denote the class M, by v+ W.

The map p : V. — V/W, where p(v) = M,, is called the canonical projection.
Clearly, Kerp = W and Imp = V/W. If eq,...,¢ex is a basis of W and ey, ..., e,
€k+1s---,€n 18 a basis of V' then p(e;) = -+ = p(er) = 0 whereas p(eg41), - .. ,
p(en) is a basis of V/W. Therefore, dim(V/W) = dimV — dim W.
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THEOREM. The following canonical isomorphisms hold:

a) (UW)/(V/W)=2U/V ifWCV cCU;

b) V/VNWX(V+W)/W if V,IWCU.

PROOF. a) Let uy,us € U. The classes u; + W and uy + W determine the same
class modulo V/W if and only if [(us +W)—(us+W)] € V, ie, u1—us € V+W =V,
and, therefore, the elements u; and us determine the same class modulo V.

b) The elements vy, vy € V determine the same class modulo V N W if and only
if v1 — vy € W, hence the classes v1 + W and vy + W coincide. [

Problem

6.1. Let A be a linear operator. Prove that

dim Ker A" = dim Ker A + Z dim(Im A* N Ker A)

k=1
and
n
dimIm A = dim Im A" 4 Z dim(Im A* N Ker A).
k=1
7. Bases of a vector space. Linear independence
7.1. In spaces V and W, let there be given bases e1,...,e, and €1,...,&p.
Then to a linear map f : V — W we can assign a matrix A = Hain such that

fej = Zaijsi, i.e.,

f(2zjes) Z @i Tj€i-
Let = be a column (z1,...,7,)T, and let e and ¢ be the rows (ey,...,e,) and
(1,.-+,6m). Then f(ex) = eAx. In what follows a map and the corresponding
matrix will be often denoted by the same letter.

How does the matrix of a map vary under a change of bases? Let ¢/ = eP and
¢’ = €@ be other bases. Then

f(e'z) = f(ePx) = cAPx = £'Q " APx,
ie.,
A =Q AP
is the matrix of f with respect to €’ and ¢’. The most important case is that when
V =W and P = @Q, in which case

A =P AP
THEOREM. For a linear operator A the polynomial
N = Al = A"+ ap 1 A" P+ Fap
does not depend on the choice of a basis.
PROOF. |A[ — P7YAP| = |P~Y(\I — A)P| = |P|7YP|- A\ — A| = |\ — A|.
The polynomial
pN) =M = A = A" 4 ap 1 A"+ Fap

is called the characteristic polynomial of the operator A, its roots are called the
eigenvalues of A. Clearly, |A| = (—1)"ap and tr A = —a,,—; are invariants of A. O
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7.2. The majority of general statements on bases are quite obvious. There are,
however, several not so transparent theorems on a possibility of getting a basis by
sorting vectors of two systems of linearly independent vectors. Here is one of such
theorems.

THEOREM ([Green, 1973]). Let x1,...,2Z, and y1,...,yn be two bases, 1 < k <
n. Then k of the vectors vy, ...,yn can be swapped with the vectors x1,...,xx SO
that we get again two bases.

PRrOOF. Take the vectors y1, ..., ¥y, for a basis of V. For any set of n vectors z1,

., zp from V consider the determinant M(zy,...,2,) of the matrix whose rows
are composed of coordinates of the vectors z1, ..., z, with respect to the basis
Y1,---,Yn. The vectors z1, ..., z, constitute a basis if and only if M(z1,...,2,) #
0. We can express the formula of the expansion of M (xy,...,z,) with respect to
the first k£ rows in the form

(1) M(zy,.. o) =Y EM(xy,. . ap, AMY \ A 2, 20),

Acy
where the summation runs over all (n — k)-element subsets of Y = {y1,...,yn}.
Since M (z1,...,zy,) # 0, then there is at least one nonzero term in (1); the corre-
sponding subset A determines the required set of vectors of the basis y1,...,y,. O

7.3. THEOREM ([Aupetit, 1988]). Let T be a linear operator in a space V' such
that for any € € V the vectors £, TE, ..., T™E are linearly dependent. Then the
operators I, T, ..., T™ are linearly dependent.

PrOOF. We may assume that n is the maximal of the numbers such that the
vectors &, ..., T" 1 are linearly independent and T7¢, € Span(&, ..., T" &)
for some &y. Then there exists a polynomial py of degree n such that po(T)& = 0;
we may assume that the coefficient of highest degree of pg is equal to 1.

Fix a vector n € V and let us prove that po(T)n = 0. Let us consider

W = Sp&n(go, s 7Tn§07777 cee 7Tn77)

It is easy to verify that dim W < 2n and T(W) C W. For every A € C consider the
vectors

Jo) =&+ An, fi(A) =T fo(A), -\ faci(N) =T fo(N), g(A) =T fo(N).

The vectors fo(0), ..., fn—1(0) are linearly independent and, therefore, there
are linear functions o, ..., ¢,—1 on W such that ¢;(f;(0)) = d;;. Let

AN) = lag (Mg, where ai;(A) = @i(fi(N)-
Then A()) is a polynomial in A of degree not greater than n such that A(0) = 1.

By the hypothesis for any A € C there exist complex numbers ag(A), ..., ap—1(A)
such that

(1) g(A) = ao(N) fo(A) + -+ an—1(A) fu-1(N).
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Therefore,

n—1
(2) ig) = 3 Wi (fe(N) fori=0,....n—1.
k=0

If A(X) # 0 then system (2) of linear equations for ax(A) can be solved with the
help of Cramer’s rule. Therefore, ax()) is a rational function for all A € C\ A,
where A is a (finite) set of roots of A(X).

The identity (1) can be expressed in the form py(7T)fo()\) = 0, where

pA(T) =T" — (V)T — - — ().
Let B1(A), ..., Bn(N) be the roots of p(\). Then
(T~ L) (T — Bu WD) fo(N) = 0.

If A & A, then the vectors fo(A), ..., fn_1(A\) are linearly independent, in other
words, h(T) fo(N\) # 0 for any nonzero polynomial h of degree n — 1. Hence,

w= (T = Bo(NI).. (T = Bu(ND fo(A) # 0

and (T — B1(A\) 1w = 0, i.e., B1(A) is an eigenvalue of T. The proof of the fact that
B2(A), ..., Bn(N) are eigenvalues of T is similar. Thus, |G;(\)] < HTHS (cf. 35.1).

The rational functions ag(A), ... , ap—1(A) are symmetric functions in the func-
tions B1(N), ..., Bn()A); the latter are uniformly bounded on C\ A and, therefore,
they themselves are uniformly bounded on C\ A. Hence, the functions ag(A), ...,
@n_1()) are bounded on C; by Liouville’s theorem? they are constants: a;(\) = «;.

Let p(T) = T" — a1 T ' — -+ —apl. Then p(T)fo(A) = 0 for A € C\ A;
hence, p(T)fo(A) = 0 for all A. In particular, p(T)§ = 0. Hence, p = py and
po(T)n=0. O

Problems

7.1. In V" there are given vectors e, ..., €,. Prove that if m > n + 2 then
there exist numbers aq, ... , a,, not all of them equal to zero such that > a;e; =0
and Y a; =0.

7.2. A convex linear combination of vectors vy,...,v,, is an arbitrary vector
x =t1v; + -+ tyUm, where t; > 0 and > ¢; = 1.

Prove that in a real space of dimension n any convex linear combination of m
vectors is also a convex linear combination of no more than n + 1 of the given
vectors.

7.3. Prove that if |a;| > >4, |aik| for i = 1,...,n, then A = Hain? is an
invertible matrix.

7.4. a) Given vectors ej, ..., ept1 in an n-dimensional Euclidean space, such
that (e;,e;) < 0 for i # j, prove that any n of these vectors form a basis.
b) Prove that if ey, ..., e, are vectors in R™ such that (e;,e;) < 0 for ¢ # j

then m <n + 1.

3See any textbook on complex analysis.
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8. The rank of a matrix

8.1. The columns of the matrix AB are linear combinations of the columns of
A and, therefore,
rank AB < rank A;

since the rows of AB are linear combinations of rows B, we have
rank AB < rank B.
If B is invertible, then
rank A = rank(AB)B™! < rank AB

and, therefore, rank A = rank AB.
Let us give two more inequalities for the ranks of products of matrices.

8.1.1. THEOREM (Frobenius’ inequality).
rank BC + rank AB < rank ABC + rank B.

Proor. If U C V and X : V — W, then
dim(Ker X|y) < dimKer X = dimV — dimIm X.
For U=ImBC,V =ImB and X = A we get
dim(Ker Al o) < dimIm B — dimIm AB.

Clearly,
dim(Ker Al po) = dimIm BC' — dimIm ABC. O

8.1.2. THEOREM (The Sylvester inequality).
rank A 4+ rank B < rank AB + n,

where n is the number of columns of the matriz A and also the number of rows of
the matriz B.

PRrROOF. Make use of the Frobenius inequality for matrices Ay = A, By = I,
and C; = B. O

8.2. The rank of a matriz can also be defined as follows: the rank of A is equal
to the least of the sizes of matrices B and C' whose product is equal to A.

Let us prove that this definition is equivalent to the conventional one. If A = BC
and the minimal of the sizes of B and C is equal to k then

rank A < min(rank B, rank C) < k.

It remains to demonstrate that if A is a matrix of size m x n and rank A = k then
A can be represented as the product of matrices of sizes m x k and k x n. In A, let
us single out linearly independent columns Aq, ..., Ag. All other columns can be
linearly expressed through them and, therefore,
A= (znnd1+ - +rdr, 210 A + o+ TenAg)
11 oo X1n

= (Ay... Ap)

Tkl cee Tkn
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8.3. Let M, ,, be the space of matrices of size n x m. In this space we can
indicate a subspace of dimension nr, the rank of whose elements does not exceed r.
For this it suffices to take matrices in the last n — r rows of which only zeros stand.

THEOREM ([Flanders, 1962]). Let r <m <mn, let U C M, , be a linear subspace
and let the mazimal rank of elements of U be equal to r. Then dimU < nr.

ProoF. Complementing, if necessary, the matrices by zeros let us assume that
all matrices are of size n x n. In U, select a matrix A of rank r. The transformation

X — PXQ@Q, where P and () are invertible matrices, sends A to (% 8) (see

Theorem 6.3.2). We now perform the same transformation over all matrices of U
and express them in the corresponding block form.

Bi1 By

8.3.1. LEMMA. If Be€ U then B = (
By O

>, where B21312 =0.

B B . .
PROOF. Let B = 1 12) ¢ U, where the matrix Bs; consists of rows
By Bao
UL, ..., Uy and the matrix Bio consists of columns vy,...,v,_.. Any minor of

order r + 1 of the matrix tA + B vanishes and, therefore,

tl, +Bi1 v

w b | =0

A(t) = ’

The coefficient of ¢ is equal to b;; and, therefore, b;; = 0. Hence, (see Theo-
rem 3.1.3)
A(t) = —U; adj(t[r + Bu)vj.
Since adj(tl, + B11) = t""1I. + ..., then the coefficient of t"~! of the polynomial
A(t) is equal to —u,;v;. Hence, w;v; = 0 and, therefore Bo; Bio = 0. O

8.3.2. LEMMA. If B,C € U, then Bs1C12 + Co1B12 = 0.

PROOF. Applying Lemma 8.3.1 to the matrix B + C € U we get (Ba +
Co1)(Bi2 + C12) =0, i.e., B1Cia + Co1 B2 =0. O

We now turn to the proof of Theorem 8.3. Let us consider the map f: U —
M, ,, given by the formula f(C) = ||Cn, 012”. Then Ker f consists of matrices of

the form BO 8) and by Lemma 8.3.2 By C15 = 0 for all matrices C € U.
21

Further, consider the map g : Ker f — M,.,, given by the formula
9(B) (| X11X12]|) = tr(Bai X12).

This map is a monomorphism (see 5.6) and therefore, the space g(Ker f) C M,
is of dimension k = dim Ker f. Therefore, (g(Ker f))* is a subspace of dimension
nr—kin M, ,. If C € U, then By;C12 = 0 and, therefore, tr(B2;C12) = 0. Hence,
f(U) C (g(Ker £))*, ie., dim f(U) < nr — k. It remains to observe that

dim f(U) + k =dimIm f + dimKer f = dimU. O
In [Flanders, 1962] there is also given a description of subspaces U such that

dimU = nr. If m =n and U contains I, then U either consists of matrices whose
last n — r columns are zeros, or of matrices whose last n — r rows are zeros.
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Problems

8.1. Let a;; = z; + y;. Prove that rank”ain;l < 2.

8.2. Let A be a square matrix such that rank A = 1. Prove that |[A + I| =
(tr A) + 1.

8.3. Prove that rank(A*A) = rank A.

8.4. Let A be an invertible matrix. Prove that if rank (é‘ g) = rank A then

D=CA™'B.

8.5. Let the sizes of matrices A; and As be equal, and let V7 and V5 be the
spaces spanned by the rows of A; and As, respectively; let Wi and W5 be the
spaces spanned by the columns of A; and As, respectively. Prove that the following
conditions are equivalent:

1) rank(A; + As) = rank A; + rank Ao;

2) V1 N ‘/2 = O;

3) WiNWe =0.

8.6. Prove that if A and B are matrices of the same size and BTA = 0 then
rank(A + B) = rank A + rank B.

8.7. Let A and B be square matrices of odd order. Prove that if AB = 0 then
at least one of the matrices A + AT and B + B is not invertible.

8.8 (Generalized Ptolemy theorem). Let X ... X, be a convex polygon inscrib-
able in a circle. Consider a skew-symmetric matrix A = Haij‘ T, where a;; = X; X;
for i > j. Prove that rank A = 2.

9. Subspaces. The Gram-Schmidt orthogonalization process

9.1. The dimension of the intersection of two subspaces is related with the
dimension of the space spanned by them via the following relation.

THEOREM. dim(V 4+ W)+ dim(VNW) =dimV + dim W.

PROOF. Let eq,...,e,. be a basis of VN W3 it can be complemented to a basis
€1ly.-.yCpry U1,...,Uy_pr of V™ and to a basis e1,..., €., wi,...,Wn_r of W™, Then
€1y vvsCry UlyennyUnpy Wi, .., Wm—p 1S a basis of V + W. Therefore,

dim(V+W)+dim(VNW) = (r+(n—r)+(m—r))+r =n+m =dimV+dimW. O

9.2. Let V be a subspace over R. An inner productin Visamap V xV — R
which to a pair of vectors u,v € V assigns a number (u,v) € R and has the following
properties:

1) (U,U) = (’Uvu);

2) (Au+ pv, w) = Mu, w) + p(v, w);

3) (u,u) > 0 for any u # 0; the value |u| = v/(u,u) is called the length of w.

A basis ej,...,e, of V is called an orthonormal (respectively, orthogonal) if
(e;,€;) = d;; (respectively, (e;,e;) =0 for i # 7).

A matrix of the passage from an orthonormal basis to another orthonormal
basis is called an orthogonal matriz. The columns of such a matrix A constitute an
orthonormal system of vectors and, therefore,

ATA=T; hence, AT = A=1 and AAT = 1.
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If A is an orthogonal matrix then
(Az, Ay) = (2, AT Ay) = (z,y).

It is easy to verify that any vectors ey, ... , e, such that (e;, e;) = d;; are linearly
independent. Indeed, if A\je; +---+ Ape, = 0 then A\; = (A\e; +- -+ Apen,e) = 0.
We can similarly prove that an orthogonal system of nonzero vectors is linearly
independent.

THEOREM (The Gram-Schmidt orthogonalization). Let eq,...,e, be a basis
of a vector space. Then there exists an orthogonal basis €1, ...,&, such that &; €
Span(ey,...,e;) foralli=1,... n.

PROOF is carried out by induction on n. For n = 1 the statement is obvious.
Suppose the statement holds for n vectors. Consider a basis e, ..., e,41 of (n+1)-
dimensional space V. By the inductive hypothesis applied to the n-dimensional
subspace W = Span(ey, ..., e,) of V there exists an orthogonal basis €1, ...,&, of
W such that ¢; € Span(ey,...,e;) for i =1,...,n. Consider a vector

Ent1 = e+ + AEn + €n+t1-

The condition (g;,&,41) = 0 means that X\;(g;,&;) + (eny1,8:) = 0, ie, A\, =

€kt1,E .
—M. Taking such numbers \; we get an orthogonal system of vectors ey, ... ,

(Ez', 5i)
€n+1 In V, where €,41 # 0, since e, 41 & Span(eq,...,e,) = Span(eq,...,e,). O
REMARK 1. From an orthogonal basis €1, . ..,&, we can pass to an orthonormal

basis €],...,el,, where €}, = &;//(€i,€:).

REMARK 2. The orthogonalization process has a rather lucid geometric interpre-
tation: from the vector e, 1 we subtract its orthogonal projection to the subspace
W = Span(es, ..., e,) and the result is the vector €, orthogonal to W.

9.3. Suppose V is a space with inner product and W is a subspace in V. A
vector w € W is called the orthogonal projection of a vector v € V' on the subspace
Witv—w L W.

9.3.1. THEOREM. For any v € W there exists a unique orthogonal projection
on W.

PrROOF. In W select an orthonormal basis eq,...,e;. Consider a vector w =
Aie1 + - -+ + Ager. The condition w — v L e; means that

0= (A1e1+ -+ gegp —v,e;) = N — (v, €5),
ie, A\; = (v,e;). Taking such numbers A; we get the required vector; it is of the
form w = Zle(v, ei)e;. O

9.3.1.1. COROLLARY. If e1,...,e, is a basis of V and v € V then v =
S (v,eies.

PrOOF. The vector v — Y., (v, €;)e; is orthogonal to the whole V. O
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9.3.1.2. COROLLARY. If w and wr are orthogonal projections of v on W and
W, respectively, then v = w + w™.

PRrROOF. It suffices to complement an orthonormal basis of W to an orthonormal
basis of the whole space and make use of Corollary 9.3.1.1. O

9.3.2. THEOREM. If w is the orthogonal projection of v on W and wy € W
then
v —wi)? = v — w]® + |w —w|*

PROOF. Let a =v—w and b = w—w; € W. By definition, a 1 b and, therefore,
la+b?>=(a+ba+b)=la*+ b O

9.3.2.1. COROLLARY. |v]? = |w|? + |v — w]|?.
ProOOF. In the notation of Theorem 9.3.2 set w; =0. O

9.3.2.2. COROLLARY. |v — wi| > |v — w| and the equality takes place only if
wp; = w.

9.4. The angle between a line l and a subspace W is the angle between a vector
v which determines [ and the vector w, the orthogonal projection of v onto W (if
w = 0 then v L W). Since v — w L w, then (v,w) = (w,w) > 0, i.e., the angle
between v and w is not obtuse.

FIGURE 2

If w and w' are orthogonal projections of a umit vector v on W and W+,
respectively, then cos Z(v,w) = |w| and cos Z(v,w*) = |w'|, see Figure 2, and
therefore,

cos Z(v, W) = sin Z(v, W),

Let eq,..., e, be an orthonormal basis and v = z1e1 + - - - + x,,€, a unit vector.
Then x; = cos a;, where «; is the angle between v and e;. Hence, Z?:l cos?a; =1

and
n n
Zsin2 ;= Z(l —cos?a;) =n— 1.
i=1

=1
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THEOREM. Let eq,...,e, be an orthonormal basis of a subspace W C V and
a; the angle between v and e; and o the angle between v and W. Then cos® o =

SF cos? oy
i=1 i

PROOF. Let us complement the basis e, ..., ex to a basis e, ...,e, of V. Then
v =x1€1 + -+ Tpre,, where z; = cosq; for ¢ = 1,...,k, and the projection of v
onto W is equal to z1e1 + -+ 4+ xrex = w. Hence,

cos?a=|w? =224 - +22 =cos®a; + - +cos® . O

9.5. THEOREM ([Nisnevich, Bryzgalov, 1953]). Let ey,...,e, be an orthogonal
basis of V., and dy, ... , dy the lengths of the vectors ey, ... , e,. An m-dimensional
subspace W C V' such that the projections of these vectors on W are of equal length
exists if and only if

Ed? 4 +d?)>m fori=1,...,n.

Proor. Take an orthonormal basis in W and complement it to an orthonormal
basis €1,...,&, of V. Let (x14,...,%,;) be the coordinates of e; with respect to
the basis €1, ..., e, and yg; = zk;/d;. Then Hysz is an orthogonal matrix and the
length of the projection of e; on W is equal to d if and only if

(1) Yty = (af 4 ad)d = dPdR

If the required subspace W exists then d < d; and

m n n m
M= =YY uh = 7 ) S A ).
=1i=1 i=1 k=1
Now, suppose that m < d?(d;? 4 --- 4+ d;?) for i = 1,...,n and construct an

orthogonal matrix ||ykZH;L with property (1), where d? = m(d; % +---4+d;2)~*. We
can now construct the subspace W in an obvious way.

Let us prove by induction on n that if 0 < g; <1lfori=1,...,nand 1 +---+
Brn = m, then there exists an orthogonal matrix Hyki H? such that y3,+- - -+y2,; = Bi.
For n = 1 the statement is obvious. Suppose the statement holds for n — 1 and
prove it for n. Consider two cases:

a) m < n/2. We can assume that §; > --- > 8,. Then 5,1 + 8, <2m/n <1
and, therefore, there exists an orthogonal matrix A = HakiH?_l such that a?; +
cedal,=pifori=1,...,n—2andai, |+ ---+a}, | = Ba-1+ Fn Then
the matrix

ai1 a1,n—2 101, n—1 —Q201 n—-1
loally = | - - t

p—-1,1 -+ (An-1n—-2 Q10Gnp-1n-1 —QA20p—-1n-1
0 0 (6% a1
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where a; = /ﬁﬁniji—lﬁ and ag = %, is orthogonal with respect to its
n—1 n n—1 n

columns; besides,

m
Zl/z%iZ@ fori=1,...,n—2
k=1

y%,nfl +eee y'rQn,nfl = O[%(ﬁn,1 + ﬁn) = ﬂn*h
y%n+"'+y72nn :ﬂn

b) Let m > n/2. Then n —m < n/2, and, therefore, there exists an orthogonal
matrix HykZH? such that yfn_ﬂﬂ- + -+ ny,i =1-03; for i = 1,...,n; hence,
yii+ ot ymi =6 O

9.6.1. THEOREM. Suppose a set of k-dimensional subspaces in a space V 1is
given so that the intersection of any two of the subspaces is of dimension k — 1.
Then either all these subspaces have a common (k — 1)-dimensional subspace or all
of them are contained in the same (k + 1)-dimensional subspace.

PROOF. Let Vi];-_l =VFn ij and Vi; = VF N ij N V;*. First, let us prove that
if Vigg # Viy ! then VF C VIF + VJF. Indeed, if Viog # V5 ! then V5 and Vi *
are distinct subspaces of V3 and the subspace Vigz = V{5 ' N Vs ! is of dimension
k—2. In Vio3, select a basis € and complement it by vectors ej3 and es3 to bases of
V13 and Vag, respectively. Then V3 = Span(eys, es3, €), where e13 € Vi and ea3 € V5.

Suppose the subspaces V¥, V¥ and V¥ have no common (k — 1)-dimensional
subspace, i.e., the subspaces Vf{l and V2’§;1 do not coincide. The space V; could
not be contained in the subspace spanned by Vi, Vo and V3 only if Vi9; = V5 and
Vas; = Vaz. But then dim V; > dim(Via 4+ Vas) = k 4+ 1 which is impossible. O

If we consider the orthogonal complements to the given subspaces we get the
theorem dual to Theorem 9.6.1.

9.6.2. THEOREM. Let a set of m-dimensional subspaces in a space V' be given
so that any two of them are contained in a (m + 1)-dimensional subspace. Then
either all of them belong to an (m + 1)-dimensional subspace or all of them have a
common (m — 1)-dimensional subspace.

Problems

9.1. In an n-dimensional space V', there are given m-dimensional subspaces U
and W so that u L W for some u € U \ 0. Prove that w L U for some w € W\ 0.

9.2. In an n-dimensional Euclidean space two bases z1,...,z, and y1,...,y, are
given so that (x;,2;) = (yi,y;) for all ¢,j. Prove that there exists an orthogonal
operator U which sends x; to y;.

10. Complexification and realification. Unitary spaces

10.1. The complezification of a linear space V' over R is the set of pairs (a,b),
where a,b € V', with the following structure of a linear space over C:

(a,b) + (a1,b1) = (a+a1,b+by)
(z +1iy)(a,b) = (za — yb,xb + ya).
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Such pairs of vectors can be expressed in the form a + ib. The complexification of
V is denoted by V.

To an operator A : V — V there corresponds an operator A€ : V€ — VC given
by the formula A(a+ib) = Aa-+iAb. The operator A® is called the complezification
of A.

10.2. A linear space V over C is also a linear space over R. The space over R
obtained is called a realification of V. We will denote it by V.

A linear map A : V — W over C can be considered as a linear map Ag : Vg —
Wg over R. The map Ay is called the realification of the operator A.

Ifey,...,e, is a basis of V over C then ey, ..., e,, ie1,...,ie, is a basis of V. It
is easy to verify that if A = B +iC is the matrix of a linear map A : V — W with
respect to bases e,...,e, and €1, ..., &, and the matrices B and C are real, then
the matrix of the linear map Agr with respect to the bases eq,...,e,, ieq,...,ie,

. L B -C
and €1,...,&m, 1€1,...,1i&y is of the form <C B )

THEOREM. If A:V — V is a linear map over C then det Ag = | det A|2.

(e 1)@ B) 0 7)=("3" 53%)

Therefore, det Ag = det A - det A = |det A|2. O

PROOF.

10.3. Let V be a linear space over C. An Hermitian product in V is a map
V x V — C which to a pair of vectors z,y € V assigns a complex number (z,y)
and has the following properties:

1) (z,y) = (y,2);

2) (ax + By, z) = a(x, 2) + B(y, 2);

3) (x,x) is a positive real number for any x # 0.

A space V with an Hermitian product is called an Hermitian (or unitary) space.
The standard Hermitian product in C" is of the form =1y, + -+ + 2,7,

A linear operator A* is called the Hermitian adjoint to A if

(Az,y) = (z, A%y) = (A*y, 2).

(Physicists often denote the Hermitian adjoint by A™.)
Let Haij H;L and Hbii H? be the matrices of A and A* with respect to an orthonor-

mal basis. Then o
aij = (Aej,ei) = (A*ej,ei) = bﬂ

A linear operator A is called unitary if (Az, Ay) = (z,y), i.e., a unitary operator
preserves the Hermitian product. If an operator A is unitary then

Therefore, A*A = I = AA*, i.e., the rows and the columns of the matrix of A
constitute an orthonormal systems of vectors.

A linear operator A is called Hermitian (resp. skew-Hermitian ) if A* = A (resp.
A* = —A). Clearly, a linear operator is Hermitian if and only if its matrix A is
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Hermitian with respect to an orthonormal basis, i.e., ZT = A; and in this case its
matrix is Hermitian with respect to any orthonormal basis.

Hermitian matrices are, as a rule, analogues of real symmetric matrices in the
complex case. Sometimes complex symmetric or skew-symmetric matrices (that
is such that satisfy the condition AT = A or AT = —A, respectively) are also
considered.

10.3.1. THEOREM. Let A be a complex operator such that (Ax,x) = 0 for all
x. Then A=0.

PROOF. Let us write the equation (Az, z) = 0 twice: for x = u+wv and z = u+iv.
Taking into account that (Av,v) = (Au,u) = 0 we get (Av,u) + (Au,v) = 0 and
i(Av,u) — i(Au,v) = 0. Therefore, (Au,v) =0 for all u,v € V. O

REMARK. For real operators the identity (Az,2) = 0 means that A is a skew-
symmetric operator (cf. Theorem 21.1.2).

10.3.2. THEOREM. Let A be a complex operator such that (Az,z) € R for any
x. Then A is an Hermitian operator.

PRrROOF. Since (Az,x) = (Az,z) = (x, Az), then
((A— A"z, z) = (Az,x) — (A z,z) = (Az,x) — (z, Az) = 0.
By Theorem 10.3.1 A — A*=0. O

10.3.3. THEOREM. Any complex operator is uniquely representable in the form
A =B +1iC, where B and C are Hermitian operators.

Proor. If A = B +iC, where B and C' are Hermitian operators, then A* =
B* —iC* = B — iC and, therefore 2B = A + A* and 2iC = A — A*. It is easy to
verify that the operators (A + A*) and 5 (A — A*) are Hermitian. [

REMARK. An operator iC' is skew-Hermitian if and only if the operator C is
Hermitian and, therefore, any operator A is uniquely representable in the form of
a sum of an Hermitian and a skew-Hermitian operator.

An operator A is called normal if A*A = AA*. Tt is easy to verify that unitary,
Hermitian and skew-Hermitian operators are normal.

10.3.4. THEOREM. An operator A = B + iC, where B and C are Hermitian
operators, is normal if and only if BC = CB.

PROOF. Since A* = B* —iC* = B—iC, then A*A = B2+ C2+i(BC—CB) and
AA* = B? + C? — i(BC — CB). Therefore, the equality A*A = AA* is equivalent
to the equality BC —CB =0. O

10.4. If V is a linear space over R, then to define on V' a structure of a linear
space over C it is necessary to determine the operation J of multiplication by ¢,
i.e., Jv =14v. This linear map J : V — V should satisfy the following property

J?v =i(iv) = —v, ie., J2 = —1I.

It is also clear that if in a space V over R such a linear operator J is given then
we can make V into a space over C if we define the multiplication by a complex
number a + ib by the formula

(a + ib)v = av + bJv.
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In particular, the dimension of V' in this case must be even.

Let V be a linear space over R. A linear (over R) operator J : V — V is called
a complex structure on V if J? = —1I.

The eigenvalues of the operator J : V. — V are purely imaginary and, therefore,
for a more detailed study of J we will consider the complexification V' of V. Notice
that the multiplication by i in VC has no relation whatsoever with neither the
complex structure J on V or its complexification J© acting in V.

THEOREM. VC =V, @ V_, where
Vy = Ker(JC —iI) = Im(JC 4 iI)

and
V_ = Ker(J® +il) = Tm(JC —iI).

PRrOOF. Since (JC —iI)(JC +il) = (J)C + T = 0, it follows that Tm(J® +
il) C Ker(JC —4I). Similarly, Im(J¢ —4I) C Ker(J® +4I). On the other hand,
—i(JC +4I) 4+ i(J® — il) = 2I and, therefore, VC C Im(J® + iI) + Im(JC — iI).
Since Ker(J€ —iI) N Ker(JC +il) = 0, we get the required conclusion. [J

REMARK. Clearly, V, =V_.

Problems

10.1. Express the characteristic polynomial of the matrix Ag in terms of the
characteristic polynomial of A.

10.2. Consider an R-linear map of C into itself given by Az = az + bz, where
a,b € C. Prove that this map is not invertible if and only if

la] = [b].

10.3. Indicate in C™ a complex subspace of dimension [rn/2] on which the qua-
dratic form B(z,y) = z1y1 + - - - + T Yn vanishes identically.

Solutions

5.1. The orthogonal complement to the space of traceless matrices is one-
dimensional; it contains both matrices I and AT.
52. Let Ay, ..., Ay, and By, ..., Bg be the rows of the matrices A and B.
Then
Span(Ay, ..., An)* C Span(By, ..., By)*;

hence, Span(Bi, ..., By) C Span(Ai, ..., Any), e, biyj =Y cipap;.

5.3. If a vector (wi,...,wy,) belongs to an orthant that does not contain the
vectors v, then v;w; > 0 and vjw; < 0 for certain indices 4 and j. If we preserve
the sign of the coordinate w; (resp. w;) but enlarge its absolute value then the
inner product (v, w) will grow (resp. decrease) and, therefore it can be made zero.

5.4. Let us express the bilinear function 2*(y) in the form xBy”. By hypothesis
the conditions 2By’ = 0 and yBa” = 0 are equivalent. Besides, yBzT = zBTy".
Therefore, By? = A(y)BTyT. If vectors y and y; are proportional then \(y) =
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A(y1). If the vectors y and y; are linearly independent then the vectors BTy’ and
BTyl are also linearly independent and, therefore, the equalities

My +y)(By" + BTyl) = Bly" +u1) = My)B y" + A1) B y{
imply A(y) = A(y1). Thus, 2*(y) = B(z,y) and B(z,y) = AB(y,z) = \>B(z,y)
and, therefore, A = +1.
6.1. By Theorem 6.1
dim(Im A* N Ker A) = dim Ker A**! — dim Ker A* for any k.

Therefore,

Z dim(Im A* N Ker A) = dim Ker A" — dim Ker A.

k=1
To prove the second equality it suffices to notice that

dim Im A? = dim V' — dim Ker A?,

where V' is the space in which A acts.
7.1. We may assume that eq, ..., e, (k <n)isa basis of Span(ey,...,e,). Then

ekr1 +Aer + -+ e =0 and epqo + pier + -+ prer = 0.

Multiply these equalities by 14> u; and —(1+ > \;), respectively, and add up the
obtained equalities. (If 14+ > pu; =0 or 1+ )" A; = 0 we already have the required

equality.)
7.2. Let us carry out the proof by induction on m. For m < n+ 1 the statement
is obvious. Let m > n 4+ 2. Then there exist numbers a1, ..., a,, not all equal to

zero such that > a;v; =0 and > a; = 0 (see Problem 7.1). Therefore,

T = Ztivi + AZaivi = Zﬁ%

where ¢, = t; + Aa; and >t = ¢; = 1. It remains to find a number A so that all
numbers t; + Aoy are nonnegative and at least one of them is zero. The set

{ANeR | t; + Aa; >0 for i:l,...,m}

is closed, nonempty (it contains zero) and is bounded from below (and above) since
among the numbers «; there are positive (and negative) ones; the minimal number
A from this set is the desired one.

7.3. Suppose A is not invertible. Then there exist numbers A1, ..., A, not all
equal to zero such that ). Aja;; = 0for k =1,...,n. Let A; be the number among
A1,y ..., An whose absolute value is the greatest (for definiteness sake let s = 1).
Since

Ararr + Agaiz + -+ Apar, =0,
then

[Aai1] = [Aeaiz + - + Aparn| < |A2aia] + - + [Anaiq|
<[l (Jae] + -+ larn]) < [A] - a1l
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Contradiction.

7.4. a) Suppose that the vectors eq, ... , ex are linearly dependent for k < n+ 1.
We may assume that this set of vectors is minimal, i.e., Aje; +- - -+ A\yep = 0, where
all the numbers \; are nonzero. Then

0= (en+t1, Y Niei) = Z)\i(enﬂ,ei), where (en41,€;) < 0.

Therefore, among the numbers \; there are both positive and negative ones. On
the other hand, if

)\1@1 + -+ Apep = A;_,'_lep-f—l + -+ )\;i:ekH

where all numbers \;, )\;- are positive, then taking the inner product of this equality
with the vector in its right-hand side we get a negative number in the left-hand side
and the inner product of a nonzero vector by itself, i.e., a nonnegative number, in
the right-hand side.

b) Suppose that vectors eq, ..., e,42 in R™ are such that (e;,e;) < 0 for i # j.
On the one hand, if aye; + -+ + apt2e,+2 = 0 then all the numbers «; are of the
same sign (cf. solution to heading a). On the other hand, we can select the numbers

a1, ..., Gpta so that > a; =0 (see Problem 7.1). Contradiction.
8.1. Let
T 1
x={: :) Y:<1 1>.
: : Y1 e Yn
T, 1

Then HainT = XY.
8.2. Let e; be a vector that generates Im A. Let us complement it to a basis

€1,...,en. The matrix A with respect to this basis is of the form
ay ‘e Qp,
0o ... 0
A =
o ... 0

Therefore, tr A = ay and |[A+ 1| =1+ a;.

8.3. Tt suffices to show that Ker A*NIm A = 0. If A*v =0 and v = Aw, then
(v,v) = (Aw,v) = (w, A*v) = 0 and, therefore, v = 0.

8.4. The rows of the matrix (C, D) are linear combinations of the rows of the
matrix (A, B) and, therefore, (C,D) = X(A,B) = (XA, XB), ie, D = XB =
(CA~YH)B.

8.5. Let r; = rank A; and r = rank(A4; + A3). Then dimV; = dimW; = r;
and dim(V; + Vo) = dim(W; + Wa) = r. The equality r; + 7o = r means that
dim(V; + V) = dim V; 4+ dim V4, ie., V1 NVa = 0. Similarly, W; N W, = 0.

8.6. The equality BT A = 0 means that the columns of the matrices A and B are
pair-wise orthogonal. Therefore, the space spanned by the columns of A has only
zero intersection with the space spanned by the columns of B. It remains to make
use of the result of Problem 8.5.

8.7. Suppose A and B are matrices of order 2m + 1. By Sylvester’s inequality,

rank A +rank B <rank AB +2m+1=2m + 1.
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Therefore, either rank A < m or rank B < m. If rank A < m then rank AT =
rank A < m; hence,

rank(A 4+ A7) < rank A + rank AT < 2m < 2m + 1.

8.8. We may assume that a;o # 0. Let A; be the ith row of A. Let us prove
that as1 A; = ag; A1 + a;1As, ie.,

(1) a12a;; + ayjaz; + ayja;z = 0.

The identity (1) is skew-symmetric with respect to ¢ and j and, therefore, we
can assume that ¢ < j, see Figure 3.

Fi1GURE 3
Only the factor a;o is negative in (1) and, therefore, (1) is equivalent to Ptolemy’s
theorem for the quadrilateral X XoX;X;.
9.1. Let Uy be the orthogonal complement of u in U. Since
dimU{ +dimW =n—(m—1)+m=n+1,

then dim(Ui- NW) > 1. If w € WNU{ then w L Uy and w L u; therefore, w 1 U.
9.2. Let us apply the orthogonalization process with the subsequent normaliza-

tion to vectors x1, ..., T,. As a result we get an orthonormal basis ey, ..., e,. The
vectors x1, ..., T, are expressed in terms of ey,...,e, and the coefficients only
depend on the inner products (x;,x;). Similarly, for the vectors yi, ... , yn we get
an orthonormal basis €1, ...,&,. The map that sends e; to &; (¢ = 1,...,n) is the

required one.
10.1. det(M — Ag) = | det(A — A)|%.
10.2. Let a = a1 +1iag, b = by +ibs, where a;, b; € R. The matrix of the given map
a1 +by —as + by

with respect to the basis 1,7 is equal to
p ’ 4 (CLQ + bQ ap — bl

) and its determinant

is equal to |a|? — [b|%.
10.3. Let p = [n/2]. The complex subspace spanned by the vectors e; + ieq,
esz +ieq, ..., €ap_1 + i€y possesses the required property.
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CANONICAL FORMS OF MATRICES
AND LINEAR OPERATORS

11. The trace and eigenvalues of an operator

11.1. The trace of a square matrix A is the sum of its diagonal elements; it is
denoted by tr A. It is easy to verify that

trAB = Zaijb]’i = tr BA.
i3
Therefore,
trPAP™ ! =tr P"'PA=1trA,

i.e., the trace of the matrix of a linear operator does not depend on the choice of a
basis.
The equality tr ABC' = tr AC'B is not always true. For instance, take A =
(8 é) B= ((1) 8) and C = ((1) 8) then ABC = 0 and ACB = (é 8 .
For the trace of an operator in a Euclidean space we have the following useful
formula.

THEOREM. Let eq,...,e, be an orthonormal basis. Then
n
trA= Z(Aeq;, €i).
i=1

PROOF. Since Ae; = Zj a;jej, then (Ae;,e;) =a;. O

REMARK. The trace of an operator is invariant but the above definition of the
trace makes use of a basis and, therefore, is not invariant. One can, however, give
an invariant definition of the trace of an operator (see 27.2).

11.2. A nonzero vector v € V is called an eigenvector of the linear operator
A:V — Vif Av = Av and this number A is called an eigenvalue of A. Fix A and
consider the equation Av = Av, i.e., (A — Al)v = 0. This equation has a nonzero
solution v if and only if |A — AI| = 0. Therefore, the eigenvalues of A are roots of
the polynomial p(A) = |AI — A|.

The polynomial p(}) is called the characteristic polynomial of A. This polyno-
mial only depends on the operator itself and does not depend on the choice of the
basis (see 7.1).

THEOREM. If Aey = Aiey, ..., Aex = Ageg and the numbers A1, ..., A\ are
distinct, then ey, ..., e are linearly independent.

PROOF. Assume the contrary. Selecting a minimal linearly independent set of
vectors we can assume that ey, = aje; + -+ + ag_1€5_1, where ay...ap_1 # 0
and the vectors ey, ..., ex_1 are linearly independent. Then Aex = a1 e1 +---+
p_1Ag—1€k—1 and Aep = Ager = a1 per + -+ + ap_1Apep_1. Hence, \1 = \g.
Contradiction. [

Typeset by ApS-TEX
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COROLLARY. If the characteristic polynomial of an operator A over C has no
multiple roots then the eigenvectors of A constitute a basis.

11.3. A linear operator A possessing a basis of eigenvectors is said to be a
diagonalizable or semisimple. If X is the matrix formed by the columns of the

coordinates of eigenvectors x1, ..., x, and A; an eigenvalue corresponding to x;,
then AX = XA, where A = diag(\1,...,\,). Therefore, X 1AX = A.
The converse is also true: if X 'AX = diag(\1,...,\n), then A\, ..., A\, are

eigenvalues of A and the columns of X are the corresponding eigenvectors.

Over C only an operator with multiple eigenvalues may be nondiagonalizable and
such operators constitute a set of measure zero. All normal operators (see 17.1)
are diagonalizable over C. In particular, all unitary and Hermitian operators are
diagonalizable and there are orthonormal bases consisting of their eigenvectors.
This can be easily proved in a straightforward way as well with the help of the
fact that for a unitary or Hermitian operator A the inclusion AW C W implies
AWL cwt.

The absolute value of an eigenvalue of a unitary operator A is equal to 1 since
|Az| = |z|. The eigenvalues of an Hermitian operator A are real since (Ax,z) =
(z, Az) = (Az, x).

THEOREM. For an orthogonal operator A there exists an orthonormal basis with
respect to which the matriz of A is of the block-diagonal form with blocks £1 or

cosp —singp
(Sin ©  cosp > '

ProOF. If £1 is an eigenvalue of A we can make use of the same arguments as
for the complex case and therefore, let us assume that the vectors z and Ax are
not parallel for all . The function p(x) = Z(x, Ax) — the angle between = and
Ax — is continuous on a compact set, the unit sphere.

Let vg = Z(zg, Axzo) be the minimum of ¢(z) and e the vector parallel to the
bisector of the angle between zg and Axg.

Then

Yo | Yo

wo < L(e, Ae) < L(e, Axg) + L(Axg, Ae) = 5 + 5
and, therefore, Ae belongs to the plane Span(zg,e). This plane is invariant with
respect to A since Axg, Ae € Span(zg,€). An orthogonal transformation of a plane
is either a rotation or a symmetry through a straight line; the eigenvalues of a
symmetry, however, are equal to =1 and, therefore, the matrix of the restriction of

. cosp —sing .
A to Span(zg, e) is of the form (singa cos ), where sinp #0. O

11.4. The eigenvalues of the tridiagonal matrix

ay —by 0 L. 0 0
—C1 ag —b2 e 0 0
0 —C2 as e 0 0
J = , where b;c; > 0,
0 0 0 N Ap—2 —bn,Q 0
0 0 0 ... —Cp_2 Ap—1 _bn—l

0 0 0o ... 0 —Cn_1 an
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have interesting properties. They are real and of multiplicity one. For J = Haij H;L,
consider the sequence of polynomials

Dy(A) = |Aij —aijlf,  Do(N) = 1.

Clearly, D,,(\) is the characteristic polynomial of J. These polynomials satisfy a
recurrent relation

(1) Dk()\) = ()\ — ak)Dk,l()\) — bkflcklek72(>\)

(cf. 1.6) and, therefore, the characteristic polynomial D, (\) depends not on the
numbers by, ¢ themselves, but on their products. By replacing in J the elements
br and ci by Vbrcr we get a symmetric matrix J; with the same characteristic
polynomial. Therefore, the eigenvalues of J are real.

A symmetric matrix has a basis of eigenvectors and therefore, it remains to
demonstrate that to every eigenvalue A\ of J; there corresponds no more than one
eigenvector (z1,...,2,). This is also true even for J, i.e without the assumption
that by = ¢. Since

()\ — CL1)$1 — bl.’L‘Q =0
—Cc121 + ()\ - ag){EQ - bQZL’g =0
—Cp—2Tp—2 + (>\ - an71>xn71 —bp_12, =0

—Cn—1Tp—1*+ (/\ - an)xn = 07
it follows that the change
Yir = T1, Y2 = bll‘g, ey Y = bl ...bk_la:k,

yields
Y2 = (A — a1y
yz = (A —az)y2 — c1biy

Yn = ()\ - anfl)ynfl - Cn72bn72yn72-

These relations for y coincide with relations (1) for Dy and, therefore, if y; = ¢ =
¢Do(N) then yr, = ¢Dg(\). Thus the eigenvector (z1, ..., xy) is uniquely determined
up to proportionality.

11.5. Let us give two examples of how to calculate eigenvalues and eigenvectors.
First, we observe that if \ is an eigenvalue of a matrix A and f an arbitrary
polynomial, then f(\) is an eigenvalue of the matrix f(A). This follows from the
fact that f(A) — f(A) is divisible by AT — A.

a) Consider the matrix

00 0 0 01
100 0 0 0
p=|0 10 0 0 0
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Since Pep = ex41, then P®ey = epys and, therefore, P™ = I, where n is the order
of the matrix. It follows that the eigenvalues are roots of the equation ™ = 1. Set
e = exp(2mi/n). Let us prove that the vector us =Y ,_, ¥, (s =1,...,n) is an
eigenvector of P corresponding to the eigenvalue e ~°. Indeed,

Pu, = ZeksPek = kasek_i'_l = ZE_S(fs(k+1)ek+1) = e %u,.

b) Consider the matrix

0 1 0 0
0 O 0
A= :
0 0 O 1
Pt P2 P3 ... Pn
Let = be the column (x1,...,2,)T. The equation Ar = Az can be rewritten in the
form
To = ATy, T3 = AT2, ..., Tpn = ATp_1, P1T1 + P2T2 + - + Ppln = ATy,

Therefore, the eigenvectors of A are of the form
(o, A, /\2a, ey /\"_104), where p; + po A+ - -+ _|_pn/\n—1 — "

11.6. We already know that tr AB = tr BA. It turns out that a stronger state-
ment is true: the matrices AB and BA have the same characteristic polynomials.

THEOREM. Let A and B be n X n-matrices. Then the characteristic polynomials
of AB and BA coincide.

ProoF. If A is invertible then
IN — AB| = |[A"Y(M\ — AB)A| = |\ — BA|.
For a noninvertible matrix A the equality |[A\I — AB| = |\ — BA| can be proved by
passing to the limit. [

COROLLARY. If A and B are m xXn-matrices, then the characteristic polynomials
of ABT and BT A differ by the factor \»~™.

PrOOF. Complement the matrices A and B by zeros to square matrices of equal
size. O

11.7.1. THEOREM. Let the sum of the elements of every column of a square
matriz A be equal to 1, and let the column (x1,...,z,)T be an eigenvector of A
such that x1 + -+ + x, # 0. Then the eigenvalue corresponding to this vector is
equal to 1.

ProOOF. Adding up the equalities > a1;x; = Az1, ..., D an;T; = Az, We get
Zi,j ATy = )\ZJ Zj. But

Zx -y ( Z) ~ Y

J

since ), aj; = 1. Thus, Y x; = A x;, where ) x; # 0. Therefore, A =1. O
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11.7.2. THEOREM. If the sum of the absolute values of the elements of every
column of a square matriz A does not exceed 1, then all its eigenvalues do not exceed
1.

Proor. Let (z1,...,z,) be an eigenvector corresponding to an eigenvalue .

Then
|)‘xi‘:|zaij$j|SZ\GZ‘]‘HZ‘A, 1=1,...,n.

Adding up these inequalities we get

D il <D Jaigllag| = > <|%‘|Z|aiy> <yl
i i i

J

since ), |a;;| < 1. Dividing both sides of this inequality by the nonzero number
x| we get (A < 1. O

REMARK. Theorem 11.7.2 remains valid also when certain of the columns of A
are zero ones.

n —1

11.7.3. THEOREM. Let A = Hainl, Sj = Z?:l \aij|; then Z?:l Sj |Cij| <
rank A and the summands corresponding to zero values of S; can be replaced by
2€ros.

PrOOF. Multiplying the columns of A by nonzero numbers we can always make
the numbers S; for the new matrix to be either 0 or 1 and, besides, a;; > 0.
The rank of the matrix is not effected by these transformations. Applying Theo-
rem 11.7.2 to the new matrix we get

Z‘ajﬂ :Zajj :trA:Z)\i SZ|)\¢| <rankA. O

Problems

11.1. a) Are there real matrices A and B such that AB — BA =17

b) Prove that if AB — BA = A then |A| = 0.

11.2. Find the eigenvalues and the eigenvectors of the matrix A = ||az-j H?, where
a5 = AZ/A]

11.3. Prove that any square matrix A is the sum of two invertible matrices.

11.4. Prove that the eigenvalues of a matrix continuously depend on its elements.
More precisely, let A = ||aij ||;L be a given matrix. For any € > 0 there exists § > 0
such that if |a;; —b;;| < § and A is an eigenvalue of A, then there exists an eigenvalue
pof B= Hb”HT such that |A — p| < e.

11.5. The sum of the elements of every row of an invertible matrix A is equal to
s. Prove that the sum of the elements of every row of A~! is equal to 1/s.

11.6. Prove that if the first row of the matrix S~ AS is of the form (), 0,0, ...,0)
then the first column of S is an eigenvector of A corresponding to the eigenvalue .

11.7. Let f(A) = |\ — A|, where A is a matrix of order n. Prove that f'()\) =
iy |M — A;], where A, is the matrix obtained from A by striking out the ith row
and the ith column.

11.8. Let Aq,..., \, be the eigenvalues of a matrix A. Prove that the eigenvalues
of adj A are equal to Hi;ﬂ Xiy v H#n YR
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11.9. A vector z is called symmetric (resp. skew-symmetric) if its coordinates
satisfy (z; = xp—;) (vesp. (z; = —%pn—;)). Let a matrix 4 = ||aij||g be cen-
trally symmetric, i.e., a;; = an—in—j. Prove that among the eigenvectors of A
corresponding to any eigenvalue there is either a nonzero symmetric or a nonzero
skew-symmetric vector.

11.10. The elements a; y—;4+1 = x; of a complex n X n-matrix A can be nonzero,
whereas the remaining elements are 0. What condition should the set {z1,...,z,}
satisfy for A to be diagonalizable?

11.11 ([Drazin, Haynsworth, 1962]). a) Prove that a matrix A has m linearly
independent eigenvectors corresponding to real eigenvalues if and only if there exists
a nonnegative definite matrix S of rank m such that AS = SA*.

b) Prove that a matrix A has m linearly independent eigenvectors corresponding
to eigenvalues A such that |A| = 1 if and only if there exists a nonnegative definite
matrix S of rank m such that ASA* = S.

12. The Jordan canonical (normal) form

12.1. Let A be the matrix of an operator with respect to a basis e; then P~1AP
is the matrix of the same operator with respect to the basis eP. The matrices A
and P~1AP are called similar. By selecting an appropriate basis we can reduce the
matrix of an operator to a simpler form: to a Jordan normal form, cyclic form, to
a matrix with equal elements on the main diagonal, to a matrix all whose elements
on the main diagonal, except one, are zero, etc.

One might think that for a given real matrix A the set of real matrices of the
form P~1AP|P, where P is a complex matrix is “broader” than the the set of real
matrices of the form P~ AP|P, where P is a real matrix. This, however, is not so.

THEOREM. Let A and B be real matrices and A = P~'BP, where P is a complez
matriz. Then A= Q 'BQ for some real matriz Q.

PrOOF. We have to demonstrate that if among the solutions of the equation
(1) XA=BX
there is an invertible complex matrix P, then among the solutions there is also an
invertible real matrix (). The solutions over C of the linear equation (1) form a
linear space W over C with a basis C1, ..., C,. The matrix C; can be represented in
the form C; = X; 41Y};, where X; and Y; are real matrices. Since A and B are real
matrices, C;jA = BC; implies X;A = BX; and Y;A = BY;. Hence, X;,Y; € W
for all 7 and W is spanned over C by the matrices X1, ..., X, Y1, ..., Y, and
therefore, we can select in W a basis Dy, ..., D, consisting of real matrices.

Let P(t1,...,t,) = [t1D1 + --- + t,Dy|. The polynomial P(tq,...,t,) is not
identically equal to zero over C by the hypothesis and, therefore, it is not identically
equal to zero over R either, i.e., the matrix equation (1) has a nondegenerate real
solution ¢t Dy + --- +t,D,,. O

12.2. A Jordan block of size r x r is a matrix of the form
A1 0 ... ... 0
o X 1 ... ... 0

o O O
o O O
o
S > =
> = O
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A Jordan matriz is a block diagonal matrix with Jordan blocks J,.,(\;) on the
diagonal.

A Jordan basis for an operator A : V — V is a basis of the space V' in which the
matrix of A is a Jordan matrix.

THEOREM (Jordan). For any linear operator A : V. — V over C there exists a
Jordan basis and the Jordan matrix of A is uniquely determined up to a permutation
of its Jordan blocks.

ProoF (Following [Viliaho, 1986]). First, let us prove the existence of a Jordan
basis. The proof will be carried out by induction on n = dim V.

For n = 1 the statement is obvious. Let A be an eigenvalue of A. Consider a
noninvertible operator B = A — AI. A Jordan basis for B is also a Jordan basis for
A = B+ M. The sequence Im B® > Im B! D Im B? O ... stabilizes and, therefore,
there exists a positive integer p such that Im BPT! = Im B? # Im BP~!. Then
Im B? NKer B = 0 and Im BP~! N Ker B # 0. Hence, BP(Im B?) = Im B?.

FIGURE 4

Let S; =ImB"'!NKer B. Then Ker B=S5; D> S D --- D> S, # 0 and Sp1 = 0.
Figure 4 might help to follow the course of the proof. In S,, select a basis z}
(i=1,...,np,). Since z} € Im BP~!, then 2} = BP~'a? for a vector 2. Consider
the vectors ¥ = BP~*2? (k =1,...,p). Let us complement the set of vectors z} to
a basis of S;,_; by vectors yjl Now, find a vector y;)_l such that y]l = BT’_ny_1 and
consider the vectors yé = B”_l_lyf_1 (I=1,...,p—1). Further, let us complement
the set of vectors z; and y; to a basis of S, 3 by vectors z, etc. The cardinality
of the set of all chosen vectors x¥, yé, ..., b} is equal to b, dim S; since every

x} contributes with the summand p, every yJ1 contributes with p — 1, etc. Since
dim(Im B! N Ker B) = dim Ker B* — dim Ker B*™*

(see 6.1), then Y_?_ dim S; = dim Ker BP.

Let us complement the chosen vectors to a basis of Im BP and prove that we
have obtained a basis of V. The number of these vectors indicates that it suffices
to demonstrate their linear independence. Suppose that

1) fAD ) Bl Y T > G =0,
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where f € Im BP. Applying the operator BP to (1) we get BP(f) = 0; hence,
f = 0 since BP(Im B?) = Im BP. Applying now the operator BP~! to (1) we get
> @z} = 0 which means that all a; are zero. Application of the operator BP~2 to
(1) gives Y- Biz; + > vjyj = 0, which means that all §; and ; are zero, etc.

By the inductive hypothesis we can select a Jordan basis for B in the space
Im BP # V; complementing this basis by the chosen vectors, we get a Jordan basis
of V.

To prove the uniqueness of the Jordan form it suffices to verify that the number
of Jordan blocks of B corresponding to eigenvalue 0 is uniquely defined. To these
blocks we can associate the diagram plotted in Figure 4 and, therefore, the number
of blocks of size k x k is equal to

dim Sy, — dim Sk41
= (dim Ker B* — dim Ker B¥~!) — (dim Ker B**! — dim Ker B¥)
= 2dim Ker B* — dim Ker B¥ ™! — dim Ker B*™!
— rank B¥~! — 2rank B* + rank B**!;

which is invariantly defined. [

12.3. The Jordan normal form is convenient to use when we raise a matrix to
some power. Indeed, if A = P~'JP then A" = P~1J"P. To raise a Jordan block
Jr(A) = M + N to a power we can use the Newton binomial formula

(M + N)™ i( )Akzv"—k.

k=0

The formula holds since IN = NI. The only nonzero elements of N™ are the
1’s in the positions (1,m + 1), (2,m +2), ..., (r —m,r), where r is the order of
N. If m > r then N™ = 0.

12.4. Jordan bases always exist over an algebraically closed field only; over R
a Jordan basis does not always exist. However, over R there is also a Jordan form
which is a realification of the Jordan form over C. Let us explain how it looks.
First, observe that the part of a Jordan basis corresponding to real eigenvalues of
A is constructed over R along the same lines as over C. Therefore, only the case of
nonreal eigenvalues is of interest.

Let A® be the complexification of a real operator A (cf. 10.1).

12.4.1. THEOREM. There is a one-to-one correspondence between the Jordan
blocks of AC corresponding to eigenvalues X and .

PROOF. Let B = P + i@, where P and @ are real operators. If x and y are
real vectors then the equations (P +iQ)(z + iy) = 0 and (P —iQ)(z — iy) =
0 are equivalent, i.e., the equations Bz = 0 and BZ = 0 are equivalent. Since
(A=A = (A - )\I )7, the map z — Z determines a one-to-one correspondence
between Ker(A—AI)" and Ker(A—\I)"™. The dimensions of these spaces determine
the number and the sizes of the Jordan blocks. [

Let J¥(A) be the 2n x 2n matrix obtained from the Jordan block J,(A) by

replacing each of its elements a + b by the matrix (ab Z) .
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12.4.2. THEOREM. For an operator A over R there exists a basis with respect
to which its matriz is of block diagonal form with blocks Jpm, (t1), ..., Jm, (tr) for
real eigenvalues t; and blocks J); (A1),...,J5 (Xs) for nonreal eigenvalues \; and
i

PROOF. If ) is an eigenvalue of A then by Theorem 12.4.1 X is also an eigenvalue
of A and to every Jordan block J,,(\) of A there corresponds the Jordan block J, ().
Besides, if ey, . . ., e, is the Jordan basis for J,,(\) then €1, ..., €, is the Jordan basis
for Jn(X). Therefore, the real vectors 1, y1,..., Tn, Yn, where e = xj + iyi, are
linearly independent. In the basis x1,v1, ..., Zn, yn the matrix of the restriction of

A to Span(z1,y1, .- -, Tn, Yn) is of the form Ji(N). O

12.5. The Jordan decomposition shows that any linear operator A over C can
be represented in the form A = A;+ A, where Ay is a semisimple (diagonalizable)
operator and A, is a nilpotent operator such that A;,A, = A, As.

12.5.1. THEOREM. The operators As and A,, are uniquely defined; moreover,
As = S(A) and A, = N(A), where S and N are certain polynomials.

PrOOF. First, consider one Jordan block A = AI 4+ Ny of size k x k. Let
S(t) = >, sit". Then

S(A):isi i <;>AjN,§j.

i=1 j=0

The coefficient of N} is equal to

Z‘SZ< ¢ ))\ip - ]%S(p)o\),

i t=p

where S®) is the pth derivative of S. Therefore, we have to select a polynomial S
so that S(A\) = A and SM(\) = ... = S*=1(\) = 0, where k is the order of the
Jordan block. If A\1,..., A, are distinct eigenvalues of A and k1, ..., k, are the sizes
of the maximal Jordan blocks corresponding to them, then S should take value \;
at \; and have at \; zero derivatives from order 1 to order k; — 1 inclusive. Such
a polynomial can always be constructed (see Appendix 3). It is also clear that if
As = S(A) then A, = A— S(A),ie, N(A)=A—-S(A).

Now, let us prove the uniqueness of the decomposition. Let As+ A, = A= A+
Al where AgA, = A,As and ALA! = Al AL If AX = X A then S(A)X = XS(A)
and N(A)X = XN(A). Therefore, A;A., = AL A, and A, A!, = Al A,. The opera-
tor B= A, — A; = A, — A, is a difference of commuting diagonalizable operators
and, therefore, is diagonalizable itself, cf. Problem 39.6 b). On the other hand,
the operator B is the difference of commuting nilpotent operators and therefore, is
nilpotent itself, cf. Problem 39.6 a). A diagonalizable nilpotent operator is equal
to zero. [

The additive Jordan decomposition A = Ag + A, enables us to get for an invert-
ible operator A a multiplicative Jordan decomposition A = AsA,, where A, is a
unipotent operator, i.e., the sum of the identity operator and a nilpotent one.
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12.5.2. THEOREM. Let A be an invertible operator over C. Then A can be
represented in the form A = AsA, = A, As, where A is a semisimple operator and
A, 1s a unipotent operator. Such a representation is unique.

Proor. If A is invertible then so is A;. Then A = A, + A,, = A A, where
Ay =AY As+ A,) =T+ AJ1A,. Since A7 and A,, commute, then AJ1A4, is a
nilpotent operator which commutes with Aj.

Now, let us prove the uniqueness. If A = A;A, = A,As and A, = [+ N, where
N is a nilpotent operator, then A = A (I + N) = A; + A;N, where AN is a
nilpotent operator commuting with A. Such an operator A;N = A,, is unique. [J

Problems

12.1. Prove that A and A” are similar matrices.

12.2. Let o(i), where i = 1,...,n, be an arbitrary permutation and P = Hpij H?
where p;; = 0;5(j). Prove that the matrix P~'AP is obtained from A by the
permutation o of the rows and the same permutation of the columns of A.

REMARK. The matrix P is called the permutation matriz corresponding to o.

12.3. Let the number of distinct eigenvalues of a matrix A be equal to m, where
m > 1. Let bj; = tr(A"*7). Prove that |b;;|7"~* # 0 and |b;|5* = 0.

12.4. Prove that rank A = rank A? if and only if ;ir%(A + M)~ LA exists.

13. The minimal polynomial and the characteristic polynomial

13.1. Let p(t) = >_,_, axt® be an nth degree polynomial. For any square matrix
A we can consider the matrix p(A4) = Y"}'_, axA*. The polynomial p(t) is called an
annihilating polynomial of A if p(A) = 0. (The zero on the right-hand side is the
zero matrix.)

If A is an order n matrix, then the matrices I, A4, ... , A" are linearly dependent
since the dimension of the space of matrices of order n is equal to n?. Therefore,
for any matrix of order n there exists an annihilating polynomial whose degree does
not exceed n2. The annihilating polynomial of A of the minimal degree and with
coefficient of the highest term equal to 1 is called the minimal polynomial of A.

Let us prove that the minimal polynomial is well defined. Indeed, if pi(A) =
A™ 4+ ... =0 and pa(4) = A™ + --- =0, then the polynomial p; — po annihilates
A and its degree is smaller than m. Hence, p; — po = 0.

It is easy to verify that if B = X 1AX then B® = X 'A"X and, therefore,
p(B) = X 'p(A)X; thus, the minimal polynomial of an operator, not only of a
matrix, is well defined.

13.1.1. THEOREM. Any annihilating polynomial of a matriz A is divisible by
its minimal polynomial.

PROOF. Let p be the minimal polynomial of A and ¢ an annihilating polynomial.
Dividing ¢ by p with a remainder we get ¢ = pf + r, where degr < degp, and
r(A) = q(4) — p(A)f(A) = 0, and so r is an annihilating polynomial. Hence,
r=0. O

13.1.2. An annihilating polynomial of a vector v € V' (with respect to an op-
erator A : V. — V) is a polynomial p such that p(A)v = 0. The annihilating
polynomial of v of minimal degree and with coefficient of the highest term equal to
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1 is called the minimal polynomial of v. Similarly to the proof of Theorem 13.1.1,
we can demonstrate that the minimal polynomial of A is divisible by the minimal
polynomial of a vector.

THEOREM. For any operator A : 'V — V there exists a vector whose minimal
polynomial (with respect to A) coincides with the minimal polynomial of the oper-
ator A.

PROOF. Any ideal I in the ring of polynomials in one indeterminate is generated
by a polynomial f of minimal degree. Indeed, if g € I and f € I is a polynomial of
minimal degree, then g = fh + r, hence, r € I since fh € I.

For any vector v € V consider the ideal I, = {p|p(A)v = 0}; this ideal is
generated by a polynomial p, with leading coefficient 1. If p, is the minimal
polynomial of A, then py € I, and, therefore, p,4 is divisible by p,. Hence, when
v runs over the whole of V' we get only a finite number of polynomials p,. Let
these be p1, ..., pr. The space V is contained in the union of its subspaces
Vi={x eV |pi(Ad)x =0} (i =1,...,k) and, therefore, V = V; for a certain 1.
Then p;(A)V = 0; in other words p; is divisible by p4 and, therefore, p; = p4. O

13.2. Simple considerations show that the degree of the minimal polynomial of
a matrix A of order n does not exceed n?. It turns out that the degree of the
minimal polynomial does not actually exceed n, since the characteristic polynomial
of A is an annihilating polynomial.

THEOREM (Cayley-Hamilton). Let p(t) = |tI — A|. Then p(A) = 0.

PROOF. For the Jordan form of the operator the proof is obvious because (t—\)"
is an annihilating polynomial of J,()). Let us, however, give a proof which does
not make use of the Jordan theorem.

We may assume that A is a matrix (in a basis) of an operator over C. Let us
carry out the proof by induction on the order n of A. For n = 1 the statement is
obvious.

Let A be an eigenvalue of A and e; the corresponding eigenvector. Let us com-
plement e; to a basis eq,...,e,. In the basis eq,...,e, the matrix A is of the

form (6\ X ), where A; is the matrix of the operator in the quotient space
1

V/Span(ey). Therefore, p(t) = (t — M|t — A1] = (t — A)pi(t). By inductive
hypothesis p;1(A41) = 0 in V/Span(ey), i.e., p1(41)V C Span(ey). It remains to
observe that (A\I — A)e; =0. O

REMARK. Making use of the Jordan normal form it is easy to verify that the
minimal polynomial of A is equal to [[,(t — A;)™, where the product runs over
all distinct eigenvalues A; of A and n; is the order of the maximal Jordan block
corresponding to A;. In particular, the matrix A is diagonalizable if and only if the
minimal polynomial has no multiple roots and all its roots belong to the ground
field.

13.3. By the Cayley-Hamilton theorem the characteristic polynomial of a matrix
of order n coincides with its minimal polynomial if and only if the degree of the
minimal polynomial is equal to n. The minimal polynomial of a matrix A is the
minimal polynomial for a certain vector v (cf. Theorem 13.1.2). Therefore, the
characteristic polynomial coincides with the minimal polynomial if and only if for
a certain vector v the vectors v, Av, ..., A" lv are linearly independent.
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THEOREM ([Farahat, Lederman, 1958]). The characteristic polynomial of a ma-
trix A of order n coincides with its minimal polynomial if and only if for any vector
(w1,...,2,) there exist columns P and Q of length n such that x = QT A*P.

ProOF. First, suppose that the degree of the minimal polynomial of A is equal
to n. Then there exists a column P such that the columns P, AP, ..., A" 'P
are linearly independent, i.e., the matrix K formed by these columns is invertible.
Any vector X = (x1,...,,) can be represented in the form X = (XK 1)K =
(QTP,...,QT A1 P), where QT = XK1,

Now, suppose that for any vector (z1,...,x,) there exist columns P and @ such
that 2, = QT A P. Then there exist columns P, ..., P,, Q1,...,Q, such that the
matrix

QTP ... QTA 'R
B = : :
QTP, ... QTA"'P,
is invertible. The matrices I, A, ..., A"~ ! are linearly independent because oth-

erwise the columns of B would be linearly dependent. [l

13.4. The Cayley-Hamilton theorem has several generalizations. We will confine
ourselves to one of them.

13.4.1. THEOREM ([Greenberg, 1984]). Let pa(t) be the characteristic polyno-
mial of a matriz A, and let a matriz X commute with A. Thenpa(X) = M(A-X),
where M is a matriz that commutes with A and X.

PROOF. Since B-adjB = |B| -1 (see 2.4),

pa(N) - T = [adj(A] — A)J(M — A) = (ij AN = A) = Ak 4G
k=0 k=0

All matrices A}, are diagonal, since so is p4(A\)I. Hence, pa(X) = > p_, XFA,. If X
commutes with A and Ay, then ps(X) = ( Z;é A XF)(X — A). But the matrices
Ay can be expressed as polynomials of A (see Problem 2.11) and, therefore, if X
commutes with A then X commutes with Ag. [

Problems

13.1. Let A be a matrix of order n and

fi(A) = A—(tr A)I, fr41(A) = fr(A)A—

1
A tr(fr(A)A)I.
Prove that f,,(A) = 0.

13.2. Let A and B be matrices of order n. Prove that if tr A™ = tr B™ for
m =1,...,n then the eigenvalues of A and B coincide.

13.3. Let a matrix A be invertible and let its minimal polynomial p()) coincide
with its characteristic polynomial. Prove that the minimal polynomial of A~! is
equal to p(0)~tA"p(A~1).

13.4. Let the minimal polynomial of a matrix A be equal to [[(x — A;)™. Prove

that the minimal polynomial of (é i) is equal to [J(z — \;)™+L.
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14. The Frobenius canonical form

14.1. The Jordan form is just one of several canonical forms of matrices of linear
operators. An example of another canonical form is the cyclic form also known as
the Frobenius canonical form.

A Frobenius or cyclic block is a matrix of the form

000 ... O —ag

100 ... O —ay

o1 0 ... 0 —ag

000 ... 1 —a,_
IfA: V" —=V"and Ae; =eq, ..., Ae,_1 = e, then the matrix of the operator A
with respect to eq,...,e, is a cyclic block.

THEOREM. For any linear operator A : V. — V (over C or R) there exists a
basis in which the matriz of A is of block diagonal form with cyclic diagonal blocks.

Proor (Following [Jacob, 1973]). We apply induction on dim V. If the degree
of the minimal polynomial of A is equal to k, then there exists a vector y € V' the
degree of whose minimal polynomial is also equal to k (see Theorem 13.1.2). Let
y; = A" ly. Let us complement the basis y1,...,yx of W = Span(y1,...,yx) to
a basis of V and consider W} = Span(y;, A*y},..., A**“1y¥). Let us prove that
V =W @ Wit is an A-invariant decomposition of V.

The degree of the minimal polynomial of A* is also equal to k& and, therefore,
W is invariant with respect to A*; hence, (W;)* is invariant with respect to A.
It remains to demonstrate that W; N W+ = 0 and dim W} = k. Suppose that
aoyy + -+ a A%yl € W for 0 < s <k—1anda; #0. Then A*k*S’l(aoy,’; +
<o+ asA*Syr) € Wi hence,

0= (agA™ " lyp + -+ as Ay y)
= ao(yp, A" y) + - +as(yp, AFNy)
= ao(Yp, Ye—s) + -+ + as(Yr, Yk) = as.

Contradiction.

The matrix of the restriction of A to W in the basis y1, ..., yx is a cyclic block.
The restriction of A to W;* can be represented in the required form by the inductive
hypothesis. [

REMARK. In the process of the proof we have found a basis in which the matrix of
A is of block diagonal form with cyclic blocks on the diagonal whose characteristic
polynomials are pi,ps,...,pr, where p; is the minimal polynomial for A, ps the
minimal polynomial of the restriction of A to a subspace, and, therefore, ps is a
divisor of p;. Similarly, p;;1 is a divisor of p;.
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14.2. Let us prove that the characteristic polynomial of the cyclic block

00 ... 00O —ay
10 ... 00 0 —a
0Oo1 ... 000 —aso
A=
0 0 1 0 0 —ap_3
00 ... 001 0 —ap_9
00 ... 00 1 —ap_
is equal to A" + ZZ;& apAp. Indeed, since Ae; = es, ..., Ae,_1 = e,, and
Ae, = — Ez;é areri1, it follows that
n—1
(An + Z akAk> e1 =0.
k=0

Taking into account that e; = A" "le; we see that )\”—l—zz;é ap\F is an annihilating
polynomial of A. It remains to notice that the vectors e, Aeq, ..., A" le; are
linearly independent and, therefore, the degree of the minimal polynomial of A is
no less than n.

As a by product we have proved that the characteristic polynomial of a cyclic
block coincides with its minimal polynomial.

Problems

14.1. The matrix of an operator A is block diagonal and consists of two cyclic
blocks with relatively prime characteristic polynomials, p and q. Prove that it is
possible to select a basis so that the matrix becomes one cyclic block.

14.2. Let A be a Jordan block, i.e., there exists a basis ej,...,e, such that
Aey = ey and Ae, = ex_1+ Xeg for k = 2,...,n. Prove that there exists a vector
v such that the vectors v, Av, ..., A" v constitute a basis (then the matrix of
the operator A with respect to the basis v, Av, ..., A" v is a cyclic block).

14.3. For a cyclic block A indicate a symmetric matrix S such that A = SATS1.

15. How to reduce the diagonal to a convenient form

15.1. The transformation A — X AX ! preserves the trace and, therefore, the
diagonal elements of the matrix X AX ! cannot be made completely arbitrary. We
can, however, reduce the diagonal of A to a, sometimes, more convenient form;
for example, a matrix A # Al is similar to a matrix whose diagonal elements are
(0,...,0,tr A); any matrix is similar to a matrix all diagonal elements of which are
equal.

THEOREM ([Gibson, 1975]). Let A # M. Then A is similar to a matric with the
diagonal (0,...,0,tr A).

PRrROOF. The diagonal of a cyclic block is of the needed form. Therefore, the

statement is true for any matrix whose characteristic and minimal polynomials
coincide (cf. 14.1).
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For a matrix of order 2 the characteristic polynomial does not coincide with the
minimal one only for matrices of the form AI. Let now A be a matrix of order 3
such that A # AI and the characteristic polynomial of A does not coincide with its
minimal polynomial. Then the minimal polynomial of A is of the form (z—\)(x—pu)
whereas the characteristic polynomial is (z — A\)?(z — p) and the case A = y is not

0 a O
excluded. Therefore, the matrix A is similar to the matrix C = | 1 b 0 | and
0 0 X

the characteristic polynomial of ((f Z) is divisible by = — A, i.e., A2 —bA —a = 0.

If b = XA =0, then the theorem holds.
Ifb=X#0, then b> —b%> —a =0, i.e., a = 0. In this case

0 00 b b b 0 0 0 b b b 0 -b b
1 b 0 -1 0 0)J=10 b b ]=(-1 00 - 0 -=b|,
0 0 b b 0 b b 0 b b 0 b b b 2
b b b 0 —-b —b
and det | —1 0 0 | # 0; therefore, A is similarto | =6 0 —b
b 0 b b b 2

Let, finally, b # A. Then for the matrix D = diag(b, A)
therefore, there exists a matrix P such that PDP~! = (

o 2)olo 7)=(o 2) (2 5)(6 »)=(0 rop)

is of the required form.

he theorem is true and,

:) The matrix

* O

Now, suppose our theorem holds for matrices of order m, where m > 3. A matrix

Ay

A of order m + 1 is of the form , where A7 is a matrix of order m. Since

A # M, we can assume that A; # A (otherwise we perform a permutation of rows
and columns, cf. Problem 12.2). By the inductive hypothesis there exists a matrix
P such that the diagonal of the matrix PA; P~! is of the form (0,0,...,0,a) and,
therefore, the diagonal of the matrix

X — P 0 A * Pt 0 - PA1P71 *
S \0 1 % % 0o 1) * *
is of the form (0,...,0,a,3). If « = 0 we are done.

Let « #20. Then X = 0 =
Ch

m is of the form (0,0,...,«,3) and, therefore, Cy # AI. Hence, there exists a
matrix @ such that the diagonal of QCQ~! is of the form (0,...,0,x). Therefore,

. 1 0 0 = 1 0 . .
the diagonal of (O Q) <* o, ) (O Q_1> is of the required form. [J

REMARK. The proof holds for a field of any characteristic.

, where the diagonal of the matrix Cy of order
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15.2. THEOREM. Let A be an arbitrary complexr matrixz. Then there exists a
unitary matriz U such that the diagonal elements of UAU ! are equal.

PROOF. On the set of unitary matrices, consider a function f whose value at U
is equal to the maximal absolute value of the difference of the diagonal elements
of UAU™!. This function is continuous and is defined on a compact set and,
therefore, it attains its minimum on this compact set. Therefore, to prove the
theorem it suffices to show that with the help of the transformation A +— UAU !
one can always diminish the maximal absolute value of the difference of the diagonal
elements unless it is already equal to zero.

Let us begin with matrices of size 2 x 2. Let u = cos ae’?
in the (1, 1) position of the matrix

(5o a6 )

ay cos® a + ag sin? a + (be” + ceF) cos asin a, where 3 = ¢ — 1.

, v = sinae’¥. Then

there stands

When 3 varies from 0 to 27 the points be?® + ce* form an ellipse (or an interval)
centered at 0 € C. Indeed, the points e?® belong to the unit circle and the map z —
bz + ¢z determines a (possibly singular) R-linear transformation of C. Therefore,
the number

p= (b +ce”) /(a1 — as)
is real for a certain 3. Hence, t = cos® a 4+ psin accos « is also real and

ay cos® a + ag sin? a + (be'” 4 ce™F) cosasina = ta; + (1 — t)as.
E’
the value % In this casg the both diagonal elements of the transformed matrix are
equal to %(au + ag2).

Let us treat matrices of size n X n, where n > 3, as follows. Select a pair of
diagonal elements the absolute value of whose difference is maximal (there could be
several such pairs). With the help of a permutation matrix this pair can be placed in

the positions (1, 1) and (2, 2) thanks to Problem 12.2. For the matrix A’ = ||al-j||?

there exists a unitary matrix U such that the diagonal elements of UA'U~! are
equal to %(an + ags). It is also clear that the transformation A +— U1AU1_17 where

As « varies from 0 to the variable ¢ varies from 1 to 0. In particular, ¢ takes

U, is the unitary matrix , preserves the diagonal elements ass, ... , Gnn -

0 I
Thus, we have managed to replace two fartherest apart diagonal elements a1; and
asg2 by their arithmetic mean. We do not increase in this way the maximal distance
between points nor did we create new pairs the distance between which is equal to
|a11 — ag2]| since

a a T—a T—a

o — 11+ 22‘§| ul | 22\.
2 2 2

After a finite number of such steps we get rid of all pairs of diagonal elements the

distance between which is equal to |a1; — ag2|. O

REMARK. If Ais a real matrix, then we can assume that © = cosa and v = sin a.
The number p is real in such a case. Therefore, if A is real then U can be considered
to be an orthogonal matrix.
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15.3. THEOREM ([Marcus, Purves, 1959]). Any nonzero square matriz A is
similar to a matriz all diagonal elements of which are nonzero.

PROOF. Any matrix A of order n is similar to a matrix all whose diagonal
elements are equal to %trA (see 15.2), and, therefore, it suffices to consider the
case when tr A = 0. We can assume that A is a Jordan block.

First, let us consider a matrix A = HainT such that a;; = 615625 . If U = Hu”H
is a unitary matrix then UAU ! = UAU* = B, where by; = u;1U2. We can select
U so that all elements wu;1, u;o are nonzero.

The rest of the proof will be carried out by induction on n; for n = 2 the
statement is proved.

Recall that we assume that A is in the Jordan form. First, suppose that A is a

diagonal matrix and a1; # 0. Then A = (a(l)l 2

matrix. Let U be a matrix such that all elements of UAU ™! are nonzero. Then the
diagonal elements of the matrix

1 0 all 0 1 0 _{ an 0
0 U 0 A 0o U') \ 0 UAU!
are nonzero.

Now, suppose that a matrix A is not diagonal. We can assume that a1 = 1 and
the matrix C obtained from A by crossing out the first row and the first column
is a nonzero matrix. Let U be a matrix such that all diagonal elements of UCU ~*
are nonzero. Consider the matrix

(1 0 1 0 _ (an *
p=(5 0)4(0 v5)= (% verm):

The only zero diagonal element of D could be ay1. If a;; = 0 then for (8 d* >
22

) , where A is a nonzero diagonal

select a matrix V such that the diagonal elements of V' 8 d* ) V1 are nonzero.
22

-1
Then the diagonal elements of (‘(/)Y ?) D (VO ?) are also nonzero. [J

Problem

15.1. Prove that for any nonzero square matrix A there exists a matrix X such
that the matrices X and A + X have no common eigenvalues.

16. The polar decomposition

16.1. Any complex number z can be represented in the form z = |z[e!?. An
analogue of such a representation is the polar decomposition of a matriz, A = SU,
where S is an Hermitian and U is a unitary matrix.

THEOREM. Any square matriz A over R (or C) can be represented in the form
A = SU, where S is a symmetric (Hermitian) nonnegative definite matriz and U is
an orthogonal (unitary) matriz. If A is invertible such a representation is unique.

Proor. If A = SU, where S is an Hermitian nonnegative definite matrix and U
is a unitary matrix, then AA* = SUU*S = S2. To find S, let us do the following.
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The Hermitian matrix AA* has an orthonormal eigenbasis and AA*e; = Nle;,
where \; > 0 . Set Se; = \;e;. The Hermitian nonnegative definite matrix S is
uniquely determined by A. Indeed, let €},..., e}, be an orthonormal eigenbasis for
S and Se! = Me!, where A} > 0. Then (\})2%e, = S%¢, = AA*e, and this equation

uniquely determines A.

Let v1,...,v, be an orthonormal basis of eigenvectors of the Hermitian operator
A* A and A* Av;) = p2v;, where p; > 0. Since (Av;, Avy) = (v;, A* Avy) = p (v, v5),
we see that the vectors Avy, ..., Av,, are pairwise orthogonal and |Av;| = ;. There-
fore, there exists an orthonormal basis wi,...,w, such that Av; = p;w;. Set

Uv; = w; and Sw; = p;w;. Then SUv; = Sw; = pw; = Av;, ie., A= SU.
In the decomposition A = SU the matrix S is uniquely defined. If S is invertible
then U = S~!A is also uniquely defined. [

REMARK. We can similarly construct a decomposition A = U;5S57, where S
is a symmetric (Hermitian) nonnegative definite matrix and U; is an orthogonal
(unitary) matrix. Here S; = S if and only if AA* = A*A, i.e., the matrix A is
normal.

16.2.1. THEOREM. Any matrix A can be represented in the form A = UDW,
where U and W are unitary matrices and D is a diagonal matriz.

PrOOF. Let A = SV, where S is Hermitian and V unitary. For S there exists a
unitary matrix U such that S = UDU*, where D is a diagonal matrix. The matrix
W =U*V is unitary and A =SV =UDW. O

16.2.2. THEOREM. If A = S1U; = UsSy are the polar decompositions of an
invertible matriz A, then Uy = Us.

PROOF. Let A = UDW, where D = diag(dy,...,d,) is a diagonal matrix, and
U and W are unitary matrices. Consider the matrix Dy = diag(|di,...,|dn|); then
DD, = D, D and, therefore,

A= (UD U*)(UD;'DW) = (UD;'DW)(W*D,W).

The matrices UD,U* and W*D,W are positive definite and D;lD is unitary.
The uniqueness of the polar decomposition of an invertible matrix implies that
S1 =UD,U*, S =W*D, W and U; = UD;'DW =U,. O

Problems

16.1. Prove that any linear transformation of R™ is the composition of an or-
thogonal transformation and a dilation along perpendicular directions (with distinct
coefficients).

16.2. Let A : R™ — R™ be a contraction operator, i.e., |Az| < |z|. The space R™
can be considered as a subspace of R?”. Prove that A is the restriction to R™ of
the composition of an orthogonal transformation of R?” and the projection on R™.

17. Factorizations of matrices

17.1. The Schur decomposition.
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THEOREM (Schur). Any square matriz A over C can be represented in the form
A =UTU*, where U is a unitary and T a triangular matriz; moreover, A is normal
if and only if T is a diagonal matrix.

PROOF. Let us prove by induction on the order of A. Let x be an eigenvector of
A, ie., Az = Ax. We may assume that |z| = 1. Let W be a unitary matrix whose
first column is made of the coordinates of = (to construct such a matrix it suffices
to complement z to an orthonormal basis). Then

Aok ok

0

0
By the inductive hypothesis there exists a unitary matrix V' such that V*A;V is a
triangular matrix. Then U = <(1) 3) is the desired matrix.

It is easy to verify that the equations T*T = TT* and A*A = AA* are equivalent.
It remains to prove that a triangular normal matrix is a diagonal matrix. Let

t11 ti12 ... tin

0 to1 ... tin
T = . .

0 0 ... tun

Then (TT*)H = ‘t11|2 + |t12|2 + -4 |t1n‘2 and (T*T)ll = |t11|2. Therefore, the
identity TT* = T*T implies that t15 = --- = t1, = 0.

Now, strike out the first row and the first column in 7" and repeat the argu-
ments. [

17.2. The Lanczos decomposition.

THEOREM ([Lanczos, 1958]). Any real m x n-matriz A of rank p > 0 can be
represented in the form A = XAYT, where X and Y are matrices of size m X p
and n X p with orthonormal columns and A is a diagonal matriz of size p X p.

ProoF (Following [Schwert, 1960]). The rank of ATA is equal to the rank
of A; see Problem 8.3. Let U be an orthogonal matrix such that UT AT AU =
diag(p1, .. tip, 0, ..., 0), where y; > 0. Further, let y1, ..., y, be the first p columns
of U and Y the matrix formed by these columns. The columns z; = )\i_lAyi, where
Ai = /Ii, constitute an orthonormal system since (Ay;, Ay;) = (yi, AT Ay;) =
A3(yi,y;)- Tt is also clear that AY = (Aj21,...,Apzp) = XA, where X is a ma-
trix constituted from x1,...,z,, A = diag(A,...,A,). Now, let us prove that
A = XAYT. For this let us again consider the matrix U = (Y,Yp). Since
Ker AT A = Ker A and (AT A)Y; = 0, it follows that AYy = 0. Hence, AU = (XA, 0)
and, therefore, A = (XA,0)UT = XAYT. O

. T AT AXT

REMARK. Since AU = (XA,0), then U"A" = ( 0
equality by U, we get AT = YAXT. Hence, ATX = YAXTX = YA, since
XTX = 1I,. Therefore, (XTA)(ATX) = (AYT)(YA) = A?, since YTY = I,. Thus,
the columns of X are eigenvectors of AAT.

Multiplying this
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17.3. THEOREM. Any square matriz A can be represented in the form A = ST,
where S and T are symmetric matrices, and if A is real, then S and T can also be
considered to be real matrices.

ProOF. First, observe that if A = ST, where S and T are symmetric matrices,
then A = ST = S(TS)S~! = SATS~! where S is a symmetric matrix. The other
way around, if A = SATS~! where S is a symmetric matrix, then A = ST, where
T = ATS~1 is a symmetric matrix, since (ATS™1)T = §714 = §7154TS-1 =
ATSL,

If A is a cyclic block then there exists a symmetric matrix S such that A =
SATS=! (Problem 14.3). For any A there exists a matrix P such that B = P~1AP
is in Frobenius form. For B there exists a symmetric matrix S such that B =
SBTS~'. Hence, A= PBP~' = PSBTS'P~! = §;AS;", where S; = PSP is

a symmetric matrix. [

To prove the theorem we could have made use of the Jordan form as well. In
order to do this, it suffices to notice that, for example,

A E 0 0 0 E 0 0 A
0 A E|]=|l0 E 0 0 AN E|,
0 0 A E 0 0 N E 0

where A = A’ = )\ and E = 1 for the real case (or for a real \) and for the complex

' 7 _ _(a b _ (0 1 Y
case(l.e.,)\a+bl,b7é0)/\<_b a>vE<1 0> and A (a —b)'

For a Jordan block of an arbitrary size a similar decomposition also holds.

Problems

17.1 (The Gauss factorization). All minors |a;;[}, p=1,...,n of a matrix A of
order n are nonzero. Prove that A can be represented in the form A = T1T5, where
Ty is a lower triangular and T, an upper triangular matrix.

17.2 (The Gram factorization). Prove that an invertible matrix X can be repre-
sented in the form X = UT, where U is an orthogonal matrix and 7T is an upper
triangular matrix.

17.3 ([Ramakrishnan, 1972]). Let B = diag(1,e,...,e"" 1), where ¢ = exp(2Zt),
and C = ||cij||:b, where ¢;; = 0; j—1 (here j — 1 is considered modulo n). Prove
that any n x n-matrix M over C is uniquely representable in the form M =

Z;io alekCl.

17.4. Prove that any skew-symmetric matrix A can be represented in the form
A = 5155 — 5551, where S; and Sy are symmetric matrices.

18. The Smith normal form. Elementary factors of matrices

18.1. Let A be a matrix whose elements are integers or polynomials (we may
assume that the elements of A belong to a commutative ring in which the notion
of the greatest common divisor is defined). Further, let fr(A) be the greatest
common divisor of minors of order k of A. The formula for determinant expansion
with respect to a row indicates that fj is divisible by fr_1.

The formula A~! = (adj A)/ det A shows that the elements of A~! are integers
(resp. polynomials) if det A = %1 (resp. det A is a nonzero number). The other way
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around, if the elements of A~! are integers (resp. polynomials) then det A = +1
(resp. det A is a nonzero number) since det A-det A~ = det(AA~!) = 1. Matrices
A with det A = +1 are called unities (of the corresponding matrix ring). The
product of unities is, clearly, a unity.

18.1.1. THEOREM. If A’ = BAC, where B and C are unity matrices, then
fi(A) = fi(A) for all admissible k.

ProOF. From the Binet-Cauchy formula it follows that fx(A’) is divisible by
fx(A). Since A = B71A'C~1, then fi(A) is divisible by fr(4"). O

18.1.2. THEOREM (Smith). For any matriz A of size m x n there exist unity
matrices B and C such that BAC = diag(g1,92,-..,9p,0,...,0), where g;41 is
divisible by g;.

The matrix diag(g1,92,...,9p,0,...,0) is called the Smith normal form of A.

PROOF. The multiplication from the right (left) by the unity matrix Hain;L,
where a;; = 1 for i # p,q and apy = aqp = 1 the other elements being zero,
performs a permutation of pth column (row) with the gth one. The multiplication
from the right by the unity matrix Hain?, wherea;; =1 (i=1,...,n) and apg = f
(here p and ¢ are fixed distinct numbers), performs addition of the pth column
multiplied by f to the gth column whereas the multiplication by it from the left
performs the addition of the gth row multiplied by f to the pth one. It remains to
verify that by such operations the matrix A can be reduced to the desired form.

Define the norm of an integer as its absolute value and the norm of a polynomial
as its degree. Take a nonzero element a of the given matrix with the least norm
and place it in the (1,1) position. Let us divide all elements of the first row by a
with a remainder and add the multiples of the first column to the columns 2 to n
so that in the first row we get the remainders after division by a.

Let us perform similar operations over columns. If after this in the first row
and the first column there is at least one nonzero element besides a then its norm
is strictly less than that of a. Let us place this element in the position (1,1) and
repeat the above operations. The norm of the upper left element strictly diminishes
and, therefore, at the end in the first row and in the first column we get just one
nonzero element, aqq.

Suppose that the matrix obtained has an element a;; not divisible by a1;. Add to
the first column the column that contains a;; and then add to the row that contains
a;; a multiple of the first row so that the element a;; is replaced by the remainder
after division by a1;. As a result we get an element whose norm is strictly less than
that of a;;. Let us place it in position (1,1) and repeat the indicated operations.

At the end we get a matrix of the form (901 2,), where the elements of A’ are
divisible by ¢;.
Now, we can repeat the above arguments for the matrix A’. O

REMARK. Clearly, fi(A) =¢g192- .. 9.

18.2. The elements g1, ..., g, obtained in the Smith normal form are called
invariant factors of A. They are expressed in terms of divisors of minors f(A) as
follows: gy = fi/fr—1 if fr—1 # 0.
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Every invariant factor g; can be expanded in a product of powers of primes (resp.
powers of irreducible polynomials). Such factors are called elementary divisors of
A. Each factor enters the set of elementary divisors multiplicity counted.

Elementary divisors of real or complex matrix A are elementary divisors of the
matrix I — A. The product of all elementary divisors of a matrix A is equal, up
to a sign, to its characteristic polynomial.

Problems

18.1. Compute the invariant factors of a Jordan block and of a cyclic block.

18.2. Let A be a matrix of order n, let f,,_1 be the greatest common divisor of
the (n — 1)-minors of I — A. Prove that the minimal polynomial A is equal to
|xI — Al

fnfl
Solutions

11.1. a) The trace of AB — BA is equal to 0 and, therefore, AB — BA cannot
be equal to I.

b) If |A| # 0 and AB — BA = A, then A~'AB — A='BA = I. But tr(B —
A7'BA)=0and trI = n.

11.2. Let all elements of B be equal to 1 and A = diag(Aq,...,A,). Then
A = ABA™! and if = is an eigenvector of B then Az is an eigenvector of A. The
vector (1,...,1) is an eigenvector of B corresponding to the eigenvalue n and the
(n — 1)-dimensional subspace x1 + - - - + x,, = 0 is the eigenspace corresponding to
eigenvalue 0.

11.3. If X is not an eigenvalue of the matrices A, then A can be represented as
one half times the sum of the invertible matrices A + Al and A — \I.

11.4. Obviously, the coefficients of the characteristic polynomial depend contin-
uously on the elements of the matrix. It remains to prove that the roots of the
polynomial p(z) = 2" + a;2" ! + -+ + a,, depend continuously on ay,...,a,. It
suffices to carry out the proof for the zero root (for a nonzero root x; we can con-
sider the change of variables y = 2 — x1). If p(0) = 0 then a,, = 0. Consider a
polynomial ¢(z) = 2™ + bzt + - -+ b,, where |b; —a;| < J. If x1,..., 7, are the
roots of ¢, then |x1...x,| = |by| < ¢ and, therefore, the absolute value of one of
the roots of ¢ is less than /5. The d required can be taken to be equal to &”.

11.5. If the sum of the elements of every row of A is equal to s, then Ae =
se, where e is the column (1,1,...,1)7. Therefore, A=!(Ae) = A~!(se); hence,
A7te = (1/s)e, i.e., the sum of the elements of every row of A~! is equal to 1/s.

11.6. Let S; be the first column of S. Equating the first columns of AS and SA,
where the first column of A is of the form (),0,...,0)T, we get AS; = \S;.

11.7. Tt is easy to verify that |A\I — A| = > 1_ A" F(=1)kF A, (A), where Aj(A)
is the sum of all principal k-minors of A. It follows that

n n n—1
ST = A=) AR DR AL (4)).
i=1 i=1 k=0

It remains to notice that
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since any principal k-minor of A is a principal k-minor for n — k matrices A;.

11.8. Since adj(PXP~1) = P(adj X)P~!, we can assume that A is in the Jordan
normal form. In this case adj A is an upper triangular matrix (by Problem 2.6) and
it is easy to compute its diagonal elements.

11.9. Let S = |’6i7”*ng' Then AS = HbUHg and SA = HCij’ g, where bij =
@i n—j and ¢;j = an—; j. Therefore, the central symmetry of A means that AS = SA.
It is also easy to see that x is a symmetric vector if Sz = x and skew-symmetric if
Sx = —ux.

Let A be an eigenvalue of A and Ay = Ay, where y # 0. Then A(Sy) = S(Ay) =
S(Ay) = A(Sy). If Sy = —y we can set x = y. If Sy # —y we can set x = y + Sy
and then Ax = Az and Sx = .

11.10. Since

Ae; = Gn—i+1,ibn—i+1 = Tn—i+1€n—it+1

and Ae,_;+1 = x;e;, the subspaces V; = Span(e;, ,,—;+1) are invariant with respect
to A. For ¢ # n — i 4+ 1 the matrix of the restriction of A to V; is of the form

B = 0 A . The eigenvalues of B are equal to £v/Au. If Ay = 0 and B is

0
diagonaﬁzable, then B = 0. Therefore, the matrix B is diagonalizable if and only
if both numbers A and p are simultaneously equal or not equal to zero.

Thus, the matrix A is diagonalizable if and only if the both numbers z; and
Tn—i+1 are simultaneously equal or not equal to 0 for all ¢.

11.11. a) Suppose the columns z1, ..., z,, correspond to real eigenvalues aq,

, Q. Let X = (21,...,2m) and D = diag(a, ..., qy,). Then AX = XD and
since D is a real matrix, then AXX* = XDX* = X(XD)* = X(AX)* = XX*A*.
If the vectors z1,...,z,, are linearly independent, then rank X X* = rank X = m
(see Problem 8.3) and, therefore, for S we can take X X*.

Now, suppose that AS = SA* and S is a nonnegative definite matrix of rank m.
Then there exists an invertible matrix P such that S = PNP*, where N =
(16” 8) Let us multiply both parts of the identity AS = SA* by P~! from
the left and by (P*)~! from the right; we get (P~'AP)N = N(P~'AP)*. Let

p-iap—p— (B DBru ) , where By is a matrix of order m. Since BN = N B*,

Ba1 Bz
By 0 _ (B, By ; _ (B B2 .
then <321 O) = < 0 0 , l.e., B = 0 By ) where By is an Her-
mitian matrix of order m. The matrix By; has m linearly independent eigenvectors
21,...,%m with real eigenvalues. Since AP = PB and P is an invertible matrix,
then the vectors P (201), ., P (Zg') are linearly independent and are eigenvectors

of A corresponding to real eigenvalues.

b) The proof is largely similar to that of a): in our case AX X*A* = AX(AX)* =
XD(XD)* = XDD*X* = X X*.

If ASA* = S and S = PNP*, then P"LAPN(P~'AP)* = N, i..,

(BHB{l 811B§1>(Im 0>
By1Bf, B B3, 0 0/

By Bio

Therefore, By; = 0 and P~'AP = B =
0 B

>, where Bji; is unitary.
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12.1. Let A be a Jordan block of order k. It is easy to verify that in this case
S A = ATS;, where S), = H(Si,kH,jHII is an invertible matrix. If A is the direct
sum of Jordan blocks, then we can take the direct sum of the matrices Sj.

12.2. The matrix P! corresponds to the permutation o ~! and, therefore, P~ =
Hqij’ 71L7 where q;; = 05(;);- Let P7lAP = Hb”HT Then b;; = Z&t 0o (i)sUstOta(j) =
Qo (i)o(j)

12.3. Let A1, ..., Ay be distinct eigenvalues of A and p; the multiplicity of the
eigenvalue )\;. Then tr(A*) = pyA\F +--- + p,, Ak, Therefore,

||bz'j||g%1 =pi...Pm H(Ai — ;) (See Problem 1.18).
i#j

To compute |b;;|5 we can, for example, replace p,, A\¥, with AX, + (p,, — 1)\, in the
expression for tr(AF).

12.4. If A’ = P~YAP, then (A’ + M\)7'A’ = P~1(A + \I)"' AP and, therefore,
it suffices to consider the case when A is a Jordan block. If A is invertible, then
)l\ig})(A + M)t = A7'. Let A=0-I+ N = N be a Jordan block with zero

eigenvalue. Then
(N+AD)TIN= AT - ANINFA AN - )N =A"'N-A2N? ..

and the limit as A — 0 exists only if N = 0.

Thus, the limit indicated exists if and only if the matrix A does not have nonzero
blocks with zero eigenvalues. This condition is equivalent to rank A = rank A2.

13.1. Let (A1,...,A,) be the diagonal of the Jordan normal form of A and
ok = 0k(A1,. ., An). Then A — A| =37 (=1)*A" "oy, Therefore, it suffices to
demonstrate that f,(A4) = > j_,(—1)*A™ ¥y, for all m. For m = 1 this equation
coincides with the definition of fi;. Suppose the statement is proved for m; let us
prove it for m + 1. Clearly,

frr1(A) =D (~1)FAm gy — mi ot (Z(nmmk“ak) I.

k=0 k=0

Since

tr( (—1)kAm—k+lak> =3 (~1*spm_kp10%,
k k=0

=0

where s, = A] 4+ -+ 4+ A2 it remains to observe that

m
Z(—l)ksm_kHUk +(m+1)(=1)"o,00 =0 (see 4.1).
k=0

13.2. According to the solution of Problem 13.1 the coefficients of the char-
acteristic polynomial of X are functions of tr X, ..., tr X™ and, therefore, the
characteristic polynomials of A and B coincide.

13.3. Let f(A\) be an arbitrary polynomial g(\) = A" f(A~!) and B = A~ If
0 = g(B) = B"f(A) then f(A) = 0. Therefore, the minimal polynomial of B
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is proportional to A"p(A~1). It remains to observe that the highest coefficient of
n -1
A"p(A71) is equal to lim % = p(0).
A—00
13.4. As is easy to verify,

J(A T () v
0 A 0 pl4) )’
If g(x) = [J(xz — A;)™ is the minimal polynomial of A and p is an annihilating poly-

nomial of (13 j), then p and p’ are divisible by ¢; among all such polynomials

p the polynomial [J(z — A\;)™*? is of the minimal degree.

14.1. The minimal polynomial of a cyclic block coincides with the characteristic
polynomial. The minimal polynomial of A annihilates the given cyclic blocks since
it is divisible by both p and g. Since p and ¢ are relatively prime, the minimal
polynomial of A is equal to pg. Therefore, there exists a vector in V' whose minimal
polynomial is equal to pgq.

14.2. First, let us prove that A¥e,, = e, _j +¢, where € € Span(en, ..., en_pi1)-
We have Ae, = e,_1 + e, for k = 1 and, if the statement holds for k, then
AFtle =€, pi1+ Aey_p + Ac and e, 1, Ac € Span(en, ..., en_k)-

Therefore, expressing the coordinates of the vectors e, Ae,, ..., A" e, with
respect to the basis e,, e,—1,...,e1 we get the matrix

1 ... ... %

0 1 :

0O ... 0 1
This matrix is invertible and, therefore, the vectors e,, Ae,,..., A" te, form a
basis.

REMARK. It is possible to prove that for v we can take any vector xie; + -+ +
ZTpeén, where x,, # 0.

14.3. Let
00 ... 0 =—a, Ap-1 Gp_2 ... a1 1
1 0 0 —Qn—-1 ap—2 Ap—-3 ... 1 0
A= 0 1 0 —0p—2 S =
o : a 1 ... 0 0
00 ... 1 —a 1 0 ... 0 0
Then

—ay 0 0 0 0

0 ap—2 0ap—-3 ... a1 1

0 Ap—3 QAp—4 e 1 0

AS = .

0 ai 1 ... 0 O

0 1 0 ... 0 O

is a symmetric matrix. Therefore, AS = (A9)T = SAT ie., A= SATS L.
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15.1. By Theorem 15.3 there exists a matrix P such that the diagonal elements
of B = P7'AP are nonzero. Consider a matrix Z whose diagonal elements are
all equal to 1, the elements above the main diagonal are zeros, and under the
diagonal there stand the same elements as in the corresponding places of —B. The
eigenvalues of the lower triangular matrix Z are equal to 1 and the eigenvalues of
the upper triangular matrix B + Z are equal to 1 4 b;; # 1. Therefore, for X we
can take PZP~!.

16.1. The operator A can be represented in the form A = SU, where U is
an orthogonal operator and S is a positive definite symmetric operator. For a
symmetric operator there exists an orthogonal basis of eigenvectors, i.e., it is a
dilation along perpendicular directions.

16.2. If A = SU is the polar decomposition of A then for S there exists an
orthonormal eigenbasis eq, . . ., €, and all the eigenvalues do not exceed 1. Therefore,
Se; = (cos p;)e;. Complement the basis e, ..., e, to a basis eq,...,ep, €1, ...,
e, of R?™ and consider an orthogonal operator S; which in every plane Span(e;, &;)

acts as the rotation through an angle ¢;. The matrix of Sy is of the form *

I 0 S« U o0\ _ (SU =

0 0 ko ok o 1) L0 0)°
U 0). . . on
0 1) the required orthogonal transformation of R=".

17.1. Let apq = A be the only nonzero off-diagonal element of X,,,() and let the
diagonal elements of X,,(A) be equal to 1. Then X,,(\)A is obtained from A by

adding to the pth row the gth row multiplied by A. By the hypothesis, a1; # 0 and,
therefore, subtracting from the kth row the 1st row multiplied by ax;/a11 we get a

*
Since

it follows that S

matrix with as; = -+ = a,1 = 0. The hypothesis implies that age # 0. Therefore,
we can subtract from the kth row (k > 3) the 2nd row multiplied by aga/as2 and
get a matrix with aze = --- = as, = 0, etc.

Therefore, by multiplying A from the right by the matrices X,,, where p > ¢,
we can get an upper triangular matrix 75. Since p > ¢, then the matrices X,
are lower triangular and their product T is also a lower triangular matrix. The
equality TA = Ty implies A = T~'T,. It remains to observe that T} = T~ ! is a
lower triangular matrix (see Problem 2.6); the diagonal elements of T are all equal
to 1.

17.2. Let x1,...,x, be the columns of X. By 9.2 there exists an orthonormal
set of vectors yi,..., y, such that y; € Span(z1,...,z;) for i = 1,...,n. Then
the matrix U whose columns are yi, ..., y, is orthogonal and U = XT7, where T}

is an upper triangular matrix. Therefore, X = UT, where T' = T Uis an upper
triangular matrix.

17.3. For every entry of the matrix M only one of the matrices I, C, C?,...,
C™~! has the same nonzero entry and, therefore, M is uniquely representable in
the form M = Dy + D;C + --- + D,,_1C™~!, where the D; are diagonal matrices.
For example,

a b a 0 b 0 0 1
<c d)_<0 d)+(0 C)C’, WhereC'_<1 0).

The diagonal matrices I, B, B2,..., B"! are linearly independent since their
diagonals constitute a Vandermonde determinant. Therefore, any matrix D; is
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uniquely representable as their linear combination

n—1
Dl = Z alek.
k=0

17.4. The matrix A/2 can be represented in the form A/2 = 5155, where S; and
S, are symmetric matrices (see 17.3). Therefore, A = (A — AT)/2 = 5155 — $55;.

18.1. Let A be either a Jordan or cyclic block of order n. In both cases the
matrix A — zI has a triangular submatrix of order n — 1 with units 1 on the main
diagonal. Therefore, f; = .-+ = f,—1 = 1 and f, = pa(x) is the characteristic
polynomial of A. Hence, g1 =---=g,-1 =1 and g, = pa(z).

18.2. The cyclic normal form of A is of a block diagonal form with the diagonal
being formed by cyclic blocks corresponding to polynomials py, ps,..., pr, where
p1 is the minimal polynomial of A and p; is divisible by p;y1. Invariant factors of
these cyclic blocks are p1,...,pr (Problem 18.1), and, therefore, the Smith normal
forms, are of the shape diag(1,...,1,p;). Hence, the Smith normal form of A is of
the shape diag(1,...,1,pk,...,p2,p1). Therefore, f,—1 = paps ... k.
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MATRICES OF SPECIAL FORM

19. Symmetric and Hermitian matrices

A real matrix A is said to be symmetric if AT = A. In the complex case an
analogue of a symmetric matrix is usually an Hermitian matriz for which A* = A,
where A* = A" is obtained from A by complex conjugation of its elements and
transposition. (Physicists often write AT instead of A*.) Sometimes, symmetric
matrices with complex elements are also considered.

Let us recall the properties of Hermitian matrices proved in 11.3 and 10.3. The
eigenvalues of an Hermitian matrix are real. An Hermitian matrix can be repre-
sented in the form U*DU, where U is a unitary and D is a diagonal matrix. A
matrix A is Hermitian if and only if (Az,z) € R for any vector z.

19.1. To a square matrix A we can assign the quadratic form q(z) = 2T Az,
where x is the column of coordinates. Then (z7Ax)T = 27 Ax, ie., 27 ATz =
2T Az. Tt follows, 207 Az = 2T (A + AT)x, i.e., the quadratic form only depends
on the symmetric constituent of A. Therefore, it is reasonable to assign quadratic
forms to symmetric matrices only.

To a square matrix A we can also assign a bilinear function or a bilinear form

B(z,y) = 2T Ay (which depends on the skew-symmetric constituent of A, too)
and if the matrix A is symmetric then B(x,y) = B(y, ), i.e., the bilinear function
B(x,y) is symmetric in the obvious sense. From a quadratic function ¢(z) = 27 Az
we can recover the symmetric bilinear function B(x,y) = 27 Ay. Indeed,

20T Ay = (x + y)TA(x +y) — 2T Az — yT Ay

since yT Az = 2T ATy = 2T Ay.

In the real case a quadratic form 7 Az is said to be positive definite if 27 Az > 0
for any nonzero z. In the complex case this definition makes no sense because any
quadratic function 27 Az not only takes zero values for nonzero complex x but it
takes nonreal values as well.

The notion of positive definiteness in the complex case only makes sense for
Hermitian forms z* Az, where A is an Hermitian matrix. (Forms , linear in one
variable and antilinear in another one are sometimes called sesquilinear forms.) If
U is a unitary matrix such that A = U*DU, where D is a diagonal matrix, then
x*Ax = (Ux)*D(Uxz), i.e., by the change y = Uz we can represent an Hermitian

form as follows
> T = > Mlvl

An Hermitian form is positive definite if and only if all the numbers \; are positive.
For the matrix A of the quadratic (sesquilinear) form we write A > 0 and say that
the matriz A is (positive or somehow else) definite if the corresponding quadratic
(sesquilinear) form is definite in the same manner.
In particular, if A is positive definite (i.e., the Hermitian form z* Az is positive
definite), then its trace A; + -+ - + A, and determinant A; ...\, are positive.

Typeset by ApMS-TEX
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19.2.1. THEOREM (Sylvester’s criterion). Let A = Hain;L be an Hermitian
matriz. Then A is positive definite if and only if all minors |aij|’f, k=1,...,n,
are positive.

PROOF. Let the matrix A be positive definite. Then the matrix Hain]f corre-
sponds to the restriction of a positive definite Hermitian form z*Ax to a subspace
and, therefore, |aij\’f > 0. Now, let us prove by induction on n that if A = ||aij ||;L
is an Hermitian matrix and |a;;|§ > 0 for k = 1,...,n then A is positive definite.

For n = 1 this statement is obvious. It remains to prove that if A’ = ||aij ||;li1 isa
positive definite matrix and |a;;|7 > 0 then the eigenvalues of the Hermitian matrix
A= Haij ||711 are all positive. There exists an orthonormal basis ey, ..., e, with re-
spect to which 2* Az is of the form Ai|y1|? + -+ + Anlyn|? and Ap < Xg < -+ < Ay,
If y € Span(ey,ez) then y*Ay < Aaly|?. On the other hand, if a nonzero vector
y belongs to an (n — 1)-dimensional subspace on which an Hermitian form corre-
sponding to A’ is defined then y* Ay > 0. This (n—1)-dimensional subspace and the
two-dimensional subspace Span(ey, e2) belong to the same n-dimensional space and,
therefore, they have a common nonzero vector y. It follows that Aa|y|? > y* Ay > 0,
i.e., A2 > 0; hence, A; > 0 for ¢ > 2. Besides, A1 ...\, = |a;;|7 > 0 and therefore,
A1 >0, O

19.2.2. THEOREM (Sylvester’s law of inertia). Let an Hermitian form be
reduced by a unitary transformation to the form

Mlzi)? + -+ Aal2a)?, (1)

where \; > 0 fori =1,...,p, N\ <0 fori=p+1,....p+q, and \; = 0 for
i =p+q+1,...,n. Then the numbers p and q do not depend on the unitary
transformation.

PRrROOF. The expression (1) determines the decomposition of V' into the direct
sum of subspaces V =V, & V_ @& Vj, where the form is positive definite, negative
definite and identically zero on V., V_,| V}, respectively. Let V=W, @ W_ & Wy
be another such decomposition. Then V. N(W_ @& W) = 0 and, therefore, dim V +
dim(W_ & Wy) < n, ie., dimVy < dim W,. Similarly, dim W, < dimV,. O

19.3. We turn to the reduction of quadratic forms to diagonal form.

THEOREM (Lagrange). A quadratic form can always be reduced to the form

q(zy, ..., 2,) = \a? +~--+/\nxi.

PROOF. Let A = Haij HT be the matrix of a quadratic form g. We carry out the
proof by induction on n. For n = 1 the statement is obvious. Further, consider two
cases.

a) There exists a nonzero diagonal element, say, a1; # 0. Then

Q(mla cee 7xn) = ally% + ql(y27 o >yn)a

where
a12T2 + -+ + A1p Ty

Y1 =21 +
ail
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and y; = x; for 7 > 2. The inductive hypothesis is applicable to ¢’.

b) All diagonal elements are 0. Only the case when the matrix has at least one
nonzero element of interest; let, for example, a2 # 0. Set 1 = y1 +y2, T2 = Y1 — Y2
and x; = y; for ¢ > 3. Then

g1, @n) = 2012047 = 43) + 4 (W1, -, Yn),

where ¢’ does not contain terms with y? and y2. We can apply the change of
variables from case a) to the form q(y1,...,yn). O

19.4. Let the eigenvalues of an Hermitian matrix A be listed in decreasing order:

A1 > -+ > Ap. The numbers Ay, ..., A\, possess the following min-max property.
THEOREM (Courant-Fischer). Let x run over all (admissible) unit vectors.
Then

A1 = max(z* Az),

A2 = min max(z*Az),
Y1 xlyr

An = min max (2" Ax)
Y1yeees Yn—1 xLlyr,...,.Yn—1

PROOF. Let us select an orthonormal basis in which
o Ax = M + -4 Nl

Consider the subspaces Wi = {z | 241 = - = 2, = 0} and Wy = {a | L
Y1y Yk—1}. Since dim Wy = k and dim Wy > n — k + 1, we deduce that W =
WiNWy #£0. If 2 € W and |z| = 1 then 2 € W and

T AT = Mat 4+ x> Np(22 4+ 2d) = g

Therefore,
A < max  (2"Az) < max(z*Ax);

zeW1NWs xeWs
hence,
A < min max (2% Ax).
Yi,--Yk—1 xzEW>

Now, consider the vectors y; = (0,...,0,1,0,...,0) (1 stands in the ith slot).
Then
Wo={z|z Ly,...,yp—1} ={x |21 ="+ =21 =0}.

If x € W5 and || = 1 then
P AT = M+ Az < (2l oo+ 22) = A,
Therefore,

Ar = max (z*Az) > min max (z*Az). O
TrEW> YirsYk—1 TLY1,eYp—1
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19.5. An Hermitian matrix A is called nonnegative definite (and we write A > 0)
if * Az > 0 for any column z; this condition is equivalent to the fact that all eigen-
values of A are nonnegative. In the construction of the polar decomposition (16.1)
we have proved that for any nonnegative definite matrix A there exists a unique
nonnegative definite matrix S such that A = S2. This statement has numerous
applications.

19.5.1. THEOREM. If A is a monnegative definite matriz and x*Ax = 0 for
some x, then Az = 0.

PrROOF. Let A = 5*S. Then 0 = z*Az = (Sx)*Sz; hence, Sz = 0. It follows
that Az = S*Sx=0. O

Now, let us study the properties of eigenvalues of products of two Hermitian
matrices, one of which is positive definite. First of all, observe that the product
of two Hermitian matrices A and B is an Hermitian matrix if and only if AB =
(AB)* = B*A* = BA. Nevertheless the product of two positive definite matrices
is somewhat similar to a positive definite matrix: it is a diagonalizable matrix with
positive eigenvalues.

19.5.2. THEOREM. Let A be a positive definite matriz, B an Hermitian matriz.
Then AB is a diagonalizable matriz and the number of its positive, negative and
zero eigenvalues is the same as that of B.

PROOF. Let A = 52, where S is an Hermitian matrix. Then the matrix AB is
similar to the matrix S~'ABS = SBS. For any invertible Hermitian matrix S if
x = Sy then 2* Bx = y*(SBS)y and, therefore, the matrices B and SBS correspond
to the same Hermitian form only expressed in different bases. But the dimension
of maximal subspaces on which an Hermitian form is positive definite, negative
definite, or identically vanishes is well-defined for an Hermitian form. Therefore,
A is similar to an Hermitian matrix SBS which has the same number of positive,
negative and zero eigenvalues as B. [

A theorem in a sense inverse to Theorem 19.5.2 is also true.

19.5.3. THEOREM. Any diagonalizable matriz with real eigenvalues can be rep-
resented as the product of a positive definite matriz and an Hermitian matriz.

PRrROOF. Let C = PDP~!, where D is a real diagonal matrix. Then C = AB,
where A = PP* is a positive definite matrix and B = P*~!DP~! an Hermitian
matrix. O

Problems

19.1. Prove that any Hermitian matrix of rankr can be represented as the sum
of r Hermitian matrices of rank 1.

19.2. Prove that if a matrix A is positive definite then adj A is also a positive
definite matrix.
tr A)?
tr(A2)°

—~

19.3. Prove that if A is a nonzero Hermitian matrix then rank A >

19.4. Let A be a positive definite matrix. Prove that

/ e At de = (Va)"| AT,
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where n is the order of the matrix.

19.5. Prove that if the rank of a symmetric (or Hermitian) matrix A is equal to
r, then it has a nonzero principal r-minor.

19.6. Let S be a symmetric invertible matrix of order n all elements of which
are positive. What is the largest possible number of nonzero elements of S~1?

20. Simultaneous diagonalization of a pair of Hermitian forms

20.1. THEOREM. Let A and B be Hermitian matrices and let A be positive
definite. Then there exists a matriz T such that T*AT = I and T*BT is a diagonal
matrix.

PROOF. For A there exists a matrix Y such that A = Y*Y ie., Y* 1AY ! =],
The matrix C = Y*~'BY ! is Hermitian and, therefore, there exists a unitary
matrix U such that U*CU is diagonal. Since U*IU = I, then T = Y ~'U is the
desired matrix. [

It is not always possible to reduce simultaneously a pair of Hermitian forms to
diagonal form by a change of basis. For instance, consider the Hermitian forms

. . 1 0 0 1 a b .
corresponding to matrices <0 0) and (1 0). Let P = (c d) be an arbi-

. . . (1 0 aa ab (0 1

trary invertible matrix. Then P (0 O) P = (ab bb) and P (1 0) P =
( atc+ac ad+ be

ad +bc  bd +bd
cannot hold simultaneously. If @b = 0 and P is invertible, then either a = 0 and
b#0orb=0 and a # 0. In the first case 0 = ad + b¢ = bc and therefore, ¢ = 0; in
the second case ad = 0 and, therefore, d = 0. In either case we get a noninvertible
matrix P.

) . It remains to verify that the equalities ab = 0 and ad+bc = 0

20.2. Simultaneous diagonalization. If A and B are Hermitian matrices
and one of them is invertible, the following criterion for simultaneous reduction of
the forms z*Ax and x* Bz to diagonal form is known.

20.2.1. THEOREM. Hermitian forms x*Ax and x* Bz, where A is an invertible
Hermitian matriz, are simultaneously reducible to diagonal form if and only if the
matriz A7 B is diagonalizable and all its eigenvalues are real.

PROOF. First, suppose that A = P*D{P and B = P*DyP, where Dy and Dy
are diagonal matrices. Then A7!'B = P_lDlegP is a diagonalizable matrix. It
is also clear that the matrices D1 and Dy are real since y*D;y € R for any column
y = Pz.

Now, suppose that A='B = PDP~!, where D = diag(\1,...,\,) and \; € R.
Then BP = APD and, therefore, P*BP = (P*AP)D. Applying a permutation
matrix if necessary we can assume that D = diag(A1,...,Ax) is a block diagonal
matrix, where A; = ;I and all numbers \; are distinct. Let us represent in the
same block form the matrices P*BP = ||B”HIlC and P*AP = HA”HI; Since they
are Hermitian, B;; = Bj, and Ay = AJ*7 On the other hand, B;; = A;A4j;
hence, /\inj = B]*z = XZA; = AZA” Therefore, A'L'j = 0 for i 7& j, i.e.,
P*AP = diag(Ay,...,A), where A = A; and P*BP = diag(AA1,..., \pAk).
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Every matrix A; can be represented in the form A; = U;D,;U}, where U; is a uni-
tary matrix and D; a diagonal matrix. Let U = diag(Uy,...,U;) and T = PU.
Then T*AT = diag(D1,...,Dy) and T*BT = diag(A1 D1, ..., \zDg). O

There are also known certain sufficient conditions for simultaneous diagonaliz-
ability of a pair of Hermitian forms if both forms are singular.

20.2.2. THEOREM ([Newcomb, 1961]). If Hermitian matrices A and B are
nonpositive or nonnegative definite, then there exists an invertible matriz T such
that T*AT and T* BT are diagonal.

PrOOF. Let rank A = a, rank B = b and a < b. There exists an invertible matrix
I
Ty such that Ty ATy = (‘)1 8
of By = T} BT,. The matrix B; is sign-definite and, therefore, if a diagonal element
of it is zero, then the whole row and column in which it is situated are zero (see
Problem 20.1). Now let some of the diagonal elements considered be nonzero. It is
easy to verify that

I z* C c* I 0Y)\ * ac* + ayx*
0 @ c v r «) \ac+ayx ||y '
If v # 0, then setting o = 1/,/y and z = —(1/7)c we get a matrix whose off-

diagonal elements in the last row and column are zero. These transformations
preserve Ag; let us prove that these transformations reduce By to the form

= Ay. Consider the last n — a diagonal elements

B,
By =

o~ o

0
0 01,
0 0
where B, is a matrix of size a X ¢ and k = b —rank B,. Take a permutation matrix
P such that the transformation By — P*B; P affects only the last n — a rows and
columns of By and such that this transformation puts the nonzero diagonal elements
(from the last n —a diagonal elements) first. Then with the help of transformations
indicated above we start with the last nonzero element and gradually shrinking the
size of the considered matrix we eventually obtain a matrix of size a X a.

Let T3 be an invertible matrix such that 75 BT, = By and T35 ATy = Ag. There
exists a unitary matrix U of order a such that U*B,U is a diagonal matrix. Since
U*I,U = 1,, then T = TyU;, where U; = (g 5).

20.2.3. THEOREM ([Majindar, 1963]). Let A and B be Hermitian matrices and
let there be no nonzero column x such that x*Ax = x*Bx = 0. Then there ezists
an invertible matriz T such that T*AT and T* BT are diagonal matrices.

>, is the required matrix. [

Since any triangular Hermitian matrix is diagonal, Theorem 20.2.3 is a particular
case of the following statement.

20.2.4. THEOREM. Let A and B be arbitrary complex square matrices and there
18 no nonzero column x such that x*Ax = x*Bx = 0. Then there exists an invertible
matriz T such that T* AT and T*BT are triangular matrices.

PROOF. If one of the matrices A and B, say B, is invertible then p(\) = |A—\B|
is a nonconstant polynomial. If the both matrices are noninvertible then |A—AB| =
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0 for A = 0. In either case the equation |[A — AB| = 0 has a root A and, therefore,
there exists a column 7 such that Azqy = ABzy. If A # 0 (resp. A = 0) select
linearly independent columns xs, ..., 2, such that xfAx; = 0 (resp. xfBx; = 0)
for ¢ = 2,...,n; in either case 27 Az, = 2;Bx; = 0 for ¢« = 2,...,n. Indeed, if
A # 0, then 2} Azq = 0 and z} Bxy = A~ af Azy = 0; if A = 0, then 27 By = 0 and
x; Az = 0, since Az; = 0.

Therefore, if D is formed by columns z1,...,z,, then
1Az, ... ziAz, ziBxy ... xiBx,
D*AD = 0 d D*BD = 0
b A, an ' B,

Let us prove that D is invertible, i.e., that it is impossible to express the column x
linearly in terms of xs, ..., x,. Suppose, contrarywise, that x1 = Aoxo+- -+ A zp.
Then

27 Az = (Aoxd + -+ Apz)) Az = 0.

Similarly, 7 Bx; = 0; a contradiction. Hence, D is invertible.

Now, let us prove that the matrices A; and Bj satisfy the hypothesis of the
theorem. Suppose there exists a nonzero column y; = (as,...,a,)7 such that
Yy A1y1 = yi Biyr = 0. As is easy to verify, A1 = DTAD; and By = DfBD;, where
D, is the matrix formed by the columns xo,...,x,. Therefore, y*Ay = y* By,
where y = Dyy; = asxa + - -+ + anxy # 0, since the columns zo, .. ., z, are linearly
independent. Contradiction.

If there exists an invertible matrix 73 such that Ty A7y and Ty BT are trian-
1
0 T
the statement is obvious and, therefore, we may use induction on the order of the
matrices. U

gular, then the matrix T'= D ) is a required one. For matrices of order 1

Problems

20.1. An Hermitian matrix A = HainT is nonnegative definite and a;; = 0 for
some 7. Prove that a;; = aj; = 0 for all j.

20.2 ([Albert, 1958]). Symmetric matrices A; and B; (i = 1,2) are such that
the characteristic polynomials of the matrices tA; + yAs and x By + yBs are equal
for all numbers z and y. Is there necessarily an orthogonal matrix U such that
UA;UT = B, fori=1,2?

21. Skew-symmetric matrices

A matrix A is said to be skew-symmetric if AT = —A. In this section we consider
real skew-symmetric matrices. Recall that the determinant of a skew-symmetric
matrix of odd order vanishes since |AT| = |A| and | — A| = (—=1)"|A|, where n is
the order of the matrix.

21.1.1. THEOREM. If A is a skew-symmetric matriz then A% is a symmetric
nonpositive definite matriz.

PrOOF. We have (A2)T = (AT)?2 = (-A)? = A% and 27A%z = —2TAT Ax
=—(Ax)TAz <0. O
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COROLLARY. The nonzero eigenvalues of a skew-symmetric matriz are purely
maginary.

Indeed, if Az = Az then A%z = A2z and A\? < 0.

21.1.2. THEOREM. The condition 7 Az = 0 holds for all x if and only if A is
a skew-symmetric matriz.

Proor.
l‘TAl‘ = Zai]’l‘iﬂf]‘ = Z(aij + Clji)l‘il‘j.

] 1<j
This quadratic form vanishes for all x if and only if all its coefficients are zero, i.e.,
Qij + a5 = 0. O

21.2. A bilinear function B(z,y) = Z” a;;x;y; is said to be skew-symmetric if
B(z,y) = —B(y, z). In this case

Z(aij +aji)ziy; = B(z,y) + B(y,z) =0,
i
i.e., Qi = —Qjj-
THEOREM. A skew-symmetric bilinear function can be reduced by a change of

basis to the form
T

Z($2k—1yzk - Izkyzk—1)~
k=1

PROOF. Let, for instance, a12 # 0. Instead of xo and ys introduce variables
Th = a12T2 + -+ - + a1,%y and Y4 = a12Y2 + - - + @1,Yn- Then

B(z,y) = 1y — xhy1 + (323 + -+ + cnn)yh — (C3y3 + -+ + CplYn)Th + . .. .

Instead of x; and y; introduce new variables zj = x1 + cszs + -+ + cpxy, and
Y1 =y1+csys + -+ cpyn. Then B(x,y) = 2y — xby] + ... (dots stand for the
terms involving the variables z; and y; with ¢ > 3). For the variables x3, x4, ... ,
Y3, Y4, ... we can repeat the same procedure. [J

COROLLARY. The rank of a skew-symmetric matriz is an even number.

The elements a;;, where ¢ < j, can be considered as independent variables. Then
the proof of the theorem shows that

o e 0 1 0 1
A=P JP, WhereJ-dlag((_l O),...,(_l O))

and the elements of P are rational functions of a;;. Taking into account that

0 1\ [0 1 -1 0
-1 0/ \1 0 0 1
we can represent J as the product of matrices J; and J, with equal determinants.

Therefore, A = (PTJ;)(JoP) = FG, where the elements of F' and G are rational
functions of the elements of A and det F' = det G.
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21.3. A linear operator A in Euclidean space is said to be skew-symmetric if its
matrix is skew-symmetric with respect to an orthonormal basis.
0 —-A
A O
an orthonormal basis with respect to which its matriz is of the form

THEOREM. LetA; = ( i) . For a skew-symmetric operator A there exists

diag(Aq,..., A%, 0,...,0).

PROOF. The operator A2 is symmetric nonnegative definite. Let
Vi ={veV| A% =)}

Then V = &Vy and AVy C Vi. If A%v = 0 then (Av, Av) = —(A%v,v) = 0, i.e.,
Av = 0. Therefore, it suffices to select an orthonormal basis in Vj.

For A > 0 the restriction of A to V) has no real eigenvalues and the square of
this restriction is equal to —A?I. Let = € V) be a unit vector, y = A™'Az. Then

(z,y) = (33,)\71/19:) =0, Ay=-\z,
(y,9) = A Az, y) = A" (@, —Ay) = (z,2) = 1.

To construct an orthonormal basis in V), take a unit vector u € V) orthogonal to z
and y. Then (Au,x) = (u, —Az) = 0 and (Au,y) = (u, —Ay) = 0. Further details
of the construction of an orthonormal basis in V) are obvious. 0O

Problems

21.1. Prove that if A is a real skew-symmetric matrix, then I+ A is an invertible
matrix.

21.2. An invertible matrix A is skew-symmetric. Prove that A=! is also a skew-
symmetric matrix.

21.3. Prove that all roots of the characteristic polynomial of AB, where A and
B are skew-symmetric matrices of order 2n, are of multiplicity greater than 1.

22. Orthogonal matrices. The Cayley transformation

A real matrix A is said to be an orthogonalif AAT = I. This equation means that
the rows of A constitute an orthonormal system. Since ATA = A71(AAT)A = I,
it follows that the columns of A also constitute an orthonormal system.

A matrix A is orthogonal if and only if (Az, Ay) = (2, AT Ay) = (z,y) for any
,y.

An orthogonal matrix is unitary and, therefore, the absolute value of its eigen-
values is equal to 1.

22.1. The eigenvalues of an orthogonal matrix belong to the unit circle centered
at the origin and the eigenvalues of a skew-symmetric matrix belong to the imagi-

sends the unit circle

1—
nary axis. The fractional-linear transformation f(z) = e c
z

to the imaginary axis and f(f(z)) = z. Therefore, we may expect that the map

fFA) =T -A)I+A4)7"
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sends orthogonal matrices to skew-symmetric ones and the other way round. This
map is called Cayley transformation and our expectations are largely true. Set

A* = (I - AT+ A)~L.

We can verify the identity (A#)# = A in a way similar to the proof of the identity
f(f(2)) = z; in the proof we should take into account that all matrices that we
encounter in the process of this transformation commute with each other.

THEOREM. The Cayley transformation sends any skew-symmetric matrixz to an
orthogonal one and any orthogonal matriz A for which |A + I| # 0 to a skew-
symmetric one.

ProoOF. Since I — A and I + A commute, it does not matter from which side

to divide and we can write the Cayley transformation as follows: A# = I=4 If

I+A"
AAT =T and |T + A| # 0 then

I-AT T-A"' AT

_I+A*1:A+I:

= = —A#*.
I+ AT

(4%)"

If AT = —A then
(A#)T_I_AT I+A

_ — (A#1
STyaAr oA W o

REMARK. The Cayley transformation can be expressed in the form
AP =L —(I+A)I+A) ' =20+A)~" -1
22.2. If U is an orthogonal matrix and |U + I| # 0 then
U=(I-X)I+X)'=2I+X)"" -1,

where X = U# is a skew-symmetric matrix.
If S is a symmetric matrix then S = UAU”, where A is a diagonal matrix and
U an orthogonal matrix. If |U + I| # 0 then

S=QI+X)"'-DAUI+X)"'-D)7,

where X = U#.
Let us prove that similar formulas are also true when |U + I| = 0.

22.2.1. THEOREM ([Hsu, 1953]). For an arbitrary square matriz A there exists
a matriz J = diag(£1,...,£1) such that |A+ J| # 0.

PROOF. Let n be the order of A. For n = 1 the statement is obvious. Suppose
that the statement holds for any A of order n — 1 and consider a matrix A of order
Ar A ), where A; is a matrix of
A3 a
order n — 1. By inductive hypothesis there exists a matrix J; = diag(+1,...,£1)
such that |A; + J1| # 0; then

n. Let us express A in the block form A = (

=2[A1 + 1| #0

A3 a+1

A+ J1 A
Ag a—1

_‘A1+J1 Az

and, therefore, at least one of the determinants in the left-hand side is nonzero. [



23. NORMAL MATRICES 107

COROLLARY. For an orthogonal matriz U there exists a skew-symmetric matric

X and a diagonal matriz J = diag(+1,...,+1) such that U = J(I — X)(I + X)~ L.

PROOF. There exists a matrix J = diag(+1,...,+1) such that |[U + J| # 0.
Clearly, J?> = I. Hence, |JU + I| # 0 and, therefore, JU = (I — X)(I + X)~ !,
where X = (JU)#. O

22.2.2. THEOREM ([Hsu, 1953]). Any symmetric matriz S can be reduced to the
diagonal form with the help of an orthogonal matriz U such that |U + I| # 0.

PrOOF. Let S = U;AU{. By Theorem 22.2.1 there exists a matrix J =
diag(+1,...,£1) such that |U; + J| # 0. Then |U;J + I| # 0. Let U = U, J.
Clearly,

UANUT = U, JANJUT =AU = 5. O

COROLLARY. For any symmetric matriz S there exists a skew-symmetric matriz
X and a diagonal matriz A such that

S=0I+X)'-DAQUI+X)"t-DT.

Problems

22.1. Prove that if p(\) is the characteristic polynomial of an orthogonal matrix
of order n, then A"p(A~1) = £p(N).

22.2. Prove that any unitary matrix of order 2 with determinant 1 is of the form
( v U>, where |ul? + |v]? = 1.

-0 u

22.3. The determinant of an orthogonal matrix A of order 3 is equal to 1.

a) Prove that (tr A)% — tr(A)? = 2tr A.

b) Prove that (3, a;; — 1)% + dicjlai — aji)? = 4.

22.4. Let J be an invertible matrix. A matrix A is said to be J-orthogonal
if ATJA = J, ie., AT = JA7'J~! and J-skew-symmetric if ATJ = —JA, i.e.,
AT = —JAJ~'. Prove that the Cayley transformation sends J-orthogonal matrices
into J-skew-symmetric ones and the other way around.

22.5 ([Djokovié, 1971]). Suppose the absolute values of all eigenvalues of an
operator A are equal to 1 and |Az| < |z| for all x. Prove that A is a unitary
operator.

22.6 ([Zassenhaus, 1961]). A unitary operator U sends some nonzero vector x to
a vector Uz orthogonal to z. Prove that any arc of the unit circle that contains all
eigenvalues of U is of length no less than 7.

23. Normal matrices

A linear operator A over C is said to be normal if A*A = AA*; the matrix of
a normal operator in an orthonormal basis is called a normal matrix. Clearly, a
matrix A is normal if and only if A*A = AA*.

The following conditions are equivalent to A being a normal operator:

1) A= B+ iC, where B and C are commuting Hermitian operators (cf. Theo-
rem 10.3.4);

2) A = UAU*, where U is a unitary and A is a diagonal matrix, i.e., A has an
orthonormal eigenbasis; cf. 17.1;

3) Yoy NP = 3072y laig?, where A1, ..., A, are eigenvalues of A, cf. Theo-
rem 34.1.1.
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23.1.1. THEOREM. If A is a normal operator, then Ker A* = Ker A and
ImA* =TIm A.

PROOF. The conditions A*x = 0 and Ax = 0 are equivalent, since
(A*x, A*z) = (2, AA*z) = (z, A" Ax) = (Az, Ax).

The condition A*z = 0 means that (z,Ay) = (A*z,y) = 0 for all y, ie., x €
(Im A)*. Therefore, Im A = (Ker A*)+ and Im A* = (Ker A)L. Since Ker A =
Ker A*, then ImA =Im A*. O

COROLLARY. If A is a normal operator then

V =Ker A® (Ker A)* = Ker A @ Im A.

23.1.2. THEOREM. An operator A is normal if and only if any eigenvector of
A is an eigenvector of A*.

PROOF. It is easy to verify that if A is a normal operator then the operator A—AI
is also normal and, therefore, Ker(A — A\I) = Ker(A* — \I), i.e., any eigenvector of
A is an eigenvector of A*.

Now, suppose that any eigenvector of A is an eigenvector of A*. Let Ax = Az
and (y,x) = 0. Then

(z,Ay) = (A"z,y) = (px,y) = p(z,y) =0

Take an arbitrary eigenvector e; of A. We can restrict A to the subspace Span(e;
In this subspace take an arbitrary eigenvector es of A, etc. Finally, we get an
orthonormal eigenbasis of A and, therefore, A is a normal operator. [

)+

23.2. THEOREM. If A is a normal matriz, then A* can expressed as a polyno-
mial of A.

Proor. Let A =UAU", where A = diag(A1,...,\,) and U is a unitary matrix.
Then A* = UA*U*, where A* = diag(A1,...,An). There exists an interpolation
polynomial p such that p(\;) = A; for i = 1,...,n, see Appendix 3. Then

p(A) = diag(p(A1), ..., p(\)) = diag(A1, ..., An) = A™.
Therefore, p(A) = Up(A)U* = UAN*U* = A*. O

COROLLARY. If A and B are normal matrices and AB = BA then A*B = BA*
and AB* = B*A; in particular, AB is a normal matriz.

Problems

23.1. Let A be a normal matrix. Prove that there exists a normal matrix B such
that A = B2.

23.2. Let A and B be normal operators such that In A L Im B. Prove that
A + B is a normal operator.

23.3. Prove that the matrix A is normal if and only if A* = AU, where U is a
unitary matrix.

23.4. Prove that if A is a normal operator and A = SU is its polar decomposition
then SU =US.

23.5. The matrices A, B and AB are normal. Prove that so is BA.
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24. Nilpotent matrices
24.1. A square matrix A is said to be nilpotent if AP = 0 for some p > 0.

24.1.1. THEOREM. If the order of a nilpotent matriz A is equal to n, then
A" =0.

PROOF. Select the largest positive integer p for which AP # 0. Then APx # 0
for some z and APT! = 0. Let us prove that the vectors =, Az, ... , APz are linearly
independent. Suppose that A*z = >iok AiA'z, where k < p. Then AP~k (Akg) =
APx # 0 but AP~*()\;A’z) = 0 since i > k. Contradiction. Hence, p <n. [

24.1.2. THEOREM. The characteristic polynomial of a nilpotent matrix A of
order n s equal to \".

PrOOF. The polynomial A" annihilates A and, therefore, the minimal polyno-
mial of A is equal to A™, where 0 < m < n, and the characteristic polynomial of A
is equal to A”. O

24.1.3. THEOREM. Let A be a nilpotent matriz, and let k be the mazximal order
of Jordan blocks of A. Then A* =0 and A*~! #£ 0.

PROOF. Let N be the Jordan block of order m corresponding to the zero eigen-
value. Then there exists a basis ey, ..., e, such that Ne; = e;41; hence, NPe; =
eitp (We assume that e;1, = 0 for i + p > m). Thus, N =0 and N e; = e,
ie, N1 #£0. O

24.2.1. THEOREM. Let A be a matriz of order n. The matriz A is nilpotent if
and only if tr(AP) =0 forp=1,...,n.

PROOF. Let us prove that the matrix A is nilpotent if and only if all its eigen-
values are zero. To this end, reduce A to the Jordan normal form. Suppose that
A has nonzero eigenvalues A1, ..., Ag; let n; be the sum of the orders of the Jordan
blocks corresponding to the eigenvalue ;. Then tr(AP) = ni A} +--- +ngA}. Since
k < n, it suffices to prove that the conditions

A N =0 (p=1,...,k)

cannot hold. These conditions can be considered as a system of equations for
ni,...,n,. The determinant of this system is a Vandermonde determinant. It does
not vanish and, therefore, ny =---=np =0. 0O

24.2.2. THEOREM. Let A : V. — V be a linear operator and W an invariant
subspace, i.e., AW C W;let Ay : W — W and Ay : V/W — V/W be the operators
induced by A. If operators Ay and As are nilpotent, then so is A.

PROOF. Let A} = 0 and A = 0. The condition A% = 0 means that A9V C W
and the condition A} = 0 means that APW = 0. Therefore, APTIV C APW =
0. O

24.3. The Jordan normal form of a nilpotent matrix A is a block diagonal matrix
with Jordan blocks Jy,, (0), ..., J,, (0) on the diagonal with nj +- - -+ng = n, where
n is the order of A. We may assume that n; > --- > ng. The set (n1,...,ng) is
called a partition of the number n. To a partition (nq,...,nx) we can assign the
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FIGURE 5

Young tableau consisting of n cells with n; cells in the ith row and the first cells of
all rows are situated in the first column, see Figure 5.
Clearly, nilpotent matrices are similar if and only if the same Young tableau
corresponds to them.
The dimension of Ker A™ can be expressed in terms of the partition (nq, ..., ng).
It is easy to check that
dimKer A = k = Card {j|n; > 1},

dim Ker A% = dim Ker A + Card {j|n; > 2},
dim Ker A™ = dim Ker A" + Card {j|n; > m}.

The partition (n},...,n;), where n; = Card{jjn; > i}, is called the dual to

the partition (ny,...,ng). Young tableaux of dual partitions of a number n are
obtained from each other by transposition similar to a transposition of a matrix. If
the partition (nq,...,nk) corresponds to a nilpotent matrix A then dim Ker A™ =

nll 4+ 4 n;n
Problems

24.1. Let A and B be two matrices of order n. Prove that if A4+ AB is a nilpotent
matrix for n + 1 distinct values of A, then A and B are nilpotent matrices.

24.2. Find matrices A and B such that AA + pB is nilpotent for any A and p but
there exists no matrix P such that P~'AP and P~!BP are triangular matrices.

25. Projections. Idempotent matrices
25.1. An operator P : V — V is called a projection (or idempotent) if P? = P.

25.1.1. THEOREM. In a certain basis, the matrix of a projection P is of the
form diag(1,...,1,0,...,0).

PROOF. Any vector v € V can be represented in the form v = Pv + (v — Pv),
where Pv € Im P and v — Pv € Ker P. Besides, if x € Im P N Ker P, then x = 0.
Indeed, in this case = Py and Pz = 0 and, therefore, 0 = Px = P?y = Py = z.
Hence, V =Im P ® Ker P. For a basis of V select the union of bases of Im P and
Ker P. In this basis the matrix of P is of the required form. [
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25.1.1.1. COROLLARY. There exists a one-to-one correspondence between pro-
jections and decompositions V.= Wy @ Wa. To every such decomposition there
corresponds the projection P(wy + ws) = wq, where wy € Wi and wy € Wa, and to
every projection there corresponds a decomposition V = Im P @ Ker P.

The operator P can be called the projection onto Wy parallel to W-.
25.1.1.2. COROLLARY. If P is a projection then rank P = tr P.

25.1.2. THEOREM. If P is a projection, then I — P is also a projection; besides,
Ker(I — P) =Im P and Im(I — P) = Ker P.

PROOF. If P2 = P then (I — P)> =1 —2P + P? = [ — P. According to the
proof of Theorem 25.1.1 Ker P consists of vectors v — Pv, i.e., Ker P = Im(I — P).
Similarly, Ker(/ — P) =Im P. O

COROLLARY. If P is the projection onto Wy parallel to W, then I — P is the
projection onto Wy parallel to W7 .

25.2. Let P be a projection and V =Im P ® Ker P. If Im P | Ker P, then Pv
is an orthogonal projection of v onto Im P; cf. 9.3.

25.2.1. THEOREM. A projection P is Hermitian if and only if Im P L Ker P.

PRrOOF. If P is Hermitian then Ker P = (Im P*)* = (Im P)*. Now, suppose
that P is a projection and Im P | Ker P. The vectors x — Px and y — Py belong to
Ker P; therefore, (Px,y— Py) = 0 and (z— Pz, Py) =0, i.e., (Pz,y) = (Pxz, Py) =
(z,Py). O

REMARK. If a projection P is Hermitian, then (Pxz,y) = (Pz, Py); in particular,
(Pz,z) = |Px|?.

25.2.2. THEOREM. A projection P is Hermitian if and only if |Px| < |x| for
all x.

Proor. If the projection P is Hermitian, then x — Px 1 x and, therefore,
|z|> = |Pz|? + |Px — x|* > |Pz|?. Thus, if |Pz| < |z|, then Ker P | Im P.

Now, assume that v € Im P is not perpendicular to Ker P and v; is the projection
of v on Ker P. Then |v—v1| < |v| and v = P(v—w1); therefore, [v—v1| < |P(v—uv1)|.
Contradiction. O

Hermitian projections P and @) are said to be orthogonal if Im P 1 Im @), i.e.,
PQ=QP=0.

25.2.3. THEOREM. Let Py,..., P, be Hermitian projections. The operator P =
Py +---+ P, is a projection if and only if P;P; =0 fori # j.

Proor. If P;P; =0 for i # j then
P2=(Pi4+---+P) =P’+...4+P2=P +---+P,=P.

Now, suppose that P = P;+- - -+ P, is a projection. This projection is Hermitian
and, therefore, if x = P;x then

|22 = |Paf? < [Piaf? + - - + | Paa]?
= (Piz,2) + -+ (Pyx,2) = (Px,z) = |Px|* < |z]2.
Hence, Pjz =0 for i # j, i.e., P;P, =0. O
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25.3. Let W C V and let a4, ...,a; be a basis of W. Consider the matrix A of
size n x k whose columns are the coordinates of the vectors aq, ..., ar with respect
to an orthonormal basis of V. Then rank A*A = rank A = k, and, therefore, A*A
is invertible.

The orthogonal projection Pv of v on W can be expressed with the help of A.
Indeed, on the one hand, Pv = xziay + - -+ + xak, i.e., Pv = Az, where z is the
column (z1,...,7)T. On the other hand, Pv —v L W, ie., A*(v — Az) = 0.
Hence, z = (A*A)"1A*v and, therefore, Pv = Az = A(A*A)"1A*v, ie., P =
A(A*A)~L A

If the basis a1, ..., a is orthonormal, then A*A = I and, therefore, P = AA*.

25.4.1. THEOREM ([Djokovié¢, 1971]). Let V =V; @ --- @ Vi, where V; # 0 for
i =1,...,k, and let P; : V — V; be orthogonal projections, A = P + --- + Py.
Then 0 < |A| <1, and |A| =1 if and only if V; L V; whenever i # j.

First, let us prove two lemmas. In what follows P; denotes the orthogonal pro-
jection to V; and P; : V; — V; is the restriction of P; onto V;.

25.4.1.1. LEMMA. LetV =Vi®V2 andV; #0. Then 0 < |I — P1oPo1| <1 and
the equality takes place if and only if V1 L V5.

PRrROOF. The operators P; and P, are nonnegative definite and, therefore, the
operator A = Py + P; is also nonnegative definite. Besides, if Az = Pyx + Pox = 0,
then Pix = Pox = 0, since Pixz € V] and Pox € V. Hence, x 1. V7 and = 1L V5 and,
therefore, x = 0. Hence, A is positive definite and |A| > 0.

For a basis of V' take the union of bases of V; and V5. In these bases, the matrix

I Py . . . I 0
Po I ) Consider the matrix B = <P12 I — PPy, )

As is easy to verify, |I — P12Ps| = |B| = |A| > 0. Now, let us prove that the
absolute value of each of the eigenvalues of I — PysPs; (i.e., of the restriction B to
V3) does not exceed 1. Indeed, if z € V5 then

of A is of the form

|Bz|* = (Bz, Bx) = (x — PyPiz,x — PyPyx)
= |z|? = (Po Pz, x) — (2, P,Pix) + | Py Pz
Since
(PyPyz, ) = (Pix, Pox) = (Pix,x) = |Pyx|?, (x, PyPyz) = |Px|?
and |Pyz|? > |PyPyz)?, it follows that
|Baf? < [af? - |Praf. (1)

The absolute value of any eigenvalue of I — PysP»; does not exceed 1 and the
determinant of this operator is positive; therefore, 0 < |[I — PjoPa;| < 1.

If |[I — P12 Po1| = 1 then all eigenvalues of I — P13 Py are equal to 1 and, therefore,
taking (1) into account we see that this operator is unitary; cf. Problem 22.1. Hence,

|Bx| = |z| for any x € V5. Taking (1) into account once again, we get |Pyz| = 0,
e, Vo LVi. O
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25.4.1.2. LEMMA. Let V =V; @ Va, where V; # 0 and let H be an Hermitian
operator such that In H = Vi and Hy = H|y, is positive definite. Then 0 <
|H 4+ Py| < |Hy| and the equality takes place if and only if Vi L V.

PROOF. For a basis of V' take the union of bases of V; and V5. In this basis the

matrix of H+ P is of the form (gl Hlfﬂ > . Indeed, since Ker H = (Im H*)* =
12

(Im H)* = Vi*, then H = HP;; hence, H|y, = Hy P». It is easy to verify that

Hy H{Py

| H 0

= = |H{| - |I — PioPoq].
Py I — PPy [Hal -] 1221

It remains to make use of Lemma 25.4.1.1. O

PrOOF of Theorem 25.4.1. As in the proof of Lemma 25.4.1.1, we can show
that |A| > 0. The proof of the inequality |A| < 1 will be carried out by induction
on k. For k = 1 the statement is obvious. For k& > 1 consider the space W =
Vi@ - @ Vi_q. Let

Qi=PFlw (i=1,....,k—=1), HH=Q1+ -+ Qp_1.

By the inductive hypothesis |H;| < 1; besides, |H;| > 0. Applying Lemma 25.4.1.2
toH=P +- -+ P,y weget 0<|A|=|H+ P| < |H| <1.

If |A| = 1 then by Lemma 25.4.1.2 V, L W. Besides, |H1| = 1, hence, V; LV}
fori,j <k-—1. O

25.4.2. THEOREM ([Djokovié, 1971)). Let N; be a normal operator in V whose

nonzero eigenvalues are equal to )\gi), e )\g«?. Further, let ri+---+r, < dimV. If
the nonzero eigenvalues of N = N1+ -+ -+ Ny are equal to )‘;Z)’ where j =1,...,1;,
then N is a normal operator, Im N; L Im N; and N;N; =0 for i # j.

PRrROOF. Let V; = Im N;. Since rank N = rank Ny + - - - +rank Ny, it follows that
W =V, 4+ -4V, is the direct sum of these subspaces. For a normal operator
Ker N; = (Im N;)*, and so Ker N; € W+; hence, Ker N C W=. It is also clear
that dimKer N = dim W+. Therefore, without loss of generality we may confine
ourselves to a subspace W and assume that r1 4+ --- + 7, = dim V| i.e., det N # 0.

Let M; = N;|v,. For a basis of V' take the union of bases of the spaces V;. Since
N =3 N;=> N;P, =5 M;P,, in this basis the matrix of N takes the form

M1P11 Mlpkl M1 0 P11 Pkl

MipPy ... MgPgyg 0 ... My P ... P
The condition on the eigenvalues of the operators N; and N implies [N — AI| =
Hle |M; — AI|. In particular, for A = 0 we have |N| = HI;:l |M;|. Hence,
P Pk:l
: : D=1 ie,|Pi+---+ P =1
P ... P
Applying Theorem 25.4.1 we see that V = V; & --- @& V is the direct sum of

orthogonal subspaces. Therefore, N is a normal operator, cf. 17.1, and N;N; = 0,
since ImN; C (Im N;)* = Ker N;. O
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Problems

25.1. Let P, and P, be projections. Prove that

a) Py + P, is a projection if and only if Py P, = PoP; = 0;

b) Py — P, is a projection if and only if P\ Py = PoP; = Ps.

25.2. Find all matrices of order 2 that are projections.

25.3 (The ergodic theorem). Let A be a unitary operator. Prove that

n—1

o1 i
nler;Oﬁ;Ax—Pm,

where P is an Hermitian projection onto Ker(A — I).

25.4. The operators Ay, ..., A in a space V of dimension n are such that
Ay + -+ Ag = I . Prove that the following conditions are equivalent:

(a) the operators A; are projections;

(c) rank Ay + - - - + rank A, = n.

26. Involutions

26.1. A linear operator A is called an involution if A2 = I. As is easy to verify,
an operator P is a projection if and only if the operator 2P — I is an involution.
Indeed, the equation

I=(2P—-1)*=4P? — 4P +1

is equivalent to the equation P? = P.
THEOREM. Any involution takes the form diag(£1,...,%1) in some basis.

Proor. If A is an involution, then P = (A+1)/2 is a projection; this projection
takes the form diag(1,...,1,0,...,0) in a certain basis, cf. Theorem 25.1.1. In the
same basis the operator A = 2P — I takes the form diag(1,...,1,—1,...,—1). O

REMARK. Using the decomposition z = (2 — Az) + (2 + Ax) we can prove
that V = Ker(A+I) ® Ker(A — I).

26.2. THEOREM ([Djokovié, 1967]). A matriz A can be represented as the prod-
uct of two involutions if and only if the matrices A and A~ are similar.

PROOF. If A = ST, where S and T are involutions, then A=! = T'S = S(ST)S =
SAS—1L.

Now, suppose that the matrices A and A~! are similar. The Jordan nor-
mal form of A is of the form diag(Ji,...,Jx) and, therefore, diag(Jy,...,Ji) ~
diag(J; ', ..., J; ). If J is a Jordan block, then the matrix J~! is similar to a
Jordan block. Therefore, the matrices Ji, ..., i can be separated into two classes:
for the matrices from the first class we have J, 1 ~ J, and for the matrices from the
second class we have Jojl ~ Jg and ng ~ J,. It suffices to show that a matrix J,
from the first class and the matrix diag(Jy, J3), where J,, J3 are from the second
class can be represented as products of two involutions.

The characteristic polynomial of a Jordan block coincides with the minimal poly-
nomial and, therefore, if p and ¢ are minimal polynomials of the matrices J, and
J; 1, respectively, then g(A) = p(0)~*A"p(A~1), where n is the order of J, (see

a

Problem 13.3).



26. INVOLUTIONS 115
Let J, ~ J; 1 Then p(A) = p(0)~1A"p(A71), ie.,
p(A) = Z ;A" 7" where ag = 1

and a, o, ; = a;. The matrix J, is similar to a cyclic block and, therefore, there
exists a basis ey, ..., e, such that Jyer = egy1 for kK <n —1 and

n
Jaln = Jje1 = —aner —ap_1e2 — - — aq€n.

Let Tex, = ep—k41. Obviously, T is an involution. If STe, = J,eg, then Se, ;41 =
ep+1 for k # n and Se; = —ane; —- -+ —age,. Let us verify that S is an involution:

2
S%e1 = ap(aper + - +are,) — ap_1€, — - — Q1€9

=e1 + (pop_1 —ar)ex + -+ (a1 — ap_1)e, = e1;
clearly, S%e; = e; for i # 1.

Now, consider the case J; ' ~ Jz. Let Y. ;A" and Y ;A" be the minimal
polynomials of J, and Jg, respectively. Then

Zai)\n—i — ﬁ;l)\n Zﬂi)\i—n — ﬁ;l Zﬂl)‘z

Hence, a,,_; 3, = B; and o, 3,, = B9 = 1. There exist bases eq,...,e, and eq,...,&,
such that

Jaer = €k+1, Jaln = —ape; — -+ — ey,
and

Jger+1 = €k, Jper = —B1e1 — - — Buén.

Let Te, = ¢ and Tey, = ey, If diag(Jy, J3) = ST then

S€k+1 = STé‘k_;,_l = Jﬂ5k+1 = Ek,

Sep = egt1,
Sey = STey = Jge1 = —fie1 — -+ — Buen
and Se,, = —ape; —- - —aie,. Let us verify that S is an involution. The equalities

S%e; = e; and S?ec; = £, are obvious for i # 1 and j # n and we have

S?%ey = S(—Pie1 — - — Bnen) = —Brea — -+ — Bu_1€n + Bulaner + -+ aren)
=e+ (ﬂnan—l - ﬂ1)62 i (571041 - ﬂn—l)en = €1.

Similarly, S%e, =¢,. O

COROLLARY. If B is an invertible matriz and XT BX = B then X can be repre-
sented as the product of two involutions. In particular, any orthogonal matriz can
be represented as the product of two involutions.

Proor. If XTBX = B, then X7 = BX"'B~! ie., the matrices X! and X7
are similar. Besides, the matrices X and X7 are similar for any matrix X. O
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Solutions

19.1. Let S = UAU*, where U is a unitary matrix, A = diag(\1,..., A, 0,...,0).
Then S = S1 + -+ S,, where S; = UN;U*, A; = diag(0, ..., A;,...,0).

19.2. We can represent A in the form UAU !, where A = diag(\1,...,An), A >
0. Therefore, adj A = U(adj A)U~! and adj A = diag(Aa ... Any vy A1 e A1)

19.3. Let Aq,..., A, be the nonzero eigenvalues of A. All of them are real and,
therefore, (tr A)?2 = (A1 + -+ A\)2 <r(AF + -+ A\2) = rtr(42).

19.4. Let U be an orthogonal matrix such that U=*AU = A and |U| = 1. Set
x = Uy. Then 2T Az = y" Ay and dz, ...dx, = dy, ...dy, since the Jacobian of
this transformation is equal to |U|. Hence,

/ e_mTAxdx:/ / e_klyf”'_A"yidy
ST1) =TT 5 = vt

19.5. Let the columns iy, .. ., , of the matrix A of rank r be linearly independent.
Then all columns of A can be expressed linearly in terms of these columns, i.e.,

a1 ... Qip a1y, - Q14 11 ... Tin
An1 .. Qpp Aniq e Qpgy, Tigl o+ Tiyn
In particular, for the rows i1,...,4, of A we get the expression
a1 oo Qgn Ajq4q e Qg 11 Tin
(77% DRI TR Qigiy - Qigiy, Tigl --- Tign

Both for a symmetric matrix and for an Hermitian matrix the linear independence

of the columns i1, ..., %, implies the linear independence of the rows iy, ..., and,
therefore,
Ajq4q e Qg
# 0.
gy e Qg

19.6. The scalar product of the ith row of S by the jth column of S~! vanishes
for i # j. Therefore, every column of S~! contains a positive and a negative
element; hence, the number of nonnegative elements of S~ is not less than 2n and
the number of zero elements does not exceed n? — 2n.

An example of a matrix S~! with precisely the needed number of zero elements
is as follows:

N e e e
SN NN
o N
B I N R e N
RN =N
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where s = (—1)".

20.1. Let a;; = 0 and a;; # 0. Take a column z such that z; = ta;;, ; = 1, the
other elements being zero. Then z* Az = a;; + 2t|a;;|?. As t varies from —oo to
400 the quantity z* Ax takes both positive and negative values.

20.2. No, not necessarily. Let A; = By = diag(0,1, —1); let

0 V2 2 0 0 V2
A2: \@ 0 0 and B2: 0 0 2
2 0 0 V2 2 0

It is easy to verify that
|z Ay +yAs + M| = X3 — Xa? + 6y%) — 2y°z = |2By + yBy + M|.

Now, suppose there exists an orthogonal matrix U such that UA,UT = B; = A,
and UA,UT = B,. Then UA; = AU and since A; is a diagonal matrix with
distinct elements on the diagonal, then U is an orthogonal diagonal matrix (see
Problem 39.1 a)), i.e., U = diag(\, u,v), where A, u, v = +1. Hence,

0 0 V2 0 V2 2\

0 0 2 |=B=UAU"=[V2\u 0 0

V2 2 0 2\ 0 0
Contradiction.

21.1. The nonzero eigenvalues of A are purely imaginary and, therefore, —1
cannot be its eigenvalue.

21.2. Since (—A)~! = —A~1 it follows that (A~1)T = (AT)™1 = (-A)7! =
—A7L

21.3. We will repeatedly make use of the fact that for a skew-symmetric matrix A
of even order dim Ker A is an even number. (Indeed, the rank of a skew-symmetric
matrix is an even number, see 21.2.) First, consider the case of the zero eigenvalue,
i.e., let us prove that if dimKer AB > 1, then dimKer AB > 2. If |B| = 0, then
dimKer AB > dimKer B > 2. If |B| # 0, then Ker AB = B~!Ker A, hence,
dim Ker AB > 2.

Now, suppose that dimKer(AB — A[) > 1 for A # 0. We will prove that
dimKer(AB — A\I) > 2. If (ABA — AMA)u = 0, then (AB — A\)Au = 0, i.e.,
AU C Ker(AB — M), where U = Ker(ABA — AA). Therefore, it suffices to prove
that dim AU > 2. Since Ker A C U, it follows that dim AU = dim U — dim Ker A.
The matrix ABA is skew-symmetric; thus, the numbers dim U and dim Ker A are
even; hence, dim AU is an even number.

It remains to verify that Ker A # U. Suppose that (AB — AI)Axz = 0 implies
that Az = 0. Then Im ANKer(AB—AI) = 0. On the other hand, if (AB—XI)z =0
then x = A(A\"'Bx) € Im A, i.e., Ker(AB—\I) C Im A and dim Ker(AB —\I) > 1.
Contradiction. B

22.1. The roots of p(\) are such that if z is a root of it then % = % = Z is also
a root. Therefore, the polynomial g(\) = A\"p(A~1) has the same roots as p (with
the same multiplicities). Besides, the constant term of p(\) is equal to +1 and,
therefore, the leading coefficients of p(\) and ¢(A) can differ only in sign.
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22.2. Let (Z Z) be a unitary matrix with determinant 1. Then (

):

-1
a c d —-c\ . _ = . P
(b d> = (—b a ), iie.,, a = d and b = —c. Besides, ad — bc = 1, i.e.,

la|? + [b]? = 1.
22.3. a) A is a rotation through an angle ¢ and, therefore, tr A = 1+ 2 cos ¢ and
tr(A?) =1+ 2cos2p = 4cos? p — 1.

b) Clearly,
S oy =0 = a2 Y
i<j i#£] 1<J
and
Z af; +2) aijai.
1<J

On the other hand, by a)

tr(A?%) = (trA)2 —2trA=(trA— 1)? Za” —

Hence, >3, _;(ai; — aji)?+ (e —1)2—1= Zz;éy HE D at =
22.4. Set % = AB™!; then the cancellation rule takes the form. AB _

o5 If
AT = JA=1J~! then

Ql>

(T = 1 AT T JATNTN JA-DATT JASD)
T+AT T+ JA L1 JA+DA T JA+]) '

If AT = —JAJ~! then

T—AT T4+ JAJY  JI+ A)J!
#N\T __ _ _ _ #\—1 7—1
(A7) _I—i—AT_I—JAJ—l_J(I—A)J—l_J(A) S

22.5. Since the absolute value of each eigenvalue of A is equal to 1, it suffices to
verify that A is unitarily diagonalizable. First, let us prove that A is diagonalizable.
Suppose that the Jordan normal form of A has a block of order not less than 2.
Then there exist vectors e; and es such that Ae; = Aep and Aes = Aeg +e1. We
may assume that |e;| = 1. Consider the vector z = ey — (e1,e2)e;. It is easy to
verify that | e; and Ax = Az + e;. Hence, |Az|?> = [A\z|? + |e1]? = |z|> + 1 and,
therefore, |Az| > |z|. Contradiction.

It remains to prove that if Az = Az and Ay = py, where A # u, then (z,y) = 0.
Suppose that (z,y) # 0. Replacing « by ax, where « is an appropriate complex
number, we can assume that Re[(A\z — 1)(«,y)] > 0. Then

|A(z +y)> = |z +y|* = |z + py|* — o + y|* = 2Re[(AE — 1) (z, y)] > 0,

ie., |Az| > |z|, where z = 2 + y. Contradiction.

22.6. Let Aq1,..., A\, be the eigenvalues of an operator U and eq, ..., e, the corre-
sponding pairwise orthogonal eigenvectors. Then x = Y x;e; and Uz = Y \jzie;;
hence, 0 = (Ux,z) = > \i|z;|?. Let t; = |2;]?|x|~2. Since t; > 0, Y t; = 1 and
> t;A; = 0, the origin belongs to the interior of the convex hull of Ay,..., A,.
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23.1. Let A = UAU*, where U is a unitary matrix, A = diag(A1,...,A,). Set
B = UDU*, where D = diag(v/A1, ...,V n).

23.2. By assumption ImB C (Im A)t = Ker A*, i.e., A*B = 0. Similarly,
B*A = 0. Hence, (A* + B*)(A+ B) = A*A+ B*B. Since Ker A = Ker A* and
Im A = Im A* for a normal operatorA, we similarly deduce that (A4 B)(A*+B*) =
AA* + BB*.

23.3. If A* = AU, where U is a unitary matrix, then A = U* A* and, therefore,
UA=UU*A* = A*. Hence, AU =UA and A*A = AUA = AAU = AA*.

If A is a normal operator then there exists an orthonormal eigenbasis eq, ..., e,
for A such that Ae; = M\je; and A*e; = Me;. Let U = diag(dy,...,d,), where
d; = N\i/X; for \; # 0 and d; = 1 for \; = 0. Then A* = AU.

23.4. Consider an orthonormal basis in which A is a diagonal operator. We can
assume that A = diag(dy,...,dx,0,...,0), where d; # 0. Then

S = diag(|d1],..., |dx],0,...,0).

Let D = diag(dy,...,dx) and Dy = diag(|dy], ..., |dk|). The equalities
D 0\ (D, 0\ (Ui Us\ (DU D.Us
0 0/ 0 0 Us Uy )™ 0 0

hold only if U; = DjrlD = diag(e®1,...,e"*) and, therefore, Uy U is a
Us U,

unitary matrix only if Us = 0 and Us = 0. Clearly,

Dy 0 U 0\ (Ui O Dy 0
0 O 0 Us) \O0 Us 0 0/°
23.5. A matrix X is normal if and only if tr(X*X) = 3 |\;|%, where \; are
eigenvalues of X; cf. 34.1. Besides, the eigenvalues of X = AB and Y = BA
coincide; cf. 11.7. Tt remains to verify that tr(X*X) = tr(Y*Y"). This is easy to do

if we take into account that A*A = AA* and B*B = BB*.
24.1. The matrix (A + AB)™ can be represented in the form

(A+AB)" = A"+ XCy + -+ \""'C,,_1 + \"B",

where matrices C4, ..., C,_1 do not depend on A. Let a, ¢, ..., ¢,_1, b be the
elements of the matrices A", Ci, ..., C,_1, B occupying the (i,7)th positions.
Then a + Aeg + -+ A" Le,_1 + A" = 0 for n + 1 distinct values of A\. We
have obtained a system of n + 1 equations for n + 1 unknowns a, ¢1,...,¢n_1, b.
The determinant of this system is a Vandermonde determinant and, therefore, it
is nonzero. Hence, the system obtained has only the zero solution. In particular,
a = b =0 and, therefore, A" = B" = 0.

0 1 O 0 0 O
242 et A=|0 0 —-1|,B=|1 0 0| and C = XA+ uB. Asis easy
00 O 010

to verify, C% = 0.
It is impossible to reduce A and B to triangular form simultaneously since AB
is not nilpotent.
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25.1. a) Since P = P, and P§ = P», then the equality (P, + P2)? = P, + P,
is equivalent to PP, = —P,P;. Multiplying this by P, once from the right and
once from the left we get PyP,P, = —P,P; and PP, = —P, PP, respectively;
therefore, Py P, = P,P; = 0.

b) Since I — (P, — P») = (I — Py) + P>, we deduce that P, — P; is a projection
ifandonlyif(ffpl)Pg:PQ(I7P1):0, i.e., P1P2:P2P1:P2.

25.2. If P is a matrix of order 2 and rank P = 1, then tr P = 1 and det P = 0
(if rank P # 1 then P = I or P = 0). Hence, P = L <1Jg“ . ba), where
a?+bc=1.

It is also clear that if tr P = 1 and det P = 0, then by the Cayley-Hamilton
theorem P2 — P = P? — (tr P)P + det P = 0.

25.3. Since Im(I — A) = Ker((I — A)*)*, any vector x can be represented in
the form x = x1 + z3, where 1 € Im(I — A) and x2 € Ker(I — A*). It suffices to
consider, separately, 1 and xs. The vector x; is of the form y — Ay and, therefore,

, 1 2
; :‘(y—A"y)’<y|—>Oasn—>oo.
n n

Since x5 € Ker(I — A*), it follows that x5 = A*xy = A7 12y, i.e., Ary = x5. Hence,

n—1 n—1

L1 ; o1
lim — E A'zo = lim — E To9 = To.
n—oo n n—oo N
i=0 i=0

25.4. (b) = (a). It suffices to multiply the identity Ay +---+ Ax = I by A;.

(a) = (c). Since A; is a projection, rank A; = tr A;. Hence, Y rank A; =
Sitrd;, =tr(>A) =

(¢) = (b). Since ZA =/I,thenImA; +---+ImA; =V. But rank A, +--- +
rank Ay = dim V and, therefore, V =Im A; @ --- ® Im Ay.

For any x € V we have

ij = (Al 4+ -4 Ak)Ath = Alij + -4 AkAjIL’,

where A;Ajz € Tm A; and Ajx € Im A;. Hence, A;A; =0 for i # j and A = A;.



27. MULTILINEAR MARSPARR VENSOR PRODUCTS 121

MULTILINEAR ALGEBRA

27. Multilinear maps and tensor products

27.1. Let V, Vi, ..., V4 be linear spaces; dim V; = n;. A map
fVix o xVy—V

is said to be multilinear (or k-linear) if it is linear in every of its k-variables when
the other variables are fixed.

In the spaces V1, ..., Vi, select bases {eq;},...,{ex;}. If fis a multilinear map,
then
f (Zmliem ey Zxkjekj) = Z T14 .- xkjf(eli, ey ekj).
The map f is determined by its ni...n; values f(ei;,...,ex;) € V and these

values can be arbitrary. Consider the space V; ® --- ® Vi, of dimension nj ...ny
and a certain basis in it whose elements we will denote by e1; ® - - - ® eg;. Further,
consideramap p: Vi X -+ X Vp = V] ® -+ - ® Vi, given by the formula

p (Qoxrieri, ..., Y Trjenj) = qu C Tl @ - @ ey

and denote the element p(vy,...,v;) by v1 ® -+ ® vg. To every multilinear map f
there corresponds a linear map

f~:V1®---®Vk—>V, Wheref(eli®---®ekj)zf(eli,...,ekj),

and this correspondence between multilinear maps f and linear maps f is one-to-
one. It is also easy to verify that f(v; ® -+~ @ vg) = f(v1,...,v;) for any vectors
v; € V.

To an element v; ®- - - @ vy, we can assign a multilinear function on Vi* x--- x V}*
defined by the formula

f(wi, .o wg) = wi(vr) ... we(vg).

If we extend this map by linearity we get an isomorphism of the space V1 ®---® Vj,
with the space of linear functions on Vi* x --- x V;*. This gives us an invariant
definition of the space V3 ® --- ® V}, and this space is called the tensor product of
the spaces Vq, ..., V.

A linear map V¥ ® --- @V — (V1 ® --- ® Vi)* that sends f1 ® -+ ® fi €
Vi'®@- - -®@V} to a multilinear function f(vq,...,vx) = fi(v1)... fe(vx) is a canonical
isomorphism.

27.2.1. THEOREM. Let Hom(V, W) be the space of linear maps V. — W. Then
there exists a canonical isomorphism o : V* @ W — Hom(V, W).

PrOOF. Let {e;} and {¢;} be bases of V and W. Set
ale; @ej)v = ¢ (v)e; = viej

Typeset by ApMS-TEX
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and extend « by linearity to the whole space. If v € V, f € V* and w € W then
a(f ® w)v = f(v)w and, therefore, @ can be invariantly defined.

Let Ae, = 3, agpeq; then A(YS vpep) =37, agpupeq. Hence, the matrix (agp),
where agp, = 5qJ5m corresponds to the map a(e] ® ;). Such matrices constitute a
basis of Hom(V, W). It is also clear that the dimensions of V*® W and Hom(V, W)
are equal. [

27.2.2. THEOREM. Let V be a linear space over a field K. Consider the con-
volution € : V* @ V. — K given by the formula e(z* ® y) = z*(y) and extended to
the whole space via linearity. Then tr A = ea~1(A) for any linear operator A in V.

PRrROOF. Select a basis in V. It suffices to carry out the proof for the matrix
units F;; = (apg), Where ag, = 04;0,;. Clearly, tr E;; = 6;; and
604_1(Eij) = E(ef (9 ej) = 6;(63') = (51']'. O
REMARK. The space V* ® V and the maps « and ¢ are invariantly defined and,
therefore Theorem 27.2.2 gives an invariant definition of the trace of a matrix.

27.3. A tensor of type (p,q) on V is an element of the space

V) =V'®@ - @V'eVe -V

p

p factors q factors

isomorphic to the space of linear functions on V- x -+- x V. x V* x ... x V* (with
p factors V' and ¢ factors V*). The number p is called the covariant valency of
the tensor, g its contravariant valency and p + ¢ its total valency. The vectors are
tensors of type (0,1) and covectors are tensors of type (1,0).

Let a basis ey, ..., e, be selected in V and let e, ..., e} be the dual basis of V*.
Each tensor T of type (p, q) is of the form

T = ZTJI »L'qu * . '®efp®6j1®"'®ejq§ (1)

the numbers Tijll.""'ii ¢ are called the coordinates of the tensorT in the basis eq, ..., e,.
Let us establish how coordinates of a tensor change under the passage to another
basis. Let e; = Aej = Y azje; and €5 = Y bje;. Tt is easy to see that B = (AT) ™!
cf. 5.3. _
Introduce notations: a} = a;; and bj = b;; and denote the tensor (1) by 3 Ther ®
ep for brevity. Then

S Thet@es = Siewe, =Y Sibtalel, @ e,

i.e.,

J1-- Jq 1 P J1 jq ki...kq
T = el s 2)

(here summation over repeated indices is assumed). Formula (2) relates the co-
ordinates S of the tensor in the basis {e¢;} with the coordinates T in the basis
{ei}.

On tensors of type (1, 1) (which can be identified with linear operators) a con-
volution is defined; it sends v* ® w to v*(w). The convolution maps an operator to
its trace; cf. Theorem 27.2.2.
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Let 1 <i<pand1<j<gq. Consider a linear map T(V) — Tg__ll(V):
1@ @ fQu @ Qg fi(v;) fi ®vj,

where f; and v; are tensor products of fi,..., f, and vi,...,v, with f; and v;,
respectively, omitted. This map is called the convolution of a tensor with respect
to its ith lower index and jth upper index.

27.4. Linear maps A; : V; — W, , (i =1,...,k) induce a linear map

AR @A, V@V, — W R @ W,
eu@...@ekjI—>A1€h‘®"'®Ak€kj-

As is easy to verify, this map sends v1 ® -+ @ v to A1v1 ® -+ ® Agvg. The map
Ay ® - ® Ay is called the tensor product of operators Ay, ..., Ag.

If Aej = ) aije; and Bey = ) bye, then A ® B(e; ® ey) = Y- aijbpgei @ €,
Hence, by appropriately ordering the basis e; ® e}, and &; ® ¢}, we can express the
matrix A ® B in either of the forms

a11B . alnB b11A . bllA
A N
CLmlB ce amnB bklA ‘e bklA

The matrix A ® B is called the Kronecker product of matrices A and B.

The following properties of the Kronecker product are easy to verify:

1) (A® B)T = AT @ BT;

2) (A® B)(C ® D) = AC ® BD provided all products are well-defined, i.e., the
matrices are of agreeable sizes;

3) if A and B are orthogonal matrices, then A ® B is an orthogonal matrix;

4) if A and B are invertible matrices, then (A ® B)™! = A=! @ B~L.

Note that properties 3) and 4) follow from properties 1) and 2).

THEOREM. Let the eigenvalues of matrices A and B be equal to a, ..., and
Bi,...,Bn, respectively. Then the eigenvalues of A ® B are equal to o;(3; and the
eigenvalues of A® I, + I, ® B are equal to o; + B;.

PROOF. Let us reduce the matrices A and B to their Jordan normal forms (it
suffices to reduce them to a triangular form, actually). For a basis in the tensor
product of the spaces take the product of the bases which normalize A and B. It
remains to notice that J,(a) ® J4(3) is an upper triangular matrix with diagonal
(af,...,af) and Jp(a) ® I, and I, ® J4(B3) are upper triangular matrices whose
diagonals are (a,...,a) and (8,..., ), respectively. O

COROLLARY. det(A ® B) = (det A)™(det B)™.

27.5. The tensor product of operators can be used for the solution of matrix
equations of the form
A1 XBy+-+ A XBs = C, (1)

where
B;

vh Byt Xym Ay
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Let us prove that the natural identifications
Hom(VL, V™) = (VH)* @ V™ and Hom(V*, V") = (VF)* @ V"
send the map X — A; X B; to Bl ® A, i.e., equation (1) takes the form
(B @ Aj+---+ BT A)X =C,

where X € (VI)* @ V™ and C € (VF)* ® V™. Indeed, if f@v € (VH)* @ V™
corresponds to the map Xz = (f ® v)x = f(z)v then BTf @ Av € (VF)* @ V"
corresponds to the map (BT f @ Av)y = f(By)Av = AX By.

27.5.1. THEOREM. Let A and B be square matrices. If they have no common
eigenvalues, then the equation AX — X B = C has a unique solution for any C. If
A and B do have a common eigenvalue then depending on C this equation either
has no solutions or has infinitely many of them.

PrOOF. The equation AX — XB = C can be rewritten in the form (I ® A —
BT @I)X = C. The eigenvalues of the operator ] ® A— BT ® I are equal to a; — f3;,
where «; are eigenvalues of A and [3; are eigenvalues of B i.e., eigenvalues of B.
The operator I @ A — BT ® I is invertible if and only if o; — 3; # 0 for all i and
j. O

27.5.2. THEOREM. Let A and B be square matrices of the same order. The
equation AX — XB = AX has a nonzero solution if and only if A = o; — 5, where
a; and B; are eigenvalues of A and B, respectively.

PROOF. The equation (I ® A — BT ® I)X = AX has a nonzero solution if \ is
an eigenvalue of I@ A — BT ® I, ie, A=qa; — ;. O

27.6. To a multilinear function f € Hom(V x---xV, K) & ®PV* we can assign
a subspace Wy C V* spanned by covectors £ of the form

g(l‘) = f(al, [N ¢ 7 Y NN ¢ 7 SN ,ap_l),
where the vectors aq,...,a,—1 and i are fixed.

27.6.1. THEOREM. f € @"W5y.

ProoF. Let €1,...,e, be a basis of W;. Let us complement it to a basis
€1,...,En of V*. We have to prove that f =5 fir..ip€i, @ - -®¢;,, where fi, 4 =0
when one of the indices i1, ...,%, is greater than . Let ey, ..., e, be the basis dual

toe1,...,en. Then f(ej,,...,€;,) = fj...j,- On the other hand, if j, > r, then

f(...ejk ) = )\181(6jk) +"'+>\r5r(€jk) =0. O

27.6.2. THEOREM. Let f = > fi, i,€i ® - @&, where e1,...,6, € V*.
Then Wy € Span(ey, ..., &r).

PrOOF. Clearly,

f(ala ceey 1,2, Ak, - - . 7ap—1)

= Zfil...ipf?il (a1)...€4,(x). .. (ap_1) = chss(x). O
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Problems

27.1. Prove that v @ w = v’ @ w’ # 0 if and only if v = M’ and w’ = \w.
27.2. Let A; : V; — W,;(i = 1,2) be linear maps. Prove that

a) Im(A; ® Az) = (Im 4;) ® (Im As);

¢) Ker(A; ® Ag) = Ker A1 @ Wy + W1 ® Ker As.

27.3. Let V1, Vo C V and W1, Wy C W. Prove that

VieW)n (Vo Ws) = (ViNnV) @ (W N Ws).

27.4. Let V be a Euclidean space and let V* be canonically identified with V.
Prove that the operator A = I — 2a ® a is a symmetry through a=.

27.5. Let A(x,y) be a bilinear function on a Euclidean space such that if x 1 y
then A(x,y) = 0. Prove that A(z,y) is proportional to the inner product (z,y).

28. Symmetric and skew-symmetric tensors
28.1. To every permutation o € S, we can assign a linear operator
fo  THV) — T(V)
V1@ O Ug = Vo(1) @+ O Ug(g)-

A tensor T € T(V) said to be symmetric (vesp. skew-symmetric) if f,(T) =T
(resp. fo(T) = (—1)°T) for any o. The symmetric tensors constitute a sub-
space S?(V') and the skew-symmetric tensors constitute a subspace A(V) in Ty (V).
Clearly, S1(V)NAY(V) =0 for g > 2.

The operator S = % > o fo is called the symmetrization and A = % Yoo (1) f,
the skew-symmetrization or alternation.

28.1.1. THEOREM. S is the projection of T (V) onto S4(V) and A is the pro-
jection onto AL(V).

PrOOF. Obviously, the symmetrization of any tensor is a symmetric tensor and
on symmetric tensors S is the identity operator.
Since

f+(AT) = %Z(—lrfng(T) - (—1)“% S (<14, (T) = (~1)7 AT,

T " p=oT

it follows that Im A C A9(V). If T is skew-symmetric then

AT — %Z(*l)gfg(T) — %Z(—l)g(fl)aT:T O

We introduce notations:

Sles, ® - ®e;,) =€y ...e;, and Ales; ®---®e;, ) =e; A= Neg,.

q
For example, e;e; = %(ei@)ej +e;Q¢;) and e; Ae; = %(e,;@ej —e;j®e;). Ifer,... e,
is a basis of V, then the tensors e;, ...e;, span (V) and the tensors e;; A---Ae;,
span A?(V). The tensor e;, ...e; only depends on the number of times each e;

q
. k
enters this product and, therefore, we can set e;, ...e;, = ey’ .. ekn

.exn, where k; is
the multiplicity of occurrence of e; in e;, ... e;,. The tensor e;, A---Ae;, changes sign
under the permutation of any two factors e;, and e;, and, therefore, e;, \---Ae;, =0
if e;, = e;,; hence, the tensors e;, A---Ae;,, where 1 <1y < -+ <iy <n, span the

space AY(V). In particular, A9(V) = 0 for ¢ > n.
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28.1.2. THEOREM. The elements elfl ..efn where ky + -+ k, = q, form a

basis of SU(V') and the elements e;; A --- Ne;,, where 1 <iy < --- < iy <n, form
a basis of AL(V).

PRrROOF. It suffices to verify that these vectors are linearly independent. If
the sets (ki,...,k,) and (I1,...,l,) are distinct then the tensors e*...eFr and
elt .. eln are linear combinations of two nonintersecting subsets of basis elements
of Tg(V'). For tensors of the form e;, A--- Ae;, the proof is similar. [

COROLLARY. dimAY(V) = (Z) and dim S4(V) = ("+;1‘1),

Proor. Clearly, the number of ordered tuples iq,...,%, such that 1 < i1 <

- <ig < nisequal to (Z) To compute the number of of ordered tuples k1, ..., k,
such that such that ky +- - -+ k,, = ¢, we proceed as follows. To each such set assign
a sequence of ¢ +n — 1 balls among which there are ¢ white and n — 1 black ones.
In this sequence, let k; white balls come first, then one black ball followed by ks
white balls, next one black ball, etc. From n 4+ ¢ — 1 balls we can select ¢ white
balls in ("+3_1)—many ways. [

28.2. In A(V) = @}_oA%(V), we can introduce the wedge product setting T1 A
Ty = A(Ty @ Ts) for Ty € AP(V') and T» € A?(V) and extending the operation onto
A(V) via linearity. The algebra A(V') obtained is called the exterior or Grassmann
algebra of V.

THEOREM. The algebra A(V) is associative and skew-commutative, i.e., Ty N
Ty = (—1)PTy ATy for Ty € AP(V) and Th € A4(V).

PRrooF. Instead of tensors 77 and T, from A(V') it suffices to consider tensors
from the tensor algebra (we will denote them by the same letters) 71 = 21 ®- - - Q@
and Tp = Tp11 @ -+ - @ Tpiq. First, let us prove that A(Ty @ Tz) = A(A(Th) @ Ts).
Since

A(Jcl R R l‘p = Z - ® To(p))
p €Sy
it follows that
1 [ea
AAM) @ T) =A| 5 Z (—1)7Zo(1) @+ @ Ty(p) @ Tpt1 @+ @ Tpyq
' €Sy

p+q'Z > = (0(1) @ O Tr(prq)-

0€ES, TESp1q

It remains to notice that

D (DT o) @ r(prg) =P Y ()T 1) @ O Ty s
oc€ESy

where 71 = (7(0(1)),...,7(c(p)), 7(p+1),...,7(p+ q)).
We similarly prove that A(T; ® Ta) = A(T) ® A(T3)) and, therefore,

(Tl A\ Tg) NT3 = A(A(Tl ® T2) ® T3) = A(T1 QR Ty ® T3)
= A(Tl ® A(TQ & Tg)) =T A (T2 A T3).
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Clearly,
Tpt1 @ @ Tppq O T1 @ B Tp = To(1) @+ B To(pq)
where 0 = (p+1,...,p+4¢,1,...,p). To place 1 in the first position, etc. p in the

pth position in o we have to perform pq transpositions. Hence, (—1)7 = (—1)P?
and A(T1 (24 TQ) = (71)qu(T2 X Tl) O
In A(V), the kth power of w, i.e., w A--- Aw is denoted by A*w; in particular,
~———
k—many times
Aw=1.
28.3. A skew-symmetric function on V x --- x V is a multilinear function
f(v1,...,vq) such that f(vy(1),..., V() = (=1)7 f(v1,...,v) for any permuta-
tion o.

THEOREM. The space A1(V*) is canonically isomorphic to the space (A1V)* and
also to the space of skew-symmetric functions on V x --- x V.

PROOF. As is easy to verify

(fl/\"'/\fq)(vlv"'7vq):A(f1®"'®fq)(vla"" q)
- T Ao lon)

is a skew-symmetric function. If e;,...,e, isa ba51s of V, then the skew-symmetric
function f is given by its values f(es,...,e;,), where 1 <4y < --- < iy, < n, and
each such set of values corresponds to a skew-symmetric function. Therefore, the
dimension of the space of skew-symmetric functions is equal to the dimension of
A9(V*); hence, these spaces are isomorphic.

Now, let us construct the canonical isomorphism A?(V*) — (A9V)*. A linear
map V*® - @V* — (V®---®V)* which sends (f1,...,f;) €EV*®---@V* to
a multilinear function f(vi,...,v4) = f1(v1)... fy(v4) is a canonical isomorphism.
Consider the restriction of this map onto A?(V*). The element fi A--- A fy =
A(fi ® - ® fg) € AY(V*) turns into the multilinear function f(vi,...,vq) =
% > o (=17 f1(vo) - - - fq(Vo(q)). The function f is skew-symmetric; therefore, we
get a map AY(V*) — (A2V)*. Let us verify that this map is an isomorphism. To
a multilinear function f on V x - .- x V there corresponds, by 27.1, a linear function
fonV®---@V. Clearly,

f<A<v1®--~®vq>>=(q1!) S DT i) - Falvor(a)

1 fl(vl) fl(’l]q)
=4 Z 1(Vo(1)) - fa(Va(q) = a4l : S
fa(v1) oo fylvg)
Let e1,...,e, and €1,. .., &, be dual bases of V and V*. The elements e;, A---Ae;,
form a basis of A9V. Consider the dual basis of (A?V)*. The above implies that

under the restrictions considered the element &;, A- - -Ag;, turns into a basis elements
dual to e;, A--- Ae;, with factor (¢)~!. O

REMARK. As a byproduct we have proved that

f(A(vl R Q) = %f(vl ®---®u,) for f e AYVT).
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28.4.1. THEOREM. TE(V) = A%(V) & S3(V).
Proor. It suffices to notice that

1 1
a®b:§(a®b—b®a)+§(a®b+b®a). O

28.4.2. THEOREM. The following canonical isomorphisms take place:
a) M(VeW)=al ((A'VeA'W);
b) SUV & W) =2l (S'V ® SI™W).

PRrOOF. Clearly, A’V C T{(V @ W) and AY"'W C TZ (V@ W). Therefore,
there exists a canonical embedding A'V @ AW C Tg(V @& W). Let us project
THV@eW) to A1(VeW) with the help of alternation. As a result we get a canonical
map ‘ ‘

AV @AW — AN (Ve W)
that acts as follows:
(VI A Av) @ (WL A Awg—g) — UL A AV AWy A=+ AWy

Selecting bases in V' and W, it is easy to verify that the resulting map
q
PAV @ ATW) — AUV o W)
i=0
is an isomorphism.
For S9(V @ W) the proof is similar. O

28.4.3. THEOREM. If dimV = n, then there exists a canonical isomorphism
APV = (APPV)* @ A™V.

PROOF. The exterior product is a map APV x A""PV — A™V and therefore
to every element of APV there corresponds a map A" PV — A"V. As a result we

get a map
APV — Hom(A" PV, A"V) = (A" PV)* @ AV.

Let us prove that this map is an isomorphism. Select a basis ej,...,e, in V. To
ei; \- - -Ae;, there corresponds a map which sends ej, A---Aej, _ to 0 or £ejA---Aep,
depending on whether the sets {i1,...,4,} and {j1,...,jn—p} intersect or are com-

plementary in {1,...,n}. Such maps constitute a basis in Hom(A® PV, A"V). O

28.5. A linear operator B : V. — V induces a linear operator B, : T¢ (V) —
Tg(V) which maps v1 @ -+ ® vy to Buy @ -+ @ Byg. T = 13 @ - -+ @ v, then
B, f-(T) = foB4(T) and, therefore,

B, fs(T) = foBy(T) for any T € T{ (V). (1)
Consequently, B, sends symmetric tensors to symmetric ones and skew-symmetric
tensors to skew-symmetric ones. The restrictions of By to S?(V) and A%(V) will
be denoted by SYB and AYB, respectively. Let S and A be symmetrization and
alternation, respectively. The equality (1) implies that B,S = SB, and BjA =
AB,. Hence,

By(ef*...efn) = (Bei)™ ... (Ben)F" and By(ei, A---Aei,) = (Bei, ) A+ A(Bey,).

Introduce the lexicographic order on the set of indices (i1, . . ., i4), i.e., we assume
that
(il,...,iq) < (jl,...,jq) if 41 = Jlyeeeslp = Jp and g1 < Jr41 (OI‘ 11 <j1).

kn

Let us lexicographically order the basis vectors e’fl e

and e;; A--- Aey,.
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28.5.1. THEOREM. Let By(ej, A Aej) = o i cn U ei, Ao e,
Then b;ll'_'_'_;‘fz is equal to the minor B(;i - ;‘;) of B.

PrOOF. Clearly,

Bejl/\...Bqu = <Zbi1j161‘1> JARERIVAN Zbiqjqeiq
i1

tq

= E bi1j1"'biqjq6i1 /\"'/\eiq
01y00s0g

= Z (Z(_l)gbig(l)ﬁ "'big(q)jq> €iq AR /\eiq. ([l

1<i1 < <ig<n o

COROLLARY. The matriz of operator A1B with respect to the lexicographically
ordered basis e;, N --- N e;, is the compound matriz Cy(B) (see 2.6).

28.5.2. THEOREM. If the matriz of an operator B is triangular in the basis
€1, -.,€n, then the matrices of S1B and AYB are triangular in the lexicographically
ordered bases e’fl ek (forky +- -+ ky =q) and ej, Ao A ei, (for1 <i; <
<y <m).

PROOF. Let Be; € Span(ey,...,¢€;), i.e., Be; < e; with respect to our order. If
i1 < J1y e 50q S g theney Ao Aey, <ejy Ao Aej, and e, ..y :elfl ...eﬁ" <

ly ln — 5. )
el ...eyr =ej ...e; . Hence,

AN B(ej, N---Neji,) <ey A---Ney, and SIB(eht .. ekny <ebr ek O

28.5.3. THEOREM. det(AYB) = (det B)?, where p = (Z:%) and det(S1B) =

(det B)", where r = %("Jrg*l).

PROOF. We may assume that B is an operator over C. Let eq,...,e, be the
Jordan basis for B. By Theorem 28.5.2 the matrices of A?B and S9B are triangular
in the lexicographically ordered bases e;, A -+ Ae;, and e’fl ...ekn Tf a diagonal
element \; corresponds to e; then the diagonal elements A;, ... \;, and /\’1Cl ... )\fl”,
where k1 + -+ + k, = g, correspond to e; A---Ae;, and elfl ...efln. Hence, the
product of all diagonal elements of the matrices AYB and SYB is a polynomial in
A of total degree ¢dim A?(V') and ¢dim S9(V'), respectively. Hence, |AYB| = |B|P
and |S9B| = |B|", where p = £(") and r = £(""971). O

q q
COROLLARY (Sylvester’s identity). Since A1B = Cy(B) is the compound matriz
(see Corollary 28.5.1)., det(Cy(B)) = (det B)P, where (*2"7").

qg—1

To a matrix B of order n we can assign a polynomial

Ap(t) =1+ Zn:tr(AqB)tq

q=1
and a series

Sp(t) =1+ itr(SqB)tq.

q=1
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28.5.4. THEOREM. Sp(t) = (Ap(—t))~ .

PROOF. As in the proof of Theorem 28.5.3 we see that if B is a triangular matrix
with diagonal (A, ..., \,) then A?B and S?B are triangular matrices with diagonal

elements \;, ... \;, and )\]fl ... \Enwwhere ky + - - + k,, = q. Hence,

Ap(—t) =1 —tA)...(1 =t )

and
Spt) = (1 +th +1223 4+ ..) (L th, +202 +..0).

It remains to notice that

(1—th\) P =14+t +2X2 ... O

Problems

28.1. A trilinear function f is symmetric with respect to the first two arguments
and skew-symmetric with respect to the last two arguments. Prove that f = 0.

28.2. Let f : R™xR™ — R" be a symmetric bilinear map such that f(z,z) # 0
for  # 0 and (f(x,2), f(y,y)) < |f(x,y)|*. Prove that m < n.

28.3. Let w=¢e1 Aes+e3Aeg+ -+ ea,_1 A ean, where eq,...,eo, is a basis
of a vector space. Prove that A"w = nle; A -+ A eay,.

28.4. Let A be a matrix of order n. Prove that det(A+1) =1+ ZZ:l tr(A7A).

28.5. Let d be the determinant of a system of linear equations

n n
Zaijxj (Zapqxq> =0, (i,p=1,...,n),
Jj=1 q=1

where the unknowns are the (n + 1)n/2 lexicographically ordered quantities x;x;.
Prove that d = (det(a;;))" .

28.6. Let si, = tr A* and let o be the sum of the principal minors of order k of
the matrix A. Prove that for any positive integer m we have

Sm — Sm—101 + S;pm—202 — -+ + (71)mm0'm =0.
28.7. Prove the Binet-Cauchy formula with the help of the wedge product.

29. The Pfaffian

29.1. If A= Hain? is a skew-symmetric matrix, then det A is a polynomial in
the indeterminates a;;, where ¢ < j; let us denote this polynomial by P(a;;). For n
odd we have P = 0 (see Problem 1.1), and if n is even, then A can be represented
as A = XJXT, where the elements of X are rational functions in a;; and J =

diag ((_01 é) b (_01 é)) (see 21.2). Since det X = f(a;;)/g(a;j), where

f and g are polynomials, it follows that

P =det(XJXT) = (f/9)*
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Therefore, f2 = Pg?, i.e., f2 is divisible by ¢?; hence, f is divisible by g, i.e.,
f/g = Q is a polynomial. As a result we get P = 2, where @ is a polynomial in
aij, i.e., the determinant of a skew-symmetric matrix considered as a polynomial
in a;;, where ¢ < j, is a perfect square.

This result can be also obtained by another method which also gives an explicit
expression for . Let a basis eq,...,es, be given in V. First, let us assign to a
skew-symmetric matrix A = ||a;; ’in the element w =37, . a;je; Nej € A%(V) and
then to w assign A"w = f(A)e; A -+ A ean, € A?"(V). The function f(A) can be
easily expressed in terms of the elements of A and it does not depend on the choice
of a basis.

Now, let us express the elements w and A"w with respect to a new basis ¢; =
> xi;e;. We can verify that ZKj aje; Nej = ZKj bijei Aej, where A= XBXT
and g1 A -+ Aegp, = (det X)ep A -+ A eay,. Hence,

f(A)61 VACERWAN €on = f(B)E1 VANCERWA Eop = (det X)f(B)61 VANCERWA €2n,

ie., f(XBXT) = (det X)f(B). If A is an invertible skew-symmetric matrix, then
it can be represented in the form

_ T o 0 1 0 1
A=XJX", where J—dl&g((_l 0)""’(—1 O))

Hence, f(A) = f(XJXT) = (det X)f(J) and det A = (det X)? = (f(A)/f(J))%.
Let us prove that

f(A) =n! Z(_l)oai1i2ai3i4 ce Qg _qiog
o

1 - f:n) and the summation runs over all partitions of {1,...,2n} into

pairs {ig,ir4+1}, where i, < ix11 (observe that the summation runs not over all
permutations o, but over partitions!). Let wij = azje; Aej; then wi; Awi = wr Awg;
and w;; A wy; = 0 if some of the indices i, j, k, ! coincide. Hence,

n — .. “ e . . —
A (§ :wij) - § Wiyip A AN Wiy, _yin, =
E Qiyig + - Qigy_qin, €iy N7 A€oy, =

o
> (1) iyiy - Qi iz, €1 Ao Aoy

where o = (l

and precisely n! summands have a;, i, - .. Q4,, ,i,, as the coeflicient. Indeed, each
of the n elements w;,;,,...,ws,, iy, can be selected in any of the n factors in
A" (> w;;) and in each factor we select exactly one such element. In particular,
f(J) =nl

The polynomial Pf(A) = f(A)/f(J) = £vdet A considered as a polynomial in
the variables a;;, where ¢ < j is called the Pfaffian. It is easy to verify that for
matrices of order 2 and 4, respectively, the Pfaffian is equal to a1 and aisa34 —
(13024 + 14023
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29.2. Let 1 < 07 < -+ < ok < 2n. The set {o1,...,09,} can be comple-
mented to the set {1,2,...,2n} by the set {71,...,0(,—k)}, Where 73 < --- <
To(n—k)- As a result to the set {o1,...,09;} we have assigned the permutation
0 = (01...09,G1...Com—r)). It is easy to verify that (—1)7 = (—1)%, where
a:(01—1)+(02—2)+~-~—|—(02k—2k).

The Pfaffian of a submatrix of a skew-symmetric matrix M = Hmij ||fn, where
m;; = (—1)" =1 for i < j, possesses the following property.

29.2.1. THEOREM. Let Py, o, = P{(M’), where M’ = ngigjnik. Then

Py, ..c0, = (—=1)7, where 0 = (01 ... 02401 ... Ta(n—k)) (see above).

PROOF. Let us apply induction on k. Clearly, Py s, = My,0, = (—1)71772F1
The sign of the permutation corresponding to {01,092} is equal to (—1)%, where
a=(o1—1)+(02—2)= (01 +02+1) mod 2.

Making use of the result of Problem 29.1 it is easy to verify that

2k
Pﬂlmﬂ% = E (71)ZP0101‘P02~-5'1'»--021¢'
=2

By inductive hypothesis Py, . 5,. .00, = (—1)7, where 7 = (02...6;...09,12...2n).
The signs of permutations ¢ and 7 are equal to (—1)® and (—1)?, respectively, where
a= (o1 —1)+--+ (o2 — 2k) and

b: (02—1)+(03—2)++(O’Z,1—Z+2)+(JZ+1—Z+1)++(02k—2k+2)
Hence, (—1)7 = (—1)7(—1)71+92+1 Therefore,

2k 2k
Prvvara = (=D (F)7 = (1) ()bt = (217 3 (1) = (<17 O

29.2.2. THEOREM (Lieb). Let A be a skew-symmetric matriz of order 2n.
Then

n

Pf(A+M2M) =Y N*P,, where P, = A("l U?(n—k))
( ) kZ:O ’ ' 2(,: 01 --- O2(n—k)

PRrROOF ([Kahane, 1971]). The matrices A and M will be considered as elements
ZKj a;je; A ej and EKj mije; A ej, respectively, in A2V. Since AAM = M A A,
the Newton binomial formula holds:

A"(A+X\2M) = Zn: (Z) AZE(ARDL) A (A" A)
k=0

= (Z) NS RPy ) (1= )Py A Ao, A
k=0

By Theorem 29.2.1, Py, 5,
(=1)%e1 A -+ A eap. Hence,

= (=1)?. It is also clear that e,, A+ Aeg, A+ =

A"(A+NM)=n!> N*Per A Ney
k=0

and, therefore Pf(A + \2M) = >} _ AP, O
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Problems

29.1. Let Pf(A) = apqCpq + f, where f does not depend on apq and let A,,
be the matrix obtained from A by crossing out its pth and gth columns and rows.
Prove that Cp, = (—1)PT9T1 Pf(A,,).

29.2. Let X be a matrix of order 2n whose rows are the coordinates of vectors
T1,..., T2, and g;; = (x;,2;), where (a,b) = >, _; (a2x—1bax, — azxbag—1) for vectors
a = (ay,...,as,) and b = (by,...,ba,). Prove that det X = Pf(G), where G =

2n
g5l
30. Decomposable skew-symmetric and symmetric tensors

30.1. A skew-symmetric tensor w € A¥(V) said to be decomposable (or simple
or split) if it can be represented in the form w = x1 A - -+ Az, where x; € V.

A symmetric tensor T' € S*(V) said to be decomposable (or simple or split) if it
can be represented in the form T'= S(z1 ® - - - ® xy ), where x; € V.

30.1.1. THEOREM. Ifx1 A+ - Az =y1 A+ Ayx # 0 then Span(zq,...,z;) =
Spa'n(ylu s 7yk)

PROOF. Suppose for instance, that y; ¢ Span(zy,...,x). Then the vectors
€1 =121, ..., e =T, and exy1 = y1 can be complemented to a basis. Expanding
the vectors ys, . .., yx with respect to this basis we get

[ ANERIWAN €k = €k+1 A (Zaizmikeb VACERIVAN eik) .
This equality contradicts the linear independence of the vectors e;, A---Ae;,. O

COROLLARY. To any decomposable skew-symmetric tensor w = x1 A -+ A T
a k-dimensional subspace Span(xy,...,xx) can be assigned; this subspace does not
depend on the expansion of w, but only on the tensor w itself.

30.1.2. THEOREM ([Merris, 1975]). If S(z1 ® --- Q@) =S(11 ® - @ yi) # 0,
then Span(x1,...,2x) = Span(y1, ..., Yk)-

PROOF. Suppose, for instance, that y; € Span(zy,...,2;). Let T = S(z1 ®
.-+ ® x) be a nonzero tensor. To any multilinear function f: V x -+ xV — K
there corresponds a linear function f V®---®@V — K. The tensor T is nonzero
and, therefore, there exists a linear function f such that f(T) # 0. A multilinear
function f is a linear combination of products of linear functions and, therefore,
there exist linear functions g1, ..., gx such that g(7') # 0, where g = g1 ... gx.

Consider linear functions hq, ..., hi that coincide with ¢; ... gr on the subspace
Span(z1,...,z;) and vanish on y;. Let h = hy ... hy. Then h(T) = §(T) # 0. On
the other hand, T = S(y; ® - - - ® yx) and, therefore,

WT) = Z h1(Yo(1y) - - M (Yory) = 0,

since h;(y1) = 0 is present in every summand. We obtained a contradiction and,
therefore, y; € Span(zy, ..., k).
Similar arguments prove that

Span(yi,...,yx) C Span(zy,...,zx) and Span(xy,...,zx) C Span(yr,...,yx). O
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30.2. From the definition of decomposability alone it is impossible to deter-
mine after a finite number of operations whether or not a skew-symmetric tensor
Zi1<-~<i;€ Giy..in€iy N\ - Ae;, is decomposable. We will show that the decompos-
ability condition for a skew-symmetric tensor is equivalent to a system of equations
for its coordinates a;, . ;, (Plicker relations, see Cor. 30.2.2). Let us make several
preliminary remarks.

For any v* € V* let us consider a map i(v*) : A¥V — A¥~1V given by the
formula

(i(v)T, f) = (T,v* A f) for any f € (A*"'V)* and T € A*V.

For a given v € V we define a similar map i(v) : AFV* — AF=1y*,
To a subspace A C AFV assign the subspace A+ = {v*|i(v*)A = 0} C V*;
clearly, if A C A'V =V, then A~ is the annihilator of A (see 5.5).

30.2.1. THEOREM. W = (A+)* is the minimal subspace of V for which A
belongs to the subspace AFW C AFV .

Proor. If A C A¥W; and v* € Wi, then i(v*)A = 0; hence, Wi- C A*;
therefore, Wy O (A+)L. It remains to demonstrate that A C A¥W. Let V = WU,
Uty ..., Uqg abasisof U, wy,...,w,_q abasisof W, uj,...,w)_, the dual basis of V*.

Thenu*eWJ- At e z( A =0. If]E{jl,...7jb}and{j{,...Jg_l)U{j}:
{jl,...,jb} then the map i(u}) sends w;, A+ Awi,_, Aug, A+ Aug, to

)\wil .”/\wikfb/\uji/\.“/\ujzlj_ﬁ
otherwise i(u}) sends this tensor to 0. Therefore,
i(uh) (AW @ APU) € AW @ AP

Let Y% _ Ay ® uq be the component of an element from the space A which
belongs to A*¥~'W ® A'U. Then i(u5) (D4 Ao ® ua) = 0 and, therefore, for all f

we have
ZA ® Ua, f) = ZA ® Uas uh A f) = (Mg @ ug,uf A f).

But if Ag ® ug # 0, then it is possible to choose f so that (Ag ® ug,uj A f) # 0.
We similarly prove that the components of any element of A*~*W ® AU in A are
zero for i > 0, i.e., A C A*W

Let w € A*V. Let us apply Theorem 30.2.1 to A = Span(w). If wy,...,w, is a
basis of W, then w = > a;, .5, wi, A+ - - Aw;, . Therefore, the skew-symmetric tensor

w is decomposable if and only if m = k, i.e., dim W = k. If w is not decomposable
then dim W > k. O

30.2.2. THEOREM. Let W = (Span(w)t)t. Let w € AFV and W' = {w € W |
wAw = 0}. The skew-symmetric tensor w is decomposable if and only if W = W.

PROOF. If w =v1 A--- Avg # 0, then W = Span(vy,...,vg); hence, w Aw =0
for any w € W.

Now, suppose that w is not decomposable, i.e., dimW =m > k. Let wy,...,w,,
be a basis of W. Then w = > a;, ., wi; A+ - Aw;,,. We may assume that aq__ # 0.
Let @ = w1 A+ Awyy, € A" FW. Then w Ao = a1 w1 A -+ A Wy, # 0. In
particular, w A w,, # 0, i.e., w, € W. O
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COROLLARY (Pliicker relations). Letw =, . _; ;..
skew-symmetric tensor. It is decomposable if and only if

( > ail.i.ikeil/\"'Aeik>/\ D e | =0
j

i <o <ldg

in€iy N Neg, bea

for any j1 < --- < jg—1. (To determine the coefficient a;, j, ,; for jr_1 > j we
assume that a_;;. = —a_j;. ).

ProOOF. In our case
At = {v*|[(w, f Av*) =0 for any f € AFH(V*)}.

Let €1,...,&p be the basis dual to e1,...,e,; f =€, A---Agj,_, and v* = > v;e;.
Then

(w, f AUy = Z @iy i Cis /\---/\eik,Zvjsjl A Nej_ Nej)
J

i< <ig
1
ol E :ajbujk—ljvj'

Therefore,
At ={v* =) wigj | Yaj,. v = 0 for any ji,...,jk-1};

hence, W = (A+)+ = {w = 22 Wji.jx_1j€}- By Theorem 30.2.2 w is decompos-
able if and only if w Aw =0 for allw e W. O

EXAMPLE. For k = 2 for every fized p we get a relation

Zaijei ANej | A (Z apqep> =0.
q

i<j
In this relation the coefficient of e; Ae;j Aeq s equal 0 a;japqg — GipGp; + Gjpap; and
the relation
ijlpg — Giglpj + Ajqap; = 0

is nontrivial only if the numbers i, j,p,q are distinct.

Problems

30.1. Let w € AFV and e; A --- Ae, # 0 for some e; € V. Prove that w =
wiNegAN---ANepifandonly if wAe; =0fori=1,...,r.

30.2. Let dimV = n and w € A" 'V. Prove that w is a decomposable skew-
symmetric tensor.

30.3. Let eq,...,es, be linearly independent, w = Z?:l €21 N ey, and A =
Span(w). Find the dimension of W = (A+)+.

30.4. Let tensors z; = x1 A--- Az, and z2 = y1 A --- Ay, be nonproportional;
X = Span(xy,...,x,) and Y = Span(yi,...,y,). Prove that Span(zi,22) consists
of decomposable skew-symmetric tensors if and only if dim(X NY) =r — 1.

30.5. Let W C A*V consist of decomposable skew-symmetric tensors. To every
w=2x1 A--- Az € W assign the subspace [w] = Span(z1,...,z,) C V. Prove that
either all subspaces [w] have a common (k — 1)-dimensional subspace or all of them
belong to one (k + 1)-dimensional subspace.
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31. The tensor rank

31.1. The space V ® W consists of linear combinations of elements of the form
v ® w. Not every element of this space, however, can be represented in the form
v ® w. The rank of an element T € V ® W is the least number %k for which
T=v1Qw;+ -+ v, Qwg.

31.1.1. THEOREM. IfT = Y a;je; ® €;, where {e;} and {¢;} are bases of V
and W, then rank T = rankHain.

PROOF. Let v, = Y afe;, wy, = > Ble;, aP a column (a,...;a2)T and BP a
row (BY,...,02). T =v; @wy + -+ + vy @ wy, then ||ain =alpt + .-+ akpk.
The least number k for which such a decomposition of ”aij H is possible is equal to
the rank of this matrix (see 8.2). O

31.1.1.1. COROLLARY. The set {T € VW |rankT < k} is given by algebraic
equations and, therefore, is closed; in particular, if lim T; =T and rankT; < k,

then rank T < k.

31.1.1.2. COROLLARY. The rank of an element of a real subspace VR W does
not change under complezifications.

For an element T' € V1 ® --- ® V,, its rank can be similarly defined as the least
number k for which T = v} @ --- @ v} + -+ + v} ® --- @ vF. It turns out that for
p > 3 the properties formulated in Corollaries 31.1.1.1 and 31.1.1.2 do not hold.
Before we start studying the properties of the tensor rank let us explain why the
interest in it.

31.2. In the space of matrices of order n select the basis eq3 = H(SiaéjﬁH? and
let €43 be the dual basis. Then A = Ei’j a;jeij, B = Zi,j b;jei; and

AB = Zaikbkjeij = Z Eik(A)f‘:kj(B)eij.
i,9,k i,k

Thus, the calculation of the product of two matrices of order n reduces to calculation
of n® products g, (A)eg; (B) of linear functions. Is the number n? the least possible
one?

It turns out that no, it is not. For example, for matrices of order 2 we can
indicate 7 pairs of linear functions f, and g, and 7 matrices E, such that AB =
22:1 fp(A)g,(B)E,. This decomposition was constructed in [Strassen, 1969]. The
computation of the least number of such triples is equivalent to the computation of
the rank of the tensor

ZEik@)Ekj@eij :pr®gp®Ep'
P

.5,k

Identify the space of vectors with the space of covectors, and introduce, for brevity,
the notation a = e11, b = €12, ¢ = e21 and d = egs. It is easy to verify that for
matrices of order 2

Zgik®5kj®€ij:(a®a+b®0)®a+(a®b+b®d)®b
ijk
+(c®a+d®c)@c+ (c@b+d®d) @d.
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Strassen’s decomposition is of the form > e, ® e ® ;5 = Z;Zl T,, where
Tih=(a—d)®(a—d)® (a+d), Ts=(c—d)®a® (c—d),
To=d® (a+c¢)® (a+c), Ts=(b—d)® (c+d) ®a,
T5=(a—b)®d® (a—Db), Tr=(c—a)®(a+b)®d.
Ty,=a®(b+d)®((b+d),

This decomposition leads to the following algorithm for computing the product of

matrices A = [ ™ b and B = | *2 by . Let
c1 dy ¢y da

Si=a1—di, Sy=ay—dy, Sz=a;—b, S;=0b —dy, S5 = c2 + da,
Se=as+co, St=by+dy, Sg=c1—dy, S9g=c1—ay, Sio=as+ by
Py =515, Py = S3dy, Py = 5,85, Py = dySe, Ps = a157,

Ps = Sgaz, Pr = S9S510;  S11 = P1 + P2, S12 = 511 + P3, S13 = S12+ P4,
S14=P5 — P2, S15 =Py + Ps, Si6 = P1 + P5, S17 = S16 — Ps, S18 = S17 + Pr.

S13 S1a
S15 S8
multiplications and 18 additions (or subtractions)®.

Then AB = < > Strassen’s algorithm for computing AB requires just 7

31.3. Let V be a two-dimensional space with basis {e1,e2}. Consider the tensor
T=e1®e1 e +e1Q@exRex+er®e; ®ea.

31.3.1. THEOREM. The rank of T is equal to 3, but there exists a sequence of
tensors of rank < 2 which converges to T.

PROOF. Let
Th=A""[e1 ®e1 ® (—e2 + Aer) + (e1 + Ae2) @ (e1 + Aea) ® ea).
Then T\ — T = Xes ® €2 ® es and, therefore, )\limo T\ —T] =0.
Suppose that
T=0abRc+u®vw=(are] + aes) bR c+ (A\e1 + Aaes) Qv @ w
=e; @ (b ®c+ AMv Q@ w) + €2 ® (a2 @ ¢ + Aav @ w).
Then
e1®ert+ea®es =a1b®c+ AMv@w and €1 ® ea = asb ® ¢+ Aav ® w.

Hence, linearly independent tensors b ® ¢ and v ® w of rank 1 belong to the space
Span(e; ® e1 + e3 ® e3,e1 ® e3). The latter space can be identified with the space

of matrices of the form <g i) But all such matrices of rank 1 are linearly
dependent. Contradiction. [

4Strassen’s algorithm is of importance nowadays since modern computers add (subtract) much
faster than multiply.
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COROLLARY. The subset of tensors of rank < 2 in T3 (V') is not closed, i.e., it
cannot be singled out by a system of algebraic equations.

31.3.2. Let us consider the tensor
Th=e1®e1®e; —ea@ea®e; +e1 ®exa®ea + e e @ es.

Let rankgr 77 denote the rank of T; over R and ranke 77 be the rank of T over C.
THEOREM. rankg 77 # rankc 7.

PROOF. It is easy to verify that 71 = (a1 ® a1 ® as + a2 ® as ® ay)/2, where a; =
e1 +ieg and as = e; — ieg. Hence, ranke T < 2. Now, suppose that rankg 77 < 2.
Then as in the proof of Theorem 31.3.1 we see that linearly independent tensors
b® c and v ® w of rank 1 belong to Span(e; ® e; + €3 ® €2,e1 ® e3 — €2 ® 1), which

can be identified with the space of matrices of the form (_a:y Z) But over R

among such matrices there is no matrix of rank 1. O

Problems

31.1. Let U C V and T € TJ(U) C T§ (V). Prove that the rank of 7' does not
depend on whether T is considered as an element of 7} (U) or as an element of
TH (V).

31.2. Let ey, ..., e be linearly independent vectors, e = ¢;@---®¢; € TE(V),

where p > 2. Prove that the rank of e} 4 --- 4 e? is equal to k.

32. Linear transformations of tensor products

The tensor product V1 ® --- ® V}, is a linear space; this space has an additional
structure — the rank function on its elements. Therefore, we can, for instance,
consider linear transformations that send tensors of rank & to tensors of rank k. The
most interesting case is that of maps of Hom(Vy, V3) = Vi* ® V3 into itself. Observe
also that if dimV; = dim Vo = n, then to invertible maps from Hom(V7, V3) there
correspond tensors of rank n, i.e., the condition det A = 0 can be interpreted in
terms of the tensor rank.

32.1. If A: U — U and B : V — V are invertible linear operators, then the
linear operator T = A® B: U®V — U ® V preserves the rank of elements of
UsV.

If dimU = dim V, there is one more type of transformations that preserve the
rank of elements. Take an arbitrary isomorphism ¢ : U — V and define a map

S: U@V —URV, Sudv) =9 'vepu.

Then any transformation of the form TS, where T'= A ® B is a transformation of
the first type, preserves the rank of the elements from U ® V.

REMARK. It is easy to verify that S is an involution.

In terms of matrices the first type transformations are of the form X — AXB
and the second type transformations are of the form X — AX” B. The second type
transformations do not reduce to the first type transformations (see Problem 32.1).
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THEOREM ([Marcus, Moyls, 1959 (b)]). Let a linear map T : U QV — U RV
send any element of rank 1 to an element of rank 1. Then either T = A® B or
T = (A® B)S and the second case is possible only if dimU = dim V.

Proor (Following [Grigoryev, 1979]). We will need the following statement.

LEMMA. Let elements ay,an € U ®V be such that rank(t;a; + taas) < 1 for
any numbers t1 and ta. Then «; can be represented in the form o; = u; @ v;, where
U1 = Uy Or V1 = V3.

PROOF. Suppose that a; = u; ®@v; and a1 +as = u®wv and also that Span(u) #
Span(us) and Span(vy) # Span(vs). Then without loss of generality we may assume
that Span(u) # Span(u). On the one hand,

(f@g)(udv) = flu)g(v),
and on the other hand,

(f@g(uev)=(f®g) (w1 ®v1+us®@v2) = flur)g(v1) + f(uz)g(uz2).

Therefore, selecting f € U* and g € V* so as f(u) =0, f(u1) # 0 and g(us) = 0,
g(u1) # 0 we get a contradiction. [

In what follows we will assume that dim V' > dim U > 2. Besides, for convenience
we will denote fixed vectors by a and b, while variable vectors from U and V will
be denoted by u and v, respectively. Applying the above lemma to T'(a ® by) and
T (a®by), where Span(by) # Span(bz2), we get T (a®b;) = o’ @b, or T(a®b;) = a,@V'.
Since Ker T' = 0, it follows that Span(b}) # Span(bh) (resp. Span(a}) # Span(a})).

It is easy to verify that in the first case T(a ® v) = o’ ® v/ for any v € V.
To prove it it suffices to apply the lemma to T'(a ® b1) and T(a ® v) and also to
T(a ® by) and T'(a ® v). Indeed, the case T'(a ® v) = ¢ ® b}, where Span(c’) #
Span(a’), is impossible. Similarly, in the second case T'(a ® v) = f(v) ® I/, where
f:V — U is a map (obviously a linear one). In the second case the subspace
a ® V' is monomorphically mapped to U ® b’; hence, dim V' < dim U and, therefore,
dimU = dim V.

Consider the map T} which is equal to T in the first case and to 7'S in the second
case. Then for a fixed a we have T1(a ® v) = ¢’ ® Bv, where B : V — V is an
invertible operator. Let Span(a;) # Span(a). Then either Ti(a1 ® v) = a} ® Bv
or T1(a1 ® v) = a’ ® Byv, where Span(B;) # Span(B). Applying the lemma to
T(a®wv) and T(u® v) and also to T(a; @ v) and T(u @ v) we see that in the first
case T1(u ® v) = Au ® Bv, and in the second case T} (u ® v) = o’ ® f(u,v). In
the second case the space U ® V' is monomorphically mapped into @’ ® V' which is
impossible. [

COROLLARY. If a linear map T : U ®V — U @ V sends any rank 1 element
into a rank 1 element, then it sends any rank k element into a rank k element.

32.2. Let M, , be the space of matrices of order n and 1" : M,, , — My, a
linear map.

32.2.1. THEOREM ([Marcus, Moyls, 1959 (a)]). If T preserves the determinant,
then T preserves the rank as well.

PrOOF. For convenience, denote by I, and 0, the unit and the zero matrix of

order r, respectively, and set A® B = (61 g)
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First, let us prove that if T preserves the determinant, then 7' is invertible.
Suppose that T(A) = 0, where A # 0. Then 0 < rank A < n. There exist
invertible matrices M and N such that M AN = I, ® 0,,_,, where r = rank A (cf.
Theorem 6.3.2). For any matrix X of order n we have

IMAN 4+ X|-|MN|7' = |A+ M7'XN7}|
=|T(A+M XN Y = |T(M XN = |X|-|[MN|~*.

Therefore, M AN 4+ X| = |X|. Setting X =0, @ I,,_, we get a contradiction.

Let rank A = r and rankT(A) = s. Then there exist invertible matrices
Ml, N1 and M27 NQ such that MlANl = IT- (&) On—r = Yl and MQT(A)NQ =
Iy ® 0,—s = Yo. Consider a map f : My, — M,, given by the formula
f(X) = MyT(M;'XN;{')Ny. This map is linear and |f(X)| = k|X|, where
k= |MoM; N Ny|. Besides, f(Y1) = MyT(A)Ny = Y,. Consider a matrix
Y3 =0, ®I,_,. Then |AY; + Y3/ = A" for all A. On the other hand,

|f(AY] +Y3)| = [AY2 + f(Y3)] = p(N),

where p is a polynomial of degree not greater than s. It follows that » < s. Since
|B| = |TT~Y(B)| = |T~*(B)|, the map T~ also preserves the determinant. Hence,
s<r. 0O

Let us say that a linear map 7" : M,, ,, — M, ,, preserves eigenvalues if the sets
of eigenvalues (multiplicities counted) of X and T'(X) coincide for any X.

32.2.2. THEOREM ([Marcus, Moyls, 1959 (a)]). a) If T preserves eigenvalues,
then either T(X) = AXA™! or T(X) = AXTAL.
b) If T, given over C, preserves eigenvalues of Hermitian matrices, then either

T(X)=AXA"! or T(X)=AXTA L.

PROOF. a) If T preserves eigenvalues, then 7' preserves the rank as well and,
therefore, either T(X) = AXB or T(X) = AXTB (see 32.1). It remains to prove
that T'(I) = I. The determinant of a matrix is equal to the product of its eigenvalues
and, therefore, T" preserves the determinant. Hence,

X = M| = [T(X) = AT(D)| = |CT(X) - M],

where C = T(I)~! and, therefore, the eigenvalues of X and CT(X) coincide; be-
sides, the eigenvalues of X and T(X) coincide by hypothesis. The map T is in-
vertible (see the proof of Theorem 32.2.1) and, therefore, any matrix Y can be
represented in the form T'(X) which means that the eigenvalues of ¥ and CY
coincide.

The matrix C' can be represented in the form C = SU, where U is a unitary
matrix and S an Hermitian positive definite matrix. The eigenvalues of U~! and
CU~! = § coincide, but the eigenvalues of U~! are of the form e*¥ whereas the
eigenvalues of S are positive. It follows that S=U =1 and C =1, ie., T(I) = I.

b) It suffices to prove that if T preserves eigenvalues of Hermitian matrices, then
T preserves eigenvalues of all matrices. Any matrix X can be represented in the
form X = P+iQ, where P and ) are Hermitian matrices. For any real x the matrix
A = P+ zQ is Hermitian. If the eigenvalues of A are equal to Ay, ..., \,, then the
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eigenvalues of A™ are equal to AT",..., A" and, therefore, tr(A™) = tr(T(A)™).
Both sides of this identity are polynomials in x of degree not exceeding m. Two
polynomials whose values are equal for all real x coincide and, therefore, their values
at = ¢ are also equal. Hence, tr(X™) = tr(T(X)™) for any X. It remains to
make use of the result of Problem 13.2. O

32.3. THEOREM ([Marcus, Purves, 1959]). a) Let T : M, ,, — M, ,, be a linear
map that sends invertible matrices into invertible ones. Then T is an invertible
map.

b) If, besides, T(I) = I, then T preserves eigenvalues.

PrOOF. a) If |T(X)| =0, then |X| = 0. For X = A — A\I we see that if
[T(A=AD)| = |T(I)] - |T(I)~'T(A) = M| =0,

then |A — M| = 0. Therefore, the eigenvalues of T(I)~*T(A) are eigenvalues of A.
Suppose that A # 0 and T(A) = 0. For a matrix A we can find a matrix X such
that the matrices X and X 4+ A have no common eigenvalues (see Problem 15.1);
hence, the matrices T (1)~ *T(A+X) and T(I)~'T(X) have no common eigenvalues.
On the other hand, these matrices coincide since T(A+X) = T(X). Contradiction.
b) If T(I) = I, then the proof of a) implies that the eigenvalues of T'(A) are
eigenvalues of A. Hence, if the eigenvalues of B = T(A) are simple (nonmultiple),
then the eigenvalues of B coincide with the eigenvalues of A = T~}(B). For a
matrix B with multiple eigenvalues we consider a sequence of matrices B; with
simple eigenvalues that converges to it (see Theorem 43.5.2) and observe that the
eigenvalues of the matrices B; tend to eigenvalues of B (see Problem 11.6). O

Problems

32.1. Let X be a matrix of size m x n, where mn > 1. Prove that the map
X — X7 cannot be represented in the form X — AXB and the map X — X
cannot be represented in the form X — AXTB.

32.2. Let f : My, ,, — M, ,, be an invertible map and f(XY) = f(X)f(Y) for
any matrices X and Y. Prove that f(X) = AXA~! where A is a fixed matrix.

Solutions

27.1. Complement vectors v and w to bases of V and W, respectively. If v/ @u' =
v ® w, then the decompositions of v’ and w’ with respect to these bases are of the
form Av and pw, respectively. It is also clear that Av ® pw = Ap(v ® w), ie.,
w=1/\

27.2. a) The statement obviously follows from the definition.

b) Take bases of the spaces Im A; and Im A5 and complement them to bases {e; }
and {e;} of the spaces Wy and W, respectively. The space Im A; ® W5 is spanned
by the vectors e; ®e;, where e; € Im Ay, and the space W1 ®Im A, is spanned by the
vectors e; ®¢;, where €; € Im Ay. Therefore, the space (Im A @ Wa)N (W7 ®Im A,)
is spanned by the vectors e; ® €5, where e; € Im A; and €; € Im Ay, i.e., this space
coincides with Im A; ® Im A,.

c) Take bases in Ker A; and Ker Ay and complement them to bases {e;} and {¢;}
in Vi and V3, respectively. The map A; ® As sends e; @€, to 0 if either e; € Ker A;
or €; € Ker Ay; the set of other elements of the form e; ® €; is mapped into a basis
of the space Im A; ® Im As, i.e., into linearly independent elements.
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27.3. Select a basis {v;} in V1 NV, and complement it to bases {v;} and {v}} of
V1 and V4, respectively. The set {v;, vjl, v,%} is a basis of Vi + V5. Similarly, construct
a basis {wa,wé,wg} of Wi + Wa. Then {v; ® wa,v; ® wé,vjl» ® wa,vjl» ® wé} and
{vi®wa, viQW2, VEQWa, VE@W? } are bases of Vi @ W) and Vo®@ W, respectively, and
the elements of these bases are also elements of a basis for (V1 +V52)® (W1 +Ws), i.e.,
they are linearly independent. Hence, {v; ® w, } is a basis of (Vi @ W1) N (Vo ® Wa).

27.4. Clearly, Az = x — 2(a,z)a, i.e., Aa = —a and Az =z for z € a*.

27.5. Fix a # 0; then A(a,x) is a linear function; hence, A(a,x) = (b, x), where
b = B(a) for some linear map B. If z L a, then A(a,x) =0, i.e., (b,2) = 0. Hence,
at C bt and, therefore, B(a) = b = A(a)a. Since A(u+ v,z) = A(u,z) + A(v, ),
it follows that

AMu 4+ v)(u 4+ v) = AMu)u + A(v)v.

If the vectors u and v are linearly independent, then A(u) = A(v) = A and any other
vector w is linearly independent of one of the vectors u or v; hence, A(w) = A. For
a one-dimensional space the statement is obvious.

28.1. Let us successively change places of the first two arguments and the second
two arguments:

f(m,y,z) = f(yaxaz) = —f(y,z,x) = —f(z,y,x)
= f(zvxvy) = f(xazvy) = _f(xayvz);

hence, 2f(x,y,z) = 0.
28.2. Let us extend f to a bilinear map C™ x C™ — C". Consider the equation
f(z,2) =0, i.e., the system of quadratic equations

fi(z,2) =0, ..., fu(z,2)=0.

Suppose n < m. Then this system has a nonzero solution z = x 4 ¢y. The second
condition implies that y # 0. It is also clear that

Ozf(z,z):f(:v+zy,x+zy):f(x,x)—f(y,y)—i—sz(m,y)

Hence, f(z,z) = f(y,y) # 0 and f(z,y) = 0. This contradicts the first condition.
28.3. The elements a; = eg;_1 A eg; belong to A%(V); hence, a; A a; = o5 Aoy
and a; A a; = 0. Thus,

Atw = Z i N ANy, =nlag A ANap =nler A Aeay,.
i

1s-e05tn

28.4. Let the diagonal of the Jordan normal form of A be occupied by numbers

)\17 ey )\n Then det(A+I) = (1+>\1) e (1+)\n) and tr(AqA) = Zi1<'--<iq )\7,'1 e )\iq;
see the proof of Theorem 28.5.3.
28.5. If A= Haij H?, then the matrix of the system of equations under considera-

tion is equal to S2(A). Besides, det S?(A) = (det A)", where r = 2(""271) = n+1
(see Theorem 28.5.3).

28.6. It is easy to verify that o), = tr(A¥A). If in a Jordan basis the diagonal of
A is of the form (Aq,...,\,), then sy = A+ .-+ X and o), = Y\, ... N\, The
required identity for the functions s, and o} was proved in 4.1.
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28.7. Let e; and ¢, where 1 < j < m, be dual bases. Let v; = > a;;e; and
fi = >_bjicj. The quantity nl{vy A--- Avy,, fi A--- A fr) can be computed in two
ways. On the one hand, it is equal to

fl(vl) fl('Un) Zaljbjl Zanjbjl
: : = : : =det AB.
fn(vl) N fn(vn) Z aljbjn e Z anjbjn

On the other hand, it is equal to

n!< E A1k, « -+ Apk, €k N - Neg, , E bl]l--~blnn€ll/\"'Afln>
ki, kn l

1reoln

= E A}ClmknBll”'l"nMekl N Neg, , el /\"'/\Eln>
k1<:<kp

Z Akl...kanlmkn~

k1< <kn

29.1. Since Pf(A) = > (=1)%aiy4y - - - iy, _1ig,, Where the sum runs over all
partitions of {1,...,2n} into pairs {iskx_1, ik} With iox_1 < ik, then

e . . — g . . . .
a‘iliQCiliz = Qiyiy E ( 1) Qigiy =+ Qigp 1oy

It remains to observe that the signs of the permutations

(1 2 ... 2n>
g = . . .
1 19 ... 19n

- ’il ig 1 2 %1 {2 2n
T A T
differ by the factor of (—1)i+iz+1,

29.2. LetJ:diag((_O1 (1)>""’(_01 é)) It is easy to verify that G =

XJXT. Hence, Pf(G) = det X.

30.1. Clearly, if w = wy Aeg A--- Aep, then w A e; = 0. Now, suppose that
wAe =0fori=1,...,7and e; A--- Ae, # 0. Let us complement vectors
€1,...,er to a basis ey, ...,e, of V. Then

and

where
Zail___,-keil/\~~/\e,~k/\ei:w/\ei:0 fori=1,...,r.

If the nonzero tensors e;, A--- Ae;, A e; are linearly dependent, then the tensors
ei, A+ -+ Ae;, are also linearly dependent. Hence, a;,. ;. = 0 for i & {iy,... g} It
follows that a;,. ;, # 0 only if {1,...,7} C {41,...,4} and, therefore,

w = (Z bi1~~~ik—7‘ei1 VANREIWAN eikfr) Ner N Nep.
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30.2. Consider the linear map f : V. — A™V given by the formula f(v) =
v Aw. Since dim A"V = 1, it follows that dim Ker f > n — 1. Hence, there exist
linearly independent vectors eq,...,e,_1 belonging to Ker f, ie., e; Aw = 0 for
i=1,...,n—1. By Problem 30.1 w =Xe; A---Ae,_1.

30.3. Let W = Span(ey, ..., ea,). Let us prove that W = Wj. The space W is
the minimal space for which A C A?2W (see Theorem 30.2.1). Clearly, A C A2W;;
hence, W C W; and dim W < dim W; = 2n. On the other hand, A"w € A?"W and
A"w =nle; A -+ A ea, (see Problem 28.3). Hence, A*"W # 0, i.e., dim W > 2n.

30.4. Under the change of bases of X and Y the tensors z; and 25 are replaced
by proportional tensors and, therefore we may assume that

zitze=(W1 A Avg) A@L A AT Y1 A AYr_i),

where v1,...,v; is a basis of X NY, and the vectors x1,...,x—r and y1, ..., Yr—k
complement it to bases of X and Y. Suppose that z; + 20 = u; A --- Aus. Let
u = v+ a+y, where v € Span(vy,...,vr), © € Span(z1,...,T,—) and y €

Span(yi, ..., Yr—k). Then
(z1+2z2)Au= (1 A AvR)A (@I A AT g AY+ Y1 A AYpg A T).

If r—k > 1, then the nonzero tensors 1 A--- Az, Ay and y; A--- Ay,_r AN x are
linearly independent. This means that in this case the equality (21 + 22) Au =0
implies that v € Span(vy,...,v), i.e.,, Span(uy,...,u,) C Span(vy,...,v;) and
r < k. We get a contradiction; hence, r — k = 1.

30.5. Any two subspaces [wi] and [wz] have a common (k — 1)-dimensional
subspace (see Problem 30.4). It remains to make use of Theorem 9.6.1.

31.1. Let us complement the basis ej,...,e; of U to a basis e1,...,e, of V.
Let T = Y aw} ® --- ® v},. Each element vi € V can be represented in the

form v§ = u; + wj-, where u; € U and w; Ej Span(eg41,-..,e,). Hence, T =
Saut @ - ® u, + .... Expanding the elements denoted by dots with respect
to the basis eq,...,e,, we can easily verify that no nonzero linear combination of
them can belong to T3 (U). Since T' € T§(U), it follows that T' = 3" ouf @ - - @ul,
i.e., the rank of T' in T} (U) is not greater than its rank in T3 (V). The converse

inequality is obvious.

31.2. Let
e?p—}—-u—f—e,?p:u}®~-~®u;+-~-+u{®-~-®u;.
By Problem 31.1 we may assume that u;'- € Span(ey,...,ex). Then uf = Zj a;je;,
ie.,
Dufe-u,=> ¢ (Zaijw;) ® - @ ul,.
i J i
Hence

, -
> ius @ @uj, = e’
i

and, therefore, k linearly independent vectors e?p 71, ceey e?p -1 belong to the space
Span(u§®~~~®u;, cy U@ @)
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whose dimension does not exceed r. Hence, r > k.

32.1. Suppose that AXB = X7 for all matrices X of size m x n. Then the
matrices A and B are of size n x m and Zk,s aikTrsbs; = ;. Hence, a;jb;; = 1
and a;rbs; = 0 if kK # j or s # ¢. The first set of equalities implies that all elements
of A and B are nonzero, but then the second set of equalities cannot hold.

The equality AXTB = X cannot hold for all matrices X either, because it
implies BT X AT = X7,

32.2. Let B,X € M, . The equation BX = AX has a nonzero solution X if
and only if A is an eigenvalue of B. If A is an eigenvalue of B, then BX = A\ X for
a nonzero matrix X. Hence, f(B)f(X) = Af(X) and, therefore, A is an eigenvalue
of f(B). Let B = diag(f1,...,[n), where (; are distinct nonzero numbers. Then
the matrix f(B) is similar to B, i.e., f(B) = A;BA; .

Let g(X) = A7 f(X)A;. Then g(B) = B. If X = ||a;||;, then BX = ||Bizy; ]|}
and XB = ||xlj/6’j||711 Hence, BX = ;X only if all rows of X except the ith one
are zero and XB = (3;X only if all columns of X except the jth are zero. Let
E;; be the matrix unit, i.e., E;; = ||apq||;l, where apy = 0p;0q;. Then Bg(E;;) =
ﬂzg(ElJ) and g(E”)B = ﬂjg(E”) and, therefore, g(EU) = aijEij- As is easy to
see, F;; = F;1 B Hence, o; = ay005. Besides, Ei = F;; hence, 0%22‘ = qy; and,
therefore, Qi1 = QU = 1, i.e., a1 = Oéi_ll. It follows that Q5 = Q1 - Oéj_ll. }IGHCB7
g(X) = Ay X A', where Ay = diag(aqy, ..., an1), and, therefore, f(X) = AXA™!,
where A = A As.
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MATRIX INEQUALITIES

33. Inequalities for symmetric and Hermitian matrices

33.1. Let A and B be Hermitian matrices. We will write that A > B (resp.
A > B) if A— B is a positive (resp. nonnegative) definite matrix. The inequality
A > 0 means that A is positive definite.

33.1.1. THEOREM. If A > B >0, then A~ < B~ 1.

PRrROOF. By Theorem 20.1 there exists a matrix P such that A = P*P and B =
P*DP, where D = diag(ds,...,d,). The inequality z* Az > x* Bz is equivalent to
the inequality y*y > y*Dy, where y = Pxz. Hence, A > B if and only if d; > 1.
Therefore, A~! = Q*Q and B~! = Q*D1Q, where D; = diag(dflw..,drjl) and
d;t <1 for all i; thus, A= < B~'. O

33.1.2. THEOREM. If A >0, then A+ A~! > 2I.

PROOF. Let us express A in the form A = U*DU, where U is a unitary matrix
and D = diag(dy,...,d,), where d; > 0. Then

A4+ A e =2*U(D+ D YUz > 220*U* Uz = 22*x

since d; + d;l >2. 0O

33.1.3. THEOREM. If A is a real matriz and A > 0 then

(12, 2) = max(2(z,y) — (Ay,y)).

Y

PROOF There exists for a matrix A an orthonormal basis such that (Az,x) =
> uxi. Since

22y — auy; = —ai(yi — o; 'mi)? + o laf,
it follows that
max(2 (Ay, a; Y2 = (A e
ax(2(2,9) ~ (Ay,9) = 3 )
and the maximum is attained at y = (y1,...,yn), where y; = ozi_lxi. O
33.2.1. THEOREM. Let A — (gi f) > 0. Then det A < det A det Ay
2

PROOF. The matrices Ay and Ay are positive definite. It is easy to verify (see
3.1) that
det A = det A; det(A; — B*A;'B).

The matrix B*A7 !B is positive definite; hence, det(4y — B*A7'B) < det Ay (see
Problem 33.1). Thus, det A < det A; det Ay and the equality is only attained if
B*A{'B=0,ie,B=0. O

Typeset by ApS-TEX
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33.2.1.1. CorROLLARY (Hadamard’s inequality). If a matriz A = Hain? is
positive definite, then det A < ay1a92...an, and the equality is only attained if A
is a diagonal matrix.

33.2.1.2. COROLLARY. If X is an arbitrary matriz, then
|detX|2 < Z |$1i|2 s Z |$»m|2
i i

To prove Corollary 33.2.1.2 it suffices to apply Corollary 33.2.1.1 to the matrix
A=XX*
Ay B

33.2.2. THEOREM. Let A = (B* Ay

) be a positive definite matriz, where B

is a square matrix. Then
|det B|* < det A; det As,.

PROOF ([Everitt, 1958]). . Since
—1
T*AT = (‘%1 AQ_;*AllB) >0 for T = (é A} B),
we directly deduce that As — B*Al_lB > (0. Hence,
det(B*AT'B) < det(B*A;'B) + det(Ay — B*AT'B) < det Ay
(see Problem 33.1), i.e.,
|det B|? = det(BB*) < det Ay det Ay. O

33.2.3 THEOREM (Szasz’s inequality). Let A be a positive definite nondiagonal

matriz of order n; let Py be the product of all principal k-minors of A. Then
1\t
P> Py?>...> Pi"' > P, where a = <Z 1) .

PRrROOF ([Mirsky, 1957]). The required inequality can be rewritten in the form
PR > Pl (1 <k <n-—1). For n =2 the proof is obvious. For a diagonal
matrix we have P;'™% = P[_,. Suppose that PR > P, (1<k<n-1)for
some n > 2. Consider a matrix A of order n + 1. Let A, be the matrix obtained
from A by deleting the rth row and the rth column; let Py, be the product of all
principal k-minors of A,.. By the inductive hypothesis
(1) P,:L;kZP,fHJ for1<k<n—1andl<r<n+1,
where at least one of the matrices A, is not a diagonal one and, therefore, at least
one of the inequalities (1) is strict. Hence,

n+1 n+1

I Pek > T PEs for 1<k<n-—1,

r=1 r=1
ie., pnmRHI=R) P,g:k)k. Extracting the (n — k)th root for n # k we get the
required conclusion.

For n = k consider the matrix adjA = B = ||bij||;l+1. Since A > 0, it follows
that B > 0 (see Problem 19.4). By Hadamard’s inequality

b11... bn+1,n+1 > det B = (det A)n
ie, P,>P} . O
REMARK. The inequality P; > P, coincides with Hadamard’s inequality.
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33.3.1. THEOREM. Let a; >0, > «; =1 and A; > 0. Then
|O[1A1 + -+ akAkl > ‘Allal ce |Ak|ak.

PRrOOF ([Mirsky, 1955]). First, consider the case k = 2. Let A, B > 0. Then
A= P*AP and B = P*P, where A = diag()\,...,\,). Hence,

0A + (1 - @)B| = [P*P| - |aA + (1 - a)I| = |B| [[(ehi + 1 - ).

i=1
If f(t) = A!, where A > 0, then f”(¢) = (InA\)2\! > 0 and, therefore,
flaz+ (1 —a)y) <af(z)+(1—-a)f(y) for 0 < a<1.
For x =1 and y = 0 we get A* < aA + 1 — «. Hence,
TT(ah+1—a) = [T A¢ = A = [4p[B]

The rest of the proof will be carried out by induction on k; we will assume that
k > 3. Since
a1Ay 4+ oAy = (1 — ap) B + o Ay

and the matrix B = 111% A+

(07 A
la1 Ay + -+ apAp| > | ——— Ay + -+ L A || A
l—ak. 1—Ozk

Since 24—+ -+ f‘f;i =1, it follows that

Qf—1

ap—1
Al + - +1 Ak 1 >|A1|1 "‘k. .|Ak_1‘1*°‘k. U

]. — O
REMARK. It is possible to verify that the equality takes place if and only if
Ay == Ay
33.3.2. THEOREM. Let A\; be arbitrary complex numbers and A; > 0. Then

‘ det()\lAl + -t )\kAk)| < det(|/\1|A1 + -+ |>‘k|Ak)

PRrOOF ([Frank, 1965]). Let k¥ = 2; we can assume that A\; = 1 and Ay = A\
There exists a unitary matrlx U such that the matrix UA;U~! = D is a diagonal
one. Then M = UAsU~! > 0 and

det(A; + AAy) = det(D + AM) = ZAP 3 M@ Zp>dj1..-dj”,
i <o <dyp 1 .- tp

where the set (j1,...,jn—p) complements (i1,...,4,) to (1,...,n). Since M and D
are nonnegative definite, M(:i zp) > 0 and d; > 0. Hence,
iy

[det(A; +A4z)| < > AP Y M(Zi N ;p>.dj1...djn_p

p=0 1< <y p

=det(D + |\ M) = det(A4; + |\|As2).
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Now, let us prove the inductive step. Let us again assume that \; = 1. Let A = A;
and A" = MAs + -+ 4+ Apr1Akr1. There exists a unitary matrix U such that the
matrix UAU ! = D is a diagonal one; matrices M; = UA;U "' and M = UA'U!
are nonnegative definite. Hence,

det (A + A')| = |det (D + M)| < M(Z:l"'l?’)d-l...d«.
dev(a+ M =(devD4a0I 30 50 M)

Since M = Ao My + - -+ + A1 Mp41, by the inductive hypothesis
; ; k41 ; ;
M( ) < det (szj(Z? ))
7 ... 1p j=2 27 ... 1p
It remains to notice that

- kit 1 i
Yoo > dj...dj,_, det zwwj(. )
j=2 1 ... 1

p=0 i;<---<ip p

=det(D + |Aa| Mo + - - + [Apg1|Mp11) = det (O[N] 4;) . O

33.4. THEOREM. Let A and B be positive definite real matrices and let A1 and
By be the matrices obtained from A and B, respectively, by deleting the first row
and the first column. Then

AvB 1AL, 1B
|A1r+ B — [A1] - |By

PrROOF ([Bellman, 1955]). If A > 0, then

(1) (z, Az)(y, A™'y) > (z,9)*.

Indeed, there exists a unitary matrix U such that U*AU = A = diag(\1, ..., A\n),
where A\; > 0. Making the change z = Ua and y = Ub we get the Cauchy-Schwarz
inequality

(2) (XNia?) (202 /A0) > (Cagbi)? .
The inequality (2) turns into equality for a; = b;/\; and, therefore,

1 . (z, Ax

FA) = s = min 240

(y,ATy) (w2
Now, let us prove that if y = (1,0,0,...,0) = e1, then f(A) = |A|/|A1]. Indeed,

 AeT A 4
(e1, A" tey) = ey A LeT = ey adj Aej _ (adjA)in A4

Al Al Al

It remains to notice that for any functions g and h

min g(z) + min 2(z) < min(g(z) + h(z))

and set
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Problems

33.1. Let A and B be matrices of order n (n > 1), where A > 0 and B > 0.
Prove that |A + B| > |A| + |B| and the equality is only attained for B = 0.

33.2. The matrices A and B are Hermitian and A > 0. Prove that det A <
| det(A +iB)| and the equality is only attained when B = 0.

33.3. Let Ay and By, be the upper left corner submatrices of order k of positive
definite matrices A and B such that A > B. Prove that

|Ax| > | By

33.4. Let A and B be real symmetric matrices and A > 0. Prove that if
C = A + iB is not invertible, then Cz = 0 for some nonzero real vector x.
33.5. A real symmetric matrix A is positive definite. Prove that

0 r1 ... Ip
Ty
det : A <0.
L
33.6. Let A > 0 and let n be the order of A. Prove that [A|'"/" = min % tr(AB),
where the minimum is taken over all positive definite matrices B with determinant
1.

34. Inequalities for eigenvalues

34.1.1. THEOREM (Schur’s inequality). Let A1,..., A\, be eigenvalues of A =
aij||y- Then S0 |Ai]? < >tz laij|* and the equality is attained if and only if
A is a normal matrix.

PROOF. There exists a unitary matrix U such that T = U*AU is an upper
triangular matrix and 7" is a diagonal matrix if and only if A is a normal matrix
(cf. 17.1). Since T* = U*A*U, then TT* = U*AA*U and, therefore, tr(TT*) =
tr(AA*). It remains to notice that

n

tr(AA*) = Y Jagl* and @(TT*) = Zu P+ g2 O

1,7=1 1<J

34.1.2. THEOREM. Let Ay,..., A\, be eigenvalues of A = B+ iC, where B and
C are Hermitian matrices. Then

n

n n n
Z|Re/\z|2 < Z ‘bij|2 and Z|Im>\1|2 < Z |Cij‘2.
i=1

i,j=1 i=1 ij=1

PROOF. Let, as in the proof of Theorem 34.1.1, T = U*AU. We have B =
(A4 A*) and iC = (A — A*); therefore, U*BU = (T 4+ T*)/2 and U*(iC)U =
(T —T*)/2. Hence,

3 fbyl? = (B = TEET Z|Rex|2 =

i,7=1 1<J

and Y05y ey = 20, [Tm A + X0, 5ty ? O
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34.2.1. THEOREM (H. Weyl). Let A and B be Hermitian matrices, C = A+ B.
Let the eigenvalues of these matrices form increasing sequences: oy < -+ < Qp,
Br << B, 11 < <. Then

a) vi > aj + Bi—ji1 fori > j;

b) vi < o + Bi_jqn fori <j.

PROOF. Select orthonormal bases {a;}, {b;} and {¢;} for each of the matrices
A, B and C such that Aa; = a;a,, ete. First, suppose that ¢ > j. Consider the sub-
spaces Vi = Span(aj, ..., ay), Vo = Span(b;—j41,...,b,) and V3 = Span(cy, ..., ¢).
Since dimV; =n—j+ 1, dim Vo =n — i+ j and dim V3 = 4, it follows that

dim(Vi N Vo NV3) > dimVy +dim Vo + dim V3 — 2n = 1.
Therefore, the subspace V3 N Vo N V3 contains a vector x of unit length. Clearly,
Qi + Bi—j-l‘l < (xaA'/E) + (l‘,Bl‘) = (J},Cl‘) < Yi-

Replacing matrices A, B and C by —A, —B and —C we can reduce the inequality
b) to the inequality a). O

B
O*
eigenvalues of A and B form increasing sequences: a3 < -+ < ay, f1 <+ < Gy
Then

34.2.2. THEOREM. Let A = ( g) be an Hermitian matriz. Let the

Q; S ﬁz S Qjtn—m-

PRrROOF. For A and B take orthonormal eigenbases {a;} and {b;}; we can assume
that A and B act in the spaces V and U, where U C V. Consider the subspaces
Vi = Span(a;, ..., a,) and Vo = Span(by,...,b;). The subspace V3 NV, contains a
unit vector z. Clearly,

Applying this inequality to the matrix —A we get —ay—i11 < —fm—it1, L€, G <
Ajin—m- O

34.3. THEOREM. Let A and B be Hermitian projections, i.e., A> = A and
B? = B. Then the eigenvalues of AB are real and belong to the segment [0, 1].

PRrROOF ([Afriat, 1956]). The eigenvalues of the matrix AB = (AAB)B coincide
with eigenvalues of the matrix B(AAB) = (AB)*AB (see 11.6). The latter matrix
is nonnegative definite and, therefore, its eigenvalues are real and nonnegative. If all
eigenvalues of AB are zero, then all eigenvalues of the Hermitian matrix (AB)*AB
are also zero; hence, (AB)*AB is zero itself and, therefore, AB = 0. Now, suppose
that ABx = Az # 0. Then Az = A\"'AABx = A"'!ABz = x and, therefore,

(x, Bx)

(z,z)

(x, Bx) = (Az, Bzx) = (z, ABx) = Az, z), ie., A=

For B there exists an orthonormal basis such that (x, Bx) = B1|z1[2+ -+ Bnl2n|?,
where either 3; = 0 or 1. Hence, A < 1. [
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34.4. The numbers o; = ,/p;, where p; are eigenvalues of A*A, are called
singular values of A. For an Hermitian nonnegative definite matrix the singular
values and the eigenvalues coincide. If A = SU is a polar decomposition of A, then
the singular values of A coincide with the eigenvalues of S. For S, there exists a
unitary matrix V such that S = VAV*, where A is a diagonal matrix. Therefore,
any matrix A can be represented in the form A = VAW, where V and W are

unitary matrices and A = diag(o1,...,0,).
34.4.1. THEOREM. Let oy,...,0, be the singular values of A, where oy > -+ >
on, and let \y,...,\, be the eigenvalues of A, where |\1| > -+ > |\,|. Then

Ao A <o1.om form <.

PRrRoOF. Let Az = A\1xz. Then
A% (z,2) = (Az, Az) = (z, A*Az) < o} (z, z)

since 0% is the maximal eigenvalue of the Hermitian operator A*A. Hence, || < oy
and for m = 1 the inequality is proved. Let us apply the inequality obtained to the
operators A™(A) and A™(A*A) (see 28.5). Their eigenvalues are equal to A;; ... A
and 02-21 ...afm; hence, A1 ... A < 01...0m.

It is also clear that |A;...\,| = |det A| = \/det(A*A) =01...0,. O

Tm

34.4.2. THEOREM. Let o1 > -+ > o, be the singular values of A and let
71 > -+ > 7, be the singular values of B. Then |tr(AB)| < > 1 | 0i7;.

PRrROOF [Mirsky, 1975]). Let A = U;1SV; and B = UyTVa, where U; and V; are
unitary matrices, S = diag(oy,...,0,) and T = diag(7,...,7,). Then

tI‘(AB) = tr(UlSVleTVg) = tI‘(VQUpSVlUQT) = tr(UTSVT),

where U = (VoU;)T and V = V1Us. Hence,

24 24,
[tr(AB)| = [Sugyvnyom| < 210l0m + 2 Pulom
The matrices whose (7, j)th elements are |u;; |2 and |vi; |2 are doubly stochastic and,
therefore, Y |u;j|20im; <Y oimi and Y |vi; 2047 < 3 0475 (see Problem 38.1). O

Problems

34.1 (Gershgorin discs). Prove that every eigenvalue of ||aij||;l belongs to one
of the discs |agr — 2| < pg, where py = Z#j |ak;].

34.2. Prove that if U is a unitary matrix and S > 0, then |tr(US)| < tr S.

34.3. Prove that if A and B are nonnegative definite matrices, then |tr(AB)| <
trA-trB.

34.4. Matrices A and B are Hermitian. Prove that tr(AB)? < tr(A%2B?).

34.5 ([Cullen, 1965]). Prove that klirgo A¥ =0 if and only if one of the following

conditions holds:
a) the absolute values of all eigenvalues of A are less than 1;
b) there exists a positive definite matrix H such that H — A*HA > 0.
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Singular values

34.6. Prove that if all singular values of A are equal, then A = AU, where U is
a unitary matrix.

34.7. Prove that if the singular values of A are equal to o1,...,0,, then the
singular values of adj A are equal to HZ—;‘61 Ciyeens H#n o;.
34.8. Let o01,...,0, be the singular values of A. Prove that the eigenvalues of
0 A
(A* 0) are equal to o1,...,0,, —01,..., —0n-

35. Inequalities for matrix norms

35.1. The operator (or spectral) norm of a matrix A is ||A|, = sup "Iﬁl. The
|2|7£0
number p(A) = max|);|, where Aj,...,\, are the eigenvalues of A, is called the
spectral radius of A. Since there exists a nonzero vector z such that Ax = \;x, it
follows that [|A||, > p(A). In the complex case this is obvious. In the real case we
can express the vector x as x1 + ixy, where 1 and x5 are real vectors. Then

|Az1|? + [Azs|* = |Az]® = [N (|21 + |22]?),

and, therefore, both inequalities |Az1| < X\;||z1] and |Aza| < Ai||x2| can not hold
simultaneously.

It is easy to verify that if U is a unitary matrix, then ||A|, = [[AU||, = ||UA],.
To this end it suffices to observe that

AUz |Ay[ _ |Ay|
|z U=yl fyl’

where y = Uz and |U Az|/|z| = |Ax|/|z|.
35.1.1. THEOREM. |A|, = +/p(A*A).

Proor. If A = diag(Ay,...,\,), then

< max ||
3

<A$|>2 O
|| > |zif?

Let |\j| = max |[\;| and Az = A\jz. Then |Az|/|z| = |\;|. Therefore, [|[A|, = p(A).
K]

Any matrix A can be represented in the form A = UAV, where U and V are
unitary matrices and A is a diagonal matrix with the singular values of A standing
on its diagonal (see 34.4). Hence, || A, = [|A]l, = p(A) = /p(A*A). O

35.1.2. THEOREM. If A is a normal matriz, then ||A|, = p(A).

PRrROOF. A normal matrix A can be represented in the form A = U*AU, where
A = diag(\,...,\,) and U is a unitary matrix. Therefore, A*A = U*AAU. Let
Ae; = MNie; and z; = U~ lte;. Then A*Az; = |\;|?x; and, therefore, p(A*A) =
p(A)%. O
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35.2. The FEuclidean norm of a matrix A is
Al =, [3lai;|? = Vtr(A*A) = [3 07,
i, %

where o; are the singular values of A.
If U is a unitary matrix, then

[AUl, = V(U= A*AU) = V/tr(A*A) = || 4],

and [|UA[|, = [|All,-

THEOREM. If A is a matriz of order n, then

1Al < 1Al < Vol All,-

PrOOF. Let o1,...,0, be the singular values of A and oy > --- > 0,. Then
||A||§ =07 and ||A||§ =0+ - +02 Clearly, 02 < o2 +---+ 02 <no?. O

REMARK. The Euclidean and spectral norms are invariant with respect to the
action of the group of unitary matrices. Therefore, it is not accidental that the
Euclidean and spectral norms are expressed in terms of the singular values of the
matrix: they are also invariant with respect to this group.

If f(A) is an arbitrary matrix function and f(A4) = f(UA) = f(AU) for any
unitary matrix U, then f only depends on the singular values of A. Indeed, A =
UAV, where A = diag(o1,...,0,) and U and V are unitary matrices. Hence,
f(A) = f(A). Observe that in this case A* = V*AU* and, therefore, f(A*) = f(A).
In particular [|4°], = [|A], and [|4*], = [|A]..

35.3.1. THEOREM. Let A be an arbitrary matriz, S an Hermitian matriz. Then
|A— AL < |A— S|, where ||.|| is either the Euclidean or the operator norm.

PRrROOF.
A+ A* A-S S—A* lA—=S| |IS— A%
A— = < .
| =t s+
Besides, [|S — A*|| = [|[(S —A*)*|| =||IS— 4. O

35.3.2. THEOREM. Let A = US be the polar decomposition of A and W a
unitary matricz. Then |A—Ul||, < [|[A—W]||, and if |A| # 0, then the equality is
only attained for W =U.

PRrROOF. It is clear that
JA =W, = [ISU W], =S~ WUl = IS ~ VL.
where V = WU™ is a unitary matrix. Besides,
1S = V|2 = tr(S = V)(S = V*) = tr §? +-tr I — tr(SV + V*S).

By Problem 34.2 | tr(SV)| < tr S and | tr(V*S)| < tr S. It follows that ||S — V||§ SI
|S — I||?. If S > 0, then the equality is only attained if V = ¢/ and tr § = ¢/ tr S,
e, WU* =V =1. O
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35.4. THEOREM ([Franck,1961)). Let A be an invertible matriz, X a noninvert-
tble matriz. Then

11
1A= XII, = A7,
and if ||[A7Y|, = p(A™1), then there exists a noninvertible matriz X such that

_1y—1
1A =X, = A7,

PrOOF. Take a vector v such that Xv =0 and v # 0. Then
A-X A A

[v] ol = e 2l v ATy

Now, suppose that [|[A7!]|, = [A7!| and A~'y = X'y, ie., Ay = Ay. Then

||A*1H;1 = |A| = |Ay|/|y|. The matrix X = A—AI is noninvertible and ||A — X|, =
11
Il = Al = [[A7H, . O

_1,,—1
=47,

Problems

35.1. Prove that if A is a nonzero eigenvalue of A, then ||A_1||s_1 <Al <Al
35.2. Prove that [|AB, < ||| B[, and [|AB], < Al ]3],
35.3. Let A be a matrix of order n. Prove that

ladj AJl, < n”=" Al
36. Schur’s complement and Hadamard’s

product. Theorems of Emily Haynsworth

36.1. Let A= <A11 Az )7 where |A11] # 0. Recall that Schur’s complement
Ao Ax

of A11 in A is the matrix (A‘All) = AQQ - A21A;11A12 (see 31)
36.1.1. THEOREM. If A >0, then (A|A;1) > 0.

-1
PROOF. Let T = <é A}l B>7 where B = Ajp = A3;. Then

v qm Al 0
T AT—( 0 A22—B*A1113>’

is a positive definite matrix, hence, Agy — B*A7'B > 0. O
REMARK. We can similarly prove that if A > 0 and |A11| # 0, then (A|A1) > 0.

36.1.2. THEOREM ([Haynsworth,1970]). If H and K are arbitrary positive def-
inite matrices of order n and X and 'Y are arbitrary matrices of size n X m, then

X*H'X+Y' K'Y (X +Y)(H+K) (X +Y)>0.

PrOOF. Clearly,

«(H O _(H X (I, H'X
A=T (O 0>T_(X* X*H1X>>O’ whereT—(O I, )

K Y .
V¢ YrK-ly > 0. It remains to apply Theorem 36.1.1 to the
Schur complement of H + K in A+ B. O

Similarly, B =
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36.1.3. THEOREM ([Haynsworth, 1970]). Let A, B > 0 and A1, B11 > 0. Then
(A+ B|A11 + Bi1) > (AlAn) + (B|Bi1).

PRrROOF. By definition
(A+ B|A11 + B11) = (Aaz + Baa) — (A1 + Ba1) (411 + B11)_1(A12 + Bi2),
and by Theorem 36.1.2
A21A11 A + B21B11 Bis > (Ag1 + B21) (A1 + 311)71(1412 + Bia).
Hence,
(A+ B|A11 + Bn)
> (Azg + Baz) — (A21 AT A12 + Ba1Byy' Bi2) = (A|An1) + (B|B11). O

We can apply the obtained results to the proof of the following statement.

36.1.4. THEOREM ([Haynsworth, 1970]). Let Ay and By be upper left corner
submatrices of order k in positive definite matrices A and B of order n, respectively.
Then

n—1 ‘B | n—1 |A |
A+ B> A1+ 8 )+ B 1+ Y 28
wemz (18 ) e+ £
PRrROOF. First, observe that by Theorem 36.1.3 and Problem 33.1 we have
[(A+ BlA11 + Bu)| = |(A]An) + (B|Bu)|

|A] 1Bl
|Awi|  [Bui]

> |(AlA11)| + [(B|Bu)| =

For n = 2 we get
|A+ B| =|A1 + B1| - [(A+ B|A; + By)|

|‘1‘ |B| |B1‘ |411|

Now, suppose that the statement is proved for matrices of order n — 1 and let
us prove it for matrices of order n. By the inductive hypothesis we have

n—2 ‘Bk| n—2 IAk;l
Ap—1+4+ Bno1| > |A- 1+ — | +|Bn_ 1+ — .
et e (1 £ ) 1 (1 )
Besides, by the above remark

AL, 18]

A+ B|A,_1+ Bp1)| 2 .
‘( | 1 1)| |An—1| |Bn—1|

Therefore,
|A+ B|

« | Ay ( 1A 1B| )
Al |1+ +|Bn_1| |1+ +
| 1‘ ( kzz: ) | 1| ( Z |Bk| |An—1| |Bn—1|
IBn 1| Akl | [An
> |4 +[BI |1+ 5+ :
kz ~1 ; Bil * |Bni]
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36.2. If A= Hain;L and B = HbUH? are square matrices, then their Hadamard

product is the matrix C' = Hcinl’, where ¢;; = a;;b;;. The Hadamard product is
denoted by Ao B.

36.2.1. THEOREM (Schur). If A, B >0, then Ao B > 0.

PROOF. Let U = ||u”||? be a unitary matrix such that A = U*AU, where
A =diag(A1,...,An). Then a;; = Zp Upi Aplyp; and, therefore,

T — PP
E a;jbi Tz = E Ap E bi;jy; ;s
0] P )

where y? = x;up;. All the numbers \, are positive and, therefore, it remains to
prove that if not all numbers z; are zero, then not all numbers y? are zero. For this
it suffices to notice that

ST = lmiugil? =Y (Y lupil?) = w0
©,p %,p p i

36.2.2. The Oppenheim inequality.
THEOREM (Oppenheim). If A, B >0, then

det(Ao B) > ([] a) det B.

PROOF. For matrices of order 1 the statement is obvious. Suppose that the
statement is proved for matrices of order n — 1. Let us express the matrices A and
B of order n in the form

ail A12 bll B12
A= , B= ,
<A21 Azz) (321 Bzz)
where ay; and by are numbers. Then
det(A 9] B) = a11b11 det(A o B|a11b11)

and

(Ao Blaiibi1) = Az 0 Bas — Agy 0 Bojajy byt Arz 0 Bia
= AQQ o) (B‘bll) —|— (A|a11) o) (32181261_11).
Since (Alai1) and (B|by1) are positive definite matrices (see Theorem 36.1.1),

then by Theorem 36.2.1 the matrices Ags o (B|b11) and (Alaq1) o (Bnglgbil) are
positive definite. Hence, det(A o B) > a11b11 det(Aaz o (B|b11)); cf. Problem 33.1.

By inductive hypothesis det(Asq o (B|b11)) > aga ... any, det(B|b11); it is also clear
det B
that det(B|by,) = Z O
11

REMARK. The equality is only attained if B is a diagonal matrix.



158 MATRIX INEQUALITIES

Problems

36.1. Prove that if A and B are positive definite matrices of order n and A > B,
then |A + B| > |A] + n|B|.

36.2. [Djokovi¢, 1964]. Prove that any positive definite matrix A can be repre-
sented in the form A = B o C, where B and C are positive definite matrices.

36.3. [Djokovié, 1964]. Prove that if A > 0 and B > 0, then rank(A o B) >
rank B.

37. Nonnegative matrices

37.1. A real matrix A = ||a¢j||711 is said to be positive (resp. nonnegative) if
Qaij > 0 (resp. Q;j > 0)

In this section in order to denote positive matrices we write A > 0 and the
expression A > B means that A — B > 0.

Observe that in all other sections the notation A > 0 means that A is an Her-
mitian (or real symmetric) positive definite matrix.

A vector z = (x1,...,x,) is called positive and we write x > 0 if x; > 0.

A matrix A of order n is called reducible if it is possible to divide the set {1,...,n}
into two nonempty subsets I and J such that a;; = 0 for ¢ € I and j € J, and
irreducible otherwise. In other words, A is reducible if by a permutation of its rows

An A12), where A1; and Agg are

and columns it can be reduced to the form
0 A

square matrices.

THEOREM. If A is a nonnegative irreducible matriz of order n, then (I+A)"~1 >
0.

PRroOOF. For every nonzero nonnegative vector y consider the vector z = (I +
A)y = y + Ay. Suppose that not all coordinates of y are positive. Renumbering

the vectors of the basis, if necessary, we can assume that y = 8)’ where u > 0.
A A u Apu :
= = >
Then Ay (A21 Aoy 0 Aoyt ) Since u > 0, Ay; > 0 and Ay; # 0,

we have Asju # 0. Therefore, z has at least one more positive coordinate than y.
Hence, if y > 0 and y # 0, then (I + A)"~'y > 0. Taking for y, first, e, then e,
etc., e, we get the required solution. [

37.2. Let A be a nonnegative matrix of order n and x a nonnegative vector.
Further, let

7, = min aij—] = sup{p > 0|Az > px}.
v j=1 i

and r = supr,. It suffices to take the supremum over the compact set P =
z>0
{z > 0]lz] = 1}, and not over all z > 0. Therefore, there exists a nonzero

nonnegative vector z such that Az > rz and there is no positive vector w such that
Aw > rw.
A nonnegative vector z is called an extremal vector of A if Az > rz.

37.2.1. THEOREM. If A is a nonnegative irreducible matriz, then r > 0 and an
extremal vector of A is ils eigenvector.
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Proor. If £ = (1,...,1), then A§ > 0 and, therefore, r > 0. Let z be an
extremal vector of A. Then Az —rz = n > 0. Suppose that n # 0. Multiplying
both sides of the inequality n > 0 by (I+A)" ! we get Aw—rw = (I+A)""1n >0,
where w = (I + A)" "'z > 0. Contradiction. [J

37.2.1.1. REMARK. A nonzero extremal vector z of A is positive. Indeed, z > 0
and Az = rz and, therefore, (1+7)" "'z = (I + A)"~'z > 0.

37.2.1.2. REMARK. An eigenvector of A corresponding to eigenvalue r is unique
up to proportionality. Indeed, let Ax = rx and Ay = ry, where z > 0. If y =
min(y;/x;), then y; > px;, the vector z = y — pa has nonnegative coordinates and
at least one of them is zero. Suppose that z # 0. Then z > 0 since z > 0 and
Az =rz (see Remark 37.2.1.1). Contradiction.

37.2.2. THEOREM. Let A be a nonnegative irreducible matriz and let a matriz
B be such that |b;;| < a;j. If B is an eigenvalue of B, then |8 < r, and if 3 = re'?
then |bi;| = ai; and B = e DAD™!, where D = diag(dy,...,d,) and |d;| = 1.

PRrROOF. Let By = By, where y # 0. Consider the vector y* = (|y1],- -, |yn|)-
Since By; = 3=, bijy;, then |By;| = 3=, [bijy;| < 375 aijly;| and, therefore, |Bly™ <
ryT, ie., |8 <.

Now, suppose that 3 = re’?. Then y¥ is an extremal vector of A and, therefore,
y* > 0 and Ayt = ry". Let BT = ||b;||, where b}; = [b;;|. Then BT < A and
Ayt = ryT = BTy™ and since y* > 0, then BT = A. Consider the matrix D =
diag(dy, . ..,d,), where d; = y;/|yi|. Then y = Dy and the equality By = By can
be rewritten in the form BDyt = gDy™, i.e., Oyt = ry™, where C = e~ D' BD.
The definition of C' implies that C* = BT = A. Let us prove now that CT = C.
Indeed, Cy™ = ry™ = BTyT™ = Cty* and since C* > 0 and y™ > 0, then
Ctyt > Cy*, where equality is only possible if C = CT = A. O

37.3. THEOREM. Let A be a mnonnegative irreducible matriz, k the number of
its distinct eigenvalues whose absolute values are equal to the mazimal eigenvalue r
and k > 1. Then there exists a permutation matriz P such that the matriz PAPT
is of the block form

0 A2 O 0

0 0 A 0

0 0 0 . Ak—l,k
Agr 0 0o ... 0

Proor. The greatest in absolute value eigenvalues of A are of the form a; =
rexp(ip;). Applying Theorem 37.2.2 to B = A, we get A = exp(igpj)DjADj_l.
Therefore,

p(t) = [t — Al = [t] — exp(i;) D;AD; | = Ap(exp(—igp;)t).
The numbers aj,...,q; are roots of the polynomial p and, therefore, they are

invariant with respect to rotations through angles ¢, (i.e., they constitute a group).
Taking into account that the eigenvalue r is simple (see Problem 37.4), we get
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a; = rexp(%). Let y; be the eigenvector corresponding to the eigenvalue oy =
rexp(2). Then yi” > 0 and y1 = D1y; (see the proof of Theorem 37.2.2). There
exists a permutation matrix P such that

PD,PT = diag(e™'I4,...,e"" 1),

where the numbers e, ... e are distinct and I,...,I, are unit matrices. If
instead of y; we take e~¥1y;, then we may assume that v; = 0.

Let us divide the matrix PAPT into blocks A, in accordance with the division
of the matrix PD; PT. Since A = exp(icpj)DjADj*l7 it follows that

PAPT = exp(ip1)(PDPT)(PAPT)(PD,PT) !,

ie.,
. 2
Apg = eXP[Z(’Yp —Yq + ?)]Aptr

Therefore, if 2% + 7, # 7, (mod 27), then A,, = 0. In particular s > 1 since
otherwise A = 0.

The numbers ~; are distinct and, therefore, for any p there exists no more than
one number ¢ such that A,, # 0 (in which case ¢ # p). The irreducibility of A
implies that at least one such ¢ exists.

Therefore, there exists a map p + ¢(p) such that A, ;) # 0 and 27” +Y = Ya(p)
(mod 2).

For p =1 we get v4(1) = 2?” (mod 27). After permutations of rows and columns
of PAPT we can assume that Yq(1) = V2. By repeating similar arguments we can
get

2r(g —1 . .
Vali—1) = Vi = % for 2 <j < min(k, s).

Let us prove that s = k. First, suppose that 1 < s < k. Then 2?” + 9 —v Z0
mod 27 for 1 < r < s—1. Therefore, A;,, =0 for 1 <r <s—1,1i.e., Aisreducible.

Now, suppose that s > k. Then ~; = w for 1 <4 < k. The numbers v; are
distinct for 1 < j < s and for any i, where 1 < i < k, there exists j(1 < j < k)
such that 2?” +7; =7, (mod 2m). Therefore, 27’7 +7vi Z 7 (mod 27) for 1 <i<k
and k < r < s, ie., A; =0 for such k£ and r. In either case we get contradiction,
hence, k = s.

Now, it is clear that for the indicated choice of P the matrix PAPT is of the
required form. [

COROLLARY. If A > 0, then the maximal positive eigenvalue of A is strictly
greater than the absolute value of any of its other eigenvalues.

37.4. A nonnegative matrix A is called primitive if it is irreducible and there is
only one eigenvalue whose absolute value is maximal.

37.4.1. THEOREM. If A is primitive, then A™ > 0 for some m.

PRrROOF ([Marcus, Minc, 1975]). Dividing, if necessary, the elements of A by the
eigenvalue whose absolute value is maximal we can assume that A is an irreducible
matrix whose maximal eigenvalue is equal to 1, the absolute values of the other
eigenvalues being less than 1.
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Let ST1AS = (1) g) be the Jordan normal form of A. Since the absolute
values of all eigenvalues of B are less than 1, it follows that lim B™ = 0 (see

Problem 34.5 a)). The first column 27 of S is the eigenvector of A corresponding
to the eigenvalue 1 (see Problem 11.6). Therefore, this vector is an extremal vector
of A; hence, x; > 0 for all i (see 37.2.1.2). Similarly, the first row, y, of S~! consists
of positive elements. Hence,

o 1 0Nan of1 0\a =
am A _nhféos<0 B”>S _S(o 0)5 =z y>0

and, therefore, A™ > 0 for some m. [

REMARK. If A > 0 and A™ > 0, then A is primitive. Indeed, the irreducibility
of A is obvious; besides, the maximal positive eigenvalue of A™ is strictly greater
than the absolute value of any of its other eigenvalues and the eigenvalues of A™
are obtained from the eigenvalues of A by raising them to mth power.

37.4.2. THEOREM (Wielandt). Let A be a nonnegative primitive matriz of order
n. Then A" =242 > 0.

ProoF (Following [Sedldcek, 1959]). To a nonnegative matrix A of order n we
can assign a directed graph with n vertices by connecting the vertex ¢ with the
vertex j if a;; > 0 (the case ¢ = j is not excluded). The element b;; of A® is positive
if and only if on the constructed graph there exists a directed path of length s
leading from vertex i to vertex j.

Indeed, bij = E Qijy Ajqig ~ - - Qi 17,5 where Qijy Ajyig ~ - Qi 14 > 0 if and only if the
path éi1is .. .45_17 runs over the directed edges of the graph.

To a primitive matrix there corresponds a connected graph, i.e., from any vertex
we can reach any other vertex along a directed path. Among all cycles, select a
cycle of the least length (if a;; > 0, then the edge ii is such a cycle). Let, for
definiteness sake, this be the cycle 12...11. Then the elements by, ..., by of Al are
positive.

From any vertex ¢ we can reach one of the vertices 1,...,[ along a directed path
whose length does not exceed n — [. By continuing our passage along this cycle
further, if necessary, we can turn this path into a path of length n —I.

Now, consider the matrix A’. It is also primitive and a directed graph can also
be assigned to it. Along this graph, from a vertex j € {1,...,l} (which we have
reached from the vertex ¢) we can traverse to any given vertex k along a path whose
length does not exceed n — 1. Since the vertex j is connected with itself, the same
path can be turned into a path whose length is precisely equal to n — 1. Therefore,
for any vertices 7 and k on the graph corresponding to A there exists a directed
path of length n — I 4+ i(n — 1) = l(n — 2) + n. If { = n, then the matrix A can be
reduced to the form

0 a2 0 0
0 0 ass 0
0 0 0 Ap—1,n
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this matrix is not primitive. Therefore [ < n —1; hence, I(n —2) +n < n? —2n+2.
It remains to notice that if A > 0 and AP > 0, then AP*! > 0 (Problem 37.1).

The estimate obtained in Theorem 37.4.2 is exact. It is reached, for instance, at
the matrix

01 0 ... 0
0o 0 1 ... 0
A=| 0o
0O 0 o0 ... 1
11 0 ... 0

of order n, where n > 3. To this matrix we can assign the operator that acts as
follows:
Aei =e,, Aes =e1t+e,, Aes=es, ..., Ae, =e€,_1.

Let B = A"~ L. Tt is easy to verify that
B€1 = €9, B€2:62+€3, B63 :€3+64, ey Ben:€n+€1.

Therefore, the matrix B"~! has just one zero element situated on the (1,1)th
position and the matrix AB"~1 = A" ~2n+2 ig positive. [

Problems

37.1. Prove that if A >0 and A* > 0, then A*+1 > 0.

37.2. Prove that a nonnegative eigenvector of an irreducible nonnegative matrix
is positive.

B C o . .

37.3. Let A = ( D E> be a nonnegative irreducible matrix and B a square
matrix. Prove that if & and § are the maximal eigenvalues of A and B, then 8 < a.

37.4. Prove that if A is a nonnegative irreducible matrix, then its maximal
eigenvalue is a simple root of its characteristic polynomial.

37.5. Prove that if A is a nonnegative irreducible matrix and a;; > 0, then A is
primitive.

37.6 ([Sidak, 1964]). A matrix A is primitive. Can the number of positive
elements of A be greater than that of A2?

38. Doubly stochastic matrices

38.1. A nonnegative matrix A = ||a,ij ||:L is called doubly stochasticif Y i | a;, =
Land >7_, ay; = 1 for all k.

38.1.1. THEOREM. The product of doubly stochastic matrices is a doubly sto-
chastic matriz.

PrOOF. Let A and B be doubly stochastic matrices and C = AB. Then

n n n n n n
Y cij =2 ) aiphpy =Y by Y iy =Y by = 1.
i=1 p=1 i=1 p=1

i=1 p=1

Similarly, Z;LZI ci; =1 0O



38. DOUBLY STOCHASTIC MATRICES 163

38.1.2. THEOREM. If A = ||ain711 is a unitary matriz, then the matric B =
HbinT, where b;; = |ai;|?, is doubly stochastic.

ProOF. It suffices to notice that Y i, |a;;|? = 2?21 laij|2=1. O

38.2.1. THEOREM (Birkhoff). The set of all doubly stochastic matrices of order
n is a convex polyhedron with permutation matrices as its vertices.

Let 41,...,ix be numbers of some of the rows of A and ji,..., ; numbers of
some of its columns. The matrix ||a;;||, where i € {i1,...,ix} and j € {j1,..., 5},
is called a submatriz of A. By a snake in A we will mean the set of elements
A1g(1)s - - » Ano(n), Where o is a permutation. In the proof of Birkhoff’s theorem we
will need the following statement.

38.2.2. THEOREM (Frobenius-Koénig). Fach snake in a matriz A of order n
contains a zero element if and only if A contains a zero submatriz of size s X t,
where s+t =n+ 1.

PROOF. First, suppose that on the intersection of rows iy, ...,is and columns
Ji,-..,J¢ there stand zeros and s +t = n + 1. Then at least one of the s numbers
o(i1),...,0(is) belongs to {j1,...,j:} and, therefore, the corresponding element of

the snake is equal to 0.

Now, suppose that every snake in A of order n contains 0 and prove that then
A contains a zero submatrix of size s x t, where s +t = n + 1. The proof will be
carried out by induction on n. For n = 1 the statement is obvious.

Now, suppose that the statement is true for matrices of order n — 1 and consider
a nonzero matrix of order n. In it, take a zero element and delete the row and
the column which contain it. In the resulting matrix of order n — 1 every snake
contains a zero element and, therefore, it has a zero submatrix of size s; X t1, where
s1 +t1 = n. Hence, the initial matrix A can be reduced by permutation of rows
and columns to the block form plotted on Figure 6 a).

FIGURE 6

Suppose that a matrix X has a snake without zero elements. Every snake in
the matrix Z can be complemented by this snake to a snake in A. Hence, every
snake in Z does contain 0. As a result we see that either all snakes of X or all
snakes of Z contain 0. Let, for definiteness sake, all snakes of X contain 0. Then
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X contains a zero submatrix of size p X ¢, where p + ¢ = s1 + 1. Hence, A contains
a zero submatrix of size p X (t1 +¢) (on Figure 6 b) this matrix is shaded). Clearly,
p+ti+q)=si+1+t1=n+1. 0O

COROLLARY. Any doubly stochastic matrix has a snake consisting of positive
elements.

PRroOOF. Indeed, otherwise this matrix would contain a zero submatrix of size
s X t, where s+t =n+ 1. The sum of the elements of each of the rows considered
and each of the columns considered is equal to 1; on the intersections of these rows
and columns zeros stand and, therefore, the sum of the elements of these rows and
columns alone is equal to s +t = n + 1; this exceeds the sum of all elements which
is equal to n. Contradiction. [

PROOF of the Birkhoff theorem. We have to prove that any doubly stochastic
matrix S can be represented in the form S = >~ A\;P;, where P; is a permutation
matrix, A; > 0 and > \; = 1.

We will use induction on the number k of positive elements of a matrix S of
order n. For k = n the statement is obvious since in this case S is a permutation
matrix. Now, suppose that S is not a permutation matrix. Then this matrix has a
positive snake (see Corollary 38.2.2). Let P be a permutation matrix corresponding
to this snake and x the minimal element of the snake. Clearly, x # 1. The matrix
T= ﬁ(S — 2 P) is doubly stochastic and it has at least one positive element less
than S. By inductive hypothesis T can be represented in the needed form; besides,
S=zP+(1—x2)T. O

38.2.3. THEOREM. Any doubly stochastic matrix S of order n is a convez linear

hull of no more than n? — 2n + 2 permutation matrices.

PROOF. Let us cross out from S the last row and the last column. S is uniquely
recovered from the remaining (n — 1)? elements and, therefore, the set of doubly
stochastic matrices of order n can be considered as a convex polyhedron in the space
of dimension (n — 1)2. It remains to make use of the result of Problem 7.2. [0

As an example of an application of the Birkhoff theorem, we prove the following
statement.

38.2.4. THEOREM (Hoffman-Wielandt). Let A and B be normal matrices; let
Q1,... 0 and B,..., 0, be their eigenvalues. Then

n
2 .
A= B, > min > (o) = Bi)7
i=1
where the minimum is taken over all permutations o.

PrOOF. Let A = VA V* B =WA,W*, where U and W are unitary matrices
and A, = diag(aq, ..., an), Ay = diag(f1,...,0,). Then

A= B2 = [W* (VA" = WAW)W? = [UAU" = Al
where U = W*V. Besides,
|UAU™ — Ab||§ =tr(UAU* — Ap)(UALU™ — A})
= tr(AgAL + ApA}) — 2Retr(UAUTAY)
= (leal* +18:%) =2 Y |ui;* Re(B;a;).
i=1

i,j=1
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Since the matrix Hcij ||, where ¢;; = |u;;|?, is doubly stochastic, then

n

1A= BJIE = (jail® + 16:") — 2min Y e Re(B,a),

i=1 i,5=1

where the minimum is taken over all doubly stochastic matrices C. For fixed sets
of numbers «a;, 3; we have to find the minimum of a linear function on a convex
polyhedron whose vertices are permutation matrices. This minimum is attained at
one of the vertices, i.e., for a matrix ¢;; = d; 5(;). In this case

2 Z cij Re(B;a;) = QZRG(Biaa(i))-

ij=1 i=1

Hence,

n n
|A-B|? > Z (Jow iy |2+ 18i]* — 2Re(Bia0(i))) = Z oy — B> O
=1 =1

38.3.1. THEOREM. Letx1 > 9> - > x, andy; > -+ > yn, where 1 +---+
T <y1+--+yg forallk <nandxy+---+x, =y1+--+yn- Then there exists
a doubly stochastic matriz S such that Sy = x.

PROOF. Let us assume that x; # y; and z,, # y, since otherwise we can throw
away several first or several last coordinates. The hypothesis implies that 1 < y;
andz1 + -+ xp_1 <y +-+Yn_1, i€, T, > y,. Hence, 1 < y; and z,, > yy.
Now, consider the operator which is the identity on ys,...,y,_1 and on y; and y,

11—«

acts by the matrix If 0 < a < 1, then the matrix Sy of this

11—«
operator is doubly stochastic. Select a number « so that ay; + (1 — @)y, = z1,
ie, a = (x1 — yn)(y1 — yn)~ L. Since y; > w1 > 3, > Y, then 0 < a < 1.
As a result, with the help of S; we pass from the set yi,¥2,...,y, to the set
T1,Y2, - Yn—1,Yy, Where y,, = (1 — a)y; + ay,. Since x1 + ¥y, = y1 + Yn, then
To+ -+ Tpo1+ Ty =Y2+ -+ Yn_1 + ¥y, and, therefore, for the sets xa,...,x,
and ya,...,Yn—1,Y,, We can repeat similar arguments, etc. It remains to notice
that the product of doubly stochastic matrices is a doubly stochastic matrix, see
Theorem 38.1.1. O

38.3.2. THEOREM (H. Weyl’s inequality). Let a1 > --- > «, be the absolute
values of the eigenvalues of an invertible matrix A, and let o1 > -+ > o, be its
singular values. Then of +---+ oy <o+ -+ 0}, for allk <n and s > 0.

Proor. By Theorem 34.4.1, ay...ctp, = 01...0pand a1 ... < 01...0 for
k < n. Let x and y be the columns (Inay,...,Ina,)? and (Inoy,...,Ino,)7. By
Theorem 38.3.1 there exists a doubly stochastic matrix S such that x = Sy. Fix
k <n and for u = (uq,...,u,) consider the function f(u) = f(u1) + -+ f(ug),
where f(t) = exp(st) is a convex function; the function f is convex on a set of
vectors with positive coordinates.
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Now, fix a vector u with positive coordinates and consider the function ¢g(S) =
f(Su) defined on the set of doubly stochastic matrices. If 0 < o < 1, then

gAS+ (1 -=NT) = f(ASu+ (1 —XN)Tu)
< AF(SU) + (1= N f(Tu) = g(8) + (1 - Ng(T),

i.e., g is a convex function. A convex function defined on a convex polyhedron takes
its maximal value at one of the polyhedron’s vertices. Therefore, g(S) < g(P),
where P is the matrix of permutation 7 (see Theorem 38.2.1). As the result we get

It remains to notice that
f(z) =exp(slnag) +---+exp(slnag) =aj + -+ af

and
f(yﬂ(l)u"'7y7r(n)) = J;(l) + - +U;Sr(k) S O'f + - +O'Z O

Problems

38.1 ([Mirsky, 1975]). Let A = Hain;l be a doubly stochastic matrix; 1 > --- >
Ty >0and y; > -+ >y, > 0. Prove that > ars2rys <32, Ty

38.2 ([Bellman, Hoffman, 1954]). Let A1,..., A, be eigenvalues of an Hermitian
matrix H. Prove that the point with coordinates (hi1,...,hn,) belongs to the
convex hull of the points whose coordinates are obtained from Ay, ..., A, under all
possible permutations.

Solutions

33.1. Theorem 20.1 shows that there exists a matrix P such that P*AP = I
and P*BP = diag(p, ..., pn), where p; > 0. Therefore, |A + B| = d? [](1 + p.),
|A| = d? and |B| = d? [] pi, where d = | det P|. It is also clear that

[T +p) =1+ (ua+ -+ pn) + -+ T > T+ [T

The inequality is strict if g3 + -+ + g, > 0, ie., at least one of the numbers
U1, [y 1S NONZETO.

33.2. As in the preceding problem, det(A +iB) = d? [[(ax + i0k) and det A =
d?> ] ok, where ap, > 0 and B € R. Since |ag + iBk]? = |ax|? + |Bk|?, then
|ak + iBk| > || and the inequality is strict if g # 0.

33.3. Since A— B = C > 0, then A, = B + Cy, where Ay, B,,C;, > 0.
Therefore, |Ax| > |Bi| + |Ck| (cf. Problem 33.1).

33.4. Let = + iy be a nonzero eigenvector of C' corresponding to the zero eigen-
value. Then

(A+iB)(z +1iy) = (Az — By) +i(Bz + Ay) = 0,
i.e., Az = By and Ay = —Bzx. Therefore,
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ie., (Az,z) = (Ay,y) = 0. Hence, Ay = By = 0 and, therefore, Az = Bx = 0 and
Ay = By = 0 and at least one of the vectors z and y is nonzero.

33.5. Let z = (21,...,2,). The quadratic form @ corresponding to the matrix
considered is of the shape

2 inzozi + (Az,2) = 229(z,2) + (Az, 2).
i=1

The form @ is positive definite on a subspace of codimension 1 and, therefore,
it remains to prove that the quadratic form @ is not positive definite. If x #
0, then (z,z) # 0 for some z. Therefore, the number zy can be chosen so that
2z0(z,2) + (Az,z) < 0.

33.6. There exists a unitary matrix U such that U* AU = diag(\q, ..., \,), where
Ai > 0. Besides, tr(AB) = tr(U*AUB’), where B’ = U*BU. Therefore, we can
assume that A = diag(A1,...,A,). In this case

tr(AB)

=SS > ([TAba) ™ = A" (TT b)Y
and [[bi; > |B| =1 (cf. 33.2). Thus, the minimum is attained at the matrix

B = |A|Y™ diag(A\7 Y, .., A0,

n

34.1. Let A be an eigenvalue of the given matrix. Then the system ) a;;2; = Az;
(i =1,...,n) has a nonzero solution (z1,...,x,). Among the numbers z1,...,z,
select the one with the greatest absolute value; let this be xj. Since

ApgpTr — ATp = — Zakaja
J#k

we have

lagrzr — Axg| < Z lag;z;| < prlekl,

7k
ie., lage — Al < pr.
34.2. Let S = V*DV, where D = diag(\1,...,\,), and V is a unitary matrix.

Then

tr(US) = tr(UV*DV) = tr(VUV*D).

Let VOV* =W = HwUH?, then tr(US) = > w;;A;. Since W is a unitary matrix,
it follows that |w;;| < 1 and, therefore,

> wiiAi] <Dl =D A =trS.

If S >0, ie., A; #0 for all 4, then tr S = tr(US) if and only if w;; = 1, i.e., W =1
and, therefore, U = I. The equality tr.S = |tr(US)| for a positive definite matrix
S can only be satisfied if w;; = €%, i.e., U = *?1.

34.3. Let ay > -+ > a, > 0and B; > -+ > B, > 0 be the eigenvalues of A
and B. For nonnegative definite matrices the eigenvalues coincide with the singular
values and, therefore,

|[tr(AB)| < Y il < (Doay) (3 _Bi) =trA tr B
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(see Theorem 34.4.2).
34.4. The matrix C' = AB— BA is skew-Hermitian and, therefore, its eigenvalues
are purely imaginary; hence, tr(C?) < 0. The inequality tr(AB — BA)? < 0 implies

tr(AB)? + tr(BA)? < tr(ABBA) + tr(BAAB).

It is easy to verify that tr(BA)? = tr(AB)? and tr(ABBA) = tr(BAAB) =
tr(A2B?).

34.5. a) If A¥ — 0 and Az = Az, then A* — 0. Now, suppose that |\;| < 1 for
all eigenvalues of A. It suffices to consider the case when A = A\I + N is a Jordan
block of order n. In this case

AF = (k> MNeT 4 <k> MN=IN 4 <k> Ne=nym,
0 1 n

since N"*1 = 0. Each summand tends to zero since (f)) =k(k—1)...(k—p+1) < kP
and klim kPAF = 0.

b) If Az =M x and H — A*HA > 0 for H > 0, then
0< (Hx— A*HAx,x) = (Hz,x) — (H\z, ) = (1 — [A\*)(Hz, z);

hence, |A| < 1. Now, suppose that A¥ — 0. Then (A4*)* — 0 and (A4*)*AF — 0.
If Bx = Az and b = max |b;;|, then |A| < nb, where n is the order of B. Hence,
all eigenvalues of (A*)*A* tend to zero and, therefore, for a certain m the absolute
value of every eigenvalue «; of the nonnegative definite matrix (A*)™A™ is less
than 1, i.e., 0 < a; < 1. Let

H=T+A"A+ - (A" 1am L

Then H — A*HA = I — (A*)™A™ and, therefore, the eigenvalues of the Hermitian
matrix H — A*HA are equal to 1 — «; > 0.

34.6. The eigenvalues of an Hermitian matrix A*A are equal and, therefore,
A*A =tI, where t € R. Hence, U = t~'/2 A is a unitary matrix.

34.7. Tt suffices to apply the result of Problem 11.8 to the matrix A*A.

34.8. Tt suffices to notice that _)\i* 7\114 = [A2] — A*A] (cf. 3.1).
35.1. Suppose that Az = Az, Ax # 0. Then A=tz = A~ lx; therefore, max % >
y

A2 _ ) and

||

A~y N\ 7!
<max | y> = min |ﬂ < |_x1| =\
vyl v A7y T [AT e

35.2. If ||AB||, # 0, then

IAB|. = max |ABz| _ |ABx|
A |wo|

where Bzy # 0. Let y = Bxp; then

|ABxo| _ Ayl |Buo|
|0 [ E

< lAllIBll
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To prove the inequality [|AB||, < ||A]|.||B]l, it suffices to make use of the inequality

k=1

= 2 o 2 o 2
St < (Sl (Siowst).

35.3. Let o1,...,0, be the singular values of the matrix A. Then the singular
values of adj A are equal to [],, 04,...,][;4, i (Problem 34.7) and, therefore,

JA|? =0} + -+ 02 and

ladj A2 = [ oi +- + [[ o+-

i#1 i#n
First, suppose that A is invertible. Then
ladj A2 = (02...02) (072 + - +072).

Multiplying the inequalities

of...02<n (ol 4 - +02)" and (0] >

oo, ) (0f + - o) <n?
we get
. 2 29— 2(n—1
ladj A[|Z < n2=m A2,

Both parts of this inequality depend continuously on the elements of A and, there-
fore, the inequality holds for noninvertible matrices as well. The inequality turns
into equality if o7 = -+ = oy, i.e., if A is proportional to a unitary matrix (see
Problem 34.6).

36.1. By Theorem 36.1.4

— | By - 4
A+ Bl > |A — Bl[1 — .
|A+ B| > | |< ElA + | B] +k§:1\Bk|

Besides, ‘I‘;’C} > 1 (see Problem 33.3).

36.2. Consider a matrix B(\) = Hbij’ T, where b;; =1 and b;; = A for ¢ # j. It
is possible to reduce the Hermitian form corresponding to this matrix to the shape
A S zi]? + (1 = X)X |z4|? and, therefore B(A) > 0 for 0 < A < 1. The matrix

C(A\) = Ao B()) is Hermitian for real A and /\liml C(A) =A>0. Hence, C(Xg) >0

for a certain \g > 1. Since B(\g) o B(A\y') is the matrix all of whose elements are
1, it follows that A = C(\g) o B(A\g') > 0.

36.3. If B > 0, then we can make use of Schur’s theorem (see Theorem 36.2.1).
Now, suppose that rank B = k, where 0 < k < rank A. Then B contains a positive
definite principal submatrix M (B) of rank k (see Problem 19.5). Let M (A) be the
corresponding submatrix of A; since A > 0, it follows that M (A) > 0. By the Schur
theorem the submatrix M(A) o M(B) of Ao B is invertible.

37.1. Let A > 0and B > 0. The matrix C = AB has a nonzero element c,
only if the pth row of A is zero. But then the pth row of A* is also zero.

37.2. Suppose that the given eigenvector is not positive. We may assume that it

. x A B z\ [ Az
is of the form <O >, where z > 0. Then <C’ D> (0> = (CI)’ and, therefore,
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Cz = 0. Since C > 0, then C' = 0 and, therefore, the given matrix is decomposable.
Contradiction.
37.3. Let y > 0 be a nonzero eigenvector of B corresponding to the eigenvalue

G and z = (g) Then

(3 9)(0)- (%) (8) -0

where z = ( 0 ) > 0. The equality Ax = Sx cannot hold since the eigenvector of

Dy
an indecomposable matrix is positive (cf. Problem 37.2). Besides,

sup{t > 0| Az —tx >0} >

and if § = a, then z is an extremal vector (cf. Theorem 37.2.1); therefore, Az = fx.
The contradiction obtained means that 8 < a.

37.4. Let f(A) = |A — A|. Tt is easy to verify that f'(\) = Y1, A — A,
where A; is a matrix obtained from A by crossing out the ith row and the ith
column (see Problem 11.7). If r and r; are the greatest eigenvalues of A and A;,
respectively, then r > r; (see Problem 37.3). Therefore, all numbers |rI — A;| are
positive. Hence, f'(r) # 0.

37.5. Suppose that A is not primitive. Then for a certain permutation matrix
P the matrix PAPT is of the form indicated in the hypothesis of Theorem 37.3.
On the other hand, the diagonal elements of PAPT are obtained from the diagonal
elements of A under a permutation. Contradiction.

37.6. Yes, it can. For instance consider a nonnegative matrix A corresponding
to the directed graph

1—1(1,2), 2— (3,4,5), 3— (6,7,8), 4 — (6,7,8),
5—1(6,7,8), 6—1(9), 7—(9), 8—1(9), 9—(1).

It is easy to verify that the matrix A is indecomposable and, since a;; > 0, it is
primitive (cf. Problem 37.5). The directed graph

1—(1,2,3,4,5), 2—(6,7,8), 3—(9), 4 — (9),
5—1(9), 6 — (1), 7T— (1), 8 — (1), 9—(1,2).

corresponds to A2. The first graph has 18 edges, whereas the second one has 16
edges.

38.1. There exist nonnegative numbers §; and n; such that x, = & +--- + &,
and y, = 1y + - -+ + 0. Therefore,

Z%% - Z ArsTrYs = Z(érs - ars)xrys
r r,s

r,s

= Z(§Ts - ars) Z@ 277]‘ = mej Z Z(‘Srs - am)-

i>r  j>s r<i s<j
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It suffices to verify that Zr<z ZS<J( —ays) > 0. If : < j, then ZT<Z ZS<] -
ngl 2321 rs and, therefore,

n

ZZ rs = Qrs) Zgz s — aps) = 0.

r<i s<j

The case ¢ > j is similar.

38.2. There exists a unitary matrix U such that H = UAU*, where A =
diag(A1,...,An). Since hi; = >, UikljpAi, then hy = >, xipAg, where z;, =
|uix|?. Therefore, h = X\, where h is the column (hiy,...,hn,)T and X is the
column (A1,...,\,)" and where X is a doubly stochastic matrix. By Theorem
38.2.1, X = EU t, P,, where P, is the matrix of the permutation o, t, > 0 and
Y oto =1. Hence, h =3 _t,(P,\).
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MATRICES IN ALGEBRA AND CALCULUS

39. Commuting matrices

39.1. Square matrices A and B of the same order are said to be commuting
if AB = BA. Let us describe the set of all matrices X commuting with a given
matrix A. Since the equalities AX = XA and A’X’ = X'A’, where A’ = PAP™!
and X’ = PX P! are equivalent, we may assume that A = diag(Jy,...,Ji), where
J1,...,Ji are Jordan blocks. Let us represent X in the corresponding block form

X = HXU H]f The equation AX = X A is then equivalent to the system of equations
Jzng = Xiij.

It is not difficult to verify that if the eigenvalues of the matrices J; and J; are
distinct then the equation J; X;; = X;;J; has only the zero solution and, if J; and
J; are Jordan blocks of order m and n, respectively, corresponding to the same
eigenvalue, then any solution of the equation J; X;; = X;;J; is of the form (Y 0)

or (}(;) , where

yr Y2 ... Yk
0 v - Yk

and k = min(m,n). The dimension of the space of such matrices Y is equal to k.
Thus, we have obtained the following statement.

39.1.1. THEOREM. Let Jordan blocks of size ai(X),...,a-(\) correspond to an
eigenvalue X of a matrix A. Then the dimension of the space of solutions of the
equation AX = X A is equal to

D> min(a; (V) a;(N)).
A i,

39.1.2. THEOREM. Let m be the dimension of the space of solutions of the
equation AX = XA, where A is a square matriz of order n. Then the following
conditions are equivalent:

a) m=n;

b) the characteristic polynomial of A coincides with the minimal polynomial;

¢) any matriz commuting with A is a polynomial in A.

PROOF. a) <= b) By Theorem 39.1.1

m= ZZmin(ai(/\),aj()\)) > ZZai()\) =n
X iy P

Typeset by ApS-TEX
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with equality if and only if the Jordan blocks of A correspond to distinct eigenvalues,
i.e., the characteristic polynomial coincides with the minimal polynomial.

b) = ¢) If the characteristic polynomial of A coincides with the minimal poly-
nomial then the dimension of Span(I, A, ..., A"~!) is equal to n and, therefore, it
coincides with the space of solutions of the equation AX = X A, i.e., any matrix
commuting with A is a polynomial in A.

¢) = a) If every matrix commuting with A is a polynomial in A, then, thanks
to the Cayley—Hamilton theorem, the space of solutions of the equation AX = XA
is contained in the space Span(I, 4,..., A¥=1) and & < n. On the other hand,
k > m > n and, therefore, m =n. O

39.2.1. THEOREM. Commuting operators A and B in a space V over C have
a common eigenvector.

PRrROOF. Let A be an eigenvalue of A and W C V the subspace of all eigenvectors
of A corresponding to A. Then BW C W. Indeed if Aw = Aw then A(Bw) =
BAw = A(Bw). The restriction of B to W has an eigenvector wq and this vector
is also an eigenvector of A (corresponding to the eigenvalue A). O

39.2.2. THEOREM. Commuting diagonalizable operators A and B in a space V
over C have a common eigenbasis.

PrOOF. For every eigenvalue A of A consider the subspace V) consisting of
all eigenvectors of A corresponding to the eigenvalue A. Then V = @,V and
BV, C V). The restriction of the diagonalizable operator B to V) is a diagonalizable
operator. Indeed, the minimal polynomial of the restriction of B to V) is a divisor
of the minimal polynomial of B and the minimal polynomial of B has no multiple
roots. For every eigenvalue p of the restriction of B to V) consider the subspace
Vi, consisting of all eigenvectors of the restriction of B to V) corresponding to
the eigenvalue . Then Vy = @®,V) , and V = ®, V) . By selecting an arbitrary
basis in every subspace V) ,,, we finally obtain a common eigenbasis of A and B. [

We can similarly construct a common eigenbasis for any finite family of pairwise
commuting diagonalizable operators.

39.3. THEOREM. Suppose the matrices A and B are such that any matriz com-
muting with A commutes also with B. Then B = g(A), where g is a polynomial.

PROOF. It is possible to consider the matrices A and B as linear operators in
a certain space V. For an operator A there exists a cyclic decomposition V =
Vi@ .- @V with the following property (see 14.1): AV; C V; and the restriction
A; of A to V; is a cyclic block; the characteristic polynomial of A; is equal to p;,
where p; is divisible by p; 41 and p; is the minimal polynomial of A.

Let the vector e; span V;, i.e., V; = Span(e;, Ae;, A%e;,...) and P, : V. — V;
be a projection. Since AV; C V;, then AP;v = P;Av and, therefore, P,B = BP;.
Hence, Be; = BPe; = P;Be; € V;, i.e., Be; = gi(A)e;, where g; is a polynomial.
Any vector v; € V; is of the form f(A)e;, where f is a polynomial. Therefore,
Bv; = g;(A)v;. Let us prove that g;(A)v; = g1(A)v;, i.e., we can take g; for the
required polynomial g.

Let us consider an operator X; : V.— V that sends vector f(A)e; to (fn;)(A)es,
where n; = plpi_l, and that sends every vector v; € V;, where j # 4, into itself.
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First, let us verify that the operator X; is well defined. Let f(A)e; =0, i.e., let f
be divisible by p;. Then n; f is divisible by n;p; = p1 and, therefore, (fn;)(A4)e; = 0.
It is easy to check that X; A = AX; and, therefore, X; B = BX;.

On the other hand, X;Be; = (n;g;)(A)e;r and BX;e; = (n;g91)(A)e1; hence,
n;(A)[gi(A) — g1(A)]er = 0. It follows that the polynomial n;(g; — g1) is divisible
by p1 = n;p;, i-e., g; — g1 is divisible by p; and, therefore, g;(A)v; = g1(A)v; for any
v, €V, O

Problems

39.1. Let A = diag(A1,...,A,), where the numbers \; are distinct, and let a
matrix X commute with A.

a) Prove that X is a diagonal matrix.

b) Let, besides, the numbers A; be nonzero and let X commute with N A, where
N =6;41,;]T. Prove that X = AI.

39.2. Prove that if X commutes with all matrices then X = AI.

39.3. Find all matrices commuting with E, where E is the matrix all elements
of which are equal to 1.

39.4. Let P, be the matrix corresponding to a permutation o. Prove that if
AP, = P,A for all o then A = A + uF, where E is the matrix all elements of
which are equal to 1.

39.5. Prove that for any complex matrix A there exists a matrix B such that
AB = BA and the characteristic polynomial of B coincides with the minimal
polynomial.

39.6. a) Let A and B be commuting nilpotent matrices. Prove that A + B is a
nilpotent matrix.

b) Let A and B be commuting diagonalizable matrices. Prove that A + B is
diagonalizable.

39.7. In a space of dimension n, there are given (distinct) commuting with each
other involutions A1,..., A,,. Prove that m < 2™.

39.8. Diagonalizable operators Aj,..., A, commute with each other. Prove
that all these operators can be polynomially expressed in terms of a diagonalizable
operator.

39.9. In the space of matrices of order 2m, indicate a subspace of dimension
m? + 1 consisting of matrices commuting with each other.

40. Commutators

40.1. Let A and B be square matrices of the same order. The matrix
[A,B] = AB - BA

is called the commutator of the matrices A and B. The equality [A, B] = 0 means
that A and B commute.

It is easy to verify that tr[A, B] = 0 for any A and B; cf. 11.1.

It is subject to an easy direct verification that the following Jacobi identity holds:

[4,[B, Cl] + [B,[C, A + [C, [A, B]] = 0.

An algebra (not necessarily matrix) is called a Lie algebraie algebra if the mul-
tiplication (usually called bracketracket and denoted by [-,-]) in this algebra is a
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skew-commutative, i.e., [A, B] = —[B, A], and satisfies Jacobi identity. The map
ada : M, , — M, , determined by the formula ad 4 (X) = [4, X] is a linear opera-
tor in the space of matrices. The map which to every matrix A assigns the operator
ad,4 is called the adjoint representation of M, ,. The adjoint representation has
important applications in the theory of Lie algebras.

The following properties of ad 4 are easy to verify:

1) adja,p) = ada adp —adp ada (this equality is equivalent to the Jacobi iden-
tity);

2) the operator D = ad 4 is a derivatiation of the matrix algebra, i.e.,

D(XY) = XD(Y) + (DX)Y;
3) D"(XY) = 3ok (1) (D" X)(D"~HY);
4) D(X™) = S0 x¥(DXx) X1k,
40.2. If A = [X,Y], then tr A = 0. It turns out that the converse is also true:

if tr A = 0 then there exist matrices X and Y such that A = [X,Y]. Moreover, we
can impose various restrictions on the matrices X and Y.

40.2.1. THEOREM ([Fregus, 1966]). Let tr A = 0; then there exist matrices X
and Y such that X is an Hermitian matriz, trY =0, and A = [X,Y].

PROOF. There exists a unitary matrix U such that all the diagonal elements of
UAU* =B = ||b”||7f are zeros (see 15.2). Consider a matrix D = diag(dy, ..., dy),
where dy, ..., d, are arbitrary distinct real numbers. Let Y; = Hylj ||711, where y;; = 0

bij .
and y;; = ) for i # j. Then

DYy =YD = ||(d; — dj)yy; ||} = [|bis ||} = vAU™.

Therefore,
A=U*DY/U -U*Y,DU = XY - YX,

where X = U*DU and Y = U*Y,U. Clearly, X is an Hermitian matrix and
trY =0. O

REMARK. If A is a real matrix, then the matrices X and Y can be selected to
be real ones.

40.2.2. THEOREM ([Gibson, 1975]). Let tr A = 0 and A1,..., A\n, [1,-- s ln
be given complex numbers such that N\; # X; for i # j. Then there exist complex

matrices X and Y with eigenvalues Ay,..., A\, and py,.. ., uy,, respectively, such
that A = [X,Y].

PROOF. There exists a matrix P such that all diagonal elements of the matrix
PAP! = B = Hbin:b are zero (see 15.1). Let D = diag(A1,...,\,) and ¢;; =
ij
(X = Aj)
eigenvalues of C' are py, ..., i, (see 48.2). Then

for i # j. The diagonal elements ¢; of C' can be selected so that the

DC — CD = ||(A — Aj)eij||; = B.
It remains toset X = P"'DP and Y = P"'CP. O

REMARK. This proof is valid over any algebraically closed field.
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40.3. THEOREM ([Smiley, 1961]). Suppose the matrices A and B are such that
for a certain integer s > 0 the identity ad’ X = 0 implies ad%, B = 0. Then B can
be expressed as a polynomial of A.

PROOF. The case s = 1 was considered in Section 39.3; therefore, in what follows
we will assume that s > 2. Observe that for s > 2 the identity ad% X = 0 does not
necessarily imply ad% A = 0.

We may assume that A = diag(J,. .., J:), where J; is a Jordan block. Let X =
diag(1,...,n). It is easy to verify that ad}y X = 0 (see Problem 40.1); therefore,
ad’ X = 0 and ad% B = 0. The matrix X is diagonalizable and, therefore, adx B =
0 (see Problem 40.6). Hence, B is a diagonal matrix (see Problem 39.1 a)). In
accordance with the block notation A = diag(Jy, ..., J;) let us express the matrices
B and X in the form B = diag(Bi,...,B;) and X = diag(Xy,..., X;). Let

Y =diag((J1 — M D)Xy, ..., (Jy = M) Xy),

where ); is the eigenvalue of the Jordan block J;. Then ad3Y = 0 (see Prob-
lem 40.1). Hence, ad% (X +Y) = 0 and, therefore, ad,y B = 0. The matrix X +Y
is diagonalizable, since its eigenvalues are equal to 1,...,n. Hence, adx+y B =0
and, therefore, ady B = 0.

The equations [X, B] = 0 and [Y, B] = 0 imply that B; = b;I (see Problem 39.1).
Let us prove that if the eigenvalues of J; and J;11 are equal, then b; = b;4;.
Consider the matrix

0 0 1
0 0 0
U=|. .
0 0 0

of order equal to the sum of the orders of J; and J;;1. In accordance with the block
expression A = diag(Jy,...,Jy) introduce the matrix Z = diag(0,U,0). It is easy
to verify that ZA = AZ = AZ, where X is the common eigenvalue of J; and J; 4.
Hence,

ada(X+Z7)=adsZ2=0, ad}(X+Y)=0,

and ad%_ ; B = 0. Since the eigenvalues of X + Z are equal to 1,...,n, it follows
that X + Z is diagonalizable and, therefore, adx iz B = 0. Since [X, B] = 0, then
[Z7 B] = [X + Z, B] = 07 i.e., bz = b7;+1.

We can assume that A = diag(Mi,..., M,), where M; is the union of Jordan
blocks with equal eigenvalues. Then B = diag(By, ..., By), where B; = b;I. The
identity [W, A] = 0 implies that W = diag(W7i,...,W,) (see 39.1) and, therefore,
[W, B] = 0. Thus, the case s > 2 reduces to the case s=1. 0O

40.4. Matrices A4, ..., A,, are said to be simultaneously triangularizable if there
exists a matrix P such that all matrices P~'A4; P are upper triangular.

THEOREM ([Drazin, Dungey, Greunberg, 1951]). Matrices Ay, ..., A, are si-
multaneously triangularizable if and only if the matriz p(A,..., An)[A;, Aj] is
nilpotent for every polynomial p(xy,...,Tm) in noncommuting indeterminates.

ProoF. If the matrices Ay, ..., A,, are simultaneously triangularizable then
the matrices P~1[A;, A;]P and P~ 'p(A;,..., A,,)P are upper triangular and all
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diagonal elements of the first matrix are zeros. Hence, the product of these matrices
is a nilpotent matrix, i.e., the matrix p(A1, ..., Am)[A:, 4;] is nilpotent.

Now, suppose that every matrix of the form p(A,..., An)[A;, A;] is nilpotent;
let us prove that then the matrices A4, ..., A,, are simultaneously triangularizable.

First, let us prove that for every nonzero vector u there exists a polynomial
h(z1,...,xy) such that h(Aq,..., Ap)u is a nonzero common eigenvector of the
matrices A1, ..., A,,.

Proof by induction on m. For m = 1 there exists a number k such that the vectors
u, Aju, ..., A’fflu are linearly independent and Afu = ak,lAlfflu + -+ agu.
oo —ag and go(x) = ﬂ, where xq is a root of

T — Tg)

the polynomial g. Then go(A;)u # 0 and (A; — xol)go(A1)u = g(A1)u = 0, i.e.,
go(A1)u is an eigenvector of A;.

Let g(z) = 2% —ap_12F~! —

Suppose that our statement holds for any m — 1 matrices Ay, ..., Ap_1.

For a given nonzero vector u a certain nonzero vector v1 = h(Aq, ..., Apm_1)u is
a common eigenvector of the matrices Ay, ..., A,,—1. The following two cases are
possible.

1) [A;, Am]f(Am)vr = 0 for all ¢ and any polynomial f. For f = 1 we get
AiA vy = A Ajors hence, A AR vy = AR Ajvy, e, Ajg(Apm)vr = g(Ay)Ajvy for
any g. For a matrix A,, there exists a polynomial g; such that g;(A4,,)v; is an
eigenvector of this matrix. Since A;g1(Am)v1 = g1(Asm)A;v1 and v1 is an eigenvec-
tor of Ay, ..., Am, then g1(An)vr = g1(Am)h(Ag, ..., Am—1)u is an eigenvector of
Ay, o A

2) [Ai, A ] f1(Am)v1 # O for a certain f; and certain i. The vector C f1 (A, )v1,
where Cy = [A;, A, is nonzero and, therefore, the matrices Ay, ..., A,,—1 have
a common eigenvector vy = g1 (A1, ..., Am—1)C1f1(Am)v1. We can apply the same
argument to the vector vo, etc. As a result we get a sequence vy, vs3,3, ..., where
vk is an eigenvector of the matrices Ay, ..., A,,—1 and where

Vg1 = gr(A1, .., A1) Cr fi (A vk,  Ci = [As, Ay]  for a certain s.

This sequence terminates with a vector v, if [4;, Ay f(Am)v, = 0 for all ¢ and all
polynomials f.

For A,, there exists a polynomial g,(z) such that g,(A,,)v, is an eigenvector of
A,,. Asin case 1), we see that this vector is an eigenvector of Ay, ..., A, and

Ip(Am)vp = gp(Am)g(Ar, ..., An)h(Ar, ..., A1)

It remains to show that the sequence vy, vs,... terminates. Suppose that this
is not so. Then there exist numbers Ay,..., A\,41 not all equal to zero for which
A1v1 + -+ + Apg10n4+1 = 0 and, therefore, there exists a number j such that A; # 0
and

—)\j’l)j = )\j+11}j+1 + -+ At 1Ung1-
Clearly,
Vjr1 = gi(Ar, -, A1) 0 fi(Am)vj, vjpe = uj1(Ar, . An)Ci fi (Am)vy,

etc. Hence,
*)\jvj = U(Al, [N aAm)ijj (Am)vj
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and, therefore,
[i(Am)u(Ar, ..., An)C; fi(Am)v; = =X, f5(Am)v;.

It follows that the nonzero vector f;(A,,)v; is an eigenvector of the operator
fi(An)u(Aq, ... , A,)C; coresponding to the nonzero eigenvalue —\;. But by
hypothesis this operator is nilpotent and, therefore, it has no nonzero eigenvalues.
Contradiction.

We turn directly to the proof of the theorem by induction on n. For n =1 the
statement is obvious. As we have already demonstrated the operators Ay, ..., A,
have a common eigenvector y corresponding to certain eigenvalues oy, ..., a,. We
can assume that |y| = 1, i.e., y*y = 1. There exists a unitary matrix ) whose first
column is y. Clearly,

Q"AQ=Q (ay...)= (%l A*;>

and the matrices A7, ..., A, of order n — 1 satisfy the condition of the theorem.
By inductive hypothesis there exists a unitary matrix P; of order n — 1 such that

L0 ) is the desired

the matrices Py A,P; are upper triangular. Then P = Q ( 0P
1

matrix. (It even turned out to be unitary.) O

40.5. THEOREM. Let A and B be operators in a vector space V' over C and let
rank[A, B] < 1. Then A and B are simultaneously triangularizable.

PRrROOF. It suffices to prove that the operators A and B have a common eigen-
vector v € V. Indeed, then the operators A and B induce operators A; and B; in
the space Vi = V/ Span(v) and rank[A;, B1] < 1. It follows that A; and B have a
common eigenvector in V7, etc. Besides, we can assume that Ker A # 0 (otherwise
we can replace A by A — \I).

The proof will be carried out by induction on n = dim V. If n = 1, then the
statement is obvious. Let C' = [4, B]. In the proof of the inductive step we will
consider two cases.

1) Ker A C Ker C. In this case B(Ker A) C Ker A, since if Az =0, then Cz =0
and ABx = BAx + Cx = 0. Therefore, we can consider the restriction of B to
Ker A # 0 and select in Ker A an eigenvector v of B; the vector v is then also an
eigenvector of A.

2) Ker A ¢ KerC, ie., Ax = 0 and Cz # 0 for a vector z. Since rankC = 1,
then Im C' = Span(y), where y = Cz. Besides,

y=Cx=ABxr — BAr = ABx € Im A.

It follows that B(Im A) C Im A. Indeed, BAz = ABz — Cz, where ABz € Im A
and Cz € ImC C Im A. We have Ker A # 0; hence, dimIm A < n. Let A’ and B’
be the restrictions of A and B to Im A. Then rank[A’, B’] < 1 and, therefore, by
the inductive hypothesis the operators A’ and B’ have a common eigenvector. [

Problems

40.1. Let J = N + Al be a Jordan block of order n, A = diag(1,2,...,n) and
B = NA. Prove that ad A = ad% B = 0.
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40.2. Prove that if C = [A,Bi] + --- + [A, B,] and C commutes with the

matrices Ay, ..., A, then C is nilpotent.
40.3. Prove that ad’y(B) = 31", (—=1)" () A/ BA" .

40.4. ([Kleinecke, 1957].) Prove that if ad%(B) = 0, then
ad’y (B™) = nl(ada(B))".

40.5. Prove that if [A,[A, B]] = 0 and m and n are natural numbers such that
m > n, then n[A™, B] = m[A™, BJA™~™.

40.6. Prove that if A is a diagonalizable matrix and ad’y X = 0, then ad4 X = 0.

40.7. a) Prove that if tr(AXY) = tr(AY X) for any X and Y, then A = \I.

b) Let f be a linear function on the space of matrices of order n. Prove that if
f(XY) = f(YX) for any matrices X and Y, then f(X)= Atr X.

41. Quaternions and Cayley numbers. Clifford algebras

41.1. Let A be an algebra with unit over R endowed with a conjugation opera-
tion a — @ satisfying @ = a and ab = ba.
Let us consider the space A ® A = {(a,d) | a,b € A} and define a multiplication
in it setting
(a,b)(u,v) = (au — T, bu + va).

The obtained algebra is called the double of A. This construction is of interest
because, as we will see, the algebra of complex numbers C is the double of R, the
algebra of quaternions H is the double of C, and the Cayley algebra O is the double
of H.

It is easy to verify that the element (1,0) is a twosided unit. Let e = (0,1). Then
(b,0)e = (0,b) and, therefore, by identifying an element x of A with the element
(z,0) of the double of A we have a representation of every element of the double in
the form

(a,b) = a + be.

In the double of A we can define a conjugation by the formula
(av b) = (67 71)),

i.e., by setting a + be =a — be. If z = a+ be and y = u + ve, then

g = au + (be)u + a(ve) + (be)(ve) =
=u-a—u(be) — (ve)a+ (ve)(be) =7 - 7.

+

It is easy to verify that ea = @e and a(be) = (ba)e. Therefore, the double of A is
noncommutative, and if the conjugation in A is nonidentical and A is noncommu-
tative, then the double is nonassociative. If A is both commutative and associative,
then its double is associative.

41.2. Since (0,1)(0,1) = (—1,0), then > = —1 and, therefore, the double of the
algebra R with the identity conjugation is C. Let us consider the double of C with
the standard conjugation. Any element of the double obtained can be expressed in
the form

q = a + be, where a = ag + a11,b = as + azi and ag,...,a3 € R.
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Setting j = e and k = ie we get the conventional expression of a quaternion
q = Qg +a1i+a2j +(13k.

The number aq is called the real part of the quaternion ¢ and the quaternion
a1t + aoj + ask is called its imaginary part. A quaternion is realif a1 = as = a3 =0
and purely imaginary if ag = 0.

The multiplication in the quaternion algebra H is given by the formulae

=72 =k=-1, ij=—ji=k, jk=—-kj=1i, ki=—ik=]j.

The quaternion algebra is the double of an associative and commutative algebra
and, therefore, is associative itself.

The quaternion g conjugate to ¢ = a+be is equal to @ —be = ag — a1t —azj —ask.
In 41.1 it was shown that g1gz2 = ¢z G1-

41.2.1. THEOREM. The inner product (q,r) of quaternions q and r is equal to
%(qr +7q); in particular |q]* = (¢,q) = qq.

PROOF. The function B(q,r) = %(qr+7q) is symmetric and bilinear. Therefore,
it suffices to verify that B(q,r) = ( ,7) for basis elements. It is easy to see that
B(1,7) = 0,B(i,i) = 1 and B(z j) = 0 and the remaining equalities are similarly
checked. O

COROLLARY. The element —L is a two-sided inverse for q.

lq|?
Indeed, gg = |¢> = qg. O
41.2.2. THEOREM. |qr|=|q| - |r|.

PRroOOF. Clearly,

lgr|*> = qrgr = @7 g = q|r[*g = |¢|*|r|*. O

COROLLARY. Ifq# 0 and r # 0, then qr # 0.
41.3. To any quaternion ¢ = o + i + yj + zk we can assign the matrix C(q) =

( S , where u = « + iz and v = y + iz. For these matrices we have C(qr) =

) ) (see Problem 41.4).
a purely imaginary quaternion g = xi + yj + zk we can assign the matrix

0 —z2 wy
R(q) = z 0 —x |. Since the product of imaginary quaternions can have
-y 0

a nonzero real part, the matrix R(qr) is not determined for all ¢ and r. However,
since, as is easy to verify,

R(qr —rq) = R(q)R(r) — R(r)R(q),

the vector product [q,r] = %(qr — rq) corresponds to the commutator of skew-
symmetric 3 x 3 matrices. A linear subspace in the space of matrices is called a
matriz Lie algebra if together with any two matrices A and B the commutator
[A, B] also belongs to it. It is easy to verify that the set of real skew-symmetric
matrices and the set of complex skew-Hermitian matrices are matrix Lie algebras
denoted by so(n,R) and su(n), respectively.
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41.3.1. THEOREM. The algebras so0(3,R) and su(2) are isomorphic.

PROOF. As is shown above these algebras are both isomorphic to the algebra of
purely imaginary quaternions with the bracket [¢,7] = (¢gr — rq)/2. O

41.3.2. THEOREM. The Lie algebras so(4,R) and s0(3,R) @ s0(3,R) are iso-
morphic.

PrOOF. The Lie algebra s0(3,R) can be identified with the Lie algebra of purely
imaginary quaternions. Let us assign to a quaternion ¢ € s0(3,R) the transforma-
tion P(q) : u — qu of the space R* = H. As is easy to verify,

0 —x -y —=z

. ) |l 0 -z y
P(zi+yj+ zk) = O € s50(4,R).

z -y 0

Similarly, the map Q(q) : u — ug belongs to so(4,R). It is easy to verify that the
maps ¢ — P(q) and ¢ — Q(q) are Lie algebra homomorphisms, i.e.,

P(gr —rq) = P(q)P(r) — P(r)P(q) and Q(qr — rq) = Q(9)Q(r) — Q(r)Q(q).
Therefore, the map

50(3,R) @ s0(3,R) — s0(4,R)
(¢,7) = P(q) + Q(r)

is a Lie algebra homomorphism. Since the dimensions of these algebras coincide, it
suffices to verify that this map is a monomorphism. The identity P(q) + Q(r) =0
means that qgr+a27 = 0 for all z. For x = 1 we get ¢ = —7 and, therefore, gr—xzq =0
for all z. Hence, ¢ is a real quaternion; on the other hand, by definition, ¢ is a
purely imaginary quaternion and, therefore, g =r =0. O

41.4. Let us consider the algebra of quaternions H as a space over R. In H® H,
we can introduce an algebra structure by setting

(21 ® 22) (11 ® y2) = T1Y1 @ T2Yo.

Let us identify R* with H. It is easy to check that the map w : H® H — M4(R)
given by the formula [w(z1 ® x2)]x = z12T2 is an algebra homomorphism, i.e.,
w(uv) = w(u)w(v).

THEOREM. The map w: H® H — My(R) is an algebra isomorphism.

PROOF. The dimensions of H ® H and My(R) are equal. Still, unlike the case
considered in 41.3, the calculation of the kernel of w is not as easy as the calculation
of the kernel of the map (q,r) — P(q) + Q(r) since the space H ® H contains not

only elements of the form z ® y. Instead we should better prove that the image of
w coincides with My(R). The matrices

() () () ()
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TABLE 1. Values of z ® y

[

1

(0 %)

(%5)

(5 1)

G 7

(% o)

form a basis in the space of matrices of order 2. The images of = ® y, where
x,y € {1,4,4,k}, under the map w are given in Table 1.

From this table it is clear that among the linear combinations of the pairs of
images of these elements we encounter all matrices with three zero blocks, the
fourth block being one of the matrices e, €, a or b. Among the linear combinations
of these matrices we encounter all matrices containing precisely one nonzero element
and this element is equal to 1. Such matrices obviously form a basis of My(R). O

41.5. The double of the quaternion algebra with the natural conjugation oper-
ation is the Cayley or octonion algebra. A basis of this algebra as a space over R is
formed by the elements

17 i7 ja k7 €, f:i€7 g=]€ and h = ke.

The multiplication table of these basis elements can be conveniently given with the
help of Figure 7.

FIGURE 7

The product of two elements belonging to one line or one circle is the third
element that belongs to the same line or circle and the sign is determined by the
orientation; for example ie = f, if = —e.

Let € = a+ be, where a and b are quaternions. The conjugation in O is given by
the formula (a,b) = (@, —b), i.e., a + be = @ — be. Clearly,

&€ = (a,b)(a,b) = (a,b)(a@, —b) = (a@ + bb, ba — ba) = aa + bb,

i.e., &€ is the sum of squares of coordinates of &. Therefore, [£| = /&€ = V/E€ is
the length of £.
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THEOREM. |én] =[] - |n].

PROOF. For quaternions a similar theorem is proved quite simply, cf. 41.2. In
our case the lack of associativity is a handicap. Let £ = a + be and 1 = u + ve,
where a, b, u, v are quaternions. Then

1&n? = (au —b)(u @ — bv) + (bu + va)(ub + @ v).

Let us express a quaternion v in the form v = A+ v1, where X is a real number and
V1 = —U1. Then
1En? = (au — \b + v1b) (T @ — Ab — by )+
+ (bu + Aa + via)(ub + Xa — avy).

Besides, _

(€[ In]* = (a@ + bb) (uw + A* — vioy).
Since u@w and bb are real numbers, aut @ = agut and bbv; = v1bb. Making use of
similar equalities we get

1En)? — €12 n|* = \(—bT @ — aub + bT @ + aub)
+ v1(bu @ + aub) — (aub + bu @)vy; = 0

because buia + aub is a real number. [
41.5.1. COROLLARY. If & # 0, then £/|€|? is a two-sided inverse for €.
41.5.2. COROLLARY. If£ #0 and n # 0 then £n # 0.

The quaternion algebra is noncommutative and, therefore, O is a nonassociative
algebra. Instead, the elements of O satisfy

r(yy) = (vy)y, z(vy) = (vz)y and (yz)y = y(zy)

(see Problem 41.8). Tt is possible to show that any subalgebra of O generated by
two elements is associative.

41.6. By analogy with the vector product in the space of purely imaginary
quaternions, we can define the vector product in the 7-dimensional space of purely
imaginary octanions. Let x and y be purely imaginary octanions. Their vector
product is the imaginary part of zy; it is denoted by = x y. Clearly,

1 1
TXy= §(xy—xy) = i(xy—yx)-

It is possible to verify that the inner product (x,y) of octanions x and y is equal to
1(ZTy + yz) and for purely imaginary octanions we get (z,y) = —3(zy + yz).

THEOREM. The vector product of purely imaginary octanions possesses the fol-
lowing properties:
a)zxy L, Xy Ly;
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b) |z x y|* = [z?[y|* — |(z, y)[*.

PROOF. a) We have to prove that
(1) w(zy — yx) + (vy — yx)r = 0.

Since z(yx) = (zy)x (see Problem 41.8 b)), we see that (1) is equivalent to z(zy) =
(yx)z. By Problem 41.8, a) we have z(zy) = (zx)y and (yx)x = y(zz). It remains
to notice that xx = —2T = —(z, x) is a real number.

b) We have to prove that

—(wy — ya)(wy — yz) = 4zPly* — (y + ya)(2y + y2),

B 2o Plyl? = (29)(y) + (y) ().

Let a = xy. Then @ = yx and

2|z ly|* = 2(a, a) = at + Ga = (zy)(yo) + (y2)(2y). O

41.7. The remaining part of this section will be devoted to the solution of the
following

PrOBLEM (Hurwitz-Radon). What is the mazimal number of orthogonal oper-
ators A1, ..., An in R™ satisfying the relations A? = —I and A;A; + AjA; =0
fori#j?

This problem might look quite artificial. There are, however, many important
problems in one way or another related to quaternions or octonions that reduce to
this problem. (Observe that the operators of multiplication by i, 7, .. ., h satisfy the
required relations.)

We will first formulate the answer and then tell which problems reduce to our
problem.

THEOREM (Hurwitz-Radon). Let us express an integer n in the form n = (2a +
1)2%, where b = c+4d and 0 < ¢ < 3. Let p(n) = 2°+8d; then the mazimal number
of required operators in R™ is equal to p(n) — 1.

41.7.1. The product of quadratic forms. Let a = z1 +ixy and b = y; +1iys.
Then the identity |a|?|b|? = |ab|? can be rewritten in the form
(23 + 23)(yi + 43) = 27 + 23,
where z; = T1y1 — T2y2 and 2o = 1Y + T2y1. Similar identities can be written for
quaternions and octonions.

THEOREM. Let m and n be fized natural numbers; let z1(x,y), ..., zn(x,y) be
real bilinear functions of x = (x1,...,%m) and y = (Y1,...,Yn). Then the identity

Pt an) @ity =
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holds if and only if m < p(n).

PRrROOF. Let z; = . b;j(2)y;, where b;j(z) are linear functions. Then

Z; _Zb yj +22blj yjyk

i<k

Therefore, Y, b7; = 234 - -+12, and > j<r bij(x)bik(z) = 0. Let B(z) = = ||bi;( )HT
Then BT (2)B(z) = (22 + --- + 22,)I. The matrix B(x) can be expressed in the
form B(x) = x1B1 + -+ + 1, By, Hence,

BT(2)B(z) = 23B{ By + -+ + 22, BE By + Y (Bl B; + B} B)w;x;;

i<j

therefore, B B; = I and B} B; + B} B; = 0. The operators B; are orthogonal and
B;'Bj = —B; !B, for i # j.

Let us consider the orthogonal operators Ay, ..., A,,_1, where A; = B, B;.
Then B,,'B; = —B;'B,, and, therefore, A; = —A;7' ie., A? = —I. Besides,
Bi_lBj = —Bj_lBi for i # j; hence,

AjAj = B,'BiB,'B; = —B;'B,,B,' B; = B; ' B; = —AjA;.

It is also easy to verify that if the orthogonal operators Ay, ..., A,,_1 are such that
A? = —J and A;A; + AjA; = 0 then the operators By = Ay, ..., Bpio1 = Am—1,
B,, = I possess the required properties. To complete the proof of Theorem 41.7.1
it remains to make use of Theorem 41.7. [

41.7.2. Normed algebras.

THEOREM. Let a real algebra A be endowed with the Euclidean space structure
so that |zy| = |z| - |y| for any x,y € A. Then the dimension of A is equal to 1, 2,
4 or8.

PROOF. Let eq,...,e, be an orthonormal basis of A. Then
(w1e1 + -+ xpen)(yrer + -+ Ynen) = z1€1 + - + Znen,

where 21,...,2, are bilinear functions in z and y. The equality |z|? = |z|?|y|?
implies that

@ b an) o) = A e
It remains to make use of Theorem 41.7.1 and notice that p(n) = n if and only if
n=1240r8 U

41.7.3. The vector product.

THEOREM ([Massey, 1983]). Let a bilinear operation f(v,w) = v X w € R™ be
defined in R™, where n > 3; let f be such that v X w is perpendicular to v and w
and |v x w|? = |[v|?|w|? — (v,w)?. Thenn =3 or 7.

The product x determined by the above operator f is called the vector product
of vectors.
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Proor. Consider the space R"t! = R @ R" and define a product in it by the
formula

(a,v)(b,w) = (ab— (v,w), aw+bv+ v X w),

where (v,w) is the inner product in R™. It is easy to verify that in the resulting
algebra of dimension n + 1 the identity |zy|?> = |z|?|y|? holds. It remains to make
use of Theorem 41.7.2. 0O

REMARK. In spaces of dimension 3 or 7 a bilinear operation with the above
properties does exist; cf. 41.6.

41.7.4. Vector fields on spheres. A vector field on a sphere S™ (say, unit
sphere S™ = {v € R"™! | |v| = 1}) is a map that to every point v € S™ assigns a
vector F'(v) in the tangent space to S™ at v. The tangent space to S™ at v consists
of vectors perpendicular to v; hence, F(v) L v. A vector field is said linear if
F(v) = Aw for a linear operator A. It is easy to verify that Av L v for all v if and
only if A is a skew-symmetric operator (see Theorem 21.1.2). Therefore, any linear
vector field on S2" vanishes at some point.

To exclude vector fields that vanish at a point we consider orthogonal operators
only; in this case |[Av| = 1. It is easy to verify that an orthogonal operator A is
skew-symmetric if and only if A2 = —I. Recall that an operator whose square is
equal to —1I is called a complex structure (see 10.4).

Vector fields Fy, ..., F,, are said to be linearly independent if the vectors F}(v),

.., F(v) are linearly independent at every point v. In particular, the vector
fields corresponding to orthogonal operators Ai, ..., A, such that A;v L Ajv
for all 4 # j are linearly independent. The equality (A;v, A;u) = 0 means that
(U, A;TA]’U) =0. Hence, AZTA] + (A;TAJ)T = 0, i.e., AZAJ + 14_]14Z =0.

Thus, to construct m linearly independent vector fields on S™ it suffices to in-
dicate orthogonal operators A, ..., A,, in (n + 1)-dimensional space satisfying
the relations A? = —I and A;A; + AjA; = 0 for i # j. Thus, we have proved the
following statement.

THEOREM. On S™~1, there exists p(n) — 1 linearly independent vector fields.

REMARK. It is far more difficult to prove that there do not exist p(n) linearly
independent continuous vector fields on S™~!; see [Adams, 1962].

41.7.5. Linear subspaces in the space of matrices.

THEOREM. In the space of real matrices of order n there is a subspace of dimen-
sion m < p(n) all nonzero matrices of which are invertible.

PrOOF. If the matrices Ay, ..., A,,—1 are such that A? = —J and 4;4; +
AjA; =0 for i # j then
OlxiAi + D) (=D i Ai + 2 D) = (x% 4+ :z:fn)f

Therefore, the matrix Y z;A; + x,,, I, where not all numbers x4, ..., x,, are zero,
is invertible. In particular, the matrices Ay, ..., A,,_1, I are linearly indepen-
dent. O
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41.8. Now, we turn to the proof of Theorem 41.7. Consider the algebra C,,

over R with generators ey, ..., e, and relations e = —1 and eiej + eje; = 0 for

i # j. To every set of orthogonal matrices Ai, ..., A, satisfying A? = —I and
AjA; + AjA; = 0 for i # j there corresponds a representation (see 42.1) of C,
that maps the elements e, ..., e,, to orthogonal matrices Ay, ..., A,,. In order to
study the structure of C,,, we introduce an auxiliary algebra C/, with generators
€1,...,&m and relations 522 =1 and €;6; + €je; =0 for i # j.

The algebras C,, and C/, are called Clifford algebraslifford algebra.

41.8.1. LEMMA. C; 2 C, Co 2 H, C] 2 R® R and C) = My(R).

PROOF. The isomorphisms are explicitely given as follows:

i, —C 1—1,e — 1
Co — H 1—1,e1 1,63 — 7J;
Ci — R®R 1— (1,1),61 = (L_l)a

y 10 1 0 0 1
C5 — Ms(R) 1»—>(0 1),51»—>(0 _1),52»—>(1 O). O

COROLLARY. C® H = M5(C).
Indeed, the complexifications of Cy and CY are isomorphic. O
41.8.2. LEMMA. Cyi2 = C) ® Cy and Cj 5 = Cp ® C.

PROOF. The first isomorphism is given by the formulas
fle;)=1®e; for i =1,2 and f(e;) =€;—2 @ ejes for i > 3.
The second isomorphism is given by the formulas
g(e;)=1®¢; for i=1,2 and g(g;) = ej_a ®e1e2 for i >3. O
41.8.3. LEMMA. Cyyq4 = Cp @ My(H) and Cj , = C}, @ My (H).
PrOOF. By Lemma 41.8.2 we have
Cha 2Ch 1y @Cy 2 Cr @ Chy® C.

Since
Ch @ Cy 2 H ® Ma(R) =2 My (H),

we have Cyyq4 = Cp @ My(H). Similarly, C; , = C), @ My(H). O
41.8.4. LEMMA. Ck+8 20 ® MlG(R)
Proor. By Lemma 41.8.3

Cris =2 Cria @ My(H) = Cr, @ My(H) @ Mo (H).
Since H @ H = My(R) (see 41.4), it follows that

Mo (H) @ My (H) = My(My(R)) = Mig(R). O
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TABLE 2
k 1 2 3 4
Cr C H HeH Mo (H)
A ReR  |My(R)| M(C) M (H)
k 5 6 7 8
Ck M4(C) Mg(R) | Mg(R) @ Mg(R) | M16(R)
C. | Ma(H) & My (H) | My (H) Ms(C) Mi6(R)

Lemmas 41.8.1-41.8.3 make it possible to calculate Cy for 1 < k < 8. For
example,

Cs = O @ Ma(H) = C® Ma(H) = M>(C @ H) = My(Ma(C)) = My(C);
Cs = Cy ® My(H) = My (H @ H) = Mg(R),

etc. The results of calculations are given in Table 2.

Lemma 41.8.4 makes it possible now to calculate Cy for any k. The algebras C1,
..., Cg have natural representations in the spaces C, H, H, H?, C*, R®, R® and R'6
whose dimensions over R are equal to 2, 4, 4, 8, 8, 8, 8 and 16. Besides, under the
passage from C} to Cjyg the dimension of the space of the natural representation
is multiplied by 16. The simplest case-by-case check indicates that for n = 2* the
largest m for which Cy, has the natural representation in R™ is equal to p(n) — 1.

Now, let us show that under these natural representations of Cj, in R™ the
elements ey, ..., e, turn into orthogonal matrices if we chose an appropriate basis
in R™. First, let us consider the algebra H = R*. Let us assign to an element a € H
the map = +— az of the space H into itself. If we select basis 1,1, j, k in the space
H = R*, then to elements 1,1, j, k the correspondence indicated assigns orthogonal
matrices. We may proceed similarly in case of the algebra C = R2.

We have shown how to select bases in C = R? and H = R* in order for the
elements e; and ¢ of the algebras Cy, Cy, C] and C were represented by orthogonal
matrices. Lemmas 41.8.2-4 show that the elements e; and ¢; of the algebras Cp,
and C/  are represented by matrices obtained consequtevely with the help of the
Kronecker product, and the initial matrices are orthogonal. It is clear that the
Kronecker product of two orthogonal matrices is an orthogonal matrix (cf. 27.4).

Let f : C,, — M,(R) be a representation of C,, under which the elements
€1,...,en turn into orthogonal matrices. Then f(1-¢e;) = f(1)f(e;) and the matrix
f(e;) is invertible. Hence, f(1) = f(1-e;)f(e;)~! = I is the unit matrix. The
algebra C, is either of the form M,(F) or of the form M,(F) & M,(F), where
F =R,C or H. Therefore, if f is a representation of C,, such that f(1) = I, then
f is completely reducible and its irreducible components are isomorphic to F? (see
42.1); so its dimension is divisible by p. Therefore, for any n the largest m for
which C,, has a representation in R™ such that f(1) = I is equal to p(n) — 1.

Problems

41.1. Prove that the real part of the product of quaternions x1¢ 4+ y1j + 21k
and i + y2j + 22k is equal to the inner product of the vectors (z1,y1,21) and
(22, Y2, 22) taken with the minus sign, and that the imaginary part is equal to their
vector product.
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41.2. a) Prove that a quaternion ¢ is purely imaginary if and only if ¢? < 0.

b) Prove that a quaternion g is real if and only if ¢> > 0.

41.3. Find all solutions of the equation ¢ = —1 in quaternions.

41.4. Prove that a quaternion that commutes with all purely imaginary quater-
nions is real.

41.5. A matrix A with quaternion elements can be represented in the form
A =7y + Zyj, where Z; and Z, are complex matrices. Assign to a matrix A the
matrix A, = ( 2 L > Prove that (AB). = A.B..
—Zy Z

41.6. Consider the map in the space R* = H which sends a quaternion z to gz,
where ¢ is a fixed quaternion.

a) Prove that this map sends orthogonal vectors to orthogonal vectors.

b) Prove that the determinant of this map is equal to |g|*.

41.7. Given a tetrahedron ABC'D prove with the help of quaternions that

AB-CD+ BC-AD > AC - BD.

41.8. Let x and y be octonions. Prove that a) z(yy) = (zy)y and z(xy) = (zz)y;
b) (yx)y = y(zy).

42. Representations of matrix algebras

42.1. Let A be an associative algebra and Mat(V') the associative algebra of
linear transformations of a vector space V. A homomorphism f : A — Mat(V)
of associative algebras is called a representation of A. Given a homomorphism f
we define the action of A in V by the formula av = f(a)v. We have (ab)v = a(bv).
Thus, the space V is an A-module.

A subspace W C V is an invariant subspace of the representation f if AW C
W, i.e., if W is a submodule of the A-module V. A representation is said to be
irreducible if any nonzero invariant subspace of it coincides with the whole space
V. A representation f : A — Mat(V) is called completely reducible if the space
V is the direct sum of invariant subspaces such that the restriction of f to each of
them is irreducible.

42.1.1. THEOREM. Let A = Mat(V™) and f : A — Mat(W™) a representation
such that f(I,) = I,. Then W™ = W1 @ --- ® Wy, where the W; are invariant
subspaces isomorphic to V™.

PrOOF. Let ey,...,e, be a basis of W. Since f(I,)e; = e;, it follows that
W C Span(Aey, ..., Aey). It is possible to represent the space of A in the form of
the direct sum of subspaces F; consisting of matrices whose columns are all zero,
except the ith one. Clearly, AF; = F; and if a is a nonzero element of F; then
Aa = F;. The space W is the sum of spaces Fje;. These spaces are invariant, since
AF; = F;. If x = aej;, where a € F; and = # 0, then Az = Aae; = Fje;.

Therefore, any two spaces of the form Fje; either do not have common nonzero
elements or coincide. It is possible to represent W in the form of the direct sum of
certain nonzero subspaces Fie;. For this we have to add at each stage subspaces
not contained in the direct sum of the previously chosen subspaces. It remains to
demonstrate that every nonzero space Fje; is isomorphic to V. Consider the map
h : F;, — F;e; for which h(a) = ae;. Clearly, AKerh C Kerh. Suppose that
Kerh # 0. In Kerh, select a nonzero element a. Then Aa = F;. On the other
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hand, Aa C Ker h. Therefore, Ker h = F}, i.e., h is the zero map. Hence, either h
is an isomorphism or the zero map.

This proof remains valid for the algebra of matrices over H, i.e., when V and
W are spaces over H. Note that if A = Mat(V"™), where V™ is a space over H and
f A — Mat(W™) a representation such that f(I,) = I,,, then W™ necessarily
has the structure of a vector space over H. Indeed, the multiplication of elements
of W™ by i, j, k is determined by operators f(il,), f(jI.), f(kI,). O

In section §41 we have made use of not only Theorem 42.1.1 but also of the
following statement.

42.1.2. THEOREM. Let A = Mat(V"™) & Mat(V™) and f : A — Mat(W™) a
representation such that f(I,) = I,,. Then W™ =W, & --- ® Wy, where the W;
are invariant subspaces isomorphic to V™.

PROOF. Let F; be the set of matrices defines in the proof of Theorem 42.1.1.
The space A can be represented as the direct sum of its subspaces F! = F; &0 and
F? = 0@ F;. Similarly to the proof of Theorem 42.1.1 we see that the space W can
be represented as the direct sum of certain nonzero subspaces Fikej each of which
is invariant and isomorphic to V". [

43. The resultant

43.1. Consider polynomials f(z) = Y7 ja;2" ¢ and g(x) = Y vy bix™ ",
where ag # 0 and by # 0. Over an algebraically closed field, f and g have a
common divisor if and only if they have a common root. If the field is not alge-
braically closed then the common divisor can happen to be a polynomial without
roots.

The presence of a common divisor for f and g is equivalent to the fact that there
exist polynomials p and ¢ such that fg = gp, where degp < n—1and degqg < m—1.
Let ¢ = ugz™ ' + -+ 4+ Um—1 and p = voz™ ' + - -+ + v,—1. The equality fq = gp
can be expressed in the form of a system of equations

apug = bovg
aiuo + apur = b1vg + bovy

axug + a1uy + aguz = bavg + brvy + bovg

The polynomials f and g have a common root if and only if this system of
equations has a nonzero solution (ug,u1,...,vg,v1,...). If, for example, m = 3
and n = 2, then the determinant of this system is of the form

aon 0 0 —bo 0 apg a1 a2 0 0
a1 Qo 0 —bl —bo 0 apg a1 az 0
as a1 Qo —b2 —b1 =40 0 apg a1 az| = :|:|S(f, g)|
0 a2 ap 7b3 7b2 bo bl b2 b3 0
0 0 a9 0 —bg 0 bo b1 b2 b3

The matrix S(f, g) is called Sylvester’s matriz of polynomials f and g. The deter-
minant of S(f,g) is called the resultant of f and g and is denoted by R(f,g). It
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is clear that R(f,g) is a homogeneous polynomial of degree m with respect to the
variables a; and of degree n with respect to the variables b;. The polynomials f
and g have a common divisor if and only if the determinant of the above system is
zero, i.e., if R(f,g) =0.

The resultant has a number of applications. For example, given polynomial
relations P(z,z) = 0 and Q(y, z) = 0 we can use the resultant in order to obtain
a polynomial relation R(x,y) = 0. Indeed, consider given polynomials P(z,z) and
Q(y, z) as polynomials in z considering x and y as constant parameters. Then the
resultant R(z,y) of these polynomials gives the required relation R(zx,y) = 0.

The resultant also allows one to reduce the problem of solution of a system of
algebraic equations to the search of roots of polynomials. In fact, let P(zg,y0) =0
and Q(zg,y0) = 0. Consider P(x,y) and Q(z,y) as polynomials in y. At z =
they have a common root yo. Therefore, their resultant R(z) vanishes at z = zg.

43.2. THEOREM. Let x; be the roots of a polynomial f and let y; be the roots
of a polynomial g. Then

R(f,9) = ag'by [ [ (=i — v5) = ag" [ [ 9(@s) = 06 ] £(u))-

PROOF. Since f = ag(x — x1)...(x — x,), then ay = *agog(z1,...,x,), where
o is an elementary symmetric function. Similarly, by = £book(y1,...,Ym). The
resultant is a homogeneous polynomial of degree m with respect to variables a; and
of degree n with respect to the b;; hence,

R(fa g) = a()nbgp(xla ey Ty Yty ,ym)v

where P is a symmetric polynomial in the totality of variables zi,...,x, and
Y1,---,Ym Which vanishes for x; = y;. The formula

af = (z — )i + oyl

shows that
P(xlvu'aym) = (Iz *yj)Q(xl,---,ym) +R(I17"'a£\ia"'7ym)'

Substituting x; = y; in this equation we see that R(x1,...,Z;,. .., Yn) is identically
equal to zero, i.e., R is the zero polynomial. Similar arguments demonstrate that
P is divisible by S = af'bf [ [(z: — ;).

Since g(x) = bo [T}~ (x—y;), it follows that [[, g(=;) = bg [1; ;(2:—y;); hence,

n n
S =af Hg(mz) =al H(boxl + o1z 4 4 by
i=1 i=1
is a homogeneous polynomial of degree n with respect to by, ..., bm,.
For the variables ay, . . ., a, our considerations are similar. It is also clear that the
symmetric polynomial af’ [[(boz!" +b1x;”_1+~ - ++byy,) is a polynomial in ag, . . ., ap,

bo,...,bm. Hence, R(ag,...,bn) = AS(ao,...,bn), where X is a number. On the
other hand, the coefficient of [[z!" in the polynomials af'b} P(z1,...,ym) and
S(x1,...,Ym) is equal to af'by; hence, A\=1. O
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43.3. Bezout’s matrix. The size of Sylvester’s matrix is too large and, there-
fore, to compute the resultant with its help is inconvenient. There are many various
ways to diminish the order of the matrix used to compute the resultant. For ex-
ample, we can replace the polynomial g by the remainder of its division by f (see
Problem 43.1).

There are other ways to diminish the order of the matrix used for the computa-
tions.

Suppose that m = n.
Ay
By

Ao

B, ), where the A;, B; are

Let us express Sylvester’s matrix in the form (

square matrices. It is easy to verify that

Ch €1 Cn—1 Cn
O Co Cpn—2 Cn—1 k
ABi=| ¢ = B1A;, where ¢ = Zaibk_i;

0 0 Co C1 =0

0 0 0 Co

hence,
I 0 Al A2 o Al A2
-B, A By By) \ 0 A By—BiA;

and since |A;| = af}, then R(f,g) = |A1Bs — B1 As|.

Let cpq = apby — agbp. It is easy to see that A; By — B1 Ay = Hwij‘ 711,
wi; = Y Cpe and the summation runs over the pairs (p, ¢) such that p+q = n+j—1,
p<n—1andq > j. Since cag+Cat1,8-1+ - +cgq = 0 for a < 3, we can confine
ourselves to the pairs for which p < min(n — 1,5 — 1). For example, for n = 4 we
get the matrix

where

Co4 Ci4 C24 C34
€03 Coat+cC13 Cig+Ca3 C24
Co2 Co3+cCi2 Cosa+C13 Cu4q
co1 Co2 Co3 Co4

Let J = antidiag(1, ...

,1), i.e., J = ||a¢j||711, where Qi = {

1 fori+j=n+1
0 otherwise ’

Then the matrix Z = |w;;|7J is symmetric. It is called the Bezoutian or Bezout’s

matriz of f and g.

43.4. Barnett’s matrix. Let us describe one more way to diminish the order of
the matrix to compute the resultant ([Barnett, 1971]). For simplicity, let us assume
that ag = 1, i.e., f(z) = 2" +a12" 1+ -+a, and g(z) = bgz™ +byx™ 1+ +byp,.
To f and g assign Barnett’s matrix R = g(A), where

1
0

0
1
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43.4.1. THEOREM. det R = R(f,g).

PROOF. Let f31,...,Bm be the roots of g. Then g(z) = by(z — B1) ... (x — Bm).
Hence, g(A) = bo(A—BiI)...(A—BnT). Since det(A—AI) = [[,(a; — A) (see 1.5),
then det g(4) = b [[(as — B:) = R(f,g). O

43.4.2. THEOREM. For m < n it is possible to calculate the matriz R in the
following recurrent way. Let ry,...,r, be the rows of R. Then

{(bm,bm_l,...,bl,bo,o,...,0) form <n
T ==
! (dny.-.ydy) form =n,

where d; = b; — bpa;. Besides, r; =1;_1A fori=2,...,n

PrOOF. Let e; = (0,...,1,...,0), where 1 occupies the ith slot. For k < n the
first row of AF is equal to ex+1. Therefore, the structure of r; for m < n is obvious.
For m = n we have to make use of the identity A" + >  a; A" = 0.

Since e; = e;_1A for i = 2,...,n, it follows that

T, = eiR = ei_lAR = ei_lRA = ’I“i_lA. O

43.4.3. THEOREM. The degree of the greatest common divisor of f and g is
equal to n — rank R.

PROOF. Let (1,...,08s be the roots of g with multiplicities ki, ..., ks, respec-
tively. Then g(z) = by [[(z — 3:)* and R = g(A) = by [[;(A — B:I)*. Under
the passage to the basis in which the matrix A is of the Jordan normal form J,
the matrix R is replaced by b [[(J — 8;)*:. The characteristic polynomial of A
coincides with the minimal polynomial and, therefore, if 3; is a root of multiplicity
l; of f, then the Jordan block J; of J corresponding to the eigenvalue §; is of order
;. Tt is also clear that

rank(J; — B; )% = 1; — min(k;, ;).

Now, considering the Jordan blocks of J separately, we easily see that n —
rank R = ) . min(k;,[;) and the latter sum is equal to the degree of the great-
est common divisor of f and g. O

43.5. Discriminant. Let z1,...,xz, be the roots of f(z) = apz™+---+a, and
let ag # 0. The number D(f) = aO” 2 [1i<;(zi—2;) is called the discriminant of f.
It is also clear that D(f) = 0 if and only if f has multiple roots, i.e., R(f, f') = 0.

43.5.1. THEOREM. R(f,f') = xaoD(f).

PROOF. By Theorem 43.2 R(f, f') = ay ' [, f'(x:).
It is easy to verify that if z; is a root of f, then f'(zi) = ao[[;.i(z; — =)
Therefore,

R( / 271 IH _x] iagn 1H _m_]

J#i i<j
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COROLLARY. The discriminant is a polynomial in the coefficients of f.

43.5.2. THEOREM. Any matriz is the limit of matrices with simple (i.e., nonmultiple)|
etgenvalues.

PROOF. Let f(x) be the characteristic polynomial of a matrix A. The polyno-
mial f has multiple roots if and only if D(f) = 0. Therefore, we get an algebraic
equation for elements of A. The restriction of the equation D(f) = 0 to the line
{AA + (1 — X\)B}, where B is a matrix with simple eigenvalues, has finitely many
roots. Therefore, A is the limit of matrices with simple eigenvalues. [

Problems

43.1. Let r(x) be the remainder of the division of g(x) by f(x) and let degr(x) =
k. Prove that R(f,g) = aJ" " *R(f,7).

43.2. Let f(x) = apz™ + -+ + an, g(xz) = box™ + -+ + by, and let ri(x) =
aror"t 4+ a2 + -+ + ag,—1 be the remainder of the division of z¥g(z) by
f(x). Prove that

p—-1,0 -+ OGn-1,n-1

R(f,9) = ag'
aoo cee G0n—1

43.3. The characteristic polynomials of matrices A and B of size n xn and m xm
are equal to f and g, respectively. Prove that the resultant of the polynomials f
and g is equal to the determinant of the operator X — AX — X B in the space of
matrices of size n x m.

43.4. Let ay,...,a, be the roots of a polynomial f(z) = Y./ ,a;z""" and
sp =al +---+af. Prove that D(f) = a2"?det S, where

S0 S1 N Sn—1
S1 S92 “e- Sn
S =
Sp—1 Sn ... S2p—2

44. The generalized inverse matrix. Matrix equations

44.1. A matrix X is called a generalized inverse for a (not necessarily square)
matrix A, if XAX = X, AXA = A and the matrices AX and X A are Hermitian
ones. It is easy to verify that for an invertible A its generalized inverse matrix
coincides with the inverse matrix.

44.1.1. THEOREM. A matriz X is a generalized inverse for A if and only if the
matrices P = AX and Q = XA are Hermitian projections onto Im A and Im A*,
respectively.

PROOF. First, suppose that P and @ are Hermitian projections to Im A and
Im A*, respectively. If v is an arbitrary vector, then Av € Im A and, therefore,
PAv = Av, i.e., AXAv = Av. Besides, Xv € Im XA = Im A*; hence, QXv = Xwv,
ie., XAXv = Xv.

Now, suppose that X is a generalized inverse for A. Then P? = (AXA)X =
AX = P and Q% = (XAX)A = XA = Q, where P and Q are Hermitian matrices.
It remains to show that In P = Im A and Im@ = Im A*. Since P = AX and
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Q=Q" = A*X* then ImP C ImA and Im@Q C Im A*. On the other hand,
A=AXA = PA and A* = A*X*A* = Q*A* = QA*; hence, ImA C Im P and
ImA* CIm@. O

44.1.2. THEOREM (Moore-Penrose). For any matriz A there exists a unique
generalized inverse matriz X .

PROOF. If rank A = r then A can be represented in the form of the product of
matrices C and D of size m x r and r X n, respectively, where Im A = Im C' and
Im A* = Im D*. Tt is also clear that C*C' and DD* are invertible. Set

X = D*(DD*)"(Cc*C)~tC*,

Then AX = C(C*C)~1C* and XA = D*(DD*)~'D, i.e., the matrices AX and
X A are Hermitian projections onto Im C' = Im A and Im D* = Im A*, respectively,
(see 25.3) and, therefore, X is a generalized inverse for A.

Now, suppose that X; and X, are generalized inverses for A. Then AX; and
AXj5 are Hermitian projections onto Im A, implying AX; = AXs. Similarly, X; 4 =
X5 A. Therefore,

X; = X1 (AX)) = (X14) Xy = XoAX, = X,. O

The generalized inverse of A will be denoted® by A 1",

44.2. The generalized inverse matrix A“~1!" is applied to solve systems of linear
equations, both inconsistent and consistent. The most interesting are its applica-
tions solving inconsistent systems.

44.2.1. THEOREM. Consider a system of linear equations Ax = b. The value
| Az — b| is minimal for x such that Ax = AA™~Y"b and among all such x the least
value of || is attained at the vector xog = A" ~''b.

PROOF. The operator P = AA“~"" is a projection and therefore, I — P is also
a projection and Im(I — P) = Ker P(see Theorem 25.1.2). Since P is an Hermitian
operator, Ker P = (Im P)*. Hence,

Im(I — P) =Ker P = (Im P)* = (Im A)™,

i.e., for any vectors x and y the vectors Az and (I — AA"~'")y are perpendicular
and
|A5L‘+ (I— AA(L_ln)le _ |Ax‘2 + |y _AA44_177y|2.

Similarly,
A2+ (T - A"V Ay = |4z 4 ly — AV Ay

Since _
Ar —b=A(x — A7Vb) — (I — AA1)p,

5There is no standard notation for the generalized inverse of a matrix A. Many authors took
after R. Penrose who denoted it by A1 which is confusing: might be mistaken for the Hermitian
conjugate. In the original manuscript of this book Penrose’s notation was used. I suggest a more
dynamic and noncontroversal notation approved by the author. Translator.
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it follows that
Az = bf* = | Az — AA™ V0P + b~ AAT VD 2 b — AAT V0P
and equality is attained if and only if Az = AA™~1"b. If Az = AA"~1"b, then
o2 = |4 b (1= ATV A = [ATVB 4 o — ATV Axf? > AP
and equality is attained if and only if

r=A"VAr=A"VAAT b= A"y, O

REMARK. The equality Az = AA™~1"b is equivalent to the equality A* Az =
A*z. Indeed, if Az = AA™ Vb then A*b = A*(A""V)*A*b = A*AA Vb= A*Ax
and if A*Ax = A*b then

Az = AAV Az = (A7V) A" Az = (A7) A% = AL

With the help of the generalized inverse matrix we can write a criterion for
consistency of a system of linear equations and find all its solutions.

44.2.2. THEOREM. The matriz equation
(1) AXB=C

has a solution if and only if AA"~V' CB"~Y" B = C. The solutions of (1) are of the
form

X=A"YCB YV +Y—-A"YAYBB"Y, whereY is an arbitrary matriz.

Proor. If AXB = C, then
C=AXB=AA"V(AXB)B VB =44""CBV B

Conversely, if C = AA" VOB~V B, then Xg = A"~V CB~!" is a particular
solution of the equation
AXB=_C.

It remains to demonstrate that the general solution of the equation AX B = 0 is of
the form X =Y — A"V AY BB 1", Clearly, AY — A"V AYBB 1" )B=0. On
the other hand, if AXB=0then X =Y — A" "YVAYBB~' where Y = X. O

REMARK. The notion of generalized inverse matrix appeared independently in
the papers of [Moore, 1935] and [Penrose, 1955]. The equivalence of Moore’s and
Penrose’s definitions was demonstrated in the paper [Rado, 1956].
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44.3. THEOREM ([Roth, 1952]). Let A € My m, B € M, ,, and C € M,, ,,.

a) The equation AX — XB = C has a solution X € M,,,, if and only if the
A 0 A C .

0 B and 0 B) are similar.

b) The equation AX —YB = C has a solution X,Y € M, if and only if

matrices (A O> and (A C) are of the same rank.

matrices

0 B 0 B

P Q
R S
P e My, and S € M, ,,. First, suppose that the matrices from the theorem are
similar. For ¢ = 0,1 consider the maps ; : My, , — My, ,, given by the formulas

(A 0\, (A 0\ _ (AP-PA AQ-QB
SDO(K)<0 B)K K<0 B)(BR—RA BS—SB)’

(A C A 0\ _(AP+CR—-PA AQ+CS—-QB
Wl(K)(o B)KK<0 B)< BR — RA BS - SB >

The equations FK = KF and GFG~ 'K’ = K'F have isomorphic spaces of solu-
tions; this isomorphism is given by the formula K = G~!'K’. Hence, dim Ker ¢ =
dimKer ;. If K € Kery;, then BR = RA and BS = SB. Therefore, we can
consider the space

Proor (Following [Flanders, Wimmer, 1977]). a) Let K = , where

V ={(R,S) € Mymsn | BR = RA, BS = SB}

and determine the projection u; : Ker p; — V', where p;(X) = (R, S). It is easy
to verify that

Ker p; :{(l(:)) %) | AP = PA, AQ = QB}.

For pg this is obvious and for u, it follows from the fact that CR =0 and C'S =0
since R =0 and S = 0.

Let us prove that Im o = Im p;. If (R, S) € V, then RS

Im py =V and, therefore, Im p11 C Im pg. On the other hand,

0 0> € Ker . Hence,

dim Im pp + dim Ker pg = dim Ker ¢y = dim Ker ¢ = dim Im g + dim Ker p;.

The matrix (é _OI> belongs to Ker ¢ and, therefore, (0, —I) € Im pg = Im p;.
Hence, there is a matrix of the form g 7 in Ker 1. Thus, AQ+CS—QB =0,

where S = —I. Therefore, X = @ is a solution of the equation AX — XB = C.
Conversely, if X is a solution of this equation, then

(G D -( )¢ NE )
G366 -005)
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b) First, suppose that the indicated matrices are of the same rank. For i = 0,1
consider the map ¥; : My, 4y 2(m4n) — Mmtn,min given by formulas

B A 0 A 0 _ AUy — WA AU, — WisB
Yo (U, W) = (0 B) U_W(O B) - (BU21 — W2 A BUx _W2QB> ’

= (3 G)ow(d b)

(AU + CUy — Wi A AUz + CUzp — Wi2B
N BUy — Wa A BUsyy — W2 B ’

where

U11 U12 1117 ”11 ”12
U: d = .
<U21 Uso ) an < Wa1 sz)

The spaces of solutions of equations FU = WF and GFG~1U’ = W'F are isomor-
phic and this isomorphism is given by the formulas U = G~'U’ and W = G~1W'.
Hence, dim Ker ¢y = dim Ker t)1.

Consider the space

Z = {(Ua1, UaWay, Waa) | BUsy = Wa1 A, BUsy = Wap B}
and define a map v; : Ker o, — Z, where v;(U, W) = (Usy, Usa, Wo1, Waz). Then
Imvy C Imyy = Z and Kervy = Kervy. Therefore, Imvy; = Imyg. The matrix
(U, W), whereU =W = é _OI>
an element for which Uss = —I. For this element the equality AU154+CUsy = W12 B

is equivalent to the equality AU1s — Wi3B = C.
Conversely, if a solution X, Y of the given equation exists, then

(0 )G )6 7)) (0 5) o

Problems

, belongs to Ker v. Hence, Ker 11 also contains

44.1. Prove that if C = AX = Y B, then there exists a matrix Z such that
C=AZB.

44.2. Prove that any solution of a system of matrix equations AX =0, BX =0
is of the form X = (I — A"V A)Y(I — BB"~!"), where Y is an arbitrary matrix.

44.3. Prove that the system of equations AX = C, X B = D has a solution if and
only if each of the equations AX = C and XB = D has a solution and AD = CB.

45. Hankel matrices and rational functions

Consider a proper rational function

a1z M+ ta,

R =
(2) boz™ + byz™m 1+ o+ by,

where by # 0. It is possible to expand this function in a series

R(z) =s02z ' + 5127 2+ 50273 + ...,
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where
boso = az,
bos1 + bi1so = az,
(1) bos2 + b1s1 + basp = as,

bosm—1+ -+ bm—150 = am

Besides, bysq + -+ - + by Sq—m = 0 for ¢ > m. Thus, for all ¢ > m we have

(2) Sqg=0a18q—1 4+ + WmSg—m,
where o; = —b;/bg. Consider the infinite matrix
S0 S1 S2
S1 S2 83
S =

S2  S3 S84

A matrix of such a form is called a Hankel matriz. Relation (2) means that the
(m + 1)th row of S is a linear combination of the first m rows (with coefficients
Q1,..., Q). If we delete the first element of each of these rows, we see that the
(m+2)th row of S is a linear combination of the m rows preceding it and therefore,
the linear combination of the first m rows. Continuing these arguments, we deduce
that any row of the matrix S is expressed in terms of its first m rows, i.e., rank §' <
m.
Thus, if the series

(3) R(z) =s02 ' #5127 2 + 50273 + ...

corresponds to a rational function R(z) then the Hankel matrix S constructed from
80,81, ... is of finite rank.

Now, suppose that the Hankel matrix S is of finite rank m. Let us construct from
S a series (3). Let us prove that this series corresponds to a rational function. The
first m + 1 rows of S are linearly dependent and, therefore, there exists a number
h < m such that the m + 1-st row can be expressed linearly in terms of the first m
rows. As has been demonstrated, in this case all rows of S are expressed in terms
of the first h rows. Hence, h = m. Thus, the numbers s; are connected by relation
(2) for all ¢ > m. The coefficients «; in this relation enable us to determine the

numbers by = 1, by = aq, ..., by, = @y, Next, with the help of relation (1) we can
determine the numbers ay,...,a,. For the numbers a; and b; determined in this
way we have

S S a2 M+ 4a

e s - -,

z z boz™ 4+ -+ 4+ by,

i.e., R(z) is a rational function.

REMARK. Matrices of finite size of the form
S0 S1 N Sn
S1 S9 oo Spn4l

Sn Sn+1 .- Son
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are also sometimes referred to as Hankel matrices. Let J = antidiag(1,...,1), i.e.,
n 1 fori+j=n, . .

J = Hain , where a;; = : If H is a Hankel matrix, then the
0 0 otherwise.

matrix JH is called a Toeplitz matrix; it is of the form

ap al ag e Ay,
a_q ap ay s o |
a_» a_q ap cee Qp—2
A_p AG_py1 G_py2 ... aon

46. Functions of matrices. Differentiation of matrices

46.1. By analogy with the exponent of a number, we can define the expontent
of a matriz A to be the sum of the series

K
k=0
Let us prove that this series converges. If A and B are square matrices of order
n and |a;;| < a, |b;j| < b, then the absolute value of each element of AB does

not exceed nab. Hence, the absolute Value of the elements of A* does not exceed
k=1 k _
n*"la

= (na)*/n and, smce LS 0 k‘ = Lena, the series Y, Ak—f converges
to a matrix denoted by e? = exp A; this matrix is called the exponent of A.

If Ay = P~1AP, then A¥ = P=1A*P. Therefore, exp(P~'AP) = P~ (exp A)P
Hence, the computation of the exponent of an arbitrary matrix reduces to the
computation of the exponent of its Jordan blocks.

Let J = Al 4+ N be a Jordan block of order n. Then

(A + N)* zk: ( )Ak_mNm.

m=0
Hence,
© Lk 7k 00 k(k k—m ntm
thJ t A N
exp(tJ) = s —(m) i
k=0 ’ k,m=0 :
o] 0o 00 n—1
)\tk mtmNm $m N xrm tm Nt e
=2 T 2 N = ) e
m=0 k:m m=0 m=0

since N™ = 0 for m > n.
By reducing a matrix A to the Jordan normal form we get the following state-
ment.

46.1.1. THEOREM. If the minimal polynomial of A is equal to
(l‘ — )\1)”1 PN (.13 - )\k)nk,

then the elements of et are of the form py(t)eMt + -+ + pi(t)e t, where p;(t) is
a polynomial of degree not greater than n; — 1.
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46.1.2. THEOREM. det(e?) =4,

PrROOF. We may assume that A is an upper triangular matrix with elements

Al,..., A, on the diagonal. Then A* is an upper triangular matrix with elements
)\}fl, ..., AFn of the diagonal. Hence, e is an upper triangular matrix with elements
exp A1, ..., exp A, on the diagonal. [

46.2. Consider a family of matrices X (t) = ||m” ||;l whose elements are dif-

ferentiable functions of . Let X (t) = d)ét(t) be the element-wise derivative of the
matrix-valued function X ().

46.2.1. THEOREM. (XY) = XY + XV.

Proor. If Z = XY, then Zij = Zkl'ikykj hence éij = Z ki'ikykj + Zkzzki/k]
therefore, Z = XY + XY. O

46.2.2. THEOREM. a) (X 1)" = —X1XX~1
b) tr(X1X) = —tr((X 1) X).

PROOF. a) On the one hand, (X' X)* = [ = 0. On the other hand, (X ' X)* =
(X)X 4+ XX, Therefore, (X~1)'X = —X!'X and (X~1)" = —X"1XX !
b) Since tr(X 1 X) = n, it follows that

0=[tr(X'X)] = tr(X )" X) +tr(X"'X). O

46.2.3. THEOREM. (e/?)" = AeAt.

. . oo (tA)F
PROOF. Since the series )~ ) 75— converges absolutely,

d, 4 ~=d [(tA)F Ktk 1A’€ = tAk 1 A
@)= Zdt( k! ’Z AZ Ae?. O
k=0 1

46.3. A system of n first order linear differential equations in n variables can be
expressed in the form X = AX, where X is a column of length n and A is a matrix
of order n. If A is a constant matrix, then X(t) = eC is the solution of this
equation with the initial condition X (0) = C' (see Theorem 46.2.3); the solution of
this equation with a given initial value is unique.

The general form of the elements of the matrix e* is given by Theorem 46.1.1;
using the same theorem, we get the following statement.

46.3.1. THEOREM. Consider the equation X = AX . If the minimal polynomial
of A is equal to (A — A1)™ ... (A = \g)™ then the solution x1(t), ..., zn(t) (i.e.,
the coordinates of the vector X ) is of the form

(0 = pale™ -+ pl),

where p;;(t) is a polynomial whose degree does not exceed n; — 1.

It is easy to verify by a direct substitution that X (t) = e4*CeP? is a solution of
X = AX + X B with the initial condition X (0) = C.
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46.3.2. THEOREM. Let X(t) be a solution of X = A(t)X. Then
¢
det X = exp </ tr A(s) ds> det X (0).
0

PROOF. By Problem 46.6 a) (det X)* = (det X)(tr XX~ !). In our case XX ! =
A(t). Therefore, the function y(t) = det X (¢) satisfies the condition (lny)* = ¢/y =
tr A(t). Therefore, y(t) = cexp(f(;5 tr A(s)ds), where ¢ = y(0) = det X(0). O

Problems

46.1. Let A = (g _Ot) Compute e?.

46.2. a) Prove that if [A, B] = 0, then eA+5 = eAeB.

b) Prove that if e(A+5)t = eAteBt for all ¢, then [A, B] = 0.

46.3. Prove that for any unitary matrix U there exists an Hermitian matrix H
such that U = e'H

46.4. a) Prove that if a real matrix X is skew-symmetric, then e is orthogonal.

b) Prove that any orthogonal matrix U with determinant 1 can be represented
in the form eX, where X is a real skew-symmetric matrix.

46.5. a) Let A be a real matrix. Prove that dete” = 1 if and only if tr A = 0.

b) Let B be a real matrix and det B = 1. Is there a real matrix A such that
B =e4?

46.6. a) Prove that

X

(det A) = tr(A adj AT) = (det A) tr(AA™Y).

b) Let A be an n x n-matrix. Prove that tr(A(adj AT)") = (n—1) tr(A adj AT).

46.7. [Aitken, 1953]. Consider a map F : M, , — M,,. Let QF(X) =
||wij(X)||71L, where w;;(X) = a%ﬁtrF(X). Prove that if F(X) = X™, where m is
an integer, then QF(X) = mX™ L.

47. Lax pairs and integrable systems

47.1. Consider a system of differential equations

(t) = f(x,t), where x = (x1,...,2n), f=(f1,---s[n)
A nonconstant function F(zq,...,x,) is called a first integral of this system if

%F@ﬂm“qaﬂnzO
for any solution (z1(t),...,x,(t)) of the system. The existence of a first integral
enables one to reduce the order of the system by 1.
Let A and L be square matrices whose elements depend on x1,...,z,. The
differential equation
L=AL-LA

is called the Lax differential equation and the pair of operators L, A in it a Laz
pair.
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THEOREM. If the functions fi(x1,...,2,) = tr(L*) are nonconstant, then they
are first integrals of the Lax equation.

PROOF. Let B(t) be a solution of the equation B = —BA with the initial con-
dition B(0) = I. Then

det B(t) = exp (/t A(s)ds) #0
(see Theorem 46.3.2) and 0
(BLB™')' = BLB™' + BLB™' + BL(B™')
= —BALB '+ B(AL — LA)B™' + BLB~'(BA)B~! =0.
Therefore, the Jordan normal form of L does not depend on t; hence, its eigenvalues
are constants. [

Representation of systems of differential equations in the Lax form is an im-
portant method for finding first integrals of Hamiltonian systems of differential
equations.

For example, the Euler equations M = M x w, which describe the motion of a
solid body with a fixed point, are easy to express in the Lax form. For this we
should take

0 —M; Mo 0 w3 —Ww2
L= M3 0 —M; | andA=| —w3 0 w1
— M, M, 0 w2 —w1 0

The first integral of this equation is tr L? = —2(M? + M3 + M2) .

47.2. A more instructive example is that of the Toda lattice:

0
T = —8—U, where U = exp(x1 — 22) + - - + exp(Tn_1 — Tn).
X

This system of equations can be expressed in the Lax form with the following L
and A:

b1 ay 0 0 0 aq 0 0
al b2 as —ay 0 ag
L= 0 as bg . 0 y A= 0 —as 0 B 0 s
. Apn—1 B B An—1
0 0 Ap—1 bn 0 0 —Qp—1 0
where 2a; = exp %(a:k — zpy1) and 2by = —&p. Indeed, the equation L= [A, L] is
equivalent to the system of equations
by =242, by =2(a2 —a?), ..., by =—2a>_|,
a1 :Gl(bz—bl), B | :anfl(bn _bn71)~

The equation
T — T4
2
implies that Ina, = %(ajk — Xpt1) + Ck, 1€, ap = dgexp %(ajk — xg+1). Therefore,

ar = ap(bpt1 — br) = ax

the equation by, = 2(a? — a}_,) is equivalent to the equation
Ty
— 22 = 2(d} exp(x — Tpr1) — di_yexp(zp_1 — 21)).

Ifdi=---=d,_1= % we get the required equations.
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47.3. The motion of a multidimensional solid body with the inertia matrix J is
described by the equation

(1) M= [Ma w},

where w is a skew-symmetric matrix and M = Jw + wJ; here we can assume that
J is a diagonal matrix. The equation (1) is already in the Lax form; therefore,
Iy = tr M?* for k = 1,...,[n/2] are first integrals of this equation (if p > [n/2],
then the functions tr M 2P can be expressed in terms of the functions Iy indicated; if
p is odd, then tr MP = 0). But we can get many more first integrals by expressing
(1) in the form

(2) (M +X\J?)" = [M + M\ w+ \J],

where )\ is an arbitrary constant, as it was first done in [Manakov, 1976]. To prove
that (1) and (2) are equivalent, it suffices to notice that

M, J] = —J?w+wJ? = —[J* u].
The first integrals of (2) are all nonzero coefficients of the polynomials
Pe(A) = tr(M + AT)F =) b
Since MT = —M and JT = J, it follows that
Pp(A) = tr(=M + AJ%)F =) "(=1)F b\,

Therefore, if kK — s is odd, then by = 0.
47.4. The system of Volterra equations

p—1 p—1
(1) ai = a; (Z Qitk — Z%k) ;
k=1 k=1

where p > 2 and a;4, = a;, can also be expressed in the form of a family of Lax
equations depending on a parameter A. Such a representation is given in the book
[Bogoyavlenskii, 1991]. Let M = Hm”HT and A = Haij’ 7117 where in every matrix

only n elements — m; ;41 = 1 and a;;41—p = a; — are nonzero. Consider the
equation
(2) (A+ M) =[A+ \M,—B — AMP7].

If B = Z?;é MP=1=IAMI, then [M, B] + [A, MP] = 0 and, therefore, equation
(2) is equivalent to the equation A = —[A,B]. It is easy to verify that b;; =
Qitp—1,j + -+ + @i j+p—1. Therefore, bj; = 0 for ¢ # j and b; = by = Zz;é Qitk-
The equation A= —[A4, B] is equivalent to the system of equations

@ij = a;;(b; — bj), where a;; #0 only for j=i+1—p.
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As a result we get a system of equations (here j =i+ 1 —p):

p—1 p—1 p—1 p—1
di =a; E Qi — E Ajtk | = Q4 g Qi+ — g Ai—k | -
k=0 k=0 k=1 k=1

Thus, I, = tr(A + AM)*P are first integrals of (1).
It is also possible to verify that the system of equations

p—1 p—1
a; = a; (H Qitk — H ai—k)
k=1 k=1
is equivalent to the Lax equation
(A+AM)" =[A+AM,\"1AP],
where a; 41 = a; and m; 41— = —1.

48. Matrices with prescribed eigenvalues

48.1.1. THEOREM ([Farahat, Lederman, 1958]). For any polynomial f(x) =

2"+ + -4, and any numbers a.,. .., an,—_, there exists a matriz of order
n with characteristic polynomial f and elements ay, ..., a, on the diagonal (the last
diagonal element a,, is defined by the relation a1 + -+ + a, = —c1).

ProOF. The polynomials
u=lLu=x—a,...,up=(x—ay)...(x—ap)

constitute a basis in the space of polynomials of degree not exceeding n and, there-
fore, f = wup + MUn—1 + - + Mup. Equating the coefficients of "1 in the
left-hand side and the right-hand side we get ¢1 = —(a1 + -+ + an) + A1, ie,
)\1 :cl+(a1+~~+an):0. Let

ai 1 0 0

0 a9 1 0

A= 0
Ap—1 1

*An 7)\7,1_1 7)\2 (07%

Expanding the determinant of I — A with respect to the last row we get
|$I — A| =+ Ap—1ur 4+ A2 + up = f,

i.e., A is the desired matrix. [
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48.1.2. THEOREM ([Farahat, Lederman, 1958]). For any polynomial f(z) =
2 4+ 12" + -+ ¢, and any matriz B of order n — 1 whose characteristic and
minimal polynomials coincide there exists a matriz A such that B is a submatriz
of A and the characteristic polynomial of A is equal to f.

B P
Qb

columns of length n — 1 and b is an arbitrary number. Clearly,

PROOF. Let usseek A in the form A = , where P and @ are arbitrary

det(zI, — A) = (z — b)det(zI,,_; — B) — QT adj(xI,,_1 — B)P
(see Theorem 3.1.3). Let us prove that adj(zl,—1 — B) = Z?:_g u,(z)B", where

the polynomials uq, ..., u,_o form a basis in the space of polynomials of degree not
exceeding n — 2. Let

g(z) =det(xl,_y — B) =a" ' +tj2" 2 4 ...
and (2, )) = (g(z) — g(\)/(z — A). Then
(t1n 1 — B)p(e, B) = g(@) T+ — g(B) = g(2) T 1.
since g(B) = 0 by the Cayley-Hamilton theorem. Therefore,

o(z,B) = g(z)(zI,_1 — B)"! = adj(zI,_1 — B).

Besides, since (zF — AF)/(z — \) = S2F 20 ab=1=5 ) it follows that

n—2 T n—2 n—2
RESTISD DU SFCUCED DPS) SIS
r=0 s=0 s=0 r=s

and, therefore, p(x,\) = Z:L:_g Nug(z), where
Us = xn—s—Q + tlxn_s_S + ot ts—2.

Thus,

n—2
det(xl, — A) = (x —b)(z" '+ tjaz" 2 +...) — Z us QT B*P
s=0

n—2
="+ (t; — b)z" " + h(z) — Z usQT B P,
s=0

where h is a polynomial of degree less than n — 1 and the polynomials ug, . .., Un_2
form a basis in the space of polynomials of degree less than m — 1. Since the
characteristic polynomial of B coincides with the minimal polynomial, the columns
Q and P can be selected so that (QTP,...,QT B"~2P) is an arbitrary given set of
numbers; cf. 13.3. O
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48.2. THEOREM ([Friedland, 1972]). Given all offdiagonal elements in a com-
plex matriz A, it is possible to select diagonal elements x1,...,x, so that the eigen-
values of A are given complex numbers; there are finitely many sets {x1,...,x,}
satisfying this condition.

PrOOF. Clearly,

det(A+ M) = (z1+A) ... (@0 +X) + Y alzi, +A) ... (2, +A)
k<n—2

= Z/\"_kak(xl, ce ) + Z N (g, ),

where py, is a polynomial of degree < k — 2. The equation det(A + AI) = 0 has the
numbers Aq, ..., A, as its roots if and only if

oAty s An) = ok(21, ..o 2n) + pr(T1, .., Tp)-
Thus, our problem reduces to the system of equations
op(x1,. . xn) = qr(x1,...,2pn), where k=1,...,n and degqr <k — 1.
Let o = ox(x1,...,2,). Then the equality
2" — o Vb ogr 2+ (-1)"0, =0

holds for x = z4,...,x,. Let

fiwi, o) = af + qa ™t = qoap T A (1) g = 2 (e, ),
where degr; < n. Then
fi=fi— (@l -l P opa? 2 — o (= 1)0y) = 2l g 2P g o+ g,

where g; = (—=1)*"1(0; + ¢;). Therefore, F = VG, where F and G are columns
(fi,-- fo)t and (g1,...,92)T, V = folm Therefore, G = V~'F and since
V=l = WV, where W = detV = [[,.;(zi — x;) and V; is the matrix whose
elements are polynomials in z1,...,z,, then Wgq,...,Wg, € I[f1,..., fn], where
I[f1,..., fn] is the ideal of the polynomial ring over C generated by f,..., fn.

Suppose that the polynomials g1, ..., g, have no common roots. Then Hilbert’s
Nullstellensatz (see Appendix 4) shows that there exist polynomials v, ..., v, such
that 1 =) v;g;; hence, W = > v;(Wg;) € I[f1,..., fn]-

On the other hand, W = Y a;, ;. 2 ...x% where i), < n. Therefore, W ¢
I[f1,..., fn] (see Appendix 5). It follows that the polynomials gi,..., g, have a
common root.

Let us show that the polynomials g1, ..., g, have finitely many common roots.
Let £ = (z1,...,2,) be a root of polynomials g1, ...,g,. Then £ is a root of poly-
nomials f1,..., f, because f; = x?7191 +- -+ gn. Therefore, 2 +7i(z1,...,25) =
fi = 0 and degr; < n. But such a system of equations has only finitely many
solutions (see Appendix 5). Therefore, the number of distinct sets x1,..., 2, is
finite. O
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48.3. THEOREM. Let
M< <Xy di < <dpy did A2 Ay

fork=1,....,.n—1 anddy+---+d, = A\ +---+X,. Then there exists an orthogonal
matriz P such that the diagonal of the matriz PT AP, where A = diag(\1, ..., ),
is occupied by the numbers dy, ..., dy,.

ProOF ([Chan, Kim-Hung Li, 1983]). First, let n = 2. Then A\ <d; <dz < Ay
and doy = A1 + Ao — dy. If Ay = Ao, then we can set P = I. If \; < Ay then the

matrix
Vi —di —vdi )\1>
Vdi =X VA —d,

P=(y—X\)"2 <

is the desired one.

Now, suppose that the statement holds for some n > 2 and consider the sets of
n + 1 numbers. Since Ay < d; < dpy1 < Apy1, there exists a number j > 1 such
that A\;_; <d; < Aj. Let P; be a permutation matrix such that

PTAP; = diag(A, Ajy Agy - o5 gy e o Ang1)-
It is easy to verify that

A < min(dl,)\l + )\j — dl) < max(dl,)\l + )\j - dl) < )\j.

Therefore, there exists an orthogonal 2 x 2 matrix @ such that on the diagonal
of the matrix Q7 diag(A1, A;)@ there stand the numbers di and Ay + A\; — dy.

T
Consider the matrix Py = (Q 0 ) Clearly, Py (P{AP)P, = (dl b )7
0 In,]_ b Al

where Ay = diag(A + Aj —di, g, ... ,X;, e An)-
The diagonal elements of A; arranged in increasing order and the numbers
da,...,dy 1 satisfy the conditions of the theorem. Indeed,

(1) dy+--+dp > (k=1)d1 > Ao+ + A
fork=2,...,7—1 and

@) dot-tdp=di b dp—dyi > A4 A dy
:()\1+>\j—d1)+)\2+"'+)\j71+)\j+1+"'+>\k

for k= j,...,n+ 1. In both cases (1), (2) the right-hand sides of the inequalities,
i.e., Ao + -+ 4+ Ap and ()\1 +)\j —dl) —|—/\2+"'—|—/\j_1 —|—/\j+1 + -+ A, are
not less than the sum of k£ — 1 minimal diagonal elements of A;. Therefore, there
exists an orthogonal matrix @1 such that the diagonal of QT A;Q; is occupied by

the numbers da,...,d,4+1. Let P3 = (é Cg ); then P = Py P> P is the desired
1

matrix. O
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Solutions

39.1. a) Clearly, AX = HAZ‘TUH? and XA = ||)\jxinT; therefore, A\ix;; = Ajxy .
Hence, z;; = 0 for ¢ # j.

b) By heading a) X = diag(z1,...,%,). As is easy to verify (NAX); 41 =
)\i+1xi+1 and (XNA)i,i+1 = Ai—i—lzi- Hence, Ti = Tj+1 for ¢ = 1, 2, ey, — 1.

39.2. Tt suffices to make use of the result of Problem 39.1.

39.3. Let pq, ..., p, be the sums of the elements of the rows of the matrix X and

qi,---,qn the sums of the elements of its columns. Then
g --- dQn pr .- D1
EX = o and XFE = :
q1 coo On DPn ce+ DPn

Therefore, AX = X A if and only if

Q1 ="""=q4n =P1 =" = Pn-

39.4. The equality AP, = P, A can be rewritten in the form A = P, 1AP,. If
PyYAP, = ||b||}, then bij = a,(;)s(j). For any numbers p and q there exists a
permutation o such that p = o(g). Therefore, ayq = byg = o (q)o(q) = App; i.€., all
diagonal elements of A are equal. If i # j and p # ¢, then there exists a permutation
o such that i = o(p) and j = 0(q). Hence, apqy = byg = Uy(p)to(q) = ij, i.e., all
off-diagonal elements of A are equal. It follows that

A=aol +B(E—1I)=(a—B) +BE.

39.5. We may assume that A = diag(A4y,...,Ax), where A; is a Jordan block.
Let p1,..., ux be distinct numbers and B; the Jordan block corresponding to the
eigenvalue p; and of the same size as A;. Then for B we can take the matrix
diag(Bs, ..., Bg).

39.6. a) For commuting matrices A and B we have

A+Br=3" (Z) AFBE,

Let A = B™ = 0. If n = 2m — 1 then either k& > m or n — k > m; hence,
(A+B)" =0.

b) By Theorem 39.2.2 the operators A and B have a common eigenbasis; this
basis is the eigenbasis for the operator A + B.

39.7. Involutions are diagonalizable operators whose diagonal form has +1 on
the diagonal (see 26.1). Therefore, there exists a basis in which all matrices A; are
of the form diag(+1,...,41). There are 2™ such matrices.

39.8. Let us decompose the space V into the direct sum of invariant subspaces
Vi such that every operator A; has on every subspace V; only one eigenvalue \;;.
Consider the diagonal operator D whose restriction to V; is of the form p;I and all
numbers p; are distinct. For every j there exists an interpolation polynomial f;
such that f;(u;) = A;; for all ¢ (see Appendix 3). Clearly, f;(D) = A;.

AL A ), where A is an

39.9. 1t is easy to verify that all matrices of the form ( 0 A\

arbitrary matrix of order m, commute.



210 MATRICES IN ALGEBRA AND CALCULUS
40.1. Tt is easy to verify that [N, A] = N. Therefore,
adjA=[J,A]=[N,A]=N=J - AL

It is also clear that ad;(J — AI) = 0.
For any matrices X and Y we have

ady (Y = AX) = (Y — M) ady X.

Hence,
ady (Y — M) X) = (Y — M) ad} X.
Setting Y = J and X = A we get ad3(NA) = (NA)ad% A = 0.
40.2. Since
Cr=C"' Y A, Bi] =Y C"'A;B; =Y C"T'BiA;
=Y A(CT'By) =Y (CMT'By)A; =Y [A;, C"T By,

it follows that tr C™ = 0 for n > 1. It follows that C is nilpotent; cf. Theorem 24.2.1.
40.3. For n = 1 the statement is obvious. It is also clear that if the statement

holds for n, then

adZH(B) _ Z(_l)n—i (n) Al An—i _ Z(_l)n—i (7) AR ATt

7

=0 =0
n+1 n n n
— ~1 n—i+1 AiBAnfiJrl -1 n—i+1 AiBAnfiJrl
S DICTEE

n+1
—_ E (_1)n+1—1 <n+ )AZBAn+1_l.
=0

?

40.4. The map D = ada : My, — M, , is a derivation. We have to prove
that if D?2B = 0, then D"(B") = n!(DB)"™. For n = 1 the statement is obvious.
Suppose the statement holds for some n. Then

D" (B") = DID"(B")] = n!D[(DB)"] = n! i(pBy(DzB)(DB)n_l_i .
i=0
Clearly,
Dn-i-l(Bn-'rl) = Dn+1(B . Bn) _ % (n + 1) (DiB)(Dn—H_i(Bn)).

i=0
Since D'B = 0 for i > 2, it follows that

D" (B™) = B- D"*(B") + (n+ 1)(DB)(D"(B"))
= (n+1)(DB)(D™(B™)) = (n+ 1){(DB)"*.
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40.5. First, let us prove the required statement for n = 1. For m = 1 the
statement is clear. It is also obvious that if the statement holds for some m then

[A™*T! B] = A(A™B — BA™) + (AB — BA)A™
= mA[A, BJA™ ™ +[A, BJA™ = (m + 1)[A, B]JA™.

Now, let m > n > 0. Multiplying the equality [A", B] = n[A, B]A"~! by mA™—"
from the right we get

m[A", BJA™ ™" = mn[A, BJA™ ™! = n[A™, B].

40.6. To the operator ad4 in the space Hom(V, V') there corresponds operator
L=1®A— AT ®1I in the space V* ® V; cf. 27.5. If A is diagonal with respect to
a basis e1,..., ey, then L is diagonal with respect to the basis e; ® e;. Therefore,
Ker L™ = Ker L.

40.7. a) If tr Z = 0 then Z = [X,Y] (see 40.2); hence,

tr(AZ) = tr(AXY) —tr(AY X) = 0.

Therefore, A = AI; cf. Problem 5.1.

b) For any linear function f on the space of matrices there exists a matrix A
such that f(X) = tr(AX). Now, since f(XY) = f(Y X), it follows that tr(AXY) =
tr(AY X) and, therefore, A = AI.

41.1. The product of the indicated quaternions is equal to

—(z122 + Y12 + 2122) + (Y122 — 21Y2)i + (2122 — 2021)] + (T1y2 — T2y1) k.

41.2. Let ¢ = a + v, where a is the real part of the quaternion and v is its
imaginary part. Then
(a+v)? =a® + 2av + v°.

By Theorem 41.2.1, v = —wvv = —|v|? < 0. Therefore, the quaternion a2+ 2av + v?
is real if and only if av is a real quaternion, i.e., a =0 or v = 0.

41.3. Tt follows from the solution of Problem 41.2 that ¢> = —1 if and only if
q = zi+yj+ zk, where 22 + 3% + 22 = 1.

41.4. Let the quaternion ¢ = a + v, where a is the real part of ¢, commute with
any purely imaginary quaternion w. Then (a + v)w = w(a + v) and aw = wa;
hence, vw = wv. Since 7w = W U = wv, we see that vw is a real quaternion. It
remains to notice that if v # 0 and w is not proportional to v, then vw ¢ R.

41.5. Let B = W7 4+ Wsj, where W7 and W5 are complex matrices. Then

AB = Z\Wh + ZogWh + Z1Waj + ZojWaj

and . .
A AR
e —ZW1 —ZWo —ZWo+Z Wy )~

Therefore, it suffices to prove that ZyjW; = ZoW1j and ZyjWsj = —ZaWo. Since
ji = —ij, we see that jW; = Wyj; and since jj = —1 and jij = 7, it follows that

JWaj = —Wa.
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41.6. a) Since 2(x,y) = Ty + Yz, the equality (z,y) = 0 implies that Ty + gz = 0.
Hence,

2(qx, qr) = q@qy + qyqr = T qqy + Y qqx = |q*(Ty + yz) = 0.

b) The map considered preserves orientation and sends the rectangular paral-
lelepiped formeded by the vectors 1, 4, j, k£ into the rectangular parallelepiped
formed by the vectors q, qi, qj, gk; the ratio of the lengths of the corresponding
edges of these parallelepipeds is equal to |g| which implies that the ratio of the
volumes of these parallelepipeds is equal to |g|*.

41.7. A tetrahedron can be placed in the space of quaternions. Let a, b, ¢ and d
be the quaternions corresponding to its vertices. We may assume that ¢ and d are
real quaternions. Then ¢ and d commute with a and b and, therefore,

(a=b)(c—d)+(b—c)la—d)=(b—d)(a—c).
It follows that
la —=bllc—d|+|b—clla—d| >|b—d||la—c|

41.8. Let x = a + be and y = u + ve. By the definition of the double of an
algebra,
(a + be)(u+ ve) = (au — vb) 4 (bu + va)e

and, therefore,

(xy)y = [(au — Tb)u — v(bu + va)] + [(bu + va)u + v(au — TH)]e,
+ 7 0)b] + [b(@* — ) + (v + vu)ale.

To prove these equalities it suffices to make use of the associativity of the quaternion
algebra and the facts that Tv = vv and that u + @ is a real number. The identity
x(zy) = (zx)y is similarly proved.

b) Let us consider the trilinear map f(a,z,y) = (ax)y — a(zy). Substituting
b =2+ vy in (ab)b = a(bb) and taking into account that (az)r = a(zz) and
(ay)y = a(yy) we get

(ax)y — alyz) = a(zy) — (ay),

ie., fla,z,y) = —f(a,y,z). Similarly, substituting b = = + y in b(ba) = (bb)a we
get f(z,y,a) = —f(y,z,a). Therefore,

f(avxay) = 7f(a7yax) = f(y,a,x) = ff(y,m,a),

ie., (ax)y + (yz)a = a(zy) + y(za). For a =y we get (yz)y = y(zy).
43.1. By Theorem 43.2 R(f,g) = ai* [[ 9(z;) and R(f,r) = ab []r(z;). Besides,
f(x;) = 0; hence,
g(xi) = fzi)a(w:) +r(@;) = r(x;).
43.2. Let cg,...,Chtm—1 be the columns of Sylvester’s matrix S(f,g) and let
yp = 2"tk =1 Then

Yoco + - + Yn+m—-1Cntm—-1 = G,
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where c is the column (z™71f(z),..., f(z),2" tg(z),...,g(z))T. Clearly, if k <
n—1, then 2¥g(x) = 3 \jx' f(z)+rk(z), where \; are certain numbers and i < m—1.
It follows that by adding linear combinations of the first m elements to the last n
elements of the column ¢ we can reduce this column to the form

(@™ (@), f(@), e (2), . o(2) T

Analogous transformations of the rows of S(f,g) reduce this matrix to the form

O B
Qg anfl,O et An—1,n—

A: '.. R B:

0 ao aoo cee ag,n—1
43.3. To the operator under consideration there corresponds the operator
I,®A-BT"®L, n V" V"

see 27.5. The eigenvalues of this operator are equal to o; — 3;, where o; are the
roots of f and (3; are the roots of g; see 27.4. Therefore, the determinant of this
operator is equal to [, ;(e; — 3;) = R(f. g).

43.4. Tt is easy to verify that S = VTV, where

Hence, det S = (det V)? = [Tic;(ci — aj)?.
44.1. The equations AX = C and Y B = C are solvable; therefore, AA"~V'C = C
and CB“~V" B = ('} see 45.2. Tt follows that

C=AA"YC=AA"YCB "V B=AZB, wherte Z=A"YCB".

44.2. If X is a matrix of size m x n and rank X = r, then X = PQ, where P and
Q@ are matrices of size m x r and r X n, respectively; cf. 8.2. The spaces spanned
by the columns of matrices X and P coincide and, therefore, the equation AX =0
implies AP = 0, which means that P = (I — A"~ A)Y}; cf. 44.2. Similarly, the
equality X B = 0 implies that Q = Y>(I — BB ~'"). Hence,

X=PQ=(I-A"VAYI-BB"), where Y = VY.

It is also clear that if X = (I— A"~ A)Y(I-BB"~!"), then AX =0 and XB = 0.

44.3. If AX = C and XB = D, then AD = AXB = CB. Now, suppose
that AD = CB and each of the equations AX = C and XB = C is solvable. In
this case AA~Y'C = C and DB~Y" B = D. Therefore, A(A"~V'C + DBV —
A“"VADB*"V) = C and (A“"V'C + DBV — A“"VCBB*")B = D, ie.,
Xo=A"VC+DB" "V~ A"~V ADB "1 is the solution of the system of equations
considered.



214 MATRICES IN ALGEBRA AND CALCULUS

46.1. Let J = (‘1) ‘01) Then A2 — (2], A3 — 3], A% — (AT, A5 — 5],
etc. Therefore,
2 ¢t 3 ¢
A=l == N+ (t— =+ = —...)J

21 " 4l 31 " 5l

= (cost)I + (sint)J = <COSt —smt)

sint  cost

46.2. a) Newton’s binomial formula holds for the commuting matrices and,
therefore,

> A+B A’“B" k
iy WED_sr s WA

n=0 n=0 k=0

o0 o0
Ak ank
=y = eeb.

b) Since

2
eATB — [ 4 (A4 B)t + (A2 +AB+BA+BQ)% +

and
2

eAteBt:I+(A+B)t+(A2+2AB+BQ)%+...,

it follows that
A? 4+ AB+ BA+ B? = A®> + 2BA + B?

and, therefore, AB = BA.
46.3. There exists a unitary matrix V such that

U =VDV™! where D = diag(exp(ia), . . .,exp(iay,)).

Let A = diag(ai,...,ap,). Then U = ! where H = VAV™! = VAV* is an
Hermitian matrix.

46.4. a) Let U = eX and X7 = —X. Then UUT = eXeX" = eXe=X = [ since
the matrices X and —X commute.

b) For such a matrix U there exists an orthogonal matrix V' such that

U = Vdiag(A,, ..., Ay, V"L, where 4; = (Cf)s%' —sm%);
sing;  cosy;

cf. Theorem 11.3. It is also clear that the matrix A; can be represented in the form
eX, where X = (2 _Ox>’ cf. Problem 46.1.

46.5. a) It suffices to observe that det(e?) = "4 (cf. Theorem 46.1.2), and
that tr A is a real number.

b) Let A; and A2 be eigenvalues of a real 2 X 2 matrix A and Ay + Ao = tr A = 0.
The numbers A; and Ao are either both real or A\ = Ao, i.e., A\ = —\;. Therefore,
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the eigenvalues of e? are equal to either e® and e~ or ¢® and e~*
—2

0
0 —1/2

@, where in either
case « is a real number. It follows that B = ( ) is not the exponent of

a real matrix. .

46.6. a) Let A;; be the cofactor of a;;. Then tr(A adj A") =3, 5 dijAyj.

Since det A = a;;A;; + ..., where the ellipsis stands for the terms that do not
contain a;;, it follows that

(det A) = CL”A” + aiinj + ... = CL”A” 4+ ... s

where the ellipsis stands for the terms that do not contain @;;. Hence, (det A)" =
Zi,j diinj-

b) Since Aadj AT = (det A)I, then tr(Aadj A”) = ndet A and, therefore,

n(det A) = tr(A adj AT) + tr(A(adj AT)").

It remains to make use of the result of heading a).
46.7. First, suppose that m > 0. Then

(Xm)u = Z TiaTab -+ TpgLqj,

a,b,...,p,q
m
tr X™ = E TraZab - - - TpgLar-
a,b,...,p,q,T
Therefore,
0 ox or
my __ ra qr
8x--(trX ) = E am__xab...quxqr+--~—|—xmxab...a:pqax__
Ji Ji Ji
a,b,...,p,q,r

= Z Tip - TpgTqj + -+ + Z TiaZab - - Tpj = m(Xm_l)ij.
b,....p,q ab,....p
Now, suppose that m < 0. Let X! = HyUHTl1 Then y;; = X;;A™!, where Xj; is
the cofactor of z;; in X and A = det X. By Jacobi’s Theorem (Theorem 2.5.2) we
have

Ligjs -+ Liggn
‘X'iljl Xi1j2 — (_1)(7 . . A
Xi2j1 Xizjz ’ o ’
Lipjs =+ Lipgn
and
Ligje ---  Liggn i ;
Xiljlz(—l)a , where o = (-1 n)
J1 - In
Lipja oo Lingn
Hence Kigr Kirga | _ A2 (X; ;). It follows that
’ . X, . ox; 1J1
i2J1 1272 292
0
~XjaXpi = Ag—(Xpa) = XpaXji

Je

B 0 0 a2 0 Xga
= A ()~ Ko —(8) = & amﬁ( : )
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Le., %yaﬂ = —Ya;¥ip- Since

(X™)ij = Z YiaYab - - - Yqj and tr X™ = Z YraYab - - - Ygr
a,b,....q a,b,...,q,r

it follows that

(tr X™) = Z YriYiaYab - - - Ygr — - - -

833 i
J ab,eesq5T

- Z YralYab - - - YqjYir = m(Xmil)i]V

ab,...,q,r
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APPENDIX

A polynomial f with integer coeflicients is called irreducible over Z (resp. over
Q) if it cannot be represented as the product of two polynomials of lower degree
with integer (resp. rational) coefficients.

THEOREM. A polynomial f with integer coefficients is irreducible over Z if and
only if it is irreducible over Q.

To prove this, consider the greatest common divisor of the coefficients of the
polynomial f and denote it cont(f), the content of f.

LEMMA(Gauss). If cont(f) = cont(g) =1 then cont(fg) =1

PROOF. Suppose that cont(f) = cont(g) = 1 and cont(fg) = d # +1. Let p be
one of the prime divisors of d; let a,, and bs be the nondivisible by p coefficients of
the polynomials f = 3" a;2° and g = Y b;x’ with the least indices. Let us consider
the coefficient of 277* in the power series expansion of fg. As well as all coefficients
of fg, this one is also divisible by p. On the other hand, it is equal to the sum of
numbers a;b;, where ¢ + j = r + s. But only one of these numbers, namely, a..b;, is
not divisible by p, since either i < r or j < s. Contradiction. [

Now we are able to prove the theorem.

PrROOF. We may assume that cont(f) = 1. Given a factorization f = @12,
where @71 and ¢y are polynomials with rational coefficients, we have to construct a
factorization f = f1fa, where f1 and fo are polynomials with integer coefficients.

. a;
Let us represent ; in the form ¢; = ™ fi, where a;,b; € Z, the f; are polyno-

mials with integer coefficients, and cont(f;) = 1. Then b1bsf = ajasfi fo; hence,

cont(b1baf) = cont(ajasfifo). By the Gauss lemma cont(f; fa) = 1. Therefore,
aijas = £b1by, i.e., f = £ f1fo, which is the desired factorization. [

A.1. THEOREM. Let polynomials f and g with integer coefficients have a com-
mon root and let f be an irreducible polynomial with the leading coefficient 1. Then
g/ is a polynomial with integer coefficients.

PROOF. Let us successively perform the division with a remainder (FEuclid’s
algorithm):

g=aif+0bi, f=agby+by, b1 =azba+0bs, ..., by_2 =an_1by.

It is easy to verify that b, is the greatest common divisor of f and g. All polynomials
a; and b; have rational coefficients. Therefore, the greatest common divisor of
polynomials f and g over Q coincides with their greatest common divisor over
C. But over C the polynomials f and g have a nontrivial common divisor and,
therefore, f and g have a nontrivial common divisor, r, over Q as well. Since f is
an irreducible polynomial with the leading coefficient 1, it follows that r = £f. O

Typeset by ApS-TEX
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A.2. THEOREM (Eisenstein’s criterion). Let
f(@) =ao+ a1z + -+ azz”

be a polynomial with integer coefficients and let p be a prime such that the coefficient
an is not divisible by p whereas ag, ..., an—_1 are, and ag s not divisible by p2.
Then the polynomial f is irreducible over Z.

PROOF. Suppose that f = gh = (O bp2®)(>. ¢a!), where g and h are not
constants. The number bycy = ag is divisible by p and, therefore, one of the
numbers by or c¢g is divisible by p. Let, for definiteness sake, by be divisible by p.
Then ¢y is not divisible by p because ag = bycy is not divisible by p? If all numbers
b; are divisible by p then a, is divisible by p. Therefore, b; is not divisible by p for
a certain ¢, where 0 < i < degg < n.

We may assume that ¢ is the least index for which the number b; is nondivisible
by p. On the one hand, by the hypothesis, the number q; is divisible by p. On the
other hand, a; = b;co + b;_1¢1 + -+ + bgc; and all numbers b;_q1¢q, ..., boc; are
divisible by p whereas b;cq is not divisible by p. Contradiction. [

COROLLARY. If p is a prime, then the polynomial f(x) = xP~1 + .-+ 2z + 1 is
irreducible over 7.

Indeed, we can apply Eisenstein’s criterion to the polynomial
(z+1)P -1 -1 D\, p—2 D
N=- T 72 P .
flx+1) Gr1 =1 e b1
A.3. THEOREM. Suppose the numbers

1 —1 —
Y1, y§ )a"'7y§al )7'-'ayn7 yél)a---yyy(la” b

are given at points i, ..., Tnp and m = a1 + --- + an, — 1. Then there exists
a polynomial H,,(x) of degree not greater than m for which Hp(x;) = y; and
1 () = 4.
J
ProoF. Let k = max(a1,...,q,). For k = 1 we can make use of Lagrange’s
interpolation polynomial

(x—z1)...(z—zj_1)(z —xj41) ... (& — zp)
1 (.Tj — .131) ce (l‘j — l‘j_1)(l‘]’ — l‘j+1) . (Jﬁj — Tn

)Y

Let wy(z) = (x—x1) ... (x—x,). Take an arbitrary polynomial H,,_, of degree not
greater than m—n and assign to it the polynomial Hy, (z) = Ly, (2)4+wn (2) Hp—n(x).
It is clear that H,,(z;) = y; for any polynomial H,,_,,. Besides,

Hy, () = Ly (2) + wy (2) Hi—n (2) + wn (2) Hy, o (2),
ie., H (z;) = L, (x;) + w} (z;)Hn_n(z;). Since w) (z;) # 0, then at points where
the values of HJ (z;) are given, we may determine the corresponding values of

H,,_n(x;). Further,

H)(x5) = Ly () 4wy (25) Hin—n (25) + 2wy, (25) Hy, o (25).
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Therefore, at points where the values of H)) (z;) are given we can determine the
corresponding values of H,, , (z;), etc. Thus, our problem reduces to the con-
struction of a polynomial H,,_,(x) of degree not greater than m — n for which
Hf;ln(m]) = zj(-l) fori=0,...,0;—2 (if a; = 1, then there are no restrictions on the
values of H,,_,, and its derivatives at x;). It is also clear that m—n = ) (a; —1)—1.
After k — 1 of similar operations it remains to construct Lagrange’s interpolation
polynomial. [

A.4. Hilbert’s Nullstellensatz. We will only need the following particular
case of Hilbert’s Nullstellensatz.

THEOREM. Let f1, ..., fr be polynomials in n indeterminates over C without

common zeros. Then there exist polynomials g1, . .. , gr such that frg1+- -+ frgr =
1.

ProOOF. Let I(f1,..., fr) be the ideal of the polynomial ring Clxy,...,z,] = K
generated by fi, ..., f.. Suppose that there are no polynomials gi, ..., g, such
that fig1 +---+ frgr = 1. Then I(f1,..., fr) # K. Let I be a nontrivial maximal
ideal containing I(f1,..., fr). Asis easy to verify, K/I is a field. Indeed, if f & T
then I+ K f is the ideal strictly containing I and, therefore, this ideal coincides with
K. Tt follows that there exist polynomials g € K and h € I such that 1 = h + fg.
Then the class g € K/I is the inverse of f € K/I.

Now, let us prove that the field A = K/I coincides with C.

Let a; be the image of x; under the natural projection

p:Clzy,...,xn] — Clzq,...,2,]/I] = A.

Then
_ . i1 )
Af{g Ziy. i Qo

Further, let Ag = C and A; = Clay,...,as]. Then Agq = {>] aiai+1|ai € As} =
Aslasy1]. Let us prove by induction on s that there exists a ring homomorphism
f: As — C (which sends 1 to 1). For s = 0 the statement is obvious. Now, let us
show how to construct a homomorphism ¢ : A;;; — C from the homomorphism
f: Ay — C. For this let us consider two cases.

a) The element = a,41 is transcendental over A,. Then for any & € C there is
determined a homomorphism g such that g(anz™+---+ag) = f(an)&™+-- -+ f(aop).
Setting £ = 0 we get a homomorphism g such that ¢g(1) = 1.

b) The element x = a1 is algebraic over Ay, i.e., b +byy 1™ by =0
for certain b; € As. Then for all £ € C such that f(by,){™ + - -+ + f(bo) = 0 there
is determined a homomorphism g(3" ara®) = > f(ax)&* which sends 1 to 1.

As a result we get a homomorphism h : A — C such that k(1) = 1. Tt is also
clear that h=1(0) is an ideal and there are no nontrivial ideals in the field A. Hence,
h is a monomorphism. Since Ay = C C A and the restriction of h to Ag is the
identity map then h is an isomorphism.

Ziy..i, € C} =Clag, ..., ay].

Thus, we may assume that a; € C. The projection p maps the polynomial
filzy,...,2,) € K to fi(ay,...,a,) € C. Since f1,..., fr € I, then p(f;) =0 € C.
Therefore, fi(ai,...,a,) = 0. Contradiction. O
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A.5. THEOREM. Polynomials fi(z1,...,2zy) = 2" + Pi(z1,...,2y), where i =
1,...,n, are such that deg P; < my; let I(f1,..., fn) be the ideal generated by f1,

R

a) Let P(x1,...,x,) be a nonzero polynomial of the form 3 a;, ;. xi'...xin,
where i, < my, for allk=1,...,n. Then P& I(f1,..., fn).

b) The system of equations x;"* + P;(x1,...,x,) =0 (i =1,...,n) is always
solvable over C and the number of solutions is finite.

PROOF. Substituting the polynomial (f;—P;)%z% instead of 2"t where 0 <

t; and 0 < ¢; < m;, we see that any polynomial Q(z1,...,z,), can be represented
in the form

Q(‘rlv"wx’n) :Q*(xlv"‘vmnaflv"'afn) :Zajsxgl"'x%”ffl"' 'r‘jnv

where j; < my, ..., jn < my,. Let us prove that such a representation @Q*
is uniquely determined. It suffices to verify that by substituting f; = «** +
Pi(z1,...,zy,) in any nonzero polynomial Q*(x1,...,Tn, f1,..., fn) We get a non-
zero polynomial Q(a:l, ..., Tyn). Among the terms of the polynomial Q*, let us select
the one for which the sum (symq+j1)+ -+ (spmy +jn) = m is maximal. Clearly,
deg @ < m. Let us compute the coefficient of the monomial ™71 gsnmn+in
in Q. Since the sum

(s1mi1+j1)+ -+ (Sump + jn)

is maximal, this monomial can only come from the monomial xjf coomin fOV L fen,
Therefore, the coefficients of these two monomials are equal and deg Q =m.

Clearly, Q(x1,...,2n) € I(f1,..., fn) if and only if Q*(z1,...,2n, f1,..., fn) 1S
the sum of monomials for which s; + -+ + s, > 1. Besides, if P(z1,...,2,) =
S, i, 2t ... xlr, where i), < my, then

P (x1, ..., Tny f1,- - fn) = P(a1,...,x0).

Hence, P & I(f1,..., fn)-

b) If f1, ..., fn have no common zero, then by Hilbert’s Nullstellensatz the
ideal I(f1,...,fn) coincides with the whole polynomial ring and, therefore, P €
I(f1,..., fn); this contradicts heading a). It follows that the given system of equa-
tions is solvable. Let & = (&1,...,&,) be a solution of this system. Then £ =
—P;(&1,...,&,), where deg P; < m;, and, therefore, any polynomial Q(&1,...&,)
can be represented in the form Q(&1,...,&n) = > aiy.. i, il ... where iy < my
and the coefficient a;,. ;, is the same for all solutions. Let m = my...m,.
The polynomials 1, &, ..., & can be linearly expressed in terms of the ba-
sic monomials fil ...&n where i, < my. Therefore, they are linearly depen-
dent, i.e., b + b1& + - + b€ = 0, not all numbers by, ..., b, are zero and
these numbers are the same for all solutions (do not depend on 7). The equation

bo + b1z + -+ - + by x™ = 0 has, clearly, finitely many solutions. [
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Schur’s theorem, 89
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