
PROBLEMS AND THEOREMS

IN LINEAR ALGEBRA

V. Prasolov

Abstract. This book contains the basics of linear algebra with an emphasis on non-
standard and neat proofs of known theorems. Many of the theorems of linear algebra
obtained mainly during the past 30 years are usually ignored in text-books but are
quite accessible for students majoring or minoring in mathematics. These theorems
are given with complete proofs. There are about 230 problems with solutions.
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PREFACE

There are very many books on linear algebra, among them many really wonderful
ones (see e.g. the list of recommended literature). One might think that one does
not need any more books on this subject. Choosing one’s words more carefully, it
is possible to deduce that these books contain all that one needs and in the best
possible form, and therefore any new book will, at best, only repeat the old ones.

This opinion is manifestly wrong, but nevertheless almost ubiquitous.
New results in linear algebra appear constantly and so do new, simpler and

neater proofs of the known theorems. Besides, more than a few interesting old
results are ignored, so far, by text-books.

In this book I tried to collect the most attractive problems and theorems of linear
algebra still accessible to first year students majoring or minoring in mathematics.

The computational algebra was left somewhat aside. The major part of the book
contains results known from journal publications only. I believe that they will be
of interest to many readers.

I assume that the reader is acquainted with main notions of linear algebra:
linear space, basis, linear map, the determinant of a matrix. Apart from that,
all the essential theorems of the standard course of linear algebra are given here
with complete proofs and some definitions from the above list of prerequisites is
recollected. I made the prime emphasis on nonstandard neat proofs of known
theorems.

In this book I only consider finite dimensional linear spaces.
The exposition is mostly performed over the fields of real or complex numbers.

The peculiarity of the fields of finite characteristics is mentioned when needed.
Cross-references inside the book are natural: 36.2 means subsection 2 of sec. 36;

Problem 36.2 is Problem 2 from sec. 36; Theorem 36.2.2 stands for Theorem 2
from 36.2.

Acknowledgments. The book is based on a course I read at the Independent
University of Moscow, 1991/92. I am thankful to the participants for comments and
to D. V. Beklemishev, D. B. Fuchs, A. I. Kostrikin, V. S. Retakh, A. N. Rudakov
and A. P. Veselov for fruitful discussions of the manuscript.
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Main notations and conventions

A =



a11 . . . a1n

. . . . . . . . .
am1 . . . amn


 denotes a matrix of size m × n; we say that a square

n× n matrix is of order n;
aij , sometimes denoted by ai,j for clarity, is the element or the entry from the

intersection of the i-th row and the j-th column;
(aij) is another notation for the matrix A;∥∥aij

∥∥n
p

still another notation for the matrix (aij), where p ≤ i, j ≤ n;
det(A), |A| and det(aij) all denote the determinant of the matrix A;
|aij |np is the determinant of the matrix

∥∥aij
∥∥n
p
;

Eij — the (i, j)-th matrix unit — the matrix whose only nonzero element is
equal to 1 and occupies the (i, j)-th position;
AB — the product of a matrix A of size p × n by a matrix B of size n × q —

is the matrix (cij) of size p× q, where cik =
n∑
j=1

aijbjk, is the scalar product of the

i-th row of the matrix A by the k-th column of the matrix B;
diag(λ1, . . . , λn) is the diagonal matrix of size n× n with elements aii = λi and

zero offdiagonal elements;
I = diag(1, . . . , 1) is the unit matrix; when its size, n×n, is needed explicitly we

denote the matrix by In;
the matrix aI, where a is a number, is called a scalar matrix;
AT is the transposed of A, AT = (a′ij), where a′ij = aji;
Ā = (a′ij), where a′ij = aij ;

A∗ = ĀT ;
σ =

(
1 ... n
k1 ...kn

)
is a permutation: σ(i) = ki; the permutation

(
1 ... n
k1 ...kn

)
is often

abbreviated to (k1 . . . kn);

sign σ = (−1)σ =
{

1 if σ is even
−1 if σ is odd

;

Span(e1, . . . , en) is the linear space spanned by the vectors e1, . . . , en;
Given bases e1, . . . , en and εεε1, . . . , εεεm in spaces V n and Wm, respectively, we

assign to a matrix A the operator A : V n −→ Wm which sends the vector



x1
...
xn




into the vector



y1
...
ym


 =



a11 . . . a1n
... . . .

...
am1 . . . amn






x1
...
xn


 .

Since yi =
n∑
j=1

aijxj , then

A(
n∑

j=1

xjej) =
m∑

i=1

n∑

j=1

aijxjεεεi;

in particular, Aej =
∑
i

aijεεεi;

in the whole book except for §37 the notation
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A > 0, A ≥ 0, A < 0 or A ≤ 0 denote that a real symmetric or Hermitian matrix
A is positive definite, nonnegative definite, negative definite or nonpositive definite,
respectively; A > B means that A−B > 0; whereas in §37 they mean that aij > 0
for all i, j, etc.

CardM is the cardinality of the set M , i.e, the number of elements of M ;
A|W denotes the restriction of the operator A : V −→ V onto the subspace

W ⊂ V ;
sup the least upper bound (supremum);
Z,Q,R,C,H,O denote, as usual, the sets of all integer, rational, real, complex,

quaternion and octonion numbers, respectively;
N denotes the set of all positive integers (without 0);

δij =
{

1 if i = j,

0 otherwise.
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DETERMINANTS

The notion of a determinant appeared at the end of 17th century in works of
Leibniz (1646–1716) and a Japanese mathematician, Seki Kova, also known as
Takakazu (1642–1708). Leibniz did not publish the results of his studies related
with determinants. The best known is his letter to l’Hospital (1693) in which
Leibniz writes down the determinant condition of compatibility for a system of three
linear equations in two unknowns. Leibniz particularly emphasized the usefulness
of two indices when expressing the coefficients of the equations. In modern terms
he actually wrote about the indices i, j in the expression xi =

∑
j aijyj .

Seki arrived at the notion of a determinant while solving the problem of finding
common roots of algebraic equations.

In Europe, the search for common roots of algebraic equations soon also became
the main trend associated with determinants. Newton, Bezout, and Euler studied
this problem.

Seki did not have the general notion of the derivative at his disposal, but he
actually got an algebraic expression equivalent to the derivative of a polynomial.
He searched for multiple roots of a polynomial f(x) as common roots of f(x) and
f ′(x). To find common roots of polynomials f(x) and g(x) (for f and g of small
degrees) Seki got determinant expressions. The main treatise by Seki was published
in 1674; there applications of the method are published, rather than the method
itself. He kept the main method in secret confiding only in his closest pupils.

In Europe, the first publication related to determinants, due to Cramer, ap-
peared in 1750. In this work Cramer gave a determinant expression for a solution
of the problem of finding the conic through 5 fixed points (this problem reduces to
a system of linear equations).

The general theorems on determinants were proved only ad hoc when needed to
solve some other problem. Therefore, the theory of determinants had been develop-
ing slowly, left behind out of proportion as compared with the general development
of mathematics. A systematic presentation of the theory of determinants is mainly
associated with the names of Cauchy (1789–1857) and Jacobi (1804–1851).

1. Basic properties of determinants

The determinant of a square matrix A =
∥∥aij

∥∥n
1

is the alternated sum

∑
σ

(−1)σa1σ(1)a2σ(2) . . . anσ(n),

where the summation is over all permutations σ ∈ Sn. The determinant of the
matrix A =

∥∥aij
∥∥n

1
is denoted by detA or |aij |n1 . If detA 6= 0, then A is called

invertible or nonsingular.
The following properties are often used to compute determinants. The reader

can easily verify (or recall) them.
1. Under the permutation of two rows of a matrix A its determinant changes

the sign. In particular, if two rows of the matrix are identical, detA = 0.

Typeset by AMS-TEX
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2. If A and B are square matrices, det
(
A C
0 B

)
= detA · detB.

3. |aij |n1 =
∑n
j=1(−1)i+jaijMij , where Mij is the determinant of the matrix

obtained from A by crossing out the ith row and the jth column of A (the row
(echelon) expansion of the determinant or, more precisely, the expansion with respect
to the ith row).

(To prove this formula one has to group the factors of aij , where j = 1, . . . , n,
for a fixed i.)

4.
∣∣∣∣∣∣∣

λα1 + µβ1 a12 . . . a1n
...

... · · · ...
λαn + µβn an2 . . . ann

∣∣∣∣∣∣∣
= λ

∣∣∣∣∣∣

α1 a12 . . . a1n
...

... · · · ...
αn an2 . . . ann

∣∣∣∣∣∣
+µ

∣∣∣∣∣∣∣

β1 a12 . . . a1n
...

... · · · ...
βn an2 . . . ann

∣∣∣∣∣∣∣
.

5. det(AB) = detAdetB.
6. det(AT ) = detA.

1.1. Before we start computing determinants, let us prove Cramer’s rule. It
appeared already in the first published paper on determinants.

Theorem (Cramer’s rule). Consider a system of linear equations

x1ai1 + · · ·+ xnain = bi (i = 1, . . . , n),

i.e.,
x1A1 + · · ·+ xnAn = B,

where Aj is the jth column of the matrix A =
∥∥aij

∥∥n
1

. Then

xi det(A1, . . . , An) = det (A1, . . . , B, . . . , An) ,

where the column B is inserted instead of Ai.

Proof. Since for j 6= i the determinant of the matrix det(A1, . . . , Aj , . . . , An),
a matrix with two identical columns, vanishes,

det(A1, . . . , B, . . . , An) = det (A1, . . . ,
∑
xjAj , . . . , An)

=
∑

xj det(A1, . . . , Aj , . . . , An) = xi det(A1, . . . , An). ¤

If det(A1, . . . , An) 6= 0 the formula obtained can be used to find solutions of a
system of linear equations.

1.2. One of the most often encountered determinants is the Vandermonde de-
terminant, i.e., the determinant of the Vandermonde matrix

V (x1, . . . , xn) =

∣∣∣∣∣∣∣

1 x1 x2
1 . . . xn−1

1
...

...
... · · · ...

1 xn x2
n . . . xn−1

n

∣∣∣∣∣∣∣
=

∏

i>j

(xi − xj).

To compute this determinant, let us subtract the (k − 1)-st column multiplied
by x1 from the kth one for k = n, n − 1, . . . , 2. The first row takes the form
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(1, 0, 0, . . . , 0), i.e., the computation of the Vandermonde determinant of order n
reduces to a determinant of order n−1. Factorizing each row of the new determinant
by bringing out xi − x1 we get

V (x1, . . . , xn) =
∏

i>1

(xi − x1)

∣∣∣∣∣∣∣

1 x2 x2
2 . . . xn−2

1
...

...
... · · · ...

1 xn x2
n . . . xn−2

n

∣∣∣∣∣∣∣
.

For n = 2 the identity V (x1, x2) = x2 − x1 is obvious, hence,

V (x1, . . . , xn) =
∏

i>j

(xi − xj).

Many of the applications of the Vandermonde determinant are occasioned by
the fact that V (x1, . . . , xn) = 0 if and only if there are two equal numbers among
x1, . . . , xn.

1.3. The Cauchy determinant |aij |n1 , where aij = (xi + yj)−1, is slightly more
difficult to compute than the Vandermonde determinant.

Let us prove by induction that

|aij |n1 =

∏
i>j

(xi − xj)(yi − yj)
∏
i,j

(xi + yj)
.

For a base of induction take |aij |11 = (x1 + y1)−1.
The step of induction will be performed in two stages.
First, let us subtract the last column from each of the preceding ones. We get

a′ij = (xi + yj)−1 − (xi + yn)−1 = (yn − yj)(xi + yn)−1(xi + yj)−1 for j 6= n.

Let us take out of each row the factors (xi + yn)−1 and take out of each column,
except the last one, the factors yn − yj . As a result we get the determinant |bij |n1 ,
where bij = aij for j 6= n and bin = 1.

To compute this determinant, let us subtract the last row from each of the
preceding ones. Taking out of each row, except the last one, the factors xn − xi
and out of each column, except the last one, the factors (xn + yj)−1 we make it
possible to pass to a Cauchy determinant of lesser size.

1.4. A matrix A of the form


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . . . . . . . .

...

0 0 0
. . . 1 0

0 0 0 . . . 0 1
a0 a1 a2 . . . an−2 an−1




is called Frobenius’ matrix or the companion matrix of the polynomial

p(λ) = λn − an−1λ
n−1 − an−2λ

n−2 − · · · − a0.

With the help of the expansion with respect to the first row it is easy to verify by
induction that

det(λI −A) = λn − an−1λ
n−1 − an−2λ

n−2 − · · · − a0 = p(λ).



1. BASIC PROPERTIES OF DETERMINANTS 15

1.5. Let bi, i ∈ Z, such that bk = bl if k ≡ l (mod n) be given; the matrix∥∥aij
∥∥n

1
, where aij = bi−j , is called a circulant matrix.

Let ε1, . . . , εn be distinct nth roots of unity; let

f(x) = b0 + b1x+ · · ·+ bn−1x
n−1.

Let us prove that the determinant of the circulant matrix |aij |n1 is equal to

f(ε1)f(ε2) . . . f(εn).

It is easy to verify that for n = 3 we have



1 1 1
1 ε1 ε2

1

1 ε2 ε2
2






b0 b2 b1
b1 b0 b2
b2 b1 b0






f(1) f(1) f(1)
f(ε1) ε1f(ε1) ε2

1f(ε1)
f(ε2) ε2f(ε2) ε2

2f(ε2)




= f(1)f(ε1)f(ε2)




1 1 1
1 ε1 ε2

1

1 ε2 ε2
2


 .

Therefore,
V (1, ε1, ε2)|aij |31 = f(1)f(ε1)f(ε2)V (1, ε1, ε2).

Taking into account that the Vandermonde determinant V (1, ε1, ε2) does not
vanish, we have:

|aij |31 = f(1)f(ε1)f(ε2).

The proof of the general case is similar.

1.6. A tridiagonal matrix is a square matrix J =
∥∥aij

∥∥n
1
, where aij = 0 for

|i− j| > 1.
Let ai = aii for i = 1, . . . , n, let bi = ai,i+1 and ci = ai+1,i for i = 1, . . . , n − 1.

Then the tridiagonal matrix takes the form



a1 b1 0 . . . 0 0 0
c1 a2 b2 . . . 0 0 0

0 c2 a3
. . . 0 0 0

...
...

...
. . . . . .

...
...

0 0 0
. . . an−2 bn−2 0

0 0 0 . . . cn−2 an−1 bn−1

0 0 0 . . . 0 cn−1 an




.

To compute the determinant of this matrix we can make use of the following
recurrent relation. Let ∆0 = 1 and ∆k = |aij |k1 for k ≥ 1.

Expanding
∥∥aij

∥∥k
1

with respect to the kth row it is easy to verify that

∆k = ak∆k−1 − bk−1ck−1∆k−2 for k ≥ 2.

The recurrence relation obtained indicates, in particular, that ∆n (the determinant
of J) depends not on the numbers bi, cj themselves but on their products of the
form bici.
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The quantity

(a1 . . . an) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 . . . 0 0 0
−1 a2 1 . . . 0 0 0

0 −1 a3
. . . 0 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . an−2 1 0

0 0 0
. . . −1 an−1 1

0 0 0 . . . 0 −1 an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

is associated with continued fractions, namely:

a1 +
1

a2 +
1

a3+...
+

1

an−1 +
1
an

=
(a1a2 . . . an)
(a2a3 . . . an)

.

Let us prove this equality by induction. Clearly,

a1 +
1
a2

=
(a1a2)
(a2)

.

It remains to demonstrate that

a1 +
1

(a2a3 . . . an)
(a3a4 . . . an)

=
(a1a2 . . . an)
(a2a3 . . . an)

,

i.e., a1(a2 . . . an) + (a3 . . . an) = (a1a2 . . . an). But this identity is a corollary of the
above recurrence relation, since (a1a2 . . . an) = (an . . . a2a1).

1.7. Under multiplication of a row of a square matrix by a number λ the de-
terminant of the matrix is multiplied by λ. The determinant of the matrix does
not vary when we replace one of the rows of the given matrix with its sum with
any other row of the matrix. These statements allow a natural generalization to
simultaneous transformations of several rows.

Consider the matrix
(
A11 A12

A21 A22

)
, where A11 and A22 are square matrices of

order m and n, respectively.
Let D be a square matrix of order m and B a matrix of size n×m.

Theorem.

∣∣∣∣
DA11 DA12

A21 A22

∣∣∣∣ = |D| · |A| and
∣∣∣∣

A11 A12

A21 +BA11 A22 +BA12.

∣∣∣∣ = |A|

Proof. (
DA11 DA12

A21 A22

)
=

(
D 0
0 I

)(
A11 A12

A21 A22

)
and

(
A11 A12

A21 +BA11 A22 +BA12

)
=

(
I 0
B I

) (
A11 A12

A21 A22

)
. ¤
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Problems

1.1. Let A =
∥∥aij

∥∥n
1

be skew-symmetric, i.e., aij = −aji, and let n be odd.
Prove that |A| = 0.

1.2. Prove that the determinant of a skew-symmetric matrix of even order does
not change if to all its elements we add the same number.

1.3. Compute the determinant of a skew-symmetric matrix An of order 2n with
each element above the main diagonal being equal to 1.

1.4. Prove that for n ≥ 3 the terms in the expansion of a determinant of order
n cannot be all positive.

1.5. Let aij = a|i−j|. Compute |aij |n1 .

1.6. Let ∆3 =

∣∣∣∣∣∣∣

1 −1 0 0
x h −1 0
x2 hx h −1
x3 hx2 hx h

∣∣∣∣∣∣∣
and define ∆n accordingly. Prove that

∆n = (x+ h)n.
1.7. Compute |cij |n1 , where cij = aibj for i 6= j and cii = xi.
1.8. Let ai,i+1 = ci for i = 1, . . . , n, the other matrix elements being zero. Prove

that the determinant of the matrix I +A+A2 + · · ·+An−1 is equal to (1− c)n−1,
where c = c1 . . . cn.

1.9. Compute |aij |n1 , where aij = (1− xiyj)−1.
1.10. Let aij =

(
n+i
j

)
. Prove that |aij |m0 = 1.

1.11. Prove that for any real numbers a, b, c, d, e and f

∣∣∣∣∣∣

(a+ b)de− (d+ e)ab ab− de a+ b− d− e
(b+ c)ef − (e+ f)bc bc− ef b+ c− e− f
(c+ d)fa− (f + a)cd cd− fa c+ d− f − a

∣∣∣∣∣∣
= 0.

Vandermonde’s determinant.
1.12. Compute

∣∣∣∣∣∣∣

1 x1 . . . xn−2
1 (x2 + x3 + · · ·+ xn)n−1

...
... · · · ...

...
1 xn . . . xn−2

n (x1 + x2 + · · ·+ xn−1)n−1

∣∣∣∣∣∣∣
.

1.13. Compute ∣∣∣∣∣∣∣

1 x1 . . . xn−2
1 x2x3 . . . xn

...
... · · · ...

...
1 xn . . . xn−2

n x1x2 . . . xn−1

∣∣∣∣∣∣∣
.

1.14. Compute |aik|n0 , where aik = λn−ki (1 + λ2
i )
k.

1.15. Let V =
∥∥aij

∥∥n
0
, where aij = xj−1

i , be a Vandermonde matrix; let Vk be
the matrix obtained from V by deleting its (k+ 1)st column (which consists of the
kth powers) and adding instead the nth column consisting of the nth powers. Prove
that

detVk = σn−k(x1, . . . , xn) detV.

1.16. Let aij =
(
in
j

)
. Prove that |aij |r1 = nr(r+1)/2 for r ≤ n.
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1.17. Given k1, . . . , kn ∈ Z, compute |aij |n1 , where

ai,j =





1
(ki + j − i)! for ki + j − i ≥ 0 ,

aij = 0 for ki + j − i < 0.

1.18. Let sk = p1x
k
1 + · · ·+ pnx

k
n, and ai,j = si+j . Prove that

|aij |n−1
0 = p1 . . . pn

∏

i>j

(xi − xj)2.

1.19. Let sk = xk1 + · · ·+ xkn. Compute

∣∣∣∣∣∣∣∣

s0 s1 . . . sn−1 1
s1 s2 . . . sn y
...

... · · · ...
...

sn sn+1 . . . s2n−1 yn

∣∣∣∣∣∣∣∣
.

1.20. Let aij = (xi + yj)n. Prove that

|aij |n0 =
(
n

1

)
. . .

(
n

n

)
·
∏

i>k

(xi − xk)(yk − yi).

1.21. Find all solutions of the system




λ1 + · · ·+ λn = 0
. . . . . . . . . . . .

λn1 + · · ·+ λnn = 0

in C.
1.22. Let σk(x0, . . . , xn) be the kth elementary symmetric function. Set: σ0 = 1,

σk(x̂i) = σk(x0, . . . , xi−1, xi+1, . . . , xn). Prove that if aij = σi(x̂j) then |aij |n0 =∏
i<j(xi − xj).
Relations among determinants.
1.23. Let bij = (−1)i+jaij . Prove that |aij |n1 = |bij |n1 .
1.24. Prove that

∣∣∣∣∣∣∣

a1c1 a2d1 a1c2 a2d2

a3c1 a4d1 a3c2 a4d2

b1c3 b2d3 b1c4 b2d4

b3c3 b4d3 b3c4 b4d4

∣∣∣∣∣∣∣
=

∣∣∣∣
a1 a2

a3 a4

∣∣∣∣ ·
∣∣∣∣
b1 b2
b3 b4

∣∣∣∣ ·
∣∣∣∣
c1 c2
c3 c4

∣∣∣∣ ·
∣∣∣∣
d1 d2

d3 d4

∣∣∣∣ .

1.25. Prove that
∣∣∣∣∣∣∣∣∣∣∣

a1 0 0 b1 0 0
0 a2 0 0 b2 0
0 0 a3 0 0 b3
b11 b12 b13 a11 a12 a13

b21 b22 b23 a21 a22 a23

b31 b32 b33 a31 a32 a33

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

a1a11 − b1b11 a2a12 − b2b12 a3a13 − b3b13

a1a21 − b1b21 a2a22 − b2b22 a3a23 − b3b23

a1a31 − b1b31 a2a32 − b2b32 a3a33 − b3b33

∣∣∣∣∣∣
.
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1.26. Let sk =
∑n
i=1 aki. Prove that

∣∣∣∣∣∣

s1 − a11 . . . s1 − a1n
... · · · ...

sn − an1 . . . sn − ann

∣∣∣∣∣∣
= (−1)n−1(n− 1)

∣∣∣∣∣∣

a11 . . . a1n
... · · · ...
an1 . . . ann

∣∣∣∣∣∣
.

1.27. Prove that
∣∣∣∣∣∣∣

(
n
m1

) (
n

m1−1

)
. . .

(
n

m1−k
)

...
... · · · ...(

n
mk

) (
n

mk−1

)
. . .

(
n

mk−k
)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

(
n
m1

) (
n+1
m1

)
. . .

(
n+k
m1

)
...

... · · · ...(
n
mk

) (
n+1
mk

)
. . .

(
n+k
mk

)

∣∣∣∣∣∣∣
.

1.28. Let ∆n(k) = |aij |n0 , where aij =
(
k+i
2j

)
. Prove that

∆n(k) =
k(k + 1) . . . (k + n− 1)

1 · 3 . . . (2n− 1)
∆n−1(k − 1).

1.29. Let Dn = |aij |n0 , where aij =
(
n+i
2j−1

)
. Prove that Dn = 2n(n+1)/2.

1.30. Given numbers a0, a1, ..., a2n, let bk =
∑k
i=0(−1)i

(
k
i

)
ai (k = 0, . . . , 2n);

let aij = ai+j , and bij = bi+j . Prove that |aij |n0 = |bij |n0 .

1.31. Let A =
(
A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)
, where A11 and B11, and

also A22 and B22, are square matrices of the same size such that rankA11 = rankA
and rankB11 = rankB. Prove that

∣∣∣∣
A11 B12

A21 B22

∣∣∣∣ ·
∣∣∣∣
A11 A12

B21 B22

∣∣∣∣ = |A+B| · |A11| · |B22| .

1.32. Let A and B be square matrices of order n. Prove that |A| · |B| =∑n
k=1 |Ak| · |Bk|, where the matrices Ak and Bk are obtained from A and B, re-

spectively, by interchanging the respective first and kth columns, i.e., the first
column of A is replaced with the kth column of B and the kth column of B is
replaced with the first column of A.

2. Minors and cofactors

2.1. There are many instances when it is convenient to consider the determinant
of the matrix whose elements stand at the intersection of certain p rows and p
columns of a given matrix A. Such a determinant is called a pth order minor of A.
For convenience we introduce the following notation:

A

(
i1 . . . ip
k1 . . . kp

)
=

∣∣∣∣∣∣∣

ai1k1 ai1k2 . . . ai1kp
...

... · · · ...
aipk1 aipk2 . . . aipkp

∣∣∣∣∣∣∣
.

If i1 = k1, . . . , ip = kp, the minor is called a principal one.

2.2. A nonzero minor of the maximal order is called a basic minor and its order
is called the rank of the matrix.



20 DETERMINANTS

Theorem. If A
(
i1...ip
k1...kp

)
is a basic minor of a matrix A, then the rows of A

are linear combinations of rows numbered i1, . . . , ip and these rows are linearly
independent.

Proof. The linear independence of the rows numbered i1, . . . , ip is obvious since
the determinant of a matrix with linearly dependent rows vanishes.

The cases when the size of A is m× p or p×m are also clear.
It suffices to carry out the proof for the minor A

(
1 ...p
1 ...p

)
. The determinant

∣∣∣∣∣∣∣∣

a11 . . . a1p a1j

... · · · ...
...

ap1 . . . app apj
ai1 . . . aip aij

∣∣∣∣∣∣∣∣

vanishes for j ≤ p as well as for j > p. Its expansion with respect to the last column
is a relation of the form

a1jc1 + a2jc2 + · · ·+ apjcp + aijc = 0,

where the numbers c1, . . . , cp, c do not depend on j (but depend on i) and c =
A

(
1 ...p
1 ...p

) 6= 0. Hence, the ith row is equal to the linear combination of the first p

rows with the coefficients
−c1
c

, . . . ,
−cp
c

, respectively. ¤

2.2.1. Corollary. If A
(
i1 ...ip
k1 ...kp

)
is a basic minor then all rows of A belong to

the linear space spanned by the rows numbered i1, . . . , ip; therefore, the rank of A is
equal to the maximal number of its linearly independent rows.

2.2.2. Corollary. The rank of a matrix is also equal to the maximal number
of its linearly independent columns.

2.3. Theorem (The Binet-Cauchy formula). Let A and B be matrices of size
n×m and m× n, respectively, and n ≤ m. Then

detAB =
∑

1≤k1<k2<···<kn≤m
Ak1...knB

k1...kn ,

where Ak1...kn is the minor obtained from the columns of A whose numbers are
k1, . . . , kn and Bk1...kn is the minor obtained from the rows of B whose numbers
are k1, . . . , kn.

Proof. Let C = AB, cij =
∑m
k=1 aikbki. Then

detC =
∑
σ

(−1)σ
∑

k1

a1k1bk1σ(1) · · ·
∑

kn

bknσ(n)

=
m∑

k1,...,kn=1

a1k1 . . . ankn
∑
σ

(−1)σbk1σ(1) . . . bknσ(n)

=
m∑

k1,...,kn=1

a1k1 . . . anknB
k1...kn .
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The minor Bk1...kn is nonzero only if the numbers k1, . . . , kn are distinct; there-
fore, the summation can be performed over distinct numbers k1, . . . , kn. Since
Bτ(k1)...τ(kn) = (−1)τBk1...kn for any permutation τ of the numbers k1, . . . , kn,
then

m∑

k1,...,kn=1

a1k1 . . . anknB
k1...kn =

∑

k1<k2<···<kn
(−1)τa1τ(1) . . . anτ(n)B

k1...kn

=
∑

1≤k1<k2<···<kn≤m
Ak1...knB

k1...kn . ¤

Remark. Another proof is given in the solution of Problem 28.7

2.4. Recall the formula for expansion of the determinant of a matrix with respect
to its ith row:

(1) |aij |n1 =
n∑

j=1

(−1)i+jaijMij,

where Mij is the determinant of the matrix obtained from the matrix A =
∥∥aij

∥∥n
1

by deleting its ith row and jth column. The number Aij = (−1)i+jMij is called
the cofactor of the element aij in A.

It is possible to expand a determinant not only with respect to one row, but also
with respect to several rows simultaneously.

Fix rows numbered i1, . . . , ip, where i1 < i2 < · · · < ip. In the expansion of
the determinant of A there occur products of terms of the expansion of the minor
A

(
i1 ...ip
j1 ...jp

)
by terms of the expansion of the minor A

(
ip+1 ...in
jp+1 ...jn

)
, where j1 < · · · <

jp; ip+1 < · · · < in; jp+1 < · · · < jn and there are no other terms in the expansion
of the determinant of A.

To compute the signs of these products let us shuffle the rows and the columns
so as to place the minor A

(
i1 ...ip
j1 ...jp

)
in the upper left corner. To this end we have to

perform

(i1 − 1) + · · ·+ (ip − p) + (j1 − 1) + · · ·+ (jp − p) ≡ i+ j (mod 2)

permutations, where i = i1 + · · ·+ ip, j = j1 + · · ·+ jp.
The number (−1)i+jA

(
ip+1 ...in
jp+1 ...jn

)
is called the cofactor of the minor A

(
i1 ...ip
j1 ...jp

)
.

We have proved the following statement:

2.4.1. Theorem (Laplace). Fix p rows of the matrix A. Then the sum of
products of the minors of order p that belong to these rows by their cofactors is
equal to the determinant of A.

The matrix adjA = (Aij)T is called the (classical) adjoint1 of A. Let us prove
that A · (adjA) = |A| · I. To this end let us verify that

∑n
j=1 aijAkj = δki|A|.

For k = i this formula coincides with (1). If k 6= i, replace the kth row of A with
the ith one. The determinant of the resulting matrix vanishes; its expansion with
respect to the kth row results in the desired identity:

0 =
n∑

j=1

a′kjAkj =
n∑

j=1

aijAkj .

1We will briefly write adjoint instead of the classical adjoint.
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If A is invertible then A−1 =
adjA
|A| .

2.4.2. Theorem. The operation adj has the following properties:
a) adjAB = adjB · adjA;
b) adjXAX−1 = X(adjA)X−1;
c) if AB = BA then (adjA)B = B(adjA).

Proof. If A and B are invertible matrices, then (AB)−1 = B−1A−1. Since for
an invertible matrix A we have adjA = A−1|A|, headings a) and b) are obvious.
Let us consider heading c).

If AB = BA and A is invertible, then

A−1B = A−1(BA)A−1 = A−1(AB)A−1 = BA−1.

Therefore, for invertible matrices the theorem is obvious.
In each of the equations a) – c) both sides continuously depend on the elements of

A and B. Any matrix A can be approximated by matrices of the form Aε = A+ εI
which are invertible for sufficiently small nonzero ε. (Actually, if a1, . . . , ar is the
whole set of eigenvalues of A, then Aε is invertible for all ε 6= −ai.) Besides, if
AB = BA, then AεB = BAε. ¤

2.5. The relations between the minors of a matrix A and the complementary to
them minors of the matrix (adjA)T are rather simple.

2.5.1. Theorem. Let A =
∥∥aij

∥∥n
1

, (adjA)T = |Aij |n1 , 1 ≤ p < n. Then
∣∣∣∣∣∣∣

A11 . . . A1p

... · · · ...
Ap1 . . . App

∣∣∣∣∣∣∣
= |A|p−1

∣∣∣∣∣∣∣

ap+1,p+1 . . . ap+1,n

... · · · ...
an,p+1 . . . ann

∣∣∣∣∣∣∣
.

Proof. For p = 1 the statement coincides with the definition of the cofactor
A11. Let p > 1. Then the identity




A11 . . . A1p

... · · · ...
Ap1 . . . App

A1,p+1 . . . A1n

... · · · ...
Ap,p+1 . . . Apn

0 I






a11 . . . an1
... · · · ...
a1n . . . ann




=

∣∣∣∣∣∣∣∣∣∣∣∣

|A| 0
· · ·

0 |A|
0

a1,p+1 . . .
... · · ·
a1n . . .

. . . an,p+1

· · · ...
. . . ann

∣∣∣∣∣∣∣∣∣∣∣∣

.

implies that
∣∣∣∣∣∣∣

A11 . . . A1p

... · · · ...
Ap1 . . . App

∣∣∣∣∣∣∣
· |A| = |A|p ·

∣∣∣∣∣∣∣

ap+1,p+1 . . . ap+1,n

... · · · ...
an,p+1 . . . ann

∣∣∣∣∣∣∣
.



2. MINORS AND COFACTORS 23

If |A| 6= 0, then dividing by |A| we get the desired conclusion. For |A| = 0 the
statement follows from the continuity of the both parts of the desired identity with
respect to aij . ¤

Corollary. If A is not invertible then rank(adjA) ≤ 1.

Proof. For p = 2 we get

∣∣∣∣
A11 A12

A21 A22

∣∣∣∣ = |A| ·
∣∣∣∣∣∣

a33 . . . a3n
... · · · ...
an3 . . . ann

∣∣∣∣∣∣
= 0.

Besides, the transposition of any two rows of the matrix A induces the same trans-
position of the columns of the adjoint matrix and all elements of the adjoint matrix
change sign (look what happens with the determinant of A and with the matrix
A−1 for an invertible A under such a transposition). ¤

Application of transpositions of rows and columns makes it possible for us to
formulate Theorem 2.5.1 in the following more general form.

2.5.2. Theorem (Jacobi). Let A =
∥∥aij

∥∥n
1

, (adjA)T =
∥∥Aij

∥∥n
1

, 1 ≤ p < n,

σ =
(
i1 . . . in
j1 . . . jn

)
an arbitrary permutation. Then

∣∣∣∣∣∣∣

Ai1j1 . . . Ai1jp
... · · · ...

Aipj1 . . . Aipjp

∣∣∣∣∣∣∣
= (−1)σ

∣∣∣∣∣∣∣

aip+1,jp+1 . . . aip+1,jn

... · · · ...
ain,jp+1 . . . ain,jn

∣∣∣∣∣∣∣
· |A|p−1.

Proof. Let us consider matrix B =
∥∥bkl

∥∥n
1
, where bkl = aikjl . It is clear that

|B| = (−1)σ|A|. Since a transposition of any two rows (resp. columns) of A induces
the same transposition of the columns (resp. rows) of the adjoint matrix and all
elements of the adjoint matrix change their sings, Bkl = (−1)σAikjl .

Applying Theorem 2.5.1 to matrix B we get

∣∣∣∣∣∣∣

(−1)σAi1j1 . . . (−1)σAi1jp
... · · · ...

(−1)σAipj1 . . . (−1)σAipjp

∣∣∣∣∣∣∣
= ((−1)σ)p−1

∣∣∣∣∣∣∣

aip+1,jp+1 . . . aip+1,jn

... · · · ...
ain,jp+1 . . . ain,jn

∣∣∣∣∣∣∣
.

By dividing the both parts of this equality by ((−1)σ)p we obtain the desired. ¤

2.6. In addition to the adjoint matrix of A it is sometimes convenient to consider
the compound matrix

∥∥Mij

∥∥n
1

consisting of the (n − 1)st order minors of A. The
determinant of the adjoint matrix is equal to the determinant of the compound one
(see, e.g., Problem 1.23).

For a matrix A of size m× n we can also consider a matrix whose elements are

rth order minors A
(
i1 . . . ir
j1 . . . jr

)
, where r ≤ min(m,n). The resulting matrix
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Cr(A) is called the rth compound matrix of A. For example, if m = n = 3 and
r = 2, then

C2(A) =




A

(
12
12

)
A

(
12
13

)
A

(
12
23

)

A

(
13
12

)
A

(
13
13

)
A

(
13
23

)

A

(
23
12

)
A

(
23
13

)
A

(
23
23

)



.

Making use of Binet–Cauchy’s formula we can show that Cr(AB) = Cr(A)Cr(B).
For a square matrix A of order n we have the Sylvester identity

detCr(A) = (detA)p, where p =
(
n− 1
r − 1

)
.

The simplest proof of this statement makes use of the notion of exterior power
(see Theorem 28.5.3).

2.7. Let 1 ≤ m ≤ r < n, A =
∥∥aij

∥∥n
1
. Set An = |aij |n1 , Am = |aij |m1 . Consider

the matrix Srm,n whose elements are the rth order minors of A containing the left
upper corner principal minor Am. The determinant of Srm,n is a minor of order(
n−m
r−m

)
of Cr(A). The determinant of Srm,n can be expressed in terms of Am and

An.

Theorem (Generalized Sylvester’s identity, [Mohr,1953]).

(1) |Srm,n| = ApmA
q
n, where p =

(
n−m− 1
r −m

)
, q =

(
n−m− 1
r −m− 1

)
.

Proof. Let us prove identity (1) by induction on n. For n = 2 it is obvious.
The matrix Sr0,n coincides with Cr(A) and since |Cr(A)| = Aqn, where q =

(
n−1
r−1

)
(see Theorem 28.5.3), then (1) holds for m = 0 (we assume that A0 = 1). Both
sides of (1) are continuous with respect to aij and, therefore, it suffices to prove
the inductive step when a11 6= 0.

All minors considered contain the first row and, therefore, from the rows whose
numbers are 2, . . . , n we can subtract the first row multiplied by an arbitrary factor;
this operation does not affect det(Srm,n). With the help of this operation all elements
of the first column of A except a11 can be made equal to zero. Let A be the matrix
obtained from the new one by strikinging out the first column and the first row, and
let S

r−1

m−1,n−1 be the matrix composed of the minors of order r − 1 of A containing
its left upper corner principal minor of order m− 1.

Obviously, Srm,n = a11S
r−1

m−1,n−1 and we can apply to S
r−1

m−1,n−1 the inductive
hypothesis (the case m − 1 = 0 was considered separately). Besides, if Am−1 and
An−1 are the left upper corner principal minors of orders m − 1 and n − 1 of A,
respectively, then Am = a11Am−1 and An = a11An−1. Therefore,

|Srm,n| = at11A
p1

m−1A
q1
n−1 = at−p1−q1

11 Ap1
mA

q1
n ,

where t =
(
n−m
r−m

)
, p1 =

(
n−m−1
r−m

)
= p and q1 =

(
n−m−1
r−m−1

)
= q. Taking into account

that t = p+ q, we get the desired conclusion. ¤
Remark. Sometimes the term “Sylvester’s identity” is applied to identity (1)

not only for m = 0 but also for r = m+ 1, i.e., |Sm+1
m,n | = An−mm An
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2.8 Theorem (Chebotarev). Let p be a prime and ε = exp(2πi/p). Then all
minors of the Vandermonde matrix

∥∥aij
∥∥p−1

0
, where aij = εij, are nonzero.

Proof (Following [Reshetnyak, 1955]). Suppose that
∣∣∣∣∣∣∣∣

εk1l1 . . . εk1lj

εk2l1 . . . εk2lj

... · · · ...
εkj l1 . . . εkj lj

∣∣∣∣∣∣∣∣
= 0.

Then there exist complex numbers c1, . . . , cj not all equal to 0 such that the linear
combination of the corresponding columns with coefficients c1, . . . , cj vanishes, i.e.,
the numbers εk1 , . . . , εkj are roots of the polynomial c1xl1 + · · ·+ cjx

lj . Let

(1) (x− εk1) . . . (x− εkj ) = xj − b1xj−1 + · · · ± bj .
Then

(2) c1x
l1 + · · ·+ cjx

lj = (b0xj − b1xj−1 + · · · ± bj)(asxs + · · ·+ a0),

where b0 = 1 and as 6= 0. For convenience let us assume that bt = 0 for t > j
and t < 0. The coefficient of xj+s−t in the right-hand side of (2) is equal to
±(asbt − as−1bt−1 + · · · ± a0bt−s). The degree of the polynomial (2) is equal to
s+ j and it is only the coefficients of the monomials of degrees l1, . . . , lj that may
be nonzero and, therefore, there are s+ 1 zero coefficients:

asbt − as−1bt−1 + · · · ± a0bt−s = 0 for t = t0, t1, . . . , ts

The numbers a0, . . . , as−1, as are not all zero and therefore, |ckl|s0 = 0 for ckl = bt,
where t = tk − l.

Formula (1) shows that bt can be represented in the form ft(ε), where ft is a
polynomial with integer coefficients and this polynomial is the sum of

(
j
t

)
powers

of ε; hence, ft(1) =
(
j
t

)
. Since ckl = bt = ft(ε), then |ckl|s0 = g(ε) and g(1) = |c′kl|s0,

where c′kl =
(

j
tk−l

)
. The polynomial q(x) = xp−1+· · ·+x+1 is irreducible over Z (see

Appendix 2) and q(ε) = 0. Therefore, g(x) = q(x)ϕ(x), where ϕ is a polynomial
with integer coefficients (see Appendix 1). Therefore, g(1) = q(1)ϕ(1) = pϕ(1), i.e.,
g(1) is divisible by p.

To get a contradiction it suffices to show that the number g(1) = |c′kl|s0, where
c′kl =

(
j

tk−l
)
, 0 ≤ tk ≤ j + s and 0 < j + s ≤ p− 1, is not divisible by p. It is easy

to verify that ∆ = |c′kl|s0 = |akl|s0, where akl =
(
j+l
tk

)
(see Problem 1.27). It is also

clear that(
j + l

t

)
=

(
1− t

j + l + 1

)
. . .

(
1− t

j + s

)(
j + s

t

)
= ϕs−l(t)

(
j + s

t

)
.

Hence,

∆ =
s∏

λ=0

(
j + s

tλ

)
∣∣∣∣∣∣∣∣

ϕs(t0) ϕs−1(t0) . . . 1
ϕs(t1) ϕs−1(t1) . . . 1

...
... · · · ...

ϕs(ts) ϕs−1(ts) . . . 1

∣∣∣∣∣∣∣∣
= ±

s∏

λ=0

((
j + s

tλ

)
Aλ

) ∏
µ>ν

(tµ − tν),

where A0, A1, . . . , As are the coefficients of the highest powers of t in the polynomi-
als ϕ0(t), ϕ1(t), . . . , ϕs(t), respectively, where ϕ0(t) = 1; the degree of ϕi(t) is equal
to i. Clearly, the product obtained has no irreducible fractions with numerators
divisible by p, because j + s < p. ¤



26 DETERMINANTS

Problems

2.1. Let An be a matrix of size n×n. Prove that |A+λI| = λn+
∑n
k=1 Skλ

n−k,
where Sk is the sum of all

(
n
k

)
principal kth order minors of A.

2.2. Prove that
∣∣∣∣∣∣∣∣

a11 . . . a1n x1
... · · · ...

...
an1 . . . ann xn
y1 . . . yn 0

∣∣∣∣∣∣∣∣
= −

∑

i,j

xiyjAij ,

where Aij is the cofactor of aij in
∥∥aij

∥∥n
1
.

2.3. Prove that the sum of principal k-minors of ATA is equal to the sum of
squares of all k-minors of A.

2.4. Prove that
∣∣∣∣∣∣∣∣

u1a11 . . . una1n

a21 . . . a2n
... · · · ...
an1 . . . ann

∣∣∣∣∣∣∣∣
+ · · ·+

∣∣∣∣∣∣∣∣

a11 . . . a1n

a21 . . . a2n
... · · · ...

u1an1 . . . unann

∣∣∣∣∣∣∣∣
= (u1 + · · ·+ un)|A|.

Inverse and adjoint matrices

2.5. Let A and B be square matrices of order n. Compute


I A C
0 I B
0 0 I



−1

.

2.6. Prove that the matrix inverse to an invertible upper triangular matrix is
also an upper triangular one.

2.7. Give an example of a matrix of order n whose adjoint has only one nonzero
element and this element is situated in the ith row and jth column for given i and
j.

2.8. Let x and y be columns of length n. Prove that

adj(I − xyT ) = xyT + (1− yTx)I.

2.9. Let A be a skew-symmetric matrix of order n. Prove that adjA is a sym-
metric matrix for odd n and a skew-symmetric one for even n.

2.10. Let An be a skew-symmetric matrix of order n with elements +1 above
the main diagonal. Calculate adjAn.

2.11. The matrix adj(A− λI) can be expressed in the form
∑n−1
k=0 λ

kAk, where
n is the order of A. Prove that:

a) for any k (1 ≤ k ≤ n− 1) the matrix AkA−Ak−1 is a scalar matrix;
b) the matrix An−s can be expressed as a polynomial of degree s− 1 in A.
2.12. Find all matrices A with nonnegative elements such that all elements of

A−1 are also nonnegative.
2.13. Let ε = exp(2πi/n); A =

∥∥aij
∥∥n

1
, where aij = εij . Calculate the matrix

A−1.
2.14. Calculate the matrix inverse to the Vandermonde matrix V .
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3. The Schur complement

3.1. Let P =
(
A B
C D

)
be a block matrix with square matrices A and D. In

order to facilitate the computation of detP we can factorize the matrix P as follows:

(1)
(
A B
C D

)
=

(
A 0
C I

)(
I Y
0 X

)
=

(
A AY
C CY +X

)
.

The equations B = AY and D = CY + X are solvable when the matrix A is
invertible. In this case Y = A−1B and X = D−CA−1B. The matrix D−CA−1B
is called the Schur complement of A in P , and is denoted by (P |A). It is clear
that detP = detAdet(P |A).

It is easy to verify that

(
A AY
C CY +X

)
=

(
A 0
C X

)(
I Y
0 I

)
.

Therefore, instead of the factorization (1) we can write

(2) P =
(
A 0
C (P |A)

)(
I A−1B
0 I

)

=
(

I 0
CA−1 I

) (
A 0
0 (P |A)

)(
I A−1B
0 I

)
.

If the matrix D is invertible we have an analogous factorization

P =
(
I BD−1

0 I

)(
A−BD−1C 0

0 D

)(
I 0

D−1C I

)
.

We have proved the following assertion.

3.1.1. Theorem. a) If |A| 6= 0 then |P | = |A| · |D − CA−1B|;
b) If |D| 6= 0 then |P | = |A−BD−1C| · |D|.
Another application of the factorization (2) is a computation of P−1. Clearly,

(
I X
0 I

)−1

=
(
I −X
0 I

)
.

This fact together with (2) gives us formula

P−1 =
(
A−1 +A−1BX−1CA−1 −A−1BX−1

−X−1CA−1 X−1

)
, where X = (P |A).

3.1.2. Theorem. If A and D are square matrices of order n, |A| 6= 0, and
AC = CA, then |P | = |AD − CB|.

Proof. By Theorem 3.1.1

|P | = |A| · |D − CA−1B| = |AD −ACA−1B| = |AD − CB|. ¤
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Is the above condition |A| 6= 0 necessary? The answer is “no”, but in certain
similar situations the answer is “yes”. If, for instance, CDT = −DCT , then

|P | = |A−BD−1C| · |DT | = |ADT +BCT |.

This equality holds for any invertible matrix D. But if

A =
(

1 0
0 0

)
, B =

(
0 0
0 1

)
, C =

(
0 1
0 0

)
and D =

(
0 0
1 0

)
,

then
CDT = −DCT = 0 and |ADT +BCT | = −1 6= 1 = P.

Let us return to Theorem 3.1.2. The equality |P | = |AD −CB| is a polynomial
identity for the elements of the matrix P . Therefore, if there exist invertible ma-
trices Aε such that lim

ε→0
Aε = A and AεC = CAε, then this equality holds for the

matrix A as well. Given any matrix A, consider Aε = A+ εI. It is easy to see (cf.
2.4.2) that the matrices Aε are invertible for every sufficiently small nonzero ε, and
if AC = CA then AεC = CAε. Hence, Theorem 3.1.2 is true even if |A| = 0.

3.1.3. Theorem. Suppose u is a row, v is a column, and a is a number. Then

∣∣∣∣
A v
u a

∣∣∣∣ = a |A| − u(adjA)v.

Proof. By Theorem 3.1.1

∣∣∣∣
A v
u a

∣∣∣∣ = |A|(a− uA−1v) = a |A| − u(adjA)v

if the matrix A is invertible. Both sides of this equality are polynomial functions
of the elements of A. Hence, the theorem is true, by continuity, for noninvertible
A as well. ¤

3.2. Let A =

∣∣∣∣∣∣

A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣
, B =

∣∣∣∣
A11 A12

A21 A22

∣∣∣∣ and C = A11 be square

matrices, and let B and C be invertible. The matrix (B|C) = A22 − A21A
−1
11 A12

may be considered as a submatrix of the matrix

(A|C) =
(
A22 A23

A32 A33

)
−

(
A21

A31

)
A−1

11 (A12 A13).

Theorem (Emily Haynsworth). (A|B) = ((A|C)|(B|C)).

Proof (Following [Ostrowski, 1973]). Consider two factorizations of A:

(1) A =



A11 0 0
A21 I 0
A31 0 I




(
I ∗ ∗
0
0 (A|C)

)
,
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(2) A =



A11 A12 0
A21 A22 0
A31 A32 I






I 0 ∗
0 I ∗
0 0 (A|B)


 .

For the Schur complement of A11 in the left factor of (2) we can write a similar
factorization

(3)



A11 A12 0
A21 A22 0
A31 A32 I


 =



A11 0 0
A21 I 0
A31 0 I






I X1 X2

0 X3 X4

0 X5 X6


 .

Since A11 is invertible, we derive from (1), (2) and (3) after simplification (division
by the same factors):

(
I ∗ ∗
0
0 (A|C)

)
=



I X1 X2

0 X3 X4

0 X5 X6






I 0 ∗
0 I ∗
0 0 (A|B)


 .

It follows that

(A|C) =
(
X3 X4

X5 X6

)(
I ∗
0 (A|B)

)
.

To finish the proof we only have to verify that X3 = (B|C), X4 = 0 and X6 =
I. Equating the last columns in (3), we get 0 = A11X2, 0 = A21X2 + X4 and
I = A31X2 + X6. The matrix A11 is invertible; therefore, X2 = 0. It follows that
X4 = 0 and X6 = I. Another straightforward consequence of (3) is

(
A11 A12

A21 A22

)
=

(
A11 0
A21 I

)(
I X1

0 X3

)
,

i.e., X3 = (B|C). ¤

Problems

3.1. Let u and v be rows of length n, A a square matrix of order n. Prove that

|A+ uT v| = |A|+ v(adjA)uT .

3.2. Let A be a square matrix. Prove that
∣∣∣∣
I A
AT I

∣∣∣∣ = 1−
∑

M2
1 +

∑
M2

2 −
∑

M2
3 + . . . ,

where
∑
M2
k is the sum of the squares of all k-minors of A.

4. Symmetric functions, sums xk1 + · · · + xkn,
and Bernoulli numbers

In this section we will obtain determinant relations for elementary symmetric
functions σk(x1, . . . , xn), functions sk(x1, . . . , xn) = xk1 + · · · + xkn, and sums of
homogeneous monomials of degree k,

pk(x1, . . . , xn) =
∑

i1+···+in=k

xi11 . . . xinn .
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4.1. Let σk(x1, . . . , xn) be the kth elementary function, i.e., the coefficient of
xn−k in the standard power series expression of the polynomial (x+x1) . . . (x+xn).
We will assume that σk(x1, . . . , xn) = 0 for k > n. First of all, let us prove that

sk − sk−1σ1 + sk−2σ2 − · · ·+ (−1)kkσk = 0.

The product sk−pσp consists of terms of the form xk−pi (xj1 . . . xjp). If i ∈
{j1, . . . jp}, then this term cancels the term xk−p+1

i (xj1 . . . x̂i . . . xjp) of the product
sk−p+1σp−1, and if i 6∈ {j1, . . . , jp}, then it cancels the term xk−p−1

i (xixj1 . . . xjp)
of the product sk−p−1σp+1.

Consider the relations

σ1 = s1

s1σ1 − 2σ2 = s2

s2σ1 − s1σ2 + 3σ3 = s3

. . . . . . . . . . . .

skσ1 − sk−1σ2 + · · ·+ (−1)k+1kσk = sk

as a system of linear equations for σ1, . . . , σk. With the help of Cramer’s rule it is
easy to see that

σk =
1
k!

∣∣∣∣∣∣∣∣∣∣∣∣∣

s1 1 0 0 . . . 0
s2 s1 1 0 . . . 0
s3 s2 s1 1 . . . 0
...

...
...

...
. . .

...

sk−1 sk−2 . . . . . .
. . . 1

sk sk−1 . . . . . . . . . s1

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Similarly,

sk =

∣∣∣∣∣∣∣∣∣∣∣∣

σ1 1 0 0 . . . 0
2σ2 σ1 1 0 . . . 0
3σ3 σ2 σ1 1 . . . 0

...
...

...
. . . . . .

...
(k − 1)σk−1 σk−2 . . . . . . . . . 1

kσk σk−1 . . . . . . . . . σ1

∣∣∣∣∣∣∣∣∣∣∣∣

.

4.2. Let us obtain first a relation between pk and σk and then a relation between
pk and sk. It is easy to verify that

1 + p1t+ p2t
2 + p3t

3 + · · · = (1 + x1t+ (x1t)2 + . . . ) . . . (1 + xnt+ (xnt)2 + . . . )

=
1

(1− x1t) . . . (1− xnt) =
1

1− σ1t+ σ2t2 − · · ·+ (−1)nσntn
,

i.e.,
p1 − σ1 = 0

p2 − p1σ1 + σ2 = 0

p3 − p2σ1 + p1σ2 − σ3 = 0

. . . . . . . . . . . .
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Therefore,

σk =

∣∣∣∣∣∣∣∣∣∣

p1 1 0 . . . 0
p2 p1 1 . . . 0
...

...
...

. . .
...

pk−1 pk−2 . . . . . . 1
pk pk−1 . . . . . . pk

∣∣∣∣∣∣∣∣∣∣

and pk =

∣∣∣∣∣∣∣∣∣∣

σ1 1 0 . . . 0
σ2 σ1 1 . . . 0
...

...
...

. . .
...

σk−1 σk−2 . . . . . . 1
σk σk−1 . . . . . . σk

∣∣∣∣∣∣∣∣∣∣

.

To get relations between pk and sk is a bit more difficult. Consider the function
f(t) = (1− x1t) . . . (1− xnt). Then

− f
′(t)

f2(t)
=

(
1
f(t)

)′
=

[(
1

1− x1t

)
. . .

(
1

1− xnt
)]′

=
(

x1

1− x1t
+ · · ·+ xn

1− xnt
)

1
f(t)

.

Therefore,

−f
′(t)
f(t)

=
x1

1− x1t
+ · · ·+ xn

1− xnt = s1 + s2t+ s3t
2 + . . .

On the other hand, (f(t))−1 = 1 + p1t+ p2t
2 + p3t

3 + . . . and, therefore,

−f
′(t)
f(t)

=
(

1
f(t)

)′
·
(

1
f(t)

)−1

=
p1 + 2p2t+ 3p3t

2 + . . .

1 + p1t+ p2t2 + p3t3 + . . .
,

i.e.,

(1 + p1t+ p2t
2 + p3t

3 + . . . )(s1 + s2t+ s3t
2 + . . . ) = p1 + 2p2t+ 3p3t

2 + . . .

Therefore,

sk = (−1)k−1

∣∣∣∣∣∣∣∣∣∣

p1 1 0 . . . 0 0 0
2p2 p1 1 . . . 0 0 0

...
...

. . . . . .
...

...
...

(k − 1)pk−1 pk−2 . . . . . . p2 p1 1
kpk pk−1 . . . . . . p3 p2 p1

∣∣∣∣∣∣∣∣∣∣

,

and

pk =
1
k!

∣∣∣∣∣∣∣∣∣∣

s1 −1 0 . . . 0 0 0
s2 s1 −2 . . . 0 0 0
...

...
. . . . . .

...
...

...
sk−1 sk−2 . . . . . . s2 s1 −k + 1
sk sk−1 . . . . . . s3 s2 s1

∣∣∣∣∣∣∣∣∣∣

.
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4.3. In this subsection we will study properties of the sum Sn(k) = 1n + · · · +
(k − 1)n. Let us prove that

Sn−1(k) =
1
n!

∣∣∣∣∣∣∣∣∣∣∣

kn
(
n
n−2

) (
n
n−3

)
. . .

(
n
1

)
1

kn−1
(
n−1
n−2

) (
n−1
n−3

)
. . .

(
n−1

1

)
1

kn−2 1
(
n−2
n−3

)
. . .

(
n−2

1

)
1

...
...

... · · · ...
...

k 0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣

.

To this end, add up the identities

(x+ 1)n − xn =
n−1∑

i=0

(
n

i

)
xi for x = 1, 2, . . . , k − 1.

We get

kn =
n−1∑

i=0

(
n

i

)
Si(k).

The set of these identities for i = 1, 2, . . . , n can be considered as a system of linear
equations for Si(k). This system yields the desired expression for Sn−1(k).

The expression obtained for Sn−1(k) implies that Sn−1(k) is a polynomial in k
of degree n.

4.4. Now, let us give matrix expressions for Sn(k) which imply that Sn(x) can
be polynomially expressed in terms of S1(x) and S2(x); more precisely, the following
assertion holds.

Theorem. Let u = S1(x) and v = S2(x); then for k ≥ 1 there exist polynomials
pk and qk with rational coefficients such that S2k+1(x) = u2pk(u) and S2k(x) =
vqk(u).

To get an expression for S2k+1 let us make use of the identity

(1) [n(n− 1)]r =
n−1∑
x=1

(xr(x+ 1)r − xr(x− 1)r)

= 2
((

r

1

)∑
x2r−1 +

(
r

3

)∑
x2r−3 +

(
r

5

)∑
x2r−5 + . . .

)
,

i.e., [n(n − 1)]i+1 =
∑(

i+1
2(i−j)+1

)
S2j+1(n). For i = 1, 2, . . . these equalities can be

expressed in the matrix form:



[n(n− 1)]2

[n(n− 1)]3

[n(n− 1)]4
...


 = 2




2 0 0 . . .
1 3 0 . . .
0 4 4 . . .
...

...
...

. . .







S3(n)
S5(n)
S7(n)

...


 .

The principal minors of finite order of the matrix obtained are all nonzero and,
therefore,




S3(n)
S5(n)
S7(n)

...


 =

1
2

∥∥aij
∥∥−1




[n(n− 1)]2

[n(n− 1)]3

[n(n− 1)]4
...


 , where aij =

(
i+ 1

2(i− j) + 1

)
.



4. SYMMETRIC FUNCTIONS, SUMS . . . AND BERNOULLI NUMBERS 33

The formula obtained implies that S2k+1(n) can be expressed in terms of n(n−1) =
2u(n) and is divisible by [n(n− 1)]2.

To get an expression for S2k let us make use of the identity

nr+1(n− 1)r =
n−1∑
x=1

(xr(x+ 1)r+1 − (x− 1)rxr+1)

=
∑

x2r

((
r + 1

1

)
+

(
r

1

))
+

∑
x2r−1

((
r + 1

2

)
−

(
r

2

))

+
∑

x2r−2

((
r + 1

3

)
+

(
r

3

))
+

∑
x2r−3

((
r + 1

4

)
−

(
r

4

))
+ . . .

=
((

r + 1
1

)
+

(
r

1

))∑
x2r +

((
r + 1

3

)
+

(
r

3

))∑
x2r−2 + . . .

+
(
r

1

) ∑
x2r−1 +

(
r

3

) ∑
x2r−3 + . . .

The sums of odd powers can be eliminated with the help of (1). As a result we get

nr+1(n− 1)r =
(nr(n− 1)r)

2
+

((
r + 1

1

)
+

(
r

1

))∑
x2r

+
((

r + 1
3

)
+

(
r

3

))∑
x2r−3,

i.e.,

ni(n− 1)i
(

2n− 1
2

)
=

∑ ((
i+ 1

2(i− j) + 1

)
+

(
i

2(i− j) + 1

))
S2j(n).

Now, similarly to the preceding case we get




S2(n)
S4(n)
S6(n)

...


 =

2n− 1
2

∥∥bij
∥∥−1




(n(n− 1)
[n(n− 1)]2

[n(n− 1)]3
...


 ,

where bij =
(

i+1
2(i−j)+1

)
+

(
i

2(i−j)+1

)
.

Since S2(n) =
2n− 1

2
· n(n− 1)

3
, the polynomials S4(n), S6(n), . . . are divisible

by S2(n) = v(n) and the quotient is a polynomial in n(n− 1) = 2u(n).

4.5. In many theorems of calculus and number theory we encounter the following
Bernoulli numbers Bk, defined from the expansion

t

et − 1
=
∞∑

k=0

Bk
tk

k!
(for |t| < 2π).

It is easy to verify that B0 = 1 and B1 = −1/2.
With the help of the Bernoulli numbers we can represent Sm(n) = 1m + 2m +

· · ·+ (n− 1)m as a polynomial of n.
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Theorem. (m+ 1)Sm(n) =
∑m
k=0

(
m+1
k

)
Bkn

m+1−k.

Proof. Let us write the power series expansion of
t

et − 1
(ent − 1) in two ways.

On the one hand,

t

et − 1
(ent − 1) =

∞∑

k=0

Bkt
k

k!

∞∑
s=1

(nt)s

s!

= nt+
∞∑
m=1

m∑

k=0

(
m+ 1
k

)
Bkn

m+1−k tm+1

(m+ 1)!
.

On the other hand,

t
ent − 1
et − 1

= t

n−1∑
r=0

ert = nt+
∞∑
m=1

(
n−1∑
r=1

rm

)
tm+1

m!

= nt+
∞∑
m=1

(m+ 1)Sm(n)
tm+1

(m+ 1)!
.

Let us give certain determinant expressions for Bk. Set bk = Bk
k! . Then by

definition

x = (ex − 1)

( ∞∑

k=0

bkx
k

)
= (x+

x2

2!
+
x3

3!
+ . . . )(1 + b1x+ b2x

2 + b3x
3 + . . . ),

i.e.,

b1 = − 1
2!

b1
2!

+ b2 = − 1
3!

b1
3!

+
b2
2!

+ b3 = − 1
4!

. . . . . . . . . . . . . . . . . .

Solving this system of linear equations by Cramer’s rule we get

Bk = k!bk = (−1)kk!

∣∣∣∣∣∣∣∣∣∣

1/2! 1 0 . . . 0
1/3! 1/2! 1 . . . 0
1/4! 1/3! 1/2! . . . 0

...
...

...
. . .

...
1/(k + 1)! 1/k! . . . . . . 1/2!

∣∣∣∣∣∣∣∣∣∣

.

Now, let us prove that B2k+1 = 0 for k ≥ 1. Let
x

ex − 1
= −x

2
+ f(x). Then

f(x)− f(−x) =
x

ex − 1
+

x

e−x − 1
+ x = 0,
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i.e., f is an even function. Let ck =
B2k

(2k)!
. Then

x =
(
x+

x2

2!
+
x3

3!
+ . . .

) (
1− x

2
+ c1x

2 + c2x
4 + c3x

6 + . . .
)
.

Equating the coefficients of x3, x5, x7, . . . and taking into account that
1

2(2n)!
−

1
(2n+ 1)!

=
2n− 1

2(2n+ 1)!
we get

c1 =
1

2 · 3!
c1
3!

+ c2 =
3

2 · 5!
c1
5!

+
c2
3!

+ c3 =
5

2 · 7!
. . . . . . . . . . . .

Therefore,

B2k = (2k)!ck =
(−1)k+1(2k)!

2

∣∣∣∣∣∣∣∣∣∣∣∣

1/3! 1 0 . . . 0
3/5! 1/3! 1 . . . 0
5/7! 1/5! 1/3! . . . 0

...
...

...
. . .

...
2k − 1

(2k + 1)!
1

(2k − 1)!
. . . . . . 1/3!

∣∣∣∣∣∣∣∣∣∣∣∣

. ¤

Solutions

1.1. Since AT = −A and n is odd, then |AT | = (−1)n|A| = −|A|. On the other
hand, |AT | = |A|.

1.2. If A is a skew-symmetric matrix of even order, then




0 1 . . . 1
−1
...
−1

A




is a skew-symmetric matrix of odd order and, therefore, its determinant vanishes.
Thus,

|A| =

∣∣∣∣∣∣∣

1 0 . . . 0−x
...
−x

A

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

0 1 . . . 1−x
...
−x

A

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

1 1 . . . 1−x
...
−x

A

∣∣∣∣∣∣∣
.

In the last matrix, subtracting the first column from all other columns we get the
desired.

1.3. Add the first row to and subtract the second row from the rows 3 to 2n. As
a result, we get |An| = |An−1|.
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1.4. Suppose that all terms of the expansion of an nth order determinant are
positive. If the intersection of two rows and two columns of the determinant singles

out a matrix
(
x y
u v

)
then the expansion of the determinant has terms of the

form xvα and −yuα and, therefore, sign(xv) = − sign(yu). Let ai, bi and ci be
the first three elements of the ith row (i = 1, 2). Then sign(a1b2) = − sign(a2b1),
sign(b1c2) = − sign(b2c1), and sign(c1a2) = − sign(c2a1). By multiplying these
identities we get sign p = − sign p, where p = a1b1c1a2b2c2. Contradiction.

1.5. For all i ≥ 2 let us subtract the (i − 1)st row multiplied by a from the ith
row. As a result we get an upper triangular matrix with diagonal elements a11 = 1
and aii = 1− a2 for i > 1. The determinant of this matrix is equal to (1− a2)n−1.

1.6. Expanding the determinant ∆n+1 with respect to the last column we get

∆n+1 = x∆n + h∆n = (x+ h)∆n.

1.7. Let us prove that the desired determinant is equal to

∏
(xi − aibi)

(
1 +

∑

i

aibi
xi − aibi

)

by induction on n. For n = 2 this statement is easy to verify. We will carry out
the proof of the inductive step for n = 3 (in the general case the proof is similar):

∣∣∣∣∣∣

x1 a1b2 a1b3
a2b1 x2 a2b3
a3b1 a3b2 x3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

x1 − a1b1 a1b2 a1b3
0 x2 a2b3
0 a3b2 x3

∣∣∣∣∣∣
+

∣∣∣∣∣∣

a1b1 a1b2 a1b3
a2b1 x2 a2b3
a3b1 a3b2 x3

∣∣∣∣∣∣
.

The first determinant is computed by inductive hypothesis and to compute the
second one we have to break out from the first row the factor a1 and for all i ≥ 2
subtract from the ith row the first row multiplied by ai.

1.8. It is easy to verify that det(I − A) = 1− c. The matrix A is the matrix of
the transformation Aei = ci−1ei−1 and therefore, An = c1 . . . cnI. Hence,

(I +A+ · · ·+An−1)(I −A) = I −An = (1− c)I

and, therefore,
(1− c) det(I +A+ · · ·+An−1) = (1− c)n.

For c 6= 1 by dividing by 1− c we get the required. The determinant of the matrix
considered depends continuously on c1, . . . , cn and, therefore, the identity holds for
c = 1 as well.

1.9. Since (1 − xiyj)−1 = (y−1
j − xi)−1y−1

j , we have |aij |n1 = σ|bij |n1 , where
σ = (y1 . . . yn)−1 and bij = (y−1

j − xi)−1, i.e., |bij |n1 is a Cauchy determinant
(see 1.3). Therefore,

|bij |n1 = σ−1
∏

i>j

(yj − yi)(xj − xi)
∏

i,j

(1− xiyj)−1.

1.10. For a fixed m consider the matrices An =
∥∥aij

∥∥m
0

, aij =
(
n+i
j

)
. The matrix

A0 is a triangular matrix with diagonal (1, . . . , 1). Therefore, |A0| = 1. Besides,
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An+1 = AnB, where bi,i+1 = 1 (for i ≤ m − 1), bi,i = 1 and all other elements bij
are zero.

1.11. Clearly, points A, B, . . . , F with coordinates (a2, a), . . . , (f2, f), respec-
tively, lie on a parabola. By Pascal’s theorem the intersection points of the pairs of
straight lines AB and DE, BC and EF , CD and FA lie on one straight line. It is
not difficult to verify that the coordinates of the intersection point of AB and DE
are (

(a+ b)de− (d+ e)ab
d+ e− a− b ,

de− ab
d+ e− a− b

)
.

It remains to note that if points (x1, y1), (x2, y2) and (x3, y3) belong to one straight
line then ∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
= 0.

Remark. Recall that Pascal’s theorem states that the opposite sides of a hexagon
inscribed in a 2nd order curve intersect at three points that lie on one line. Its proof
can be found in books [Berger, 1977] and [Reid, 1988].

1.12. Let s = x1 + · · · + xn. Then the kth element of the last column is of the
form

(s− xk)n−1 = (−xk)n−1 +
n−2∑

i=0

pix
i
k.

Therefore, adding to the last column a linear combination of the remaining columns
with coefficients −p0, . . . , −pn−2, respectively, we obtain the determinant

∣∣∣∣∣∣∣

1 x1 . . . xn−2
1 (−x1)n−1

...
... · · · ...

...
1 xn . . . xn−2

n (−xn)n−1

∣∣∣∣∣∣∣
= (−1)n−1V (x1, . . . , xn).

1.13. Let ∆ be the required determinant. Multiplying the first row of the
corresponding matrix by x1, . . . , and the nth row by xn we get

σ∆ =

∣∣∣∣∣∣∣

x1 x2
1 . . . xn−1

1 σ
...

... · · · ...
...

xn x2
n . . . xn−1

n σ

∣∣∣∣∣∣∣
, where σ = x1 . . . xn.

Therefore, ∆ = (−1)n−1V (x1, . . . , xn).
1.14. Since

λn−ki (1 + λ2
i )
k = λni (λ−1

i + λi)k,

then
|aij |n0 = (λ0 . . . λn)nV (µ0, . . . , µn), where µi = λ−1

i + λi.

1.15. Augment the matrix V with an (n + 1)st column consisting of the nth
powers and then add an extra first row (1,−x, x2, . . . , (−x)n). The resulting matrix
W is also a Vandermonde matrix and, therefore,

detW = (x+ x1) . . . (x+ xn) detV = (σn + σn−1x+ · · ·+ xn) detV.
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On the other hand, expanding W with respect to the first row we get

detW = detV0 + xdetV1 + · · ·+ xn detVn−1.

1.16. Let xi = in. Then

ai1 = xi, ai2 =
xi(xi − 1)

2
, . . . , air =

xi(xi − 1) . . . (xi − r + 1)
r!

,

i.e., in the kth column there stand identical polynomials of kth degree in xi. Since
the determinant does not vary if to one of its columns we add a linear combination
of its other columns, the determinant can be reduced to the form |bik|r1, where

bik =
xki
k!

=
nk

k!
ik. Therefore,

|aik|r1 = |bik|r1 = n · n
2

2!
. . .

nr

r!
r!V (1, 2, . . . , r) = nr(r+1)/2,

because
∏

1≤j<i≤r(i− j) = 2!3! . . . (r − 1)!
1.17. For i = 1, . . . , n let us multiply the ith row of the matrix

∥∥aij
∥∥n

1
by mi!,

where mi = ki + n− i. We obtain the determinant |bij |n1 , where

bij =
(ki + n− i)!
(ki + j − i)! = mi(mi − 1) . . . (mi + j + 1− n).

The elements of the jth row of
∥∥bij

∥∥n
1

are identical polynomials of degree n − j
in mi and the coefficients of the highest terms of these polynomials are equal
to 1. Therefore, subtracting from every column linear combinations of the pre-
ceding columns we can reduce the determinant |bij |n1 to a determinant with rows
(mn−1

i ,mn−2
i , . . . , 1). This determinant is equal to

∏
i<j(mi −mj). It is also clear

that |aij |n1 = |bij |n1 (m1!m2! . . .mn!)−1.
1.18. For n = 3 it is easy to verify that

∥∥aij
∥∥2

0
=




1 1 1
x1 x2 x3

x2
1 x2

2 x2
3






p1 p1x1 p1x

2
1

p2 p2x2 p2x
2
2

p3 p3x3 p3x
2
3


 .

In the general case an analogous identity holds.
1.19. The required determinant can be represented in the form of a product of

two determinants:

∣∣∣∣∣∣∣∣∣∣

1 . . . 1 1
x1 . . . xn y
x2

1 . . . x2
n y2

... · · · ...
...

xn1 . . . xnn yn

∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣∣∣

1 x1 . . . xn−1
1 0

1 x2 . . . xn−1
2 0

...
... · · · ...

...
1 xn . . . xn−1

n 0
0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣

and, therefore, it is equal to
∏

(y − xi)
∏
i>j(xi − xj)2.
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1.20. It is easy to verify that for n = 2

∥∥aij
∥∥2

0
=




1 2x0 x2
0

1 2x1 x2
1

1 2x2 x2
2






y2

0 y2
1 y2

2

y0 y1 y2

1 1 1


 ;

and in the general case the elements of the first matrix are the numbers
(
n
k

)
xki .

1.21. Let us suppose that there exists a nonzero solution such that the number
of pairwise distinct numbers λi is equal to r. By uniting the equal numbers λi into
r groups we get

m1λ
k
1 + · · ·+mrλ

k
r = 0 for k = 1, . . . , n.

Let x1 = m1λ1, . . . , xr = mrλr, then

λk−1
1 x1 + · · ·+ λk−1

r xr = 0 for k = 1, . . . , n.

Taking the first r of these equations we get a system of linear equations for x1, . . . , xr
and the determinant of this system is V (λ1, . . . , λr) 6= 0. Hence, x1 = · · · = xr = 0
and, therefore, λ1 = · · · = λr = 0. The contradiction obtained shows that there is
only the zero solution.

1.22. Let us carry out the proof by induction on n. For n = 1 the statement is
obvious.

Subtracting the first column of
∥∥aij

∥∥n
0

from every other column we get a matrix∥∥bij
∥∥n

0
, where bij = σi(x̂j)− σi(x̂0) for j ≥ 1.

Now, let us prove that

σk(x̂i)− σk(x̂j) = (xj − xi)σk−1(x̂i, x̂j).

Indeed,

σk(x1, . . . , xn) = σk(x̂i) + xiσk−1(x̂i) = σk(x̂i) + xiσk−1(x̂i, x̂j) + xixjσk−2(x̂i, x̂j)

and, therefore,

σk(x̂i) + xiσk−1(x̂i, x̂j) = σk(x̂j) + xjσk−1(x̂i, x̂j).

Hence,

|bij |n0 = (x0 − x1) . . . (x0 − xn)|cij |n−1
0 , where cij = σi(x̂0, x̂j).

1.23. Let k = [n/2]. Let us multiply by −1 the rows 2, 4, . . . , 2k of the matrix∥∥bij
∥∥n

1
and then multiply by −1 the columns 2, 4, . . . , 2k of the matrix obtained.

As a result we get
∥∥aij

∥∥n
1
.

1.24. It is easy to verify that both expressions are equal to the product of
determinants ∣∣∣∣∣∣∣

a1 a2 0 0
a3 a4 0 0
0 0 b1 b2
0 0 b3 b4

∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣

c1 0 c2 0
0 d1 0 d2

c3 0 c4 0
0 d3 0 d4

∣∣∣∣∣∣∣
.
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1.25. Both determinants are equal to

a1a2a3

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
+ a1b2b3

∣∣∣∣∣∣

a11 b12 b13

a21 b22 b23

a31 b32 b33

∣∣∣∣∣∣
+ b1a2b3

∣∣∣∣∣∣

b11 a12 b13

b21 a22 b23

b31 a32 b33

∣∣∣∣∣∣

− a1a2b3

∣∣∣∣∣∣

a11 a12 b13

a21 a22 b23

a31 a32 b33

∣∣∣∣∣∣
− b1a2a3

∣∣∣∣∣∣

b11 a12 a13

b21 a22 a23

b31 a32 a33

∣∣∣∣∣∣
− b1b2b3

∣∣∣∣∣∣

b11 b12 b13

b21 b22 b23

b31 b32 b33

∣∣∣∣∣∣
.

1.26. It is easy to verify the following identities for the determinants of matrices
of order n+ 1:

∣∣∣∣∣∣∣∣

s1 − a11 . . . s1 − a1n 0
... · · · ...

...
sn − an1 . . . sn − ann 0
−1 . . . −1 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

s1 − a11 . . . s1 − a1n (n− 1)s1

... · · · ...
...

sn − an1 . . . sn − ann (n− 1)s1

−1 . . . −1 1− n

∣∣∣∣∣∣∣∣

= (n− 1)

∣∣∣∣∣∣∣∣

s1 − a11 . . . s1 − a1n s1
... · · · ...

...
sn − an1 . . . sn − ann sn
−1 . . . −1 −1

∣∣∣∣∣∣∣∣
= (n− 1)

∣∣∣∣∣∣∣∣

−a11 . . . −a1n s1
... · · · ...

...
−an1 . . . −ann sn

0 . . . 0 −1

∣∣∣∣∣∣∣∣
.

1.27. Since
(
p
q

)
+

(
p
q−1

)
=

(
p+1
q

)
, then by suitably adding columns of a matrix

whose rows are of the form
((

n
m

)(
n

m−1

)
. . .

(
n

m−k
))

we can get a matrix whose rows

are of the form
((

n
m

)(
n+1
m

)
. . .

(
n+1

m−k+1

))
. And so on.

1.28. In the determinant ∆n(k) subtract from the (i + 1)st row the ith row for
every i = n−1, . . . , 1. As a result, we get ∆n(k) = ∆′n−1(k), where ∆′m(k) = |a′ij |m0 ,

a′ij =
(
k + i

2j + 1

)
. Since

(
k+i
2j+1

)
=

k + i

2j + 1

(
k − 1 + i

2j

)
, it follows that

∆′n−1(k) =
k(k + 1) . . . (k + n− 1)

1 · 3 . . . (2n− 1)
∆n−1(k − 1).

1.29. According to Problem 1.27 Dn = D′n = |a′ij |n0 , where a′ij =
(
n+1+i

2j

)
, i.e.,

in the notations of Problem 1.28 we get

Dn = ∆n(n+ 1) =
(n+ 1)(n+ 2) . . . 2n

1 · 3 . . . (2n− 1)
∆n−1(n) = 2nDn−1,

since (n+ 1)(n+ 2) . . . 2n =
(2n)!
n!

and 1 · 3 . . . (2n− 1) =
(2n)!

2 · 4 . . . 2n .

1.30. Let us carry out the proof for n = 2. By Problem 1.23 |aij |20 = |a′ij |20,

where a′ij = (−1)i+jaij . Let us add to the last column of
∥∥a′ij

∥∥2

0
its penultimate

column and to the last row of the matrix obtained add its penultimate row. As a
result we get the matrix




a0 −a1 −∆1a1

−a1 a2 ∆1a2

−∆1a1 ∆1a2 ∆2a2


 ,
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where ∆1ak = ak − ak+1, ∆n+1ak = ∆1(∆nak). Then let us add to the 2nd row
the 1st one and to the 3rd row the 2nd row of the matrix obtained; let us perform
the same operation with the columns of the matrix obtained. Finally, we get the
matrix 


a0 ∆1a0 ∆2a0

∆1a0 ∆2a0 ∆3a0

∆2a0 ∆3a0 ∆4a0


 .

By induction on k it is easy to verify that bk = ∆ka0. In the general case the proof
is similar.

1.31. We can represent the matrices A and B in the form

A =
(

P PX
Y P Y PX

)
and B =

(
WQV WQ
QV Q

)
,

where P = A11 and Q = B22. Therefore,

|A+B| =
∣∣∣∣
P +WQV PX +WQ
Y P +QV Y PX +Q

∣∣∣∣ =
∣∣∣∣
P WQ
Y P Q

∣∣∣∣ ·
∣∣∣∣
I X
V I

∣∣∣∣

=
1

|P | · |Q|

∣∣∣∣
P WQ
Y P Q

∣∣∣∣
∣∣∣∣
P PX
QV Q

∣∣∣∣ .

1.32. Expanding the determinant of the matrix

C =




0 a12 . . . a1n b11 . . . b1n
...

... · · · ...
... · · · ...

0 an2 . . . ann bn1 . . . bnn
a11 0 . . . 0 b11 . . . b1n
...

... · · · ...
... · · · ...

an1 0 . . . 0 bn1 . . . bnn




with respect to the first n rows we obtain

|C| =
n∑

k=1

(−1)εk

∣∣∣∣∣∣

a12 . . . a1n b1k
... · · · ...

...
an2 . . . ann bnk

∣∣∣∣∣∣
·

∣∣∣∣∣∣∣

a11 b11 . . . b̂1k . . . b1n
...

... · · · ... · · · ...
an1 bn1 . . . b̂nk . . . bnn

∣∣∣∣∣∣∣

=
n∑

k=1

(−1)εk+αk+βk

∣∣∣∣∣∣

b1k a12 . . . a1n
...

... · · · ...
bnk an2 . . . ann

∣∣∣∣∣∣
·
∣∣∣∣∣∣

b11 . . . a11 . . . b1n
... · · · ... · · · ...
bn1 . . . an1 . . . bnn

∣∣∣∣∣∣
,

where εk = (1+2+ · · ·+n)+(2+ · · ·+n+(k+n)) ≡ k+n+1 (mod 2), αk = n−1
and βk = k − 1, i.e., εk + αk + βk ≡ 1 (mod 2). On the other hand, subtracting
from the ith row of C the (i+ n)th row for i = 1, . . . , n, we get |C| = −|A| · |B|.

2.1. The coefficient of λi1 . . . λim in the determinant of A + diag(λ1, . . . , λn) is
equal to the minor obtained from A by striking out the rows and columns with
numbers i1, . . . , im.

2.2. Let us transpose the rows (ai1 . . . ainxi) and (y1 . . . yn0). In the determinant
of the matrix obtained the coefficient of xiyj is equal to Aij .
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2.3. Let B = ATA. Then

B

(
i1 . . . ik
i1 . . . ik

)
=

∣∣∣∣∣∣∣

bi1i1 . . . bi1ik
... · · · ...

biki1 . . . bikik

∣∣∣∣∣∣∣

= det






ai11 . . . ai1n

... · · · ...
aik1 . . . aikn


 ·



ai11 . . . aik1

... · · · ...
ai1n . . . aikn







and it remains to make use of the Binet-Cauchy formula.
2.4. The coefficient of u1 in the sum of determinants in the left-hand side is

equal to a11A11 + . . . an1An1 = |A|. For the coefficients of u2, . . . , un the proof is
similar.

2.5. Answer: 

I −A AB − C
0 I −B
0 0 I


 .

2.6. If i < j then deleting out the ith row and the jth column of the upper
triangular matrix we get an upper triangular matrix with zeros on the diagonal at
all places i to j − 1.

2.7. Consider the unit matrix of order n − 1. Insert a column of zeros between
its (i − 1)st and ith columns and then insert a row of zeros between the (j − 1)st
and jth rows of the matrix obtained . The minor Mji of the matrix obtained is
equal to 1 and all the other minors are equal to zero.

2.8. Since x(yTx)yT I = xyT I(yTx), then

(I − xyT )(xyT + I(1− yTx)) = (1− yTx)I.

Hence,
(I − xyT )−1 = xyT (1− yTx)−1 + I.

Besides, according to Problem 8.2

det(I − xyT ) = 1− tr(xyT ) = 1− yTx.

2.9. By definition Aij = (−1)i+j detB, where B is a matrix of order n−1. Since
AT = −A, then Aji = (−1)i+j det(−B) = (−1)n−1Aij .

2.10. The answer depends on the parity of n. By Problem 1.3 we have |A2k| = 1
and, therefore, adjA2k = A−1

2k . For n = 4 it is easy to verify that




0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0


 ·




0 −1 1 −1
1 0 −1 1
−1 1 0 −1
1 −1 1 0


 = I.

A similar identity holds for any even n.
Now, let us compute adjA2k+1. Since |A2k| = 1, then rankA2k+1 = 2k. It is also

clear that A2k+1v = 0 if v is the column (1,−1, 1,−1, . . . )T . Hence, the columns
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of the matrix B = adjA2k+1 are of the form λv. Besides, b11 = |A2k| = 1 and,
therefore, B is a symmetric matrix (cf. Problem 2.9). Therefore,

B =




1 −1 1 . . .
−1 1 −1 . . .
1 −1 1 . . .
...

...
...

. . .


 .

2.11. a) Since [adj(A− λI)](A− λI) = |A− λI| · I is a scalar matrix, then

(
n−1∑

k=0

λkAk

)
(A− λI) =

n−1∑

k=0

λkAkA−
n∑

k=1

λkAk−1

= A0A− λnAn−1 +
n−1∑

k=1

λk(AkA−Ak−1)

is also a scalar matrix.
b) An−1 = ±I. Besides, An−s−1 = µI −An−sA.
2.12. Let A =

∥∥aij
∥∥, A−1 =

∥∥bij
∥∥ and aij , bij ≥ 0. If air, ais > 0 then∑

aikbkj = 0 for i 6= j and, therefore, brj = bsj = 0. In the rth row of the matrix B
there is only one nonzero element, bri, and in the sth row there is only one nonzero
element, bsi. Hence, the rth and the sth rows are proportional. Contradiction.

Therefore, every row and every column of the matrix A has precisely one nonzero
element.

2.13. A−1 =
∥∥bij

∥∥, where bij = n−1ε−ij .
2.14. Let σin−k = σn−k(x1, . . . , x̂i, . . . , xn). Making use of the result of Prob-

lem 1.15 it is easy to verify that (adjV )T =
∥∥bij

∥∥n
1
, where

bij = (−1)i+jσin−jV (x1, . . . , x̂i, . . . , xn).

3.1. |A+ uT v| =
∣∣∣∣
A −uT
v 1

∣∣∣∣ = |A|(1 + vA−1uT ).

3.2.

∣∣∣∣
I A
AT I

∣∣∣∣ = |I − ATA| = (−1)n|ATA − I|. It remains to apply the results

of Problem 2.1 (for λ = −1) and of Problem 2.4.
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LINEAR SPACES

The notion of a linear space appeared much later than the notion of determi-
nant. Leibniz’s share in the creation of this notion is considerable. He was not
satisfied with the fact that the language of algebra only allowed one to describe
various quantities of the then geometry, but not the positions of points and not the
directions of straight lines. Leibniz began to consider sets of points A1 . . . An and
assumed that {A1, . . . , An} = {X1, . . . , Xn} whenever the lengths of the segments
AiAj and XiXj are equal for all i and j. He, certainly, used a somewhat differ-
ent notation, namely, something like A1 . . . An ◦̆X1 . . . Xn; he did not use indices,
though.

In these terms the equation AB ◦̆ AY determines the sphere of radius AB and
center A; the equation AY ◦̆ BY ◦̆ CY determines a straight line perpendicular to
the plane ABC.

Though Leibniz did consider pairs of points, these pairs did not in any way
correspond to vectors: only the lengths of segments counted, but not their directions
and the pairs AB and BA were not distinguished.

These works of Leibniz were unpublished for more than 100 years after his death.
They were published in 1833 and for the development of these ideas a prize was
assigned. In 1845 Möbius informed Grassmann about this prize and in a year
Grassmann presented his paper and collected the prize. Grassmann’s book was
published but nobody got interested in it.

An important step in moulding the notion of a “vector space” was the geo-
metric representation of complex numbers. Calculations with complex numbers
urgently required the justification of their usage and a sufficiently rigorous theory
of them. Already in 17th century John Wallis tried to represent the complex
numbers geometrically, but he failed. During 1799–1831 six mathematicians inde-
pendently published papers containing a geometric interpretation of the complex
numbers. Of these, the most influential on mathematicians’ thought was the paper
by Gauss published in 1831. Gauss himself did not consider a geometric interpreta-
tion (which appealed to the Euclidean plane) as sufficiently convincing justification
of the existence of complex numbers because, at that time, he already came to the
development of nonEuclidean geometry.

The decisive step in the creation of the notion of an n-dimensional space was
simultaneously made by two mathematicians — Hamilton and Grassmann. Their
approaches were distinct in principle. Also distinct was the impact of their works
on the development of mathematics. The works of Grassmann contained deep
ideas with great influence on the development of algebra, algebraic geometry, and
mathematical physics of the second half of our century. But his books were difficult
to understand and the recognition of the importance of his ideas was far from
immediate.

The development of linear algebra took mainly the road indicated by Hamilton.

Sir William Rowan Hamilton (1805–1865)

The Irish mathematician and astronomer Sir William Rowan Hamilton, member
of many an academy, was born in 1805 in Dublin. Since the age of three years old

Typeset by AMS-TEX
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he was raised by his uncle, a minister. By age 13 he had learned 13 languages and
when 16 he read Laplace’s Méchanique Céleste.

In 1823, Hamilton entered Trinity College in Dublin and when he graduated
he was offered professorship in astronomy at the University of Dublin and he also
became the Royal astronomer of Ireland. Hamilton gained much publicity for his
theoretical prediction of two previously unknown phenomena in optics that soon
afterwards were confirmed experimentally. In 1837 he became the President of the
Irish Academy of Sciences and in the same year he published his papers in which
complex numbers were introduced as pairs of real numbers.

This discovery was not valued much at first. All mathematicians except, perhaps,
Gauss and Bolyai were quite satisfied with the geometric interpretation of complex
numbers. Only when nonEuclidean geometry was sufficiently wide-spread did the
mathematicians become interested in the interpretation of complex numbers as
pairs of real ones.

Hamilton soon realized the possibilities offered by his discovery. In 1841 he
started to consider sets {a1, . . . , an}, where the ai are real numbers. This is pre-
cisely the idea on which the most common approach to the notion of a linear
space is based. Hamilton was most involved in the study of triples of real num-
bers: he wanted to get a three-dimensional analogue of complex numbers. His
excitement was transferred to his children. As Hamilton used to recollect, when
he would join them for breakfast they would cry: “ ‘Well, Papa, can you multiply
triplets?’ Whereto I was always obliged to reply, with a sad shake of the head: ‘No,
I can only add and subtract them’ ”.

These frenzied studies were fruitful. On October 16, 1843, during a walk, Hamil-
ton almost visualized the symbols i, j, k and the relations i2 = j2 = k2 = ijk = −1.
The elements of the algebra with unit generated by i, j, k are called quaternions.
For the last 25 years of his life Hamilton worked exclusively with quaternions and
their applications in geometry, mechanics and astronomy. He abandoned his bril-
liant study in physics and studied, for example, how to raise a quaternion to a
quaternion power. He published two books and more than 100 papers on quater-
nions. Working with quaternions, Hamilton gave the definitions of inner and vector
products of vectors in three-dimensional space.

Hermann Günther Grassmann (1809–1877)

The public side of Hermann Grassmann’s life was far from being as brilliant as
the life of Hamilton.

To the end of his life he was a gymnasium teacher in his native town Stettin.
Several times he tried to get a university position but in vain. Hamilton, having
read a book by Grassmann, called him the greatest German genius. Concerning
the same book, 30 years after its publication the publisher wrote to Grassmann:
“Your book Die Ausdehnungslehre has been out of print for some time. Since your
work hardly sold at all, roughly 600 copies were used in 1864 as waste paper and
the remaining few odd copies have now been sold out, with the exception of the
one copy in our library”.

Grassmann himself thought that his next book would enjoy even lesser success.
Grassmann’s ideas began to spread only towards the end of his life. By that time he
lost his contacts with mathematicians and his interest in geometry. The last years
of his life Grassmann was mainly working with Sanscrit. He made a translation of
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Rig-Veda (more than 1,000 pages) and made a dictionary for it (about 2,000 pages).
For this he was elected a member of the American Orientalists’ Society. In modern
studies of Rig-Veda, Grassmann’s works is often cited. In 1955, the third edition
of Grassmann’s dictionary to Rig-Veda was issued.

Grassmann can be described as a self-taught person. Although he did graduate
from the Berlin University, he only studied philology and theology there. His father
was a teacher of mathematics in Stettin, but Grassmann read his books only as
a student at the University; Grassmann said later that many of his ideas were
borrowed from these books and that he only developed them further.

In 1832 Grassmann actually arrived at the vector form of the laws of mechanics;
this considerably simplified various calculations. He noticed the commutativity and
associativity of the addition of vectors and explicitly distinguished these properties.
Later on, Grassmann expressed his theory in a quite general form for arbitrary
systems with certain properties. This over-generality considerably hindered the
understanding of his books; almost nobody could yet understand the importance
of commutativity, associativity and the distributivity in algebra.

Grassmann defined the geometric product of two vectors as the parallelogram
spanned by these vectors. He considered parallelograms of equal size parallel to
one plane and of equal orientation equivalent. Later on, by analogy, he introduced
the geometric product of r vectors in n-dimensional space. He considered this
product as a geometric object whose coordinates are minors of order r of an r × n
matrix consisting of coordinates of given vectors.

In Grassmann’s works, the notion of a linear space with all its attributes was
actually constructed. He gave a definition of a subspace and of linear dependence
of vectors.

In 1840s, mathematicians were unprepared to come to grips with Grassmann’s
ideas. Grassmann sent his first book to Gauss. In reply he got a notice in which
Gauss thanked him and wrote to the effect that he himself had studied similar
things about half a century before and recently published something on this topic.
Answering Grassmann’s request to write a review of his book, Möbius informed
Grassmann that being unable to understand the philosophical part of the book
he could not read it completely. Later on, Möbius said that he knew only one
mathematician who had read through the entirety of Grassmann’s book. (This
mathematician was Bretschneider.)

Having won the prize for developing Leibniz’s ideas, Grassmann addressed the
Minister of Culture with a request for a university position and his papers were
sent to Kummer for a review. In the review, it was written that the papers lacked
clarity. Grassmann’s request was turned down.

In the 1860s and 1870s various mathematicians came, by their own ways, to ideas
similar to Grassmann’s ideas. His works got high appreciation by Cremona, Hankel,
Clebsh and Klein, but Grassmann himself was not interested in mathematics any
more.

5. The dual space. The orthogonal complement

Warning. While reading this section the reader should keep in mind that here,
as well as throughout the whole book, we consider finite dimensional spaces only.
For infinite dimensional spaces the majority of the statements of this section are
false.
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5.1. To a linear space V over a field K we can assign a linear space V ∗ whose
elements are linear functions on V , i.e., the maps f : V −→ K such that

f(λ1v1 + λ2v2) = λ1f(v1) + λ2f(v2) for any λ1, λ2 ∈ K and v1, v2 ∈ V.

The space V ∗ is called the dual to V .
To a basis e1, . . . , en of V we can assign a basis e∗1, . . . , e

∗
n of V ∗ setting e∗i (ej) =

δij . Any element f ∈ V ∗ can be represented in the form f =
∑
f(ei)e∗i . The linear

independence of the vectors e∗i follows from the identity (
∑
λie
∗
i )(ej) = λj .

Thus, if a basis e1, . . . en of V is fixed we can construct an isomorphism g : V −→
V ∗ setting g(ei) = e∗i . Selecting another basis in V we get another isomorphism
(see 5.3), i.e., the isomorphism constructed is not a canonical one.

We can, however, construct a canonical isomorphism between V and (V ∗)∗ as-
signing to every v ∈ V an element v′ ∈ (V ∗)∗ such that v′(f) = f(v) for any
f ∈ V ∗.

Remark. The elements of V ∗ are sometimes called the covectors of V . Besides,
the elements of V are sometimes called contravariant vectors whereas the elements
of V ∗ are called covariant vectors.

5.2. To a linear operator A : V1 −→ V2 we can assign the adjoint operator
A∗ : V ∗2 −→ V ∗1 setting (A∗f2)(v1) = f2(Av1) for any f2 ∈ V ∗2 and v1 ∈ V1.

It is more convenient to denote f(v), where v ∈ V and f ∈ V ∗, in a more
symmetric way: 〈f, v〉. The definition of A∗ in this notation can be rewritten as
follows

〈A∗f2, v1〉 = 〈f2, Av1〉.
If a basis2 {eα} is selected in V1 and a basis {εβ} is selected in V2 then to the

operator A we can assign the matrix
∥∥aij

∥∥, where Aej =
∑
i aijεi. Similarly, to the

operator A∗ we can assign the matrix
∥∥a∗ij

∥∥ with respect to bases {e∗α} and {ε∗β}.
Let us prove that

∥∥a∗ij
∥∥ =

∥∥aij
∥∥T . Indeed, on the one hand,

〈ε∗k, Aej〉 =
∑

i

aij〈ε∗k, εi〉 = akj .

On the other hand

〈ε∗k, Aej〉 = 〈A∗ε∗k, ej〉 =
∑
p

a∗pk〈ε∗p, ej〉 = a∗jk.

Hence, a∗jk = akj .

5.3. Let {eα} and {εβ} be two bases such that εj =
∑
aijei and ε∗p =

∑
bqpe

∗
q .

Then

δpj = ε∗p(εj) =
∑

aijε
∗
p(ei) =

∑
aijbqpδqi =

∑
aijbip, i.e., ABT = I.

The maps f, g : V −→ V ∗ constructed from bases {eα} and {εβ} coincide if
f(εj) = g(εj) for all j, i.e.,

∑
aije

∗
i =

∑
bije

∗
i and, therefore A = B = (AT )−1.

2As is customary nowadays, we will, by abuse of language, briefly write {ei} to denote the
complete set {ei : i ∈ I} of vectors of a basis and hope this will not cause a misunderstanding.
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In other words, the bases {eα} and {εβ} induce the same isomorphism V −→ V ∗

if and only if the matrix A of the passage from one basis to another is an orthogonal
one.

Notice that the inner product enables one to distinguish the set of orthonormal
bases and, therefore, it enables one to construct a canonical isomorphism V −→ V ∗.
Under this isomorphism to a vector v ∈ V we assign the linear function v∗ such
that v∗(x) = (v, x).

5.4. Consider a system of linear equations

(1)





f1(x) = b1,

. . . . . . . . . . . .

fm(x) = bm.

We may assume that the covectors f1, . . . , fk are linearly independent and fi =∑k
j=1 λijfj for i > k. If x0 is a solution of (1) then fi(x0) =

∑k
j=1 λijfj(x0) for

i > k, i.e.,

(2) bi =
k∑

j=1

λijbj for i > k.

Let us prove that if conditions (2) are verified then the system (1) is consistent.
Let us complement the set of covectors f1, . . . , fk to a basis and consider the dual
basis e1, . . . , en. For a solution we can take x0 = b1e1 + · · · + bkek. The general
solution of the system (1) is of the form x0 +t1ek+1 +· · ·+tn−ken where t1, . . . , tn−k
are arbitrary numbers.

5.4.1. Theorem. If the system (1) is consistent, then it has a solution x =
(x1, . . . , xn), where xi =

∑k
j=1 cijbj and the numbers cij do not depend on the bj.

To prove it, it suffices to consider the coordinates of the vector x0 = b1e1 + · · ·+
bkek with respect to the initial basis.

5.4.2. Theorem. If fi(x) =
∑n
j=1 aijxj, where aij ∈ Q and the covectors

f1, . . . , fm constitute a basis (in particular it follows that m = n), then the system
(1) has a solution xi =

∑n
j=1 cijbj, where the numbers cij are rational and do not

depend on bj; this solution is unique.

Proof. Since Ax = b, where A =
∥∥aij

∥∥, then x = A−1b. If the elements of A
are rational numbers, then the elements of A−1 are also rational ones. ¤

The results of 5.4.1 and 5.4.2 have a somewhat unexpected application.

5.4.3. Theorem. If a rectangle with sides a and b is arbitrarily cut into squares
with sides x1, . . . , xn then xi

a ∈ Q and xi
b ∈ Q for all i.

Proof. Figure 1 illustrates the following system of equations:

(3)

x1 + x2 = a

x3 + x2 = a

x4 + x2 = a

x4 + x5 + x6 = a

x6 + x7 = a

x1 + x3 + x4 + x7 = b

x2 + x5 + x7 = b

x2 + x6 = b.
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Figure 1

A similar system of equations can be written for any other partition of a rectangle
into squares. Notice also that if the system corresponding to a partition has another
solution consisting of positive numbers, then to this solution a partition of the
rectangle into squares can also be assigned, and for any partition we have the
equality of areas x2

1 + . . . x2
n = ab.

First, suppose that system (3) has a unique solution. Then

xi = λia+ µib and λi, µi ∈ Q.

Substituting these values into all equations of system (3) we get identities of the
form pja + qjb = 0, where pj , qj ∈ Q. If pj = qj = 0 for all j then system (3)
is consistent for all a and b. Therefore, for any sufficiently small variation of the
numbers a and b system (3) has a positive solution xi = λia+ µib; therefore, there
exists the corresponding partition of the rectangle. Hence, for all a and b from
certain intervals we have

(∑
λ2
i

)
a2 + 2 (

∑
λiµi) ab+

(∑
µ2
i

)
b2 = ab.

Thus,
∑
λ2
i =

∑
µ2
i = 0 and, therefore, λi = µi = 0 for all i. We got a contradic-

tion; hence, in one of the identities pja + qjb = 0 one of the numbers pj and qj is
nonzero. Thus, b = ra, where r ∈ Q, and xi = (λi + rµi)a, where λi + rµi ∈ Q.

Now, let us prove that the dimension of the space of solutions of system (3)
cannot be greater than zero. The solutions of (3) are of the form

xi = λia+ µib+ α1it1 + · · ·+ αkitk,

where t1, . . . , tk can take arbitrary values. Therefore, the identity

(4)
∑

(λia+ µib+ α1it1 + · · ·+ αkitk)2 = ab

should be true for all t1, . . . , tk from certain intervals. The left-hand side of (4) is
a quadratic function of t1, . . . , tk. This function is of the form

∑
α2
pit

2
p + . . . , and,

therefore, it cannot be a constant for all small changes of the numbers t1, . . . , tk. ¤
5.5. As we have already noted, there is no canonical isomorphism between V

and V ∗. There is, however, a canonical one-to-one correspondence between the set
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of k-dimensional subspaces of V and the set of (n − k)-dimensional subspaces of
V ∗. To a subspace W ⊂ V we can assign the set

W⊥ = {f ∈ V ∗ | 〈f, w〉 = 0 for any w ∈W}.
This set is called the annihilator or orthogonal complement of the subspace W . The
annihilator is a subspace of V ∗ and dimW +dimW⊥ = dimV because if e1, . . . , en
is a basis for V such that e1, . . . , ek is a basis for W then e∗k+1, . . . , e

∗
n is a basis for

W⊥.
The following properties of the orthogonal complement are easily verified:
a) if W1 ⊂W2, then W⊥2 ⊂W⊥1 ;
b) (W⊥)⊥ = W ;
c) (W1 +W2)⊥ = W⊥1 ∩W⊥2 and (W1 ∩W2)⊥ = W⊥1 +W⊥2 ;
d) if V = W1 ⊕W2, then V ∗ = W⊥1 ⊕W⊥2 .
The subspace W⊥ is invariantly defined and therefore, the linear span of vectors

e∗k+1, . . . , e
∗
n does not depend on the choice of a basis in V , and only depends on

the subspace W itself. Contrarywise, the linear span of the vectors e∗1, . . . , e
∗
k does

depend on the choice of the basis e1, . . . , en; it can be any k-dimensional subspace of
V ∗ whose intersection with W⊥ is 0. Indeed, let W1 be a k-dimensional subspace of
V ∗ and W1 ∩W⊥ = 0. Then (W1)⊥ is an (n−k)-dimensional subspace of V whose
intersection with W is 0. Let ek+1, . . . , ek be a basis of (W1)⊥. Let us complement
it with the help of a basis of W to a basis e1, . . . , en. Then e∗1, . . . , e

∗
k is a basis of

W1.

Theorem. If A : V −→ V is a linear operator and AW ⊂ W then A∗W⊥ ⊂
W⊥.

Proof. Let x ∈ W and f ∈ W⊥. Then 〈A∗f, x〉 = 〈f,Ax〉 = 0 since Ax ∈ W .
Therefore, A∗f ∈W⊥. ¤

5.6. In the space of real matrices of size m×n we can introduce a natural inner
product. This inner product can be expressed in the form

tr(XY T ) =
∑

i,j

xijyij .

Theorem. Let A be a matrix of size m×n. If for every matrix X of size n×m
we have tr(AX) = 0, then A = 0.

Proof. If A 6= 0 then tr(AAT ) =
∑
i,j a

2
ij > 0. ¤

Problems

5.1. A matrix A of order n is such that for any traceless matrix X (i.e., trX = 0)
of order n we have tr(AX) = 0. Prove that A = λI.

5.2. Let A and B be matrices of size m× n and k × n, respectively, such that if
AX = 0 for a certain column X, then BX = 0. Prove that B = CA, where C is a
matrix of size k ×m.

5.3. All coordinates of a vector v ∈ Rn are nonzero. Prove that the orthogo-
nal complement of v contains vectors from all orthants except the orthants which
contain v and −v.

5.4. Let an isomorphism V −→ V ∗(x 7→ x∗) be such that the conditions x∗(y) =
0 and y∗(x) = 0 are equivalent. Prove that x∗(y) = B(x, y), where B is either a
symmetric or a skew-symmetric bilinear function.
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6. The kernel (null space) and the image (range) of an operator.
The quotient space

6.1. For a linear map A : V −→W we can consider two sets:
KerA = {v ∈ V | Av = 0} — the kernel (or the null space) of the map;
ImA = {w ∈W | there exists v ∈ V such that Av = w} — the image (or range)

of the map.
It is easy to verify that KerA is a linear subspace in V and ImA is a linear

subspace in W . Let e1, . . . , ek be a basis of KerA and e1, . . . , ek, ek+1, . . . , en an
extension of this basis to a basis of V . Then Aek+1, . . . , Aen is a basis of ImA and,
therefore,

dim KerA+ dim ImA = dimV.

Select bases in V and W and consider the matrix of A with respect to these bases.
The space ImA is spanned by the columns of A and, therefore, dim ImA = rankA.
In particular, it is clear that the rank of the matrix of A does not depend on the
choice of bases, i.e., the rank of an operator is well-defined.

Given maps A : U −→ V and B : V −→ W , it is possible that ImA and KerB
have a nonzero intersection. The dimension of this intersection can be computed
from the following formula.

Theorem.

dim(ImA ∩KerB) = dim ImA− dim ImBA = dim KerBA− dim KerA.

Proof. Let C be the restriction of B to ImA. Then

dim KerC + dim ImC = dim ImA,

i.e.,
dim(ImA ∩KerB) + dim ImBA = dim ImA.

To prove the second identity it suffices to notice that

dim ImBA = dimV − dim KerBA

and
dim ImA = dimV − dim KerA. ¤

6.2. The kernel and the image of A and of the adjoint operator A∗ are related
as follows.

6.2.1. Theorem. KerA∗ = (ImA)⊥ and ImA∗ = (KerA)⊥.

Proof. The equality A∗f = 0 means that f(Ax) = A∗f(x) = 0 for any x ∈ V ,
i.e., f ∈ (ImA)⊥. Therefore, KerA∗ = (ImA)⊥ and since (A∗)∗ = A, then KerA =
(ImA∗)⊥. Hence, (KerA)⊥ = ((ImA∗)⊥)⊥ = ImA∗. ¤
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Corollary. rankA = rankA∗.

Proof. rankA∗ = dim ImA∗ =dim(KerA)⊥ =dimV −dim KerA =dim ImA =
rankA. ¤

Remark. If V is a space with an inner product, then V ∗ can be identified with
V and then

V = ImA⊕ (ImA)⊥ = ImA⊕KerA∗.

Similarly, V = ImA∗ ⊕KerA.

6.2.2. Theorem (The Fredholm alternative). Let A : V −→ V be a linear
operator. Consider the four equations

(1) Ax = y for x, y ∈ V,
(2) A∗f = g for f, g ∈ V ∗,

(3) Ax = 0,

(4) A∗f = 0.

Then either equations (1) and (2) are solvable for any right-hand side and in this
case the solution is unique, or equations (3) and (4) have the same number of
linearly independent solutions x1, . . . , xk and f1, . . . , fk and in this case the equa-
tion (1) (resp. (2)) is solvable if and only if f1(y) = · · · = fk(y) = 0 (resp.
g(x1) = · · · = g(xk) = 0).

Proof. Let us show that the Fredholm alternative is essentially a reformulation
of Theorem 6.2.1. Solvability of equations (1) and (2) for any right-hand sides
means that ImA = V and ImA∗ = V , i.e., (KerA∗)⊥ = V and (KerA)⊥ = V
and, therefore, KerA∗ = 0 and KerA = 0. These identities are equivalent since
rankA = rankA∗.

If KerA 6= 0 then dim KerA∗ = dim KerA and y ∈ ImA if and only if y ∈
(KerA∗)⊥, i.e., f1(y) = · · · = fk(y) = 0. Similarly, g ∈ ImA∗ if and only if
g(x1) = · · · = g(xk) = 0. ¤

6.3. The image of a linear map A is connected with the solvability of the linear
equation

(1) Ax = b.

This equation is solvable if and only if b ∈ ImA. In case the map is given by a
matrix there is a simple criterion for solvability of (1).

6.3.1. Theorem (Kronecker-Capelli). Let A be a matrix, and let x and b be
columns such that (1) makes sense. Equation (1) is solvable if and only if rankA =
rank(A, b), where (A, b) is the matrix obtained from A by augmenting it with b.

Proof. Let A1, . . . , An be the columns of A. The equation (1) can be rewritten
in the form x1A1 + · · · + xnAn = b. This equation means that the column b is a
linear combination of the columns A1, . . . , An, i.e., rankA = rank(A, b). ¤

A linear equation can be of a more complicated form. Let us consider for example
the matrix equation

(2) C = AXB.

First of all, let us reduce this equation to a simpler form.
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6.3.2. Theorem. Let a = rankA. Then there exist invertible matrices L and
R such that LAR = Ia, where Ia is the unit matrix of order a enlarged with the
help of zeros to make its size same as that of A.

Proof. Let us consider the map A : V n −→ V m corresponding to the matrix
A taken with respect to bases e1, . . . , en and ε1, . . . , εm in the spaces V n and V m,
respectively. Let ya+1, . . . , yn be a basis of KerA and let vectors y1, . . . , ya comple-
ment this basis to a basis of V n. Define a map R : V n −→ V n setting R(ei) = yi.
Then AR(ei) = Ayi for i ≤ a and AR(ei) = 0 for i > a. The vectors x1 = Ay1,
. . . , xa = Aya form a basis of ImA. Let us complement them by vectors xa+1, . . . ,
xm to a basis of V m. Define a map L : V m −→ V m by the formula Lxi = εi. Then

LAR(ei) =

{
εi for 1 ≤ i ≤ a;

0 for i > a.

Therefore, the matrices of the operators L and R with respect to the bases e and
ε, respectively, are the required ones. ¤

6.3.3. Theorem. Equation (2) is solvable if and only if one of the following
equivalent conditions holds

a) there exist matrices Y and Z such that C = AY and C = ZB;
b) rankA = rank(A,C) and rankB = rank

(
B
C

)
, where the matrix (A,C) is

formed from the columns of the matrices A and C and the matrix
(
B
C

)
is formed

from the rows of the matrices B and C.

Proof. The equivalence of a) and b) is proved along the same lines as Theo-
rem 6.3.1. It is also clear that if C = AXB then we can set Y = XB and Z = AX.
Now, suppose that C = AY and C = ZB. Making use of Theorem 6.3.2, we can
rewrite (2) in the form

D = IaWIb, where D = LACRB and W = R−1
A XL−1

B .

Conditions C = AY and C = ZB take the form D = Ia(R−1
A Y RB) and D =

(LAZL−1
B )Ib, respectively. The first identity implies that the last n− a rows of D

are zero and the second identity implies that the last m− b columns of D are zero.
Therefore, for W we can take the matrix D. ¤

6.4. If W is a subspace in V then V can be stratified into subsets

Mv = {x ∈ V | x− v ∈W}.
It is easy to verify that Mv = Mv′ if and only if v − v′ ∈W . On the set

V/W = {Mv | v ∈ V },
we can introduce a linear space structure setting λMv = Mλv and Mv + Mv′ =
Mv+v′ . It is easy to verify that Mλv and Mv+v′ do not depend on the choice of v
and v′ and only depend on the sets Mv and Mv′ themselves. The space V/W is
called the quotient space of V with respect to (or modulo) W ; it is convenient to
denote the class Mv by v +W .

The map p : V −→ V/W , where p(v) = Mv, is called the canonical projection.
Clearly, Ker p = W and Im p = V/W . If e1, . . . , ek is a basis of W and e1, . . . , ek,
ek+1, . . . , en is a basis of V then p(e1) = · · · = p(ek) = 0 whereas p(ek+1), . . . ,
p(en) is a basis of V/W . Therefore, dim(V/W ) = dimV − dimW .
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Theorem. The following canonical isomorphisms hold:
a) (U/W )/(V/W ) ∼= U/V if W ⊂ V ⊂ U ;
b) V/V ∩W ∼= (V +W )/W if V,W ⊂ U .

Proof. a) Let u1, u2 ∈ U . The classes u1 +W and u2 +W determine the same
class modulo V/W if and only if [(u1+W )−(u2+W )] ∈ V , i.e., u1−u2 ∈ V+W = V ,
and, therefore, the elements u1 and u2 determine the same class modulo V .

b) The elements v1, v2 ∈ V determine the same class modulo V ∩W if and only
if v1 − v2 ∈W , hence the classes v1 +W and v2 +W coincide. ¤

Problem

6.1. Let A be a linear operator. Prove that

dim KerAn+1 = dim KerA+
n∑

k=1

dim(ImAk ∩KerA)

and

dim ImA = dim ImAn+1 +
n∑

k=1

dim(ImAk ∩KerA).

7. Bases of a vector space. Linear independence

7.1. In spaces V and W , let there be given bases e1, . . . , en and ε1, . . . , εm.
Then to a linear map f : V −→ W we can assign a matrix A =

∥∥aij
∥∥ such that

fej =
∑
aijεi, i.e.,

f (
∑
xjej) =

∑
aijxjεi.

Let x be a column (x1, . . . , xn)T , and let e and ε be the rows (e1, . . . , en) and
(ε1, . . . , εm). Then f(ex) = εAx. In what follows a map and the corresponding
matrix will be often denoted by the same letter.

How does the matrix of a map vary under a change of bases? Let e′ = eP and
ε′ = εQ be other bases. Then

f(e′x) = f(ePx) = εAPx = ε′Q−1APx,

i.e.,
A′ = Q−1AP

is the matrix of f with respect to e′ and ε′. The most important case is that when
V = W and P = Q, in which case

A′ = P−1AP.

Theorem. For a linear operator A the polynomial

|λI −A| = λn + an−1λ
n−1 + · · ·+ a0

does not depend on the choice of a basis.

Proof. |λI − P−1AP | = |P−1(λI −A)P | = |P |−1|P | · |λI −A| = |λI −A|.
The polynomial

p(λ) = |λI −A| = λn + an−1λ
n−1 + · · ·+ a0

is called the characteristic polynomial of the operator A, its roots are called the
eigenvalues of A. Clearly, |A| = (−1)na0 and trA = −an−1 are invariants of A. ¤
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7.2. The majority of general statements on bases are quite obvious. There are,
however, several not so transparent theorems on a possibility of getting a basis by
sorting vectors of two systems of linearly independent vectors. Here is one of such
theorems.

Theorem ([Green, 1973]). Let x1, . . . , xn and y1, . . . , yn be two bases, 1 ≤ k ≤
n. Then k of the vectors y1, . . . , yn can be swapped with the vectors x1, . . . , xk so
that we get again two bases.

Proof. Take the vectors y1, . . . , yn for a basis of V . For any set of n vectors z1,
. . . , zn from V consider the determinant M(z1, . . . , zn) of the matrix whose rows
are composed of coordinates of the vectors z1, . . . , zn with respect to the basis
y1, . . . , yn. The vectors z1, . . . , zn constitute a basis if and only if M(z1, . . . , zn) 6=
0. We can express the formula of the expansion of M(x1, . . . , xn) with respect to
the first k rows in the form

(1) M(x1, . . . , xn) =
∑

A⊂Y
±M(x1, . . . , xk, A)M(Y \A, xk+1, . . . , xn),

where the summation runs over all (n − k)-element subsets of Y = {y1, . . . , yn}.
Since M(x1, . . . , xn) 6= 0, then there is at least one nonzero term in (1); the corre-
sponding subset A determines the required set of vectors of the basis y1, . . . , yn. ¤

7.3. Theorem ([Aupetit, 1988]). Let T be a linear operator in a space V such
that for any ξ ∈ V the vectors ξ, Tξ, . . . , Tnξ are linearly dependent. Then the
operators I, T , . . . , Tn are linearly dependent.

Proof. We may assume that n is the maximal of the numbers such that the
vectors ξ0, . . . , Tn−1ξ0 are linearly independent and Tnξ0 ∈ Span(ξ0, . . . , Tn−1ξ0)
for some ξ0. Then there exists a polynomial p0 of degree n such that p0(T )ξ0 = 0;
we may assume that the coefficient of highest degree of p0 is equal to 1.

Fix a vector η ∈ V and let us prove that p0(T )η = 0. Let us consider

W = Span(ξ0, . . . , Tnξ0, η, . . . , Tnη).

It is easy to verify that dimW ≤ 2n and T (W ) ⊂W . For every λ ∈ C consider the
vectors

f0(λ) = ξ0 + λη, f1(λ) = Tf0(λ), . . . , fn−1(λ) = Tn−1f0(λ), g(λ) = Tnf0(λ).

The vectors f0(0), . . . , fn−1(0) are linearly independent and, therefore, there
are linear functions ϕ0, . . . , ϕn−1 on W such that ϕi(fj(0)) = δij . Let

∆(λ) = |aij(λ)|n−1
0 , where aij(λ) = ϕi(fi(λ)).

Then ∆(λ) is a polynomial in λ of degree not greater than n such that ∆(0) = 1.
By the hypothesis for any λ ∈ C there exist complex numbers α0(λ), . . . , αn−1(λ)
such that

(1) g(λ) = α0(λ)f0(λ) + · · ·+ αn−1(λ)fn−1(λ).
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Therefore,

(2) ϕi(g(λ)) =
n−1∑

k=0

αk(λ)ϕi(fk(λ)) for i = 0, . . . , n− 1.

If ∆(λ) 6= 0 then system (2) of linear equations for αk(λ) can be solved with the
help of Cramer’s rule. Therefore, αk(λ) is a rational function for all λ ∈ C \ ∆,
where ∆ is a (finite) set of roots of ∆(λ).

The identity (1) can be expressed in the form pλ(T )f0(λ) = 0, where

pλ(T ) = Tn − αn−1(λ)Tn−1 − · · · − α0(λ)I.

Let β1(λ), . . . , βn(λ) be the roots of p(λ). Then

(T − β1(λ)I) . . . (T − βn(λ)I)f0(λ) = 0.

If λ 6∈ ∆, then the vectors f0(λ), . . . , fn−1(λ) are linearly independent, in other
words, h(T )f0(λ) 6= 0 for any nonzero polynomial h of degree n− 1. Hence,

w = (T − β2(λ)I) . . . (T − βn(λ)I)f0(λ) 6= 0

and (T − β1(λ)I)w = 0, i.e., β1(λ) is an eigenvalue of T . The proof of the fact that
β2(λ), . . . , βn(λ) are eigenvalues of T is similar. Thus, |βi(λ)| ≤

∥∥T
∥∥
s

(cf. 35.1).
The rational functions α0(λ), . . . , αn−1(λ) are symmetric functions in the func-

tions β1(λ), . . . , βn(λ); the latter are uniformly bounded on C \∆ and, therefore,
they themselves are uniformly bounded on C \∆. Hence, the functions α0(λ), . . . ,
αn−1(λ) are bounded on C; by Liouville’s theorem3 they are constants: αi(λ) = αi.

Let p(T ) = Tn − αn−1T
n−1 − · · · − α0I. Then p(T )f0(λ) = 0 for λ ∈ C \ ∆;

hence, p(T )f0(λ) = 0 for all λ. In particular, p(T )ξ0 = 0. Hence, p = p0 and
p0(T )η = 0. ¤

Problems

7.1. In V n there are given vectors e1, . . . , em. Prove that if m ≥ n + 2 then
there exist numbers α1, . . . , αm not all of them equal to zero such that

∑
αiei = 0

and
∑
αi = 0.

7.2. A convex linear combination of vectors v1, . . . , vm is an arbitrary vector
x = t1v1 + · · ·+ tmvm, where ti ≥ 0 and

∑
ti = 1.

Prove that in a real space of dimension n any convex linear combination of m
vectors is also a convex linear combination of no more than n + 1 of the given
vectors.

7.3. Prove that if |aii| >
∑
k 6=i |aik| for i = 1, . . . , n, then A =

∥∥aij
∥∥n

1
is an

invertible matrix.
7.4. a) Given vectors e1, . . . , en+1 in an n-dimensional Euclidean space, such

that (ei, ej) < 0 for i 6= j, prove that any n of these vectors form a basis.
b) Prove that if e1, . . . , em are vectors in Rn such that (ei, ej) < 0 for i 6= j

then m ≤ n+ 1.

3See any textbook on complex analysis.
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8. The rank of a matrix

8.1. The columns of the matrix AB are linear combinations of the columns of
A and, therefore,

rankAB ≤ rankA;

since the rows of AB are linear combinations of rows B, we have

rankAB ≤ rankB.

If B is invertible, then

rankA = rank(AB)B−1 ≤ rankAB

and, therefore, rankA = rankAB.
Let us give two more inequalities for the ranks of products of matrices.

8.1.1. Theorem (Frobenius’ inequality).

rankBC + rankAB ≤ rankABC + rankB.

Proof. If U ⊂ V and X : V −→W , then

dim(KerX|U ) ≤ dim KerX = dimV − dim ImX.

For U = ImBC, V = ImB and X = A we get

dim(KerA|ImBC) ≤ dim ImB − dim ImAB.

Clearly,
dim(KerA|ImBC) = dim ImBC − dim ImABC. ¤

8.1.2. Theorem (The Sylvester inequality).

rankA+ rankB ≤ rankAB + n,

where n is the number of columns of the matrix A and also the number of rows of
the matrix B.

Proof. Make use of the Frobenius inequality for matrices A1 = A, B1 = In
and C1 = B. ¤

8.2. The rank of a matrix can also be defined as follows: the rank of A is equal
to the least of the sizes of matrices B and C whose product is equal to A.

Let us prove that this definition is equivalent to the conventional one. If A = BC
and the minimal of the sizes of B and C is equal to k then

rankA ≤ min(rankB, rankC) ≤ k.
It remains to demonstrate that if A is a matrix of size m× n and rankA = k then
A can be represented as the product of matrices of sizes m× k and k×n. In A, let
us single out linearly independent columns A1, . . . , Ak. All other columns can be
linearly expressed through them and, therefore,

A = (x11A1 + · · ·+ xk1Ak, . . . , x1nA1 + · · ·+ xknAk)

= (A1 . . . Ak)



x11 . . . x1n

... · · · ...
xk1 . . . xkn


 .
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8.3. Let Mn,m be the space of matrices of size n × m. In this space we can
indicate a subspace of dimension nr, the rank of whose elements does not exceed r.
For this it suffices to take matrices in the last n− r rows of which only zeros stand.

Theorem ([Flanders, 1962]). Let r ≤ m ≤ n, let U ⊂Mn,m be a linear subspace
and let the maximal rank of elements of U be equal to r. Then dimU ≤ nr.

Proof. Complementing, if necessary, the matrices by zeros let us assume that
all matrices are of size n×n. In U , select a matrix A of rank r. The transformation

X 7→ PXQ, where P and Q are invertible matrices, sends A to
(
Ir 0
0 0

)
(see

Theorem 6.3.2). We now perform the same transformation over all matrices of U
and express them in the corresponding block form.

8.3.1. Lemma. If B ∈ U then B =
(
B11 B12

B21 0

)
, where B21B12 = 0.

Proof. Let B =
(
B11 B12

B21 B22

)
∈ U , where the matrix B21 consists of rows

u1, . . . , un−r and the matrix B12 consists of columns v1, . . . , vn−r. Any minor of
order r + 1 of the matrix tA+B vanishes and, therefore,

∆(t) =
∣∣∣∣
tIr +B11 vj

ui bij

∣∣∣∣ = 0.

The coefficient of tr is equal to bij and, therefore, bij = 0. Hence, (see Theo-
rem 3.1.3)

∆(t) = −ui adj(tIr +B11)vj .

Since adj(tIr + B11) = tr−1Ir + . . . , then the coefficient of tr−1 of the polynomial
∆(t) is equal to −uivj . Hence, uivj = 0 and, therefore B21B12 = 0. ¤

8.3.2. Lemma. If B,C ∈ U , then B21C12 + C21B12 = 0.

Proof. Applying Lemma 8.3.1 to the matrix B + C ∈ U we get (B21 +
C21)(B12 + C12) = 0, i.e., B21C12 + C21B12 = 0. ¤

We now turn to the proof of Theorem 8.3. Let us consider the map f : U −→
Mr,n given by the formula f(C) =

∥∥C11, C12

∥∥. Then Ker f consists of matrices of

the form
(

0 0
B21 0

)
and by Lemma 8.3.2 B21C12 = 0 for all matrices C ∈ U .

Further, consider the map g : Ker f −→Mr,n given by the formula

g(B)
(∥∥X11X12

∥∥)
= tr(B21X12).

This map is a monomorphism (see 5.6) and therefore, the space g(Ker f) ⊂ M∗r,n
is of dimension k = dim Ker f . Therefore, (g(Ker f))⊥ is a subspace of dimension
nr − k in Mr,n. If C ∈ U , then B21C12 = 0 and, therefore, tr(B21C12) = 0. Hence,
f(U) ⊂ (g(Ker f))⊥, i.e., dim f(U) ≤ nr − k. It remains to observe that

dim f(U) + k = dim Im f + dim Ker f = dimU. ¤

In [Flanders, 1962] there is also given a description of subspaces U such that
dimU = nr. If m = n and U contains Ir, then U either consists of matrices whose
last n− r columns are zeros, or of matrices whose last n− r rows are zeros.
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Problems

8.1. Let aij = xi + yj . Prove that rank
∥∥aij

∥∥n
1
≤ 2.

8.2. Let A be a square matrix such that rankA = 1. Prove that |A + I| =
(trA) + 1.

8.3. Prove that rank(A∗A) = rankA.

8.4. Let A be an invertible matrix. Prove that if rank
(
A B
C D

)
= rankA then

D = CA−1B.
8.5. Let the sizes of matrices A1 and A2 be equal, and let V1 and V2 be the

spaces spanned by the rows of A1 and A2, respectively; let W1 and W2 be the
spaces spanned by the columns of A1 and A2, respectively. Prove that the following
conditions are equivalent:

1) rank(A1 +A2) = rankA1 + rankA2;
2) V1 ∩ V2 = 0;
3) W1 ∩W2 = 0.
8.6. Prove that if A and B are matrices of the same size and BTA = 0 then

rank(A+B) = rankA+ rankB.
8.7. Let A and B be square matrices of odd order. Prove that if AB = 0 then

at least one of the matrices A+AT and B +BT is not invertible.
8.8 (Generalized Ptolemy theorem). Let X1 . . . Xn be a convex polygon inscrib-

able in a circle. Consider a skew-symmetric matrix A =
∥∥aij

∥∥n
1
, where aij = XiXj

for i > j. Prove that rankA = 2.

9. Subspaces. The Gram-Schmidt orthogonalization process

9.1. The dimension of the intersection of two subspaces is related with the
dimension of the space spanned by them via the following relation.

Theorem. dim(V +W ) + dim(V ∩W ) = dimV + dimW .

Proof. Let e1, . . . , er be a basis of V ∩W ; it can be complemented to a basis
e1, . . . , er, v1, . . . , vn−r of V n and to a basis e1, . . . , er, w1, . . . , wm−r of Wm. Then
e1, . . . , er, v1, . . . , vn−r, w1, . . . , wm−r is a basis of V +W . Therefore,

dim(V +W )+dim(V ∩W ) = (r+(n−r)+(m−r))+r = n+m = dimV +dimW. ¤

9.2. Let V be a subspace over R. An inner product in V is a map V × V −→ R
which to a pair of vectors u, v ∈ V assigns a number (u, v) ∈ R and has the following
properties:

1) (u, v) = (v, u);
2) (λu+ µv,w) = λ(u,w) + µ(v, w);
3) (u, u) > 0 for any u 6= 0; the value |u| =

√
(u, u) is called the length of u.

A basis e1, . . . , en of V is called an orthonormal (respectively, orthogonal) if
(ei, ej) = δij (respectively, (ei, ej) = 0 for i 6= j).

A matrix of the passage from an orthonormal basis to another orthonormal
basis is called an orthogonal matrix. The columns of such a matrix A constitute an
orthonormal system of vectors and, therefore,

ATA = I; hence, AT = A−1 and AAT = I.
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If A is an orthogonal matrix then

(Ax,Ay) = (x,ATAy) = (x, y).

It is easy to verify that any vectors e1, . . . , en such that (ei, ej) = δij are linearly
independent. Indeed, if λ1e1 + · · ·+λnen = 0 then λi = (λ1e1 + · · ·+λnen, ei) = 0.
We can similarly prove that an orthogonal system of nonzero vectors is linearly
independent.

Theorem (The Gram-Schmidt orthogonalization). Let e1, . . . , en be a basis
of a vector space. Then there exists an orthogonal basis ε1, . . . , εn such that εi ∈
Span(e1, . . . , ei) for all i = 1, . . . , n.

Proof is carried out by induction on n. For n = 1 the statement is obvious.
Suppose the statement holds for n vectors. Consider a basis e1, . . . , en+1 of (n+1)-
dimensional space V . By the inductive hypothesis applied to the n-dimensional
subspace W = Span(e1, . . . , en) of V there exists an orthogonal basis ε1, . . . , εn of
W such that εi ∈ Span(e1, . . . , ei) for i = 1, . . . , n. Consider a vector

εn+1 = λ1ε1 + · · ·+ λnεn + en+1.

The condition (εi, εn+1) = 0 means that λi(εi, εi) + (en+1, εi) = 0, i.e., λi =

− (ek+1, εi)
(εi, εi)

. Taking such numbers λi we get an orthogonal system of vectors ε1, . . . ,

εn+1 in V , where εn+1 6= 0, since en+1 6∈ Span(ε1, . . . , εn) = Span(e1, . . . , en). ¤

Remark 1. From an orthogonal basis ε1, . . . , εn we can pass to an orthonormal
basis ε′1, . . . , ε

′
n, where ε′i = εi/

√
(εi, εi).

Remark 2. The orthogonalization process has a rather lucid geometric interpre-
tation: from the vector en+1 we subtract its orthogonal projection to the subspace
W = Span(e1, . . . , en) and the result is the vector εn+1 orthogonal to W .

9.3. Suppose V is a space with inner product and W is a subspace in V . A
vector w ∈W is called the orthogonal projection of a vector v ∈ V on the subspace
W if v − w ⊥W .

9.3.1. Theorem. For any v ∈ W there exists a unique orthogonal projection
on W .

Proof. In W select an orthonormal basis e1, . . . , ek. Consider a vector w =
λ1e1 + · · ·+ λkek. The condition w − v ⊥ ei means that

0 = (λ1e1 + · · ·+ λkek − v, ei) = λi − (v, ei),

i.e., λi = (v, ei). Taking such numbers λi we get the required vector; it is of the
form w =

∑k
i=1(v, ei)ei. ¤

9.3.1.1. Corollary. If e1, . . . , en is a basis of V and v ∈ V then v =∑n
i=1(v, ei)ei.

Proof. The vector v −∑n
i=1(v, ei)ei is orthogonal to the whole V . ¤
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9.3.1.2. Corollary. If w and w⊥ are orthogonal projections of v on W and
W⊥, respectively, then v = w + w⊥.

Proof. It suffices to complement an orthonormal basis of W to an orthonormal
basis of the whole space and make use of Corollary 9.3.1.1. ¤

9.3.2. Theorem. If w is the orthogonal projection of v on W and w1 ∈ W
then

|v − w1|2 = |v − w|2 + |w − w1|2.

Proof. Let a = v−w and b = w−w1 ∈W . By definition, a ⊥ b and, therefore,
|a+ b|2 = (a+ b, a+ b) = |a|2 + |b|2. ¤

9.3.2.1. Corollary. |v|2 = |w|2 + |v − w|2.

Proof. In the notation of Theorem 9.3.2 set w1 = 0. ¤

9.3.2.2. Corollary. |v − w1| ≥ |v − w| and the equality takes place only if
w1 = w.

9.4. The angle between a line l and a subspace W is the angle between a vector
v which determines l and the vector w, the orthogonal projection of v onto W (if
w = 0 then v ⊥ W ). Since v − w ⊥ w, then (v, w) = (w,w) ≥ 0, i.e., the angle
between v and w is not obtuse.

Figure 2

If w and w⊥ are orthogonal projections of a unit vector v on W and W⊥,
respectively, then cos ∠(v, w) = |w| and cos ∠(v, w⊥) = |w⊥|, see Figure 2, and
therefore,

cos ∠(v,W ) = sin ∠(v,W⊥).

Let e1, . . . , en be an orthonormal basis and v = x1e1 + · · ·+ xnen a unit vector.
Then xi = cosαi, where αi is the angle between v and ei. Hence,

∑n
i=1 cos2 αi = 1

and
n∑

i=1

sin2 αi =
n∑

i=1

(1− cos2 αi) = n− 1.
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Theorem. Let e1, . . . , ek be an orthonormal basis of a subspace W ⊂ V and
αi the angle between v and ei and α the angle between v and W . Then cos2 α =∑k
i=1 cos2 αi.

Proof. Let us complement the basis e1, . . . , ek to a basis e1, . . . , en of V . Then
v = x1e1 + · · · + xnen, where xi = cosαi for i = 1, . . . , k, and the projection of v
onto W is equal to x1e1 + · · ·+ xkek = w. Hence,

cos2 α = |w|2 = x2
1 + · · ·+ x2

k = cos2 α1 + · · ·+ cos2 αk. ¤

9.5. Theorem ([Nisnevich, Bryzgalov, 1953]). Let e1, . . . , en be an orthogonal
basis of V , and d1, . . . , dn the lengths of the vectors e1, . . . , en. An m-dimensional
subspace W ⊂ V such that the projections of these vectors on W are of equal length
exists if and only if

d2
i (d
−2
1 + · · ·+ d−2

n ) ≥ m for i = 1, . . . , n.

Proof. Take an orthonormal basis in W and complement it to an orthonormal
basis ε1, . . . , εn of V . Let (x1i, . . . , xni) be the coordinates of ei with respect to
the basis ε1, . . . , εn and yki = xki/di. Then

∥∥yki
∥∥ is an orthogonal matrix and the

length of the projection of ei on W is equal to d if and only if

(1) y2
1i + · · ·+ y2

mi = (x2
1i + · · ·+ x2

mi)d
−2
i = d2d−2

i .

If the required subspace W exists then d ≤ di and

m =
m∑

k=1

n∑

i=1

y2
ki =

n∑

i=1

m∑

k=1

y2
ki = d2(d−2

1 + · · ·+ d−2
n ) ≤ d2

i (d
−2
1 + · · ·+ d−2

n ).

Now, suppose that m ≤ d2
i (d
−2
1 + · · · + d−2

n ) for i = 1, . . . , n and construct an
orthogonal matrix

∥∥yki
∥∥n

1
with property (1), where d2 = m(d−2

1 + · · ·+d−2
n )−1. We

can now construct the subspace W in an obvious way.
Let us prove by induction on n that if 0 ≤ βi ≤ 1 for i = 1, . . . , n and β1 + · · ·+

βn = m, then there exists an orthogonal matrix
∥∥yki

∥∥n
1

such that y2
1i+· · ·+y2

mi = βi.
For n = 1 the statement is obvious. Suppose the statement holds for n − 1 and
prove it for n. Consider two cases:

a) m ≤ n/2. We can assume that β1 ≥ · · · ≥ βn. Then βn−1 + βn ≤ 2m/n ≤ 1
and, therefore, there exists an orthogonal matrix A =

∥∥aki
∥∥n−1

1
such that a2

1i +
· · · + a2

mi = βi for i = 1, . . . , n − 2 and a2
1,n−1 + · · · + a2

m,n−1 = βn−1 + βn. Then
the matrix

∥∥yki
∥∥n

1
=




a11 . . . a1,n−2 α1a1,n−1 −α2a1,n−1

... · · · ...
...

...
an−1,1 . . . an−1,n−2 α1an−1,n−1 −α2an−1,n−1

0 . . . 0 α2 α1


 ,
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where α1 =
√

βn−1

βn−1 + βn
and α2 =

√
βn

βn−1 + βn
, is orthogonal with respect to its

columns; besides,

m∑

k=1

y2
ki = βi for i = 1, . . . , n− 2

y2
1,n−1 + · · ·+ y2

m,n−1 = α2
1(βn−1 + βn) = βn−1,

y2
1n + · · ·+ y2

mn = βn

b) Let m > n/2. Then n−m < n/2, and, therefore, there exists an orthogonal
matrix

∥∥yki
∥∥n

1
such that y2

m+1,i + · · · + y2
n,i = 1 − βi for i = 1, . . . , n; hence,

y2
1i + · · ·+ y2

mi = βi. ¤
9.6.1. Theorem. Suppose a set of k-dimensional subspaces in a space V is

given so that the intersection of any two of the subspaces is of dimension k − 1.
Then either all these subspaces have a common (k− 1)-dimensional subspace or all
of them are contained in the same (k + 1)-dimensional subspace.

Proof. Let V k−1
ij = V ki ∩ V kj and Vijl = V ki ∩ V kj ∩ V kl . First, let us prove that

if V123 6= V k−1
12 then V k3 ⊂ V k1 + V k2 . Indeed, if V123 6= V k−1

12 then V k−1
12 and V k−1

23

are distinct subspaces of V k2 and the subspace V123 = V k−1
12 ∩ V k−1

23 is of dimension
k− 2. In V123, select a basis ε and complement it by vectors e13 and e23 to bases of
V13 and V23, respectively. Then V3 = Span(e13, e23, ε), where e13 ∈ V1 and e23 ∈ V2.

Suppose the subspaces V k1 , V k2 and V k3 have no common (k − 1)-dimensional
subspace, i.e., the subspaces V k−1

12 and V k−1
23 do not coincide. The space Vi could

not be contained in the subspace spanned by V1, V2 and V3 only if V12i = V12 and
V23i = V23. But then dimVi ≥ dim(V12 + V23) = k + 1 which is impossible. ¤

If we consider the orthogonal complements to the given subspaces we get the
theorem dual to Theorem 9.6.1.

9.6.2. Theorem. Let a set of m-dimensional subspaces in a space V be given
so that any two of them are contained in a (m + 1)-dimensional subspace. Then
either all of them belong to an (m+ 1)-dimensional subspace or all of them have a
common (m− 1)-dimensional subspace.

Problems

9.1. In an n-dimensional space V , there are given m-dimensional subspaces U
and W so that u ⊥W for some u ∈ U \ 0. Prove that w ⊥ U for some w ∈W \ 0.

9.2. In an n-dimensional Euclidean space two bases x1, . . . , xn and y1, . . . , yn are
given so that (xi, xj) = (yi, yj) for all i, j. Prove that there exists an orthogonal
operator U which sends xi to yi.

10. Complexification and realification. Unitary spaces

10.1. The complexification of a linear space V over R is the set of pairs (a, b),
where a, b ∈ V , with the following structure of a linear space over C:

(a, b) + (a1, b1) = (a+ a1, b+ b1)

(x+ iy)(a, b) = (xa− yb, xb+ ya).
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Such pairs of vectors can be expressed in the form a+ ib. The complexification of
V is denoted by V C.

To an operator A : V −→ V there corresponds an operator AC : V C −→ V C given
by the formula AC(a+ib) = Aa+iAb. The operator AC is called the complexification
of A.

10.2. A linear space V over C is also a linear space over R. The space over R
obtained is called a realification of V . We will denote it by VR.

A linear map A : V −→W over C can be considered as a linear map AR : VR −→
WR over R. The map AR is called the realification of the operator A.

If e1, . . . , en is a basis of V over C then e1, . . . , en, ie1, . . . , ien is a basis of VR. It
is easy to verify that if A = B+ iC is the matrix of a linear map A : V −→W with
respect to bases e1, . . . , en and ε1, . . . , εm and the matrices B and C are real, then
the matrix of the linear map AR with respect to the bases e1, . . . , en, ie1, . . . , ien

and ε1, . . . , εm, iε1, . . . , iεm is of the form
(
B −C
C B

)
.

Theorem. If A : V −→ V is a linear map over C then detAR = | detA|2.

Proof.

(
I 0
−iI I

)(
B −C
C B

)(
I 0
iI I

)
=

(
B − iC −C

0 B + iC

)
.

Therefore, detAR = detA · det Ā = | detA|2. ¤
10.3. Let V be a linear space over C. An Hermitian product in V is a map

V × V −→ C which to a pair of vectors x, y ∈ V assigns a complex number (x, y)
and has the following properties:

1) (x, y) = (y, x);
2) (αx+ βy, z) = α(x, z) + β(y, z);
3) (x, x) is a positive real number for any x 6= 0.
A space V with an Hermitian product is called an Hermitian (or unitary) space.

The standard Hermitian product in Cn is of the form x1y1 + · · ·+ xnyn.
A linear operator A∗ is called the Hermitian adjoint to A if

(Ax, y) = (x,A∗y) = (A∗y, x).

(Physicists often denote the Hermitian adjoint by A+.)
Let

∥∥aij
∥∥n

1
and

∥∥bij
∥∥n

1
be the matrices of A and A∗ with respect to an orthonor-

mal basis. Then
aij = (Aej , ei) = (A∗ej , ei) = bji.

A linear operator A is called unitary if (Ax,Ay) = (x, y), i.e., a unitary operator
preserves the Hermitian product. If an operator A is unitary then

(x, y) = (Ax,Ay) = (x,A∗Ay).

Therefore, A∗A = I = AA∗, i.e., the rows and the columns of the matrix of A
constitute an orthonormal systems of vectors.

A linear operator A is called Hermitian (resp. skew-Hermitian ) if A∗ = A (resp.
A∗ = −A). Clearly, a linear operator is Hermitian if and only if its matrix A is
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Hermitian with respect to an orthonormal basis, i.e., A
T

= A; and in this case its
matrix is Hermitian with respect to any orthonormal basis.

Hermitian matrices are, as a rule, analogues of real symmetric matrices in the
complex case. Sometimes complex symmetric or skew-symmetric matrices (that
is such that satisfy the condition AT = A or AT = −A, respectively) are also
considered.

10.3.1. Theorem. Let A be a complex operator such that (Ax, x) = 0 for all
x. Then A = 0.

Proof. Let us write the equation (Ax, x) = 0 twice: for x = u+v and x = u+iv.
Taking into account that (Av, v) = (Au, u) = 0 we get (Av, u) + (Au, v) = 0 and
i(Av, u)− i(Au, v) = 0. Therefore, (Au, v) = 0 for all u, v ∈ V . ¤

Remark. For real operators the identity (Ax, x) = 0 means that A is a skew-
symmetric operator (cf. Theorem 21.1.2).

10.3.2. Theorem. Let A be a complex operator such that (Ax, x) ∈ R for any
x. Then A is an Hermitian operator.

Proof. Since (Ax, x) = (Ax, x) = (x,Ax), then

((A−A∗)x, x) = (Ax, x)− (A∗x, x) = (Ax, x)− (x,Ax) = 0.

By Theorem 10.3.1 A−A∗ = 0. ¤
10.3.3. Theorem. Any complex operator is uniquely representable in the form

A = B + iC, where B and C are Hermitian operators.

Proof. If A = B + iC, where B and C are Hermitian operators, then A∗ =
B∗ − iC∗ = B − iC and, therefore 2B = A + A∗ and 2iC = A − A∗. It is easy to
verify that the operators 1

2 (A+A∗) and 1
2i (A−A∗) are Hermitian. ¤

Remark. An operator iC is skew-Hermitian if and only if the operator C is
Hermitian and, therefore, any operator A is uniquely representable in the form of
a sum of an Hermitian and a skew-Hermitian operator.

An operator A is called normal if A∗A = AA∗. It is easy to verify that unitary,
Hermitian and skew-Hermitian operators are normal.

10.3.4. Theorem. An operator A = B + iC, where B and C are Hermitian
operators, is normal if and only if BC = CB.

Proof. Since A∗ = B∗−iC∗ = B−iC, then A∗A = B2 +C2 +i(BC−CB) and
AA∗ = B2 + C2 − i(BC − CB). Therefore, the equality A∗A = AA∗ is equivalent
to the equality BC − CB = 0. ¤

10.4. If V is a linear space over R, then to define on V a structure of a linear
space over C it is necessary to determine the operation J of multiplication by i,
i.e., Jv = iv. This linear map J : V −→ V should satisfy the following property

J2v = i(iv) = −v, i.e., J2 = −I.
It is also clear that if in a space V over R such a linear operator J is given then
we can make V into a space over C if we define the multiplication by a complex
number a+ ib by the formula

(a+ ib)v = av + bJv.
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In particular, the dimension of V in this case must be even.
Let V be a linear space over R. A linear (over R) operator J : V −→ V is called

a complex structure on V if J2 = −I.
The eigenvalues of the operator J : V −→ V are purely imaginary and, therefore,

for a more detailed study of J we will consider the complexification V C of V . Notice
that the multiplication by i in V C has no relation whatsoever with neither the
complex structure J on V or its complexification JC acting in V C.

Theorem. V C = V+ ⊕ V−, where

V+ = Ker(JC − iI) = Im(JC + iI)

and
V− = Ker(JC + iI) = Im(JC − iI).

Proof. Since (JC − iI)(JC + iI) = (J2)C + I = 0, it follows that Im(JC +
iI) ⊂ Ker(JC − iI). Similarly, Im(JC − iI) ⊂ Ker(JC + iI). On the other hand,
−i(JC + iI) + i(JC − iI) = 2I and, therefore, V C ⊂ Im(JC + iI) + Im(JC − iI).
Since Ker(JC − iI) ∩Ker(JC + iI) = 0, we get the required conclusion. ¤

Remark. Clearly, V+ = V−.

Problems

10.1. Express the characteristic polynomial of the matrix AR in terms of the
characteristic polynomial of A.

10.2. Consider an R-linear map of C into itself given by Az = az + bz, where
a, b ∈ C. Prove that this map is not invertible if and only if

|a| = |b|.

10.3. Indicate in Cn a complex subspace of dimension [n/2] on which the qua-
dratic form B(x, y) = x1y1 + · · ·+ xnyn vanishes identically.

Solutions

5.1. The orthogonal complement to the space of traceless matrices is one-
dimensional; it contains both matrices I and AT .

5.2. Let A1, . . . , Am and B1, . . . , Bk be the rows of the matrices A and B.
Then

Span(A1, . . . , Am)⊥ ⊂ Span(B1, . . . , Bk)⊥;

hence, Span(B1, . . . , Bk) ⊂ Span(A1, . . . , Am), i.e., bij =
∑
cipapj .

5.3. If a vector (w1, . . . , wn) belongs to an orthant that does not contain the
vectors ±v, then viwi > 0 and vjwj < 0 for certain indices i and j. If we preserve
the sign of the coordinate wi (resp. wj) but enlarge its absolute value then the
inner product (v, w) will grow (resp. decrease) and, therefore it can be made zero.

5.4. Let us express the bilinear function x∗(y) in the form xByT . By hypothesis
the conditions xByT = 0 and yBxT = 0 are equivalent. Besides, yBxT = xBT yT .
Therefore, ByT = λ(y)BT yT . If vectors y and y1 are proportional then λ(y) =
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λ(y1). If the vectors y and y1 are linearly independent then the vectors BT yT and
BT yT1 are also linearly independent and, therefore, the equalities

λ(y + y1)(BT yT +BT yT1 ) = B(yT + yT1 ) = λ(y)BT yT + λ(y1)BT yT1

imply λ(y) = λ(y1). Thus, x∗(y) = B(x, y) and B(x, y) = λB(y, x) = λ2B(x, y)
and, therefore, λ = ±1.

6.1. By Theorem 6.1

dim(ImAk ∩KerA) = dim KerAk+1 − dim KerAk for any k.

Therefore,

n∑

k=1

dim(ImAk ∩KerA) = dim KerAn+1 − dim KerA.

To prove the second equality it suffices to notice that

dim ImAp = dimV − dim KerAp,

where V is the space in which A acts.
7.1. We may assume that e1, . . . , ek (k ≤ n) is a basis of Span(e1, . . . , em). Then

ek+1 + λ1e1 + · · ·+ λkek = 0 and ek+2 + µ1e1 + · · ·+ µkek = 0.

Multiply these equalities by 1+
∑
µi and −(1+

∑
λi), respectively, and add up the

obtained equalities. (If 1 +
∑
µi = 0 or 1 +

∑
λi = 0 we already have the required

equality.)
7.2. Let us carry out the proof by induction on m. For m ≤ n+ 1 the statement

is obvious. Let m ≥ n + 2. Then there exist numbers α1, . . . , αm not all equal to
zero such that

∑
αivi = 0 and

∑
αi = 0 (see Problem 7.1). Therefore,

x =
∑

tivi + λ
∑

αivi =
∑

t′ivi,

where t′i = ti + λαi and
∑
t′i =

∑
ti = 1. It remains to find a number λ so that all

numbers ti + λαi are nonnegative and at least one of them is zero. The set

{λ ∈ R | ti + λαi ≥ 0 for i = 1, . . . ,m}

is closed, nonempty (it contains zero) and is bounded from below (and above) since
among the numbers αi there are positive (and negative) ones; the minimal number
λ from this set is the desired one.

7.3. Suppose A is not invertible. Then there exist numbers λ1, . . . , λn not all
equal to zero such that

∑
i λiaik = 0 for k = 1, . . . , n. Let λs be the number among

λ1, . . . , λn whose absolute value is the greatest (for definiteness sake let s = 1).
Since

λ1a11 + λ2a12 + · · ·+ λna1n = 0,

then

|λ1a11| = |λ2a12 + · · ·+ λna1n| ≤ |λ2a12|+ · · ·+ |λna1n|
≤ |λ1| (|a12|+ · · ·+ |a1n|) < |λ1| · |a11|.



68 LINEAR SPACES

Contradiction.
7.4. a) Suppose that the vectors e1, . . . , ek are linearly dependent for k < n+ 1.

We may assume that this set of vectors is minimal, i.e., λ1e1 + · · ·+λkek = 0, where
all the numbers λi are nonzero. Then

0 = (en+1,
∑
λiei) =

∑
λi(en+1, ei), where (en+1, ei) < 0.

Therefore, among the numbers λi there are both positive and negative ones. On
the other hand, if

λ1e1 + · · ·+ λpep = λ′p+1ep+1 + · · ·+ λ′kek,

where all numbers λi, λ′j are positive, then taking the inner product of this equality
with the vector in its right-hand side we get a negative number in the left-hand side
and the inner product of a nonzero vector by itself, i.e., a nonnegative number, in
the right-hand side.

b) Suppose that vectors e1, . . . , en+2 in Rn are such that (ei, ej) < 0 for i 6= j.
On the one hand, if α1e1 + · · ·+ αn+2en+2 = 0 then all the numbers αi are of the
same sign (cf. solution to heading a). On the other hand, we can select the numbers
α1, . . . , αn+2 so that

∑
αi = 0 (see Problem 7.1). Contradiction.

8.1. Let

X =



x1 1
...

...
xn 1


 , Y =

(
1 . . . 1
y1 . . . yn

)
.

Then
∥∥aij

∥∥n
1

= XY .
8.2. Let e1 be a vector that generates ImA. Let us complement it to a basis

e1, . . . , en. The matrix A with respect to this basis is of the form

A =




a1 . . . an
0 . . . 0
... · · · ...
0 . . . 0


 .

Therefore, trA = a1 and |A+ I| = 1 + a1.
8.3. It suffices to show that KerA∗ ∩ ImA = 0. If A∗v = 0 and v = Aw, then

(v, v) = (Aw, v) = (w,A∗v) = 0 and, therefore, v = 0.
8.4. The rows of the matrix (C,D) are linear combinations of the rows of the

matrix (A,B) and, therefore, (C,D) = X(A,B) = (XA,XB), i.e., D = XB =
(CA−1)B.

8.5. Let ri = rankAi and r = rank(A1 + A2). Then dimVi = dimWi = ri
and dim(V1 + V2) = dim(W1 + W2) = r. The equality r1 + r2 = r means that
dim(V1 + V2) = dimV1 + dimV2, i.e., V1 ∩ V2 = 0. Similarly, W1 ∩W2 = 0.

8.6. The equality BTA = 0 means that the columns of the matrices A and B are
pair-wise orthogonal. Therefore, the space spanned by the columns of A has only
zero intersection with the space spanned by the columns of B. It remains to make
use of the result of Problem 8.5.

8.7. Suppose A and B are matrices of order 2m+ 1. By Sylvester’s inequality,

rankA+ rankB ≤ rankAB + 2m+ 1 = 2m+ 1.
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Therefore, either rankA ≤ m or rankB ≤ m. If rankA ≤ m then rankAT =
rankA ≤ m; hence,

rank(A+AT ) ≤ rankA+ rankAT ≤ 2m < 2m+ 1.

8.8. We may assume that a12 6= 0. Let Ai be the ith row of A. Let us prove
that a21Ai = a2iA1 + ai1A2, i.e.,

(1) a12aij + a1ja2i + a1iaj2 = 0.

The identity (1) is skew-symmetric with respect to i and j and, therefore, we
can assume that i < j, see Figure 3.

Figure 3

Only the factor aj2 is negative in (1) and, therefore, (1) is equivalent to Ptolemy’s
theorem for the quadrilateral X1X2XiXj .

9.1. Let U1 be the orthogonal complement of u in U . Since

dimU⊥1 + dimW = n− (m− 1) +m = n+ 1,

then dim(U⊥1 ∩W ) ≥ 1. If w ∈W ∩U⊥1 then w ⊥ U1 and w ⊥ u; therefore, w ⊥ U .
9.2. Let us apply the orthogonalization process with the subsequent normaliza-

tion to vectors x1, . . . , xn. As a result we get an orthonormal basis e1, . . . , en. The
vectors x1, . . . , xn are expressed in terms of e1, . . . , en and the coefficients only
depend on the inner products (xi, xj). Similarly, for the vectors y1, . . . , yn we get
an orthonormal basis ε1, . . . , εn. The map that sends ei to εi (i = 1, . . . , n) is the
required one.

10.1. det(λI −AR) = |det(λI −A)|2.
10.2. Let a = a1+ia2, b = b1+ib2, where ai, bi ∈ R. The matrix of the given map

with respect to the basis 1, i is equal to
(
a1 + b1 −a2 + b2
a2 + b2 a1 − b1

)
and its determinant

is equal to |a|2 − |b|2.
10.3. Let p = [n/2]. The complex subspace spanned by the vectors e1 + ie2,

e3 + ie4, . . . , e2p−1 + ie2p possesses the required property.
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CANONICAL FORMS OF MATRICES

AND LINEAR OPERATORS

11. The trace and eigenvalues of an operator

11.1. The trace of a square matrix A is the sum of its diagonal elements; it is
denoted by trA. It is easy to verify that

trAB =
∑

i,j

aijbji = trBA.

Therefore,
trPAP−1 = trP−1PA = trA,

i.e., the trace of the matrix of a linear operator does not depend on the choice of a
basis.

The equality trABC = trACB is not always true. For instance, take A =(
0 1
0 0

)
, B =

(
1 0
0 0

)
and C =

(
0 0
1 0

)
; then ABC = 0 and ACB =

(
1 0
0 0

)
.

For the trace of an operator in a Euclidean space we have the following useful
formula.

Theorem. Let e1, . . . , en be an orthonormal basis. Then

trA =
n∑

i=1

(Aei, ei).

Proof. Since Aei =
∑
j aijej , then (Aei, ei) = aii. ¤

Remark. The trace of an operator is invariant but the above definition of the
trace makes use of a basis and, therefore, is not invariant. One can, however, give
an invariant definition of the trace of an operator (see 27.2).

11.2. A nonzero vector v ∈ V is called an eigenvector of the linear operator
A : V → V if Av = λv and this number λ is called an eigenvalue of A. Fix λ and
consider the equation Av = λv, i.e., (A − λI)v = 0. This equation has a nonzero
solution v if and only if |A− λI| = 0. Therefore, the eigenvalues of A are roots of
the polynomial p(λ) = |λI −A|.

The polynomial p(λ) is called the characteristic polynomial of A. This polyno-
mial only depends on the operator itself and does not depend on the choice of the
basis (see 7.1).

Theorem. If Ae1 = λ1e1, . . . , Aek = λkek and the numbers λ1, . . . , λk are
distinct, then e1, . . . , ek are linearly independent.

Proof. Assume the contrary. Selecting a minimal linearly independent set of
vectors we can assume that ek = α1e1 + · · · + αk−1ek−1, where α1 . . . αk−1 6= 0
and the vectors e1, . . . , ek−1 are linearly independent. Then Aek = α1λ1e1 + · · ·+
αk−1λk−1ek−1 and Aek = λkek = α1λke1 + · · · + αk−1λkek−1. Hence, λ1 = λk.
Contradiction. ¤
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Corollary. If the characteristic polynomial of an operator A over C has no
multiple roots then the eigenvectors of A constitute a basis.

11.3. A linear operator A possessing a basis of eigenvectors is said to be a
diagonalizable or semisimple. If X is the matrix formed by the columns of the
coordinates of eigenvectors x1, . . . , xn and λi an eigenvalue corresponding to xi,
then AX = XΛ, where Λ = diag(λ1, . . . , λn). Therefore, X−1AX = Λ.

The converse is also true: if X−1AX = diag(λ1, . . . , λn), then λ1, . . . , λn are
eigenvalues of A and the columns of X are the corresponding eigenvectors.

Over C only an operator with multiple eigenvalues may be nondiagonalizable and
such operators constitute a set of measure zero. All normal operators (see 17.1)
are diagonalizable over C. In particular, all unitary and Hermitian operators are
diagonalizable and there are orthonormal bases consisting of their eigenvectors.
This can be easily proved in a straightforward way as well with the help of the
fact that for a unitary or Hermitian operator A the inclusion AW ⊂ W implies
AW⊥ ⊂W⊥.

The absolute value of an eigenvalue of a unitary operator A is equal to 1 since
|Ax| = |x|. The eigenvalues of an Hermitian operator A are real since (Ax, x) =
(x,Ax) = (Ax, x).

Theorem. For an orthogonal operator A there exists an orthonormal basis with
respect to which the matrix of A is of the block-diagonal form with blocks ±1 or(

cosϕ − sinϕ
sinϕ cosϕ

)
.

Proof. If ±1 is an eigenvalue of A we can make use of the same arguments as
for the complex case and therefore, let us assume that the vectors x and Ax are
not parallel for all x. The function ϕ(x) = ∠(x,Ax) — the angle between x and
Ax — is continuous on a compact set, the unit sphere.

Let ϕ0 = ∠(x0, Ax0) be the minimum of ϕ(x) and e the vector parallel to the
bisector of the angle between x0 and Ax0.

Then
ϕ0 ≤ ∠(e,Ae) ≤ ∠(e,Ax0) + ∠(Ax0, Ae) =

ϕ0

2
+
ϕ0

2

and, therefore, Ae belongs to the plane Span(x0, e). This plane is invariant with
respect to A since Ax0, Ae ∈ Span(x0, e). An orthogonal transformation of a plane
is either a rotation or a symmetry through a straight line; the eigenvalues of a
symmetry, however, are equal to ±1 and, therefore, the matrix of the restriction of

A to Span(x0, e) is of the form
(

cosϕ − sinϕ
sinϕ cosϕ

)
, where sinϕ 6= 0. ¤

11.4. The eigenvalues of the tridiagonal matrix

J =




a1 −b1 0 . . . 0 0
−c1 a2 −b2 . . . 0 0

0 −c2 a3 . . . 0 0
...

...
...

. . . . . . . . .
...

0 0 0 . . . an−2 −bn−2 0
0 0 0 . . . −cn−2 an−1 −bn−1

0 0 0 . . . 0 −cn−1 an




, where bici > 0,
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have interesting properties. They are real and of multiplicity one. For J =
∥∥aij

∥∥n
1
,

consider the sequence of polynomials

Dk(λ) = |λδij − aij |k1 , D0(λ) = 1.

Clearly, Dn(λ) is the characteristic polynomial of J . These polynomials satisfy a
recurrent relation

(1) Dk(λ) = (λ− ak)Dk−1(λ)− bk−1ck−1Dk−2(λ)

(cf. 1.6) and, therefore, the characteristic polynomial Dn(λ) depends not on the
numbers bk, ck themselves, but on their products. By replacing in J the elements
bk and ck by

√
bkck we get a symmetric matrix J1 with the same characteristic

polynomial. Therefore, the eigenvalues of J are real.
A symmetric matrix has a basis of eigenvectors and therefore, it remains to

demonstrate that to every eigenvalue λ of J1 there corresponds no more than one
eigenvector (x1, . . . , xn). This is also true even for J , i.e without the assumption
that bk = ck. Since

(λ− a1)x1 − b1x2 = 0

−c1x1 + (λ− a2)x2 − b2x3 = 0

. . . . . . . . . . . . . . .

−cn−2xn−2 + (λ− an−1)xn−1 − bn−1xn = 0

−cn−1xn−1 + (λ− an)xn = 0,

it follows that the change

y1 = x1, y2 = b1x2, . . . , yk = b1 . . . bk−1xk,

yields
y2 = (λ− a1)y1

y3 = (λ− a2)y2 − c1b1y1

. . . . . . . . . . . . . . . . . .

yn = (λ− an−1)yn−1 − cn−2bn−2yn−2.

These relations for yk coincide with relations (1) for Dk and, therefore, if y1 = c =
cD0(λ) then yk = cDk(λ). Thus the eigenvector (x1, . . . , xk) is uniquely determined
up to proportionality.

11.5. Let us give two examples of how to calculate eigenvalues and eigenvectors.
First, we observe that if λ is an eigenvalue of a matrix A and f an arbitrary
polynomial, then f(λ) is an eigenvalue of the matrix f(A). This follows from the
fact that f(λI)− f(A) is divisible by λI −A.

a) Consider the matrix

P =




0 0 0 . . . 0 0 1
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
...

...
...

. . . . . .
...

...
0 0 0 . . . 0 1 0



.
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Since Pek = ek+1, then P sek = ek+s and, therefore, Pn = I, where n is the order
of the matrix. It follows that the eigenvalues are roots of the equation xn = 1. Set
ε = exp(2πi/n). Let us prove that the vector us =

∑n
k=1 ε

ksek (s = 1, . . . , n) is an
eigenvector of P corresponding to the eigenvalue ε−s. Indeed,

Pus =
∑

εksPek =
∑

εksek+1 =
∑

ε−s(εs(k+1)ek+1) = ε−sus.

b) Consider the matrix

A =




0 1 0 . . . 0

0 0 1
. . . 0

...
...

. . . . . .
...

0 0 0 . . . 1
p1 p2 p3 . . . pn



.

Let x be the column (x1, . . . , xn)T . The equation Ax = λx can be rewritten in the
form

x2 = λx1, x3 = λx2, . . . , xn = λxn−1, p1x1 + p2x2 + · · ·+ pnxn = λxn.

Therefore, the eigenvectors of A are of the form

(α, λα, λ2α, . . . , λn−1α), where p1 + p2λ+ · · ·+ pnλ
n−1 = λn.

11.6. We already know that trAB = trBA. It turns out that a stronger state-
ment is true: the matrices AB and BA have the same characteristic polynomials.

Theorem. Let A and B be n×n-matrices. Then the characteristic polynomials
of AB and BA coincide.

Proof. If A is invertible then

|λI −AB| = |A−1(λI −AB)A| = |λI −BA|.
For a noninvertible matrix A the equality |λI −AB| = |λI −BA| can be proved by
passing to the limit. ¤

Corollary. If A and B are m×n-matrices, then the characteristic polynomials
of ABT and BTA differ by the factor λn−m.

Proof. Complement the matrices A and B by zeros to square matrices of equal
size. ¤

11.7.1. Theorem. Let the sum of the elements of every column of a square
matrix A be equal to 1, and let the column (x1, . . . , xn)T be an eigenvector of A
such that x1 + · · · + xn 6= 0. Then the eigenvalue corresponding to this vector is
equal to 1.

Proof. Adding up the equalities
∑
a1jxj = λx1, . . . ,

∑
anjxj = λxn we get∑

i,j aijxj = λ
∑
j xj . But

∑

i,j

aijxj =
∑

j

(
xj

∑

i

aij

)
=

∑
xj

since
∑
i aij = 1. Thus,

∑
xj = λ

∑
xj , where

∑
xj 6= 0. Therefore, λ = 1. ¤
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11.7.2. Theorem. If the sum of the absolute values of the elements of every
column of a square matrix A does not exceed 1, then all its eigenvalues do not exceed
1.

Proof. Let (x1, . . . , xn) be an eigenvector corresponding to an eigenvalue λ.
Then

|λxi| = |
∑

aijxj | ≤
∑
|aij ||xj |, i = 1, . . . , n.

Adding up these inequalities we get

|λ|
∑
|xi| ≤

∑

i,j

|aij ||xj | =
∑

j

(
|xj |

∑

i

|aij |
)
≤

∑

j

|xj |

since
∑
i |aij | ≤ 1. Dividing both sides of this inequality by the nonzero number∑ |xj | we get |λ| ≤ 1. ¤

Remark. Theorem 11.7.2 remains valid also when certain of the columns of A
are zero ones.

11.7.3. Theorem. Let A =
∥∥aij

∥∥n
1

, Sj =
∑n
i=1 |aij |; then

∑n
j=1 S

−1
j |ajj | ≤

rankA and the summands corresponding to zero values of Sj can be replaced by
zeros.

Proof. Multiplying the columns of A by nonzero numbers we can always make
the numbers Sj for the new matrix to be either 0 or 1 and, besides, ajj ≥ 0.
The rank of the matrix is not effected by these transformations. Applying Theo-
rem 11.7.2 to the new matrix we get

∑
|ajj | =

∑
ajj = trA =

∑
λi ≤

∑
|λi| ≤ rankA. ¤

Problems

11.1. a) Are there real matrices A and B such that AB −BA = I?
b) Prove that if AB −BA = A then |A| = 0.
11.2. Find the eigenvalues and the eigenvectors of the matrix A =

∥∥aij
∥∥n

1
, where

aij = λi/λj .
11.3. Prove that any square matrix A is the sum of two invertible matrices.
11.4. Prove that the eigenvalues of a matrix continuously depend on its elements.

More precisely, let A =
∥∥aij

∥∥n
1

be a given matrix. For any ε > 0 there exists δ > 0
such that if |aij−bij | < δ and λ is an eigenvalue of A, then there exists an eigenvalue
µ of B =

∥∥bij
∥∥n

1
such that |λ− µ| < ε.

11.5. The sum of the elements of every row of an invertible matrix A is equal to
s. Prove that the sum of the elements of every row of A−1 is equal to 1/s.

11.6. Prove that if the first row of the matrix S−1AS is of the form (λ, 0, 0, . . . , 0)
then the first column of S is an eigenvector of A corresponding to the eigenvalue λ.

11.7. Let f(λ) = |λI − A|, where A is a matrix of order n. Prove that f ′(λ) =∑n
i=1 |λI−Ai|, where Ai is the matrix obtained from A by striking out the ith row

and the ith column.
11.8. Let λ1, . . . , λn be the eigenvalues of a matrix A. Prove that the eigenvalues

of adjA are equal to
∏
i 6=1 λi, . . . ,

∏
i6=n λi.
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11.9. A vector x is called symmetric (resp. skew-symmetric) if its coordinates
satisfy (xi = xn−i) (resp. (xi = −xn−i)). Let a matrix A =

∥∥aij
∥∥n

0
be cen-

trally symmetric, i.e., ai,j = an−i,n−j . Prove that among the eigenvectors of A
corresponding to any eigenvalue there is either a nonzero symmetric or a nonzero
skew-symmetric vector.

11.10. The elements ai,n−i+1 = xi of a complex n× n-matrix A can be nonzero,
whereas the remaining elements are 0. What condition should the set {x1, . . . , xn}
satisfy for A to be diagonalizable?

11.11 ([Drazin, Haynsworth, 1962]). a) Prove that a matrix A has m linearly
independent eigenvectors corresponding to real eigenvalues if and only if there exists
a nonnegative definite matrix S of rankm such that AS = SA∗.

b) Prove that a matrix A has m linearly independent eigenvectors corresponding
to eigenvalues λ such that |λ| = 1 if and only if there exists a nonnegative definite
matrix S of rankm such that ASA∗ = S.

12. The Jordan canonical (normal) form

12.1. Let A be the matrix of an operator with respect to a basis e; then P−1AP
is the matrix of the same operator with respect to the basis eP . The matrices A
and P−1AP are called similar. By selecting an appropriate basis we can reduce the
matrix of an operator to a simpler form: to a Jordan normal form, cyclic form, to
a matrix with equal elements on the main diagonal, to a matrix all whose elements
on the main diagonal, except one, are zero, etc.

One might think that for a given real matrix A the set of real matrices of the
form P−1AP |P , where P is a complex matrix is “broader” than the the set of real
matrices of the form P−1AP |P , where P is a real matrix. This, however, is not so.

Theorem. Let A and B be real matrices and A = P−1BP , where P is a complex
matrix. Then A = Q−1BQ for some real matrix Q.

Proof. We have to demonstrate that if among the solutions of the equation

(1) XA = BX

there is an invertible complex matrix P , then among the solutions there is also an
invertible real matrix Q. The solutions over C of the linear equation (1) form a
linear space W over C with a basis C1, . . . , Cn. The matrix Cj can be represented in
the form Cj = Xj + iYj , where Xj and Yj are real matrices. Since A and B are real
matrices, CjA = BCj implies XjA = BXj and YjA = BYj . Hence, Xj , Yj ∈ W
for all j and W is spanned over C by the matrices X1, . . . , Xn, Y1, . . . , Yn and
therefore, we can select in W a basis D1, . . . , Dn consisting of real matrices.

Let P (t1, . . . , tn) = |t1D1 + · · · + tnDn|. The polynomial P (t1, . . . , tn) is not
identically equal to zero over C by the hypothesis and, therefore, it is not identically
equal to zero over R either, i.e., the matrix equation (1) has a nondegenerate real
solution t1D1 + · · ·+ tnDn. ¤

12.2. A Jordan block of size r × r is a matrix of the form

Jr(λ) =




λ 1 0 . . . . . . 0
0 λ 1 . . . . . . 0
...

...
. . . . . . . . .

...
0 0 0 . . . 1 0
0 0 0 . . . λ 1
0 0 0 . . . 0 λ



.
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A Jordan matrix is a block diagonal matrix with Jordan blocks Jri(λi) on the
diagonal.

A Jordan basis for an operator A : V → V is a basis of the space V in which the
matrix of A is a Jordan matrix.

Theorem (Jordan). For any linear operator A : V → V over C there exists a
Jordan basis and the Jordan matrix of A is uniquely determined up to a permutation
of its Jordan blocks.

Proof (Following [Väliaho, 1986]). First, let us prove the existence of a Jordan
basis. The proof will be carried out by induction on n = dimV .

For n = 1 the statement is obvious. Let λ be an eigenvalue of A. Consider a
noninvertible operator B = A−λI. A Jordan basis for B is also a Jordan basis for
A = B+λI. The sequence ImB0 ⊃ ImB1 ⊃ ImB2 ⊃ . . . stabilizes and, therefore,
there exists a positive integer p such that ImBp+1 = ImBp 6= ImBp−1. Then
ImBp ∩KerB = 0 and ImBp−1 ∩KerB 6= 0. Hence, Bp(ImBp) = ImBp.

Figure 4

Let Si = ImBi−1∩KerB. Then KerB = S1 ⊃ S2 ⊃ · · · ⊃ Sp 6= 0 and Sp+1 = 0.
Figure 4 might help to follow the course of the proof. In Sp, select a basis x1

i

(i = 1, . . . , np). Since x1
i ∈ ImBp−1, then x1

i = Bp−1xpi for a vector xpi . Consider
the vectors xki = Bp−kxpi (k = 1, . . . , p). Let us complement the set of vectors x1

i to
a basis of Sp−1 by vectors y1

j . Now, find a vector yp−1
j such that y1

j = Bp−2yp−1
j and

consider the vectors ylj = Bp−l−1yp−1
j (l = 1, . . . , p−1). Further, let us complement

the set of vectors x1
i and y1

j to a basis of Sp−2 by vectors z1
k, etc. The cardinality

of the set of all chosen vectors xki , ylj , . . . , b1t is equal to
∑p
i=1 dimSi since every

x1
i contributes with the summand p, every y1

j contributes with p− 1, etc. Since

dim(ImBi−1 ∩KerB) = dim KerBi − dim KerBi−1

(see 6.1), then
∑p
i=1 dimSi = dim KerBp.

Let us complement the chosen vectors to a basis of ImBp and prove that we
have obtained a basis of V . The number of these vectors indicates that it suffices
to demonstrate their linear independence. Suppose that

(1) f +
∑

αix
p
i +

∑
βix

p−1
i + · · ·+

∑
γjy

p−1
j + · · ·+

∑
δtb

1
t = 0,
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where f ∈ ImBp. Applying the operator Bp to (1) we get Bp(f) = 0; hence,
f = 0 since Bp(ImBp) = ImBp. Applying now the operator Bp−1 to (1) we get∑
αix

1
i = 0 which means that all αi are zero. Application of the operator Bp−2 to

(1) gives
∑
βix

1
i +

∑
γjy

1
j = 0, which means that all βi and γj are zero, etc.

By the inductive hypothesis we can select a Jordan basis for B in the space
ImBp 6= V ; complementing this basis by the chosen vectors, we get a Jordan basis
of V .

To prove the uniqueness of the Jordan form it suffices to verify that the number
of Jordan blocks of B corresponding to eigenvalue 0 is uniquely defined. To these
blocks we can associate the diagram plotted in Figure 4 and, therefore, the number
of blocks of size k × k is equal to

dimSk − dimSk+1

= (dim KerBk − dim KerBk−1)− (dim KerBk+1 − dim KerBk)

= 2 dim KerBk − dim KerBk−1 − dim KerBk+1

= rankBk−1 − 2 rankBk + rankBk+1;

which is invariantly defined. ¤
12.3. The Jordan normal form is convenient to use when we raise a matrix to

some power. Indeed, if A = P−1JP then An = P−1JnP . To raise a Jordan block
Jr(λ) = λI +N to a power we can use the Newton binomial formula

(λI +N)n =
n∑

k=0

(
n

k

)
λkNn−k.

The formula holds since IN = NI. The only nonzero elements of Nm are the
1’s in the positions (1,m + 1), (2,m + 2), . . . , (r −m, r), where r is the order of
N . If m ≥ r then Nm = 0.

12.4. Jordan bases always exist over an algebraically closed field only; over R
a Jordan basis does not always exist. However, over R there is also a Jordan form
which is a realification of the Jordan form over C. Let us explain how it looks.
First, observe that the part of a Jordan basis corresponding to real eigenvalues of
A is constructed over R along the same lines as over C. Therefore, only the case of
nonreal eigenvalues is of interest.

Let AC be the complexification of a real operator A (cf. 10.1).

12.4.1. Theorem. There is a one-to-one correspondence between the Jordan
blocks of AC corresponding to eigenvalues λ and λ.

Proof. Let B = P + iQ, where P and Q are real operators. If x and y are
real vectors then the equations (P + iQ)(x + iy) = 0 and (P − iQ)(x − iy) =
0 are equivalent, i.e., the equations Bz = 0 and Bz = 0 are equivalent. Since
(A − λI)n = (A− λI)n, the map z 7→ z determines a one-to-one correspondence
between Ker(A−λI)n and Ker(A−λI)n. The dimensions of these spaces determine
the number and the sizes of the Jordan blocks. ¤

Let J∗n(λ) be the 2n × 2n matrix obtained from the Jordan block Jn(λ) by

replacing each of its elements a+ ib by the matrix
(
a b
−b a

)
.
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12.4.2. Theorem. For an operator A over R there exists a basis with respect
to which its matrix is of block diagonal form with blocks Jm1(t1), . . . , Jmk(tk) for
real eigenvalues ti and blocks J∗n1

(λ1), . . . , J∗ns(λs) for nonreal eigenvalues λi and
λi.

Proof. If λ is an eigenvalue of A then by Theorem 12.4.1 λ is also an eigenvalue
of A and to every Jordan block Jn(λ) of A there corresponds the Jordan block Jn(λ).
Besides, if e1, . . . , en is the Jordan basis for Jn(λ) then e1, . . . , en is the Jordan basis
for Jn(λ). Therefore, the real vectors x1, y1, . . . , xn, yn, where ek = xk + iyk, are
linearly independent. In the basis x1, y1, . . . , xn, yn the matrix of the restriction of
A to Span(x1, y1, . . . , xn, yn) is of the form J∗n(λ). ¤

12.5. The Jordan decomposition shows that any linear operator A over C can
be represented in the form A = As+An, where As is a semisimple (diagonalizable)
operator and An is a nilpotent operator such that AsAn = AnAs.

12.5.1. Theorem. The operators As and An are uniquely defined; moreover,
As = S(A) and An = N(A), where S and N are certain polynomials.

Proof. First, consider one Jordan block A = λI + Nk of size k × k. Let
S(t) =

∑m
i=1 sit

i. Then

S(A) =
m∑

i=1

si

i∑

j=0

(
i

j

)
λjN i−j

k .

The coefficient of Np
k is equal to

∑

i

si

(
i

i− p
)
λi−p =

1
p!
S(p)(λ),

where S(p) is the pth derivative of S. Therefore, we have to select a polynomial S
so that S(λ) = λ and S(1)(λ) = · · · = S(k−1)(λ) = 0, where k is the order of the
Jordan block. If λ1, . . . , λn are distinct eigenvalues of A and k1, . . . , kn are the sizes
of the maximal Jordan blocks corresponding to them, then S should take value λi
at λi and have at λi zero derivatives from order 1 to order ki − 1 inclusive. Such
a polynomial can always be constructed (see Appendix 3). It is also clear that if
As = S(A) then An = A− S(A), i.e., N(A) = A− S(A).

Now, let us prove the uniqueness of the decomposition. Let As+An = A = A′s+
A′n, where AsAn = AnAs and A′sA

′
n = A′nA

′
s. If AX = XA then S(A)X = XS(A)

and N(A)X = XN(A). Therefore, AsA′s = A′sAs and AnA
′
n = A′nAn. The opera-

tor B = A′s −As = An −A′n is a difference of commuting diagonalizable operators
and, therefore, is diagonalizable itself, cf. Problem 39.6 b). On the other hand,
the operator B is the difference of commuting nilpotent operators and therefore, is
nilpotent itself, cf. Problem 39.6 a). A diagonalizable nilpotent operator is equal
to zero. ¤

The additive Jordan decomposition A = As +An enables us to get for an invert-
ible operator A a multiplicative Jordan decomposition A = AsAu, where Au is a
unipotent operator, i.e., the sum of the identity operator and a nilpotent one.
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12.5.2. Theorem. Let A be an invertible operator over C. Then A can be
represented in the form A = AsAu = AuAs, where As is a semisimple operator and
Au is a unipotent operator. Such a representation is unique.

Proof. If A is invertible then so is As. Then A = As + An = AsAu where
Au = A−1

s (As +An) = I +A−1
s An. Since A−1

s and An commute, then A−1
s An is a

nilpotent operator which commutes with As.
Now, let us prove the uniqueness. If A = AsAu = AuAs and Au = I +N , where

N is a nilpotent operator, then A = As(I + N) = As + AsN , where AsN is a
nilpotent operator commuting with A. Such an operator AsN = An is unique. ¤

Problems

12.1. Prove that A and AT are similar matrices.
12.2. Let σ(i), where i = 1, . . . , n, be an arbitrary permutation and P =

∥∥pij
∥∥n

1
,

where pij = δiσ(j). Prove that the matrix P−1AP is obtained from A by the
permutation σ of the rows and the same permutation of the columns of A.

Remark. The matrix P is called the permutation matrix corresponding to σ.
12.3. Let the number of distinct eigenvalues of a matrix A be equal to m, where

m > 1. Let bij = tr(Ai+j). Prove that |bij |m−1
0 6= 0 and |bij |m0 = 0.

12.4. Prove that rankA = rankA2 if and only if lim
λ→0

(A+ λI)−1A exists.

13. The minimal polynomial and the characteristic polynomial

13.1. Let p(t) =
∑n
k=0 akt

k be an nth degree polynomial. For any square matrix
A we can consider the matrix p(A) =

∑n
k=0 akA

k. The polynomial p(t) is called an
annihilating polynomial of A if p(A) = 0. (The zero on the right-hand side is the
zero matrix.)

If A is an order n matrix, then the matrices I, A, . . . , An
2

are linearly dependent
since the dimension of the space of matrices of order n is equal to n2. Therefore,
for any matrix of order n there exists an annihilating polynomial whose degree does
not exceed n2. The annihilating polynomial of A of the minimal degree and with
coefficient of the highest term equal to 1 is called the minimal polynomial of A.

Let us prove that the minimal polynomial is well defined. Indeed, if p1(A) =
Am + · · · = 0 and p2(A) = Am + · · · = 0, then the polynomial p1 − p2 annihilates
A and its degree is smaller than m. Hence, p1 − p2 = 0.

It is easy to verify that if B = X−1AX then Bn = X−1AnX and, therefore,
p(B) = X−1p(A)X; thus, the minimal polynomial of an operator , not only of a
matrix, is well defined.

13.1.1. Theorem. Any annihilating polynomial of a matrix A is divisible by
its minimal polynomial.

Proof. Let p be the minimal polynomial of A and q an annihilating polynomial.
Dividing q by p with a remainder we get q = pf + r, where deg r < deg p, and
r(A) = q(A) − p(A)f(A) = 0, and so r is an annihilating polynomial. Hence,
r = 0. ¤

13.1.2. An annihilating polynomial of a vector v ∈ V (with respect to an op-
erator A : V → V ) is a polynomial p such that p(A)v = 0. The annihilating
polynomial of v of minimal degree and with coefficient of the highest term equal to
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1 is called the minimal polynomial of v. Similarly to the proof of Theorem 13.1.1,
we can demonstrate that the minimal polynomial of A is divisible by the minimal
polynomial of a vector.

Theorem. For any operator A : V → V there exists a vector whose minimal
polynomial (with respect to A) coincides with the minimal polynomial of the oper-
ator A.

Proof. Any ideal I in the ring of polynomials in one indeterminate is generated
by a polynomial f of minimal degree. Indeed, if g ∈ I and f ∈ I is a polynomial of
minimal degree, then g = fh+ r, hence, r ∈ I since fh ∈ I.

For any vector v ∈ V consider the ideal Iv = {p|p(A)v = 0}; this ideal is
generated by a polynomial pv with leading coefficient 1. If pA is the minimal
polynomial of A, then pA ∈ Iv and, therefore, pA is divisible by pv. Hence, when
v runs over the whole of V we get only a finite number of polynomials pv. Let
these be p1, . . . , pk. The space V is contained in the union of its subspaces
Vi = {x ∈ V | pi(A)x = 0} (i = 1, . . . , k) and, therefore, V = Vi for a certain i.
Then pi(A)V = 0; in other words pi is divisible by pA and, therefore, pi = pA. ¤

13.2. Simple considerations show that the degree of the minimal polynomial of
a matrix A of order n does not exceed n2. It turns out that the degree of the
minimal polynomial does not actually exceed n, since the characteristic polynomial
of A is an annihilating polynomial.

Theorem (Cayley-Hamilton). Let p(t) = |tI −A|. Then p(A) = 0.

Proof. For the Jordan form of the operator the proof is obvious because (t−λ)n

is an annihilating polynomial of Jn(λ). Let us, however, give a proof which does
not make use of the Jordan theorem.

We may assume that A is a matrix (in a basis) of an operator over C. Let us
carry out the proof by induction on the order n of A. For n = 1 the statement is
obvious.

Let λ be an eigenvalue of A and e1 the corresponding eigenvector. Let us com-
plement e1 to a basis e1, . . . , en. In the basis e1, . . . , en the matrix A is of the

form
(
λ ∗
0 A1

)
, where A1 is the matrix of the operator in the quotient space

V/ Span(e1). Therefore, p(t) = (t − λ)|tI − A1| = (t − λ)p1(t). By inductive
hypothesis p1(A1) = 0 in V/ Span(e1), i.e., p1(A1)V ⊂ Span(e1). It remains to
observe that (λI −A)e1 = 0. ¤

Remark. Making use of the Jordan normal form it is easy to verify that the
minimal polynomial of A is equal to

∏
i(t − λi)ni , where the product runs over

all distinct eigenvalues λi of A and ni is the order of the maximal Jordan block
corresponding to λi. In particular, the matrix A is diagonalizable if and only if the
minimal polynomial has no multiple roots and all its roots belong to the ground
field.

13.3. By the Cayley-Hamilton theorem the characteristic polynomial of a matrix
of order n coincides with its minimal polynomial if and only if the degree of the
minimal polynomial is equal to n. The minimal polynomial of a matrix A is the
minimal polynomial for a certain vector v (cf. Theorem 13.1.2). Therefore, the
characteristic polynomial coincides with the minimal polynomial if and only if for
a certain vector v the vectors v, Av, . . . , An−1v are linearly independent.
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Theorem ([Farahat, Lederman, 1958]). The characteristic polynomial of a ma-
trix A of order n coincides with its minimal polynomial if and only if for any vector
(x1, . . . , xn) there exist columns P and Q of length n such that xk = QTAkP .

Proof. First, suppose that the degree of the minimal polynomial of A is equal
to n. Then there exists a column P such that the columns P , AP , . . . , An−1P
are linearly independent, i.e., the matrix K formed by these columns is invertible.
Any vector X = (x1, . . . , xn) can be represented in the form X = (XK−1)K =
(QTP, . . . , QTAn−1P ), where QT = XK−1.

Now, suppose that for any vector (x1, . . . , xn) there exist columns P and Q such
that xk = QTAkP . Then there exist columns P1, . . . , Pn, Q1, . . . , Qn such that the
matrix

B =



QT1 P1 . . . QT1 A

n−1P1

... · · · ...
QTnPn . . . QTnA

n−1Pn




is invertible. The matrices I, A, . . . , An−1 are linearly independent because oth-
erwise the columns of B would be linearly dependent. ¤

13.4. The Cayley-Hamilton theorem has several generalizations. We will confine
ourselves to one of them.

13.4.1. Theorem ([Greenberg, 1984]). Let pA(t) be the characteristic polyno-
mial of a matrix A, and let a matrix X commute with A. Then pA(X) = M(A−X),
where M is a matrix that commutes with A and X.

Proof. Since B · adjB = |B| · I (see 2.4),

pA(λ) · I = [adj(λI −A)](λI −A) = (
n−1∑

k=0

Akλ
k)(λI −A) =

n∑

k=0

λkA′k.

All matrices A′k are diagonal, since so is pA(λ)I. Hence, pA(X) =
∑n
k=0X

kA′k. If X
commutes with A and Ak, then pA(X) = (

∑n−1
k=0 AkX

k)(X −A). But the matrices
Ak can be expressed as polynomials of A (see Problem 2.11) and, therefore, if X
commutes with A then X commutes with Ak. ¤

Problems

13.1. Let A be a matrix of order n and

f1(A) = A− (trA)I, fk+1(A) = fk(A)A− 1
k + 1

tr(fk(A)A)I.

Prove that fn(A) = 0.
13.2. Let A and B be matrices of order n. Prove that if trAm = trBm for

m = 1, . . . , n then the eigenvalues of A and B coincide.
13.3. Let a matrix A be invertible and let its minimal polynomial p(λ) coincide

with its characteristic polynomial. Prove that the minimal polynomial of A−1 is
equal to p(0)−1λnp(λ−1).

13.4. Let the minimal polynomial of a matrix A be equal to
∏

(x− λi)ni . Prove

that the minimal polynomial of
(
A I
0 A

)
is equal to

∏
(x− λi)ni+1.
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14. The Frobenius canonical form

14.1. The Jordan form is just one of several canonical forms of matrices of linear
operators. An example of another canonical form is the cyclic form also known as
the Frobenius canonical form.

A Frobenius or cyclic block is a matrix of the form




0 0 0 . . . 0 −a0

1 0 0 . . . 0 −a1

0 1 0 . . . 0 −a2
...

...
...

. . . . . .
...

0 0 0 . . . 1 −an−1



.

If A : V n → V n and Ae1 = e2, . . . , Aen−1 = en then the matrix of the operator A
with respect to e1, . . . , en is a cyclic block.

Theorem. For any linear operator A : V → V (over C or R) there exists a
basis in which the matrix of A is of block diagonal form with cyclic diagonal blocks.

Proof (Following [Jacob, 1973]). We apply induction on dimV . If the degree
of the minimal polynomial of A is equal to k, then there exists a vector y ∈ V the
degree of whose minimal polynomial is also equal to k (see Theorem 13.1.2). Let
yi = Ai−1y. Let us complement the basis y1, . . . , yk of W = Span(y1, . . . , yk) to
a basis of V and consider W ∗1 = Span(y∗k, A

∗y∗k, . . . , A
∗k−1y∗k). Let us prove that

V = W ⊕W ∗⊥1 is an A-invariant decomposition of V .
The degree of the minimal polynomial of A∗ is also equal to k and, therefore,

W ∗1 is invariant with respect to A∗; hence, (W ∗1 )⊥ is invariant with respect to A.
It remains to demonstrate that W ∗1 ∩ W⊥ = 0 and dimW ∗1 = k. Suppose that
a0y
∗
k + · · · + asA

∗sy∗k ∈ W⊥ for 0 ≤ s ≤ k − 1 and as 6= 0. Then A∗k−s−1(a0y
∗
k +

· · ·+ asA
∗sy∗k) ∈W⊥; hence,

0 = 〈a0A
∗k−s−1y∗k + · · ·+ asA

k−1y∗k, y〉
= a0〈y∗k, Ak−s−1y〉+ · · ·+ as〈y∗k, Ak−1y〉
= a0〈y∗k, yk−s〉+ · · ·+ as〈y∗k, yk〉 = as.

Contradiction.
The matrix of the restriction of A to W in the basis y1, . . . , yk is a cyclic block.

The restriction of A toW ∗⊥1 can be represented in the required form by the inductive
hypothesis. ¤

Remark. In the process of the proof we have found a basis in which the matrix of
A is of block diagonal form with cyclic blocks on the diagonal whose characteristic
polynomials are p1, p2, . . . , pk, where p1 is the minimal polynomial for A, p2 the
minimal polynomial of the restriction of A to a subspace, and, therefore, p2 is a
divisor of p1. Similarly, pi+1 is a divisor of pi.
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14.2. Let us prove that the characteristic polynomial of the cyclic block

A =




0 0 . . . 0 0 0 −a0

1 0 . . . 0 0 0 −a1

0 1 . . . 0 0 0 −a2
...

...
. . .

...
...

0 0 . . . 1 0 0 −an−3

0 0 . . . 0 1 0 −an−2

0 0 . . . 0 0 1 −an−1




is equal to λn +
∑n−1
k=0 akλk. Indeed, since Ae1 = e2, . . . , Aen−1 = en, and

Aen = −∑n−1
k=0 akek+1, it follows that

(
An +

n−1∑

k=0

akA
k

)
e1 = 0.

Taking into account that ei = Ai−1e1 we see that λn+
∑n−1
k=0 akλ

k is an annihilating
polynomial of A. It remains to notice that the vectors e1, Ae1, . . . , An−1e1 are
linearly independent and, therefore, the degree of the minimal polynomial of A is
no less than n.

As a by product we have proved that the characteristic polynomial of a cyclic
block coincides with its minimal polynomial.

Problems

14.1. The matrix of an operator A is block diagonal and consists of two cyclic
blocks with relatively prime characteristic polynomials, p and q. Prove that it is
possible to select a basis so that the matrix becomes one cyclic block.

14.2. Let A be a Jordan block, i.e., there exists a basis e1, . . . , en such that
Ae1 = λe1 and Aek = ek−1 + λek for k = 2, . . . , n. Prove that there exists a vector
v such that the vectors v, Av, . . . , An−1v constitute a basis (then the matrix of
the operator A with respect to the basis v,Av, . . . , An−1v is a cyclic block).

14.3. For a cyclic block A indicate a symmetric matrix S such that A = SATS−1.

15. How to reduce the diagonal to a convenient form

15.1. The transformation A 7→ XAX−1 preserves the trace and, therefore, the
diagonal elements of the matrix XAX−1 cannot be made completely arbitrary. We
can, however, reduce the diagonal of A to a, sometimes, more convenient form;
for example, a matrix A 6= λI is similar to a matrix whose diagonal elements are
(0, . . . , 0, trA); any matrix is similar to a matrix all diagonal elements of which are
equal.

Theorem ([Gibson, 1975]). Let A 6= λI. Then A is similar to a matrix with the
diagonal (0, . . . , 0, trA).

Proof. The diagonal of a cyclic block is of the needed form. Therefore, the
statement is true for any matrix whose characteristic and minimal polynomials
coincide (cf. 14.1).
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For a matrix of order 2 the characteristic polynomial does not coincide with the
minimal one only for matrices of the form λI. Let now A be a matrix of order 3
such that A 6= λI and the characteristic polynomial of A does not coincide with its
minimal polynomial. Then the minimal polynomial of A is of the form (x−λ)(x−µ)
whereas the characteristic polynomial is (x− λ)2(x− µ) and the case λ = µ is not

excluded. Therefore, the matrix A is similar to the matrix C =




0 a 0
1 b 0
0 0 λ


 and

the characteristic polynomial of
(

0 a
1 b

)
is divisible by x−λ, i.e., λ2− bλ− a = 0.

If b = λ = 0, then the theorem holds.
If b = λ 6= 0, then b2 − b2 − a = 0, i.e., a = 0. In this case




0 0 0
1 b 0
0 0 b







b b b
−1 0 0
b 0 b


 =




0 0 0
0 b b
b2 0 b2


 =




b b b
−1 0 0
b 0 b







0 −b −b
−b 0 −b
b b 2b


 ,

and det




b b b
−1 0 0
b 0 b


 6= 0; therefore, A is similar to




0 −b −b
−b 0 −b
b b 2b


.

Let, finally, b 6= λ. Then for the matrix D = diag(b, λ) the theorem is true and,

therefore, there exists a matrix P such that PDP−1 =
(

0 ∗
∗ ∗

)
. The matrix

(
1 0
0 P

)
C

(
1 0
0 P−1

)
=

(
1 0
0 P

)(
0 ∗
∗ D

)(
1 0
0 P−1

)
=

(
0 ∗
∗ PDP−1

)

is of the required form.
Now, suppose our theorem holds for matrices of order m, where m ≥ 3. A matrix

A of order m+ 1 is of the form
(
A1 ∗
∗ ∗

)
, where A1 is a matrix of order m. Since

A 6= λI, we can assume that A1 6= λI (otherwise we perform a permutation of rows
and columns, cf. Problem 12.2). By the inductive hypothesis there exists a matrix
P such that the diagonal of the matrix PA1P

−1 is of the form (0, 0, . . . , 0, α) and,
therefore, the diagonal of the matrix

X =
(
P 0
0 1

)(
A1 ∗
∗ ∗

)(
P−1 0

0 1

)
=

(
PA1P

−1 ∗
∗ ∗

)

is of the form (0, . . . , 0, α, β). If α = 0 we are done.

Let α 6= 0. Then X =
(

0 ∗
∗ C1

)
, where the diagonal of the matrix C1 of order

m is of the form (0, 0, . . . , α, β) and, therefore, C1 6= λI. Hence, there exists a
matrix Q such that the diagonal of QCQ−1 is of the form (0, . . . , 0, x). Therefore,

the diagonal of
(

1 0
0 Q

)(
0 ∗
∗ C1

)(
1 0
0 Q−1

)
is of the required form. ¤

Remark. The proof holds for a field of any characteristic.
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15.2. Theorem. Let A be an arbitrary complex matrix. Then there exists a
unitary matrix U such that the diagonal elements of UAU−1 are equal.

Proof. On the set of unitary matrices, consider a function f whose value at U
is equal to the maximal absolute value of the difference of the diagonal elements
of UAU−1. This function is continuous and is defined on a compact set and,
therefore, it attains its minimum on this compact set. Therefore, to prove the
theorem it suffices to show that with the help of the transformation A 7→ UAU−1

one can always diminish the maximal absolute value of the difference of the diagonal
elements unless it is already equal to zero.

Let us begin with matrices of size 2 × 2. Let u = cosαeiϕ, v = sinαeiψ. Then
in the (1, 1) position of the matrix

(
u v
−v u

)(
a1 b
c a2

)(
u −v
v u

)

there stands

a1 cos2 α+ a2 sin2 α+ (beiβ + ce−iβ) cosα sinα, where β = ϕ− ψ.
When β varies from 0 to 2π the points beiβ + ce−iβ form an ellipse (or an interval)
centered at 0 ∈ C. Indeed, the points eiβ belong to the unit circle and the map z 7→
bz + cz determines a (possibly singular) R-linear transformation of C. Therefore,
the number

p = (beiβ + ce−iβ)/(a1 − a2)

is real for a certain β. Hence, t = cos2 α+ p sinα cosα is also real and

a1 cos2 α+ a2 sin2 α+ (beiβ + ce−iβ) cosα sinα = ta1 + (1− t)a2.

As α varies from 0 to π
2 , the variable t varies from 1 to 0. In particular, t takes

the value 1
2 . In this case the both diagonal elements of the transformed matrix are

equal to 1
2 (a11 + a22).

Let us treat matrices of size n × n, where n ≥ 3, as follows. Select a pair of
diagonal elements the absolute value of whose difference is maximal (there could be
several such pairs). With the help of a permutation matrix this pair can be placed in
the positions (1, 1) and (2, 2) thanks to Problem 12.2. For the matrix A′ =

∥∥aij
∥∥2

1

there exists a unitary matrix U such that the diagonal elements of UA′U−1 are
equal to 1

2 (a11 + a22). It is also clear that the transformation A 7→ U1AU
−1
1 , where

U1 is the unitary matrix
(
U 0
0 I

)
, preserves the diagonal elements a33, . . . , ann .

Thus, we have managed to replace two fartherest apart diagonal elements a11 and
a22 by their arithmetic mean. We do not increase in this way the maximal distance
between points nor did we create new pairs the distance between which is equal to
|a11 − a22| since

|x− a11 + a22

2
| ≤ |x− a11|

2
+
|x− a22|

2
.

After a finite number of such steps we get rid of all pairs of diagonal elements the
distance between which is equal to |a11 − a22|. ¤

Remark. If A is a real matrix, then we can assume that u = cosα and v = sinα.
The number p is real in such a case. Therefore, if A is real then U can be considered
to be an orthogonal matrix.
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15.3. Theorem ([Marcus, Purves, 1959]). Any nonzero square matrix A is
similar to a matrix all diagonal elements of which are nonzero.

Proof. Any matrix A of order n is similar to a matrix all whose diagonal
elements are equal to 1

n trA (see 15.2), and, therefore, it suffices to consider the
case when trA = 0. We can assume that A is a Jordan block.

First, let us consider a matrix A =
∥∥aij

∥∥n
1

such that aij = δ1iδ2j . If U =
∥∥uij

∥∥
is a unitary matrix then UAU−1 = UAU∗ = B, where bii = ui1ui2. We can select
U so that all elements ui1, ui2 are nonzero.

The rest of the proof will be carried out by induction on n; for n = 2 the
statement is proved.

Recall that we assume that A is in the Jordan form. First, suppose that A is a

diagonal matrix and a11 6= 0. Then A =
(
a11 0
0 Λ

)
, where Λ is a nonzero diagonal

matrix. Let U be a matrix such that all elements of UΛU−1 are nonzero. Then the
diagonal elements of the matrix

(
1 0
0 U

) (
a11 0
0 Λ

)(
1 0
0 U−1

)
=

(
a11 0
0 UΛU−1

)

are nonzero.
Now, suppose that a matrix A is not diagonal. We can assume that a12 = 1 and

the matrix C obtained from A by crossing out the first row and the first column
is a nonzero matrix. Let U be a matrix such that all diagonal elements of UCU−1

are nonzero. Consider the matrix

D =
(

1 0
0 U

)
A

(
1 0
0 U−1

)
=

(
a11 ∗
0 UCU−1

)
.

The only zero diagonal element of D could be a11. If a11 = 0 then for
(

0 ∗
0 d22

)

select a matrix V such that the diagonal elements of V
(

0 ∗
0 d22

)
V −1 are nonzero.

Then the diagonal elements of
(
V 0
0 I

)
D

(
V −1 0

0 I

)
are also nonzero. ¤

Problem

15.1. Prove that for any nonzero square matrix A there exists a matrix X such
that the matrices X and A+X have no common eigenvalues.

16. The polar decomposition

16.1. Any complex number z can be represented in the form z = |z|eiϕ. An
analogue of such a representation is the polar decomposition of a matrix, A = SU ,
where S is an Hermitian and U is a unitary matrix.

Theorem. Any square matrix A over R (or C) can be represented in the form
A = SU , where S is a symmetric (Hermitian) nonnegative definite matrix and U is
an orthogonal (unitary) matrix. If A is invertible such a representation is unique.

Proof. If A = SU , where S is an Hermitian nonnegative definite matrix and U
is a unitary matrix, then AA∗ = SUU∗S = S2. To find S, let us do the following.
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The Hermitian matrix AA∗ has an orthonormal eigenbasis and AA∗ei = λ2
i ei,

where λi ≥ 0 . Set Sei = λiei. The Hermitian nonnegative definite matrix S is
uniquely determined by A. Indeed, let e′1, . . . , e

′
n be an orthonormal eigenbasis for

S and Se′i = λ′ie
′
i, where λ′i ≥ 0 . Then (λ′i)

2e′i = S2e′i = AA∗e′i and this equation
uniquely determines λ′i.

Let v1, . . . , vn be an orthonormal basis of eigenvectors of the Hermitian operator
A∗A and A∗Avi) = µ2

i vi, where µi ≥ 0. Since (Avi, Avj) = (vi, A∗Avj) = µ2
i (vi, vj),

we see that the vectors Av1, . . . , Avn are pairwise orthogonal and |Avi| = µi. There-
fore, there exists an orthonormal basis w1, . . . , wn such that Avi = µiwi. Set
Uvi = wi and Swi = µiwi. Then SUvi = Swi = µiwi = Avi, i.e., A = SU .

In the decomposition A = SU the matrix S is uniquely defined. If S is invertible
then U = S−1A is also uniquely defined. ¤

Remark. We can similarly construct a decomposition A = U1S1, where S1

is a symmetric (Hermitian) nonnegative definite matrix and U1 is an orthogonal
(unitary) matrix. Here S1 = S if and only if AA∗ = A∗A, i.e., the matrix A is
normal.

16.2.1. Theorem. Any matrix A can be represented in the form A = UDW ,
where U and W are unitary matrices and D is a diagonal matrix.

Proof. Let A = SV , where S is Hermitian and V unitary. For S there exists a
unitary matrix U such that S = UDU∗, where D is a diagonal matrix. The matrix
W = U∗V is unitary and A = SV = UDW . ¤

16.2.2. Theorem. If A = S1U1 = U2S2 are the polar decompositions of an
invertible matrix A, then U1 = U2.

Proof. Let A = UDW , where D = diag(d1, . . . , dn) is a diagonal matrix, and
U and W are unitary matrices. Consider the matrix D+ = diag(|d1|, . . . , |dn|); then
DD+ = D+D and, therefore,

A = (UD+U
∗)(UD−1

+ DW ) = (UD−1
+ DW )(W ∗D+W ).

The matrices UD+U
∗ and W ∗D+W are positive definite and D−1

+ D is unitary.
The uniqueness of the polar decomposition of an invertible matrix implies that
S1 = UD+U

∗, S2 = W ∗D+W and U1 = UD−1
+ DW = U2. ¤

Problems

16.1. Prove that any linear transformation of Rn is the composition of an or-
thogonal transformation and a dilation along perpendicular directions (with distinct
coefficients).

16.2. Let A : Rn → Rn be a contraction operator, i.e., |Ax| ≤ |x|. The space Rn
can be considered as a subspace of R2n. Prove that A is the restriction to Rn of
the composition of an orthogonal transformation of R2n and the projection on Rn.

17. Factorizations of matrices

17.1. The Schur decomposition.
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Theorem (Schur). Any square matrix A over C can be represented in the form
A = UTU∗, where U is a unitary and T a triangular matrix; moreover, A is normal
if and only if T is a diagonal matrix.

Proof. Let us prove by induction on the order of A. Let x be an eigenvector of
A, i.e., Ax = λx. We may assume that |x| = 1. Let W be a unitary matrix whose
first column is made of the coordinates of x (to construct such a matrix it suffices
to complement x to an orthonormal basis). Then

W ∗AW =



λ ∗ ∗ ∗
0
...
0

A1


 .

By the inductive hypothesis there exists a unitary matrix V such that V ∗A1V is a

triangular matrix. Then U =
(

1 0
0 V

)
is the desired matrix.

It is easy to verify that the equations T ∗T = TT ∗ and A∗A = AA∗ are equivalent.
It remains to prove that a triangular normal matrix is a diagonal matrix. Let

T =




t11 t12 . . . t1n
0 t21 . . . t1n
...

. . . . . .
...

0 0 . . . tnn


 .

Then (TT ∗)11 = |t11|2 + |t12|2 + · · · + |t1n|2 and (T ∗T )11 = |t11|2. Therefore, the
identity TT ∗ = T ∗T implies that t12 = · · · = t1n = 0.

Now, strike out the first row and the first column in T and repeat the argu-
ments. ¤

17.2. The Lanczos decomposition.

Theorem ([Lanczos, 1958]). Any real m × n-matrix A of rank p > 0 can be
represented in the form A = XΛY T , where X and Y are matrices of size m × p
and n× p with orthonormal columns and Λ is a diagonal matrix of size p× p.

Proof (Following [Schwert, 1960]). The rank of ATA is equal to the rank
of A; see Problem 8.3. Let U be an orthogonal matrix such that UTATAU =
diag(µ1, . . . , µp, 0, . . . , 0), where µi > 0. Further, let y1, . . . , yp be the first p columns
of U and Y the matrix formed by these columns. The columns xi = λ−1

i Ayi, where
λi =

√
µi, constitute an orthonormal system since (Ayi, Ayj) = (yi, ATAyj) =

λ2
j (yi, yj). It is also clear that AY = (λ1x1, . . . , λpxp) = XΛ, where X is a ma-

trix constituted from x1, . . . , xp, Λ = diag(λ1, . . . , λp). Now, let us prove that
A = XΛY T . For this let us again consider the matrix U = (Y, Y0). Since
KerATA = KerA and (ATA)Y0 = 0, it follows that AY0 = 0. Hence, AU = (XΛ, 0)
and, therefore, A = (XΛ, 0)UT = XΛY T . ¤

Remark. Since AU = (XΛ, 0), then UTAT =
(

ΛXT

0

)
. Multiplying this

equality by U , we get AT = Y ΛXT . Hence, ATX = Y ΛXTX = Y Λ, since
XTX = Ip. Therefore, (XTA)(ATX) = (ΛY T )(Y Λ) = Λ2, since Y TY = Ip. Thus,
the columns of X are eigenvectors of AAT .
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17.3. Theorem. Any square matrix A can be represented in the form A = ST ,
where S and T are symmetric matrices, and if A is real, then S and T can also be
considered to be real matrices.

Proof. First, observe that if A = ST , where S and T are symmetric matrices,
then A = ST = S(TS)S−1 = SATS−1, where S is a symmetric matrix. The other
way around, if A = SATS−1, where S is a symmetric matrix, then A = ST , where
T = ATS−1 is a symmetric matrix, since (ATS−1)T = S−1A = S−1SATS−1 =
ATS−1.

If A is a cyclic block then there exists a symmetric matrix S such that A =
SATS−1 (Problem 14.3). For any A there exists a matrix P such that B = P−1AP
is in Frobenius form. For B there exists a symmetric matrix S such that B =
SBTS−1. Hence, A = PBP−1 = PSBTS−1P−1 = S1AS

−1
1 , where S1 = PSPT is

a symmetric matrix. ¤
To prove the theorem we could have made use of the Jordan form as well. In

order to do this, it suffices to notice that, for example,




Λ E 0
0 Λ E
0 0 Λ


 =




0 0 E
0 E 0
E 0 0







0 0 Λ′

0 Λ′ E
Λ′ E 0


 ,

where Λ = Λ′ = λ and E = 1 for the real case (or for a real λ) and for the complex

case (i.e., λ = a + bi, b 6= 0) Λ =
(
a b
−b a

)
, E =

(
0 1
1 0

)
and Λ′ =

(
b a
a −b

)
.

For a Jordan block of an arbitrary size a similar decomposition also holds.

Problems

17.1 (The Gauss factorization). All minors |aij |p1, p = 1, . . . , n of a matrix A of
order n are nonzero. Prove that A can be represented in the form A = T1T2, where
T1 is a lower triangular and T2 an upper triangular matrix.

17.2 (The Gram factorization). Prove that an invertible matrix X can be repre-
sented in the form X = UT , where U is an orthogonal matrix and T is an upper
triangular matrix.

17.3 ([Ramakrishnan, 1972]). Let B = diag(1, ε, . . . , εn−1), where ε = exp( 2πi
n ),

and C =
∥∥cij

∥∥n
1
, where cij = δi,j−1 (here j − 1 is considered modulo n). Prove

that any n × n-matrix M over C is uniquely representable in the form M =∑n−1
k,l=0 aklB

kCl.
17.4. Prove that any skew-symmetric matrix A can be represented in the form

A = S1S2 − S2S1, where S1 and S2 are symmetric matrices.

18. The Smith normal form. Elementary factors of matrices

18.1. Let A be a matrix whose elements are integers or polynomials (we may
assume that the elements of A belong to a commutative ring in which the notion
of the greatest common divisor is defined). Further, let fk(A) be the greatest
common divisor of minors of order k of A. The formula for determinant expansion
with respect to a row indicates that fk is divisible by fk−1.

The formula A−1 = (adjA)/detA shows that the elements of A−1 are integers
(resp. polynomials) if detA = ±1 (resp. detA is a nonzero number). The other way
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around, if the elements of A−1 are integers (resp. polynomials) then detA = ±1
(resp. detA is a nonzero number) since detA ·detA−1 = det(AA−1) = 1. Matrices
A with detA = ±1 are called unities (of the corresponding matrix ring). The
product of unities is, clearly, a unity.

18.1.1. Theorem. If A′ = BAC, where B and C are unity matrices, then
fk(A′) = fk(A) for all admissible k.

Proof. From the Binet-Cauchy formula it follows that fk(A′) is divisible by
fk(A). Since A = B−1A′C−1, then fk(A) is divisible by fk(A′). ¤

18.1.2. Theorem (Smith). For any matrix A of size m × n there exist unity
matrices B and C such that BAC = diag(g1, g2, . . . , gp, 0, . . . , 0), where gi+1 is
divisible by gi.

The matrix diag(g1, g2, . . . , gp, 0, . . . , 0) is called the Smith normal form of A.

Proof. The multiplication from the right (left) by the unity matrix
∥∥aij

∥∥n
1
,

where aii = 1 for i 6= p, q and apq = aqp = 1 the other elements being zero,
performs a permutation of pth column (row) with the qth one. The multiplication
from the right by the unity matrix

∥∥aij
∥∥n

1
, where aii = 1 (i = 1, . . . , n) and apq = f

(here p and q are fixed distinct numbers), performs addition of the pth column
multiplied by f to the qth column whereas the multiplication by it from the left
performs the addition of the qth row multiplied by f to the pth one. It remains to
verify that by such operations the matrix A can be reduced to the desired form.

Define the norm of an integer as its absolute value and the norm of a polynomial
as its degree. Take a nonzero element a of the given matrix with the least norm
and place it in the (1, 1) position. Let us divide all elements of the first row by a
with a remainder and add the multiples of the first column to the columns 2 to n
so that in the first row we get the remainders after division by a.

Let us perform similar operations over columns. If after this in the first row
and the first column there is at least one nonzero element besides a then its norm
is strictly less than that of a. Let us place this element in the position (1, 1) and
repeat the above operations. The norm of the upper left element strictly diminishes
and, therefore, at the end in the first row and in the first column we get just one
nonzero element, a11.

Suppose that the matrix obtained has an element aij not divisible by a11. Add to
the first column the column that contains aij and then add to the row that contains
aij a multiple of the first row so that the element aij is replaced by the remainder
after division by a11. As a result we get an element whose norm is strictly less than
that of a11. Let us place it in position (1, 1) and repeat the indicated operations.

At the end we get a matrix of the form
(
g1 0
0 A′

)
, where the elements of A′ are

divisible by g1.
Now, we can repeat the above arguments for the matrix A′. ¤

Remark. Clearly, fk(A) = g1g2 . . . gk.

18.2. The elements g1, . . . , gp obtained in the Smith normal form are called
invariant factors of A. They are expressed in terms of divisors of minors fk(A) as
follows: gk = fk/fk−1 if fk−1 6= 0.
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Every invariant factor gi can be expanded in a product of powers of primes (resp.
powers of irreducible polynomials). Such factors are called elementary divisors of
A. Each factor enters the set of elementary divisors multiplicity counted.

Elementary divisors of real or complex matrix A are elementary divisors of the
matrix xI − A. The product of all elementary divisors of a matrix A is equal, up
to a sign, to its characteristic polynomial.

Problems

18.1. Compute the invariant factors of a Jordan block and of a cyclic block.
18.2. Let A be a matrix of order n, let fn−1 be the greatest common divisor of

the (n − 1)-minors of xI − A. Prove that the minimal polynomial A is equal to
|xI −A|
fn−1

.

Solutions

11.1. a) The trace of AB − BA is equal to 0 and, therefore, AB − BA cannot
be equal to I.

b) If |A| 6= 0 and AB − BA = A, then A−1AB − A−1BA = I. But tr(B −
A−1BA) = 0 and tr I = n.

11.2. Let all elements of B be equal to 1 and Λ = diag(λ1, . . . , λn). Then
A = ΛBΛ−1 and if x is an eigenvector of B then Λx is an eigenvector of A. The
vector (1, . . . , 1) is an eigenvector of B corresponding to the eigenvalue n and the
(n− 1)-dimensional subspace x1 + · · ·+ xn = 0 is the eigenspace corresponding to
eigenvalue 0.

11.3. If λ is not an eigenvalue of the matrices ±A, then A can be represented as
one half times the sum of the invertible matrices A+ λI and A− λI.

11.4. Obviously, the coefficients of the characteristic polynomial depend contin-
uously on the elements of the matrix. It remains to prove that the roots of the
polynomial p(x) = xn + a1x

n−1 + · · · + an depend continuously on a1, . . . , an. It
suffices to carry out the proof for the zero root (for a nonzero root x1 we can con-
sider the change of variables y = x − x1). If p(0) = 0 then an = 0. Consider a
polynomial q(x) = xn + b1x

n−1 + · · ·+ bn, where |bi− ai| < δ. If x1, . . . , xn are the
roots of q, then |x1 . . . xn| = |bn| < δ and, therefore, the absolute value of one of
the roots of q is less than n

√
δ. The δ required can be taken to be equal to εn.

11.5. If the sum of the elements of every row of A is equal to s, then Ae =
se, where e is the column (1, 1, . . . , 1)T . Therefore, A−1(Ae) = A−1(se); hence,
A−1e = (1/s)e, i.e., the sum of the elements of every row of A−1 is equal to 1/s.

11.6. Let S1 be the first column of S. Equating the first columns of AS and SΛ,
where the first column of Λ is of the form (λ, 0, . . . , 0)T , we get AS1 = λS1.

11.7. It is easy to verify that |λI − A| = ∑n
k=0 λ

n−k(−1)k∆k(A), where ∆k(A)
is the sum of all principal k-minors of A. It follows that

n∑

i=1

|λI −Ai| =
n∑

i=1

n−1∑

k=0

λn−k−1(−1)k∆k(Ai).

It remains to notice that
n∑

i=1

∆k(Ai) = (n− k)∆k(A),



92 CANONICAL FORMS OF MATRICES AND LINEAR OPERATORS

since any principal k-minor of A is a principal k-minor for n− k matrices Ai.
11.8. Since adj(PXP−1) = P (adjX)P−1, we can assume that A is in the Jordan

normal form. In this case adjA is an upper triangular matrix (by Problem 2.6) and
it is easy to compute its diagonal elements.

11.9. Let S =
∥∥δi,n−j

∥∥n
0
. Then AS =

∥∥bij
∥∥n

0
and SA =

∥∥cij
∥∥n

0
, where bij =

ai,n−j and cij = an−i,j . Therefore, the central symmetry of Ameans that AS = SA.
It is also easy to see that x is a symmetric vector if Sx = x and skew-symmetric if
Sx = −x.

Let λ be an eigenvalue of A and Ay = λy, where y 6= 0. Then A(Sy) = S(Ay) =
S(λy) = λ(Sy). If Sy = −y we can set x = y. If Sy 6= −y we can set x = y + Sy
and then Ax = λx and Sx = x.

11.10. Since
Aei = an−i+1,ien−i+1 = xn−i+1en−i+1

and Aen−i+1 = xiei, the subspaces Vi = Span(ei, en−i+1) are invariant with respect
to A. For i 6= n − i + 1 the matrix of the restriction of A to Vi is of the form

B =
(

0 λ
µ 0

)
. The eigenvalues of B are equal to ±√λµ. If λµ = 0 and B is

diagonalizable, then B = 0. Therefore, the matrix B is diagonalizable if and only
if both numbers λ and µ are simultaneously equal or not equal to zero.

Thus, the matrix A is diagonalizable if and only if the both numbers xi and
xn−i+1 are simultaneously equal or not equal to 0 for all i.

11.11. a) Suppose the columns x1, . . . , xm correspond to real eigenvalues α1,
. . . , αm. Let X = (x1, . . . , xm) and D = diag(α1, . . . , αm). Then AX = XD and
since D is a real matrix, then AXX∗ = XDX∗ = X(XD)∗ = X(AX)∗ = XX∗A∗.
If the vectors x1, . . . , xm are linearly independent, then rankXX∗ = rankX = m
(see Problem 8.3) and, therefore, for S we can take XX∗.

Now, suppose that AS = SA∗ and S is a nonnegative definite matrix of rank m.
Then there exists an invertible matrix P such that S = PNP ∗, where N =(
Im 0
0 0

)
. Let us multiply both parts of the identity AS = SA∗ by P−1 from

the left and by (P ∗)−1 from the right; we get (P−1AP )N = N(P−1AP )∗. Let

P−1AP = B =
(
B11 B12

B21 B22

)
, where B11 is a matrix of order m. Since BN = NB∗,

then
(
B11 0
B21 0

)
=

(
B∗11 B∗21

0 0

)
, i.e., B =

(
B11 B12

0 B22

)
, where B11 is an Her-

mitian matrix of order m. The matrix B11 has m linearly independent eigenvectors
z1, . . . , zm with real eigenvalues. Since AP = PB and P is an invertible matrix,
then the vectors P

(
z1
0

)
, . . . , P

(
zm
0

)
are linearly independent and are eigenvectors

of A corresponding to real eigenvalues.
b) The proof is largely similar to that of a): in our case AXX∗A∗ = AX(AX)∗ =

XD(XD)∗ = XDD∗X∗ = XX∗.
If ASA∗ = S and S = PNP ∗, then P−1APN(P−1AP )∗ = N , i.e.,

(
B11B

∗
11 B11B

∗
21

B21B
∗
11 B21B

∗
21

)
=

(
Im 0
0 0

)
.

Therefore, B21 = 0 and P−1AP = B =
(
B11 B12

0 B22

)
, where B11 is unitary.
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12.1. Let A be a Jordan block of order k. It is easy to verify that in this case
SkA = ATSk, where Sk =

∥∥δi,k+1−j
∥∥k

1
is an invertible matrix. If A is the direct

sum of Jordan blocks, then we can take the direct sum of the matrices Sk.
12.2. The matrix P−1 corresponds to the permutation σ−1 and, therefore, P−1 =∥∥qij
∥∥n

1
, where qij = δσ(i)j . Let P−1AP =

∥∥bij
∥∥n

1
. Then bij =

∑
s,t δσ(i)sastδtσ(j) =

aσ(i)σ(j).
12.3. Let λ1, . . . , λm be distinct eigenvalues of A and pi the multiplicity of the

eigenvalue λi. Then tr(Ak) = p1λ
k
1 + · · ·+ pmλ

k
m. Therefore,

∥∥bij
∥∥m−1

0
= p1 . . . pm

∏

i 6=j
(λi − λj)2 (See Problem 1.18).

To compute |bij |m0 we can, for example, replace pmλkm with λkm+ (pm−1)λkm in the
expression for tr(Ak).

12.4. If A′ = P−1AP , then (A′ + λI)−1A′ = P−1(A+ λI)−1AP and, therefore,
it suffices to consider the case when A is a Jordan block. If A is invertible, then
lim
λ→0

(A + λI)−1 = A−1. Let A = 0 · I + N = N be a Jordan block with zero

eigenvalue. Then

(N + λI)−1N = λ−1(I − λ−1N + λ−2N2 − . . . )N = λ−1N − λ−2N2 + . . .

and the limit as λ→ 0 exists only if N = 0.
Thus, the limit indicated exists if and only if the matrix A does not have nonzero

blocks with zero eigenvalues. This condition is equivalent to rankA = rankA2.
13.1. Let (λ1, . . . , λn) be the diagonal of the Jordan normal form of A and

σk = σk(λ1, . . . , λn). Then |λI −A| = ∑n
k=0(−1)kλn−kσk. Therefore, it suffices to

demonstrate that fm(A) =
∑m
k=0(−1)kAm−kσk for all m. For m = 1 this equation

coincides with the definition of f1. Suppose the statement is proved for m; let us
prove it for m+ 1. Clearly,

fm+1(A) =
m∑

k=0

(−1)kAm−k+1σk − 1
m+ 1

tr

(
m∑

k=0

(−1)kAm−k+1σk

)
I.

Since

tr

(
m∑

k=0

(−1)kAm−k+1σk

)
=

m∑

k=0

(−1)ksm−k+1σk,

where sp = λp1 + · · ·+ λpn, it remains to observe that

m∑

k=0

(−1)ksm−k+1σk + (m+ 1)(−1)m+1σm+1 = 0 (see 4.1).

13.2. According to the solution of Problem 13.1 the coefficients of the char-
acteristic polynomial of X are functions of trX, . . . , trXn and, therefore, the
characteristic polynomials of A and B coincide.

13.3. Let f(λ) be an arbitrary polynomial g(λ) = λnf(λ−1) and B = A−1. If
0 = g(B) = Bnf(A) then f(A) = 0. Therefore, the minimal polynomial of B
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is proportional to λnp(λ−1). It remains to observe that the highest coefficient of
λnp(λ−1) is equal to lim

λ→∞
λnp(λ−1)

λn = p(0).

13.4. As is easy to verify,

p

(
A I
0 A

)
=

(
p(A) p′(A)

0 p(A)

)
.

If q(x) =
∏

(x−λi)ni is the minimal polynomial of A and p is an annihilating poly-

nomial of
(
A I
0 A

)
, then p and p′ are divisible by q; among all such polynomials

p the polynomial
∏

(x− λi)ni+1 is of the minimal degree.
14.1. The minimal polynomial of a cyclic block coincides with the characteristic

polynomial. The minimal polynomial of A annihilates the given cyclic blocks since
it is divisible by both p and q. Since p and q are relatively prime, the minimal
polynomial of A is equal to pq. Therefore, there exists a vector in V whose minimal
polynomial is equal to pq.

14.2. First, let us prove that Aken = en−k + ε, where ε ∈ Span(en, . . . , en−k+1).
We have Aen = en−1 + en for k = 1 and, if the statement holds for k, then
Ak+1en = en−k+1 + λen−k +Aε and en−k, Aε ∈ Span(en, . . . , en−k).

Therefore, expressing the coordinates of the vectors en, Aen, . . . , An−1en with
respect to the basis en, en−1, . . . , e1 we get the matrix




1 . . . . . . ∗
0 1

...
...

. . . . . .
...

0 . . . 0 1


 .

This matrix is invertible and, therefore, the vectors en, Aen, . . . , An−1en form a
basis.

Remark. It is possible to prove that for v we can take any vector x1e1 + · · ·+
xnen, where xn 6= 0.

14.3. Let

A =




0 0 . . . 0 −an
1 0 . . . 0 −an−1

0 1 . . . 0 −an−2

...
...

. . .
...

...
0 0 . . . 1 −a1



, S =




an−1 an−2 . . . a1 1
an−2 an−3 . . . 1 0

...
... · · · ...

...
a1 1 . . . 0 0
1 0 . . . 0 0



.

Then

AS =




−an 0 0 . . . 0 0
0 an−2 an−3 . . . a1 1
0 an−3 an−4 . . . 1 0
...

...
... · · · ...

...
0 a1 1 . . . 0 0
0 1 0 . . . 0 0




is a symmetric matrix. Therefore, AS = (AS)T = SAT , i.e., A = SATS−1.
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15.1. By Theorem 15.3 there exists a matrix P such that the diagonal elements
of B = P−1AP are nonzero. Consider a matrix Z whose diagonal elements are
all equal to 1, the elements above the main diagonal are zeros, and under the
diagonal there stand the same elements as in the corresponding places of −B. The
eigenvalues of the lower triangular matrix Z are equal to 1 and the eigenvalues of
the upper triangular matrix B + Z are equal to 1 + bii 6= 1. Therefore, for X we
can take PZP−1.

16.1. The operator A can be represented in the form A = SU , where U is
an orthogonal operator and S is a positive definite symmetric operator. For a
symmetric operator there exists an orthogonal basis of eigenvectors, i.e., it is a
dilation along perpendicular directions.

16.2. If A = SU is the polar decomposition of A then for S there exists an
orthonormal eigenbasis e1, . . . , en and all the eigenvalues do not exceed 1. Therefore,
Sei = (cosϕi)ei. Complement the basis e1, . . . , en to a basis e1, . . . , en, ε1, . . . ,
εn of R2n and consider an orthogonal operator S1 which in every plane Span(ei, εi)

acts as the rotation through an angle ϕi. The matrix of S1 is of the form
(
S ∗
∗ ∗

)
.

Since (
I 0
0 0

)(
S ∗
∗ ∗

)(
U 0
0 I

)
=

(
SU ∗
0 0

)
,

it follows that S1

(
U 0
0 I

)
is the required orthogonal transformation of R2n.

17.1. Let apq = λ be the only nonzero off-diagonal element of Xpq(λ) and let the
diagonal elements of Xpq(λ) be equal to 1. Then Xpq(λ)A is obtained from A by
adding to the pth row the qth row multiplied by λ. By the hypothesis, a11 6= 0 and,
therefore, subtracting from the kth row the 1st row multiplied by ak1/a11 we get a
matrix with a21 = · · · = an1 = 0. The hypothesis implies that a22 6= 0. Therefore,
we can subtract from the kth row (k ≥ 3) the 2nd row multiplied by ak2/a22 and
get a matrix with a32 = · · · = a3n = 0, etc.

Therefore, by multiplying A from the right by the matrices Xpq, where p > q,
we can get an upper triangular matrix T2. Since p > q, then the matrices Xpq

are lower triangular and their product T is also a lower triangular matrix. The
equality TA = T2 implies A = T−1T2. It remains to observe that T1 = T−1 is a
lower triangular matrix (see Problem 2.6); the diagonal elements of T1 are all equal
to 1.

17.2. Let x1, . . . , xn be the columns of X. By 9.2 there exists an orthonormal
set of vectors y1, . . . , yn such that yi ∈ Span(x1, . . . , xi) for i = 1, . . . , n. Then
the matrix U whose columns are y1, . . . , yn is orthogonal and U = XT1, where T1

is an upper triangular matrix. Therefore, X = UT , where T = T−1
1 is an upper

triangular matrix.
17.3. For every entry of the matrix M only one of the matrices I, C, C2, . . . ,

Cn−1 has the same nonzero entry and, therefore, M is uniquely representable in
the form M = D0 + D1C + · · ·+ Dn−1C

n−1, where the Dl are diagonal matrices.
For example,

(
a b
c d

)
=

(
a 0
0 d

)
+

(
b 0
0 c

)
C, where C =

(
0 1
1 0

)
.

The diagonal matrices I, B, B2, . . . , Bn−1 are linearly independent since their
diagonals constitute a Vandermonde determinant. Therefore, any matrix Dl is
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uniquely representable as their linear combination

Dl =
n−1∑

k=0

aklB
k.

17.4. The matrix A/2 can be represented in the form A/2 = S1S2, where S1 and
S2 are symmetric matrices (see 17.3). Therefore, A = (A−AT )/2 = S1S2 − S2S1.

18.1. Let A be either a Jordan or cyclic block of order n. In both cases the
matrix A− xI has a triangular submatrix of order n− 1 with units 1 on the main
diagonal. Therefore, f1 = · · · = fn−1 = 1 and fn = pA(x) is the characteristic
polynomial of A. Hence, g1 = · · · = gn−1 = 1 and gn = pA(x).

18.2. The cyclic normal form of A is of a block diagonal form with the diagonal
being formed by cyclic blocks corresponding to polynomials p1, p2, . . . , pk, where
p1 is the minimal polynomial of A and pi is divisible by pi+1. Invariant factors of
these cyclic blocks are p1, . . . , pk (Problem 18.1), and, therefore, the Smith normal
forms, are of the shape diag(1, . . . , 1, pi). Hence, the Smith normal form of A is of
the shape diag(1, . . . , 1, pk, . . . , p2, p1). Therefore, fn−1 = p2p3 . . . pk.



19. SYMMETRIC AND HERMITIAN MATRICES 97CHAPTER IV

MATRICES OF SPECIAL FORM

19. Symmetric and Hermitian matrices

A real matrix A is said to be symmetric if AT = A. In the complex case an
analogue of a symmetric matrix is usually an Hermitian matrix for which A∗ = A,
where A∗ = A

T
is obtained from A by complex conjugation of its elements and

transposition. (Physicists often write A+ instead of A∗.) Sometimes, symmetric
matrices with complex elements are also considered.

Let us recall the properties of Hermitian matrices proved in 11.3 and 10.3. The
eigenvalues of an Hermitian matrix are real. An Hermitian matrix can be repre-
sented in the form U∗DU , where U is a unitary and D is a diagonal matrix. A
matrix A is Hermitian if and only if (Ax, x) ∈ R for any vector x.

19.1. To a square matrix A we can assign the quadratic form q(x) = xTAx,
where x is the column of coordinates. Then (xTAx)T = xTAx, i.e., xTATx =
xTAx. It follows, 2xTAx = xT (A + AT )x, i.e., the quadratic form only depends
on the symmetric constituent of A. Therefore, it is reasonable to assign quadratic
forms to symmetric matrices only.

To a square matrix A we can also assign a bilinear function or a bilinear form
B(x, y) = xTAy (which depends on the skew-symmetric constituent of A, too)

and if the matrix A is symmetric then B(x, y) = B(y, x), i.e., the bilinear function
B(x, y) is symmetric in the obvious sense. From a quadratic function q(x) = xTAx
we can recover the symmetric bilinear function B(x, y) = xTAy. Indeed,

2xTAy = (x+ y)TA(x+ y)− xTAx− yTAy

since yTAx = xTAT y = xTAy.
In the real case a quadratic form xTAx is said to be positive definite if xTAx > 0

for any nonzero x. In the complex case this definition makes no sense because any
quadratic function xTAx not only takes zero values for nonzero complex x but it
takes nonreal values as well.

The notion of positive definiteness in the complex case only makes sense for
Hermitian forms x∗Ax, where A is an Hermitian matrix. (Forms , linear in one
variable and antilinear in another one are sometimes called sesquilinear forms.) If
U is a unitary matrix such that A = U∗DU , where D is a diagonal matrix, then
x∗Ax = (Ux)∗D(Ux), i.e., by the change y = Ux we can represent an Hermitian
form as follows ∑

λiyiyi =
∑

λi|yi|2.
An Hermitian form is positive definite if and only if all the numbers λi are positive.

For the matrix A of the quadratic (sesquilinear) form we write A > 0 and say that
the matrix A is (positive or somehow else) definite if the corresponding quadratic
(sesquilinear) form is definite in the same manner.

In particular, if A is positive definite (i.e., the Hermitian form x∗Ax is positive
definite), then its trace λ1 + · · ·+ λn and determinant λ1 . . . λn are positive.

Typeset by AMS-TEX
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19.2.1. Theorem (Sylvester’s criterion). Let A =
∥∥aij

∥∥n
1

be an Hermitian
matrix. Then A is positive definite if and only if all minors |aij |k1 , k = 1, . . . , n,
are positive.

Proof. Let the matrix A be positive definite. Then the matrix
∥∥aij

∥∥k
1

corre-
sponds to the restriction of a positive definite Hermitian form x∗Ax to a subspace
and, therefore, |aij |k1 > 0. Now, let us prove by induction on n that if A =

∥∥aij
∥∥n

1

is an Hermitian matrix and |aij |k1 > 0 for k = 1, . . . , n then A is positive definite.
For n = 1 this statement is obvious. It remains to prove that if A′ =

∥∥aij
∥∥n−1

1
is a

positive definite matrix and |aij |n1 > 0 then the eigenvalues of the Hermitian matrix
A =

∥∥aij
∥∥n

1
are all positive. There exists an orthonormal basis e1, . . . , en with re-

spect to which x∗Ax is of the form λ1|y1|2 + · · ·+ λn|yn|2 and λ1 ≤ λ2 ≤ · · · ≤ λn.
If y ∈ Span(e1, e2) then y∗Ay ≤ λ2|y|2. On the other hand, if a nonzero vector
y belongs to an (n − 1)-dimensional subspace on which an Hermitian form corre-
sponding to A′ is defined then y∗Ay > 0. This (n−1)-dimensional subspace and the
two-dimensional subspace Span(e1, e2) belong to the same n-dimensional space and,
therefore, they have a common nonzero vector y. It follows that λ2|y|2 ≥ y∗Ay > 0,
i.e., λ2 > 0; hence, λi > 0 for i ≥ 2. Besides, λ1 . . . λn = |aij |n1 > 0 and therefore,
λ1 > 0. ¤

19.2.2. Theorem (Sylvester’s law of inertia). Let an Hermitian form be
reduced by a unitary transformation to the form

λ1|x1|2 + · · ·+ λn|xn|2, (1)

where λi > 0 for i = 1, . . . , p, λi < 0 for i = p + 1, . . . , p + q, and λi = 0 for
i = p + q + 1, . . . , n. Then the numbers p and q do not depend on the unitary
transformation.

Proof. The expression (1) determines the decomposition of V into the direct
sum of subspaces V = V+ ⊕ V− ⊕ V0, where the form is positive definite, negative
definite and identically zero on V+, V−, V0, respectively. Let V = W+ ⊕W− ⊕W0

be another such decomposition. Then V+∩(W−⊕W0) = 0 and, therefore, dimV+ +
dim(W− ⊕W0) ≤ n, i.e., dimV+ ≤ dimW+. Similarly, dimW+ ≤ dimV+. ¤

19.3. We turn to the reduction of quadratic forms to diagonal form.

Theorem (Lagrange). A quadratic form can always be reduced to the form

q(x1, . . . , xn) = λ1x
2
1 + · · ·+ λnx

2
n.

Proof. Let A =
∥∥aij

∥∥n
1

be the matrix of a quadratic form q. We carry out the
proof by induction on n. For n = 1 the statement is obvious. Further, consider two
cases.

a) There exists a nonzero diagonal element, say, a11 6= 0. Then

q(x1, . . . , xn) = a11y
2
1 + q′(y2, . . . , yn),

where
y1 = x1 +

a12x2 + · · ·+ a1nxn
a11
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and yi = xi for i ≥ 2. The inductive hypothesis is applicable to q′.
b) All diagonal elements are 0. Only the case when the matrix has at least one

nonzero element of interest; let, for example, a12 6= 0. Set x1 = y1 +y2, x2 = y1−y2

and xi = yi for i ≥ 3. Then

q(x1, . . . , xn) = 2a12(y2
1 − y2

2) + q′(y1, . . . , yn),

where q′ does not contain terms with y2
1 and y2

2 . We can apply the change of
variables from case a) to the form q(y1, . . . , yn). ¤

19.4. Let the eigenvalues of an Hermitian matrix A be listed in decreasing order:
λ1 ≥ · · · ≥ λn. The numbers λ1, . . . , λn possess the following min-max property.

Theorem (Courant-Fischer). Let x run over all (admissible) unit vectors.
Then

λ1 = max
x

(x∗Ax),

λ2 = min
y1

max
x⊥y1

(x∗Ax),

. . . . . . . . . . . . . . . . . . . . .

λn = min
y1,...,yn−1

max
x⊥y1,...,yn−1

(x∗Ax)

Proof. Let us select an orthonormal basis in which

x∗Ax = λ1x
2
1 + · · ·+ λnx

2
n.

Consider the subspaces W1 = {x | xk+1 = · · · = xn = 0} and W2 = {x | x ⊥
y1, . . . , yk−1}. Since dimW1 = k and dimW2 ≥ n − k + 1, we deduce that W =
W1 ∩W2 6= 0. If x ∈W and |x| = 1 then x ∈W1 and

x∗Ax = λ1x
2
1 + · · ·+ λkx

2
k ≥ λk(x2

1 + · · ·+ x2
k) = λk.

Therefore,
λk ≤ max

x∈W1∩W2
(x∗Ax) ≤ max

x∈W2
(x∗Ax);

hence,
λk ≤ min

y1,...,yk−1
max
x∈W2

(x∗Ax).

Now, consider the vectors yi = (0, . . . , 0, 1, 0, . . . , 0) (1 stands in the ith slot).
Then

W2 = {x | x ⊥ y1, . . . , yk−1} = {x | x1 = · · · = xk−1 = 0}.
If x ∈W2 and |x| = 1 then

x∗Ax = λkx
2
k + · · ·+ λnx

2
n ≤ λk(x2

k + · · ·+ x2
n) = λk.

Therefore,

λk = max
x∈W2

(x∗Ax) ≥ min
y1,...,yk−1

max
x⊥y1,...,yk−1

(x∗Ax). ¤
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19.5. An Hermitian matrix A is called nonnegative definite (and we write A ≥ 0)
if x∗Ax ≥ 0 for any column x; this condition is equivalent to the fact that all eigen-
values of A are nonnegative. In the construction of the polar decomposition (16.1)
we have proved that for any nonnegative definite matrix A there exists a unique
nonnegative definite matrix S such that A = S2. This statement has numerous
applications.

19.5.1. Theorem. If A is a nonnegative definite matrix and x∗Ax = 0 for
some x, then Ax = 0.

Proof. Let A = S∗S. Then 0 = x∗Ax = (Sx)∗Sx; hence, Sx = 0. It follows
that Ax = S∗Sx = 0. ¤

Now, let us study the properties of eigenvalues of products of two Hermitian
matrices, one of which is positive definite. First of all, observe that the product
of two Hermitian matrices A and B is an Hermitian matrix if and only if AB =
(AB)∗ = B∗A∗ = BA. Nevertheless the product of two positive definite matrices
is somewhat similar to a positive definite matrix: it is a diagonalizable matrix with
positive eigenvalues.

19.5.2. Theorem. Let A be a positive definite matrix, B an Hermitian matrix.
Then AB is a diagonalizable matrix and the number of its positive, negative and
zero eigenvalues is the same as that of B.

Proof. Let A = S2, where S is an Hermitian matrix. Then the matrix AB is
similar to the matrix S−1ABS = SBS. For any invertible Hermitian matrix S if
x = Sy then x∗Bx = y∗(SBS)y and, therefore, the matrices B and SBS correspond
to the same Hermitian form only expressed in different bases. But the dimension
of maximal subspaces on which an Hermitian form is positive definite, negative
definite, or identically vanishes is well-defined for an Hermitian form. Therefore,
A is similar to an Hermitian matrix SBS which has the same number of positive,
negative and zero eigenvalues as B. ¤

A theorem in a sense inverse to Theorem 19.5.2 is also true.

19.5.3. Theorem. Any diagonalizable matrix with real eigenvalues can be rep-
resented as the product of a positive definite matrix and an Hermitian matrix.

Proof. Let C = PDP−1, where D is a real diagonal matrix. Then C = AB,
where A = PP ∗ is a positive definite matrix and B = P ∗−1DP−1 an Hermitian
matrix. ¤

Problems

19.1. Prove that any Hermitian matrix of rank r can be represented as the sum
of r Hermitian matrices of rank 1.

19.2. Prove that if a matrix A is positive definite then adjA is also a positive
definite matrix.

19.3. Prove that if A is a nonzero Hermitian matrix then rankA ≥ (trA)2

tr(A2)
.

19.4. Let A be a positive definite matrix. Prove that
∫ ∞
−∞

e−x
TAxdx = (

√
π)n|A|−1/2,
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where n is the order of the matrix.
19.5. Prove that if the rank of a symmetric (or Hermitian) matrix A is equal to

r, then it has a nonzero principal r-minor.
19.6. Let S be a symmetric invertible matrix of order n all elements of which

are positive. What is the largest possible number of nonzero elements of S−1?

20. Simultaneous diagonalization of a pair of Hermitian forms

20.1. Theorem. Let A and B be Hermitian matrices and let A be positive
definite. Then there exists a matrix T such that T ∗AT = I and T ∗BT is a diagonal
matrix.

Proof. For A there exists a matrix Y such that A = Y ∗Y , i.e., Y ∗−1AY −1 = I.
The matrix C = Y ∗−1BY −1 is Hermitian and, therefore, there exists a unitary
matrix U such that U∗CU is diagonal. Since U∗IU = I, then T = Y −1U is the
desired matrix. ¤

It is not always possible to reduce simultaneously a pair of Hermitian forms to
diagonal form by a change of basis. For instance, consider the Hermitian forms

corresponding to matrices
(

1 0
0 0

)
and

(
0 1
1 0

)
. Let P =

(
a b
c d

)
be an arbi-

trary invertible matrix. Then P ∗
(

1 0
0 0

)
P =

(
aa ab
ab bb

)
and P ∗

(
0 1
1 0

)
P =

(
ac+ ac ad+ bc
ad+ bc bd+ bd

)
. It remains to verify that the equalities ab = 0 and ad+bc = 0

cannot hold simultaneously. If ab = 0 and P is invertible, then either a = 0 and
b 6= 0 or b = 0 and a 6= 0. In the first case 0 = ad+ bc = bc and therefore, c = 0; in
the second case ad = 0 and, therefore, d = 0. In either case we get a noninvertible
matrix P .

20.2. Simultaneous diagonalization. If A and B are Hermitian matrices
and one of them is invertible, the following criterion for simultaneous reduction of
the forms x∗Ax and x∗Bx to diagonal form is known.

20.2.1. Theorem. Hermitian forms x∗Ax and x∗Bx, where A is an invertible
Hermitian matrix, are simultaneously reducible to diagonal form if and only if the
matrix A−1B is diagonalizable and all its eigenvalues are real.

Proof. First, suppose that A = P ∗D1P and B = P ∗D2P , where D1 and D2

are diagonal matrices. Then A−1B = P−1D−1
1 D2P is a diagonalizable matrix. It

is also clear that the matrices D1 and D2 are real since y∗Diy ∈ R for any column
y = Px.

Now, suppose that A−1B = PDP−1, where D = diag(λ1, . . . , λn) and λi ∈ R.
Then BP = APD and, therefore, P ∗BP = (P ∗AP )D. Applying a permutation
matrix if necessary we can assume that D = diag(Λ1, . . . ,Λk) is a block diagonal
matrix, where Λi = λiI and all numbers λi are distinct. Let us represent in the
same block form the matrices P ∗BP =

∥∥Bij
∥∥k

1
and P ∗AP =

∥∥Aij
∥∥k

1
. Since they

are Hermitian, Bij = B∗ji and Aij = A∗ji. On the other hand, Bij = λjAij ;
hence, λjAij = B∗ji = λiA

∗
ji = λiAij . Therefore, Aij = 0 for i 6= j, i.e.,

P ∗AP = diag(A1, . . . , Ak), where A∗i = Ai and P ∗BP = diag(λ1A1, . . . , λkAk).
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Every matrix Ai can be represented in the form Ai = UiDiU
∗
i , where Ui is a uni-

tary matrix and Di a diagonal matrix. Let U = diag(U1, . . . , Uk) and T = PU .
Then T ∗AT = diag(D1, . . . , Dk) and T ∗BT = diag(λ1D1, . . . , λkDk). ¤

There are also known certain sufficient conditions for simultaneous diagonaliz-
ability of a pair of Hermitian forms if both forms are singular.

20.2.2. Theorem ([Newcomb, 1961]). If Hermitian matrices A and B are
nonpositive or nonnegative definite, then there exists an invertible matrix T such
that T ∗AT and T ∗BT are diagonal.

Proof. Let rankA = a, rankB = b and a ≤ b. There exists an invertible matrix

T1 such that T ∗1AT1 =
(
Ia 0
0 0

)
= A0. Consider the last n− a diagonal elements

of B1 = T ∗1BT1. The matrix B1 is sign-definite and, therefore, if a diagonal element
of it is zero, then the whole row and column in which it is situated are zero (see
Problem 20.1). Now let some of the diagonal elements considered be nonzero. It is
easy to verify that

(
I x∗

0 α

) (
C c∗

c γ

)(
I 0
x α

)
=

( ∗ αc∗ + αγx∗

αc+ αγx |α|2γ
)
.

If γ 6= 0, then setting α = 1/
√
γ and x = −(1/γ)c we get a matrix whose off-

diagonal elements in the last row and column are zero. These transformations
preserve A0; let us prove that these transformations reduce B1 to the form

B0 =



Ba 0 0
0 Ik 0
0 0 0


 ,

where Ba is a matrix of size a×a and k = b− rankBa. Take a permutation matrix
P such that the transformation B1 7→ P ∗B1P affects only the last n− a rows and
columns of B1 and such that this transformation puts the nonzero diagonal elements
(from the last n−a diagonal elements) first. Then with the help of transformations
indicated above we start with the last nonzero element and gradually shrinking the
size of the considered matrix we eventually obtain a matrix of size a× a.

Let T2 be an invertible matrix such that T ∗2BT2 = B0 and T ∗2AT2 = A0. There
exists a unitary matrix U of order a such that U∗BaU is a diagonal matrix. Since

U∗IaU = Ia, then T = T2U1, where U1 =
(
U 0
0 I

)
, is the required matrix. ¤

20.2.3. Theorem ([Majindar, 1963]). Let A and B be Hermitian matrices and
let there be no nonzero column x such that x∗Ax = x∗Bx = 0. Then there exists
an invertible matrix T such that T ∗AT and T ∗BT are diagonal matrices.

Since any triangular Hermitian matrix is diagonal, Theorem 20.2.3 is a particular
case of the following statement.

20.2.4. Theorem. Let A and B be arbitrary complex square matrices and there
is no nonzero column x such that x∗Ax = x∗Bx = 0. Then there exists an invertible
matrix T such that T ∗AT and T ∗BT are triangular matrices.

Proof. If one of the matrices A and B, say B, is invertible then p(λ) = |A−λB|
is a nonconstant polynomial. If the both matrices are noninvertible then |A−λB| =
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0 for λ = 0. In either case the equation |A− λB| = 0 has a root λ and, therefore,
there exists a column x1 such that Ax1 = λBx1. If λ 6= 0 (resp. λ = 0) select
linearly independent columns x2, . . . , xn such that x∗iAx1 = 0 (resp. x∗iBx1 = 0)
for i = 2, . . . , n; in either case x∗iAx1 = x∗iBx1 = 0 for i = 2, . . . , n. Indeed, if
λ 6= 0, then x∗iAx1 = 0 and x∗iBx1 = λ−1x∗iAx1 = 0; if λ = 0, then x∗iBx1 = 0 and
x∗iAx1 = 0, since Ax1 = 0.

Therefore, if D is formed by columns x1, . . . , xn, then

D∗AD =



x∗1Ax1 . . . x∗1Axn

0
...
A1


 and D∗BD =



x∗1Bx1 . . . x∗1Bxn

0
...
B1


 .

Let us prove that D is invertible, i.e., that it is impossible to express the column x1

linearly in terms of x2, . . . , xn. Suppose, contrarywise, that x1 = λ2x2 + · · ·+λnxn.
Then

x∗1Ax1 = (λ2x
∗
2 + · · ·+ λnx

∗
n)Ax1 = 0.

Similarly, x∗1Bx1 = 0; a contradiction. Hence, D is invertible.
Now, let us prove that the matrices A1 and B1 satisfy the hypothesis of the

theorem. Suppose there exists a nonzero column y1 = (α2, . . . , αn)T such that
y∗1A1y1 = y∗1B1y1 = 0. As is easy to verify, A1 = D∗1AD1 and B1 = D∗1BD1, where
D1 is the matrix formed by the columns x2, . . . , xn. Therefore, y∗Ay = y∗By,
where y = D1y1 = α2x2 + · · ·+αnxn 6= 0, since the columns x2, . . . , xn are linearly
independent. Contradiction.

If there exists an invertible matrix T1 such that T ∗1A1T1 and T ∗1BT1 are trian-

gular, then the matrix T = D

(
1 0
0 T1

)
is a required one. For matrices of order 1

the statement is obvious and, therefore, we may use induction on the order of the
matrices. ¤

Problems

20.1. An Hermitian matrix A =
∥∥aij

∥∥n
1

is nonnegative definite and aii = 0 for
some i. Prove that aij = aji = 0 for all j.

20.2 ([Albert, 1958]). Symmetric matrices Ai and Bi (i = 1, 2) are such that
the characteristic polynomials of the matrices xA1 + yA2 and xB1 + yB2 are equal
for all numbers x and y. Is there necessarily an orthogonal matrix U such that
UAiU

T = Bi for i = 1, 2?

21. Skew-symmetric matrices

A matrix A is said to be skew-symmetric if AT = −A. In this section we consider
real skew-symmetric matrices. Recall that the determinant of a skew-symmetric
matrix of odd order vanishes since |AT | = |A| and | − A| = (−1)n|A|, where n is
the order of the matrix.

21.1.1. Theorem. If A is a skew-symmetric matrix then A2 is a symmetric
nonpositive definite matrix.

Proof. We have (A2)T = (AT )2 = (−A)2 = A2 and xTA2x = −xTATAx
= −(Ax)TAx ≤ 0. ¤
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Corollary. The nonzero eigenvalues of a skew-symmetric matrix are purely
imaginary.

Indeed, if Ax = λx then A2x = λ2x and λ2 ≤ 0.

21.1.2. Theorem. The condition xTAx = 0 holds for all x if and only if A is
a skew-symmetric matrix.

Proof.

xTAx =
∑

i,j

aijxixj =
∑

i≤j
(aij + aji)xixj .

This quadratic form vanishes for all x if and only if all its coefficients are zero, i.e.,
aij + aji = 0. ¤

21.2. A bilinear function B(x, y) =
∑
i,j aijxiyj is said to be skew-symmetric if

B(x, y) = −B(y, x). In this case

∑

i,j

(aij + aji)xiyj = B(x, y) +B(y, x) ≡ 0,

i.e., aij = −aji.
Theorem. A skew-symmetric bilinear function can be reduced by a change of

basis to the form
r∑

k=1

(x2k−1y2k − x2ky2k−1).

Proof. Let, for instance, a12 6= 0. Instead of x2 and y2 introduce variables
x′2 = a12x2 + · · ·+ a1nxn and y′2 = a12y2 + · · ·+ a1nyn. Then

B(x, y) = x1y
′
2 − x′2y1 + (c3x3 + · · ·+ cnxn)y′2 − (c3y3 + · · ·+ cnyn)x′2 + . . . .

Instead of x1 and y1 introduce new variables x′1 = x1 + c3x3 + · · · + cnxn and
y′1 = y1 + c3y3 + · · ·+ cnyn. Then B(x, y) = x′1y

′
2 − x′2y′1 + . . . (dots stand for the

terms involving the variables xi and yi with i ≥ 3). For the variables x3, x4, . . . ,
y3, y4, . . . we can repeat the same procedure. ¤

Corollary. The rank of a skew-symmetric matrix is an even number.

The elements aij , where i < j, can be considered as independent variables. Then
the proof of the theorem shows that

A = PTJP, where J = diag
((

0 1
−1 0

)
, . . . ,

(
0 1
−1 0

))

and the elements of P are rational functions of aij . Taking into account that
(

0 1
−1 0

)
=

(
0 1
1 0

)(−1 0
0 1

)

we can represent J as the product of matrices J1 and J2 with equal determinants.
Therefore, A = (PTJ1)(J2P ) = FG, where the elements of F and G are rational
functions of the elements of A and detF = detG.
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21.3. A linear operator A in Euclidean space is said to be skew-symmetric if its
matrix is skew-symmetric with respect to an orthonormal basis.

Theorem. Let Λi =
(

0 −λi
λi 0

)
. For a skew-symmetric operator A there exists

an orthonormal basis with respect to which its matrix is of the form

diag(Λ1, . . . ,Λk, 0, . . . , 0).

Proof. The operator A2 is symmetric nonnegative definite. Let

Vλ = {v ∈ V | A2v = −λ2v}.

Then V = ⊕Vλ and AVλ ⊂ Vλ. If A2v = 0 then (Av,Av) = −(A2v, v) = 0, i.e.,
Av = 0. Therefore, it suffices to select an orthonormal basis in V0.

For λ > 0 the restriction of A to Vλ has no real eigenvalues and the square of
this restriction is equal to −λ2I. Let x ∈ Vλ be a unit vector, y = λ−1Ax. Then

(x, y) = (x, λ−1Ax) = 0, Ay = −λx,
(y, y) = (λ−1Ax, y) = λ−1(x,−Ay) = (x, x) = 1.

To construct an orthonormal basis in Vλ take a unit vector u ∈ Vλ orthogonal to x
and y. Then (Au, x) = (u,−Ax) = 0 and (Au, y) = (u,−Ay) = 0. Further details
of the construction of an orthonormal basis in Vλ are obvious. ¤

Problems

21.1. Prove that if A is a real skew-symmetric matrix, then I+A is an invertible
matrix.

21.2. An invertible matrix A is skew-symmetric. Prove that A−1 is also a skew-
symmetric matrix.

21.3. Prove that all roots of the characteristic polynomial of AB, where A and
B are skew-symmetric matrices of order 2n, are of multiplicity greater than 1.

22. Orthogonal matrices. The Cayley transformation

A real matrix A is said to be an orthogonal if AAT = I. This equation means that
the rows of A constitute an orthonormal system. Since ATA = A−1(AAT )A = I,
it follows that the columns of A also constitute an orthonormal system.

A matrix A is orthogonal if and only if (Ax,Ay) = (x,ATAy) = (x, y) for any
x, y.

An orthogonal matrix is unitary and, therefore, the absolute value of its eigen-
values is equal to 1.

22.1. The eigenvalues of an orthogonal matrix belong to the unit circle centered
at the origin and the eigenvalues of a skew-symmetric matrix belong to the imagi-

nary axis. The fractional-linear transformation f(z) =
1− z
1 + z

sends the unit circle

to the imaginary axis and f(f(z)) = z. Therefore, we may expect that the map

f(A) = (I −A)(I +A)−1
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sends orthogonal matrices to skew-symmetric ones and the other way round. This
map is called Cayley transformation and our expectations are largely true. Set

A# = (I −A)(I +A)−1.

We can verify the identity (A#)# = A in a way similar to the proof of the identity
f(f(z)) = z; in the proof we should take into account that all matrices that we
encounter in the process of this transformation commute with each other.

Theorem. The Cayley transformation sends any skew-symmetric matrix to an
orthogonal one and any orthogonal matrix A for which |A + I| 6= 0 to a skew-
symmetric one.

Proof. Since I − A and I + A commute, it does not matter from which side
to divide and we can write the Cayley transformation as follows: A# = I−A

I+A . If
AAT = I and |I +A| 6= 0 then

(A#)T =
I −AT
I +AT

=
I −A−1

I +A−1
=
A− I
A+ I

= −A#.

If AT = −A then

(A#)T =
I −AT
I +AT

=
I +A

I −A = (A#)−1. ¤

Remark. The Cayley transformation can be expressed in the form

A# = (2I − (I +A))(I +A)−1 = 2(I +A)−1 − I.
22.2. If U is an orthogonal matrix and |U + I| 6= 0 then

U = (I −X)(I +X)−1 = 2(I +X)−1 − I,
where X = U# is a skew-symmetric matrix.

If S is a symmetric matrix then S = UΛUT , where Λ is a diagonal matrix and
U an orthogonal matrix. If |U + I| 6= 0 then

S = (2(I +X)−1 − I)Λ(2(I +X)−1 − I)T ,

where X = U#.
Let us prove that similar formulas are also true when |U + I| = 0.

22.2.1. Theorem ([Hsu, 1953]). For an arbitrary square matrix A there exists
a matrix J = diag(±1, . . . ,±1) such that |A+ J | 6= 0.

Proof. Let n be the order of A. For n = 1 the statement is obvious. Suppose
that the statement holds for any A of order n− 1 and consider a matrix A of order

n. Let us express A in the block form A =
(
A1 A2

A3 a

)
, where A1 is a matrix of

order n − 1. By inductive hypothesis there exists a matrix J1 = diag(±1, . . . ,±1)
such that |A1 + J1| 6= 0; then

∣∣∣∣
A1 + J1 A2

A3 a+ 1

∣∣∣∣−
∣∣∣∣
A1 + J1 A2

A3 a− 1

∣∣∣∣ = 2|A1 + J1| 6= 0

and, therefore, at least one of the determinants in the left-hand side is nonzero. ¤
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Corollary. For an orthogonal matrix U there exists a skew-symmetric matrix
X and a diagonal matrix J = diag(±1, . . . ,±1) such that U = J(I −X)(I +X)−1.

Proof. There exists a matrix J = diag(±1, . . . ,±1) such that |U + J | 6= 0.
Clearly, J2 = I. Hence, |JU + I| 6= 0 and, therefore, JU = (I − X)(I + X)−1,
where X = (JU)#. ¤

22.2.2. Theorem ([Hsu, 1953]). Any symmetric matrix S can be reduced to the
diagonal form with the help of an orthogonal matrix U such that |U + I| 6= 0.

Proof. Let S = U1ΛUT1 . By Theorem 22.2.1 there exists a matrix J =
diag(±1, . . . ,±1) such that |U1 + J | 6= 0. Then |U1J + I| 6= 0. Let U = U1J .
Clearly,

UΛUT = U1JΛJUT1 = U1ΛUT1 = S. ¤

Corollary. For any symmetric matrix S there exists a skew-symmetric matrix
X and a diagonal matrix Λ such that

S = (2(I +X)−1 − I)Λ(2(I +X)−1 − I)T .

Problems

22.1. Prove that if p(λ) is the characteristic polynomial of an orthogonal matrix
of order n, then λnp(λ−1) = ±p(λ).

22.2. Prove that any unitary matrix of order 2 with determinant 1 is of the form(
u v
−v u

)
, where |u|2 + |v|2 = 1.

22.3. The determinant of an orthogonal matrix A of order 3 is equal to 1.
a) Prove that (trA)2 − tr(A)2 = 2 trA.
b) Prove that (

∑
i aii − 1)2 +

∑
i<j(aij − aji)2 = 4.

22.4. Let J be an invertible matrix. A matrix A is said to be J-orthogonal
if ATJA = J , i.e., AT = JA−1J−1 and J-skew-symmetric if ATJ = −JA, i.e.,
AT = −JAJ−1. Prove that the Cayley transformation sends J-orthogonal matrices
into J-skew-symmetric ones and the other way around.

22.5 ([Djoković, 1971]). Suppose the absolute values of all eigenvalues of an
operator A are equal to 1 and |Ax| ≤ |x| for all x. Prove that A is a unitary
operator.

22.6 ([Zassenhaus, 1961]). A unitary operator U sends some nonzero vector x to
a vector Ux orthogonal to x. Prove that any arc of the unit circle that contains all
eigenvalues of U is of length no less than π.

23. Normal matrices

A linear operator A over C is said to be normal if A∗A = AA∗; the matrix of
a normal operator in an orthonormal basis is called a normal matrix. Clearly, a
matrix A is normal if and only if A∗A = AA∗.

The following conditions are equivalent to A being a normal operator:
1) A = B + iC, where B and C are commuting Hermitian operators (cf. Theo-

rem 10.3.4);
2) A = UΛU∗, where U is a unitary and Λ is a diagonal matrix, i.e., A has an

orthonormal eigenbasis; cf. 17.1;
3)

∑n
i=1 |λi|2 =

∑n
i,j=1 |aij |2, where λ1, . . . , λn are eigenvalues of A, cf. Theo-

rem 34.1.1.
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23.1.1. Theorem. If A is a normal operator, then KerA∗ = KerA and
ImA∗ = ImA.

Proof. The conditions A∗x = 0 and Ax = 0 are equivalent, since

(A∗x,A∗x) = (x,AA∗x) = (x,A∗Ax) = (Ax,Ax).

The condition A∗x = 0 means that (x,Ay) = (A∗x, y) = 0 for all y, i.e., x ∈
(ImA)⊥. Therefore, ImA = (KerA∗)⊥ and ImA∗ = (KerA)⊥. Since KerA =
KerA∗, then ImA = ImA∗. ¤

Corollary. If A is a normal operator then

V = KerA⊕ (KerA)⊥ = KerA⊕ ImA.

23.1.2. Theorem. An operator A is normal if and only if any eigenvector of
A is an eigenvector of A∗.

Proof. It is easy to verify that if A is a normal operator then the operator A−λI
is also normal and, therefore, Ker(A− λI) = Ker(A∗ − λI), i.e., any eigenvector of
A is an eigenvector of A∗.

Now, suppose that any eigenvector of A is an eigenvector of A∗. Let Ax = λx
and (y, x) = 0. Then

(x,Ay) = (A∗x, y) = (µx, y) = µ(x, y) = 0.

Take an arbitrary eigenvector e1 of A. We can restrict A to the subspace Span(e1)⊥.
In this subspace take an arbitrary eigenvector e2 of A, etc. Finally, we get an
orthonormal eigenbasis of A and, therefore, A is a normal operator. ¤

23.2. Theorem. If A is a normal matrix, then A∗ can expressed as a polyno-
mial of A.

Proof. Let A = UΛU∗, where Λ = diag(λ1, . . . , λn) and U is a unitary matrix.
Then A∗ = UΛ∗U∗, where Λ∗ = diag(λ1, . . . , λn). There exists an interpolation
polynomial p such that p(λi) = λi for i = 1, . . . , n, see Appendix 3. Then

p(Λ) = diag(p(λ1), . . . , p(λn)) = diag(λ1, . . . , λn) = Λ∗.

Therefore, p(A) = Up(Λ)U∗ = UΛ∗U∗ = A∗. ¤
Corollary. If A and B are normal matrices and AB = BA then A∗B = BA∗

and AB∗ = B∗A; in particular, AB is a normal matrix.

Problems

23.1. Let A be a normal matrix. Prove that there exists a normal matrix B such
that A = B2.

23.2. Let A and B be normal operators such that ImA ⊥ ImB. Prove that
A+B is a normal operator.

23.3. Prove that the matrix A is normal if and only if A∗ = AU , where U is a
unitary matrix.

23.4. Prove that if A is a normal operator and A = SU is its polar decomposition
then SU = US.

23.5. The matrices A, B and AB are normal. Prove that so is BA.
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24. Nilpotent matrices

24.1. A square matrix A is said to be nilpotent if Ap = 0 for some p > 0.

24.1.1. Theorem. If the order of a nilpotent matrix A is equal to n, then
An = 0.

Proof. Select the largest positive integer p for which Ap 6= 0. Then Apx 6= 0
for some x and Ap+1 = 0. Let us prove that the vectors x, Ax, . . . , Apx are linearly
independent. Suppose that Akx =

∑
i>k λiA

ix, where k < p. Then Ap−k(Akx) =
Apx 6= 0 but Ap−k(λiAix) = 0 since i > k. Contradiction. Hence, p < n. ¤

24.1.2. Theorem. The characteristic polynomial of a nilpotent matrix A of
order n is equal to λn.

Proof. The polynomial λn annihilates A and, therefore, the minimal polyno-
mial of A is equal to λm, where 0 ≤ m ≤ n, and the characteristic polynomial of A
is equal to λn. ¤

24.1.3. Theorem. Let A be a nilpotent matrix, and let k be the maximal order
of Jordan blocks of A. Then Ak = 0 and Ak−1 6= 0.

Proof. Let N be the Jordan block of order m corresponding to the zero eigen-
value. Then there exists a basis e1, . . . , em such that Nei = ei+1; hence, Npei =
ei+p (we assume that ei+p = 0 for i+ p > m). Thus, Nm = 0 and Nm−1e1 = em,
i.e., Nm−1 6= 0. ¤

24.2.1. Theorem. Let A be a matrix of order n. The matrix A is nilpotent if
and only if tr(Ap) = 0 for p = 1, . . . , n.

Proof. Let us prove that the matrix A is nilpotent if and only if all its eigen-
values are zero. To this end, reduce A to the Jordan normal form. Suppose that
A has nonzero eigenvalues λ1, . . . , λk; let ni be the sum of the orders of the Jordan
blocks corresponding to the eigenvalue λi. Then tr(Ap) = n1λ

p
1 + · · ·+nkλ

p
k. Since

k ≤ n, it suffices to prove that the conditions

n1λ
p
1 + · · ·+ nkλ

p
k = 0 (p = 1, . . . , k)

cannot hold. These conditions can be considered as a system of equations for
n1, . . . , nk. The determinant of this system is a Vandermonde determinant. It does
not vanish and, therefore, n1 = · · · = nk = 0. ¤

24.2.2. Theorem. Let A : V → V be a linear operator and W an invariant
subspace, i.e., AW ⊂W ; let A1 : W →W and A2 : V/W → V/W be the operators
induced by A. If operators A1 and A2 are nilpotent, then so is A.

Proof. Let Ap1 = 0 and Aq2 = 0. The condition Aq2 = 0 means that AqV ⊂ W
and the condition Ap1 = 0 means that ApW = 0. Therefore, Ap+qV ⊂ ApW =
0. ¤

24.3. The Jordan normal form of a nilpotent matrix A is a block diagonal matrix
with Jordan blocks Jn1(0), . . . , Jnk(0) on the diagonal with n1 + · · ·+nk = n, where
n is the order of A. We may assume that n1 ≥ · · · ≥ nk. The set (n1, . . . , nk) is
called a partition of the number n. To a partition (n1, . . . , nk) we can assign the
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Figure 5

Young tableau consisting of n cells with ni cells in the ith row and the first cells of
all rows are situated in the first column, see Figure 5.

Clearly, nilpotent matrices are similar if and only if the same Young tableau
corresponds to them.

The dimension of KerAm can be expressed in terms of the partition (n1, . . . , nk).
It is easy to check that

dim KerA = k = Card {j|nj ≥ 1},
dim KerA2 = dim KerA+ Card {j|nj ≥ 2},
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dim KerAm = dim KerAm−1 + Card {j|nj ≥ m}.
The partition (n′1, . . . , n

′
l), where n′i = Card{j|nj ≥ i}, is called the dual to

the partition (n1, . . . , nk). Young tableaux of dual partitions of a number n are
obtained from each other by transposition similar to a transposition of a matrix. If
the partition (n1, . . . , nk) corresponds to a nilpotent matrix A then dim KerAm =
n′1 + · · ·+ n′m.

Problems

24.1. Let A and B be two matrices of order n. Prove that if A+λB is a nilpotent
matrix for n+ 1 distinct values of λ, then A and B are nilpotent matrices.

24.2. Find matrices A and B such that λA+µB is nilpotent for any λ and µ but
there exists no matrix P such that P−1AP and P−1BP are triangular matrices.

25. Projections. Idempotent matrices

25.1. An operator P : V → V is called a projection (or idempotent) if P 2 = P .

25.1.1. Theorem. In a certain basis, the matrix of a projection P is of the
form diag(1, . . . , 1, 0, . . . , 0).

Proof. Any vector v ∈ V can be represented in the form v = Pv + (v − Pv),
where Pv ∈ ImP and v − Pv ∈ KerP . Besides, if x ∈ ImP ∩ KerP , then x = 0.
Indeed, in this case x = Py and Px = 0 and, therefore, 0 = Px = P 2y = Py = x.
Hence, V = ImP ⊕ KerP . For a basis of V select the union of bases of ImP and
KerP . In this basis the matrix of P is of the required form. ¤
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25.1.1.1. Corollary. There exists a one-to-one correspondence between pro-
jections and decompositions V = W1 ⊕ W2. To every such decomposition there
corresponds the projection P (w1 +w2) = w1, where w1 ∈W1 and w2 ∈W2, and to
every projection there corresponds a decomposition V = ImP ⊕KerP .

The operator P can be called the projection onto W1 parallel to W2.

25.1.1.2. Corollary. If P is a projection then rankP = trP .

25.1.2. Theorem. If P is a projection, then I−P is also a projection; besides,
Ker(I − P ) = ImP and Im(I − P ) = KerP .

Proof. If P 2 = P then (I − P )2 = I − 2P + P 2 = I − P . According to the
proof of Theorem 25.1.1 KerP consists of vectors v − Pv, i.e., KerP = Im(I − P ).
Similarly, Ker(I − P ) = ImP . ¤

Corollary. If P is the projection onto W1 parallel to W2, then I − P is the
projection onto W2 parallel to W1.

25.2. Let P be a projection and V = ImP ⊕KerP . If ImP ⊥ KerP , then Pv
is an orthogonal projection of v onto ImP ; cf. 9.3.

25.2.1. Theorem. A projection P is Hermitian if and only if ImP ⊥ KerP .

Proof. If P is Hermitian then KerP = (ImP ∗)⊥ = (ImP )⊥. Now, suppose
that P is a projection and ImP ⊥ KerP . The vectors x−Px and y−Py belong to
KerP ; therefore, (Px, y−Py) = 0 and (x−Px, Py) = 0, i.e., (Px, y) = (Px, Py) =
(x, Py). ¤

Remark. If a projection P is Hermitian, then (Px, y) = (Px, Py); in particular,
(Px, x) = |Px|2.

25.2.2. Theorem. A projection P is Hermitian if and only if |Px| ≤ |x| for
all x.

Proof. If the projection P is Hermitian, then x − Px ⊥ x and, therefore,
|x|2 = |Px|2 + |Px− x|2 ≥ |Px|2. Thus, if |Px| ≤ |x|, then KerP ⊥ ImP .

Now, assume that v ∈ ImP is not perpendicular to KerP and v1 is the projection
of v on KerP . Then |v−v1| < |v| and v = P (v−v1); therefore, |v−v1| < |P (v−v1)|.
Contradiction. ¤

Hermitian projections P and Q are said to be orthogonal if ImP ⊥ ImQ, i.e.,
PQ = QP = 0.

25.2.3. Theorem. Let P1, . . . , Pn be Hermitian projections. The operator P =
P1 + · · ·+ Pn is a projection if and only if PiPj = 0 for i 6= j.

Proof. If PiPj = 0 for i 6= j then

P 2 = (P1 + · · ·+ Pn)2 = P 2
1 + · · ·+ P 2

n = P1 + · · ·+ Pn = P.

Now, suppose that P = P1+· · ·+Pn is a projection. This projection is Hermitian
and, therefore, if x = Pix then

|x|2 = |Pix|2 ≤ |P1x|2 + · · ·+ |Pnx|2
= (P1x, x) + · · ·+ (Pnx, x) = (Px, x) = |Px|2 ≤ |x|2.

Hence, Pjx = 0 for i 6= j, i.e., PjPi = 0. ¤
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25.3. Let W ⊂ V and let a1, . . . , ak be a basis of W . Consider the matrix A of
size n× k whose columns are the coordinates of the vectors a1, . . . , ak with respect
to an orthonormal basis of V . Then rankA∗A = rankA = k, and, therefore, A∗A
is invertible.

The orthogonal projection Pv of v on W can be expressed with the help of A.
Indeed, on the one hand, Pv = x1a1 + · · · + xkak, i.e., Pv = Ax, where x is the
column (x1, . . . , xk)T . On the other hand, Pv − v ⊥ W , i.e., A∗(v − Ax) = 0.
Hence, x = (A∗A)−1A∗v and, therefore, Pv = Ax = A(A∗A)−1A∗v, i.e., P =
A(A∗A)−1A∗.

If the basis a1, . . . , ak is orthonormal, then A∗A = I and, therefore, P = AA∗.

25.4.1. Theorem ([Djoković, 1971]). Let V = V1 ⊕ · · · ⊕ Vk, where Vi 6= 0 for
i = 1, . . . , k, and let Pi : V → Vi be orthogonal projections, A = P1 + · · · + Pk.
Then 0 < |A| ≤ 1, and |A| = 1 if and only if Vi ⊥ Vj whenever i 6= j.

First, let us prove two lemmas. In what follows Pi denotes the orthogonal pro-
jection to Vi and Pij : Vi → Vj is the restriction of Pj onto Vi.

25.4.1.1. Lemma. Let V = V1⊕V2 and Vi 6= 0. Then 0 < |I−P12P21| ≤ 1 and
the equality takes place if and only if V1 ⊥ V2.

Proof. The operators P1 and P2 are nonnegative definite and, therefore, the
operator A = P1 +P2 is also nonnegative definite. Besides, if Ax = P1x+P2x = 0,
then P1x = P2x = 0, since P1x ∈ V1 and P2x ∈ V2. Hence, x ⊥ V1 and x ⊥ V2 and,
therefore, x = 0. Hence, A is positive definite and |A| > 0.

For a basis of V take the union of bases of V1 and V2. In these bases, the matrix

of A is of the form
(

I P21

P12 I

)
. Consider the matrix B =

(
I 0
P12 I − P12P21

)
.

As is easy to verify, |I − P12P21| = |B| = |A| > 0. Now, let us prove that the
absolute value of each of the eigenvalues of I − P12P21 (i.e., of the restriction B to
V2) does not exceed 1. Indeed, if x ∈ V2 then

|Bx|2 = (Bx,Bx) = (x− P2P1x, x− P2P1x)

= |x|2 − (P2P1x, x)− (x, P2P1x) + |P2P1x|2.

Since

(P2P1x, x) = (P1x, P2x) = (P1x, x) = |P1x|2, (x, P2P1x) = |P1x|2

and |P1x|2 ≥ |P2P1x|2, it follows that

|Bx|2 ≤ |x|2 − |P1x|2. (1)

The absolute value of any eigenvalue of I − P12P21 does not exceed 1 and the
determinant of this operator is positive; therefore, 0 < |I − P12P21| ≤ 1.

If |I−P12P21| = 1 then all eigenvalues of I−P12P21 are equal to 1 and, therefore,
taking (1) into account we see that this operator is unitary; cf. Problem 22.1. Hence,
|Bx| = |x| for any x ∈ V2. Taking (1) into account once again, we get |P1x| = 0,
i.e., V2 ⊥ V1. ¤
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25.4.1.2. Lemma. Let V = V1 ⊕ V2, where Vi 6= 0 and let H be an Hermitian
operator such that ImH = V1 and H1 = H|V1 is positive definite. Then 0 <
|H + P2| ≤ |H1| and the equality takes place if and only if V1 ⊥ V2.

Proof. For a basis of V take the union of bases of V1 and V2. In this basis the

matrix of H+P2 is of the form
(
H1 H1P21

P12 I

)
. Indeed, since KerH = (ImH∗)⊥ =

(ImH)⊥ = V ⊥1 , then H = HP1; hence, H|V2 = H1P21. It is easy to verify that
∣∣∣∣
H1 H1P21

P12 I

∣∣∣∣ =
∣∣∣∣
H1 0
P12 I − P12P21

∣∣∣∣ = |H1| · |I − P12P21|.

It remains to make use of Lemma 25.4.1.1. ¤
Proof of Theorem 25.4.1. As in the proof of Lemma 25.4.1.1, we can show

that |A| > 0. The proof of the inequality |A| ≤ 1 will be carried out by induction
on k. For k = 1 the statement is obvious. For k > 1 consider the space W =
V1 ⊕ · · · ⊕ Vk−1. Let

Qi = Pi|W (i = 1, . . . , k − 1), H1 = Q1 + · · ·+Qk−1.

By the inductive hypothesis |H1| ≤ 1; besides, |H1| > 0. Applying Lemma 25.4.1.2
to H = P1 + · · ·+ Pk−1 we get 0 < |A| = |H + Pk| ≤ |H1| ≤ 1.

If |A| = 1 then by Lemma 25.4.1.2 Vk ⊥ W . Besides, |H1| = 1, hence, Vi ⊥ Vj
for i, j ≤ k − 1. ¤

25.4.2. Theorem ([Djoković, 1971]). Let Ni be a normal operator in V whose
nonzero eigenvalues are equal to λ(i)

1 , . . . , λ
(i)
ri . Further, let r1 + · · ·+rk ≤ dimV . If

the nonzero eigenvalues of N = N1 + · · ·+Nk are equal to λ(i)
j , where j = 1, . . . , ri,

then N is a normal operator, ImNi ⊥ ImNj and NiNj = 0 for i 6= j.

Proof. Let Vi = ImNi. Since rankN = rankN1 + · · ·+rankNk, it follows that
W = V1 + · · · + Vk is the direct sum of these subspaces. For a normal operator
KerNi = (ImNi)⊥, and so KerNi ⊂ W⊥; hence, KerN ⊂ W⊥. It is also clear
that dim KerN = dimW⊥. Therefore, without loss of generality we may confine
ourselves to a subspace W and assume that r1 + · · ·+ rk = dimV , i.e., detN 6= 0.

Let Mi = Ni|Vi . For a basis of V take the union of bases of the spaces Vi. Since
N =

∑
Ni =

∑
NiPi =

∑
MiPi, in this basis the matrix of N takes the form



M1P11 . . . M1Pk1

...
...

...
MkP1k . . . MkPkk


 =



M1 . . . 0

...
...

...
0 . . . Mk






P11 . . . Pk1

...
...

...
P1k . . . Pkk


 .

The condition on the eigenvalues of the operators Ni and N implies |N − λI| =∏k
i=1 |Mi − λI|. In particular, for λ = 0 we have |N | = ∏k

i=1 |Mi|. Hence,
∣∣∣∣∣∣

P11 . . . Pk1
...

...
...

P1k . . . Pkk

∣∣∣∣∣∣
= 1, i.e., |P1 + · · ·+ Pk| = 1.

Applying Theorem 25.4.1 we see that V = V1 ⊕ · · · ⊕ Vk is the direct sum of
orthogonal subspaces. Therefore, N is a normal operator, cf. 17.1, and NiNj = 0,
since ImNj ⊂ (ImNi)⊥ = KerNi. ¤
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Problems

25.1. Let P1 and P2 be projections. Prove that
a) P1 + P2 is a projection if and only if P1P2 = P2P1 = 0;
b) P1 − P2 is a projection if and only if P1P2 = P2P1 = P2.
25.2. Find all matrices of order 2 that are projections.
25.3 (The ergodic theorem). Let A be a unitary operator. Prove that

lim
n→∞

1
n

n−1∑

i=0

Aix = Px,

where P is an Hermitian projection onto Ker(A− I).
25.4. The operators A1, . . . , Ak in a space V of dimension n are such that

A1 + · · ·+Ak = I . Prove that the following conditions are equivalent:
(a) the operators Ai are projections;
(b) AiAj = 0 for i 6= j;
(c) rankA1 + · · ·+ rankAk = n.

26. Involutions

26.1. A linear operator A is called an involution if A2 = I. As is easy to verify,
an operator P is a projection if and only if the operator 2P − I is an involution.
Indeed, the equation

I = (2P − I)2 = 4P 2 − 4P + I

is equivalent to the equation P 2 = P .

Theorem. Any involution takes the form diag(±1, . . . ,±1) in some basis.

Proof. If A is an involution, then P = (A+I)/2 is a projection; this projection
takes the form diag(1, . . . , 1, 0, . . . , 0) in a certain basis, cf. Theorem 25.1.1. In the
same basis the operator A = 2P − I takes the form diag(1, . . . , 1,−1, . . . ,−1). ¤

Remark. Using the decomposition x = 1
2 (x − Ax) + 1

2 (x + Ax) we can prove
that V = Ker(A+ I)⊕Ker(A− I).

26.2. Theorem ([Djoković, 1967]). A matrix A can be represented as the prod-
uct of two involutions if and only if the matrices A and A−1 are similar.

Proof. IfA = ST , where S and T are involutions, thenA−1 = TS = S(ST )S =
SAS−1.

Now, suppose that the matrices A and A−1 are similar. The Jordan nor-
mal form of A is of the form diag(J1, . . . , Jk) and, therefore, diag(J1, . . . , Jk) ∼
diag(J−1

1 , . . . , J−1
k ). If J is a Jordan block, then the matrix J−1 is similar to a

Jordan block. Therefore, the matrices J1, . . . , Jk can be separated into two classes:
for the matrices from the first class we have J−1

α ∼ Jα and for the matrices from the
second class we have J−1

α ∼ Jβ and J−1
β ∼ Jα. It suffices to show that a matrix Jα

from the first class and the matrix diag(Jα, Jβ), where Jα, Jβ are from the second
class can be represented as products of two involutions.

The characteristic polynomial of a Jordan block coincides with the minimal poly-
nomial and, therefore, if p and q are minimal polynomials of the matrices Jα and
J−1
α , respectively, then q(λ) = p(0)−1λnp(λ−1), where n is the order of Jα (see

Problem 13.3).
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Let Jα ∼ J−1
α . Then p(λ) = p(0)−1λnp(λ−1), i.e.,

p(λ) =
∑

αiλ
n−i, where α0 = 1

and αnαn−i = αi. The matrix Jα is similar to a cyclic block and, therefore, there
exists a basis e1, . . . , en such that Jαek = ek+1 for k ≤ n− 1 and

Jαen = Jnαe1 = −αne1 − αn−1e2 − · · · − α1en.

Let Tek = en−k+1. Obviously, T is an involution. If STek = Jαek, then Sen−k+1 =
ek+1 for k 6= n and Se1 = −αne1−· · ·−α1en. Let us verify that S is an involution:

S2e1 = αn(αne1 + · · ·+ α1en)− αn−1en − · · · − α1e2

= e1 + (αnαn−1 − α1)e2 + · · ·+ (αnα1 − αn−1)en = e1;

clearly, S2ei = ei for i 6= 1.
Now, consider the case J−1

α ∼ Jβ . Let
∑
αiλ

n−i and
∑
βiλ

n−i be the minimal
polynomials of Jα and Jβ , respectively. Then

∑
αiλ

n−i = β−1
n λn

∑
βiλ

i−n = β−1
n

∑
βiλ

i.

Hence, αn−iβn = βi and αnβn = β0 = 1. There exist bases e1, . . . , en and ε1, . . . , εn
such that

Jαek = ek+1, Jαen = −αne1 − · · · − α1en

and
Jβεk+1 = εk, Jβε1 = −β1ε1 − · · · − βnεn.

Let Tek = εk and Tεk = ek. If diag(Jα, Jβ) = ST then

Sek+1 = STεk+1 = Jβεk+1 = εk,

Sεk = ek+1,

Se1 = STε1 = Jβε1 = −β1ε1 − · · · − βnεn

and Sen = −αne1−· · ·−α1en. Let us verify that S is an involution. The equalities
S2ei = ei and S2εj = εj are obvious for i 6= 1 and j 6= n and we have

S2e1 = S(−β1ε1 − · · · − βnεn) = −β1e2 − · · · − βn−1en + βn(αne1 + · · ·+ α1en)

= e1 + (βnαn−1 − β1)e2 + · · ·+ (βnα1 − βn−1)en = e1.

Similarly, S2εn = εn. ¤

Corollary. If B is an invertible matrix and XTBX = B then X can be repre-
sented as the product of two involutions. In particular, any orthogonal matrix can
be represented as the product of two involutions.

Proof. If XTBX = B, then XT = BX−1B−1, i.e., the matrices X−1 and XT

are similar. Besides, the matrices X and XT are similar for any matrix X. ¤
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Solutions

19.1. Let S = UΛU∗, where U is a unitary matrix, Λ = diag(λ1, . . . , λr, 0, . . . , 0).
Then S = S1 + · · ·+ Sr, where Si = UΛiU∗, Λi = diag(0, . . . , λi, . . . , 0).

19.2. We can represent A in the form UΛU−1, where Λ = diag(λ1, . . . , λn), λi >
0. Therefore, adjA = U(adj Λ)U−1 and adj Λ = diag(λ2 . . . λn, . . . , λ1 . . . λn−1).

19.3. Let λ1, . . . , λr be the nonzero eigenvalues of A. All of them are real and,
therefore, (trA)2 = (λ1 + · · ·+ λr)2 ≤ r(λ2

1 + · · ·+ λ2
r) = r tr(A2).

19.4. Let U be an orthogonal matrix such that U−1AU = Λ and |U | = 1. Set
x = Uy. Then xTAx = yTΛy and dx1 . . . dxn = dy1 . . . dyn since the Jacobian of
this transformation is equal to |U |. Hence,

∫ ∞
−∞

e−x
TAxdx =

∫ ∞
−∞
· · ·

∫ ∞
−∞

e−λ1y
2
1 ···−λny2

ndy

=
n∏

i=1

∫ ∞
−∞

e−λiy
2
i dyi =

n∏

i=1

√
π

λi
= (
√
π)n|A|− 1

2 .

19.5. Let the columns i1, . . . , ir of the matrix A of rank r be linearly independent.
Then all columns of A can be expressed linearly in terms of these columns, i.e.,



a11 . . . a1n
...

...
...

an1 . . . ann


 =



a1i1 . . . a1ik

...
...

...
ani1 . . . anik






x11 . . . x1n

...
...

...
xik1 . . . xikn


 .

In particular, for the rows i1, . . . , ir of A we get the expression


ai11 . . . ai1n

...
...

...
aik1 . . . aikn


 =



ai1i1 . . . ai1ik

...
...

...
aiki1 . . . aikik






x11 . . . x1n

...
...

...
xik1 . . . xikn


 .

Both for a symmetric matrix and for an Hermitian matrix the linear independence
of the columns i1, . . . , ir implies the linear independence of the rows i1, . . . , ik and,
therefore, ∣∣∣∣∣∣∣

ai1i1 . . . ai1ik
...

...
...

aiki1 . . . aikik

∣∣∣∣∣∣∣
6= 0.

19.6. The scalar product of the ith row of S by the jth column of S−1 vanishes
for i 6= j. Therefore, every column of S−1 contains a positive and a negative
element; hence, the number of nonnegative elements of S−1 is not less than 2n and
the number of zero elements does not exceed n2 − 2n.

An example of a matrix S−1 with precisely the needed number of zero elements
is as follows:

S−1 =




1 1 1 1 1 . . .
1 2 2 2 2 . . .
1 2 1 1 1 . . .
1 2 1 2 2 . . .
1 2 1 2 1 . . .
...

...
...

...
...

. . .




−1

=




2 −1
−1 0 1

1 0 −1
−1 0

. . .
0 −s
−s s




,
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where s = (−1)n.
20.1. Let aii = 0 and aij 6= 0. Take a column x such that xi = taij , xj = 1, the

other elements being zero. Then x∗Ax = ajj + 2t|aij |2. As t varies from −∞ to
+∞ the quantity x∗Ax takes both positive and negative values.

20.2. No, not necessarily. Let A1 = B1 = diag(0, 1,−1); let

A2 =




0
√

2 2√
2 0 0

2 0 0


 and B2 =




0 0
√

2
0 0 2√
2 2 0


 .

It is easy to verify that

|xA1 + yA2 + λI| = λ3 − λ(x2 + 6y2)− 2y2x = |xB1 + yB2 + λI|.

Now, suppose there exists an orthogonal matrix U such that UA1U
T = B1 = A1

and UA2U
T = B2. Then UA1 = A1U and since A1 is a diagonal matrix with

distinct elements on the diagonal, then U is an orthogonal diagonal matrix (see
Problem 39.1 a)), i.e., U = diag(λ, µ, ν), where λ, µ, ν = ±1. Hence,




0 0
√

2
0 0 2√
2 2 0


 = B2 = UA2U

T =




0
√

2λµ 2λµ√
2λµ 0 0

2λν 0 0


 .

Contradiction.
21.1. The nonzero eigenvalues of A are purely imaginary and, therefore, −1

cannot be its eigenvalue.
21.2. Since (−A)−1 = −A−1, it follows that (A−1)T = (AT )−1 = (−A)−1 =

−A−1.
21.3. We will repeatedly make use of the fact that for a skew-symmetric matrix A

of even order dim KerA is an even number. (Indeed, the rank of a skew-symmetric
matrix is an even number, see 21.2.) First, consider the case of the zero eigenvalue,
i.e., let us prove that if dim KerAB ≥ 1, then dim KerAB ≥ 2. If |B| = 0, then
dim KerAB ≥ dim KerB ≥ 2. If |B| 6= 0, then KerAB = B−1 KerA, hence,
dim KerAB ≥ 2.

Now, suppose that dim Ker(AB − λI) ≥ 1 for λ 6= 0. We will prove that
dim Ker(AB − λI) ≥ 2. If (ABA − λA)u = 0, then (AB − λI)Au = 0, i.e.,
AU ⊂ Ker(AB − λI), where U = Ker(ABA − λA). Therefore, it suffices to prove
that dimAU ≥ 2. Since KerA ⊂ U , it follows that dimAU = dimU − dim KerA.
The matrix ABA is skew-symmetric; thus, the numbers dimU and dim KerA are
even; hence, dimAU is an even number.

It remains to verify that KerA 6= U . Suppose that (AB − λI)Ax = 0 implies
that Ax = 0. Then ImA∩Ker(AB−λI) = 0. On the other hand, if (AB−λI)x = 0
then x = A(λ−1Bx) ∈ ImA, i.e., Ker(AB−λI) ⊂ ImA and dim Ker(AB−λI) ≥ 1.
Contradiction.

22.1. The roots of p(λ) are such that if z is a root of it then
1
z

=
z

zz
= z is also

a root. Therefore, the polynomial q(λ) = λnp(λ−1) has the same roots as p (with
the same multiplicities). Besides, the constant term of p(λ) is equal to ±1 and,
therefore, the leading coefficients of p(λ) and q(λ) can differ only in sign.
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22.2. Let
(
a b
c d

)
be a unitary matrix with determinant 1. Then

(
a b
c d

)
=

(
a c
b d

)−1

=
(
d −c
−b a

)
, i.e., a = d and b = −c. Besides, ad − bc = 1, i.e.,

|a|2 + |b|2 = 1.
22.3. a) A is a rotation through an angle ϕ and, therefore, trA = 1+2 cosϕ and

tr(A2) = 1 + 2 cos 2ϕ = 4 cos2 ϕ− 1.
b) Clearly, ∑

i<j

(aij − aji)2 =
∑

i 6=j
a2
ij − 2

∑

i<j

aijaji

and
tr(A2) =

∑

i

a2
ii + 2

∑

i<j

aijaji.

On the other hand, by a)

tr(A2) = (trA)2 − 2 trA = (trA− 1)2 − 1 = (
∑

i

aii − 1)2 − 1.

Hence,
∑
i<j(aij − aji)2 + (

∑
i aii − 1)2 − 1 =

∑
i 6=j a

2
ij +

∑
i a

2
ii = 3.

22.4. Set A
B = AB−1; then the cancellation rule takes the form: AB

CB = A
C . If

AT = JA−1J−1 then

(A#)T =
I −AT
I +AT

=
I − JA−1J−1

I + JA−1J−1
=
J(A− I)A−1J−1

J(A+ I)A−1J−1
=
J(A− I)
J(A+ I)

= −JA#J−1.

If AT = −JAJ−1 then

(A#)T =
I −AT
I +AT

=
I + JAJ−1

I − JAJ−1
=
J(I +A)J−1

J(I −A)J−1
= J(A#)−1J−1.

22.5. Since the absolute value of each eigenvalue of A is equal to 1, it suffices to
verify that A is unitarily diagonalizable. First, let us prove that A is diagonalizable.
Suppose that the Jordan normal form of A has a block of order not less than 2.
Then there exist vectors e1 and e2 such that Ae1 = λe1 and Ae2 = λe2 + e1. We
may assume that |e1| = 1. Consider the vector x = e2 − (e1, e2)e1. It is easy to
verify that x ⊥ e1 and Ax = λx+ e1. Hence, |Ax|2 = |λx|2 + |e1|2 = |x|2 + 1 and,
therefore, |Ax| > |x|. Contradiction.

It remains to prove that if Ax = λx and Ay = µy, where λ 6= µ, then (x, y) = 0.
Suppose that (x, y) 6= 0. Replacing x by αx, where α is an appropriate complex
number, we can assume that Re[(λµ− 1)(x, y)] > 0. Then

|A(x+ y)|2 − |x+ y|2 = |λx+ µy|2 − |x+ y|2 = 2 Re[(λµ− 1)(x, y)] > 0,

i.e., |Az| > |z|, where z = x+ y. Contradiction.
22.6. Let λ1, . . . , λn be the eigenvalues of an operator U and e1, . . . , en the corre-

sponding pairwise orthogonal eigenvectors. Then x =
∑
xiei and Ux =

∑
λixiei;

hence, 0 = (Ux, x) =
∑
λi|xi|2. Let ti = |xi|2|x|−2. Since ti ≥ 0,

∑
ti = 1 and∑

tiλi = 0, the origin belongs to the interior of the convex hull of λ1, . . . , λn.
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23.1. Let A = UΛU∗, where U is a unitary matrix, Λ = diag(λ1, . . . , λn). Set
B = UDU∗, where D = diag(

√
λ1, . . . ,

√
λn).

23.2. By assumption ImB ⊂ (ImA)⊥ = KerA∗, i.e., A∗B = 0. Similarly,
B∗A = 0. Hence, (A∗ + B∗)(A + B) = A∗A + B∗B. Since KerA = KerA∗ and
ImA = ImA∗ for a normal operatorA, we similarly deduce that (A+B)(A∗+B∗) =
AA∗ +BB∗.

23.3. If A∗ = AU , where U is a unitary matrix, then A = U∗A∗ and, therefore,
UA = UU∗A∗ = A∗. Hence, AU = UA and A∗A = AUA = AAU = AA∗.

If A is a normal operator then there exists an orthonormal eigenbasis e1, . . . , en
for A such that Aei = λiei and A∗ei = λiei. Let U = diag(d1, . . . , dn), where
di = λi/λi for λi 6= 0 and di = 1 for λi = 0. Then A∗ = AU .

23.4. Consider an orthonormal basis in which A is a diagonal operator. We can
assume that A = diag(d1, . . . , dk, 0, . . . , 0), where di 6= 0. Then

S = diag(|d1|, . . . , |dk|, 0, . . . , 0).

Let D = diag(d1, . . . , dk) and D+ = diag(|d1|, . . . , |dk|). The equalities

(
D 0
0 0

)
=

(
D+ 0
0 0

)(
U1 U2

U3 U4

)
=

(
D+U1 D+U2

0 0

)

hold only if U1 = D−1
+ D = diag(eiϕ1 , . . . , eiϕk) and, therefore,

(
U1 U2

U3 U4

)
is a

unitary matrix only if U2 = 0 and U3 = 0. Clearly,

(
D+ 0
0 0

)(
U1 0
0 U4

)
=

(
U1 0
0 U4

)(
D+ 0
0 0

)
.

23.5. A matrix X is normal if and only if tr(X∗X) =
∑ |λi|2, where λi are

eigenvalues of X; cf. 34.1. Besides, the eigenvalues of X = AB and Y = BA
coincide; cf. 11.7. It remains to verify that tr(X∗X) = tr(Y ∗Y ). This is easy to do
if we take into account that A∗A = AA∗ and B∗B = BB∗.

24.1. The matrix (A+ λB)n can be represented in the form

(A+ λB)n = An + λC1 + · · ·+ λn−1Cn−1 + λnBn,

where matrices C1, . . . , Cn−1 do not depend on λ. Let a, c1, . . . , cn−1, b be the
elements of the matrices An, C1, . . . , Cn−1, B occupying the (i, j)th positions.
Then a + λc1 + · · · + λn−1cn−1 + λnb = 0 for n + 1 distinct values of λ. We
have obtained a system of n + 1 equations for n + 1 unknowns a, c1, . . . , cn−1, b.
The determinant of this system is a Vandermonde determinant and, therefore, it
is nonzero. Hence, the system obtained has only the zero solution. In particular,
a = b = 0 and, therefore, An = Bn = 0.

24.2. Let A =




0 1 0
0 0 −1
0 0 0


, B =




0 0 0
1 0 0
0 1 0


 and C = λA+ µB. As is easy

to verify, C3 = 0.
It is impossible to reduce A and B to triangular form simultaneously since AB

is not nilpotent.
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25.1. a) Since P 2
1 = P1 and P 2

2 = P2, then the equality (P1 + P2)2 = P1 + P2

is equivalent to P1P2 = −P2P1. Multiplying this by P1 once from the right and
once from the left we get P1P2P1 = −P2P1 and P1P2 = −P1P2P1, respectively;
therefore, P1P2 = P2P1 = 0.

b) Since I − (P1 − P2) = (I − P1) + P2, we deduce that P1 − P2 is a projection
if and only if (I − P1)P2 = P2(I − P1) = 0, i.e., P1P2 = P2P1 = P2.

25.2. If P is a matrix of order 2 and rankP = 1, then trP = 1 and detP = 0

(if rankP 6= 1 then P = I or P = 0). Hence, P = 1
2

(
1 + a b
c 1− a

)
, where

a2 + bc = 1.
It is also clear that if trP = 1 and detP = 0, then by the Cayley-Hamilton

theorem P 2 − P = P 2 − (trP )P + detP = 0.
25.3. Since Im(I − A) = Ker((I − A)∗)⊥, any vector x can be represented in

the form x = x1 + x2, where x1 ∈ Im(I − A) and x2 ∈ Ker(I − A∗). It suffices to
consider, separately, x1 and x2. The vector x1 is of the form y−Ay and, therefore,

∣∣∣∣∣
1
n

n−1∑

i=0

Aixi

∣∣∣∣∣ =
∣∣∣∣
1
n

(y −Any)
∣∣∣∣ ≤

2|y|
n
→ 0 as n→∞.

Since x2 ∈ Ker(I −A∗), it follows that x2 = A∗x2 = A−1x2, i.e., Ax2 = x2. Hence,

lim
n→∞

1
n

n−1∑

i=0

Aix2 = lim
n→∞

1
n

n−1∑

i=0

x2 = x2.

25.4. (b)⇒ (a). It suffices to multiply the identity A1 + · · ·+Ak = I by Ai.
(a) ⇒ (c). Since Ai is a projection, rankAi = trAi. Hence,

∑
rankAi =∑

trAi = tr(
∑
Ai) = n.

(c)⇒ (b). Since
∑
Ai = I, then ImA1 + · · ·+ ImAk = V . But rankA1 + · · ·+

rankAk = dimV and, therefore, V = ImA1 ⊕ · · · ⊕ ImAk.
For any x ∈ V we have

Ajx = (A1 + · · ·+Ak)Ajx = A1Ajx+ · · ·+AkAjx,

where AiAjx ∈ ImAi and Ajx ∈ ImAj . Hence, AiAj = 0 for i 6= j and A2
j = Aj .
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MULTILINEAR ALGEBRA

27. Multilinear maps and tensor products

27.1. Let V , V1, . . . , Vk be linear spaces; dimVi = ni. A map

f : V1 × · · · × Vk −→ V

is said to be multilinear (or k-linear) if it is linear in every of its k-variables when
the other variables are fixed.

In the spaces V1, . . . , Vk, select bases {e1i}, . . . , {ekj}. If f is a multilinear map,
then

f (
∑
x1ie1i, . . . ,

∑
xkjekj) =

∑
x1i . . . xkjf(e1i, . . . , ekj).

The map f is determined by its n1 . . . nk values f(e1i, . . . , ekj) ∈ V and these
values can be arbitrary. Consider the space V1 ⊗ · · · ⊗ Vk of dimension n1 . . . nk
and a certain basis in it whose elements we will denote by e1i ⊗ · · · ⊗ ekj . Further,
consider a map p : V1 × · · · × Vk 7→ V1 ⊗ · · · ⊗ Vk given by the formula

p (
∑
x1ie1i, . . . ,

∑
xkjekj) =

∑
x1i . . . xkje1i ⊗ · · · ⊗ ekj

and denote the element p(v1, . . . , vk) by v1 ⊗ · · · ⊗ vk. To every multilinear map f
there corresponds a linear map

f̃ : V1 ⊗ · · · ⊗ Vk −→ V, where f̃(e1i ⊗ · · · ⊗ ekj) = f(e1i, . . . , ekj),

and this correspondence between multilinear maps f and linear maps f̃ is one-to-
one. It is also easy to verify that f̃(v1 ⊗ · · · ⊗ vk) = f(v1, . . . , vk) for any vectors
vi ∈ Vi.

To an element v1⊗· · ·⊗vk we can assign a multilinear function on V ∗1 ×· · ·×V ∗k
defined by the formula

f(w1, . . . , wk) = w1(v1) . . . wk(vk).

If we extend this map by linearity we get an isomorphism of the space V1⊗· · ·⊗Vk
with the space of linear functions on V ∗1 × · · · × V ∗k . This gives us an invariant
definition of the space V1 ⊗ · · · ⊗ Vk and this space is called the tensor product of
the spaces V1, . . . , Vk.

A linear map V ∗1 ⊗ · · · ⊗ V ∗k −→ (V1 ⊗ · · · ⊗ Vk)∗ that sends f1 ⊗ · · · ⊗ fk ∈
V ∗1 ⊗· · ·⊗V ∗k to a multilinear function f(v1, . . . , vk) = f1(v1) . . . fk(vk) is a canonical
isomorphism.

27.2.1. Theorem. Let Hom(V,W ) be the space of linear maps V −→W . Then
there exists a canonical isomorphism α : V ∗ ⊗W −→ Hom(V,W ).

Proof. Let {ei} and {εj} be bases of V and W . Set

α(e∗i ⊗ εj)v = e∗i (v)εj = viεj

Typeset by AMS-TEX
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and extend α by linearity to the whole space. If v ∈ V , f ∈ V ∗ and w ∈ W then
α(f ⊗ w)v = f(v)w and, therefore, α can be invariantly defined.

Let Aep =
∑
q aqpεq; then A(

∑
p vpep) =

∑
p,q aqpvpεq. Hence, the matrix (aqp),

where aqp = δqjδpi corresponds to the map α(e∗i ⊗ εj). Such matrices constitute a
basis of Hom(V,W ). It is also clear that the dimensions of V ∗⊗W and Hom(V,W )
are equal. ¤

27.2.2. Theorem. Let V be a linear space over a field K. Consider the con-
volution ε : V ∗ ⊗ V −→ K given by the formula ε(x∗ ⊗ y) = x∗(y) and extended to
the whole space via linearity. Then trA = εα−1(A) for any linear operator A in V .

Proof. Select a basis in V . It suffices to carry out the proof for the matrix
units Eij = (apq), where aqp = δqjδpi. Clearly, trEij = δij and

εα−1(Eij) = ε(e∗i ⊗ ej) = e∗i (ej) = δij . ¤

Remark. The space V ∗⊗V and the maps α and ε are invariantly defined and,
therefore Theorem 27.2.2 gives an invariant definition of the trace of a matrix.

27.3. A tensor of type (p, q) on V is an element of the space

T qp (V ) = V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
p factors

⊗V ⊗ · · · ⊗ V︸ ︷︷ ︸
q factors

isomorphic to the space of linear functions on V × · · · × V × V ∗ × · · · × V ∗ (with
p factors V and q factors V ∗). The number p is called the covariant valency of
the tensor, q its contravariant valency and p + q its total valency. The vectors are
tensors of type (0, 1) and covectors are tensors of type (1, 0).

Let a basis e1, . . . , en be selected in V and let e∗1, . . . , e
∗
n be the dual basis of V ∗.

Each tensor T of type (p, q) is of the form

T =
∑

T
j1...jq
i1...ip

e∗i1 ⊗ · · · ⊗ e∗ip ⊗ ej1 ⊗ · · · ⊗ ejq ; (1)

the numbers T j1...jqi1...ip
are called the coordinates of the tensor T in the basis e1, . . . , en.

Let us establish how coordinates of a tensor change under the passage to another
basis. Let εj = Aej =

∑
aijei and ε∗j =

∑
bije

∗
i . It is easy to see that B = (AT )−1,

cf. 5.3.
Introduce notations: aij = aij and bji = bij and denote the tensor (1) by

∑
T βα e

∗
α⊗

eβ for brevity. Then
∑

T βα e
∗
α ⊗ eβ =

∑
Sνµε

∗
µ ⊗ εν =

∑
Sνµb

µ
αa

β
νe
∗
α ⊗ eβ ,

i.e.,
T
j1...jq
i1...ip

= bl1i1 . . . b
lp
ip
aj1k1

. . . a
jq
kq
S
k1...kq
l1...lp

(2)

(here summation over repeated indices is assumed). Formula (2) relates the co-
ordinates S of the tensor in the basis {εi} with the coordinates T in the basis
{ei}.

On tensors of type (1, 1) (which can be identified with linear operators) a con-
volution is defined; it sends v∗⊗w to v∗(w). The convolution maps an operator to
its trace; cf. Theorem 27.2.2.
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Let 1 ≤ i ≤ p and 1 ≤ j ≤ q. Consider a linear map T qp (V ) −→ T q−1
p−1 (V ):

f1 ⊗ · · · ⊗ fp ⊗ v1 ⊗ · · · ⊗ vq 7→ fi(vj)fı̂ ⊗ v̂,

where fı̂ and v̂ are tensor products of f1, . . . , fp and v1, . . . , vq with fi and vj ,
respectively, omitted. This map is called the convolution of a tensor with respect
to its ith lower index and jth upper index.

27.4. Linear maps Ai : Vi −→Wi , (i = 1, . . . , k) induce a linear map

A1 ⊗ · · · ⊗Ak :V1 ⊗ · · · ⊗ Vk −→W1 ⊗ · · · ⊗Wk,

e1i ⊗ · · · ⊗ ekj 7→ A1e1i ⊗ · · · ⊗Akekj .

As is easy to verify, this map sends v1 ⊗ · · · ⊗ vk to A1v1 ⊗ · · · ⊗ Akvk. The map
A1 ⊗ · · · ⊗Ak is called the tensor product of operators A1, . . . , Ak.

If Aej =
∑
aijεi and Be′q =

∑
bpqε

′
p then A ⊗ B(ej ⊗ e′q) =

∑
aijbpqεi ⊗ ε′p.

Hence, by appropriately ordering the basis ei ⊗ e′q and εi ⊗ ε′p we can express the
matrix A⊗B in either of the forms



a11B . . . a1nB

...
. . .

...
am1B . . . amnB


 or



b11A . . . b1lA

...
. . .

...
bk1A . . . bklA


 .

The matrix A⊗B is called the Kronecker product of matrices A and B.
The following properties of the Kronecker product are easy to verify:
1) (A⊗B)T = AT ⊗BT ;
2) (A⊗B)(C ⊗D) = AC ⊗BD provided all products are well-defined, i.e., the

matrices are of agreeable sizes;
3) if A and B are orthogonal matrices, then A⊗B is an orthogonal matrix;
4) if A and B are invertible matrices, then (A⊗B)−1 = A−1 ⊗B−1.
Note that properties 3) and 4) follow from properties 1) and 2).

Theorem. Let the eigenvalues of matrices A and B be equal to α1, . . . , αm and
β1, . . . , βn, respectively. Then the eigenvalues of A ⊗ B are equal to αiβj and the
eigenvalues of A⊗ In + Im ⊗B are equal to αi + βj.

Proof. Let us reduce the matrices A and B to their Jordan normal forms (it
suffices to reduce them to a triangular form, actually). For a basis in the tensor
product of the spaces take the product of the bases which normalize A and B. It
remains to notice that Jp(α) ⊗ Jq(β) is an upper triangular matrix with diagonal
(αβ, . . . , αβ) and Jp(α) ⊗ Iq and Ip ⊗ Jq(β) are upper triangular matrices whose
diagonals are (α, . . . , α) and (β, . . . , β), respectively. ¤

Corollary. det(A⊗B) = (detA)n(detB)m.

27.5. The tensor product of operators can be used for the solution of matrix
equations of the form

A1XB1 + · · ·+AsXBs = C, (1)

where
V k

Bi−→ V l
X−→ V m

Ai−→ V n.
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Let us prove that the natural identifications

Hom(V l, V m) = (V l)∗ ⊗ V m and Hom(V k, V n) = (V k)∗ ⊗ V n

send the map X 7→ AiXBi to BTi ⊗Ai, i.e., equation (1) takes the form

(BT1 ⊗A1 + · · ·+BTs ⊗As)X = C,

where X ∈ (V l)∗ ⊗ V m and C ∈ (V k)∗ ⊗ V n. Indeed, if f ⊗ v ∈ (V l)∗ ⊗ V m

corresponds to the map Xx = (f ⊗ v)x = f(x)v then BT f ⊗ Av ∈ (V k)∗ ⊗ V n
corresponds to the map (BT f ⊗Av)y = f(By)Av = AXBy.

27.5.1. Theorem. Let A and B be square matrices. If they have no common
eigenvalues, then the equation AX −XB = C has a unique solution for any C. If
A and B do have a common eigenvalue then depending on C this equation either
has no solutions or has infinitely many of them.

Proof. The equation AX − XB = C can be rewritten in the form (I ⊗ A −
BT ⊗I)X = C. The eigenvalues of the operator I⊗A−BT ⊗I are equal to αi−βj ,
where αi are eigenvalues of A and βj are eigenvalues of BT , i.e., eigenvalues of B.
The operator I ⊗ A − BT ⊗ I is invertible if and only if αi − βj 6= 0 for all i and
j. ¤

27.5.2. Theorem. Let A and B be square matrices of the same order. The
equation AX −XB = λX has a nonzero solution if and only if λ = αi − βj, where
αi and βj are eigenvalues of A and B, respectively.

Proof. The equation (I ⊗ A − BT ⊗ I)X = λX has a nonzero solution if λ is
an eigenvalue of I ⊗A−BT ⊗ I, i.e., λ = αi − βj . ¤

27.6. To a multilinear function f ∈ Hom(V ×· · ·×V,K) ∼= ⊗pV ∗ we can assign
a subspace Wf ⊂ V ∗ spanned by covectors ξ of the form

ξ(x) = f(a1, . . . , ai−1, x, ai, . . . , ap−1),

where the vectors a1, . . . , ap−1 and i are fixed.

27.6.1. Theorem. f ∈ ⊗pWf .

Proof. Let ε1, . . . , εr be a basis of Wf . Let us complement it to a basis
ε1, . . . , εn of V ∗. We have to prove that f =

∑
fi1...ipεi1⊗· · ·⊗εip , where fi1...ip = 0

when one of the indices i1, . . . , ip is greater than r. Let e1, . . . , en be the basis dual
to ε1, . . . , εn. Then f(ej1 , . . . , ejp) = fj1...jp . On the other hand, if jk > r, then

f(. . . ejk . . . ) = λ1ε1(ejk) + · · ·+ λrεr(ejk) = 0. ¤

27.6.2. Theorem. Let f =
∑
fi1...ipεi1 ⊗ · · · ⊗ εip , where ε1, . . . , εr ∈ V ∗.

Then Wf ∈ Span(ε1, . . . , εr).

Proof. Clearly,

f(a1, . . . , ak−1, x, ak, . . . , ap−1)

=
∑

fi1...ipεi1(a1) . . . εik(x) . . . εip(ap−1) =
∑

csεs(x). ¤
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Problems

27.1. Prove that v ⊗ w = v′ ⊗ w′ 6= 0 if and only if v = λv′ and w′ = λw.
27.2. Let Ai : Vi −→Wi(i = 1, 2) be linear maps. Prove that
a) Im(A1 ⊗A2) = (ImA1)⊗ (ImA2);
b) Im(A1 ⊗A2) = (ImA1 ⊗W2) ∩ (W1 ⊗ ImA2);
c) Ker(A1 ⊗A2) = KerA1 ⊗W2 +W1 ⊗KerA2.
27.3. Let V1, V2 ⊂ V and W1,W2 ⊂W . Prove that

(V1 ⊗W1) ∩ (V2 ⊗W2) = (V1 ∩ V2)⊗ (W1 ∩W2).

27.4. Let V be a Euclidean space and let V ∗ be canonically identified with V .
Prove that the operator A = I − 2a⊗ a is a symmetry through a⊥.

27.5. Let A(x, y) be a bilinear function on a Euclidean space such that if x ⊥ y
then A(x, y) = 0. Prove that A(x, y) is proportional to the inner product (x, y).

28. Symmetric and skew-symmetric tensors

28.1. To every permutation σ ∈ Sq we can assign a linear operator

fσ : T q0 (V ) −→ T q0 (V )

v1 ⊗ · · · ⊗ vq 7→ vσ(1) ⊗ · · · ⊗ vσ(q).

A tensor T ∈ T q0 (V ) said to be symmetric (resp. skew-symmetric) if fσ(T ) = T
(resp. fσ(T ) = (−1)σT ) for any σ. The symmetric tensors constitute a sub-
space Sq(V ) and the skew-symmetric tensors constitute a subspace Λq(V ) in T q0 (V ).
Clearly, Sq(V ) ∩ Λq(V ) = 0 for q ≥ 2.

The operator S = 1
q!

∑
σ fσ is called the symmetrization and A = 1

q!

∑
σ(−1)σfσ

the skew-symmetrization or alternation.

28.1.1. Theorem. S is the projection of T q0 (V ) onto Sq(V ) and A is the pro-
jection onto Λq(V ).

Proof. Obviously, the symmetrization of any tensor is a symmetric tensor and
on symmetric tensors S is the identity operator.

Since

fσ(AT ) =
1
q!

∑
τ

(−1)τfσfτ (T ) = (−1)σ
1
q!

∑
ρ=στ

(−1)ρfρ(T ) = (−1)σAT,

it follows that ImA ⊂ Λq(V ). If T is skew-symmetric then

AT =
1
q!

∑
σ

(−1)σfσ(T ) =
1
q!

∑
σ

(−1)σ(−1)σT = T. ¤

We introduce notations:

S(ei1 ⊗ · · · ⊗ eiq ) = ei1 . . . eiq and A(ei1 ⊗ · · · ⊗ eiq ) = ei1 ∧ · · · ∧ eiq .
For example, eiej = 1

2 (ei⊗ej+ej⊗ei) and ei∧ej = 1
2 (ei⊗ej−ej⊗ei). If e1, . . . , en

is a basis of V , then the tensors ei1 . . . eiq span Sq(V ) and the tensors ei1 ∧ · · · ∧ eiq
span Λq(V ). The tensor ei1 . . . eiq only depends on the number of times each ei
enters this product and, therefore, we can set ei1 . . . eiq = ek1

1 . . . eknn , where ki is
the multiplicity of occurrence of ei in ei1 . . . eiq . The tensor ei1∧· · ·∧eiq changes sign
under the permutation of any two factors eiα and eiβ and, therefore, ei1∧· · ·∧eiq = 0
if eiα = eiβ ; hence, the tensors ei1 ∧ · · · ∧ eiq , where 1 ≤ i1 < · · · < iq ≤ n, span the
space Λq(V ). In particular, Λq(V ) = 0 for q > n.
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28.1.2. Theorem. The elements ek1
1 . . . eknn , where k1 + · · · + kn = q, form a

basis of Sq(V ) and the elements ei1 ∧ · · · ∧ eiq , where 1 ≤ i1 < · · · < iq ≤ n, form
a basis of Λq(V ).

Proof. It suffices to verify that these vectors are linearly independent. If
the sets (k1, . . . , kn) and (l1, . . . , ln) are distinct then the tensors ek1

1 . . . eknn and
el11 . . . e

ln
n are linear combinations of two nonintersecting subsets of basis elements

of T q0 (V ). For tensors of the form ei1 ∧ · · · ∧ eiq the proof is similar. ¤

Corollary. dim Λq(V ) =
(
n
q

)
and dimSq(V ) =

(
n+q−1

q

)
.

Proof. Clearly, the number of ordered tuples i1, . . . , in such that 1 ≤ i1 <
· · · < iq ≤ n is equal to

(
n
q

)
. To compute the number of of ordered tuples k1, . . . , kn

such that such that k1 + · · ·+kn = q, we proceed as follows. To each such set assign
a sequence of q + n− 1 balls among which there are q white and n− 1 black ones.
In this sequence, let k1 white balls come first, then one black ball followed by k2

white balls, next one black ball, etc. From n + q − 1 balls we can select q white
balls in

(
n+q−1

q

)
-many ways. ¤

28.2. In Λ(V ) = ⊕nq=0Λq(V ), we can introduce the wedge product setting T1 ∧
T2 = A(T1⊗ T2) for T1 ∈ Λp(V ) and T2 ∈ Λq(V ) and extending the operation onto
Λ(V ) via linearity. The algebra Λ(V ) obtained is called the exterior or Grassmann
algebra of V .

Theorem. The algebra Λ(V ) is associative and skew-commutative, i.e., T1 ∧
T2 = (−1)pqT2 ∧ T1 for T1 ∈ Λp(V ) and T2 ∈ Λq(V ).

Proof. Instead of tensors T1 and T2 from Λ(V ) it suffices to consider tensors
from the tensor algebra (we will denote them by the same letters) T1 = x1⊗· · ·⊗xp
and T2 = xp+1 ⊗ · · · ⊗ xp+q. First, let us prove that A(T1 ⊗ T2) = A(A(T1)⊗ T2).
Since

A(x1 ⊗ · · · ⊗ xp) =
1
p!

∑

σ∈Sp
(−1)σxσ(1) ⊗ · · · ⊗ xσ(p),

it follows that

A(A(T1)⊗ T2) = A


 1
p!

∑

σ∈Sp
(−1)σxσ(1) ⊗ · · · ⊗ xσ(p) ⊗ xp+1 ⊗ · · · ⊗ xp+q




=
1

p!(p+ q)!

∑

σ∈Sp

∑

τ∈Sp+q

(−1)στxτ(σ(1)) ⊗ · · · ⊗ xτ(p+q).

It remains to notice that

∑

σ∈Sp
(−1)στxτ(σ(1)) ⊗ · · · ⊗ xτ(p+q) = p!

∑
(−1)τ1xτ1(1) ⊗ · · · ⊗ xτ1(p+q),

where τ1 = (τ(σ(1)), . . . , τ(σ(p)), τ(p+ 1), . . . , τ(p+ q)).
We similarly prove that A(T1 ⊗ T2) = A(T1 ⊗A(T2)) and, therefore,

(T1 ∧ T2) ∧ T3 = A(A(T1 ⊗ T2)⊗ T3) = A(T1 ⊗ T2 ⊗ T3)

= A(T1 ⊗A(T2 ⊗ T3)) = T1 ∧ (T2 ∧ T3).
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Clearly,

xp+1 ⊗ · · · ⊗ xp+q ⊗ x1 ⊗ · · · ⊗ xp = xσ(1) ⊗ · · · ⊗ xσ(p+q),

where σ = (p+ 1, . . . , p+ q, 1, . . . , p). To place 1 in the first position, etc. p in the
pth position in σ we have to perform pq transpositions. Hence, (−1)σ = (−1)pq

and A(T1 ⊗ T2) = (−1)pqA(T2 ⊗ T1). ¤
In Λ(V ), the kth power of ω, i.e., ω ∧ · · · ∧ ω︸ ︷︷ ︸

k−many times

is denoted by Λkω; in particular,

Λ0ω = 1.

28.3. A skew-symmetric function on V × · · · × V is a multilinear function
f(v1, . . . , vq) such that f(vσ(1), . . . , vσ(q)) = (−1)σf(v1, . . . , vq) for any permuta-
tion σ.

Theorem. The space Λq(V ∗) is canonically isomorphic to the space (ΛqV )∗ and
also to the space of skew-symmetric functions on V × · · · × V .

Proof. As is easy to verify

(f1 ∧ · · · ∧ fq)(v1, . . . , vq) = A(f1 ⊗ · · · ⊗ fq)(v1, . . . , vq)

=
1
q!

∑
σ

(−1)σf1(vσ(1)), . . . , fq(vσ(q))

is a skew-symmetric function. If e1, . . . , en is a basis of V , then the skew-symmetric
function f is given by its values f(ei1 , . . . , eiq ), where 1 ≤ i1 < · · · < iq ≤ n, and
each such set of values corresponds to a skew-symmetric function. Therefore, the
dimension of the space of skew-symmetric functions is equal to the dimension of
Λq(V ∗); hence, these spaces are isomorphic.

Now, let us construct the canonical isomorphism Λq(V ∗) −→ (ΛqV )∗. A linear
map V ∗ ⊗ · · · ⊗ V ∗ −→ (V ⊗ · · · ⊗ V )∗ which sends (f1, . . . , fq) ∈ V ∗ ⊗ · · · ⊗ V ∗ to
a multilinear function f(v1, . . . , vq) = f1(v1) . . . fq(vq) is a canonical isomorphism.
Consider the restriction of this map onto Λq(V ∗). The element f1 ∧ · · · ∧ fq =
A(f1 ⊗ · · · ⊗ fq) ∈ Λq(V ∗) turns into the multilinear function f(v1, . . . , vq) =
1
q!

∑
σ(−1)σf1(vσ(1)) . . . fq(vσ(q)). The function f is skew-symmetric; therefore, we

get a map Λq(V ∗) −→ (ΛqV )∗. Let us verify that this map is an isomorphism. To
a multilinear function f on V ×· · ·×V there corresponds, by 27.1, a linear function
f̃ on V ⊗ · · · ⊗ V . Clearly,

f̃(A(v1 ⊗ · · · ⊗ vq)) =
(

1
q!

)2 ∑
σ,τ

(−1)στf1(vστ(1)) . . . fq(vστ(q))

=
1
q!

∑
σ

(−1)σf1(vσ(1)) . . . fq(vσ(q)) =
1
q!

∣∣∣∣∣∣∣

f1(v1) . . . f1(vq)
...

...
...

fq(v1) . . . fq(vq)

∣∣∣∣∣∣∣
.

Let e1, . . . , en and ε1, . . . , εn be dual bases of V and V ∗. The elements ei1 ∧· · ·∧eiq
form a basis of ΛqV . Consider the dual basis of (ΛqV )∗. The above implies that
under the restrictions considered the element εi1∧· · ·∧εiq turns into a basis elements
dual to ei1 ∧ · · · ∧ eiq with factor (q!)−1. ¤

Remark. As a byproduct we have proved that

f̃(A(v1 ⊗ · · · ⊗ vq)) =
1
q!
f̃(v1 ⊗ · · · ⊗ vq) for f ∈ Λq(V ∗).
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28.4.1. Theorem. T 2
0 (V ) = Λ2(V )⊕ S2(V ).

Proof. It suffices to notice that

a⊗ b =
1
2

(a⊗ b− b⊗ a) +
1
2

(a⊗ b+ b⊗ a). ¤

28.4.2. Theorem. The following canonical isomorphisms take place:
a) Λq(V ⊕W ) ∼= ⊕qi=0(ΛiV ⊗ Λq−iW );
b) Sq(V ⊕W ) ∼= ⊕qi=0(SiV ⊗ Sq−iW ).

Proof. Clearly, ΛiV ⊂ T i0(V ⊕W ) and Λq−iW ⊂ T q−i0 (V ⊕W ). Therefore,
there exists a canonical embedding ΛiV ⊗ Λq−iW ⊂ T q0 (V ⊕W ). Let us project
T q0 (V ⊕W ) to Λq(V ⊕W ) with the help of alternation. As a result we get a canonical
map

ΛiV ⊗ Λq−iW −→ Λq(V ⊕W )
that acts as follows:

(v1 ∧ · · · ∧ vi)⊗ (w1 ∧ · · · ∧ wq−i) 7→ v1 ∧ · · · ∧ vi ∧ w1 ∧ · · · ∧ wq−i.
Selecting bases in V and W , it is easy to verify that the resulting map

q⊕

i=0

(ΛiV ⊗ Λq−iW ) −→ Λq(V ⊕W )

is an isomorphism.
For Sq(V ⊕W ) the proof is similar. ¤
28.4.3. Theorem. If dimV = n, then there exists a canonical isomorphism

ΛpV ∼= (Λn−pV )∗ ⊗ ΛnV .

Proof. The exterior product is a map ΛpV × Λn−pV −→ ΛnV and therefore
to every element of ΛpV there corresponds a map Λn−pV −→ ΛnV . As a result we
get a map

ΛpV −→ Hom(Λn−pV,ΛnV ) ∼= (Λn−pV )∗ ⊗ ΛnV.
Let us prove that this map is an isomorphism. Select a basis e1, . . . , en in V . To
ei1∧· · ·∧eip there corresponds a map which sends ej1∧· · ·∧ejn−p to 0 or±e1∧· · ·∧en,
depending on whether the sets {i1, . . . , ip} and {j1, . . . , jn−p} intersect or are com-
plementary in {1, . . . , n}. Such maps constitute a basis in Hom(Λn−pV,ΛnV ). ¤

28.5. A linear operator B : V −→ V induces a linear operator Bq : T q0 (V ) −→
T q0 (V ) which maps v1 ⊗ · · · ⊗ vq to Bv1 ⊗ · · · ⊗ Bvq. If T = v1 ⊗ · · · ⊗ vq, then
Bqfσ(T ) = fσBq(T ) and, therefore,

Bqfσ(T ) = fσBq(T ) for any T ∈ T q0 (V ). (1)

Consequently, Bq sends symmetric tensors to symmetric ones and skew-symmetric
tensors to skew-symmetric ones. The restrictions of Bq to Sq(V ) and Λq(V ) will
be denoted by SqB and ΛqB, respectively. Let S and A be symmetrization and
alternation, respectively. The equality (1) implies that BqS = SBq and BqA =
ABq. Hence,

Bq(ek1
1 . . . eknn ) = (Be1)k1 . . . (Ben)kn and Bq(ei1 ∧· · ·∧eiq ) = (Bei1)∧· · ·∧(Beiq ).

Introduce the lexicographic order on the set of indices (i1, . . . , iq), i.e., we assume
that

(i1, . . . , iq) < (j1, . . . , jq) if i1 = j1, . . . , ir = jr and ir+1 < jr+1 (or i1 < j1).

Let us lexicographically order the basis vectors ek1
1 . . . eknn and ei1 ∧ · · · ∧ eiq .
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28.5.1. Theorem. Let Bq(ej1 ∧ · · ·∧ ejq ) =
∑

1≤i1<···<iq≤n b
i1...iq
j1...jq

ei1 ∧ · · ·∧ eiq .

Then b
i1...iq
j1...jq

is equal to the minor B
(
i1 ... iq
j1 ... jq

)
of B.

Proof. Clearly,

Bej1 ∧ . . . Bejq =

(∑

i1

bi1j1ei1

)
∧ · · · ∧


∑

iq

biqjqeiq




=
∑

i1,...,iq

bi1j1 . . . biqjqei1 ∧ · · · ∧ eiq

=
∑

1≤i1<···<iq≤n

(∑
σ

(−1)σbiσ(1)j1 . . . biσ(q)jq

)
ei1 ∧ · · · ∧ eiq . ¤

Corollary. The matrix of operator ΛqB with respect to the lexicographically
ordered basis ei1 ∧ · · · ∧ eiq is the compound matrix Cq(B) (see 2.6).

28.5.2. Theorem. If the matrix of an operator B is triangular in the basis
e1, . . . , en, then the matrices of SqB and ΛqB are triangular in the lexicographically
ordered bases ek1

1 . . . eknn (for k1 + · · · + kn = q) and ei1 ∧ · · · ∧ eiq (for 1 ≤ i1 <
· · · < iq ≤ n).

Proof. Let Bei ∈ Span(e1, . . . , ei), i.e., Bei ≤ ei with respect to our order. If
i1 ≤ j1, . . . , iq ≤ jq then ei1 ∧ · · · ∧ eiq ≤ ej1 ∧ · · · ∧ ejq and ei1 . . . eiq = ek1

1 . . . eknn ≤
el11 . . . e

ln
n = ej1 . . . ejq . Hence,

ΛqB(ei1 ∧ · · · ∧ eiq ) ≤ ei1 ∧ · · · ∧ eiq and SqB(ek1
1 . . . eknn ) ≤ ek1

1 . . . eknn . ¤

28.5.3. Theorem. det(ΛqB) = (detB)p, where p =
(
n−1
q−1

)
and det(SqB) =

(detB)r, where r = q
n

(
n+q−1

q

)
.

Proof. We may assume that B is an operator over C. Let e1, . . . , en be the
Jordan basis for B. By Theorem 28.5.2 the matrices of ΛqB and SqB are triangular
in the lexicographically ordered bases ei1 ∧ · · · ∧ eiq and ek1

1 . . . eknn . If a diagonal
element λi corresponds to ei then the diagonal elements λi1 . . . λiq and λk1

1 . . . λknn ,
where k1 + · · · + kn = q, correspond to ei1 ∧ · · · ∧ eiq and ek1

1 . . . eknn . Hence, the
product of all diagonal elements of the matrices ΛqB and SqB is a polynomial in
λ of total degree q dim Λq(V ) and q dimSq(V ), respectively. Hence, |ΛqB| = |B|p
and |SqB| = |B|r, where p = q

n

(
n
q

)
and r = q

n

(
n+q−1

q

)
. ¤

Corollary (Sylvester’s identity). Since ΛqB = Cq(B) is the compound matrix
(see Corollary 28.5.1)., det(Cq(B)) = (detB)p, where

(
p=n−1
q−1

)
.

To a matrix B of order n we can assign a polynomial

ΛB(t) = 1 +
n∑
q=1

tr(ΛqB)tq

and a series

SB(t) = 1 +
∞∑
q=1

tr(SqB)tq.
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28.5.4. Theorem. SB(t) = (ΛB(−t))−1.

Proof. As in the proof of Theorem 28.5.3 we see that if B is a triangular matrix
with diagonal (λ1, . . . , λn) then ΛqB and SqB are triangular matrices with diagonal
elements λi1 . . . λiq and λk1

1 . . . λknn , where k1 + · · ·+ kn = q. Hence,

ΛB(−t) = (1− tλ1) . . . (1− tλn)

and
SB(t) = (1 + tλ1 + t2λ2

1 + . . . ) . . . (1 + tλn + t2λ2
n + . . . ).

It remains to notice that

(1− tλi)−1 = 1 + tλi + t2λ2
i + . . . ¤

Problems

28.1. A trilinear function f is symmetric with respect to the first two arguments
and skew-symmetric with respect to the last two arguments. Prove that f = 0.

28.2. Let f : Rm×Rm −→ Rn be a symmetric bilinear map such that f(x, x) 6= 0
for x 6= 0 and (f(x, x), f(y, y)) ≤ |f(x, y)|2. Prove that m ≤ n.

28.3. Let ω = e1 ∧ e2 + e3 ∧ e4 + · · · + e2n−1 ∧ e2n, where e1, . . . , e2n is a basis
of a vector space. Prove that Λnω = n!e1 ∧ · · · ∧ e2n.

28.4. Let A be a matrix of order n. Prove that det(A+ I) = 1 +
∑n
q=1 tr(ΛqA).

28.5. Let d be the determinant of a system of linear equations



n∑

j=1

aijxj




(
n∑
q=1

apqxq

)
= 0, (i, p = 1, . . . , n),

where the unknowns are the (n + 1)n/2 lexicographically ordered quantities xixj .
Prove that d = (det(aij))n+1.

28.6. Let sk = trAk and let σk be the sum of the principal minors of order k of
the matrix A. Prove that for any positive integer m we have

sm − sm−1σ1 + sm−2σ2 − · · ·+ (−1)mmσm = 0.

28.7. Prove the Binet-Cauchy formula with the help of the wedge product.

29. The Pfaffian

29.1. If A =
∥∥aij

∥∥n
1

is a skew-symmetric matrix, then detA is a polynomial in
the indeterminates aij , where i < j; let us denote this polynomial by P (aij). For n
odd we have P ≡ 0 (see Problem 1.1), and if n is even, then A can be represented
as A = XJXT , where the elements of X are rational functions in aij and J =

diag
((

0 1
−1 0

)
, . . . ,

(
0 1
−1 0

))
(see 21.2). Since detX = f(aij)/g(aij), where

f and g are polynomials, it follows that

P = det(XJXT ) = (f/g)2.
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Therefore, f2 = Pg2, i.e., f2 is divisible by g2; hence, f is divisible by g, i.e.,
f/g = Q is a polynomial. As a result we get P = Q2, where Q is a polynomial in
aij , i.e., the determinant of a skew-symmetric matrix considered as a polynomial
in aij , where i < j, is a perfect square.

This result can be also obtained by another method which also gives an explicit
expression for Q. Let a basis e1, . . . , e2n be given in V . First, let us assign to a
skew-symmetric matrix A =

∥∥aij
∥∥2n

1
the element ω =

∑
i<j aijei ∧ ej ∈ Λ2(V ) and

then to ω assign Λnω = f(A)e1 ∧ · · · ∧ e2n ∈ Λ2n(V ). The function f(A) can be
easily expressed in terms of the elements of A and it does not depend on the choice
of a basis.

Now, let us express the elements ω and Λnω with respect to a new basis εj =∑
xijei. We can verify that

∑
i<j aijei ∧ ej =

∑
i<j bijεi ∧ εj , where A = XBXT

and ε1 ∧ · · · ∧ ε2n = (detX)e1 ∧ · · · ∧ e2n. Hence,

f(A)e1 ∧ · · · ∧ e2n = f(B)ε1 ∧ · · · ∧ ε2n = (detX)f(B)e1 ∧ · · · ∧ e2n,

i.e., f(XBXT ) = (detX)f(B). If A is an invertible skew-symmetric matrix, then
it can be represented in the form

A = XJXT , where J = diag
((

0 1
−1 0

)
, . . . ,

(
0 1
−1 0

))
.

Hence, f(A) = f(XJXT ) = (detX)f(J) and detA = (detX)2 = (f(A)/f(J))2.
Let us prove that

f(A) = n!
∑
σ

(−1)σai1i2ai3i4 . . . ai2n−1i2n ,

where σ =
(

1 ... 2n
i1 ... i2n

)
and the summation runs over all partitions of {1, . . . , 2n} into

pairs {ik, ik+1}, where ik < ik+1 (observe that the summation runs not over all
permutations σ, but over partitions!). Let ωij = aijei∧ej ; then ωij∧ωkl = ωkl∧ωij
and ωij ∧ ωkl = 0 if some of the indices i, j, k, l coincide. Hence,

Λn
(∑

ωij

)
=

∑
ωi1i2 ∧ · · · ∧ ωi2n−1i2n =

∑
ai1i2 . . . ai2n−1i2nei1 ∧ · · · ∧ ei2n =

∑
(−1)σai1i2 . . . ai2n−1i2ne1 ∧ · · · ∧ e2n

and precisely n! summands have ai1i2 . . . ai2n−1i2n as the coefficient. Indeed, each
of the n elements ωi1i2 , . . . , ωi2n−1i2n can be selected in any of the n factors in
Λn(

∑
ωij) and in each factor we select exactly one such element. In particular,

f(J) = n!.
The polynomial Pf(A) = f(A)/f(J) = ±

√
detA considered as a polynomial in

the variables aij , where i < j is called the Pfaffian. It is easy to verify that for
matrices of order 2 and 4, respectively, the Pfaffian is equal to a12 and a12a34 −
a13a24 + a14a23.
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29.2. Let 1 ≤ σ1 < · · · < σk ≤ 2n. The set {σ1, . . . , σ2k} can be comple-
mented to the set {1, 2, . . . , 2n} by the set {σ1, . . . , σ2(n−k)}, where σ1 < · · · <
σ2(n−k). As a result to the set {σ1, . . . , σ2k} we have assigned the permutation
σ = (σ1 . . . σ2kσ1 . . . σ2(n−k)). It is easy to verify that (−1)σ = (−1)a, where
a = (σ1 − 1) + (σ2 − 2) + · · ·+ (σ2k − 2k).

The Pfaffian of a submatrix of a skew-symmetric matrix M =
∥∥mij

∥∥2n

1
, where

mij = (−1)i+j−1 for i < j, possesses the following property.

29.2.1. Theorem. Let Pσ1...σ2k = Pf(M ′), where M ′ =
∥∥mσiσj

∥∥2k

1
. Then

Pσ1...σ2k = (−1)σ, where σ = (σ1 . . . σ2kσ1 . . . σ2(n−k)) (see above).

Proof. Let us apply induction on k. Clearly, Pσ1σ2 = mσ1σ2 = (−1)σ1+σ2+1.
The sign of the permutation corresponding to {σ1, σ2} is equal to (−1)a, where
a = (σ1 − 1) + (σ2 − 2) ≡ (σ1 + σ2 + 1) mod 2.

Making use of the result of Problem 29.1 it is easy to verify that

Pσ1...σ2k =
2k∑

i=2

(−1)iPσ1σiPσ2...σ̂i...σ2k .

By inductive hypothesis Pσ1...σ̂i...σ2k = (−1)τ , where τ = (σ2 . . . σ̂i . . . σ2k12 . . . 2n).
The signs of permutations σ and τ are equal to (−1)a and (−1)b, respectively, where
a = (σ1 − 1) + · · ·+ (σ2k − 2k) and

b = (σ2 − 1) + (σ3 − 2) + · · ·+ (σi−1 − i+ 2) + (σi+1 − i+ 1) + · · ·+ (σ2k − 2k+ 2).

Hence, (−1)τ = (−1)σ(−1)σ1+σ2+1. Therefore,

Pσ1...σ2k =
2k∑

i=2

(−1)i(−1)σ1+σ2+1(−1)σ(−1)σ1+σi+1 = (−1)σ
2k∑

i=2

(−1)i = (−1)σ. ¤

29.2.2. Theorem (Lieb). Let A be a skew-symmetric matrix of order 2n.
Then

Pf(A+ λ2M) =
n∑

k=0

λ2kPk, where Pk =
∑
σ

A

(
σ1 . . . σ2(n−k)

σ1 . . . σ2(n−k)

)
.

Proof ([Kahane, 1971]). The matrices A and M will be considered as elements∑
i<j aijei ∧ ej and

∑
i<jmijei ∧ ej , respectively, in Λ2V . Since A ∧M = M ∧A,

the Newton binomial formula holds:

Λn(A+ λ2M) =
n∑

k=0

(
n

k

)
λ2k(ΛkM) ∧ (Λn−kA)

=
n∑

k=0

(
n

k

)
λ2k

∑
(k!Pσ1...σ2k)((n− k)!Pk)eσ1 ∧ · · · ∧ eσk ∧ . . .

By Theorem 29.2.1, Pσ1...σ2k = (−1)σ. It is also clear that eσ1 ∧ · · · ∧ eσk ∧ · · · =
(−1)σe1 ∧ · · · ∧ e2n. Hence,

Λn(A+ λ2M) = n!
n∑

k=0

λ2kPke1 ∧ · · · ∧ en

and, therefore Pf(A+ λ2M) =
∑n
k=0 λ

2kPk. ¤
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Problems

29.1. Let Pf(A) = apqCpq + f , where f does not depend on apq and let Apq
be the matrix obtained from A by crossing out its pth and qth columns and rows.
Prove that Cpq = (−1)p+q+1 Pf(Apq).

29.2. Let X be a matrix of order 2n whose rows are the coordinates of vectors
x1, . . . , x2n and gij = 〈xi, xj〉, where 〈a, b〉 =

∑n
k=1(a2k−1b2k−a2kb2k−1) for vectors

a = (a1, . . . , a2n) and b = (b1, . . . , b2n). Prove that detX = Pf(G), where G =∥∥gij
∥∥2n

1
.

30. Decomposable skew-symmetric and symmetric tensors

30.1. A skew-symmetric tensor ω ∈ Λk(V ) said to be decomposable (or simple
or split) if it can be represented in the form ω = x1 ∧ · · · ∧ xk, where xi ∈ V .

A symmetric tensor T ∈ Sk(V ) said to be decomposable (or simple or split) if it
can be represented in the form T = S(x1 ⊗ · · · ⊗ xk), where xi ∈ V .

30.1.1. Theorem. If x1 ∧ · · · ∧ xk = y1 ∧ · · · ∧ yk 6= 0 then Span(x1, . . . , xk) =
Span(y1, . . . , yk).

Proof. Suppose for instance, that y1 6∈ Span(x1, . . . , xk). Then the vectors
e1 = x1, . . . , ek = xk and ek+1 = y1 can be complemented to a basis. Expanding
the vectors y2, . . . , yk with respect to this basis we get

e1 ∧ · · · ∧ ek = ek+1 ∧ (
∑
ai2...ikei2 ∧ · · · ∧ eik) .

This equality contradicts the linear independence of the vectors ei1 ∧ · · · ∧ eik . ¤
Corollary. To any decomposable skew-symmetric tensor ω = x1 ∧ · · · ∧ xk

a k-dimensional subspace Span(x1, . . . , xk) can be assigned; this subspace does not
depend on the expansion of ω, but only on the tensor ω itself.

30.1.2. Theorem ([Merris, 1975]). If S(x1 ⊗ · · · ⊗ xk) = S(y1 ⊗ · · · ⊗ yk) 6= 0,
then Span(x1, . . . , xk) = Span(y1, . . . , yk).

Proof. Suppose, for instance, that y1 6∈ Span(x1, . . . , xk). Let T = S(x1 ⊗
· · · ⊗ xk) be a nonzero tensor. To any multilinear function f : V × · · · × V −→ K

there corresponds a linear function f̃ : V ⊗· · ·⊗V −→ K. The tensor T is nonzero
and, therefore, there exists a linear function f̃ such that f̃(T ) 6= 0. A multilinear
function f is a linear combination of products of linear functions and, therefore,
there exist linear functions g1, . . . , gk such that g̃(T ) 6= 0, where g = g1 . . . gk.

Consider linear functions h1, . . . , hk that coincide with g1 . . . gk on the subspace
Span(x1, . . . , xk) and vanish on y1. Let h = h1 . . . hk. Then h̃(T ) = g̃(T ) 6= 0. On
the other hand, T = S(y1 ⊗ · · · ⊗ yk) and, therefore,

h̃(T ) =
∑
σ

h1(yσ(1)) . . . hk(yσ(k)) = 0,

since hi(y1) = 0 is present in every summand. We obtained a contradiction and,
therefore, y1 ∈ Span(x1, . . . , xk).

Similar arguments prove that

Span(y1, . . . , yk) ⊂ Span(x1, . . . , xk) and Span(x1, . . . , xk) ⊂ Span(y1, . . . , yk). ¤
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30.2. From the definition of decomposability alone it is impossible to deter-
mine after a finite number of operations whether or not a skew-symmetric tensor∑
i1<···<ik ai1...ikei1 ∧ · · · ∧ eik is decomposable. We will show that the decompos-

ability condition for a skew-symmetric tensor is equivalent to a system of equations
for its coordinates ai1...ik (Plücker relations, see Cor. 30.2.2). Let us make several
preliminary remarks.

For any v∗ ∈ V ∗ let us consider a map i(v∗) : ΛkV −→ Λk−1V given by the
formula

〈i(v∗)T, f〉 = 〈T, v∗ ∧ f〉 for any f ∈ (Λk−1V )∗ and T ∈ ΛkV.

For a given v ∈ V we define a similar map i(v) : ΛkV ∗ −→ Λk−1V ∗.
To a subspace Λ ⊂ ΛkV assign the subspace Λ⊥ = {v∗|i(v∗)Λ = 0} ⊂ V ∗;

clearly, if Λ ⊂ Λ1V = V , then Λ⊥ is the annihilator of Λ (see 5.5).

30.2.1. Theorem. W = (Λ⊥)⊥ is the minimal subspace of V for which Λ
belongs to the subspace ΛkW ⊂ ΛkV .

Proof. If Λ ⊂ ΛkW1 and v∗ ∈ W⊥1 , then i(v∗)Λ = 0; hence, W⊥1 ⊂ Λ⊥;
therefore, W1 ⊃ (Λ⊥)⊥. It remains to demonstrate that Λ ⊂ ΛkW . Let V = W⊕U ,
u1, . . . , ua a basis of U , w1, . . . , wn−a a basis ofW , u∗1, . . . , w

∗
n−a the dual basis of V ∗.

Then u∗j ∈W⊥ = Λ⊥, i.e., i(u∗j )Λ = 0. If j ∈ {j1, . . . , jb} and {j′1, . . . , j′b−1)∪{j} =
{j1, . . . , jb}, then the map i(u∗j ) sends wi1 ∧ · · · ∧ wik−b ∧ uj1 ∧ · · · ∧ ujb to

λwi1 ∧ · · · ∧ wik−b ∧ uj′1 ∧ · · · ∧ uj′b−1
;

otherwise i(u∗j ) sends this tensor to 0. Therefore,

i(u∗j )(Λ
k−bW ⊗ ΛbU) ⊂ Λk−bW ⊗ Λb−1U.

Let
∑a
α=1 Λα ⊗ uα be the component of an element from the space Λ which

belongs to Λk−1W ⊗ Λ1U . Then i(u∗β)(
∑
α Λα ⊗ uα) = 0 and, therefore, for all f

we have

0 = 〈i(u∗β)
∑
α

Λα ⊗ uα, f〉 = 〈
∑
α

Λα ⊗ uα, u∗β ∧ f〉 = 〈Λβ ⊗ uβ , u∗β ∧ f〉.

But if Λβ ⊗ uβ 6= 0, then it is possible to choose f so that 〈Λβ ⊗ uβ , u∗β ∧ f〉 6= 0.
We similarly prove that the components of any element of Λk−iW ⊗ ΛiU in Λ are
zero for i > 0, i.e., Λ ⊂ ΛkW .

Let ω ∈ ΛkV . Let us apply Theorem 30.2.1 to Λ = Span(ω). If w1, . . . , wm is a
basis of W , then ω =

∑
ai1...ikwi1∧· · ·∧wik . Therefore, the skew-symmetric tensor

ω is decomposable if and only if m = k, i.e., dimW = k. If ω is not decomposable
then dimW > k. ¤

30.2.2. Theorem. Let W = (Span(ω)⊥)⊥. Let ω ∈ ΛkV and W ′ = {w ∈ W |
w ∧ω = 0}. The skew-symmetric tensor ω is decomposable if and only if W ′ = W .

Proof. If ω = v1 ∧ · · · ∧ vk 6= 0, then W = Span(v1, . . . , vk); hence, w ∧ ω = 0
for any w ∈W .

Now, suppose that ω is not decomposable, i.e., dimW = m > k. Let w1, . . . , wm
be a basis of W . Then ω =

∑
ai1...ikwi1 ∧· · ·∧wik . We may assume that a1...k 6= 0.

Let α = wk+1 ∧ · · · ∧ wm ∈ Λm−kW . Then ω ∧ α = a1...kw1 ∧ · · · ∧ wm 6= 0. In
particular, ω ∧ wm 6= 0, i.e., wm 6∈W ′. ¤
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Corollary (Plücker relations). Let ω =
∑
i1<···<ik ai1...ikei1 ∧ · · · ∧ eik be a

skew-symmetric tensor. It is decomposable if and only if
( ∑

i1<···<ik
ai1...ikei1 ∧ · · · ∧ eik

)
∧


∑

j

aj1...jk−1jej


 = 0

for any j1 < · · · < jk−1. (To determine the coefficient aj1...jk−1j for jk−1 > j we
assume that a...ij... = −a...ji...).

Proof. In our case

Λ⊥ = {v∗|〈ω, f ∧ v∗〉 = 0 for any f ∈ Λk−1(V ∗)}.
Let ε1, . . . , εn be the basis dual to e1, . . . , en; f = εj1 ∧ · · · ∧ εjk−1 and v∗ =

∑
viεi.

Then

〈ω, f ∧ v∗〉 = 〈
∑

i1<···<ik
ai1...ikei1 ∧ · · · ∧ eik ,

∑

j

vjεj1 ∧ · · · ∧ εjk−1 ∧ εj〉

=
1
n!

∑
aj1...jk−1jvj .

Therefore,

Λ⊥ = {v∗ =
∑

vjεj |
∑
aj1...jk−1jvj = 0 for any j1, . . . , jk−1};

hence, W = (Λ⊥)⊥ = {w =
∑
j aj1...jk−1jej}. By Theorem 30.2.2 ω is decompos-

able if and only if ω ∧ w = 0 for all w ∈W . ¤
Example. For k = 2 for every fixed p we get a relation


∑

i<j

aijei ∧ ej


 ∧

(∑
q

apqep

)
= 0.

In this relation the coefficient of ei ∧ ej ∧ eq is equal to aijapq − aipapj + ajpapi and
the relation

aijapq − aiqapj + ajqapi = 0

is nontrivial only if the numbers i, j, p, q are distinct.

Problems

30.1. Let ω ∈ ΛkV and e1 ∧ · · · ∧ er 6= 0 for some ei ∈ V . Prove that ω =
ω1 ∧ e1 ∧ · · · ∧ er if and only if ω ∧ ei = 0 for i = 1, . . . , r.

30.2. Let dimV = n and ω ∈ Λn−1V . Prove that ω is a decomposable skew-
symmetric tensor.

30.3. Let e1, . . . , e2n be linearly independent, ω =
∑n
i=1 e2i−1 ∧ e2i, and Λ =

Span(ω). Find the dimension of W = (Λ⊥)⊥.
30.4. Let tensors z1 = x1 ∧ · · · ∧ xr and z2 = y1 ∧ · · · ∧ yr be nonproportional;

X = Span(x1, . . . , xr) and Y = Span(y1, . . . , yr). Prove that Span(z1, z2) consists
of decomposable skew-symmetric tensors if and only if dim(X ∩ Y ) = r − 1.

30.5. Let W ⊂ ΛkV consist of decomposable skew-symmetric tensors. To every
ω = x1 ∧ · · · ∧ xk ∈W assign the subspace [ω] = Span(x1, . . . , xk) ⊂ V . Prove that
either all subspaces [ω] have a common (k− 1)-dimensional subspace or all of them
belong to one (k + 1)-dimensional subspace.
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31. The tensor rank

31.1. The space V ⊗W consists of linear combinations of elements of the form
v ⊗ w. Not every element of this space, however, can be represented in the form
v ⊗ w. The rank of an element T ∈ V ⊗ W is the least number k for which
T = v1 ⊗ w1 + · · ·+ vk ⊗ wk.

31.1.1. Theorem. If T =
∑
aijei ⊗ εj, where {ei} and {εj} are bases of V

and W , then rankT = rank
∥∥aij

∥∥.

Proof. Let vp =
∑
αpi ei, wp =

∑
βpj εj , α

p a column (αp1, . . . , α
p
n)T and βp a

row (βp1 , . . . , β
p
m). If T = v1 ⊗w1 + · · ·+ vk ⊗wk, then

∥∥aij
∥∥ = α1β1 + · · ·+ αkβk.

The least number k for which such a decomposition of
∥∥aij

∥∥ is possible is equal to
the rank of this matrix (see 8.2). ¤

31.1.1.1. Corollary. The set {T ∈ V ⊗W | rankT ≤ k} is given by algebraic
equations and, therefore, is closed; in particular, if lim

i−→∞
Ti = T and rankTi ≤ k,

then rankT ≤ k.

31.1.1.2. Corollary. The rank of an element of a real subspace V ⊗W does
not change under complexifications.

For an element T ∈ V1 ⊗ · · · ⊗ Vp its rank can be similarly defined as the least
number k for which T = v1

1 ⊗ · · · ⊗ v1
p + · · · + vk1 ⊗ · · · ⊗ vkp . It turns out that for

p ≥ 3 the properties formulated in Corollaries 31.1.1.1 and 31.1.1.2 do not hold.
Before we start studying the properties of the tensor rank let us explain why the
interest in it.

31.2. In the space of matrices of order n select the basis eαβ =
∥∥δiαδjβ

∥∥n
1

and
let εαβ be the dual basis. Then A =

∑
i,j aijeij , B =

∑
i,j bijeij and

AB =
∑

i,j,k

aikbkjeij =
∑

i,j,k

εik(A)εkj(B)eij .

Thus, the calculation of the product of two matrices of order n reduces to calculation
of n3 products εik(A)εkj(B) of linear functions. Is the number n3 the least possible
one?

It turns out that no, it is not. For example, for matrices of order 2 we can
indicate 7 pairs of linear functions fp and gp and 7 matrices Ep such that AB =∑7
p=1 fp(A)gp(B)Ep. This decomposition was constructed in [Strassen, 1969]. The

computation of the least number of such triples is equivalent to the computation of
the rank of the tensor

∑

i,j,k

εik ⊗ εkj ⊗ eij =
∑
p

fp ⊗ gp ⊗ Ep.

Identify the space of vectors with the space of covectors, and introduce, for brevity,
the notation a = e11, b = e12, c = e21 and d = e22. It is easy to verify that for
matrices of order 2

∑

i,j,k

εik ⊗ εkj ⊗ eij = (a⊗ a+ b⊗ c)⊗ a+ (a⊗ b+ b⊗ d)⊗ b

+ (c⊗ a+ d⊗ c)⊗ c+ (c⊗ b+ d⊗ d)⊗ d.
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Strassen’s decomposition is of the form
∑
εik ⊗ εkj ⊗ eij =

∑7
p=1 Tp, where

T1 = (a− d)⊗ (a− d)⊗ (a+ d), T5 = (c− d)⊗ a⊗ (c− d),

T2 = d⊗ (a+ c)⊗ (a+ c), T6 = (b− d)⊗ (c+ d)⊗ a,
T3 = (a− b)⊗ d⊗ (a− b), T7 = (c− a)⊗ (a+ b)⊗ d.
T4 = a⊗ (b+ d)⊗ (b+ d),

This decomposition leads to the following algorithm for computing the product of

matrices A =
(
a1 b1
c1 d1

)
and B =

(
a2 b2
c2 d2

)
. Let

S1 = a1 − d1, S2 = a2 − d2, S3 = a1 − b1, S4 = b1 − d1, S5 = c2 + d2,

S6 = a2 + c2, S7 = b2 + d2, S8 = c1 − d1, S9 = c1 − a1, S10 = a2 + b2;
P1 = S1S2, P2 = S3d2, P3 = S4S5, P4 = d1S6, P5 = a1S7,

P6 = S8a2, P7 = S9S10; S11 = P1 + P2, S12 = S11 + P3, S13 = S12 + P4,

S14 = P5 − P2, S15 = P4 + P6, S16 = P1 + P5, S17 = S16 − P6, S18 = S17 + P7.

Then AB =
(
S13 S14

S15 S18

)
. Strassen’s algorithm for computing AB requires just 7

multiplications and 18 additions (or subtractions)4.

31.3. Let V be a two-dimensional space with basis {e1, e2}. Consider the tensor

T = e1 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e2.

31.3.1. Theorem. The rank of T is equal to 3, but there exists a sequence of
tensors of rank ≤ 2 which converges to T .

Proof. Let

Tλ = λ−1[e1 ⊗ e1 ⊗ (−e2 + λe1) + (e1 + λe2)⊗ (e1 + λe2)⊗ e2].

Then Tλ − T = λe2 ⊗ e2 ⊗ e2 and, therefore, lim
λ−→0

|Tλ − T | = 0.

Suppose that

T =a⊗ b⊗ c+ u⊗ v ⊗ w = (α1e1 + α2e2)⊗ b⊗ c+ (λ1e1 + λ2e2)⊗ v ⊗ w
=e1 ⊗ (α1b⊗ c+ λ1v ⊗ w) + e2 ⊗ (α2b⊗ c+ λ2v ⊗ w).

Then

e1 ⊗ e1 + e2 ⊗ e2 = α1b⊗ c+ λ1v ⊗ w and e1 ⊗ e2 = α2b⊗ c+ λ2v ⊗ w.
Hence, linearly independent tensors b⊗ c and v ⊗ w of rank 1 belong to the space
Span(e1 ⊗ e1 + e2 ⊗ e2, e1 ⊗ e2). The latter space can be identified with the space

of matrices of the form
(
x y
0 x

)
. But all such matrices of rank 1 are linearly

dependent. Contradiction. ¤

4Strassen’s algorithm is of importance nowadays since modern computers add (subtract) much
faster than multiply.
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Corollary. The subset of tensors of rank ≤ 2 in T 3
0 (V ) is not closed, i.e., it

cannot be singled out by a system of algebraic equations.

31.3.2. Let us consider the tensor

T1 = e1 ⊗ e1 ⊗ e1 − e2 ⊗ e2 ⊗ e1 + e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e2.

Let rankR T1 denote the rank of T1 over R and rankC T1 be the rank of T1 over C.

Theorem. rankR T1 6= rankC T1.

Proof. It is easy to verify that T1 = (a1⊗a1⊗a2 +a2⊗a2⊗a1)/2, where a1 =
e1 + ie2 and a2 = e1 − ie2. Hence, rankC T1 ≤ 2. Now, suppose that rankR T1 ≤ 2.
Then as in the proof of Theorem 31.3.1 we see that linearly independent tensors
b⊗ c and v⊗w of rank 1 belong to Span(e1⊗ e1 + e2⊗ e2, e1⊗ e2− e2⊗ e1), which

can be identified with the space of matrices of the form
(
x y
−y x

)
. But over R

among such matrices there is no matrix of rank 1. ¤

Problems

31.1. Let U ⊂ V and T ∈ T p0 (U) ⊂ T p0 (V ). Prove that the rank of T does not
depend on whether T is considered as an element of T p0 (U) or as an element of
T p0 (V ).

31.2. Let e1, . . . , ek be linearly independent vectors, e⊗pi = ei⊗· · ·⊗ ei ∈ T p0 (V ),
where p ≥ 2. Prove that the rank of e⊗p1 + · · ·+ e⊗pk is equal to k.

32. Linear transformations of tensor products

The tensor product V1 ⊗ · · · ⊗ Vp is a linear space; this space has an additional
structure — the rank function on its elements. Therefore, we can, for instance,
consider linear transformations that send tensors of rank k to tensors of rank k. The
most interesting case is that of maps of Hom(V1, V2) = V ∗1 ⊗V2 into itself. Observe
also that if dimV1 = dimV2 = n, then to invertible maps from Hom(V1, V2) there
correspond tensors of rank n, i.e., the condition detA = 0 can be interpreted in
terms of the tensor rank.

32.1. If A : U −→ U and B : V −→ V are invertible linear operators, then the
linear operator T = A ⊗ B : U ⊗ V −→ U ⊗ V preserves the rank of elements of
U ⊗ V .

If dimU = dimV , there is one more type of transformations that preserve the
rank of elements. Take an arbitrary isomorphism ϕ : U −→ V and define a map

S : U ⊗ V −→ U ⊗ V, S(u⊗ v) = ϕ−1v ⊗ ϕu.

Then any transformation of the form TS, where T = A⊗B is a transformation of
the first type, preserves the rank of the elements from U ⊗ V .

Remark. It is easy to verify that S is an involution.
In terms of matrices the first type transformations are of the form X 7→ AXB

and the second type transformations are of the form X 7→ AXTB. The second type
transformations do not reduce to the first type transformations (see Problem 32.1).
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Theorem ([Marcus, Moyls, 1959 (b)]). Let a linear map T : U ⊗ V −→ U ⊗ V
send any element of rank 1 to an element of rank 1. Then either T = A ⊗ B or
T = (A⊗B)S and the second case is possible only if dimU = dimV .

Proof (Following [Grigoryev, 1979]). We will need the following statement.

Lemma. Let elements α1, α2 ∈ U ⊗ V be such that rank(t1α1 + t2α2) ≤ 1 for
any numbers t1 and t2. Then αi can be represented in the form αi = ui⊗ vi, where
u1 = u2 or v1 = v2.

Proof. Suppose that αi = ui⊗vi and α1 +α2 = u⊗v and also that Span(u1) 6=
Span(u2) and Span(v1) 6= Span(v2). Then without loss of generality we may assume
that Span(u) 6= Span(u1). On the one hand,

(f ⊗ g)(u⊗ v) = f(u)g(v),

and on the other hand,

(f ⊗ g)(u⊗ v) = (f ⊗ g)(u1 ⊗ v1 + u2 ⊗ v2) = f(u1)g(v1) + f(u2)g(u2).

Therefore, selecting f ∈ U∗ and g ∈ V ∗ so as f(u) = 0, f(u1) 6= 0 and g(u2) = 0,
g(u1) 6= 0 we get a contradiction. ¤

In what follows we will assume that dimV ≥ dimU ≥ 2. Besides, for convenience
we will denote fixed vectors by a and b, while variable vectors from U and V will
be denoted by u and v, respectively. Applying the above lemma to T (a ⊗ b1) and
T (a⊗b2), where Span(b1) 6= Span(b2), we get T (a⊗bi) = a′⊗b′i or T (a⊗bi) = a′i⊗b′.
Since KerT = 0, it follows that Span(b′1) 6= Span(b′2) (resp. Span(a′1) 6= Span(a′2)).

It is easy to verify that in the first case T (a ⊗ v) = a′ ⊗ v′ for any v ∈ V .
To prove it it suffices to apply the lemma to T (a ⊗ b1) and T (a ⊗ v) and also to
T (a ⊗ b2) and T (a ⊗ v). Indeed, the case T (a ⊗ v) = c′ ⊗ b′1, where Span(c′) 6=
Span(a′), is impossible. Similarly, in the second case T (a ⊗ v) = f(v) ⊗ b′, where
f : V −→ U is a map (obviously a linear one). In the second case the subspace
a⊗V is monomorphically mapped to U ⊗ b′; hence, dimV ≤ dimU and, therefore,
dimU = dimV .

Consider the map T1 which is equal to T in the first case and to TS in the second
case. Then for a fixed a we have T1(a ⊗ v) = a′ ⊗ Bv, where B : V −→ V is an
invertible operator. Let Span(a1) 6= Span(a). Then either T1(a1 ⊗ v) = a′1 ⊗ Bv
or T1(a1 ⊗ v) = a′ ⊗ B1v, where Span(B1) 6= Span(B). Applying the lemma to
T (a⊗ v) and T (u⊗ v) and also to T (a1 ⊗ v) and T (u⊗ v) we see that in the first
case T1(u ⊗ v) = Au ⊗ Bv, and in the second case T1(u ⊗ v) = a′ ⊗ f(u, v). In
the second case the space U ⊗ V is monomorphically mapped into a′ ⊗ V which is
impossible. ¤

Corollary. If a linear map T : U ⊗ V −→ U ⊗ V sends any rank 1 element
into a rank 1 element, then it sends any rank k element into a rank k element.

32.2. Let Mn,n be the space of matrices of order n and T : Mn,n −→ Mn,n a
linear map.

32.2.1. Theorem ([Marcus, Moyls, 1959 (a)]). If T preserves the determinant,
then T preserves the rank as well.

Proof. For convenience, denote by Ir and 0r the unit and the zero matrix of

order r, respectively, and set A⊕B =
(
A 0
0 B

)
.
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First, let us prove that if T preserves the determinant, then T is invertible.
Suppose that T (A) = 0, where A 6= 0. Then 0 < rankA < n. There exist
invertible matrices M and N such that MAN = Ir ⊕ 0n−r, where r = rankA (cf.
Theorem 6.3.2). For any matrix X of order n we have

|MAN +X| · |MN |−1 = |A+M−1XN−1|
= |T (A+M−1XN−1)| = |T (M−1XN−1)| = |X| · |MN |−1.

Therefore, |MAN +X| = |X|. Setting X = 0r ⊕ In−r we get a contradiction.
Let rankA = r and rankT (A) = s. Then there exist invertible matrices

M1, N1 and M2, N2 such that M1AN1 = Ir ⊕ 0n−r = Y1 and M2T (A)N2 =
Is ⊕ 0n−s = Y2. Consider a map f : Mn,n −→ Mn,n given by the formula
f(X) = M2T (M−1

1 XN−1
1 )N2. This map is linear and |f(X)| = k|X|, where

k = |M2M
−1
1 N−1

1 N2|. Besides, f(Y1) = M2T (A)N2 = Y2. Consider a matrix
Y3 = 0r ⊕ In−r. Then |λY1 + Y3| = λr for all λ. On the other hand,

|f(λY1 + Y3)| = |λY2 + f(Y3)| = p(λ),

where p is a polynomial of degree not greater than s. It follows that r ≤ s. Since
|B| = |TT−1(B)| = |T−1(B)|, the map T−1 also preserves the determinant. Hence,
s ≤ r. ¤

Let us say that a linear map T : Mn,n −→Mn,n preserves eigenvalues if the sets
of eigenvalues (multiplicities counted) of X and T (X) coincide for any X.

32.2.2. Theorem ([Marcus, Moyls, 1959 (a)]). a) If T preserves eigenvalues,
then either T (X) = AXA−1 or T (X) = AXTA−1.

b) If T , given over C, preserves eigenvalues of Hermitian matrices, then either
T (X) = AXA−1 or T (X) = AXTA−1.

Proof. a) If T preserves eigenvalues, then T preserves the rank as well and,
therefore, either T (X) = AXB or T (X) = AXTB (see 32.1). It remains to prove
that T (I) = I. The determinant of a matrix is equal to the product of its eigenvalues
and, therefore, T preserves the determinant. Hence,

|X − λI| = |T (X)− λT (I)| = |CT (X)− λI|,

where C = T (I)−1 and, therefore, the eigenvalues of X and CT (X) coincide; be-
sides, the eigenvalues of X and T (X) coincide by hypothesis. The map T is in-
vertible (see the proof of Theorem 32.2.1) and, therefore, any matrix Y can be
represented in the form T (X) which means that the eigenvalues of Y and CY
coincide.

The matrix C can be represented in the form C = SU , where U is a unitary
matrix and S an Hermitian positive definite matrix. The eigenvalues of U−1 and
CU−1 = S coincide, but the eigenvalues of U−1 are of the form eiϕ whereas the
eigenvalues of S are positive. It follows that S = U = I and C = I, i.e., T (I) = I.

b) It suffices to prove that if T preserves eigenvalues of Hermitian matrices, then
T preserves eigenvalues of all matrices. Any matrix X can be represented in the
form X = P+iQ, where P and Q are Hermitian matrices. For any real x the matrix
A = P + xQ is Hermitian. If the eigenvalues of A are equal to λ1, . . . , λn, then the
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eigenvalues of Am are equal to λm1 , . . . , λ
m
n and, therefore, tr(Am) = tr(T (A)m).

Both sides of this identity are polynomials in x of degree not exceeding m. Two
polynomials whose values are equal for all real x coincide and, therefore, their values
at x = i are also equal. Hence, tr(Xm) = tr(T (X)m) for any X. It remains to
make use of the result of Problem 13.2. ¤

32.3. Theorem ([Marcus, Purves, 1959]). a) Let T : Mn,n −→Mn,n be a linear
map that sends invertible matrices into invertible ones. Then T is an invertible
map.

b) If, besides, T (I) = I, then T preserves eigenvalues.

Proof. a) If |T (X)| = 0, then |X| = 0. For X = A− λI we see that if

|T (A− λI)| = |T (I)| · |T (I)−1T (A)− λI| = 0,

then |A− λI| = 0. Therefore, the eigenvalues of T (I)−1T (A) are eigenvalues of A.
Suppose that A 6= 0 and T (A) = 0. For a matrix A we can find a matrix X such

that the matrices X and X + A have no common eigenvalues (see Problem 15.1);
hence, the matrices T (I)−1T (A+X) and T (I)−1T (X) have no common eigenvalues.
On the other hand, these matrices coincide since T (A+X) = T (X). Contradiction.

b) If T (I) = I, then the proof of a) implies that the eigenvalues of T (A) are
eigenvalues of A. Hence, if the eigenvalues of B = T (A) are simple (nonmultiple),
then the eigenvalues of B coincide with the eigenvalues of A = T−1(B). For a
matrix B with multiple eigenvalues we consider a sequence of matrices Bi with
simple eigenvalues that converges to it (see Theorem 43.5.2) and observe that the
eigenvalues of the matrices Bi tend to eigenvalues of B (see Problem 11.6). ¤

Problems

32.1. Let X be a matrix of size m × n, where mn > 1. Prove that the map
X 7→ XT cannot be represented in the form X 7→ AXB and the map X 7→ X
cannot be represented in the form X 7→ AXTB.

32.2. Let f : Mn,n −→ Mn,n be an invertible map and f(XY ) = f(X)f(Y ) for
any matrices X and Y . Prove that f(X) = AXA−1, where A is a fixed matrix.

Solutions

27.1. Complement vectors v and w to bases of V and W , respectively. If v′⊗w′ =
v ⊗ w, then the decompositions of v′ and w′ with respect to these bases are of the
form λv and µw, respectively. It is also clear that λv ⊗ µw = λµ(v ⊗ w), i.e.,
µ = 1/λ.

27.2. a) The statement obviously follows from the definition.
b) Take bases of the spaces ImA1 and ImA2 and complement them to bases {ei}

and {εj} of the spaces W1 and W2, respectively. The space ImA1⊗W2 is spanned
by the vectors ei⊗εj , where ei ∈ ImA1, and the space W1⊗ImA2 is spanned by the
vectors ei⊗εj , where εj ∈ ImA2. Therefore, the space (ImA1⊗W2)∩(W1⊗ImA2)
is spanned by the vectors ei ⊗ εj , where ei ∈ ImA1 and εj ∈ ImA2, i.e., this space
coincides with ImA1 ⊗ ImA2.

c) Take bases in KerA1 and KerA2 and complement them to bases {ei} and {εj}
in V1 and V2, respectively. The map A1⊗A2 sends ei⊗ εj to 0 if either ei ∈ KerA1

or εj ∈ KerA2; the set of other elements of the form ei ⊗ εj is mapped into a basis
of the space ImA1 ⊗ ImA2, i.e., into linearly independent elements.
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27.3. Select a basis {vi} in V1 ∩V2 and complement it to bases {v1
j } and {v2

k} of
V1 and V2, respectively. The set {vi, v1

j , v
2
k} is a basis of V1+V2. Similarly, construct

a basis {wα, w1
β , w

2
γ} of W1 + W2. Then {vi ⊗ wα, vi ⊗ w1

β , v
1
j ⊗ wα, v1

j ⊗ w1
β} and

{vi⊗wα, vi⊗w2
γ , v

2
k⊗wα, v2

k⊗w2
γ} are bases of V1⊗W1 and V2⊗W2, respectively, and

the elements of these bases are also elements of a basis for (V1+V2)⊗(W1+W2), i.e.,
they are linearly independent. Hence, {vi⊗wα} is a basis of (V1⊗W1)∩ (V2⊗W2).

27.4. Clearly, Ax = x− 2(a, x)a, i.e., Aa = −a and Ax = x for x ∈ a⊥.
27.5. Fix a 6= 0; then A(a, x) is a linear function; hence, A(a, x) = (b, x), where

b = B(a) for some linear map B. If x ⊥ a, then A(a, x) = 0, i.e., (b, x) = 0. Hence,
a⊥ ⊂ b⊥ and, therefore, B(a) = b = λ(a)a. Since A(u + v, x) = A(u, x) + A(v, x),
it follows that

λ(u+ v)(u+ v) = λ(u)u+ λ(v)v.

If the vectors u and v are linearly independent, then λ(u) = λ(v) = λ and any other
vector w is linearly independent of one of the vectors u or v; hence, λ(w) = λ. For
a one-dimensional space the statement is obvious.

28.1. Let us successively change places of the first two arguments and the second
two arguments:

f(x, y, z) = f(y, x, z) = −f(y, z, x) = −f(z, y, x)

= f(z, x, y) = f(x, z, y) = −f(x, y, z);

hence, 2f(x, y, z) = 0.
28.2. Let us extend f to a bilinear map Cm×Cm −→ Cn. Consider the equation

f(z, z) = 0, i.e., the system of quadratic equations

f1(z, z) = 0, . . . , fn(z, z) = 0.

Suppose n < m. Then this system has a nonzero solution z = x + iy. The second
condition implies that y 6= 0. It is also clear that

0 = f(z, z) = f(x+ iy, x+ iy) = f(x, x)− f(y, y) + 2if(x, y).

Hence, f(x, x) = f(y, y) 6= 0 and f(x, y) = 0. This contradicts the first condition.
28.3. The elements αi = e2i−1 ∧ e2i belong to Λ2(V ); hence, αi ∧ αj = αj ∧ αi

and αi ∧ αi = 0. Thus,

Λnω =
∑

i1,...,in

αi1 ∧ · · · ∧ αin = n!α1 ∧ · · · ∧ αn = n! e1 ∧ · · · ∧ e2n.

28.4. Let the diagonal of the Jordan normal form of A be occupied by numbers
λ1, . . . , λn. Then det(A+I) = (1+λ1) . . . (1+λn) and tr(ΛqA) =

∑
i1<···<iq λi1 . . . λiq ;

see the proof of Theorem 28.5.3.
28.5. If A =

∥∥aij
∥∥n

1
, then the matrix of the system of equations under considera-

tion is equal to S2(A). Besides, detS2(A) = (detA)r, where r = 2
n

(
n+2−1

2

)
= n+ 1

(see Theorem 28.5.3).
28.6. It is easy to verify that σk = tr(ΛkA). If in a Jordan basis the diagonal of

A is of the form (λ1, . . . , λn), then sk = λk1 + · · ·+ λkn and σk =
∑
λi1 . . . λik . The

required identity for the functions sk and σk was proved in 4.1.
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28.7. Let ej and εj , where 1 ≤ j ≤ m, be dual bases. Let vi =
∑
aijej and

fi =
∑
bjiεj . The quantity n!〈v1 ∧ · · · ∧ vn, f1 ∧ · · · ∧ fn〉 can be computed in two

ways. On the one hand, it is equal to
∣∣∣∣∣∣∣

f1(v1) . . . f1(vn)
...

. . .
...

fn(v1) . . . fn(vn)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∑
a1jbj1 . . .

∑
anjbj1

...
. . .

...∑
a1jbjn . . .

∑
anjbjn

∣∣∣∣∣∣∣
= detAB.

On the other hand, it is equal to

n! 〈
∑

k1,...,kn

a1k1 . . . anknek1 ∧ · · · ∧ ekn ,
∑

l1,...,ln

bl11 . . . blnnεl1 ∧ · · · ∧ εln〉

=
∑

k1≤···≤kn
Ak1...knB

l1...lnn!〈ek1 ∧ · · · ∧ ekn , εl1 ∧ · · · ∧ εln〉

=
∑

k1<···<kn
Ak1...knB

k1...kn .

29.1. Since Pf(A) =
∑

(−1)σai1i2 . . . ai2n−1i2n , where the sum runs over all
partitions of {1, . . . , 2n} into pairs {i2k−1, i2k} with i2k−1 < i2k, then

ai1i2Ci1i2 = ai1i2
∑

(−1)σai3i4 . . . ai2n−1i2n .

It remains to observe that the signs of the permutations

σ =
(

1 2 . . . 2n
i1 i2 . . . i2n

)

and

τ =
(
i1 i2 1 2 . . . i1 . . . i2 . . . 2n
i1 i2 i3 i4 . . . . . . . . . . . . . . . i2n

)

differ by the factor of (−1)i1+i2+1.

29.2. Let J = diag
((

0 1
−1 0

)
, . . . ,

(
0 1
−1 0

))
. It is easy to verify that G =

XJXT . Hence, Pf(G) = detX.
30.1. Clearly, if ω = ω1 ∧ e1 ∧ · · · ∧ er, then ω ∧ ei = 0. Now, suppose that

ω ∧ ei = 0 for i = 1, . . . , r and e1 ∧ · · · ∧ er 6= 0. Let us complement vectors
e1, . . . , er to a basis e1, . . . , en of V . Then

ω =
∑

ai1 . . . aikei1 ∧ · · · ∧ eik ,

where ∑
ai1...ikei1 ∧ · · · ∧ eik ∧ ei = ω ∧ ei = 0 for i = 1, . . . , r.

If the nonzero tensors ei1 ∧ · · · ∧ eik ∧ ei are linearly dependent, then the tensors
ei1 ∧ · · · ∧ eik are also linearly dependent. Hence, ai1...ik = 0 for i 6∈ {i1, . . . , ik}. It
follows that ai1...ik 6= 0 only if {1, . . . , r} ⊂ {i1, . . . , ik} and, therefore,

ω =
(∑

bi1...ik−rei1 ∧ · · · ∧ eik−r
)
∧ e1 ∧ · · · ∧ er.
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30.2. Consider the linear map f : V −→ ΛnV given by the formula f(v) =
v ∧ ω. Since dim ΛnV = 1, it follows that dim Ker f ≥ n − 1. Hence, there exist
linearly independent vectors e1, . . . , en−1 belonging to Ker f , i.e., ei ∧ ω = 0 for
i = 1, . . . , n− 1. By Problem 30.1 ω = λe1 ∧ · · · ∧ en−1.

30.3. Let W1 = Span(e1, . . . , e2n). Let us prove that W = W1. The space W is
the minimal space for which Λ ⊂ Λ2W (see Theorem 30.2.1). Clearly, Λ ⊂ Λ2W1;
hence, W ⊂W1 and dimW ≤ dimW1 = 2n. On the other hand, Λnω ∈ Λ2nW and
Λnω = n!e1 ∧ · · · ∧ e2n (see Problem 28.3). Hence, Λ2nW 6= 0, i.e., dimW ≥ 2n.

30.4. Under the change of bases of X and Y the tensors z1 and z2 are replaced
by proportional tensors and, therefore we may assume that

z1 + z2 = (v1 ∧ · · · ∧ vk) ∧ (x1 ∧ · · · ∧ xr−k + y1 ∧ · · · ∧ yr−k),

where v1, . . . , vk is a basis of X ∩ Y , and the vectors x1, . . . , xr−k and y1, . . . , yr−k
complement it to bases of X and Y . Suppose that z1 + z2 = u1 ∧ · · · ∧ u2. Let
u = v + x + y, where v ∈ Span(v1, . . . , vk), x ∈ Span(x1, . . . , xr−k) and y ∈
Span(y1, . . . , yr−k). Then

(z1 + z2) ∧ u = (v1 ∧ · · · ∧ vk) ∧ (x1 ∧ · · · ∧ xr−k ∧ y + y1 ∧ · · · ∧ yr−k ∧ x).

If r− k > 1, then the nonzero tensors x1 ∧ · · · ∧ xr−k ∧ y and y1 ∧ · · · ∧ yr−k ∧ x are
linearly independent. This means that in this case the equality (z1 + z2) ∧ u = 0
implies that u ∈ Span(v1, . . . , vk), i.e., Span(u1, . . . , ur) ⊂ Span(v1, . . . , vk) and
r ≤ k. We get a contradiction; hence, r − k = 1.

30.5. Any two subspaces [ω1] and [ω2] have a common (k − 1)-dimensional
subspace (see Problem 30.4). It remains to make use of Theorem 9.6.1.

31.1. Let us complement the basis e1, . . . , ek of U to a basis e1, . . . , en of V .
Let T =

∑
αiv

i
1 ⊗ · · · ⊗ vip. Each element vij ∈ V can be represented in the

form vij = uij + wij , where uij ∈ U and wij ∈ Span(ek+1, . . . , en). Hence, T =∑
αiu

i
1 ⊗ · · · ⊗ uip + . . . . Expanding the elements denoted by dots with respect

to the basis e1, . . . , en, we can easily verify that no nonzero linear combination of
them can belong to T p0 (U). Since T ∈ T p0 (U), it follows that T =

∑
αiu

i
1⊗· · ·⊗uip,

i.e., the rank of T in T p0 (U) is not greater than its rank in T p0 (V ). The converse
inequality is obvious.

31.2. Let

e⊗p1 + · · ·+ e⊗pk = u1
1 ⊗ · · · ⊗ u1

p + · · ·+ ur1 ⊗ · · · ⊗ urp.

By Problem 31.1 we may assume that uij ∈ Span(e1, . . . , ek). Then ui1 =
∑
j αijej ,

i.e.,
∑

i

ui1 ⊗ · · · ⊗ uip =
∑

j

ej ⊗
(∑

i

αiju
i
2

)
⊗ · · · ⊗ uip.

Hence ∑

i

αiju
i
2 ⊗ · · · ⊗ uip = e⊗p−1

j

and, therefore, k linearly independent vectors e⊗p−1
1 , . . . , e⊗p−1

k belong to the space

Span(u1
2 ⊗ · · · ⊗ u1

p, . . . , ur2 ⊗ · · · ⊗ urp)
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whose dimension does not exceed r. Hence, r ≥ k.
32.1. Suppose that AXB = XT for all matrices X of size m × n. Then the

matrices A and B are of size n ×m and
∑
k,s aikxksbsj = xji. Hence, aijbij = 1

and aikbsj = 0 if k 6= j or s 6= i. The first set of equalities implies that all elements
of A and B are nonzero, but then the second set of equalities cannot hold.

The equality AXTB = X cannot hold for all matrices X either, because it
implies BTXAT = XT .

32.2. Let B,X ∈ Mn,n. The equation BX = λX has a nonzero solution X if
and only if λ is an eigenvalue of B. If λ is an eigenvalue of B, then BX = λX for
a nonzero matrix X. Hence, f(B)f(X) = λf(X) and, therefore, λ is an eigenvalue
of f(B). Let B = diag(β1, . . . , βn), where βi are distinct nonzero numbers. Then
the matrix f(B) is similar to B, i.e., f(B) = A1BA

−1
1 .

Let g(X) = A−1
1 f(X)A1. Then g(B) = B. If X =

∥∥xij
∥∥n

1
, then BX =

∥∥βixij
∥∥n

1

and XB =
∥∥xijβj

∥∥n
1
. Hence, BX = βiX only if all rows of X except the ith one

are zero and XB = βjX only if all columns of X except the jth are zero. Let
Eij be the matrix unit, i.e., Eij =

∥∥apq
∥∥n

1
, where apq = δpiδqj . Then Bg(Eij) =

βig(Eij) and g(Eij)B = βjg(Eij) and, therefore, g(Eij) = αijEij . As is easy to
see, Eij = Ei1E1j . Hence, αij = αi1α1j . Besides, E2

ii = Eii; hence, α2
ii = αii and,

therefore, αi1α1i = αii = 1, i.e., α1i = α−1
i1 . It follows that αij = αi1 · α−1

j1 . Hence,
g(X) = A2XA

−1
2 , where A2 = diag(α11, . . . , αn1), and, therefore, f(X) = AXA−1,

where A = A1A2.
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MATRIX INEQUALITIES

33. Inequalities for symmetric and Hermitian matrices

33.1. Let A and B be Hermitian matrices. We will write that A > B (resp.
A ≥ B) if A − B is a positive (resp. nonnegative) definite matrix. The inequality
A > 0 means that A is positive definite.

33.1.1. Theorem. If A > B > 0, then A−1 < B−1.

Proof. By Theorem 20.1 there exists a matrix P such that A = P ∗P and B =
P ∗DP , where D = diag(d1, . . . , dn). The inequality x∗Ax > x∗Bx is equivalent to
the inequality y∗y > y∗Dy, where y = Px. Hence, A > B if and only if di > 1.
Therefore, A−1 = Q∗Q and B−1 = Q∗D1Q, where D1 = diag(d−1

1 , . . . , d−1
n ) and

d−1
i < 1 for all i; thus, A−1 < B−1. ¤

33.1.2. Theorem. If A > 0, then A+A−1 ≥ 2I.

Proof. Let us express A in the form A = U∗DU , where U is a unitary matrix
and D = diag(d1, . . . , dn), where di > 0. Then

x∗(A+A−1)x = x∗U∗(D +D−1)Ux ≥ 2x∗U∗Ux = 2x∗x

since di + d−1
i ≥ 2. ¤

33.1.3. Theorem. If A is a real matrix and A > 0 then

(A−1x, x) = max
y

(2(x, y)− (Ay, y)).

Proof. There exists for a matrix A an orthonormal basis such that (Ax, x) =∑
αix

2
i . Since

2xiyi − αiy2
i = −αi(yi − α−1

i xi)2 + α−1
i x2

i ,

it follows that

max
y

(2(x, y)− (Ay, y)) =
∑

α−1
i x2

i = (A−1x, x)

and the maximum is attained at y = (y1, . . . , yn), where yi = α−1
i xi. ¤

33.2.1. Theorem. Let A =
(
A1 B
B∗ A2

)
> 0. Then detA ≤ detA1 detA2.

Proof. The matrices A1 and A2 are positive definite. It is easy to verify (see
3.1) that

detA = detA1 det(A2 −B∗A−1
1 B).

The matrix B∗A−1
1 B is positive definite; hence, det(A2 − B∗A−1

1 B) ≤ detA2 (see
Problem 33.1). Thus, detA ≤ detA1 detA2 and the equality is only attained if
B∗A−1

1 B = 0, i.e., B = 0. ¤

Typeset by AMS-TEX
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33.2.1.1. Corollary (Hadamard’s inequality). If a matrix A =
∥∥aij

∥∥n
1

is
positive definite, then detA ≤ a11a22 . . . ann and the equality is only attained if A
is a diagonal matrix.

33.2.1.2. Corollary. If X is an arbitrary matrix, then

|detX|2 ≤
∑

i

|x1i|2 · · ·
∑

i

|xni|2.

To prove Corollary 33.2.1.2 it suffices to apply Corollary 33.2.1.1 to the matrix
A = XX∗.

33.2.2. Theorem. Let A =
(
A1 B
B∗ A2

)
be a positive definite matrix, where B

is a square matrix. Then
| detB|2 ≤ detA1 detA2.

Proof ([Everitt, 1958]). . Since

T ∗AT =
(
A1 0
0 A2 −B∗A−1

1 B

)
> 0 for T =

(
I −A−1

1 B
0 I

)
,

we directly deduce that A2 −B∗A−1
1 B > 0. Hence,

det(B∗A−1
1 B) ≤ det(B∗A−1

1 B) + det(A2 −B∗A−1
1 B) ≤ detA2

(see Problem 33.1), i.e.,

| detB|2 = det(BB∗) ≤ detA1 detA2. ¤

33.2.3 Theorem (Szasz’s inequality). Let A be a positive definite nondiagonal
matrix of order n; let Pk be the product of all principal k-minors of A. Then

P1 > P a2
2 > · · · > P

an−1
n−1 > Pn, where ak =

(
n− 1
k − 1

)−1

.

Proof ([Mirsky, 1957]). The required inequality can be rewritten in the form
Pn−kk > P kk+1 (1 ≤ k ≤ n − 1). For n = 2 the proof is obvious. For a diagonal
matrix we have Pn−kk = P kk+1. Suppose that Pn−kk > P kk+1 (1 ≤ k ≤ n − 1) for
some n ≥ 2. Consider a matrix A of order n + 1. Let Ar be the matrix obtained
from A by deleting the rth row and the rth column; let Pk,r be the product of all
principal k-minors of Ar. By the inductive hypothesis

(1) Pn−kk,r ≥ P kk+1,r for 1 ≤ k ≤ n− 1 and 1 ≤ r ≤ n+ 1,

where at least one of the matrices Ar is not a diagonal one and, therefore, at least
one of the inequalities (1) is strict. Hence,

n+1∏
r=1

Pn−kk,r >

n+1∏
r=1

P kk+1,r for 1 ≤ k ≤ n− 1,

i.e., P (n−k)(n+1−k)
k > P

(n−k)k
k+1 . Extracting the (n− k)th root for n 6= k we get the

required conclusion.
For n = k consider the matrix adjA = B =

∥∥bij
∥∥n+1

1
. Since A > 0, it follows

that B > 0 (see Problem 19.4). By Hadamard’s inequality
b11 . . . bn+1,n+1 > detB = (detA)n

i.e., Pn > Pnn+1. ¤
Remark. The inequality P1 > Pn coincides with Hadamard’s inequality.
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33.3.1. Theorem. Let αi > 0,
∑
αi = 1 and Ai > 0. Then

|α1A1 + · · ·+ αkAk| ≥ |A1|α1 . . . |Ak|αk .

Proof ([Mirsky, 1955]). First, consider the case k = 2. Let A,B > 0. Then
A = P ∗ΛP and B = P ∗P , where Λ = diag(λ1, . . . , λn). Hence,

|αA+ (1− α)B| = |P ∗P | · |αΛ + (1− α)I| = |B|
n∏

i=1

(αλi + 1− α).

If f(t) = λt, where λ > 0, then f ′′(t) = (lnλ)2λt ≥ 0 and, therefore,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) for 0 < α < 1.

For x = 1 and y = 0 we get λα ≤ αλ+ 1− α. Hence,
∏

(αλi + 1− α) ≥
∏

λαi = |Λ|α = |A|α|B|−α.

The rest of the proof will be carried out by induction on k; we will assume that
k ≥ 3. Since

α1A1 + · · ·+ αkAk = (1− αk)B + αkAk

and the matrix B = α1
1−αkA1 + · · ·+ αk−1

1−αkAk−1 is positive definite, it follows that

|α1A1 + · · ·+ αkAk| ≥ | α1

1− αkA1 + · · ·+ αk−1

1− αkAk−1|1−αk |Ak|αk .

Since α1
1−αk + · · ·+ αk−1

1−αk = 1, it follows that
∣∣∣∣

α1

1− αkA1 + · · ·+ αk−1

1− αkAk−1

∣∣∣∣ ≥ |A1|
α1

1−αk . . . |Ak−1|
αk−1
1−αk . ¤

Remark. It is possible to verify that the equality takes place if and only if
A1 = · · · = Ak.

33.3.2. Theorem. Let λi be arbitrary complex numbers and Ai ≥ 0. Then

| det(λ1A1 + · · ·+ λkAk)| ≤ det(|λ1|A1 + · · ·+ |λk|Ak).

Proof ([Frank, 1965]). Let k = 2; we can assume that λ1 = 1 and λ2 = λ.
There exists a unitary matrix U such that the matrix UA1U

−1 = D is a diagonal
one. Then M = UA2U

−1 ≥ 0 and

det(A1 + λA2) = det(D + λM) =
n∑
p=0

λp
∑

i1<···<ip
M

(
i1 . . . ip
i1 . . . ip

)
dj1 . . . djn−p ,

where the set (j1, . . . , jn−p) complements (i1, . . . , ip) to (1, . . . , n). Since M and D
are nonnegative definite, M

(
i1 ... ip
i1 ... ip

) ≥ 0 and dj ≥ 0. Hence,

| det(A1 + λA2)| ≤
n∑
p=0

|λ|p
∑

i1<···<ip
M

(
i1 . . . ip
i1 . . . ip

)
· dj1 . . . djn−p

= det(D + |λ|M) = det(A1 + |λ|A2).
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Now, let us prove the inductive step. Let us again assume that λ1 = 1. Let A = A1

and A′ = λ2A2 + · · · + λk+1Ak+1. There exists a unitary matrix U such that the
matrix UAU−1 = D is a diagonal one; matrices Mj = UAjU

−1 and M = UA′U−1

are nonnegative definite. Hence,

| det (A+A′)| = | det (D +M)| ≤
n∑
p=0

∑

i1<···<ip
M

(
i1 . . . ip
i1 . . . ip

)
dj1 . . . djn−p .

Since M = λ2M2 + · · ·+ λk+1Mk+1, by the inductive hypothesis

M

(
i1 . . . ip
i1 . . . ip

)
≤ det

(
k+1∑
j=2

|λj |Mj

(
i1 . . . ip
i1 . . . ip

))
.

It remains to notice that
n∑
p=0

∑

i1<···<ip
dj1 . . . djn−p det

(
k+1∑
j=2

|λj |Mj

(
i1 . . . ip
i1 . . . ip

))

= det(D + |λ2|M2 + · · ·+ |λk+1|Mk+1) = det (
∑|λi|Ai) . ¤

33.4. Theorem. Let A and B be positive definite real matrices and let A1 and
B1 be the matrices obtained from A and B, respectively, by deleting the first row
and the first column. Then

|A+B|
|A1 +B1| ≥

|A|
|A1| +

|B|
|B1| .

Proof ([Bellman, 1955]). If A > 0, then

(1) (x,Ax)(y,A−1y) ≥ (x, y)2.

Indeed, there exists a unitary matrix U such that U∗AU = Λ = diag(λ1, . . . , λn),
where λi > 0. Making the change x = Ua and y = Ub we get the Cauchy-Schwarz
inequality

(2)
(∑

λia
2
i

) (∑
b2i /λi

) ≥ (
∑
aibi)

2
.

The inequality (2) turns into equality for ai = bi/λi and, therefore,

f(A) =
1

(y,A−1y)
= min

x

(x,Ax)
(x, y)2

.

Now, let us prove that if y = (1, 0, 0, . . . , 0) = e1, then f(A) = |A|/|A1|. Indeed,

(e1, A
−1e1) = e1A

−1eT1 =
e1 adjAeT1
|A| =

(adjA)11

|A| =
|A1|
|A| .

It remains to notice that for any functions g and h

min
x
g(x) + min

x
h(x) ≤ min

x
(g(x) + h(x))

and set

g(x) =
(x,Ax)
(x, e1)

and h(x) =
(x,Bx)
(x, e1)

. ¤
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Problems

33.1. Let A and B be matrices of order n (n > 1), where A > 0 and B ≥ 0.
Prove that |A+B| ≥ |A|+ |B| and the equality is only attained for B = 0.

33.2. The matrices A and B are Hermitian and A > 0. Prove that detA ≤
| det(A+ iB)| and the equality is only attained when B = 0.

33.3. Let Ak and Bk be the upper left corner submatrices of order k of positive
definite matrices A and B such that A > B. Prove that

|Ak| > |Bk|.
33.4. Let A and B be real symmetric matrices and A ≥ 0. Prove that if

C = A+ iB is not invertible, then Cx = 0 for some nonzero real vector x.
33.5. A real symmetric matrix A is positive definite. Prove that

det




0 x1 . . . xn
x1
...
xn

A


 ≤ 0.

33.6. Let A > 0 and let n be the order of A. Prove that |A|1/n = min 1
n tr(AB),

where the minimum is taken over all positive definite matrices B with determinant
1.

34. Inequalities for eigenvalues

34.1.1. Theorem (Schur’s inequality). Let λ1, . . . , λn be eigenvalues of A =∥∥aij
∥∥n

1
. Then

∑n
i=1 |λi|2 ≤

∑n
i,j=1 |aij |2 and the equality is attained if and only if

A is a normal matrix.

Proof. There exists a unitary matrix U such that T = U∗AU is an upper
triangular matrix and T is a diagonal matrix if and only if A is a normal matrix
(cf. 17.1). Since T ∗ = U∗A∗U , then TT ∗ = U∗AA∗U and, therefore, tr(TT ∗) =
tr(AA∗). It remains to notice that

tr(AA∗) =
n∑

i,j=1

|aij |2 and tr(TT ∗) =
n∑

i=1

|λi|2 +
∑

i<j

|tij |2. ¤

34.1.2. Theorem. Let λ1, . . . , λn be eigenvalues of A = B + iC, where B and
C are Hermitian matrices. Then

n∑

i=1

|Reλi|2 ≤
n∑

i,j=1

|bij |2 and
n∑

i=1

| Imλi|2 ≤
n∑

i,j=1

|cij |2.

Proof. Let, as in the proof of Theorem 34.1.1, T = U∗AU . We have B =
1
2 (A + A∗) and iC = 1

2 (A − A∗); therefore, U∗BU = (T + T ∗)/2 and U∗(iC)U =
(T − T ∗)/2. Hence,

∑

i,j=1

|bij |2 = tr(BB∗) =
tr(T + T ∗)2

4
=

n∑

i=1

|Reλi|2 +
∑

i<j

|tij |2
2

and
∑n
i,j=1 |cij |2 =

∑n
i=1 | Imλi|2 +

∑
i<j

1
2 |tij |2. ¤
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34.2.1. Theorem (H. Weyl). Let A and B be Hermitian matrices, C = A+B.
Let the eigenvalues of these matrices form increasing sequences: α1 ≤ · · · ≤ αn,
β1 ≤ · · · ≤ βn, γ1 ≤ · · · ≤ γn. Then

a) γi ≥ αj + βi−j+1 for i ≥ j;
b) γi ≤ αj + βi−j+n for i ≤ j.
Proof. Select orthonormal bases {ai}, {bi} and {ci} for each of the matrices

A, B and C such that Aai = αiai, etc. First, suppose that i ≥ j. Consider the sub-
spaces V1 = Span(aj , . . . , an), V2 = Span(bi−j+1, . . . , bn) and V3 = Span(c1, . . . , ci).
Since dimV1 = n− j + 1, dimV2 = n− i+ j and dimV3 = i, it follows that

dim(V1 ∩ V2 ∩ V3) ≥ dimV1 + dimV2 + dimV3 − 2n = 1.

Therefore, the subspace V1 ∩ V2 ∩ V3 contains a vector x of unit length. Clearly,

αj + βi−j+1 ≤ (x,Ax) + (x,Bx) = (x,Cx) ≤ γi.

Replacing matrices A, B and C by −A, −B and −C we can reduce the inequality
b) to the inequality a). ¤

34.2.2. Theorem. Let A =
(
B C
C∗ D

)
be an Hermitian matrix. Let the

eigenvalues of A and B form increasing sequences: α1 ≤ · · · ≤ αn, β1 ≤ · · · ≤ βm.
Then

αi ≤ βi ≤ αi+n−m.

Proof. For A and B take orthonormal eigenbases {ai} and {bi}; we can assume
that A and B act in the spaces V and U , where U ⊂ V . Consider the subspaces
V1 = Span(ai, . . . , an) and V2 = Span(b1, . . . , bi). The subspace V1 ∩ V2 contains a
unit vector x. Clearly,

αi ≤ (x,Ax) = (x,Bx) ≤ βi.
Applying this inequality to the matrix −A we get −αn−i+1 ≤ −βm−i+1, i.e., βj ≤
αj+n−m. ¤

34.3. Theorem. Let A and B be Hermitian projections, i.e., A2 = A and
B2 = B. Then the eigenvalues of AB are real and belong to the segment [0, 1].

Proof ([Afriat, 1956]). The eigenvalues of the matrix AB = (AAB)B coincide
with eigenvalues of the matrix B(AAB) = (AB)∗AB (see 11.6). The latter matrix
is nonnegative definite and, therefore, its eigenvalues are real and nonnegative. If all
eigenvalues of AB are zero, then all eigenvalues of the Hermitian matrix (AB)∗AB
are also zero; hence, (AB)∗AB is zero itself and, therefore, AB = 0. Now, suppose
that ABx = λx 6= 0. Then Ax = λ−1AABx = λ−1ABx = x and, therefore,

(x,Bx) = (Ax,Bx) = (x,ABx) = λ(x, x), i.e., λ =
(x,Bx)
(x, x)

.

For B there exists an orthonormal basis such that (x,Bx) = β1|x1|2 + · · ·+βn|xn|2,
where either βi = 0 or 1. Hence, λ ≤ 1. ¤
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34.4. The numbers σi =
√
µi, where µi are eigenvalues of A∗A, are called

singular values of A. For an Hermitian nonnegative definite matrix the singular
values and the eigenvalues coincide. If A = SU is a polar decomposition of A, then
the singular values of A coincide with the eigenvalues of S. For S, there exists a
unitary matrix V such that S = V ΛV ∗, where Λ is a diagonal matrix. Therefore,
any matrix A can be represented in the form A = V ΛW , where V and W are
unitary matrices and Λ = diag(σ1, . . . , σn).

34.4.1. Theorem. Let σ1, . . . , σn be the singular values of A, where σ1 ≥ · · · ≥
σn, and let λ1, . . . , λn be the eigenvalues of A, where |λ1| ≥ · · · ≥ |λn|. Then
|λ1 . . . λm| ≤ σ1 . . . σm for m ≤ n.

Proof. Let Ax = λ1x. Then

|λ1|2(x, x) = (Ax,Ax) = (x,A∗Ax) ≤ σ2
1(x, x)

since σ2
1 is the maximal eigenvalue of the Hermitian operator A∗A. Hence, |λ1| ≤ σ1

and for m = 1 the inequality is proved. Let us apply the inequality obtained to the
operators Λm(A) and Λm(A∗A) (see 28.5). Their eigenvalues are equal to λi1 . . . λim
and σ2

i1
. . . σ2

im
; hence, |λ1 . . . λm| ≤ σ1 . . . σm.

It is also clear that |λ1 . . . λn| = | detA| =
√

det(A∗A) = σ1 . . . σn. ¤

34.4.2. Theorem. Let σ1 ≥ · · · ≥ σn be the singular values of A and let
τ1 ≥ · · · ≥ τn be the singular values of B. Then | tr(AB)| ≤∑n

i=1 σiτi.

Proof [Mirsky, 1975]). Let A = U1SV1 and B = U2TV2, where Ui and Vi are
unitary matrices, S = diag(σ1, . . . , σn) and T = diag(τ1, . . . , τn). Then

tr(AB) = tr(U1SV1U2TV2) = tr(V2U1SV1U2T ) = tr(UTSV T ),

where U = (V2U1)T and V = V1U2. Hence,

| tr(AB)| = |∑uijvijσiτj | ≤
∑ |uij |2σiτj +

∑ |vij |2σiτj
2

.

The matrices whose (i, j)th elements are |uij |2 and |vij |2 are doubly stochastic and,
therefore,

∑ |uij |2σiτj ≤
∑
σiτi and

∑ |vij |2σiτj ≤
∑
σiτj (see Problem 38.1). ¤

Problems

34.1 (Gershgorin discs). Prove that every eigenvalue of
∥∥aij

∥∥n
1

belongs to one
of the discs |akk − z| ≤ ρk, where ρk =

∑
i 6=j |akj |.

34.2. Prove that if U is a unitary matrix and S ≥ 0, then | tr(US)| ≤ trS.
34.3. Prove that if A and B are nonnegative definite matrices, then | tr(AB)| ≤

trA · trB.
34.4. Matrices A and B are Hermitian. Prove that tr(AB)2 ≤ tr(A2B2).
34.5 ([Cullen, 1965]). Prove that lim

k→∞
Ak = 0 if and only if one of the following

conditions holds:
a) the absolute values of all eigenvalues of A are less than 1;
b) there exists a positive definite matrix H such that H −A∗HA > 0.
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Singular values

34.6. Prove that if all singular values of A are equal, then A = λU , where U is
a unitary matrix.

34.7. Prove that if the singular values of A are equal to σ1, . . . , σn, then the
singular values of adjA are equal to

∏
i 6=1 σi, . . . ,

∏
i 6=n σi.

34.8. Let σ1, . . . , σn be the singular values of A. Prove that the eigenvalues of(
0 A
A∗ 0

)
are equal to σ1, . . . , σn, −σ1, . . . ,−σn.

35. Inequalities for matrix norms

35.1. The operator (or spectral) norm of a matrix A is ‖A‖s = sup
|x|6=0

|Ax|
|x| . The

number ρ(A) = max |λi|, where λ1, . . . , λn are the eigenvalues of A, is called the
spectral radius of A. Since there exists a nonzero vector x such that Ax = λix, it
follows that ‖A‖s ≥ ρ(A). In the complex case this is obvious. In the real case we
can express the vector x as x1 + ix2, where x1 and x2 are real vectors. Then

|Ax1|2 + |Ax2|2 = |Ax|2 = |λi|2(|x1|2 + |x2|2),

and, therefore, both inequalities |Ax1| < λi||x1| and |Ax2| < λi||x2| can not hold
simultaneously.

It is easy to verify that if U is a unitary matrix, then ‖A‖s = ‖AU‖s = ‖UA‖s.
To this end it suffices to observe that

|AUx|
|x| =

|Ay|
|U−1y| =

|Ay|
|y| ,

where y = Ux and |UAx|/|x| = |Ax|/|x|.
35.1.1. Theorem. ‖A‖s =

√
ρ(A∗A).

Proof. If Λ = diag(λ1, . . . , λn), then

( |Λx|
|x|

)2

=
∑ |λixi|2∑ |xi|2 ≤ max

i
|λi|.

Let |λj | = max
i
|λi| and Λx = λjx. Then |Λx|/|x| = |λj |. Therefore, ‖Λ‖s = ρ(Λ).

Any matrix A can be represented in the form A = UΛV , where U and V are
unitary matrices and Λ is a diagonal matrix with the singular values of A standing
on its diagonal (see 34.4). Hence, ‖A‖s = ‖Λ‖s = ρ(Λ) =

√
ρ(A∗A). ¤

35.1.2. Theorem. If A is a normal matrix, then ‖A‖s = ρ(A).

Proof. A normal matrix A can be represented in the form A = U∗ΛU , where
Λ = diag(λ1, . . . , λn) and U is a unitary matrix. Therefore, A∗A = U∗ΛΛU . Let
Aei = λiei and xi = U−1ei. Then A∗Axi = |λi|2xi and, therefore, ρ(A∗A) =
ρ(A)2. ¤
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35.2. The Euclidean norm of a matrix A is

‖A‖e =
√∑

i,j

|aij |2 =
√

tr(A∗A) =
√∑

i

σ2
i ,

where σi are the singular values of A.
If U is a unitary matrix, then

‖AU‖e =
√

tr(U∗A∗AU) =
√

tr(A∗A) = ‖A‖e
and ‖UA‖e = ‖A‖e.

Theorem. If A is a matrix of order n, then

‖A‖s ≤ ‖A‖e ≤
√
n‖A‖s.

Proof. Let σ1, . . . , σn be the singular values of A and σ1 ≥ · · · ≥ σn. Then
‖A‖2s = σ2

1 and ‖A‖2e = σ2
1 + · · ·+ σ2

n. Clearly, σ2
1 ≤ σ2

1 + · · ·+ σ2
n ≤ nσ2

1 . ¤
Remark. The Euclidean and spectral norms are invariant with respect to the

action of the group of unitary matrices. Therefore, it is not accidental that the
Euclidean and spectral norms are expressed in terms of the singular values of the
matrix: they are also invariant with respect to this group.

If f(A) is an arbitrary matrix function and f(A) = f(UA) = f(AU) for any
unitary matrix U , then f only depends on the singular values of A. Indeed, A =
UΛV , where Λ = diag(σ1, . . . , σn) and U and V are unitary matrices. Hence,
f(A) = f(Λ). Observe that in this case A∗ = V ∗ΛU∗ and, therefore, f(A∗) = f(A).
In particular ‖A∗‖e = ‖A‖e and ‖A∗‖s = ‖A‖s.

35.3.1. Theorem. Let A be an arbitrary matrix, S an Hermitian matrix. Then
‖A− A+A∗

2 ‖ ≤ ‖A− S‖, where ‖.‖ is either the Euclidean or the operator norm.

Proof.

‖A− A+A∗

2
‖ = ‖A− S

2
+
S −A∗

2
‖ ≤ ‖A− S‖

2
+
‖S −A∗‖

2
.

Besides, ‖S −A∗‖ = ‖(S −A∗)∗‖ = ‖S −A‖. ¤
35.3.2. Theorem. Let A = US be the polar decomposition of A and W a

unitary matrix. Then ‖A− U‖e ≤ ‖A−W‖e and if |A| 6= 0, then the equality is
only attained for W = U .

Proof. It is clear that

‖A−W‖e = ‖SU −W‖e = ‖S −WU∗‖e = ‖S − V ‖e,

where V = WU∗ is a unitary matrix. Besides,

‖S − V ‖2e = tr(S − V )(S − V ∗) = trS2 + tr I − tr(SV + V ∗S).

By Problem 34.2 | tr(SV )| ≤ trS and | tr(V ∗S)| ≤ trS. It follows that ‖S − V ‖2e ≤
‖S − I‖2e. If S > 0, then the equality is only attained if V = eiϕI and trS = eiϕ trS,
i.e., WU∗ = V = I. ¤
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35.4. Theorem ([Franck,1961]). Let A be an invertible matrix, X a noninvert-
ible matrix. Then

‖A−X‖s ≥ ‖A−1‖−1

s

and if ‖A−1‖s = ρ(A−1), then there exists a noninvertible matrix X such that

‖A−X‖s = ‖A−1‖−1

s .

Proof. Take a vector v such that Xv = 0 and v 6= 0. Then

‖A−X‖s ≥
|(A−X)v|
|v| =

|Av|
|v| ≥ min

x

|Ax|
|x| = min

y

|y|
|A−1y| = ‖A−1‖−1

s .

Now, suppose that ‖A−1‖s = |λ−1| and A−1y = λ−1y, i.e., Ay = λy. Then
‖A−1‖−1

s = |λ| = |Ay|/|y|. The matrixX = A−λI is noninvertible and ‖A−X‖s =
‖λI‖s = |λ| = ‖A−1‖−1

s . ¤

Problems

35.1. Prove that if λ is a nonzero eigenvalue of A, then ‖A−1‖−1
s ≤ |λ| ≤ ‖A‖s.

35.2. Prove that ‖AB‖s ≤ ‖A‖s‖B‖s and ‖AB‖e ≤ ‖A‖e‖B‖e.
35.3. Let A be a matrix of order n. Prove that

‖adjA‖e ≤ n
2−n

2 ‖A‖n−1
e .

36. Schur’s complement and Hadamard’s
product. Theorems of Emily Haynsworth

36.1. Let A =
(
A11 A12

A21 A22

)
, where |A11| 6= 0. Recall that Schur’s complement

of A11 in A is the matrix (A|A11) = A22 −A21A
−1
11 A12 (see 3.1).

36.1.1. Theorem. If A > 0, then (A|A11) > 0.

Proof. Let T =
(
I −A−1

11 B
0 I

)
, where B = A12 = A∗21. Then

T ∗AT =
(
A11 0
0 A22 −B∗A−1

11 B

)
,

is a positive definite matrix, hence, A22 −B∗A−1
11 B > 0. ¤

Remark. We can similarly prove that if A ≥ 0 and |A11| 6= 0, then (A|A11) ≥ 0.

36.1.2. Theorem ([Haynsworth,1970]). If H and K are arbitrary positive def-
inite matrices of order n and X and Y are arbitrary matrices of size n×m, then

X∗H−1X + Y ∗K−1Y − (X + Y )∗(H +K)−1(X + Y ) ≥ 0.

Proof. Clearly,

A = T ∗
(
H 0
0 0

)
T =

(
H X
X∗ X∗H−1X

)
> 0, where T =

(
In H−1X
0 Im

)
.

Similarly, B =
(
K Y
Y ∗ Y ∗K−1Y

)
≥ 0. It remains to apply Theorem 36.1.1 to the

Schur complement of H +K in A+B. ¤
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36.1.3. Theorem ([Haynsworth, 1970]). Let A,B ≥ 0 and A11, B11 > 0. Then

(A+B|A11 +B11) ≥ (A|A11) + (B|B11).

Proof. By definition

(A+B|A11 +B11) = (A22 +B22)− (A21 +B21)(A11 +B11)−1(A12 +B12),

and by Theorem 36.1.2

A21A
−1
11 A12 +B21B

−1
11 B12 ≥ (A21 +B21)(A11 +B11)−1(A12 +B12).

Hence,

(A+B|A11 +B11)

≥ (A22 +B22)− (A21A
−1
11 A12 +B21B

−1
11 B12) = (A|A11) + (B|B11). ¤

We can apply the obtained results to the proof of the following statement.

36.1.4. Theorem ([Haynsworth, 1970]). Let Ak and Bk be upper left corner
submatrices of order k in positive definite matrices A and B of order n, respectively.
Then

|A+B| ≥ |A|
(

1 +
n−1∑

k=1

|Bk|
|Ak|

)
+ |B|

(
1 +

n−1∑

k=1

|Ak|
|Bk|

)
.

Proof. First, observe that by Theorem 36.1.3 and Problem 33.1 we have

|(A+B|A11 +B11)| ≥ |(A|A11) + (B|B11)|

≥ |(A|A11)|+ |(B|B11)| = |A|
|A11| +

|B|
|B11| .

For n = 2 we get

|A+B| = |A1 +B1| · |(A+B|A1 +B1)|

≥ (|A1|+ |B1|)
( |A|
|A1| +

|B|
|B1|

)
= |A|

(
1 +
|B1|
|A1|

)
+ |B|

(
1 +
|A1|
|B1|

)
.

Now, suppose that the statement is proved for matrices of order n − 1 and let
us prove it for matrices of order n. By the inductive hypothesis we have

|An−1 +Bn−1| ≥ |An−1|
(

1 +
n−2∑

k=1

|Bk|
|Ak|

)
+ |Bn−1|

(
1 +

n−2∑

k=1

|Ak|
|Bk|

)
.

Besides, by the above remark

|(A+B|An−1 +Bn−1)| ≥ |A|
|An−1| +

|B|
|Bn−1| .

Therefore,

|A+B|

≥
[
|An−1|

(
1 +

n−2∑

k=1

|Bk|
|Ak|

)
+ |Bn−1|

(
1 +

n−2∑

k=1

|Ak|
|Bk|

)] ( |A|
|An−1| +

|B|
|Bn−1|

)

≥ |A|
(

1 +
n−2∑

k=1

|Bk|
|Ak| +

|Bn−1|
|An−1|

)
+ |B|

(
1 +

n−2∑

k=1

|Ak|
|Bk| +

|An−1|
|Bn−1|

)
.

¤
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36.2. If A =
∥∥aij

∥∥n
1

and B =
∥∥bij

∥∥n
1

are square matrices, then their Hadamard
product is the matrix C =

∥∥cij
∥∥n

1
, where cij = aijbij . The Hadamard product is

denoted by A ◦B.

36.2.1. Theorem (Schur). If A,B > 0, then A ◦B > 0.

Proof. Let U =
∥∥uij

∥∥n
1

be a unitary matrix such that A = U∗ΛU , where
Λ = diag(λ1, . . . , λn). Then aij =

∑
p upiλpupj and, therefore,

∑

i,j

aijbijxixj =
∑
p

λp
∑

i,j

bijy
p
i y
p
j ,

where ypi = xiupi. All the numbers λp are positive and, therefore, it remains to
prove that if not all numbers xi are zero, then not all numbers ypi are zero. For this
it suffices to notice that

∑

i,p

|ypi |2 =
∑

i,p

|xiupi|2 =
∑

i

(|xi|2
∑
p

|upi|2) =
∑

i

|xi|2. ¤

36.2.2. The Oppenheim inequality.

Theorem (Oppenheim). If A,B > 0, then

det(A ◦B) ≥ (
∏
aii) detB.

Proof. For matrices of order 1 the statement is obvious. Suppose that the
statement is proved for matrices of order n− 1. Let us express the matrices A and
B of order n in the form

A =
(
a11 A12

A21 A22

)
, B =

(
b11 B12

B21 B22

)
,

where a11 and b11 are numbers. Then

det(A ◦B) = a11b11 det(A ◦B|a11b11)

and

(A ◦B|a11b11) = A22 ◦B22 −A21 ◦B21a
−1
11 b
−1
11 A12 ◦B12

= A22 ◦ (B|b11) + (A|a11) ◦ (B21B12b
−1
11 ).

Since (A|a11) and (B|b11) are positive definite matrices (see Theorem 36.1.1),
then by Theorem 36.2.1 the matrices A22 ◦ (B|b11) and (A|a11) ◦ (B21B12b

−1
11 ) are

positive definite. Hence, det(A ◦ B) ≥ a11b11 det(A22 ◦ (B|b11)); cf. Problem 33.1.
By inductive hypothesis det(A22 ◦ (B|b11)) ≥ a22 . . . ann det(B|b11); it is also clear

that det(B|b11) =
detB
b11

. ¤

Remark. The equality is only attained if B is a diagonal matrix.
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Problems

36.1. Prove that if A and B are positive definite matrices of order n and A ≥ B,
then |A+B| ≥ |A|+ n|B|.

36.2. [Djoković, 1964]. Prove that any positive definite matrix A can be repre-
sented in the form A = B ◦ C, where B and C are positive definite matrices.

36.3. [Djoković, 1964]. Prove that if A > 0 and B ≥ 0, then rank(A ◦ B) ≥
rankB.

37. Nonnegative matrices

37.1. A real matrix A =
∥∥aij

∥∥n
1

is said to be positive (resp. nonnegative) if
aij > 0 (resp. aij ≥ 0).

In this section in order to denote positive matrices we write A > 0 and the
expression A > B means that A−B > 0.

Observe that in all other sections the notation A > 0 means that A is an Her-
mitian (or real symmetric) positive definite matrix.

A vector x = (x1, . . . , xn) is called positive and we write x > 0 if xi > 0.
A matrix A of order n is called reducible if it is possible to divide the set {1, . . . , n}

into two nonempty subsets I and J such that aij = 0 for i ∈ I and j ∈ J , and
irreducible otherwise. In other words, A is reducible if by a permutation of its rows

and columns it can be reduced to the form
(
A11 A12

0 A22

)
, where A11 and A22 are

square matrices.

Theorem. If A is a nonnegative irreducible matrix of order n, then (I+A)n−1 >
0.

Proof. For every nonzero nonnegative vector y consider the vector z = (I +
A)y = y + Ay. Suppose that not all coordinates of y are positive. Renumbering

the vectors of the basis, if necessary, we can assume that y =
(
u
0

)
, where u > 0.

Then Ay =
(
A11 A12

A21 A22

)(
u
0

)
=

(
A11u
A21u

)
. Since u > 0, A21 ≥ 0 and A21 6= 0,

we have A21u 6= 0. Therefore, z has at least one more positive coordinate than y.
Hence, if y ≥ 0 and y 6= 0, then (I + A)n−1y > 0. Taking for y, first, e1, then e2,
etc., en we get the required solution. ¤

37.2. Let A be a nonnegative matrix of order n and x a nonnegative vector.
Further, let

rx = min
i

{
n∑
j=1

aij
xj
xi

}
= sup{ρ ≥ 0|Ax ≥ ρx}.

and r = sup
x≥0

rx. It suffices to take the supremum over the compact set P =

{x ≥ 0||x| = 1}, and not over all x ≥ 0. Therefore, there exists a nonzero
nonnegative vector z such that Az ≥ rz and there is no positive vector w such that
Aw > rw.

A nonnegative vector z is called an extremal vector of A if Az ≥ rz.
37.2.1. Theorem. If A is a nonnegative irreducible matrix, then r > 0 and an

extremal vector of A is its eigenvector.
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Proof. If ξ = (1, . . . , 1), then Aξ > 0 and, therefore, r > 0. Let z be an
extremal vector of A. Then Az − rz = η ≥ 0. Suppose that η 6= 0. Multiplying
both sides of the inequality η ≥ 0 by (I+A)n−1 we get Aw−rw = (I+A)n−1η > 0,
where w = (I +A)n−1z > 0. Contradiction. ¤

37.2.1.1. Remark. A nonzero extremal vector z of A is positive. Indeed, z ≥ 0
and Az = rz and, therefore, (1 + r)n−1z = (I +A)n−1z > 0.

37.2.1.2. Remark. An eigenvector of A corresponding to eigenvalue r is unique
up to proportionality. Indeed, let Ax = rx and Ay = ry, where x > 0. If µ =
min(yi/xi), then yj ≥ µxj , the vector z = y − µx has nonnegative coordinates and
at least one of them is zero. Suppose that z 6= 0. Then z > 0 since z ≥ 0 and
Az = rz (see Remark 37.2.1.1). Contradiction.

37.2.2. Theorem. Let A be a nonnegative irreducible matrix and let a matrix
B be such that |bij | ≤ aij. If β is an eigenvalue of B, then |β| ≤ r, and if β = reiϕ

then |bij | = aij and B = eiϕDAD−1, where D = diag(d1, . . . , dn) and |di| = 1.

Proof. Let By = βy, where y 6= 0. Consider the vector y+ = (|y1|, . . . , |yn|).
Since βyi =

∑
j bijyj , then |βyi| =

∑
j |bijyj | ≤

∑
j aij |yj | and, therefore, |β|y+ ≤

ry+, i.e., |β| ≤ r.
Now, suppose that β = reiϕ. Then y+ is an extremal vector of A and, therefore,

y+ > 0 and Ay+ = ry+. Let B+ =
∥∥b′ij

∥∥, where b′ij = |bij |. Then B+ ≤ A and
Ay+ = ry+ = B+y+ and since y+ > 0, then B+ = A. Consider the matrix D =
diag(d1, . . . , dn), where di = yi/|yi|. Then y = Dy+ and the equality By = βy can
be rewritten in the form BDy+ = βDy+, i.e., Cy+ = ry+, where C = e−iϕD−1BD.
The definition of C implies that C+ = B+ = A. Let us prove now that C+ = C.
Indeed, Cy+ = ry+ = B+y+ = C+y+ and since C+ ≥ 0 and y+ > 0, then
C+y+ ≥ Cy+, where equality is only possible if C = C+ = A. ¤

37.3. Theorem. Let A be a nonnegative irreducible matrix, k the number of
its distinct eigenvalues whose absolute values are equal to the maximal eigenvalue r
and k > 1. Then there exists a permutation matrix P such that the matrix PAPT

is of the block form




0 A12 0 . . . 0
0 0 A23 . . . 0
...

...
. . . . . .

...

0 0 0
. . . Ak−1,k

Ak1 0 0 . . . 0



.

Proof. The greatest in absolute value eigenvalues of A are of the form αj =
r exp(iϕj). Applying Theorem 37.2.2 to B = A, we get A = exp(iϕj)DjAD

−1
j .

Therefore,

p(t) = |tI −A| = |tI − exp(iϕj)DjAD
−1
j | = λp(exp(−iϕj)t).

The numbers α1, . . . , αk are roots of the polynomial p and, therefore, they are
invariant with respect to rotations through angles ϕj (i.e., they constitute a group).
Taking into account that the eigenvalue r is simple (see Problem 37.4), we get
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αj = r exp( 2jπi
k ). Let y1 be the eigenvector corresponding to the eigenvalue α1 =

r exp( 2πi
k ). Then y+

1 > 0 and y1 = D1y
+
1 (see the proof of Theorem 37.2.2). There

exists a permutation matrix P such that

PD1P
T = diag(eiγ1I1, . . . , e

iγsIs),

where the numbers eiγ1 , . . . , eiγs are distinct and I1, . . . , Is are unit matrices. If
instead of y1 we take e−iγ1y1, then we may assume that γ1 = 0.

Let us divide the matrix PAPT into blocks Apq in accordance with the division
of the matrix PD1P

T . Since A = exp(iϕj)DjAD
−1
j , it follows that

PAPT = exp(iϕ1)(PD1P
T )(PAPT )(PD1P

T )−1,

i.e.,

Apq = exp[i(γp − γq +
2π
k

)]Apq.

Therefore, if 2π
k + γp 6≡ γq (mod 2π), then Apq = 0. In particular s > 1 since

otherwise A = 0.
The numbers γi are distinct and, therefore, for any p there exists no more than

one number q such that Apq 6= 0 (in which case q 6= p). The irreducibility of A
implies that at least one such q exists.

Therefore, there exists a map p 7→ q(p) such that Ap,q(p) 6= 0 and 2π
k +γp ≡ γq(p)

(mod 2π).
For p = 1 we get γq(1) ≡ 2π

k (mod 2π). After permutations of rows and columns
of PAPT we can assume that γq(1) = γ2. By repeating similar arguments we can
get

γq(j−1) = γj =
2π(j − 1)

k
for 2 ≤ j ≤ min(k, s).

Let us prove that s = k. First, suppose that 1 < s < k. Then 2π
k + γs − γr 6≡ 0

mod 2π for 1 ≤ r ≤ s− 1. Therefore, Asr = 0 for 1 ≤ r ≤ s− 1, i.e., A is reducible.
Now, suppose that s > k. Then γi = 2(i−1)π

k for 1 ≤ i ≤ k. The numbers γj are
distinct for 1 ≤ j ≤ s and for any i, where 1 ≤ i ≤ k, there exists j(1 ≤ j ≤ k)
such that 2π

k +γi ≡ γj (mod 2π). Therefore, 2π
k +γi 6≡ γr (mod 2π) for 1 ≤ i ≤ k

and k < r ≤ s, i.e., Air = 0 for such k and r. In either case we get contradiction,
hence, k = s.

Now, it is clear that for the indicated choice of P the matrix PAPT is of the
required form. ¤

Corollary. If A > 0, then the maximal positive eigenvalue of A is strictly
greater than the absolute value of any of its other eigenvalues.

37.4. A nonnegative matrix A is called primitive if it is irreducible and there is
only one eigenvalue whose absolute value is maximal.

37.4.1. Theorem. If A is primitive, then Am > 0 for some m.

Proof ([Marcus, Minc, 1975]). Dividing, if necessary, the elements of A by the
eigenvalue whose absolute value is maximal we can assume that A is an irreducible
matrix whose maximal eigenvalue is equal to 1, the absolute values of the other
eigenvalues being less than 1.
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Let S−1AS =
(

1 0
0 B

)
be the Jordan normal form of A. Since the absolute

values of all eigenvalues of B are less than 1, it follows that lim
n→∞

Bn = 0 (see

Problem 34.5 a)). The first column xT of S is the eigenvector of A corresponding
to the eigenvalue 1 (see Problem 11.6). Therefore, this vector is an extremal vector
of A; hence, xi > 0 for all i (see 37.2.1.2). Similarly, the first row, y, of S−1 consists
of positive elements. Hence,

lim
n→∞

An = lim
n→∞

S

(
1 0
0 Bn

)
S−1 = S

(
1 0
0 0

)
S−1 = xT y > 0

and, therefore, Am > 0 for some m. ¤
Remark. If A ≥ 0 and Am > 0, then A is primitive. Indeed, the irreducibility

of A is obvious; besides, the maximal positive eigenvalue of Am is strictly greater
than the absolute value of any of its other eigenvalues and the eigenvalues of Am

are obtained from the eigenvalues of A by raising them to mth power.

37.4.2. Theorem (Wielandt). Let A be a nonnegative primitive matrix of order
n. Then An

2−2n+2 > 0.

Proof (Following [Sedláček, 1959]). To a nonnegative matrix A of order n we
can assign a directed graph with n vertices by connecting the vertex i with the
vertex j if aij > 0 (the case i = j is not excluded). The element bij of As is positive
if and only if on the constructed graph there exists a directed path of length s
leading from vertex i to vertex j.

Indeed, bij =
∑
aii1ai1i2 . . . ais−1j , where aii1ai1i2 . . . ais−1j > 0 if and only if the

path ii1i2 . . . is−1j runs over the directed edges of the graph.
To a primitive matrix there corresponds a connected graph, i.e., from any vertex

we can reach any other vertex along a directed path. Among all cycles, select a
cycle of the least length (if aii > 0, then the edge ii is such a cycle). Let, for
definiteness sake, this be the cycle 12 . . . l1. Then the elements b11, . . . , bll of Al are
positive.

From any vertex i we can reach one of the vertices 1, . . . , l along a directed path
whose length does not exceed n − l. By continuing our passage along this cycle
further, if necessary, we can turn this path into a path of length n− l.

Now, consider the matrix Al. It is also primitive and a directed graph can also
be assigned to it. Along this graph, from a vertex j ∈ {1, . . . , l} (which we have
reached from the vertex i) we can traverse to any given vertex k along a path whose
length does not exceed n− 1. Since the vertex j is connected with itself, the same
path can be turned into a path whose length is precisely equal to n− 1. Therefore,
for any vertices i and k on the graph corresponding to A there exists a directed
path of length n− l + l(n− 1) = l(n− 2) + n. If l = n, then the matrix A can be
reduced to the form




0 a12 0 . . . 0

0 0 a23
. . . 0

...
...

. . . . . .
...

0 0 0
. . . an−1,n

an1 0 0 . . . 0




;
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this matrix is not primitive. Therefore l ≤ n− 1; hence, l(n− 2) +n ≤ n2− 2n+ 2.
It remains to notice that if A ≥ 0 and Ap > 0, then Ap+1 > 0 (Problem 37.1).

The estimate obtained in Theorem 37.4.2 is exact. It is reached, for instance, at
the matrix

A =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . . . . .

...
0 0 0 . . . 1
1 1 0 . . . 0




of order n, where n ≥ 3. To this matrix we can assign the operator that acts as
follows:

Ae1 = en, Ae2 = e1 + en, Ae3 = e2, . . . , Aen = en−1.

Let B = An−1. It is easy to verify that

Be1 = e2, Be2 = e2 + e3, Be3 = e3 + e4, . . . , Ben = en + e1.

Therefore, the matrix Bn−1 has just one zero element situated on the (1, 1)th
position and the matrix ABn−1 = An

2−2n+2 is positive. ¤

Problems

37.1. Prove that if A ≥ 0 and Ak > 0, then Ak+1 > 0.
37.2. Prove that a nonnegative eigenvector of an irreducible nonnegative matrix

is positive.

37.3. Let A =
(
B C
D E

)
be a nonnegative irreducible matrix and B a square

matrix. Prove that if α and β are the maximal eigenvalues of A and B, then β < α.
37.4. Prove that if A is a nonnegative irreducible matrix, then its maximal

eigenvalue is a simple root of its characteristic polynomial.
37.5. Prove that if A is a nonnegative irreducible matrix and a11 > 0, then A is

primitive.
37.6 ([Šidák, 1964]). A matrix A is primitive. Can the number of positive

elements of A be greater than that of A2?

38. Doubly stochastic matrices

38.1. A nonnegative matrix A =
∥∥aij

∥∥n
1

is called doubly stochastic if
∑n
i=1 aik =

1 and
∑n
j=1 akj = 1 for all k.

38.1.1. Theorem. The product of doubly stochastic matrices is a doubly sto-
chastic matrix.

Proof. Let A and B be doubly stochastic matrices and C = AB. Then

n∑

i=1

cij =
n∑

i=1

n∑
p=1

aipbpj =
n∑
p=1

bpj

n∑

i=1

aip =
n∑
p=1

bpj = 1.

Similarly,
∑n
j=1 cij = 1. ¤
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38.1.2. Theorem. If A =
∥∥aij

∥∥n
1

is a unitary matrix, then the matrix B =∥∥bij
∥∥n

1
, where bij = |aij |2, is doubly stochastic.

Proof. It suffices to notice that
∑n
i=1 |aij |2 =

∑n
j=1 |aij |2 = 1. ¤

38.2.1. Theorem (Birkhoff). The set of all doubly stochastic matrices of order
n is a convex polyhedron with permutation matrices as its vertices.

Let i1, . . . , ik be numbers of some of the rows of A and j1, . . . , jl numbers of
some of its columns. The matrix

∥∥aij
∥∥, where i ∈ {i1, . . . , ik} and j ∈ {j1, . . . , jl},

is called a submatrix of A. By a snake in A we will mean the set of elements
a1σ(1), . . . , anσ(n), where σ is a permutation. In the proof of Birkhoff’s theorem we
will need the following statement.

38.2.2. Theorem (Frobenius-König). Each snake in a matrix A of order n
contains a zero element if and only if A contains a zero submatrix of size s × t,
where s+ t = n+ 1.

Proof. First, suppose that on the intersection of rows i1, . . . , is and columns
j1, . . . , jt there stand zeros and s+ t = n+ 1. Then at least one of the s numbers
σ(i1), . . . , σ(is) belongs to {j1, . . . , jt} and, therefore, the corresponding element of
the snake is equal to 0.

Now, suppose that every snake in A of order n contains 0 and prove that then
A contains a zero submatrix of size s × t, where s + t = n + 1. The proof will be
carried out by induction on n. For n = 1 the statement is obvious.

Now, suppose that the statement is true for matrices of order n−1 and consider
a nonzero matrix of order n. In it, take a zero element and delete the row and
the column which contain it. In the resulting matrix of order n − 1 every snake
contains a zero element and, therefore, it has a zero submatrix of size s1× t1, where
s1 + t1 = n. Hence, the initial matrix A can be reduced by permutation of rows
and columns to the block form plotted on Figure 6 a).

Figure 6

Suppose that a matrix X has a snake without zero elements. Every snake in
the matrix Z can be complemented by this snake to a snake in A. Hence, every
snake in Z does contain 0. As a result we see that either all snakes of X or all
snakes of Z contain 0. Let, for definiteness sake, all snakes of X contain 0. Then
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X contains a zero submatrix of size p× q, where p+ q = s1 + 1. Hence, A contains
a zero submatrix of size p× (t1 + q) (on Figure 6 b) this matrix is shaded). Clearly,
p+ (t1 + q) = s1 + 1 + t1 = n+ 1. ¤

Corollary. Any doubly stochastic matrix has a snake consisting of positive
elements.

Proof. Indeed, otherwise this matrix would contain a zero submatrix of size
s× t, where s+ t = n+ 1. The sum of the elements of each of the rows considered
and each of the columns considered is equal to 1; on the intersections of these rows
and columns zeros stand and, therefore, the sum of the elements of these rows and
columns alone is equal to s+ t = n+ 1; this exceeds the sum of all elements which
is equal to n. Contradiction. ¤

Proof of the Birkhoff theorem. We have to prove that any doubly stochastic
matrix S can be represented in the form S =

∑
λiPi, where Pi is a permutation

matrix, λi ≥ 0 and
∑
λi = 1.

We will use induction on the number k of positive elements of a matrix S of
order n. For k = n the statement is obvious since in this case S is a permutation
matrix. Now, suppose that S is not a permutation matrix. Then this matrix has a
positive snake (see Corollary 38.2.2). Let P be a permutation matrix corresponding
to this snake and x the minimal element of the snake. Clearly, x 6= 1. The matrix
T = 1

1−x (S − xP ) is doubly stochastic and it has at least one positive element less
than S. By inductive hypothesis T can be represented in the needed form; besides,
S = xP + (1− x)T . ¤

38.2.3. Theorem. Any doubly stochastic matrix S of order n is a convex linear
hull of no more than n2 − 2n+ 2 permutation matrices.

Proof. Let us cross out from S the last row and the last column. S is uniquely
recovered from the remaining (n − 1)2 elements and, therefore, the set of doubly
stochastic matrices of order n can be considered as a convex polyhedron in the space
of dimension (n− 1)2. It remains to make use of the result of Problem 7.2. ¤

As an example of an application of the Birkhoff theorem, we prove the following
statement.

38.2.4. Theorem (Hoffman-Wielandt). Let A and B be normal matrices; let
α1, . . . , αn and β1, . . . , βn be their eigenvalues. Then

‖A−B‖2e ≥ min
σ

n∑

i=1

(ασ(i) − βi)2,

where the minimum is taken over all permutations σ.

Proof. Let A = V ΛaV ∗, B = WΛbW ∗, where U and W are unitary matrices
and Λa = diag(α1, . . . , αn), Λb = diag(β1, . . . , βn). Then

‖A−B‖2e = ‖W ∗(V ΛaV ∗ −WΛbW ∗)W‖2e = ‖UΛaU∗ − Λb‖2e,
where U = W ∗V . Besides,

‖UΛaU∗ − Λb‖2e = tr(UΛaU∗ − Λb)(UΛ∗aU
∗ − Λ∗b)

= tr(ΛaΛ∗a + ΛbΛ∗b)− 2 Re tr(UΛaU∗Λ∗b)

=
n∑

i=1

(|αi|2 + |βi|2)− 2
n∑

i,j=1

|uij |2 Re(βiαj).
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Since the matrix
∥∥cij

∥∥, where cij = |uij |2, is doubly stochastic, then

‖A−B‖2e ≥
n∑

i=1

(|αi|2 + |βi|2)− 2 min
n∑

i,j=1

cij Re(βiαj),

where the minimum is taken over all doubly stochastic matrices C. For fixed sets
of numbers αi, βj we have to find the minimum of a linear function on a convex
polyhedron whose vertices are permutation matrices. This minimum is attained at
one of the vertices, i.e., for a matrix cij = δi,σ(i). In this case

2
n∑

i,j=1

cij Re(βiαj) = 2
n∑

i=1

Re(βiασ(i)).

Hence,

‖A−B‖2e ≥
n∑

i=1

(|ασ(i)|2 + |βi|2 − 2 Re(βiασ(i))
)

=
n∑

i=1

|ασ(i) − βi|2. ¤

38.3.1. Theorem. Let x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn, where x1 + · · ·+
xk ≤ y1 + · · ·+ yk for all k < n and x1 + · · ·+xn = y1 + · · ·+ yn. Then there exists
a doubly stochastic matrix S such that Sy = x.

Proof. Let us assume that x1 6= y1 and xn 6= yn since otherwise we can throw
away several first or several last coordinates. The hypothesis implies that x1 ≤ y1

and x1 + · · ·+ xn−1 ≤ y1 + · · ·+ yn−1, i.e., xn ≥ yn. Hence, x1 < y1 and xn > yn.
Now, consider the operator which is the identity on y2, . . . , yn−1 and on y1 and yn

acts by the matrix
(

α 1− α
1− α α

)
. If 0 < α < 1, then the matrix S1 of this

operator is doubly stochastic. Select a number α so that αy1 + (1 − α)yn = x1,
i.e., α = (x1 − yn)(y1 − yn)−1. Since y1 > x1 ≥ xn > yn, then 0 < α < 1.
As a result, with the help of S1 we pass from the set y1, y2, . . . , yn to the set
x1, y2, . . . , yn−1, y

′
n, where y′n = (1 − α)y1 + αyn. Since x1 + y′n = y1 + yn, then

x2 + · · ·+ xn−1 + xn = y2 + · · ·+ yn−1 + y′n and, therefore, for the sets x2, . . . , xn
and y2, . . . , yn−1, y

′
n we can repeat similar arguments, etc. It remains to notice

that the product of doubly stochastic matrices is a doubly stochastic matrix, see
Theorem 38.1.1. ¤

38.3.2. Theorem (H. Weyl’s inequality). Let α1 ≥ · · · ≥ αn be the absolute
values of the eigenvalues of an invertible matrix A, and let σ1 ≥ · · · ≥ σn be its
singular values. Then αs1 + · · ·+ αsk ≤ σs1 + · · ·+ σsk for all k ≤ n and s > 0.

Proof. By Theorem 34.4.1, α1 . . . αn = σ1 . . . σnand α1 . . . αk ≤ σ1 . . . σk for
k ≤ n. Let x and y be the columns (lnα1, . . . , lnαn)T and (lnσ1, . . . , lnσn)T . By
Theorem 38.3.1 there exists a doubly stochastic matrix S such that x = Sy. Fix
k ≤ n and for u = (u1, . . . , un) consider the function f(u) = f(u1) + · · · + f(uk),
where f(t) = exp(st) is a convex function; the function f is convex on a set of
vectors with positive coordinates.
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Now, fix a vector u with positive coordinates and consider the function g(S) =
f(Su) defined on the set of doubly stochastic matrices. If 0 ≤ α ≤ 1, then

g(λS + (1− λ)T ) = f(λSu+ (1− λ)Tu)

≤ λf(SU) + (1− λ)f(Tu) = λg(S) + (1− λ)g(T ),

i.e., g is a convex function. A convex function defined on a convex polyhedron takes
its maximal value at one of the polyhedron’s vertices. Therefore, g(S) ≤ g(P ),
where P is the matrix of permutation π (see Theorem 38.2.1). As the result we get

f(x) = f(Sy) = g(S) ≤ g(P ) = f(yπ(1), . . . , yπ(n)).

It remains to notice that

f(x) = exp(s lnα1) + · · ·+ exp(s lnαk) = αs1 + · · ·+ αsk

and
f(yπ(1), . . . , yπ(n)) = σsπ(1) + · · ·+ σsπ(k) ≤ σs1 + · · ·+ σsk. ¤

Problems

38.1 ([Mirsky, 1975]). Let A =
∥∥aij

∥∥n
1

be a doubly stochastic matrix; x1 ≥ · · · ≥
xn ≥ 0 and y1 ≥ · · · ≥ yn ≥ 0. Prove that

∑
r,s arsxrys ≤

∑
r xryr.

38.2 ([Bellman, Hoffman, 1954]). Let λ1, . . . , λn be eigenvalues of an Hermitian
matrix H. Prove that the point with coordinates (h11, . . . , hnn) belongs to the
convex hull of the points whose coordinates are obtained from λ1, . . . , λn under all
possible permutations.

Solutions

33.1. Theorem 20.1 shows that there exists a matrix P such that P ∗AP = I
and P ∗BP = diag(µ1, . . . , µn), where µi ≥ 0. Therefore, |A + B| = d2

∏
(1 + µi),

|A| = d2 and |B| = d2
∏
µi, where d = |detP |. It is also clear that

∏
(1 + µi) = 1 + (µ1 + · · ·+ µn) + · · ·+ ∏

µi ≥ 1 +
∏
µi.

The inequality is strict if µ1 + · · · + µn > 0, i.e., at least one of the numbers
µ1, . . . , µn is nonzero.

33.2. As in the preceding problem, det(A + iB) = d2
∏

(αk + iβk) and detA =
d2

∏
αk, where αk > 0 and βk ∈ R. Since |αk + iβk|2 = |αk|2 + |βk|2, then

|αk + iβk| ≥ |αk| and the inequality is strict if βk 6= 0.
33.3. Since A − B = C > 0, then Ak = Bk + Ck, where Ak, Bk, Ck > 0.

Therefore, |Ak| > |Bk|+ |Ck| (cf. Problem 33.1).
33.4. Let x+ iy be a nonzero eigenvector of C corresponding to the zero eigen-

value. Then

(A+ iB)(x+ iy) = (Ax−By) + i(Bx+Ay) = 0,

i.e., Ax = By and Ay = −Bx. Therefore,

0 ≤ (Ax, x) = (By, x) = (y,Bx) = −(y,Ay) ≤ 0,
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i.e., (Ax, x) = (Ay, y) = 0. Hence, Ay = By = 0 and, therefore, Ax = Bx = 0 and
Ay = By = 0 and at least one of the vectors x and y is nonzero.

33.5. Let z = (z1, . . . , zn). The quadratic form Q corresponding to the matrix
considered is of the shape

2
n∑

i=1

xiz0zi + (Az, z) = 2z0(z, x) + (Az, z).

The form Q is positive definite on a subspace of codimension 1 and, therefore,
it remains to prove that the quadratic form Q is not positive definite. If x 6=
0, then (z, x) 6= 0 for some z. Therefore, the number z0 can be chosen so that
2z0(z, x) + (Az, z) < 0.

33.6. There exists a unitary matrix U such that U∗AU = diag(λ1, . . . , λn), where
λi ≥ 0. Besides, tr(AB) = tr(U∗AUB′), where B′ = U∗BU . Therefore, we can
assume that A = diag(λ1, . . . , λn). In this case

tr(AB)
n

=
(
∑
λibii)
n

≥ (
∏
λibii)

1/n = |A|1/n (
∏
bii)

1/n

and
∏
bii ≥ |B| = 1 (cf. 33.2). Thus, the minimum is attained at the matrix

B = |A|1/n diag(λ−1
1 , . . . , λ−1

n ).

34.1. Let λ be an eigenvalue of the given matrix. Then the system
∑
aijxj = λxi

(i = 1, . . . , n) has a nonzero solution (x1, . . . , xn). Among the numbers x1, . . . , xn
select the one with the greatest absolute value; let this be xk. Since

akkxk − λxk = −
∑

j 6=k
akjxj ,

we have
|akkxk − λxk| ≤

∑

j 6=k
|akjxj | ≤ ρk|xk|,

i.e., |akk − λ| ≤ ρk.
34.2. Let S = V ∗DV , where D = diag(λ1, . . . , λn), and V is a unitary matrix.

Then
tr(US) = tr(UV ∗DV ) = tr(V UV ∗D).

Let V UV ∗ = W =
∥∥wij

∥∥n
1
; then tr(US) =

∑
wiiλi. Since W is a unitary matrix,

it follows that |wii| ≤ 1 and, therefore,

|∑wiiλi| ≤
∑|λi| =

∑
λi = trS.

If S > 0, i.e., λi 6= 0 for all i, then trS = tr(US) if and only if wii = 1, i.e., W = I
and, therefore, U = I. The equality trS = | tr(US)| for a positive definite matrix
S can only be satisfied if wii = eiϕ, i.e., U = eiϕI.

34.3. Let α1 ≥ · · · ≥ αn ≥ 0 and β1 ≥ · · · ≥ βn ≥ 0 be the eigenvalues of A
and B. For nonnegative definite matrices the eigenvalues coincide with the singular
values and, therefore,

| tr(AB)| ≤∑
αiβi ≤ (

∑
αi) (

∑
βi) = trA trB
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(see Theorem 34.4.2).
34.4. The matrix C = AB−BA is skew-Hermitian and, therefore, its eigenvalues

are purely imaginary; hence, tr(C2) ≤ 0. The inequality tr(AB−BA)2 ≤ 0 implies

tr(AB)2 + tr(BA)2 ≤ tr(ABBA) + tr(BAAB).

It is easy to verify that tr(BA)2 = tr(AB)2 and tr(ABBA) = tr(BAAB) =
tr(A2B2).

34.5. a) If Ak −→ 0 and Ax = λx, then λk −→ 0. Now, suppose that |λi| < 1 for
all eigenvalues of A. It suffices to consider the case when A = λI +N is a Jordan
block of order n. In this case

Ak =
(
k

0

)
λkI +

(
k

1

)
λk−1N + · · ·+

(
k

n

)
λk−nNn,

since Nn+1 = 0. Each summand tends to zero since
(
k
p

)
= k(k−1) . . . (k−p+1) ≤ kp

and lim
k−→∞

kpλk = 0.

b) If Ax = λx and H −A∗HA > 0 for H > 0, then

0 < (Hx−A∗HAx, x) = (Hx, x)− (Hλx, λx) = (1− |λ|2)(Hx, x);

hence, |λ| < 1. Now, suppose that Ak −→ 0. Then (A∗)k −→ 0 and (A∗)kAk −→ 0.
If Bx = λx and b = max |bij |, then |λ| ≤ nb, where n is the order of B. Hence,
all eigenvalues of (A∗)kAk tend to zero and, therefore, for a certain m the absolute
value of every eigenvalue αi of the nonnegative definite matrix (A∗)mAm is less
than 1, i.e., 0 ≤ αi < 1. Let

H = I +A∗A+ · · ·+ (A∗)m−1Am−1.

Then H −A∗HA = I − (A∗)mAm and, therefore, the eigenvalues of the Hermitian
matrix H −A∗HA are equal to 1− αi > 0.

34.6. The eigenvalues of an Hermitian matrix A∗A are equal and, therefore,
A∗A = tI, where t ∈ R. Hence, U = t−1/2A is a unitary matrix.

34.7. It suffices to apply the result of Problem 11.8 to the matrix A∗A.

34.8. It suffices to notice that
∣∣∣∣
λI −A
−A∗ λI

∣∣∣∣ = |λ2I −A∗A| (cf. 3.1).

35.1. Suppose that Ax = λx, λx 6= 0. Then A−1x = λ−1x; therefore, max
y

|Ay|
|y| ≥

|Ax|
|x| = λ and

(
max
y

|A−1y|
|y|

)−1

= min
y

|y|
|A−1y| ≤

|x|
|A−1x| = λ.

35.2. If ‖AB‖s 6= 0, then

‖AB‖s = max
x

|ABx|
|x| =

|ABx0|
|x0| ,

where Bx0 6= 0. Let y = Bx0; then

|ABx0|
|x0| =

|Ay|
|y| ·

|Bx0|
|x0| ≤ ‖A‖s‖B‖s
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To prove the inequality ‖AB‖e ≤ ‖A‖e‖B‖e it suffices to make use of the inequality

|
n∑
k=1

aikbkj |2 ≤
(

n∑
k=1

|aik|2
)(

n∑
k=1

|bkj |2
)
.

35.3. Let σ1, . . . , σn be the singular values of the matrix A. Then the singular
values of adjA are equal to

∏
i 6=1 σi, . . . ,

∏
i 6=n σi (Problem 34.7) and, therefore,

‖A‖2e = σ2
1 + · · ·+ σ2

n and

‖adjA‖2e =
∏

i 6=1

σi + · · ·+
∏

i 6=n
σi.

First, suppose that A is invertible. Then

‖adjA‖2e = (σ2
1 . . . σ

2
n)(σ−2

1 + · · ·+ σ−2
n ).

Multiplying the inequalities

σ2
1 . . . σ

2
n ≤ n−n(σ2

1 + · · ·+ σ2
n)n and (σ−2

1 + · · ·+ σ−2
n )(σ2

1 + · · ·+ σ2
n) ≤ n2

we get
‖adjA‖2e ≤ n2−n‖A‖2(n−1)

e .

Both parts of this inequality depend continuously on the elements of A and, there-
fore, the inequality holds for noninvertible matrices as well. The inequality turns
into equality if σ1 = · · · = σn, i.e., if A is proportional to a unitary matrix (see
Problem 34.6).

36.1. By Theorem 36.1.4

|A+B| ≥ |A|
(

1 +
n−1∑

k=1

|Bk|
|Ak|

)
+ |B|

(
1 +

n−1∑

k=1

|Ak|
|Bk|

)
.

Besides, |Ak||Bk| ≥ 1 (see Problem 33.3).

36.2. Consider a matrix B(λ) =
∥∥bij

∥∥n
1
, where bii = 1 and bij = λ for i 6= j. It

is possible to reduce the Hermitian form corresponding to this matrix to the shape
λ|∑xi|2 + (1 − λ)

∑ |xi|2 and, therefore B(λ) > 0 for 0 < λ < 1. The matrix
C(λ) = A◦B(λ) is Hermitian for real λ and lim

λ−→1
C(λ) = A > 0. Hence, C(λ0) > 0

for a certain λ0 > 1. Since B(λ0) ◦B(λ−1
0 ) is the matrix all of whose elements are

1, it follows that A = C(λ0) ◦B(λ−1
0 ) > 0.

36.3. If B > 0, then we can make use of Schur’s theorem (see Theorem 36.2.1).
Now, suppose that rankB = k, where 0 < k < rankA. Then B contains a positive
definite principal submatrix M(B) of rank k (see Problem 19.5). Let M(A) be the
corresponding submatrix of A; since A > 0, it follows that M(A) > 0. By the Schur
theorem the submatrix M(A) ◦M(B) of A ◦B is invertible.

37.1. Let A ≥ 0 and B > 0. The matrix C = AB has a nonzero element cpq
only if the pth row of A is zero. But then the pth row of Ak is also zero.

37.2. Suppose that the given eigenvector is not positive. We may assume that it

is of the form
(
x
0

)
, where x > 0. Then

(
A B
C D

)(
x
0

)
=

(
Ax
Cx

)
, and, therefore,
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Cx = 0. Since C ≥ 0, then C = 0 and, therefore, the given matrix is decomposable.
Contradiction.

37.3. Let y ≥ 0 be a nonzero eigenvector of B corresponding to the eigenvalue

β and x =
(
y
0

)
. Then

Ax =
(
B C
D E

)(
y
0

)
=

(
By
0

)
+

(
0
Dy

)
= βx+ z,

where z =
(

0
Dy

)
≥ 0. The equality Ax = βx cannot hold since the eigenvector of

an indecomposable matrix is positive (cf. Problem 37.2). Besides,

sup{t ≥ 0 | Ax− tx ≥ 0} ≥ β

and if β = α, then x is an extremal vector (cf. Theorem 37.2.1); therefore, Ax = βx.
The contradiction obtained means that β < α.

37.4. Let f(λ) = |λI − A|. It is easy to verify that f ′(λ) =
∑n
i=1 |λI − Ai|,

where Ai is a matrix obtained from A by crossing out the ith row and the ith
column (see Problem 11.7). If r and ri are the greatest eigenvalues of A and Ai,
respectively, then r > ri (see Problem 37.3). Therefore, all numbers |rI − Ai| are
positive. Hence, f ′(r) 6= 0.

37.5. Suppose that A is not primitive. Then for a certain permutation matrix
P the matrix PAPT is of the form indicated in the hypothesis of Theorem 37.3.
On the other hand, the diagonal elements of PAPT are obtained from the diagonal
elements of A under a permutation. Contradiction.

37.6. Yes, it can. For instance consider a nonnegative matrix A corresponding
to the directed graph

1 −→ (1, 2), 2 −→ (3, 4, 5), 3 −→ (6, 7, 8), 4 −→ (6, 7, 8),

5 −→ (6, 7, 8), 6 −→ (9), 7 −→ (9), 8 −→ (9), 9 −→ (1).

It is easy to verify that the matrix A is indecomposable and, since a11 > 0, it is
primitive (cf. Problem 37.5). The directed graph

1 −→ (1, 2, 3, 4, 5), 2 −→ (6, 7, 8), 3 −→ (9), 4 −→ (9),

5 −→ (9), 6 −→ (1), 7 −→ (1), 8 −→ (1), 9 −→ (1, 2).

corresponds to A2. The first graph has 18 edges, whereas the second one has 16
edges.

38.1. There exist nonnegative numbers ξi and ηi such that xr = ξr + · · · + ξn
and yr = ηr + · · ·+ ηn. Therefore,

∑
r

xryr −
∑
r,s

arsxrys =
∑
r,s

(δrs − ars)xrys

=
∑
r,s

(δrs − ars)
∑

i≥r
ξi

∑

j≥s
ηj =

∑

i,j

ξiηj
∑

r≤i

∑

s≤j
(δrs − ars).
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It suffices to verify that
∑
r≤i

∑
s≤j(δrs−ars) ≥ 0. If i ≤ j, then

∑
r≤i

∑
s≤j δrs =∑

r≤i
∑n
s=1 δrs and, therefore,

∑

r≤i

∑

s≤j
(δrs − ars) ≥

∑

r≤i

n∑
s=1

(δrs − ars) = 0.

The case i ≥ j is similar.
38.2. There exists a unitary matrix U such that H = UΛU∗, where Λ =

diag(λ1, . . . , λn). Since hij =
∑
k uikujkλk, then hii =

∑
k xikλk, where xik =

|uik|2. Therefore, h = Xλ, where h is the column (h11, . . . , hnn)T and λ is the
column (λ1, . . . , λn)T and where X is a doubly stochastic matrix. By Theorem
38.2.1, X =

∑
σ tσPσ, where Pσ is the matrix of the permutation σ, tσ ≥ 0 and∑

σ tσ = 1. Hence, h =
∑
σ tσ(Pσλ).
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MATRICES IN ALGEBRA AND CALCULUS

39. Commuting matrices

39.1. Square matrices A and B of the same order are said to be commuting
if AB = BA. Let us describe the set of all matrices X commuting with a given
matrix A. Since the equalities AX = XA and A′X ′ = X ′A′, where A′ = PAP−1

and X ′ = PXP−1 are equivalent, we may assume that A = diag(J1, . . . , Jk), where
J1, . . . , Jk are Jordan blocks. Let us represent X in the corresponding block form
X =

∥∥Xij

∥∥k
1
. The equation AX = XA is then equivalent to the system of equations

JiXij = XijJj .

It is not difficult to verify that if the eigenvalues of the matrices Ji and Jj are
distinct then the equation JiXij = XijJj has only the zero solution and, if Ji and
Jj are Jordan blocks of order m and n, respectively, corresponding to the same
eigenvalue, then any solution of the equation JiXij = XijJj is of the form (Y 0 )

or
(
Y
0

)
, where

Y =




y1 y2 . . . yk
0 y1 . . . yk−1

...
...

. . .
...

0 0 . . . y1




and k = min(m,n). The dimension of the space of such matrices Y is equal to k.
Thus, we have obtained the following statement.

39.1.1. Theorem. Let Jordan blocks of size a1(λ), . . . , ar(λ) correspond to an
eigenvalue λ of a matrix A. Then the dimension of the space of solutions of the
equation AX = XA is equal to

∑

λ

∑

i,j

min(ai(λ), aj(λ)).

39.1.2. Theorem. Let m be the dimension of the space of solutions of the
equation AX = XA, where A is a square matrix of order n. Then the following
conditions are equivalent:

a) m = n;
b) the characteristic polynomial of A coincides with the minimal polynomial;
c) any matrix commuting with A is a polynomial in A.

Proof. a) ⇐⇒ b) By Theorem 39.1.1

m =
∑

λ

∑

i,j

min(ai(λ), aj(λ)) ≥
∑

λ

∑

i

ai(λ) = n

Typeset by AMS-TEX
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with equality if and only if the Jordan blocks of A correspond to distinct eigenvalues,
i.e., the characteristic polynomial coincides with the minimal polynomial.

b) =⇒ c) If the characteristic polynomial of A coincides with the minimal poly-
nomial then the dimension of Span(I, A, . . . , An−1) is equal to n and, therefore, it
coincides with the space of solutions of the equation AX = XA, i.e., any matrix
commuting with A is a polynomial in A.

c) =⇒ a) If every matrix commuting with A is a polynomial in A, then, thanks
to the Cayley–Hamilton theorem, the space of solutions of the equation AX = XA
is contained in the space Span(I,A, . . . , Ak−1) and k ≤ n. On the other hand,
k ≥ m ≥ n and, therefore, m = n. ¤

39.2.1. Theorem. Commuting operators A and B in a space V over C have
a common eigenvector.

Proof. Let λ be an eigenvalue of A and W ⊂ V the subspace of all eigenvectors
of A corresponding to λ. Then BW ⊂ W . Indeed if Aw = λw then A(Bw) =
BAw = λ(Bw). The restriction of B to W has an eigenvector w0 and this vector
is also an eigenvector of A (corresponding to the eigenvalue λ). ¤

39.2.2. Theorem. Commuting diagonalizable operators A and B in a space V
over C have a common eigenbasis.

Proof. For every eigenvalue λ of A consider the subspace Vλ consisting of
all eigenvectors of A corresponding to the eigenvalue λ. Then V = ⊕λVλ and
BVλ ⊂ Vλ. The restriction of the diagonalizable operator B to Vλ is a diagonalizable
operator. Indeed, the minimal polynomial of the restriction of B to Vλ is a divisor
of the minimal polynomial of B and the minimal polynomial of B has no multiple
roots. For every eigenvalue µ of the restriction of B to Vλ consider the subspace
Vλ,µ consisting of all eigenvectors of the restriction of B to Vλ corresponding to
the eigenvalue µ. Then Vλ = ⊕µVλ,µ and V = ⊕λ,µVλ,µ. By selecting an arbitrary
basis in every subspace Vλ,µ, we finally obtain a common eigenbasis of A and B. ¤

We can similarly construct a common eigenbasis for any finite family of pairwise
commuting diagonalizable operators.

39.3. Theorem. Suppose the matrices A and B are such that any matrix com-
muting with A commutes also with B. Then B = g(A), where g is a polynomial.

Proof. It is possible to consider the matrices A and B as linear operators in
a certain space V . For an operator A there exists a cyclic decomposition V =
V1 ⊕ · · · ⊕ Vk with the following property (see 14.1): AVi ⊂ Vi and the restriction
Ai of A to Vi is a cyclic block; the characteristic polynomial of Ai is equal to pi,
where pi is divisible by pi+1 and p1 is the minimal polynomial of A.

Let the vector ei span Vi, i.e., Vi = Span(ei, Aei, A2ei, . . . ) and Pi : V −→ Vi
be a projection. Since AVi ⊂ Vi, then APiv = PiAv and, therefore, PiB = BPi.
Hence, Bei = BPiei = PiBei ∈ Vi, i.e., Bei = gi(A)ei, where gi is a polynomial.
Any vector vi ∈ Vi is of the form f(A)ei, where f is a polynomial. Therefore,
Bvi = gi(A)vi. Let us prove that gi(A)vi = g1(A)vi, i.e., we can take g1 for the
required polynomial g.

Let us consider an operator Xi : V −→ V that sends vector f(A)ei to (fni)(A)e1,
where ni = p1p

−1
i , and that sends every vector vj ∈ Vj , where j 6= i, into itself.
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First, let us verify that the operator Xi is well defined. Let f(A)ei = 0, i.e., let f
be divisible by pi. Then nif is divisible by nipi = p1 and, therefore, (fni)(A)e1 = 0.
It is easy to check that XiA = AXi and, therefore, XiB = BXi.

On the other hand, XiBei = (nigi)(A)e1 and BXiei = (nig1)(A)e1; hence,
ni(A)[gi(A) − g1(A)]e1 = 0. It follows that the polynomial ni(gi − g1) is divisible
by p1 = nipi, i.e., gi−g1 is divisible by pi and, therefore, gi(A)vi = g1(A)vi for any
vi ∈ Vi. ¤

Problems

39.1. Let A = diag(λ1, . . . , λn), where the numbers λi are distinct, and let a
matrix X commute with A.

a) Prove that X is a diagonal matrix.
b) Let, besides, the numbers λi be nonzero and let X commute with NA, where

N = |δi+1,j |n1 . Prove that X = λI.
39.2. Prove that if X commutes with all matrices then X = λI.
39.3. Find all matrices commuting with E, where E is the matrix all elements

of which are equal to 1.
39.4. Let Pσ be the matrix corresponding to a permutation σ. Prove that if

APσ = PσA for all σ then A = λI + µE, where E is the matrix all elements of
which are equal to 1.

39.5. Prove that for any complex matrix A there exists a matrix B such that
AB = BA and the characteristic polynomial of B coincides with the minimal
polynomial.

39.6. a) Let A and B be commuting nilpotent matrices. Prove that A+ B is a
nilpotent matrix.

b) Let A and B be commuting diagonalizable matrices. Prove that A + B is
diagonalizable.

39.7. In a space of dimension n, there are given (distinct) commuting with each
other involutions A1, . . . , Am. Prove that m ≤ 2n.

39.8. Diagonalizable operators A1, . . . , An commute with each other. Prove
that all these operators can be polynomially expressed in terms of a diagonalizable
operator.

39.9. In the space of matrices of order 2m, indicate a subspace of dimension
m2 + 1 consisting of matrices commuting with each other.

40. Commutators

40.1. Let A and B be square matrices of the same order. The matrix

[A,B] = AB −BA

is called the commutator of the matrices A and B. The equality [A,B] = 0 means
that A and B commute.

It is easy to verify that tr[A,B] = 0 for any A and B; cf. 11.1.
It is subject to an easy direct verification that the following Jacobi identity holds:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

An algebra (not necessarily matrix) is called a Lie algebraie algebra if the mul-
tiplication (usually called bracketracket and denoted by [·, ·]) in this algebra is a
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skew-commutative, i.e., [A,B] = −[B,A], and satisfies Jacobi identity. The map
adA : Mn,n −→Mn,n determined by the formula adA(X) = [A,X] is a linear opera-
tor in the space of matrices. The map which to every matrix A assigns the operator
adA is called the adjoint representation of Mn,n. The adjoint representation has
important applications in the theory of Lie algebras.

The following properties of adA are easy to verify:
1) ad[A,B] = adA adB − adB adA (this equality is equivalent to the Jacobi iden-

tity);
2) the operator D = adA is a derivatiation of the matrix algebra, i.e.,

D(XY ) = XD(Y ) + (DX)Y ;

3) Dn(XY ) =
∑n
k=0

(
n
k

)
(DkX)(Dn−kY );

4) D(Xn) =
∑n−1
k=0 X

k(DX)Xn−1−k.

40.2. If A = [X,Y ], then trA = 0. It turns out that the converse is also true:
if trA = 0 then there exist matrices X and Y such that A = [X,Y ]. Moreover, we
can impose various restrictions on the matrices X and Y .

40.2.1. Theorem ([Fregus, 1966]). Let trA = 0; then there exist matrices X
and Y such that X is an Hermitian matrix, trY = 0, and A = [X,Y ].

Proof. There exists a unitary matrix U such that all the diagonal elements of
UAU∗ = B =

∥∥bij
∥∥n

1
are zeros (see 15.2). Consider a matrix D = diag(d1, . . . , dn),

where d1, . . . , dn are arbitrary distinct real numbers. Let Y1 =
∥∥yij

∥∥n
1
, where yii = 0

and yij =
bij

di − dj for i 6= j. Then

DY1 − Y1D =
∥∥(di − dj)yij

∥∥n
1

=
∥∥bij

∥∥n
1

= UAU∗.

Therefore,
A = U∗DY1U − U∗Y1DU = XY − Y X,

where X = U∗DU and Y = U∗Y1U . Clearly, X is an Hermitian matrix and
trY = 0. ¤

Remark. If A is a real matrix, then the matrices X and Y can be selected to
be real ones.

40.2.2. Theorem ([Gibson, 1975]). Let trA = 0 and λ1, . . . , λn, µ1, . . . , µn
be given complex numbers such that λi 6= λj for i 6= j. Then there exist complex
matrices X and Y with eigenvalues λ1, . . . , λn and µ1, . . . , µn, respectively, such
that A = [X,Y ].

Proof. There exists a matrix P such that all diagonal elements of the matrix
PAP−1 = B =

∥∥bij
∥∥n

1
are zero (see 15.1). Let D = diag(λ1, . . . , λn) and cij =

bij
(λi − λj) for i 6= j. The diagonal elements cii of C can be selected so that the

eigenvalues of C are µ1, . . . , µn (see 48.2). Then

DC − CD =
∥∥(λi − λj)cij

∥∥n
1

= B.

It remains to set X = P−1DP and Y = P−1CP . ¤
Remark. This proof is valid over any algebraically closed field.
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40.3. Theorem ([Smiley, 1961]). Suppose the matrices A and B are such that
for a certain integer s > 0 the identity adsAX = 0 implies adsX B = 0. Then B can
be expressed as a polynomial of A.

Proof. The case s = 1 was considered in Section 39.3; therefore, in what follows
we will assume that s ≥ 2. Observe that for s ≥ 2 the identity adsAX = 0 does not
necessarily imply adsX A = 0.

We may assume that A = diag(J1, . . . , Jt), where Ji is a Jordan block. Let X =
diag(1, . . . , n). It is easy to verify that ad2

AX = 0 (see Problem 40.1); therefore,
adsAX = 0 and adsX B = 0. The matrix X is diagonalizable and, therefore, adX B =
0 (see Problem 40.6). Hence, B is a diagonal matrix (see Problem 39.1 a)). In
accordance with the block notation A = diag(J1, . . . , Jt) let us express the matrices
B and X in the form B = diag(B1, . . . , Bt) and X = diag(X1, . . . , Xt). Let

Y = diag((J1 − λ1I)X1, . . . , (Jt − λtI)Xt),

where λi is the eigenvalue of the Jordan block Ji. Then ad2
A Y = 0 (see Prob-

lem 40.1). Hence, ad2
A(X+Y ) = 0 and, therefore, adsX+Y B = 0. The matrix X+Y

is diagonalizable, since its eigenvalues are equal to 1, . . . , n. Hence, adX+Y B = 0
and, therefore, adY B = 0.

The equations [X,B] = 0 and [Y,B] = 0 imply that Bi = biI (see Problem 39.1).
Let us prove that if the eigenvalues of Ji and Ji+1 are equal, then bi = bi+1.
Consider the matrix

U =




0 . . . 0 1
0 . . . 0 0
... · · · ...

...
0 . . . 0 0




of order equal to the sum of the orders of Ji and Ji+1. In accordance with the block
expression A = diag(J1, . . . , Jt) introduce the matrix Z = diag(0, U, 0). It is easy
to verify that ZA = AZ = λZ, where λ is the common eigenvalue of Ji and Ji+1.
Hence,

adA(X + Z) = adA Z = 0, adsA(X + Y ) = 0,

and adsX+Z B = 0. Since the eigenvalues of X + Z are equal to 1, . . . , n, it follows
that X + Z is diagonalizable and, therefore, adX+Z B = 0. Since [X,B] = 0, then
[Z,B] = [X + Z,B] = 0, i.e., bi = bi+1.

We can assume that A = diag(M1, . . . ,Mq), where Mi is the union of Jordan
blocks with equal eigenvalues. Then B = diag(B′1, . . . , B

′
q), where B′i = b′iI. The

identity [W,A] = 0 implies that W = diag(W1, . . . ,Wq) (see 39.1) and, therefore,
[W,B] = 0. Thus, the case s ≥ 2 reduces to the case s = 1. ¤

40.4. Matrices A1, . . . , Am are said to be simultaneously triangularizable if there
exists a matrix P such that all matrices P−1AiP are upper triangular.

Theorem ([Drazin, Dungey, Greunberg, 1951]). Matrices A1, . . . , Am are si-
multaneously triangularizable if and only if the matrix p(A1, . . . , Am)[Ai, Aj ] is
nilpotent for every polynomial p(x1, . . . , xm) in noncommuting indeterminates.

Proof. If the matrices A1, . . . , Am are simultaneously triangularizable then
the matrices P−1[Ai, Aj ]P and P−1p(A1, . . . , Am)P are upper triangular and all
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diagonal elements of the first matrix are zeros. Hence, the product of these matrices
is a nilpotent matrix, i.e., the matrix p(A1, . . . , Am)[Ai, Aj ] is nilpotent.

Now, suppose that every matrix of the form p(A1, . . . , Am)[Ai, Aj ] is nilpotent;
let us prove that then the matrices A1, . . . , Am are simultaneously triangularizable.

First, let us prove that for every nonzero vector u there exists a polynomial
h(x1, . . . , xm) such that h(A1, . . . , Am)u is a nonzero common eigenvector of the
matrices A1, . . . , Am.

Proof by induction onm. Form = 1 there exists a number k such that the vectors
u, A1u, . . . , Ak−1

1 u are linearly independent and Ak1u = ak−1A
k−1
1 u + · · · + a0u.

Let g(x) = xk − ak−1x
k−1 − · · · − a0 and g0(x) =

g(x)
(x− x0)

, where x0 is a root of

the polynomial g. Then g0(A1)u 6= 0 and (A1 − x0I)g0(A1)u = g(A1)u = 0, i.e.,
g0(A1)u is an eigenvector of A1.

Suppose that our statement holds for any m− 1 matrices A1, . . . , Am−1.
For a given nonzero vector u a certain nonzero vector v1 = h(A1, . . . , Am−1)u is

a common eigenvector of the matrices A1, . . . , Am−1. The following two cases are
possible.

1) [Ai, Am]f(Am)v1 = 0 for all i and any polynomial f . For f = 1 we get
AiAmv1 = AmAiv1; hence, AiAkmv1 = AkmAiv1, i.e., Aig(Am)v1 = g(Am)Aiv1 for
any g. For a matrix Am there exists a polynomial g1 such that g1(Am)v1 is an
eigenvector of this matrix. Since Aig1(Am)v1 = g1(Am)Aiv1 and v1 is an eigenvec-
tor of A1, . . . , Am, then g1(Am)v1 = g1(Am)h(A1, . . . , Am−1)u is an eigenvector of
A1, . . . , Am.

2) [Ai, Am]f1(Am)v1 6= 0 for a certain f1 and certain i. The vector C1f1(Am)v1,
where C1 = [Ai, Am], is nonzero and, therefore, the matrices A1, . . . , Am−1 have
a common eigenvector v2 = g1(A1, . . . , Am−1)C1f1(Am)v1. We can apply the same
argument to the vector v2, etc. As a result we get a sequence v1, v2, v3, . . . , where
vk is an eigenvector of the matrices A1, . . . , Am−1 and where

vk+1 = gk(A1, . . . , Am−1)Ckfk(Am)vk, Ck = [As, Am] for a certain s.

This sequence terminates with a vector vp if [Ai, Am]f(Am)vp = 0 for all i and all
polynomials f .

For Am there exists a polynomial gp(x) such that gp(Am)vp is an eigenvector of
Am. As in case 1), we see that this vector is an eigenvector of A1, . . . , Am and

gp(Am)vp = gp(Am)g(A1, . . . , Am)h(A1, . . . , Am−1)u.

It remains to show that the sequence v1, v2, . . . terminates. Suppose that this
is not so. Then there exist numbers λ1, . . . , λn+1 not all equal to zero for which
λ1v1 + · · ·+λn+1vn+1 = 0 and, therefore, there exists a number j such that λj 6= 0
and

−λjvj = λj+1vj+1 + · · ·+ λn+1vn+1.

Clearly,

vj+1 = gj(A1, . . . , Am−1)Cjfj(Am)vj , vj+2 = uj+1(A1, . . . , Am)Cjfj(Am)vj ,

etc. Hence,
−λjvj = u(A1, . . . , Am)Cjfj(Am)vj
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and, therefore,

fj(Am)u(A1, . . . , Am)Cjfj(Am)vj = −λjfj(Am)vj .

It follows that the nonzero vector fj(Am)vj is an eigenvector of the operator
fj(Am)u(A1, . . . , Am)Cj coresponding to the nonzero eigenvalue −λj . But by
hypothesis this operator is nilpotent and, therefore, it has no nonzero eigenvalues.
Contradiction.

We turn directly to the proof of the theorem by induction on n. For n = 1 the
statement is obvious. As we have already demonstrated the operators A1, . . . , Am
have a common eigenvector y corresponding to certain eigenvalues α1, . . . , αm. We
can assume that |y| = 1, i.e., y∗y = 1. There exists a unitary matrix Q whose first
column is y. Clearly,

Q∗AiQ = Q∗(αiy . . . ) =
(
αi ∗
0 A′i

)

and the matrices A′1, . . . , A′m of order n− 1 satisfy the condition of the theorem.
By inductive hypothesis there exists a unitary matrix P1 of order n − 1 such that

the matrices P ∗1A
′
iP1 are upper triangular. Then P = Q

(
1 0
0 P1

)
is the desired

matrix. (It even turned out to be unitary.) ¤
40.5. Theorem. Let A and B be operators in a vector space V over C and let

rank[A,B] ≤ 1. Then A and B are simultaneously triangularizable.

Proof. It suffices to prove that the operators A and B have a common eigen-
vector v ∈ V . Indeed, then the operators A and B induce operators A1 and B1 in
the space V1 = V/ Span(v) and rank[A1, B1] ≤ 1. It follows that A1 and B1 have a
common eigenvector in V1, etc. Besides, we can assume that KerA 6= 0 (otherwise
we can replace A by A− λI).

The proof will be carried out by induction on n = dimV . If n = 1, then the
statement is obvious. Let C = [A,B]. In the proof of the inductive step we will
consider two cases.

1) KerA ⊂ KerC. In this case B(KerA) ⊂ KerA, since if Ax = 0, then Cx = 0
and ABx = BAx + Cx = 0. Therefore, we can consider the restriction of B to
KerA 6= 0 and select in KerA an eigenvector v of B; the vector v is then also an
eigenvector of A.

2) KerA 6⊂ KerC, i.e., Ax = 0 and Cx 6= 0 for a vector x. Since rankC = 1,
then ImC = Span(y), where y = Cx. Besides,

y = Cx = ABx−BAx = ABx ∈ ImA.

It follows that B(ImA) ⊂ ImA. Indeed, BAz = ABz − Cz, where ABz ∈ ImA
and Cz ∈ ImC ⊂ ImA. We have KerA 6= 0; hence, dim ImA < n. Let A′ and B′

be the restrictions of A and B to ImA. Then rank[A′, B′] ≤ 1 and, therefore, by
the inductive hypothesis the operators A′ and B′ have a common eigenvector. ¤

Problems

40.1. Let J = N + λI be a Jordan block of order n, A = diag(1, 2, . . . , n) and
B = NA. Prove that ad2

J A = ad2
J B = 0.
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40.2. Prove that if C = [A1, B1] + · · · + [An, Bn] and C commutes with the
matrices A1, . . . , An then C is nilpotent.

40.3. Prove that adnA(B) =
∑n
i=0(−1)n−i

(
n
i

)
AiBAn−i.

40.4. ([Kleinecke, 1957].) Prove that if ad2
A(B) = 0, then

adnA(Bn) = n!(adA(B))n.

40.5. Prove that if [A, [A,B]] = 0 and m and n are natural numbers such that
m > n, then n[Am, B] = m[An, B]Am−n.

40.6. Prove that if A is a diagonalizable matrix and adnAX = 0, then adAX = 0.
40.7. a) Prove that if tr(AXY ) = tr(AYX) for any X and Y , then A = λI.
b) Let f be a linear function on the space of matrices of order n. Prove that if

f(XY ) = f(Y X) for any matrices X and Y , then f(X) = λ trX.

41. Quaternions and Cayley numbers. Clifford algebras

41.1. Let A be an algebra with unit over R endowed with a conjugation opera-
tion a 7→ a satisfying a = a and ab = ba.

Let us consider the space A⊕A = {(a, b) | a, b ∈ A} and define a multiplication
in it setting

(a, b)(u, v) = (au− vb, bu+ va).

The obtained algebra is called the double of A. This construction is of interest
because, as we will see, the algebra of complex numbers C is the double of R, the
algebra of quaternions H is the double of C, and the Cayley algebra O is the double
of H.

It is easy to verify that the element (1, 0) is a twosided unit. Let e = (0, 1). Then
(b, 0)e = (0, b) and, therefore, by identifying an element x of A with the element
(x, 0) of the double of A we have a representation of every element of the double in
the form

(a, b) = a+ be.

In the double of A we can define a conjugation by the formula

(a, b) = (a,−b),

i.e., by setting a+ be = a− be. If x = a+ be and y = u+ ve, then

xy = au+ (be)u+ a(ve) + (be)(ve) =

= u · a− u(be)− (ve)a+ (ve)(be) = y · x.

It is easy to verify that ea = ae and a(be) = (ba)e. Therefore, the double of A is
noncommutative, and if the conjugation in A is nonidentical and A is noncommu-
tative, then the double is nonassociative. If A is both commutative and associative,
then its double is associative.

41.2. Since (0, 1)(0, 1) = (−1, 0), then e2 = −1 and, therefore, the double of the
algebra R with the identity conjugation is C. Let us consider the double of C with
the standard conjugation. Any element of the double obtained can be expressed in
the form

q = a+ be, where a = a0 + a1i, b = a2 + a3i and a0, . . . , a3 ∈ R.
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Setting j = e and k = ie we get the conventional expression of a quaternion

q = a0 + a1i+ a2j + a3k.

The number a0 is called the real part of the quaternion q and the quaternion
a1i+a2j+a3k is called its imaginary part. A quaternion is real if a1 = a2 = a3 = 0
and purely imaginary if a0 = 0.

The multiplication in the quaternion algebra H is given by the formulae

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

The quaternion algebra is the double of an associative and commutative algebra
and, therefore, is associative itself.

The quaternion q conjugate to q = a+be is equal to a−be = a0−a1i−a2j−a3k.
In 41.1 it was shown that q1q2 = q2 q1.

41.2.1. Theorem. The inner product (q, r) of quaternions q and r is equal to
1
2 (qr + rq); in particular |q|2 = (q, q) = qq.

Proof. The function B(q, r) = 1
2 (qr+rq) is symmetric and bilinear. Therefore,

it suffices to verify that B(q, r) = (q, r) for basis elements. It is easy to see that
B(1, i) = 0, B(i, i) = 1 and B(i, j) = 0 and the remaining equalities are similarly
checked. ¤

Corollary. The element
q

|q|2 is a two-sided inverse for q.

Indeed, qq = |q|2 = qq. ¤
41.2.2. Theorem. |qr| = |q| · |r|.
Proof. Clearly,

|qr|2 = qrqr = qrr q = q|r|2q = |q|2|r|2. ¤

Corollary. If q 6= 0 and r 6= 0, then qr 6= 0.

41.3. To any quaternion q = α+ xi+ yj + zk we can assign the matrix C(q) =(
u v
−v u

)
, where u = α+ ix and v = y + iz. For these matrices we have C(qr) =

C(q)C(r) (see Problem 41.4).
To a purely imaginary quaternion q = xi + yj + zk we can assign the matrix

R(q) =




0 −z y
z 0 −x
−y x 0


. Since the product of imaginary quaternions can have

a nonzero real part, the matrix R(qr) is not determined for all q and r. However,
since, as is easy to verify,

R(qr − rq) = R(q)R(r)−R(r)R(q),

the vector product [q, r] = 1
2 (qr − rq) corresponds to the commutator of skew-

symmetric 3 × 3 matrices. A linear subspace in the space of matrices is called a
matrix Lie algebra if together with any two matrices A and B the commutator
[A,B] also belongs to it. It is easy to verify that the set of real skew-symmetric
matrices and the set of complex skew-Hermitian matrices are matrix Lie algebras
denoted by so(n,R) and su(n), respectively.
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41.3.1. Theorem. The algebras so(3,R) and su(2) are isomorphic.

Proof. As is shown above these algebras are both isomorphic to the algebra of
purely imaginary quaternions with the bracket [q, r] = (qr − rq)/2. ¤

41.3.2. Theorem. The Lie algebras so(4,R) and so(3,R) ⊕ so(3,R) are iso-
morphic.

Proof. The Lie algebra so(3,R) can be identified with the Lie algebra of purely
imaginary quaternions. Let us assign to a quaternion q ∈ so(3,R) the transforma-
tion P (q) : u 7→ qu of the space R4 = H. As is easy to verify,

P (xi+ yj + zk) =




0 −x −y −z
x 0 −z y
y z 0 −x
z −y x 0


 ∈ so(4,R).

Similarly, the map Q(q) : u 7→ uq belongs to so(4,R). It is easy to verify that the
maps q 7→ P (q) and q 7→ Q(q) are Lie algebra homomorphisms, i.e.,

P (qr − rq) = P (q)P (r)− P (r)P (q) and Q(qr − rq) = Q(q)Q(r)−Q(r)Q(q).

Therefore, the map

so(3,R)⊕ so(3,R) −→ so(4,R)

(q, r) 7→ P (q) +Q(r)

is a Lie algebra homomorphism. Since the dimensions of these algebras coincide, it
suffices to verify that this map is a monomorphism. The identity P (q) +Q(r) = 0
means that qx+xr = 0 for all x. For x = 1 we get q = −r and, therefore, qx−xq = 0
for all x. Hence, q is a real quaternion; on the other hand, by definition, q is a
purely imaginary quaternion and, therefore, q = r = 0. ¤

41.4. Let us consider the algebra of quaternions H as a space over R. In H⊗H,
we can introduce an algebra structure by setting

(x1 ⊗ x2)(y1 ⊗ y2) = x1y1 ⊗ x2y2.

Let us identify R4 with H. It is easy to check that the map w : H⊗H −→ M4(R)
given by the formula [w(x1 ⊗ x2)]x = x1xx2 is an algebra homomorphism, i.e.,
w(uv) = w(u)w(v).

Theorem. The map w : H⊗H −→M4(R) is an algebra isomorphism.

Proof. The dimensions of H ⊗ H and M4(R) are equal. Still, unlike the case
considered in 41.3, the calculation of the kernel of w is not as easy as the calculation
of the kernel of the map (q, r) 7→ P (q) + Q(r) since the space H ⊗ H contains not
only elements of the form x⊗ y. Instead we should better prove that the image of
w coincides with M4(R). The matrices

e =
(

1 0
0 1

)
, ε =

(
1 0
0 −1

)
, a =

(
0 1
1 0

)
, b =

(
0 1
−1 0

)
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Table 1. Values of x ⊗ y

x�y 1 i j k

1
(
e 0
0 e

) (
b 0
0 −b

) (
0 e
−e 0

) (
0 b
b 0

)

i

(−b 0
0 −b

) (
e 0
0 −e

) (
0 −b
b 0

) (
0 e
e 0

)

j

(
0 −ε
ε 0

) (
0 a
a 0

) (
ε 0
0 ε

) (−a 0
0 a

)

k

(
0 −a
a 0

) (
0 −ε
−ε 0

) (
a 0
0 a

) (
ε 0
0 −ε

)

form a basis in the space of matrices of order 2. The images of x ⊗ y, where
x, y ∈ {1, i, j, k}, under the map w are given in Table 1.

From this table it is clear that among the linear combinations of the pairs of
images of these elements we encounter all matrices with three zero blocks, the
fourth block being one of the matrices e, ε, a or b. Among the linear combinations
of these matrices we encounter all matrices containing precisely one nonzero element
and this element is equal to 1. Such matrices obviously form a basis of M4(R). ¤

41.5. The double of the quaternion algebra with the natural conjugation oper-
ation is the Cayley or octonion algebra. A basis of this algebra as a space over R is
formed by the elements

1, i, j, k, e, f = ie, g = je and h = ke.

The multiplication table of these basis elements can be conveniently given with the
help of Figure 7.

Figure 7

The product of two elements belonging to one line or one circle is the third
element that belongs to the same line or circle and the sign is determined by the
orientation; for example ie = f , if = −e.

Let ξ = a+ be, where a and b are quaternions. The conjugation in O is given by
the formula (a, b) = (a,−b), i.e., a+ be = a− be. Clearly,

ξξ = (a, b)(a, b) = (a, b)(a,−b) = (aa+ bb, ba− ba) = aa+ bb,

i.e., ξξ is the sum of squares of coordinates of ξ. Therefore, |ξ| =
√
ξξ =

√
ξξ is

the length of ξ.
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Theorem. |ξη| = |ξ| · |η|.
Proof. For quaternions a similar theorem is proved quite simply, cf. 41.2. In

our case the lack of associativity is a handicap. Let ξ = a + be and η = u + ve,
where a, b, u, v are quaternions. Then

|ξη|2 = (au− vb)(u a− bv) + (bu+ va)(ub+ a v).

Let us express a quaternion v in the form v = λ+ v1, where λ is a real number and
v1 = −v1. Then

|ξη|2 = (au− λb+ v1b)(u a− λb− bv1)+

+ (bu+ λa+ v1a)(ub+ λa− av1).

Besides,
|ξ|2|η|2 = (aa+ bb)(uu+ λ2 − v1v1).

Since uu and bb are real numbers, auu a = aauu and bbv1 = v1bb. Making use of
similar equalities we get

|ξη|2 − |ξ|2|η|2 = λ(−bu a− aub+ bu a+ aub)

+ v1(bu a+ aub)− (aub+ bu a)v1 = 0

because bua+ aub is a real number. ¤

41.5.1. Corollary. If ξ 6= 0, then ξ/|ξ|2 is a two-sided inverse for ξ.

41.5.2. Corollary. If ξ 6= 0 and η 6= 0 then ξη 6= 0.

The quaternion algebra is noncommutative and, therefore, O is a nonassociative
algebra. Instead, the elements of O satisfy

x(yy) = (xy)y, x(xy) = (xx)y and (yx)y = y(xy)

(see Problem 41.8). It is possible to show that any subalgebra of O generated by
two elements is associative.

41.6. By analogy with the vector product in the space of purely imaginary
quaternions, we can define the vector product in the 7-dimensional space of purely
imaginary octanions. Let x and y be purely imaginary octanions. Their vector
product is the imaginary part of xy; it is denoted by x× y. Clearly,

x× y =
1
2

(xy − xy) =
1
2

(xy − yx).

It is possible to verify that the inner product (x, y) of octanions x and y is equal to
1
2 (xy + yx) and for purely imaginary octanions we get (x, y) = − 1

2 (xy + yx).

Theorem. The vector product of purely imaginary octanions possesses the fol-
lowing properties:

a) x× y ⊥ x, x× y ⊥ y;
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b) |x× y|2 = |x|2|y|2 − |(x, y)|2.

Proof. a) We have to prove that

(1) x(xy − yx) + (xy − yx)x = 0.

Since x(yx) = (xy)x (see Problem 41.8 b)), we see that (1) is equivalent to x(xy) =
(yx)x. By Problem 41.8, a) we have x(xy) = (xx)y and (yx)x = y(xx). It remains
to notice that xx = −xx = −(x, x) is a real number.

b) We have to prove that

−(xy − yx)(xy − yx) = 4|x|2|y|2 − (xy + yx)(xy + yx),

i.e.,
2|x|2|y|2 = (xy)(yx) + (yx)(xy).

Let a = xy. Then a = yx and

2|x|2|y|2 = 2(a, a) = aa+ aa = (xy)(yx) + (yx)(xy). ¤

41.7. The remaining part of this section will be devoted to the solution of the
following

Problem (Hurwitz-Radon). What is the maximal number of orthogonal oper-
ators A1, . . . , Am in Rn satisfying the relations A2

i = −I and AiAj + AjAi = 0
for i 6= j?

This problem might look quite artificial. There are, however, many important
problems in one way or another related to quaternions or octonions that reduce to
this problem. (Observe that the operators of multiplication by i, j, . . . , h satisfy the
required relations.)

We will first formulate the answer and then tell which problems reduce to our
problem.

Theorem (Hurwitz-Radon). Let us express an integer n in the form n = (2a+
1)2b, where b = c+4d and 0 ≤ c ≤ 3. Let ρ(n) = 2c+8d; then the maximal number
of required operators in Rn is equal to ρ(n)− 1.

41.7.1. The product of quadratic forms. Let a = x1 + ix2 and b = y1 + iy2.
Then the identity |a|2|b|2 = |ab|2 can be rewritten in the form

(x2
1 + x2

2)(y2
1 + y2

2) = z2
1 + z2

2 ,

where z1 = x1y1− x2y2 and z2 = x1y2 + x2y1. Similar identities can be written for
quaternions and octonions.

Theorem. Let m and n be fixed natural numbers; let z1(x, y), . . . , zn(x, y) be
real bilinear functions of x = (x1, . . . , xm) and y = (y1, . . . , yn). Then the identity

(x2
1 + · · ·+ x2

m)(y2
1 + · · ·+ y2

n) = z2
1 + · · ·+ z2

n
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holds if and only if m ≤ ρ(n).

Proof. Let zi =
∑
j bij(x)yj , where bij(x) are linear functions. Then

z2
i =

∑

j

b2ij(x)y2
j + 2

∑

j<k

bij(x)bik(x)yjyk.

Therefore,
∑
i b

2
ij = x2

1+· · ·+x2
m and

∑
j<k bij(x)bik(x) = 0. Let B(x) =

∥∥bij(x)
∥∥n

1
.

Then BT (x)B(x) = (x2
1 + · · · + x2

m)I. The matrix B(x) can be expressed in the
form B(x) = x1B1 + · · ·+ xmBm. Hence,

BT (x)B(x) = x2
1B

T
1 B1 + · · ·+ x2

mB
T
mBm +

∑

i<j

(BTi Bj +BTj Bi)xixj ;

therefore, BTi Bi = I and BTi Bj +BTj Bi = 0. The operators Bi are orthogonal and
B−1
i Bj = −B−1

j Bi for i 6= j.
Let us consider the orthogonal operators A1, . . . , Am−1, where Ai = B−1

m Bi.
Then B−1

m Bi = −B−1
i Bm and, therefore, Ai = −A−1

i , i.e., A2
i = −I. Besides,

B−1
i Bj = −B−1

j Bi for i 6= j; hence,

AiAj = B−1
m BiB

−1
m Bj = −B−1

i BmB
−1
m Bj = B−1

j Bi = −AjAi.

It is also easy to verify that if the orthogonal operators A1, . . . , Am−1 are such that
A2
i = −I and AiAj + AjAi = 0 then the operators B1 = A1, . . . , Bm−1 = Am−1,

Bm = I possess the required properties. To complete the proof of Theorem 41.7.1
it remains to make use of Theorem 41.7. ¤

41.7.2. Normed algebras.

Theorem. Let a real algebra A be endowed with the Euclidean space structure
so that |xy| = |x| · |y| for any x, y ∈ A. Then the dimension of A is equal to 1, 2,
4 or 8.

Proof. Let e1, . . . , en be an orthonormal basis of A. Then

(x1e1 + · · ·+ xnen)(y1e1 + · · ·+ ynen) = z1e1 + · · ·+ znen,

where z1, . . . , zn are bilinear functions in x and y. The equality |z|2 = |x|2|y|2
implies that

(x2
1 + · · ·+ x2

n)(y2
1 + · · ·+ y2

n) = z2
1 + · · ·+ z2

n.

It remains to make use of Theorem 41.7.1 and notice that ρ(n) = n if and only if
n = 1, 2, 4 or 8. ¤

41.7.3. The vector product.

Theorem ([Massey, 1983]). Let a bilinear operation f(v, w) = v × w ∈ Rn be
defined in Rn, where n ≥ 3; let f be such that v × w is perpendicular to v and w
and |v × w|2 = |v|2|w|2 − (v, w)2. Then n = 3 or 7.

The product × determined by the above operator f is called the vector product
of vectors.
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Proof. Consider the space Rn+1 = R ⊕ Rn and define a product in it by the
formula

(a, v)(b, w) = (ab− (v, w), aw + bv + v × w),

where (v, w) is the inner product in Rn. It is easy to verify that in the resulting
algebra of dimension n + 1 the identity |xy|2 = |x|2|y|2 holds. It remains to make
use of Theorem 41.7.2. ¤

Remark. In spaces of dimension 3 or 7 a bilinear operation with the above
properties does exist; cf. 41.6.

41.7.4. Vector fields on spheres. A vector field on a sphere Sn (say, unit
sphere Sn = {v ∈ Rn+1 | |v| = 1}) is a map that to every point v ∈ Sn assigns a
vector F (v) in the tangent space to Sn at v. The tangent space to Sn at v consists
of vectors perpendicular to v; hence, F (v) ⊥ v. A vector field is said linear if
F (v) = Av for a linear operator A. It is easy to verify that Av ⊥ v for all v if and
only if A is a skew-symmetric operator (see Theorem 21.1.2). Therefore, any linear
vector field on S2n vanishes at some point.

To exclude vector fields that vanish at a point we consider orthogonal operators
only; in this case |Av| = 1. It is easy to verify that an orthogonal operator A is
skew-symmetric if and only if A2 = −I. Recall that an operator whose square is
equal to −I is called a complex structure (see 10.4).

Vector fields F1, . . . , Fm are said to be linearly independent if the vectors F1(v),
. . . , Fm(v) are linearly independent at every point v. In particular, the vector
fields corresponding to orthogonal operators A1, . . . , Am such that Aiv ⊥ Ajv
for all i 6= j are linearly independent. The equality (Aiv,Ajv) = 0 means that
(v,ATi Ajv) = 0. Hence, ATi Aj + (ATi Aj)

T = 0, i.e., AiAj +AjAi = 0.
Thus, to construct m linearly independent vector fields on Sn it suffices to in-

dicate orthogonal operators A1, . . . , Am in (n + 1)-dimensional space satisfying
the relations A2

i = −I and AiAj + AjAi = 0 for i 6= j. Thus, we have proved the
following statement.

Theorem. On Sn−1, there exists ρ(n)− 1 linearly independent vector fields.

Remark. It is far more difficult to prove that there do not exist ρ(n) linearly
independent continuous vector fields on Sn−1; see [Adams, 1962].

41.7.5. Linear subspaces in the space of matrices.

Theorem. In the space of real matrices of order n there is a subspace of dimen-
sion m ≤ ρ(n) all nonzero matrices of which are invertible.

Proof. If the matrices A1, . . . , Am−1 are such that A2
i = −I and AiAj +

AjAi = 0 for i 6= j then

(
∑
xiAi + xmI) (−∑

xiAi + xmI) = (x2
1 + · · ·+ x2

m)I.

Therefore, the matrix
∑
xiAi + xmI, where not all numbers x1, . . . , xm are zero,

is invertible. In particular, the matrices A1, . . . , Am−1, I are linearly indepen-
dent. ¤
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41.8. Now, we turn to the proof of Theorem 41.7. Consider the algebra Cm
over R with generators e1, . . . , em and relations e2

i = −1 and eiej + ejei = 0 for
i 6= j. To every set of orthogonal matrices A1, . . . , Am satisfying A2

i = −I and
AiAj + AjAi = 0 for i 6= j there corresponds a representation (see 42.1) of Cm
that maps the elements e1, . . . , em to orthogonal matrices A1, . . . , Am. In order to
study the structure of Cm, we introduce an auxiliary algebra C ′m with generators
ε1, . . . , εm and relations ε2

i = 1 and εiεj + εjεi = 0 for i 6= j.
The algebras Cm and C ′m are called Clifford algebraslifford algebra.

41.8.1. Lemma. C1
∼= C, C2

∼= H, C ′1 ∼= R⊕ R and C ′2 ∼= M2(R).

Proof. The isomorphisms are explicitely given as follows:

C1 −→ C 1 7→ 1, e1 7→ i;
C2 −→ H 1 7→ 1, e1 7→ i, e2 7→ j;

C ′1 −→ R⊕ R 1 7→ (1, 1), ε1 7→ (1,−1);

C ′2 −→M2(R) 1 7→
(

1 0
0 1

)
, ε1 7→

(
1 0
0 −1

)
, ε2 7→

(
0 1
1 0

)
. ¤

Corollary. C⊗H ∼= M2(C).

Indeed, the complexifications of C2 and C ′2 are isomorphic. ¤
41.8.2. Lemma. Ck+2

∼= C ′k ⊗ C2 and C ′k+2
∼= Ck ⊗ C ′2.

Proof. The first isomorphism is given by the formulas

f(ei) = 1⊗ ei for i = 1, 2 and f(ei) = εi−2 ⊗ e1e2 for i ≥ 3.

The second isomorphism is given by the formulas

g(εi) = 1⊗ εi for i = 1, 2 and g(εi) = ei−2 ⊗ ε1ε2 for i ≥ 3. ¤

41.8.3. Lemma. Ck+4
∼= Ck ⊗M2(H) and C ′k+4

∼= C ′k ⊗M2(H).

Proof. By Lemma 41.8.2 we have

Ck+4
∼= C ′k+2 ⊗ C2

∼= Ck ⊗ C ′2 ⊗ C2.

Since
C ′2 ⊗ C2

∼= H⊗M2(R) ∼= M2(H),

we have Ck+4
∼= Ck ⊗M2(H). Similarly, C ′k+4

∼= C ′k ⊗M2(H). ¤
41.8.4. Lemma. Ck+8

∼= Ck ⊗M16(R).

Proof. By Lemma 41.8.3

Ck+8
∼= Ck+4 ⊗M2(H) ∼= Ck ⊗M2(H)⊗M2(H).

Since H⊗H ∼= M4(R) (see 41.4), it follows that

M2(H)⊗M2(H) ∼= M2(M4(R)) ∼= M16(R). ¤
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Table 2

k 1 2 3 4
Ck C H H⊕H M2(H)

C ′k R⊕ R M2(R) M2(C) M2(H)

k 5 6 7 8
Ck M4(C) M8(R) M8(R)⊕M8(R) M16(R)

C ′k M2(H)⊕M2(H) M4(H) M8(C) M16(R)

Lemmas 41.8.1–41.8.3 make it possible to calculate Ck for 1 ≤ k ≤ 8. For
example,

C5
∼= C1 ⊗M2(H) ∼= C⊗M2(H) ∼= M2(C⊗H) ∼= M2(M2(C)) ∼= M4(C);

C6
∼= C2 ⊗M2(H) ∼= M2(H⊗H) ∼= M8(R),

etc. The results of calculations are given in Table 2.
Lemma 41.8.4 makes it possible now to calculate Ck for any k. The algebras C1,

. . . , C8 have natural representations in the spaces C, H, H, H2, C4, R8, R8 and R16

whose dimensions over R are equal to 2, 4, 4, 8, 8, 8, 8 and 16. Besides, under the
passage from Ck to Ck+8 the dimension of the space of the natural representation
is multiplied by 16. The simplest case-by-case check indicates that for n = 2k the
largest m for which Cm has the natural representation in Rn is equal to ρ(n)− 1.

Now, let us show that under these natural representations of Cm in Rn the
elements e1, . . . , em turn into orthogonal matrices if we chose an appropriate basis
in Rn. First, let us consider the algebra H = R4. Let us assign to an element a ∈ H
the map x 7→ ax of the space H into itself. If we select basis 1, i, j, k in the space
H = R4, then to elements 1, i, j, k the correspondence indicated assigns orthogonal
matrices. We may proceed similarly in case of the algebra C = R2.

We have shown how to select bases in C = R2 and H = R4 in order for the
elements ei and εj of the algebras C1, C2, C

′
1 and C ′2 were represented by orthogonal

matrices. Lemmas 41.8.2-4 show that the elements ei and εj of the algebras Cm
and C ′m are represented by matrices obtained consequtevely with the help of the
Kronecker product, and the initial matrices are orthogonal. It is clear that the
Kronecker product of two orthogonal matrices is an orthogonal matrix (cf. 27.4).

Let f : Cm −→ Mn(R) be a representation of Cm under which the elements
e1, . . . , em turn into orthogonal matrices. Then f(1 ·ei) = f(1)f(ei) and the matrix
f(ei) is invertible. Hence, f(1) = f(1 · ei)f(ei)−1 = I is the unit matrix. The
algebra Cm is either of the form Mp(F ) or of the form Mp(F ) ⊕Mp(F ), where
F = R,C or H. Therefore, if f is a representation of Cm such that f(1) = I, then
f is completely reducible and its irreducible components are isomorphic to F p (see
42.1); so its dimension is divisible by p. Therefore, for any n the largest m for
which Cm has a representation in Rn such that f(1) = I is equal to ρ(n)− 1.

Problems

41.1. Prove that the real part of the product of quaternions x1i + y1j + z1k
and x2i + y2j + z2k is equal to the inner product of the vectors (x1, y1, z1) and
(x2, y2, z2) taken with the minus sign, and that the imaginary part is equal to their
vector product.
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41.2. a) Prove that a quaternion q is purely imaginary if and only if q2 ≤ 0.
b) Prove that a quaternion q is real if and only if q2 ≥ 0.
41.3. Find all solutions of the equation q2 = −1 in quaternions.
41.4. Prove that a quaternion that commutes with all purely imaginary quater-

nions is real.
41.5. A matrix A with quaternion elements can be represented in the form

A = Z1 + Z2j, where Z1 and Z2 are complex matrices. Assign to a matrix A the

matrix Ac =
(

Z1 Z2

−Z2 Z1

)
. Prove that (AB)c = AcBc.

41.6. Consider the map in the space R4 = H which sends a quaternion x to qx,
where q is a fixed quaternion.

a) Prove that this map sends orthogonal vectors to orthogonal vectors.
b) Prove that the determinant of this map is equal to |q|4.
41.7. Given a tetrahedron ABCD prove with the help of quaternions that

AB · CD +BC ·AD ≥ AC ·BD.

41.8. Let x and y be octonions. Prove that a) x(yy) = (xy)y and x(xy) = (xx)y;
b) (yx)y = y(xy).

42. Representations of matrix algebras

42.1. Let A be an associative algebra and Mat(V ) the associative algebra of
linear transformations of a vector space V . A homomorphism f : A −→ Mat(V )
of associative algebras is called a representation of A. Given a homomorphism f
we define the action of A in V by the formula av = f(a)v. We have (ab)v = a(bv).
Thus, the space V is an A-module.

A subspace W ⊂ V is an invariant subspace of the representation f if AW ⊂
W , i.e., if W is a submodule of the A-module V . A representation is said to be
irreducible if any nonzero invariant subspace of it coincides with the whole space
V . A representation f : A −→ Mat(V ) is called completely reducible if the space
V is the direct sum of invariant subspaces such that the restriction of f to each of
them is irreducible.

42.1.1. Theorem. Let A = Mat(V n) and f : A −→ Mat(Wm) a representation
such that f(In) = Im. Then Wm = W1 ⊕ · · · ⊕Wk, where the Wi are invariant
subspaces isomorphic to V n.

Proof. Let e1, . . . , em be a basis of W . Since f(In)ei = ei, it follows that
W ⊂ Span(Ae1, . . . , Aem). It is possible to represent the space of A in the form of
the direct sum of subspaces Fi consisting of matrices whose columns are all zero,
except the ith one. Clearly, AFi = Fi and if a is a nonzero element of Fi then
Aa = Fi. The space W is the sum of spaces Fiej . These spaces are invariant, since
AFi = Fi. If x = aej , where a ∈ Fi and x 6= 0, then Ax = Aaej = Fiej .

Therefore, any two spaces of the form Fiej either do not have common nonzero
elements or coincide. It is possible to represent W in the form of the direct sum of
certain nonzero subspaces Fiej . For this we have to add at each stage subspaces
not contained in the direct sum of the previously chosen subspaces. It remains to
demonstrate that every nonzero space Fiej is isomorphic to V . Consider the map
h : Fi −→ Fiej for which h(a) = aej . Clearly, AKerh ⊂ Kerh. Suppose that
Kerh 6= 0. In Kerh, select a nonzero element a. Then Aa = Fi. On the other
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hand, Aa ⊂ Kerh. Therefore, Kerh = Fi, i.e., h is the zero map. Hence, either h
is an isomorphism or the zero map.

This proof remains valid for the algebra of matrices over H, i.e., when V and
W are spaces over H. Note that if A = Mat(V n), where V n is a space over H and
f : A −→ Mat(Wm) a representation such that f(In) = Im, then Wm necessarily
has the structure of a vector space over H. Indeed, the multiplication of elements
of Wm by i, j, k is determined by operators f(iIn), f(jIn), f(kIn). ¤

In section §41 we have made use of not only Theorem 42.1.1 but also of the
following statement.

42.1.2. Theorem. Let A = Mat(V n) ⊕Mat(V n) and f : A −→ Mat(Wm) a
representation such that f(In) = Im. Then Wm = W1 ⊕ · · · ⊕Wk, where the Wi

are invariant subspaces isomorphic to V n.

Proof. Let Fi be the set of matrices defines in the proof of Theorem 42.1.1.
The space A can be represented as the direct sum of its subspaces F 1

i = Fi⊕ 0 and
F 2
i = 0⊕Fi. Similarly to the proof of Theorem 42.1.1 we see that the space W can

be represented as the direct sum of certain nonzero subspaces F ki ej each of which
is invariant and isomorphic to V n. ¤

43. The resultant

43.1. Consider polynomials f(x) =
∑n
i=0 aix

n−i and g(x) =
∑m
i=0 bix

m−i,
where a0 6= 0 and b0 6= 0. Over an algebraically closed field, f and g have a
common divisor if and only if they have a common root. If the field is not alge-
braically closed then the common divisor can happen to be a polynomial without
roots.

The presence of a common divisor for f and g is equivalent to the fact that there
exist polynomials p and q such that fq = gp, where deg p ≤ n−1 and deg q ≤ m−1.
Let q = u0x

m−1 + · · ·+ um−1 and p = v0x
n−1 + · · ·+ vn−1. The equality fq = gp

can be expressed in the form of a system of equations

a0u0 = b0v0

a1u0 + a0u1 = b1v0 + b0v1

a2u0 + a1u1 + a0u2 = b2v0 + b1v1 + b0v2

. . . . . .

The polynomials f and g have a common root if and only if this system of
equations has a nonzero solution (u0, u1, . . . , v0, v1, . . . ). If, for example, m = 3
and n = 2, then the determinant of this system is of the form

∣∣∣∣∣∣∣∣∣

a0 0 0 −b0 0
a1 a0 0 −b1 −b0
a2 a1 a0 −b2 −b1
0 a2 a1 −b3 −b2
0 0 a2 0 −b3

∣∣∣∣∣∣∣∣∣
= ±

∣∣∣∣∣∣∣∣∣

a0 a1 a2 0 0
0 a0 a1 a2 0
0 0 a0 a1 a2

b0 b1 b2 b3 0
0 b0 b1 b2 b3

∣∣∣∣∣∣∣∣∣
= ±|S(f, g)|.

The matrix S(f, g) is called Sylvester’s matrix of polynomials f and g. The deter-
minant of S(f, g) is called the resultant of f and g and is denoted by R(f, g). It
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is clear that R(f, g) is a homogeneous polynomial of degree m with respect to the
variables ai and of degree n with respect to the variables bj . The polynomials f
and g have a common divisor if and only if the determinant of the above system is
zero, i.e., if R(f, g) = 0.

The resultant has a number of applications. For example, given polynomial
relations P (x, z) = 0 and Q(y, z) = 0 we can use the resultant in order to obtain
a polynomial relation R(x, y) = 0. Indeed, consider given polynomials P (x, z) and
Q(y, z) as polynomials in z considering x and y as constant parameters. Then the
resultant R(x, y) of these polynomials gives the required relation R(x, y) = 0.

The resultant also allows one to reduce the problem of solution of a system of
algebraic equations to the search of roots of polynomials. In fact, let P (x0, y0) = 0
and Q(x0, y0) = 0. Consider P (x, y) and Q(x, y) as polynomials in y. At x = x0

they have a common root y0. Therefore, their resultant R(x) vanishes at x = x0.

43.2. Theorem. Let xi be the roots of a polynomial f and let yj be the roots
of a polynomial g. Then

R(f, g) = am0 b
n
0

∏
(xi − yj) = am0

∏
g(xi) = bn0

∏
f(yj).

Proof. Since f = a0(x− x1) . . . (x− xn), then ak = ±a0σk(x1, . . . , xn), where
σk is an elementary symmetric function. Similarly, bk = ±b0σk(y1, . . . , ym). The
resultant is a homogeneous polynomial of degree m with respect to variables ai and
of degree n with respect to the bj ; hence,

R(f, g) = am0 b
n
0P (x1, . . . , xn, y1, . . . , ym),

where P is a symmetric polynomial in the totality of variables x1, . . . , xn and
y1, . . . , ym which vanishes for xi = yj . The formula

xki = (xi − yj)xk−1
i + yjx

k−1
i

shows that

P (x1, . . . , ym) = (xi − yj)Q(x1, . . . , ym) +R(x1, . . . , x̂i, . . . , ym).

Substituting xi = yj in this equation we see that R(x1, . . . , x̂i, . . . , ym) is identically
equal to zero, i.e., R is the zero polynomial. Similar arguments demonstrate that
P is divisible by S = am0 b

n
0

∏
(xi − yj).

Since g(x) = b0
∏m
j=1(x−yj), it follows that

∏n
i=1 g(xi) = bn0

∏
i,j(xi−yj); hence,

S = am0

n∏

i=1

g(xi) = am0

n∏

i=1

(b0xmi + b1x
m−1
i + · · ·+ bm)

is a homogeneous polynomial of degree n with respect to b0, . . . , bm.
For the variables a0, . . . , an our considerations are similar. It is also clear that the

symmetric polynomial am0
∏

(b0xmi +b1xm−1
i +· · ·+bm) is a polynomial in a0, . . . , an,

b0, . . . , bm. Hence, R(a0, . . . , bm) = λS(a0, . . . , bm), where λ is a number. On the
other hand, the coefficient of

∏
xmi in the polynomials am0 b

n
0P (x1, . . . , ym) and

S(x1, . . . , ym) is equal to am0 b
n
0 ; hence, λ = 1. ¤
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43.3. Bezout’s matrix. The size of Sylvester’s matrix is too large and, there-
fore, to compute the resultant with its help is inconvenient. There are many various
ways to diminish the order of the matrix used to compute the resultant. For ex-
ample, we can replace the polynomial g by the remainder of its division by f (see
Problem 43.1).

There are other ways to diminish the order of the matrix used for the computa-
tions.

Suppose that m = n.

Let us express Sylvester’s matrix in the form
(
A1 A2

B1 B2

)
, where the Ai, Bi are

square matrices. It is easy to verify that

A1B1 =




c0 c1 . . . cn−1 cn
0 c0 . . . cn−2 cn−1

...
...

. . .
...

...
0 0 . . . c0 c1
0 0 . . . 0 c0




= B1A1, where ck =
k∑

i=0

aibk−i;

hence, (
I 0
−B1 A1

)(
A1 A2

B1 B2

)
=

(
A1 A2

0 A1B2 −B1A2

)

and since |A1| = an0 , then R(f, g) = |A1B2 −B1A2|.
Let cpq = apbq − aqbp. It is easy to see that A1B2 − B1A2 =

∥∥wij
∥∥n

1
, where

wij =
∑
cpq and the summation runs over the pairs (p, q) such that p+q = n+j−i,

p ≤ n−1 and q ≥ j. Since cαβ + cα+1,β−1 + · · ·+ cβα = 0 for α ≤ β, we can confine
ourselves to the pairs for which p ≤ min(n − 1, j − 1). For example, for n = 4 we
get the matrix 


c04 c14 c24 c34

c03 c04 + c13 c14 + c23 c24

c02 c03 + c12 c04 + c13 c14

c01 c02 c03 c04


 .

Let J = antidiag(1, . . . , 1), i.e., J =
∥∥aij

∥∥n
1
, where aij =

{
1 for i+ j = n+ 1
0 otherwise

.

Then the matrix Z = |wij |n1J is symmetric. It is called the Bezoutian or Bezout’s
matrix of f and g.

43.4. Barnett’s matrix. Let us describe one more way to diminish the order of
the matrix to compute the resultant ([Barnett, 1971]). For simplicity, let us assume
that a0 = 1, i.e., f(x) = xn+a1x

n−1+· · ·+an and g(x) = b0x
m+b1xm−1+· · ·+bm.

To f and g assign Barnett’s matrix R = g(A), where

A =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . . . . .

...
...

...
...

. . . 0

0 0 0
. . . 1

−an −an−2 −an−3 . . . −a1



.
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43.4.1. Theorem. detR = R(f, g).

Proof. Let β1, . . . , βm be the roots of g. Then g(x) = b0(x− β1) . . . (x− βm).
Hence, g(A) = b0(A−β1I) . . . (A−βmI). Since det(A−λI) =

∏
i(αi−λ) (see 1.5),

then det g(A) = bm0
∏

(αi − βi) = R(f, g). ¤
43.4.2. Theorem. For m ≤ n it is possible to calculate the matrix R in the

following recurrent way. Let r1, . . . , rn be the rows of R. Then

r1 =
{

(bm, bm−1, . . . , b1, b0, 0, . . . , 0) for m < n

(dn, . . . , d1) for m = n,

where di = bi − b0ai. Besides, ri = ri−1A for i = 2, . . . , n.

Proof. Let ei = (0, . . . , 1, . . . , 0), where 1 occupies the ith slot. For k < n the
first row of Ak is equal to ek+1. Therefore, the structure of r1 for m < n is obvious.
For m = n we have to make use of the identity An +

∑n
i=1 aiA

n−i = 0.
Since ei = ei−1A for i = 2, . . . , n, it follows that

ri = eiR = ei−1AR = ei−1RA = ri−1A. ¤

43.4.3. Theorem. The degree of the greatest common divisor of f and g is
equal to n− rankR.

Proof. Let β1, . . . , βs be the roots of g with multiplicities k1, . . . , ks, respec-
tively. Then g(x) = b0

∏
(x − βi)ki and R = g(A) = b0

∏
i(A − βiI)ki . Under

the passage to the basis in which the matrix A is of the Jordan normal form J ,
the matrix R is replaced by b0

∏
(J − βiI)ki . The characteristic polynomial of A

coincides with the minimal polynomial and, therefore, if βi is a root of multiplicity
li of f , then the Jordan block Ji of J corresponding to the eigenvalue βi is of order
li. It is also clear that

rank(Ji − βiI)ki = li −min(ki, li).

Now, considering the Jordan blocks of J separately, we easily see that n −
rankR =

∑
i min(ki, li) and the latter sum is equal to the degree of the great-

est common divisor of f and g. ¤
43.5. Discriminant. Let x1, . . . , xn be the roots of f(x) = a0x

n+ · · ·+an and
let a0 6= 0. The number D(f) = a2n−2

0

∏
i<j(xi−xj) is called the discriminant of f .

It is also clear that D(f) = 0 if and only if f has multiple roots, i.e., R(f, f ′) = 0.

43.5.1. Theorem. R(f, f ′) = ±a0D(f).

Proof. By Theorem 43.2 R(f, f ′) = an−1
0

∏
i f
′(xi).

It is easy to verify that if xi is a root of f , then f ′(xi) = a0

∏
j 6=i(xj − xi).

Therefore,

R(f, f ′) = a2n−1
0

∏

j 6=i
(xi − xj) = ±a2n−1

0

∏

i<j

(xi − xj)2. ¤
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Corollary. The discriminant is a polynomial in the coefficients of f .

43.5.2. Theorem. Any matrix is the limit of matrices with simple (i.e., nonmultiple)
eigenvalues.

Proof. Let f(x) be the characteristic polynomial of a matrix A. The polyno-
mial f has multiple roots if and only if D(f) = 0. Therefore, we get an algebraic
equation for elements of A. The restriction of the equation D(f) = 0 to the line
{λA + (1 − λ)B}, where B is a matrix with simple eigenvalues, has finitely many
roots. Therefore, A is the limit of matrices with simple eigenvalues. ¤

Problems

43.1. Let r(x) be the remainder of the division of g(x) by f(x) and let deg r(x) =
k. Prove that R(f, g) = am−k0 R(f, r).

43.2. Let f(x) = a0x
n + · · · + an, g(x) = b0x

m + · · · + bm and let rk(x) =
ak0x

n−1 + ak1x
n−2 + · · · + ak,n−1 be the remainder of the division of xkg(x) by

f(x). Prove that

R(f, g) = am0

∣∣∣∣∣∣∣

an−1,0 . . . an−1,n−1

...
...

...
a00 . . . a0,n−1

∣∣∣∣∣∣∣
.

43.3. The characteristic polynomials of matrices A and B of size n×n and m×m
are equal to f and g, respectively. Prove that the resultant of the polynomials f
and g is equal to the determinant of the operator X 7→ AX −XB in the space of
matrices of size n×m.

43.4. Let α1, . . . , αn be the roots of a polynomial f(x) =
∑n
i=0 aix

n−i and
sk = αk1 + · · ·+ αkn. Prove that D(f) = a2n−2

0 detS, where

S =




s0 s1 . . . sn−1

s1 s2 . . . sn
...

...
...

...
sn−1 sn . . . s2n−2


 .

44. The generalized inverse matrix. Matrix equations

44.1. A matrix X is called a generalized inverse for a (not necessarily square)
matrix A, if XAX = X, AXA = A and the matrices AX and XA are Hermitian
ones. It is easy to verify that for an invertible A its generalized inverse matrix
coincides with the inverse matrix.

44.1.1. Theorem. A matrix X is a generalized inverse for A if and only if the
matrices P = AX and Q = XA are Hermitian projections onto ImA and ImA∗,
respectively.

Proof. First, suppose that P and Q are Hermitian projections to ImA and
ImA∗, respectively. If v is an arbitrary vector, then Av ∈ ImA and, therefore,
PAv = Av, i.e., AXAv = Av. Besides, Xv ∈ ImXA = ImA∗; hence, QXv = Xv,
i.e., XAXv = Xv.

Now, suppose that X is a generalized inverse for A. Then P 2 = (AXA)X =
AX = P and Q2 = (XAX)A = XA = Q, where P and Q are Hermitian matrices.
It remains to show that ImP = ImA and ImQ = ImA∗. Since P = AX and
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Q = Q∗ = A∗X∗, then ImP ⊂ ImA and ImQ ⊂ ImA∗. On the other hand,
A = AXA = PA and A∗ = A∗X∗A∗ = Q∗A∗ = QA∗; hence, ImA ⊂ ImP and
ImA∗ ⊂ ImQ. ¤

44.1.2. Theorem (Moore-Penrose). For any matrix A there exists a unique
generalized inverse matrix X.

Proof. If rankA = r then A can be represented in the form of the product of
matrices C and D of size m × r and r × n, respectively, where ImA = ImC and
ImA∗ = ImD∗. It is also clear that C∗C and DD∗ are invertible. Set

X = D∗(DD∗)−1(C∗C)−1C∗.

Then AX = C(C∗C)−1C∗ and XA = D∗(DD∗)−1D, i.e., the matrices AX and
XA are Hermitian projections onto ImC = ImA and ImD∗ = ImA∗, respectively,
(see 25.3) and, therefore, X is a generalized inverse for A.

Now, suppose that X1 and X2 are generalized inverses for A. Then AX1 and
AX2 are Hermitian projections onto ImA, implying AX1 = AX2. Similarly, X1A =
X2A. Therefore,

X1 = X1(AX1) = (X1A)X2 = X2AX2 = X2. ¤

The generalized inverse of A will be denoted5 by A“−1”.

44.2. The generalized inverse matrix A“−1” is applied to solve systems of linear
equations, both inconsistent and consistent. The most interesting are its applica-
tions solving inconsistent systems.

44.2.1. Theorem. Consider a system of linear equations Ax = b. The value
|Ax− b| is minimal for x such that Ax = AA“−1”b and among all such x the least
value of |x| is attained at the vector x0 = A“−1”b.

Proof. The operator P = AA“−1” is a projection and therefore, I − P is also
a projection and Im(I −P ) = KerP (see Theorem 25.1.2). Since P is an Hermitian
operator, KerP = (ImP )⊥. Hence,

Im(I − P ) = KerP = (ImP )⊥ = (ImA)⊥,

i.e., for any vectors x and y the vectors Ax and (I − AA“−1”)y are perpendicular
and

|Ax+ (I −AA“−1”)y|2 = |Ax|2 + |y −AA“−1”y|2.
Similarly,

|A“−1”x+ (I −A“−1”A)y|2 = |A“−1”x|2 + |y −A“−1”Ay|2.

Since
Ax− b = A(x−A“−1”b)− (I −AA“−1”)b,

5There is no standard notation for the generalized inverse of a matrix A. Many authors took
after R. Penrose who denoted it by A+ which is confusing: might be mistaken for the Hermitian
conjugate. In the original manuscript of this book Penrose’s notation was used. I suggest a more
dynamic and noncontroversal notation approved by the author. Translator.
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it follows that

|Ax− b|2 = |Ax−AA“−1”b|2 + |b−AA“−1”b|2 ≥ |b−AA“−1”b|2

and equality is attained if and only if Ax = AA“−1”b. If Ax = AA“−1”b, then

|x|2 = |A“−1”b+ (I −A“−1”A)x|2 = |A“−1”b|2 + |x−A“−1”Ax|2 ≥ |A“−1”b|2

and equality is attained if and only if

x = A“−1”Ax = A“−1”AA“−1”b = A“−1”b. ¤

Remark. The equality Ax = AA“−1”b is equivalent to the equality A∗Ax =
A∗x. Indeed, if Ax = AA“−1”b then A∗b = A∗(A“−1”)∗A∗b = A∗AA“−1”b = A∗Ax
and if A∗Ax = A∗b then

Ax = AA“−1”Ax = (A“−1”)∗A∗Ax = (A“−1”)∗A∗b = AA“−1”b.

With the help of the generalized inverse matrix we can write a criterion for
consistency of a system of linear equations and find all its solutions.

44.2.2. Theorem. The matrix equation

(1) AXB = C

has a solution if and only if AA“−1”CB“−1”B = C. The solutions of (1) are of the
form

X = A“−1”CB“−1” + Y −A“−1”AY BB“−1”, where Y is an arbitrary matrix.

Proof. If AXB = C, then

C = AXB = AA“−1”(AXB)B“−1”B = AA“−1”CB“−1”B.

Conversely, if C = AA“−1”CB“−1”B, then X0 = A“−1”CB“−1” is a particular
solution of the equation

AXB = C.

It remains to demonstrate that the general solution of the equation AXB = 0 is of
the form X = Y −A“−1”AY BB“−1”. Clearly, A(Y −A“−1”AY BB“−1”)B = 0. On
the other hand, if AXB = 0 then X = Y −A“−1”AY BB“−1”, where Y = X. ¤

Remark. The notion of generalized inverse matrix appeared independently in
the papers of [Moore, 1935] and [Penrose, 1955]. The equivalence of Moore’s and
Penrose’s definitions was demonstrated in the paper [Rado, 1956].



44. THE GENERALIZED INVERSE MATRIX. MATRIX EQUATIONS 197

44.3. Theorem ([Roth, 1952]). Let A ∈Mm,m, B ∈Mn,n and C ∈Mm,n.
a) The equation AX − XB = C has a solution X ∈ Mm,n if and only if the

matrices
(
A 0
0 B

)
and

(
A C
0 B

)
are similar.

b) The equation AX − Y B = C has a solution X,Y ∈ Mm,n if and only if

matrices
(
A 0
0 B

)
and

(
A C
0 B

)
are of the same rank.

Proof (Following [Flanders, Wimmer, 1977]). a) Let K =
(
P Q
R S

)
, where

P ∈ Mm,m and S ∈ Mn,n. First, suppose that the matrices from the theorem are
similar. For i = 0, 1 consider the maps ϕi : Mm,n −→Mm,n given by the formulas

ϕ0(K) =
(
A 0
0 B

)
K −K

(
A 0
0 B

)
=

(
AP − PA AQ−QB
BR−RA BS − SB

)
,

ϕ1(K) =
(
A C
0 B

)
K −K

(
A 0
0 B

)
=

(
AP + CR− PA AQ+ CS −QB

BR−RA BS − SB
)
.

The equations FK = KF and GFG−1K ′ = K ′F have isomorphic spaces of solu-
tions; this isomorphism is given by the formula K = G−1K ′. Hence, dim Kerϕ0 =
dim Kerϕ1. If K ∈ Kerϕi, then BR = RA and BS = SB. Therefore, we can
consider the space

V = {(R,S) ∈Mn,m+n | BR = RA, BS = SB}

and determine the projection µi : Kerϕi −→ V , where µi(X) = (R,S). It is easy
to verify that

Kerµi = {
(
P Q
0 0

)
| AP = PA, AQ = QB}.

For µ0 this is obvious and for µ1 it follows from the fact that CR = 0 and CS = 0
since R = 0 and S = 0.

Let us prove that Imµ0 = Imµ1. If (R,S) ∈ V , then
(

0 0
R S

)
∈ Kerϕ0. Hence,

Imµ0 = V and, therefore, Imµ1 ⊂ Imµ0. On the other hand,

dim Imµ0 + dim Kerµ0 = dim Kerϕ0 = dim Kerϕ1 = dim Imµ1 + dim Kerµ1.

The matrix
(
I 0
0 −I

)
belongs to Kerϕ0 and, therefore, (0,−I) ∈ Imµ0 = Imµ1.

Hence, there is a matrix of the form
(
P Q
0 −I

)
in Kerϕ1. Thus, AQ+CS−QB = 0,

where S = −I. Therefore, X = Q is a solution of the equation AX −XB = C.
Conversely, if X is a solution of this equation, then
(
A 0
0 B

)(
I X
0 I

)
=

(
A AX
0 B

)
=

(
A C +XB
0 B

)
=

(
I X
0 I

)(
A C
0 B

)

and, therefore
(
I X
0 I

)−1 (
A 0
0 B

)(
I X
0 I

)
=

(
A C
0 B

)
.
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b) First, suppose that the indicated matrices are of the same rank. For i = 0, 1
consider the map ψi : Mm+n,2(m+n) −→Mm+n,m+n given by formulas

ψ0(U,W ) =
(
A 0
0 B

)
U −W

(
A 0
0 B

)
=

(
AU11 −W11A AU12 −W12B
BU21 −W21A BU22 −W22B

)
,

ψ1(U,W ) =
(
A C
0 B

)
U −W

(
A 0
0 B

)

=
(
AU11 + CU21 −W11A AU12 + CU22 −W12B

BU21 −W21A BU22 −W22B

)
,

where

U =
(
U11 U12

U21 U22

)
and W =

(
W11 W12

W21 W22

)
.

The spaces of solutions of equations FU = WF and GFG−1U ′ = W ′F are isomor-
phic and this isomorphism is given by the formulas U = G−1U ′ and W = G−1W ′.
Hence, dim Kerψ0 = dim Kerψ1.

Consider the space

Z = {(U21, U22W21,W22) | BU21 = W21A, BU22 = W22B}

and define a map νi : Kerϕi −→ Z, where νi(U,W ) = (U21, U22,W21,W22). Then
Im ν1 ⊂ Im ν0 = Z and Ker ν1 = Ker ν0. Therefore, Im ν1 = Im ν0. The matrix

(U,W ), where U = W =
(
I 0
0 −I

)
, belongs to Kerψ0. Hence, Kerψ1 also contains

an element for which U22 = −I. For this element the equality AU12+CU22 = W12B
is equivalent to the equality AU12 −W12B = C.

Conversely, if a solution X,Y of the given equation exists, then
(
I −Y
0 I

)(
A 0
0 B

)(
I X
0 I

)
=

(
A AX − Y B
0 B

)
=

(
A C
0 B

)
. ¤

Problems

44.1. Prove that if C = AX = Y B, then there exists a matrix Z such that
C = AZB.

44.2. Prove that any solution of a system of matrix equations AX = 0, BX = 0
is of the form X = (I −A“−1”A)Y (I −BB“−1”), where Y is an arbitrary matrix.

44.3. Prove that the system of equations AX = C, XB = D has a solution if and
only if each of the equations AX = C and XB = D has a solution and AD = CB.

45. Hankel matrices and rational functions

Consider a proper rational function

R(z) =
a1z

m−1 + · · ·+ am
b0zm + b1zm−1 + · · ·+ bm

,

where b0 6= 0. It is possible to expand this function in a series

R(z) = s0z
−1 + s1z

−2 + s2z
−3 + . . . ,
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where

(1)

b0s0 = a1,

b0s1 + b1s0 = a2,

b0s2 + b1s1 + b2s0 = a3,

. . . . . . . . . . . . . . . . . .

b0sm−1 + · · ·+ bm−1s0 = am

Besides, b0sq + · · ·+ bmsq−m = 0 for q ≥ m. Thus, for all q ≥ m we have

(2) sq = α1sq−1 + · · ·+ αmsq−m,

where αi = −bi/b0. Consider the infinite matrix

S =

∥∥∥∥∥∥∥∥

s0 s1 s2 . . .
s1 s2 s3 . . .
s2 s3 s4 . . .
...

...
... · · ·

∥∥∥∥∥∥∥∥
.

A matrix of such a form is called a Hankel matrix. Relation (2) means that the
(m + 1)th row of S is a linear combination of the first m rows (with coefficients
α1, . . . , αm). If we delete the first element of each of these rows, we see that the
(m+2)th row of S is a linear combination of the m rows preceding it and therefore,
the linear combination of the first m rows. Continuing these arguments, we deduce
that any row of the matrix S is expressed in terms of its first m rows, i.e., rankS ≤
m.

Thus, if the series

(3) R(z) = s0z
−1 + s1z

−2 + s2z
−3 + . . .

corresponds to a rational function R(z) then the Hankel matrix S constructed from
s0, s1, . . . is of finite rank.

Now, suppose that the Hankel matrix S is of finite rank m. Let us construct from
S a series (3). Let us prove that this series corresponds to a rational function. The
first m + 1 rows of S are linearly dependent and, therefore, there exists a number
h ≤ m such that the m+ 1-st row can be expressed linearly in terms of the first m
rows. As has been demonstrated, in this case all rows of S are expressed in terms
of the first h rows. Hence, h = m. Thus, the numbers si are connected by relation
(2) for all q ≥ m. The coefficients αi in this relation enable us to determine the
numbers b0 = 1, b1 = α1, . . . , bm = αm. Next, with the help of relation (1) we can
determine the numbers a1, . . . , am. For the numbers ai and bj determined in this
way we have

s0

z
+
s1

z2
+ · · · = a1z

m−1 + · · ·+ am
b0zm + · · ·+ bm

,

i.e., R(z) is a rational function.

Remark. Matrices of finite size of the form



s0 s1 . . . sn
s1 s2 . . . sn+1

...
...

...
...

sn sn+1 . . . s2n


 .
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are also sometimes referred to as Hankel matrices. Let J = antidiag(1, . . . , 1), i.e.,

J =
∥∥aij

∥∥n
0
, where aij =

{
1 for i+ j = n,

0 otherwise.
If H is a Hankel matrix, then the

matrix JH is called a Toeplitz matrix; it is of the form



a0 a1 a2 . . . an
a−1 a0 a1 . . . an−1

a−2 a−1 a0 . . . an−2

...
...

...
...

...
a−n a−n+1 a−n+2 . . . a0



.

46. Functions of matrices. Differentiation of matrices

46.1. By analogy with the exponent of a number, we can define the expontent
of a matrix A to be the sum of the series

∞∑

k=0

Ak

k!
.

Let us prove that this series converges. If A and B are square matrices of order
n and |aij | ≤ a, |bij | ≤ b, then the absolute value of each element of AB does
not exceed nab. Hence, the absolute value of the elements of Ak does not exceed
nk−1ak = (na)k/n and, since 1

n

∑∞
k=0

(na)k

k! = 1
ne

na, the series
∑∞
k=0

Ak

k! converges
to a matrix denoted by eA = expA; this matrix is called the exponent of A.

If A1 = P−1AP , then Ak1 = P−1AkP . Therefore, exp(P−1AP ) = P−1(expA)P .
Hence, the computation of the exponent of an arbitrary matrix reduces to the
computation of the exponent of its Jordan blocks.

Let J = λI +N be a Jordan block of order n. Then

(λI +N)k =
k∑

m=0

(
k

m

)
λk−mNm.

Hence,

exp(tJ) =
∞∑

k=0

tkJk

k!
=

∞∑

k,m=0

tk
(
k
m

)
λk−mNm

k!

=
∞∑
m=0

∞∑

k=m

(λt)k−m

(k −m)!
tmNm

m!
=
∞∑
m=0

tm

m!
eλtNm =

n−1∑
m=0

tm

m!
eλtNm,

since Nm = 0 for m ≥ n.
By reducing a matrix A to the Jordan normal form we get the following state-

ment.

46.1.1. Theorem. If the minimal polynomial of A is equal to

(x− λ1)n1 . . . (x− λk)nk ,

then the elements of eAt are of the form p1(t)eλ1t + · · · + pk(t)eλkt, where pi(t) is
a polynomial of degree not greater than ni − 1.
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46.1.2. Theorem. det(eA) = etrA.

Proof. We may assume that A is an upper triangular matrix with elements
λ1, . . . , λn on the diagonal. Then Ak is an upper triangular matrix with elements
λk1

1 , . . . , λknn of the diagonal. Hence, eA is an upper triangular matrix with elements
expλ1, . . . , expλn on the diagonal. ¤

46.2. Consider a family of matrices X(t) =
∥∥xij(t)

∥∥n
1

whose elements are dif-
ferentiable functions of t. Let Ẋ(t) = dX(t)

dt be the element-wise derivative of the
matrix-valued function X(t).

46.2.1. Theorem. (XY ). = ẊY +XẎ .

Proof. If Z = XY , then zij =
∑

kxikykj hence żij =
∑

kẋikykj +
∑

kxikẏkj .
therefore, Ż = ẊY +XẎ . ¤

46.2.2. Theorem. a) (X−1). = −X−1ẊX−1.
b) tr(X−1Ẋ) = − tr((X−1).X).

Proof. a) On the one hand, (X−1X). = İ = 0. On the other hand, (X−1X). =
(X−1).X +X−1Ẋ. Therefore, (X−1).X = −X−1Ẋ and (X−1). = −X−1ẊX−1.

b) Since tr(X−1X) = n, it follows that

0 = [tr(X−1X)]. = tr((X−1).X) + tr(X−1Ẋ). ¤

46.2.3. Theorem. (eAt). = AeAt.

Proof. Since the series
∑∞
k=0

(tA)k

k! converges absolutely,

d

dt
(eAt) =

∞∑

k=0

d

dt

(
(tA)k

k!

)
=
∞∑

k=0

ktk−1Ak

k!
= A

∞∑

k=1

(tA)k−1

(k − 1)!
= AeAt. ¤

46.3. A system of n first order linear differential equations in n variables can be
expressed in the form Ẋ = AX, where X is a column of length n and A is a matrix
of order n. If A is a constant matrix, then X(t) = eAtC is the solution of this
equation with the initial condition X(0) = C (see Theorem 46.2.3); the solution of
this equation with a given initial value is unique.

The general form of the elements of the matrix eAt is given by Theorem 46.1.1;
using the same theorem, we get the following statement.

46.3.1. Theorem. Consider the equation Ẋ = AX. If the minimal polynomial
of A is equal to (λ − λ1)n1 . . . (λ − λk)nk then the solution x1(t), . . . , xn(t) (i.e.,
the coordinates of the vector X) is of the form

xi(t) = pi1(t)eλ1t + · · ·+ pik(t)eλkt,

where pij(t) is a polynomial whose degree does not exceed nj − 1.

It is easy to verify by a direct substitution that X(t) = eAtCeBt is a solution of
Ẋ = AX +XB with the initial condition X(0) = C.
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46.3.2. Theorem. Let X(t) be a solution of Ẋ = A(t)X. Then

detX = exp
(∫ t

0

trA(s) ds
)

detX(0).

Proof. By Problem 46.6 a) (detX). = (detX)(tr ẊX−1). In our case ẊX−1 =
A(t). Therefore, the function y(t) = detX(t) satisfies the condition (ln y). = ẏ/y =
trA(t). Therefore, y(t) = c exp(

∫ t
0

trA(s)ds), where c = y(0) = detX(0). ¤

Problems

46.1. Let A =
(

0 −t
t 0

)
. Compute eA.

46.2. a) Prove that if [A,B] = 0, then eA+B = eAeB .
b) Prove that if e(A+B)t = eAteBt for all t, then [A,B] = 0.
46.3. Prove that for any unitary matrix U there exists an Hermitian matrix H

such that U = eiH .
46.4. a) Prove that if a real matrix X is skew-symmetric, then eX is orthogonal.
b) Prove that any orthogonal matrix U with determinant 1 can be represented

in the form eX , where X is a real skew-symmetric matrix.
46.5. a) Let A be a real matrix. Prove that det eA = 1 if and only if trA = 0.
b) Let B be a real matrix and detB = 1. Is there a real matrix A such that

B = eA?
46.6. a) Prove that

(detA). = tr(Ȧ adjAT ) = (detA) tr(ȦA−1).

b) Let A be an n×n-matrix. Prove that tr(A(adjAT ).) = (n− 1) tr(Ȧ adjAT ).
46.7. [Aitken, 1953]. Consider a map F : Mn,n −→ Mn,n. Let ΩF (X) =∥∥ωij(X)

∥∥n
1
, where ωij(X) = ∂

∂xji
trF (X). Prove that if F (X) = Xm, where m is

an integer, then ΩF (X) = mXm−1.

47. Lax pairs and integrable systems

47.1. Consider a system of differential equations

ẋ(t) = f(x, t), where x = (x1, . . . , xn), f = (f1, . . . , fn).

A nonconstant function F (x1, . . . , xn) is called a first integral of this system if

d

dt
F (x1(t), . . . , xn(t)) = 0

for any solution (x1(t), . . . , xn(t)) of the system. The existence of a first integral
enables one to reduce the order of the system by 1.

Let A and L be square matrices whose elements depend on x1, . . . , xn. The
differential equation

L̇ = AL− LA
is called the Lax differential equation and the pair of operators L, A in it a Lax
pair.
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Theorem. If the functions fk(x1, . . . , xn) = tr(Lk) are nonconstant, then they
are first integrals of the Lax equation.

Proof. Let B(t) be a solution of the equation Ḃ = −BA with the initial con-
dition B(0) = I. Then

detB(t) = exp
(∫ t

0

A(s)ds
)
6= 0

(see Theorem 46.3.2) and

(BLB−1). = ḂLB−1 +BL̇B−1 +BL(B−1).

= −BALB−1 +B(AL− LA)B−1 +BLB−1(BA)B−1 = 0.

Therefore, the Jordan normal form of L does not depend on t; hence, its eigenvalues
are constants. ¤

Representation of systems of differential equations in the Lax form is an im-
portant method for finding first integrals of Hamiltonian systems of differential
equations.

For example, the Euler equations Ṁ = M × ω, which describe the motion of a
solid body with a fixed point, are easy to express in the Lax form. For this we
should take

L =




0 −M3 M2

M3 0 −M1

−M2 M1 0


 and A =




0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0


 .

The first integral of this equation is trL2 = −2(M2
1 +M2

2 +M2
3 ) .

47.2. A more instructive example is that of the Toda lattice:

ẍi = − ∂

∂xi
U, where U = exp(x1 − x2) + · · ·+ exp(xn−1 − xn).

This system of equations can be expressed in the Lax form with the following L
and A:

L =




b1 a1 0 0
a1 b2 a2

0 a2 b3
. . . 0

. . . . . . an−1

0 0 an−1 bn



, A =




0 a1 0 0
−a1 0 a2

0 −a2 0
. . . 0

. . . . . . an−1

0 0 −an−1 0



,

where 2ak = exp 1
2 (xk − xk+1) and 2bk = −ẋk. Indeed, the equation L̇ = [A,L] is

equivalent to the system of equations

ḃ1 = 2a2
1, ḃ2 = 2(a2

2 − a2
1), . . . , ḃn = −2a2

n−1,

ȧ1 = a1(b2 − b1), . . . , ȧn−1 = an−1(bn − bn−1).
The equation

ȧk = ak(bk+1 − bk) = ak
ẋk − ẋk+1

2
implies that ln ak = 1

2 (xk − xk+1) + ck, i.e., ak = dk exp 1
2 (xk − xk+1). Therefore,

the equation ḃk = 2(a2
k − a2

k−1) is equivalent to the equation

− ẍk
2

= 2(d2
k exp(xk − xk+1)− d2

k−1 exp(xk−1 − xk)).

If d1 = · · · = dn−1 = 1
2 we get the required equations.



204 MATRICES IN ALGEBRA AND CALCULUS

47.3. The motion of a multidimensional solid body with the inertia matrix J is
described by the equation

(1) Ṁ = [M,ω],

where ω is a skew-symmetric matrix and M = Jω + ωJ ; here we can assume that
J is a diagonal matrix. The equation (1) is already in the Lax form; therefore,
Ik = trM2k for k = 1, . . . , [n/2] are first integrals of this equation (if p > [n/2],
then the functions trM2p can be expressed in terms of the functions Ik indicated; if
p is odd, then trMp = 0). But we can get many more first integrals by expressing
(1) in the form

(2) (M + λJ2). = [M + λJ2, ω + λJ ],

where λ is an arbitrary constant, as it was first done in [Manakov, 1976]. To prove
that (1) and (2) are equivalent, it suffices to notice that

[M,J ] = −J2ω + ωJ2 = −[J2, ω].

The first integrals of (2) are all nonzero coefficients of the polynomials

Pk(λ) = tr(M + λJ2)k =
∑

bsλ
s.

Since MT = −M and JT = J , it follows that

Pk(λ) = tr(−M + λJ2)k =
∑

(−1)k−sbsλs.

Therefore, if k − s is odd, then bs = 0.

47.4. The system of Volterra equations

(1) ȧi = ai

(
p−1∑

k=1

ai+k −
p−1∑

k=1

ai−k

)
,

where p ≥ 2 and ai+n = ai, can also be expressed in the form of a family of Lax
equations depending on a parameter λ. Such a representation is given in the book
[Bogoyavlenskǐi, 1991]. Let M =

∥∥mij

∥∥n
1

and A =
∥∥aij

∥∥n
1
, where in every matrix

only n elements — mi,i+1 = 1 and ai,i+1−p = ai — are nonzero. Consider the
equation

(2) (A+ λM). = [A+ λM,−B − λMp].

If B =
∑p−1
j=0 M

p−1−jAM j , then [M,B] + [A,Mp] = 0 and, therefore, equation
(2) is equivalent to the equation Ȧ = −[A,B]. It is easy to verify that bij =
ai+p−1,j + · · · + ai,j+p−1. Therefore, bij = 0 for i 6= j and bi = bii =

∑p−1
k=0 ai+k.

The equation Ȧ = −[A,B] is equivalent to the system of equations

ȧij = aij(bi − bj), where aij 6= 0 only for j = i+ 1− p.
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As a result we get a system of equations (here j = i+ 1− p):

ȧi = ai

(
p−1∑

k=0

ai+k −
p−1∑

k=0

aj+k

)
= ai

(
p−1∑

k=1

ai+k −
p−1∑

k=1

ai−k

)
.

Thus, Ik = tr(A+ λM)kp are first integrals of (1).
It is also possible to verify that the system of equations

ȧi = ai

(
p−1∏

k=1

ai+k −
p−1∏

k=1

ai−k

)

is equivalent to the Lax equation

(A+ λM). = [A+ λM,λ−1Ap],

where ai,i+1 = ai and mi,i+1−p = −1.

48. Matrices with prescribed eigenvalues

48.1.1. Theorem ([Farahat, Lederman, 1958]). For any polynomial f(x) =
xn + c1x

n−1 + · · ·+ cn and any numbers a1, . . . , an−1 there exists a matrix of order
n with characteristic polynomial f and elements a1, . . . , an on the diagonal (the last
diagonal element an is defined by the relation a1 + · · ·+ an = −c1).

Proof. The polynomials

u0 = 1, u1 = x− a1, . . . , un = (x− a1) . . . (x− an)

constitute a basis in the space of polynomials of degree not exceeding n and, there-
fore, f = un + λ1un−1 + · · · + λnu0. Equating the coefficients of xn−1 in the
left-hand side and the right-hand side we get c1 = −(a1 + · · · + an) + λ1, i.e.,
λ1 = c1 + (a1 + · · ·+ an) = 0. Let

A =




a1 1 0 0
0 a2 1 0

. . . . . . . . . 0
. . . an−1 1

−λn −λn−1 . . . . . . −λ2 an



.

Expanding the determinant of xI −A with respect to the last row we get

|xI −A| = λn + λn−1u1 + · · ·+ λ2un−2 + un = f,

i.e., A is the desired matrix. ¤
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48.1.2. Theorem ([Farahat, Lederman, 1958]). For any polynomial f(x) =
xn + c1x

n−1 + · · · + cn and any matrix B of order n − 1 whose characteristic and
minimal polynomials coincide there exists a matrix A such that B is a submatrix
of A and the characteristic polynomial of A is equal to f .

Proof. Let us seek A in the form A =
(
B P
QT b

)
, where P and Q are arbitrary

columns of length n− 1 and b is an arbitrary number. Clearly,

det(xIn −A) = (x− b) det(xIn−1 −B)−QT adj(xIn−1 −B)P

(see Theorem 3.1.3). Let us prove that adj(xIn−1 − B) =
∑n−2
r=0 ur(x)Br, where

the polynomials u0, . . . , un−2 form a basis in the space of polynomials of degree not
exceeding n− 2. Let

g(x) = det(xIn−1 −B) = xn−1 + t1x
n−2 + . . .

and ϕ(x, λ) = (g(x)− g(λ))/(x− λ). Then

(xIn−1 −B)ϕ(x,B) = g(x)In−1 − g(B) = g(x)In−1,

since g(B) = 0 by the Cayley-Hamilton theorem. Therefore,

ϕ(x,B) = g(x)(xIn−1 −B)−1 = adj(xIn−1 −B).

Besides, since (xk − λk)/(x− λ) =
∑k−1
s=0 x

k−1−sλs, it follows that

ϕ(x, λ) =
n−2∑
r=0

tn−r−2

r∑
s=0

xr−sλs =
n−2∑
s=0

λs
n−2∑
r=s

tn−r−2x
r−s

and, therefore, ϕ(x, λ) =
∑n−2
s=0 λ

sus(x), where

us = xn−s−2 + t1x
n−s−3 + · · ·+ tn−s−2.

Thus,

det(xIn −A) = (x− b)(xn−1 + t1x
n−2 + . . . )−

n−2∑
s=0

usQ
TBsP

= xn + (t1 − b)xn−1 + h(x)−
n−2∑
s=0

usQ
TBsP,

where h is a polynomial of degree less than n− 1 and the polynomials u0, . . . , un−2

form a basis in the space of polynomials of degree less than n − 1. Since the
characteristic polynomial of B coincides with the minimal polynomial, the columns
Q and P can be selected so that (QTP, . . . , QTBn−2P ) is an arbitrary given set of
numbers; cf. 13.3. ¤
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48.2. Theorem ([Friedland, 1972]). Given all offdiagonal elements in a com-
plex matrix A, it is possible to select diagonal elements x1, . . . , xn so that the eigen-
values of A are given complex numbers; there are finitely many sets {x1, . . . , xn}
satisfying this condition.

Proof. Clearly,

det(A+ λI) = (x1 + λ) . . . (xn + λ) +
∑

k≤n−2

α(xi1 + λ) . . . (xik + λ)

=
∑

λn−kσk(x1, . . . , xn) +
∑

k≤n−2

λn−kpk(x1, . . . , xn),

where pk is a polynomial of degree ≤ k− 2. The equation det(A+ λI) = 0 has the
numbers λ1, . . . , λn as its roots if and only if

σk(λ1, . . . , λn) = σk(x1, . . . , xn) + pk(x1, . . . , xn).

Thus, our problem reduces to the system of equations

σk(x1, . . . , xn) = qk(x1, . . . , xn), where k = 1, . . . , n and deg qk ≤ k − 1.

Let σk = σk(x1, . . . , xn). Then the equality

xn − σ1x
n−1 + σ2x

n−2 + · · ·+ (−1)nσn = 0

holds for x = x1, . . . , xn. Let

fi(x1, . . . , xn) = xni + q1x
n−1
i − q2x

n−2
i + · · ·+ (−1)nqn = xni + ri(x1, . . . , xn),

where deg ri < n. Then

fi = fi − (xni − σ1x
n−1
i + σ2x

n−2
i − · · ·+ (−1)nσn) = xn−1

i g1 + xn−2
i g2 + · · ·+ gn,

where gi = (−1)i−1(σi + qi). Therefore, F = V G, where F and G are columns
(f1, . . . , fn)T and (g1, . . . , gn)T , V =

∥∥xj−1
i

∥∥n
1
. Therefore, G = V −1F and since

V −1 = W−1V1, where W = detV =
∏
i>j(xi − xj) and V1 is the matrix whose

elements are polynomials in x1, . . . , xn, then Wg1, . . . ,Wgn ∈ I[f1, . . . , fn], where
I[f1, . . . , fn] is the ideal of the polynomial ring over C generated by f1, . . . , fn.

Suppose that the polynomials g1, . . . , gn have no common roots. Then Hilbert’s
Nullstellensatz (see Appendix 4) shows that there exist polynomials v1, . . . , vn such
that 1 =

∑
vigi; hence, W =

∑
vi(Wgi) ∈ I[f1, . . . , fn].

On the other hand, W =
∑
ai1...inx

i1
1 . . . xinn , where ik < n. Therefore, W 6∈

I[f1, . . . , fn] (see Appendix 5). It follows that the polynomials g1, . . . , gn have a
common root.

Let us show that the polynomials g1, . . . , gn have finitely many common roots.
Let ξ = (x1, . . . , xn) be a root of polynomials g1, . . . , gn. Then ξ is a root of poly-
nomials f1, . . . , fn because fi = xn−1

i g1 + · · ·+ gn. Therefore, xni + ri(x1, . . . , xn) =
fi = 0 and deg ri < n. But such a system of equations has only finitely many
solutions (see Appendix 5). Therefore, the number of distinct sets x1, . . . , xn is
finite. ¤
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48.3. Theorem. Let

λ1 ≤ · · · ≤ λn, d1 ≤ · · · ≤ dn, d1 + · · ·+ dk ≥ λ1 + · · ·+ λk

for k = 1, . . . , n−1 and d1+· · ·+dn = λ1+· · ·+λn. Then there exists an orthogonal
matrix P such that the diagonal of the matrix PTΛP , where Λ = diag(λ1, . . . , λn),
is occupied by the numbers d1, . . . , dn.

Proof ([Chan, Kim-Hung Li, 1983]). First, let n = 2. Then λ1 ≤ d1 ≤ d2 ≤ λ2

and d2 = λ1 + λ2 − d1. If λ1 = λ2, then we can set P = I. If λ1 < λ2 then the
matrix

P = (λ2 − λ1)−1/2

(√
λ2 − d1 −√d1 − λ1√
d1 − λ1

√
λ2 − d1

)

is the desired one.
Now, suppose that the statement holds for some n ≥ 2 and consider the sets of

n + 1 numbers. Since λ1 ≤ d1 ≤ dn+1 ≤ λn+1, there exists a number j > 1 such
that λj−1 ≤ d1 ≤ λj . Let P1 be a permutation matrix such that

PT1 ΛP1 = diag(λ1, λj , λ2, . . . , λ̂j , . . . , λn+1).

It is easy to verify that

λ1 ≤ min(d1, λ1 + λj − d1) ≤ max(d1, λ1 + λj − d1) ≤ λj .

Therefore, there exists an orthogonal 2 × 2 matrix Q such that on the diagonal
of the matrix QT diag(λ1, λj)Q there stand the numbers d1 and λ1 + λj − d1.

Consider the matrix P2 =
(
Q 0
0 In−1

)
. Clearly, PT2 (PT1 ΛP1)P2 =

(
d1 bT

b Λ1

)
,

where Λ1 = diag(λ1 + λj − d1, λ2, . . . , λ̂j , . . . , λn+1).
The diagonal elements of Λ1 arranged in increasing order and the numbers

d2, . . . , dn+1 satisfy the conditions of the theorem. Indeed,

(1) d2 + · · ·+ dk ≥ (k − 1)d1 ≥ λ2 + · · ·+ λk

for k = 2, . . . , j − 1 and

(2) d2 + · · ·+ dk = d1 + · · ·+ dk − d1 ≥ λ1 + · · ·+ λk − d1

= (λ1 + λj − d1) + λ2 + · · ·+ λj−1 + λj+1 + · · ·+ λk

for k = j, . . . , n+ 1. In both cases (1), (2) the right-hand sides of the inequalities,
i.e., λ2 + · · · + λk and (λ1 + λj − d1) + λ2 + · · · + λj−1 + λj+1 + · · · + λk, are
not less than the sum of k − 1 minimal diagonal elements of Λ1. Therefore, there
exists an orthogonal matrix Q1 such that the diagonal of QT1 Λ1Q1 is occupied by

the numbers d2, . . . , dn+1. Let P3 =
(

1 0
0 Q1

)
; then P = P1P2P3 is the desired

matrix. ¤
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Solutions

39.1. a) Clearly, AX =
∥∥λixij

∥∥n
1

and XA =
∥∥λjxij

∥∥n
1
; therefore, λixij = λjxij .

Hence, xij = 0 for i 6= j.
b) By heading a) X = diag(x1, . . . , xn). As is easy to verify (NAX)i,i+1 =

λi+1xi+1 and (XNA)i,i+1 = λi+1xi. Hence, xi = xi+1 for i = 1, 2, . . . , n− 1.
39.2. It suffices to make use of the result of Problem 39.1.
39.3. Let p1, . . . , pn be the sums of the elements of the rows of the matrix X and

q1, . . . , qn the sums of the elements of its columns. Then

EX =



q1 . . . qn
... · · · ...
q1 . . . qn


 and XE =



p1 . . . p1
... · · · ...
pn . . . pn


 .

Therefore, AX = XA if and only if

q1 = · · · = qn = p1 = · · · = pn.

39.4. The equality APσ = PσA can be rewritten in the form A = P−1
σ APσ. If

P−1
σ APσ =

∥∥bij
∥∥n

1
, then bij = aσ(i)σ(j). For any numbers p and q there exists a

permutation σ such that p = σ(q). Therefore, aqq = bqq = aσ(q)σ(q) = app, i.e., all
diagonal elements of A are equal. If i 6= j and p 6= q, then there exists a permutation
σ such that i = σ(p) and j = σ(q). Hence, apq = bpq = aσ(p)aσ(q) = aij , i.e., all
off-diagonal elements of A are equal. It follows that

A = αI + β(E − I) = (α− β)I + βE.

39.5. We may assume that A = diag(A1, . . . , Ak), where Ai is a Jordan block.
Let µ1, . . . , µk be distinct numbers and Bi the Jordan block corresponding to the
eigenvalue µi and of the same size as Ai. Then for B we can take the matrix
diag(B1, . . . , Bk).

39.6. a) For commuting matrices A and B we have

(A+B)n =
∑(

n

k

)
AkBn−k.

Let Am = Bm = 0. If n = 2m − 1 then either k ≥ m or n − k ≥ m; hence,
(A+B)n = 0.

b) By Theorem 39.2.2 the operators A and B have a common eigenbasis; this
basis is the eigenbasis for the operator A+B.

39.7. Involutions are diagonalizable operators whose diagonal form has ±1 on
the diagonal (see 26.1). Therefore, there exists a basis in which all matrices Ai are
of the form diag(±1, . . . ,±1). There are 2n such matrices.

39.8. Let us decompose the space V into the direct sum of invariant subspaces
Vi such that every operator Aj has on every subspace Vi only one eigenvalue λij .
Consider the diagonal operator D whose restriction to Vi is of the form µiI and all
numbers µi are distinct. For every j there exists an interpolation polynomial fj
such that fj(µi) = λij for all i (see Appendix 3). Clearly, fj(D) = Aj .

39.9. It is easy to verify that all matrices of the form
(
λI A
0 λI

)
, where A is an

arbitrary matrix of order m, commute.
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40.1. It is easy to verify that [N,A] = N . Therefore,

adJ A = [J,A] = [N,A] = N = J − λI.

It is also clear that adJ (J − λI) = 0.
For any matrices X and Y we have

adY ((Y − λI)X) = (Y − λI) adY X.

Hence,
ad2
Y ((Y − λI)X) = (Y − λI) ad2

Y X.

Setting Y = J and X = A we get ad2
J(NA) = (NA) ad2

J A = 0.
40.2. Since

Cn = Cn−1
∑

[Ai, Bi] =
∑

Cn−1AiBi −
∑

Cn−1BiAi

=
∑

Ai(Cn−1Bi)−
∑

(Cn−1Bi)Ai =
∑

[Ai, Cn−1Bi],

it follows that trCn = 0 for n ≥ 1. It follows that C is nilpotent; cf. Theorem 24.2.1.
40.3. For n = 1 the statement is obvious. It is also clear that if the statement

holds for n, then

adn+1
A (B) =

n∑

i=0

(−1)n−i
(
n

i

)
Ai+1BAn−i −

n∑

i=0

(−1)n−i
(
n

i

)
AiBAn−i+1

=
n+1∑

i=1

(−1)n−i+1

(
n

i− 1

)
AiBAn−i+1 +

n∑

i=0

(−1)n−i+1

(
n

i

)
AiBAn−i+1

=
n+1∑

i=0

(−1)n+1−i
(
n+ 1
i

)
AiBAn+1−i.

40.4. The map D = adA : Mn,n −→ Mn,n is a derivation. We have to prove
that if D2B = 0, then Dn(Bn) = n!(DB)n. For n = 1 the statement is obvious.
Suppose the statement holds for some n. Then

Dn+1(Bn) = D[Dn(Bn)] = n!D[(DB)n] = n!
n−1∑

i=0

(DB)i(D2B)(DB)n−1−i = 0.

Clearly,

Dn+1(Bn+1) = Dn+1(B ·Bn) =
n+1∑

i=0

(
n+ 1
i

)
(DiB)(Dn+1−i(Bn)).

Since DiB = 0 for i ≥ 2, it follows that

Dn+1(Bn+1) = B ·Dn+1(Bn) + (n+ 1)(DB)(Dn(Bn))

= (n+ 1)(DB)(Dn(Bn)) = (n+ 1)!(DB)n+1.
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40.5. First, let us prove the required statement for n = 1. For m = 1 the
statement is clear. It is also obvious that if the statement holds for some m then

[Am+1, B] = A(AmB −BAm) + (AB −BA)Am

= mA[A,B]Am−1 + [A,B]Am = (m+ 1)[A,B]Am.

Now, let m > n > 0. Multiplying the equality [An, B] = n[A,B]An−1 by mAm−n

from the right we get

m[An, B]Am−n = mn[A,B]Am−1 = n[Am, B].

40.6. To the operator adA in the space Hom(V, V ) there corresponds operator
L = I ⊗A−AT ⊗ I in the space V ∗ ⊗ V ; cf. 27.5. If A is diagonal with respect to
a basis e1, . . . , en, then L is diagonal with respect to the basis ei ⊗ ej . Therefore,
KerLn = KerL.

40.7. a) If trZ = 0 then Z = [X,Y ] (see 40.2); hence,

tr(AZ) = tr(AXY )− tr(AYX) = 0.

Therefore, A = λI; cf. Problem 5.1.
b) For any linear function f on the space of matrices there exists a matrix A

such that f(X) = tr(AX). Now, since f(XY ) = f(Y X), it follows that tr(AXY ) =
tr(AYX) and, therefore, A = λI.

41.1. The product of the indicated quaternions is equal to

−(x1x2 + y1y2 + z1z2) + (y1z2 − z1y2)i+ (z1x2 − z2x1)j + (x1y2 − x2y1)k.

41.2. Let q = a + v, where a is the real part of the quaternion and v is its
imaginary part. Then

(a+ v)2 = a2 + 2av + v2.

By Theorem 41.2.1, v2 = −vv = −|v|2 ≤ 0. Therefore, the quaternion a2 +2av+v2

is real if and only if av is a real quaternion, i.e., a = 0 or v = 0.
41.3. It follows from the solution of Problem 41.2 that q2 = −1 if and only if

q = xi+ yj + zk, where x2 + y2 + z2 = 1.
41.4. Let the quaternion q = a+ v, where a is the real part of q, commute with

any purely imaginary quaternion w. Then (a + v)w = w(a + v) and aw = wa;
hence, vw = wv. Since vw = w v = wv, we see that vw is a real quaternion. It
remains to notice that if v 6= 0 and w is not proportional to v, then vw 6∈ R.

41.5. Let B = W1 +W2j, where W1 and W2 are complex matrices. Then

AB = Z1W1 + Z2jW1 + Z1W2j + Z2jW2j

and

AcBc =
(

Z1W1 − Z2W 2 Z1W2 + Z2W 1

−Z2W1 − Z1W 2 −Z2W2 + Z1W 1

)
.

Therefore, it suffices to prove that Z2jW1 = Z2W 1j and Z2jW2j = −Z2W 2. Since
ji = −ij, we see that jW1 = W 1j; and since jj = −1 and jij = i, it follows that
jW2j = −W 2.
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41.6. a) Since 2(x, y) = xy+yx, the equality (x, y) = 0 implies that xy+yx = 0.
Hence,

2(qx, qx) = qxqy + qyqx = x qqy + y qqx = |q|2(xy + yx) = 0.

b) The map considered preserves orientation and sends the rectangular paral-
lelepiped formeded by the vectors 1, i, j, k into the rectangular parallelepiped
formed by the vectors q, qi, qj, qk; the ratio of the lengths of the corresponding
edges of these parallelepipeds is equal to |q| which implies that the ratio of the
volumes of these parallelepipeds is equal to |q|4.

41.7. A tetrahedron can be placed in the space of quaternions. Let a, b, c and d
be the quaternions corresponding to its vertices. We may assume that c and d are
real quaternions. Then c and d commute with a and b and, therefore,

(a− b)(c− d) + (b− c)(a− d) = (b− d)(a− c).

It follows that
|a− b||c− d|+ |b− c||a− d| ≥ |b− d||a− c|.

41.8. Let x = a + be and y = u + ve. By the definition of the double of an
algebra,

(a+ be)(u+ ve) = (au− vb) + (bu+ va)e

and, therefore,

(xy)y = [(au− vb)u− v(bu+ va)] + [(bu+ va)u+ v(au− vb)]e,
x(yy) = [(a(u2 − vv)− (uv + u v)b] + [b(u2 − vv) + (vu+ vu)a]e.

To prove these equalities it suffices to make use of the associativity of the quaternion
algebra and the facts that vv = vv and that u + u is a real number. The identity
x(xy) = (xx)y is similarly proved.

b) Let us consider the trilinear map f(a, x, y) = (ax)y − a(xy). Substituting
b = x + y in (ab)b = a(bb) and taking into account that (ax)x = a(xx) and
(ay)y = a(yy) we get

(ax)y − a(yx) = a(xy)− (ay)x,

i.e., f(a, x, y) = −f(a, y, x). Similarly, substituting b = x + y in b(ba) = (bb)a we
get f(x, y, a) = −f(y, x, a). Therefore,

f(a, x, y) = −f(a, y, x) = f(y, a, x) = −f(y, x, a),

i.e., (ax)y + (yx)a = a(xy) + y(xa). For a = y we get (yx)y = y(xy).
43.1. By Theorem 43.2 R(f, g) = am0

∏
g(xi) and R(f, r) = ak0

∏
r(xi). Besides,

f(xi) = 0; hence,
g(xi) = f(xi)q(xi) + r(xi) = r(xi).

43.2. Let c0, . . . , cn+m−1 be the columns of Sylvester’s matrix S(f, g) and let
yk = xn+m−k−1. Then

y0c0 + · · ·+ yn+m−1cn+m−1 = c,
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where c is the column (xm−1f(x), . . . , f(x), xn−1g(x), . . . , g(x))T . Clearly, if k ≤
n−1, then xkg(x) =

∑
λix

if(x)+rk(x), where λi are certain numbers and i ≤ m−1.
It follows that by adding linear combinations of the first m elements to the last n
elements of the column c we can reduce this column to the form

(xm−1f(x), . . . , f(x), rn−1(x), . . . , r0(x))T .

Analogous transformations of the rows of S(f, g) reduce this matrix to the form(
A C
0 B

)
, where

A =



a0 ∗

. . .
0 a0


 , B =



an−1,0 . . . an−1,n−1

... · · · ...
a00 . . . a0,n−1


 .

43.3. To the operator under consideration there corresponds the operator

Im ⊗A−BT ⊗ In in V m ⊗ V n;

see 27.5. The eigenvalues of this operator are equal to αi − βj , where αi are the
roots of f and βj are the roots of g; see 27.4. Therefore, the determinant of this
operator is equal to

∏
i,j(αi − βj) = R(f, g).

43.4. It is easy to verify that S = V TV , where

V =




1 α1 . . . αn−1
1

...
... · · · ...

1 αn . . . αn−1
n


 .

Hence, detS = (detV )2 =
∏
i<j(αi − αj)2.

44.1. The equations AX = C and Y B = C are solvable; therefore, AA“−1”C = C
and CB“−1”B = C; see 45.2. It follows that

C = AA“−1”C = AA“−1”CB“−1”B = AZB, where Z = A“−1”CB“−1”.

44.2. If X is a matrix of size m×n and rankX = r, then X = PQ, where P and
Q are matrices of size m × r and r × n, respectively; cf. 8.2. The spaces spanned
by the columns of matrices X and P coincide and, therefore, the equation AX = 0
implies AP = 0, which means that P = (I − A“−1”A)Y1; cf. 44.2. Similarly, the
equality XB = 0 implies that Q = Y2(I −BB“−1”). Hence,

X = PQ = (I −A“−1”A)Y (I −BB“−1”), where Y = Y1Y2.

It is also clear that if X = (I−A“−1”A)Y (I−BB“−1”), then AX = 0 and XB = 0.
44.3. If AX = C and XB = D, then AD = AXB = CB. Now, suppose

that AD = CB and each of the equations AX = C and XB = C is solvable. In
this case AA“−1”C = C and DB“−1”B = D. Therefore, A(A“−1”C + DB“−1” −
A“−1”ADB“−1”) = C and (A“−1”C + DB“−1” − A“−1”CBB“−1”)B = D, i.e.,
X0 = A“−1”C+DB“−1”−A“−1”ADB“−1” is the solution of the system of equations
considered.
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46.1. Let J =
(

0 −1
1 0

)
. Then A2 = −t2I, A3 = −t3J , A4 = t4I, A5 = t5J ,

etc. Therefore,

eA = (1− t2

2!
+
t4

4!
− . . . )I + (t− t3

3!
+
t5

5!
− . . . )J

= (cos t)I + (sin t)J =
(

cos t − sin t
sin t cos t

)
.

46.2. a) Newton’s binomial formula holds for the commuting matrices and,
therefore,

eA+B =
∞∑
n=0

(A+B)n

n!
=
∞∑
n=0

n∑

k=0

(
n
k

)
AkBn−k

k!

=
∞∑

k=0

∞∑

n=k

Ak

k!
· Bn−k

(n− k)!
= eAeB .

b) Since

e(A+B)t = I + (A+B)t+ (A2 +AB +BA+B2)
t2

2
+ . . .

and

eAteBt = I + (A+B)t+ (A2 + 2AB +B2)
t2

2
+ . . . ,

it follows that
A2 +AB +BA+B2 = A2 + 2BA+B2

and, therefore, AB = BA.
46.3. There exists a unitary matrix V such that

U = V DV −1, where D = diag(exp(iα1), . . . , exp(iαn)).

Let Λ = diag(α1, . . . , αn). Then U = eiH , where H = V ΛV −1 = V ΛV ∗ is an
Hermitian matrix.

46.4. a) Let U = eX and XT = −X. Then UUT = eXeX
T

= eXe−X = I since
the matrices X and −X commute.

b) For such a matrix U there exists an orthogonal matrix V such that

U = V diag(A1, . . . , Ak, I)V −1, where Ai =
(

cosϕi − sinϕi
sinϕi cosϕi

)
;

cf. Theorem 11.3. It is also clear that the matrix Ai can be represented in the form

eX , where X =
(

0 −x
x 0

)
; cf. Problem 46.1.

46.5. a) It suffices to observe that det(eA) = etrA (cf. Theorem 46.1.2), and
that trA is a real number.

b) Let λ1 and λ2 be eigenvalues of a real 2× 2 matrix A and λ1 +λ2 = trA = 0.
The numbers λ1 and λ2 are either both real or λ1 = λ2, i.e., λ1 = −λ1. Therefore,
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the eigenvalues of eA are equal to either eα and e−α or eiα and e−iα, where in either

case α is a real number. It follows that B =
(−2 0

0 −1/2

)
is not the exponent of

a real matrix.
46.6. a) Let Aij be the cofactor of aij . Then tr(Ȧ adjAT ) =

∑
i,j ȧijAij .

Since detA = aijAij + . . . , where the ellipsis stands for the terms that do not
contain aij , it follows that

(detA). = ȧijAij + aijȦij + · · · = ȧijAij + . . . ,

where the ellipsis stands for the terms that do not contain ȧij . Hence, (detA). =∑
i,j ȧijAij .
b) Since A adjAT = (detA)I, then tr(A adjAT ) = n detA and, therefore,

n(detA). = tr(Ȧ adjAT ) + tr(A(adjAT ).).

It remains to make use of the result of heading a).
46.7. First, suppose that m > 0. Then

(Xm)ij =
∑

a,b,...,p,q

xiaxab . . . xpqxqj ,

trXm =
∑

a,b,...,p,q,r

xraxab . . . xpqxqr.

Therefore,

∂

∂xji
(trXm) =

∑

a,b,...,p,q,r

(
∂xra
∂xji

xab . . . xpqxqr + · · ·+ xraxab . . . xpq
∂xqr
∂xji

)

=
∑

b,...,p,q

xib . . . xpqxqj + · · ·+
∑

a,b,...,p

xiaxab . . . xpj = m(Xm−1)ij .

Now, suppose that m < 0. Let X−1 =
∥∥yij

∥∥n
1
. Then yij = Xji∆−1, where Xji is

the cofactor of xji in X and ∆ = detX. By Jacobi’s Theorem (Theorem 2.5.2) we
have

∣∣∣∣
Xi1j1 Xi1j2

Xi2j1 Xi2j2

∣∣∣∣ = (−1)σ

∣∣∣∣∣∣∣

xi3j3 . . . xi3jn
... · · · ...

xinj3 . . . xinjn

∣∣∣∣∣∣∣
∆

and

Xi1j1 = (−1)σ

∣∣∣∣∣∣∣

xi2j2 . . . xi2jn
... · · · ...

xinj2 . . . xinjn

∣∣∣∣∣∣∣
, where σ =

(
i1 . . . in
j1 . . . jn

)
.

Hence,
∣∣∣∣
Xi1j1 Xi1j2

Xi2j1 Xi2j2

∣∣∣∣ = ∆ ∂
∂xi2j2

(Xi1j1). It follows that

−XjαXβi = ∆
∂

∂xji
(Xβα)−XβαXji

= ∆
∂

∂xji
(Xβα)−Xβα

∂

∂xji
(∆) = ∆2 ∂

∂xji

(
Xβα

∆

)
,
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i.e., ∂
∂xji

yαβ = −yαjyiβ . Since

(Xm)ij =
∑

a,b,...,q

yiayab . . . yqj and trXm =
∑

a,b,...,q,r

yrayab . . . yqr,

it follows that

∂

∂xji
(trXm) = −

∑

a,b,...,q,r

yrjyiayab . . . yqr − . . .

−
∑

a,b,...,q,r

yrayab . . . yqjyir = m(Xm−1)ij .
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APPENDIX

A polynomial f with integer coefficients is called irreducible over Z (resp. over
Q) if it cannot be represented as the product of two polynomials of lower degree
with integer (resp. rational) coefficients.

Theorem. A polynomial f with integer coefficients is irreducible over Z if and
only if it is irreducible over Q.

To prove this, consider the greatest common divisor of the coefficients of the
polynomial f and denote it cont(f), the content of f .

Lemma(Gauss). If cont(f) = cont(g) = 1 then cont(fg) = 1

Proof. Suppose that cont(f) = cont(g) = 1 and cont(fg) = d 6= ±1. Let p be
one of the prime divisors of d; let ar and bs be the nondivisible by p coefficients of
the polynomials f =

∑
aix

i and g =
∑
bix

i with the least indices. Let us consider
the coefficient of xr+s in the power series expansion of fg. As well as all coefficients
of fg, this one is also divisible by p. On the other hand, it is equal to the sum of
numbers aibi, where i+ j = r+ s. But only one of these numbers, namely, arbs, is
not divisible by p, since either i < r or j < s. Contradiction. ¤

Now we are able to prove the theorem.

Proof. We may assume that cont(f) = 1. Given a factorization f = ϕ1ϕ2,
where ϕ1 and ϕ2 are polynomials with rational coefficients, we have to construct a
factorization f = f1f2, where f1 and f2 are polynomials with integer coefficients.
Let us represent ϕi in the form ϕi =

ai
bi
fi, where ai, bi ∈ Z, the fi are polyno-

mials with integer coefficients, and cont(fi) = 1. Then b1b2f = a1a2f1f2; hence,
cont(b1b2f) = cont(a1a2f1f2). By the Gauss lemma cont(f1f2) = 1. Therefore,
a1a2 = ±b1b2, i.e., f = ±f1f2, which is the desired factorization. ¤

A.1. Theorem. Let polynomials f and g with integer coefficients have a com-
mon root and let f be an irreducible polynomial with the leading coefficient 1. Then
g/f is a polynomial with integer coefficients.

Proof. Let us successively perform the division with a remainder (Euclid’s
algorithm):

g = a1f + b1, f = a2b1 + b2, b1 = a3b2 + b3, . . . , bn−2 = an−1bn.

It is easy to verify that bn is the greatest common divisor of f and g. All polynomials
ai and bi have rational coefficients. Therefore, the greatest common divisor of
polynomials f and g over Q coincides with their greatest common divisor over
C. But over C the polynomials f and g have a nontrivial common divisor and,
therefore, f and g have a nontrivial common divisor, r, over Q as well. Since f is
an irreducible polynomial with the leading coefficient 1, it follows that r = ±f . ¤
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A.2. Theorem (Eisenstein’s criterion). Let

f(x) = a0 + a1x+ · · ·+ anx
n

be a polynomial with integer coefficients and let p be a prime such that the coefficient
an is not divisible by p whereas a0, . . . , an−1 are, and a0 is not divisible by p2.
Then the polynomial f is irreducible over Z.

Proof. Suppose that f = gh = (
∑
bkx

k)(
∑
clx

l), where g and h are not
constants. The number b0c0 = a0 is divisible by p and, therefore, one of the
numbers b0 or c0 is divisible by p. Let, for definiteness sake, b0 be divisible by p.
Then c0 is not divisible by p because a0 = b0c0 is not divisible by p2 If all numbers
bi are divisible by p then an is divisible by p. Therefore, bi is not divisible by p for
a certain i, where 0 < i ≤ deg g < n.

We may assume that i is the least index for which the number bi is nondivisible
by p. On the one hand, by the hypothesis, the number ai is divisible by p. On the
other hand, ai = bic0 + bi−1c1 + · · · + b0ci and all numbers bi−1c1, . . . , b0ci are
divisible by p whereas bic0 is not divisible by p. Contradiction. ¤

Corollary. If p is a prime, then the polynomial f(x) = xp−1 + · · ·+ x+ 1 is
irreducible over Z.

Indeed, we can apply Eisenstein’s criterion to the polynomial

f(x+ 1) =
(x+ 1)p − 1
(x+ 1)− 1

= xp−1 +
(
p

1

)
xp−2 + · · ·+

(
p

p− 1

)
.

A.3. Theorem. Suppose the numbers

y1, y
(1)
1 , . . . , y

(α1−1)
1 , . . . , yn, y(1)

n , . . . , y(αn−1)
n

are given at points x1, . . . , xn and m = α1 + · · · + αn − 1. Then there exists
a polynomial Hm(x) of degree not greater than m for which Hm(xj) = yj and
H

(i)
m (xj) = y

(i)
j .

Proof. Let k = max(α1, . . . , αn). For k = 1 we can make use of Lagrange’s
interpolation polynomial

Ln(x) =
n∑

j=1

(x− x1) . . . (x− xj−1)(x− xj+1) . . . (x− xn)
(xj − x1) . . . (xj − xj−1)(xj − xj+1) . . . (xj − xn)

yj .

Let ωn(x) = (x−x1) . . . (x−xn). Take an arbitrary polynomial Hm−n of degree not
greater than m−n and assign to it the polynomial Hm(x) = Ln(x)+ωn(x)Hm−n(x).
It is clear that Hm(xj) = yj for any polynomial Hm−n. Besides,

H ′m(x) = L′n(x) + ω′n(x)Hm−n(x) + ωn(x)H ′m−n(x),

i.e., H ′m(xj) = L′n(xj) + ω′n(xj)Hm−n(xj). Since ω′n(xj) 6= 0, then at points where
the values of H ′m(xj) are given, we may determine the corresponding values of
Hm−n(xj). Further,

H ′′m(xj) = L′′n(xj) + ω′′n(xj)Hm−n(xj) + 2ω′n(xj)H ′m−n(xj).
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Therefore, at points where the values of H ′′m(xj) are given we can determine the
corresponding values of H ′m−n(xj), etc. Thus, our problem reduces to the con-
struction of a polynomial Hm−n(x) of degree not greater than m − n for which
H

(i)
m−n(xj) = z

(i)
j for i = 0, . . . , αj−2 (if αj = 1, then there are no restrictions on the

values of Hm−n and its derivatives at xj). It is also clear that m−n =
∑

(αj−1)−1.
After k − 1 of similar operations it remains to construct Lagrange’s interpolation
polynomial. ¤

A.4. Hilbert’s Nullstellensatz. We will only need the following particular
case of Hilbert’s Nullstellensatz.

Theorem. Let f1, . . . , fr be polynomials in n indeterminates over C without
common zeros. Then there exist polynomials g1, . . . , gr such that f1g1+· · ·+frgr =
1.

Proof. Let I(f1, . . . , fr) be the ideal of the polynomial ring C[x1, . . . , xn] = K
generated by f1, . . . , fr. Suppose that there are no polynomials g1, . . . , gr such
that f1g1 + · · ·+ frgr = 1. Then I(f1, . . . , fr) 6= K. Let I be a nontrivial maximal
ideal containing I(f1, . . . , fr). As is easy to verify, K/I is a field. Indeed, if f 6∈ I
then I+Kf is the ideal strictly containing I and, therefore, this ideal coincides with
K. It follows that there exist polynomials g ∈ K and h ∈ I such that 1 = h+ fg.
Then the class g ∈ K/I is the inverse of f ∈ K/I.

Now, let us prove that the field A = K/I coincides with C.
Let αi be the image of xi under the natural projection

p : C[x1, . . . , xn] −→ C[x1, . . . , xn]/I = A.

Then
A = {

∑
zi1...inα

i1
1 . . . αinn | zi1...in ∈ C} = C[α1, . . . , αn].

Further, let A0 = C and As = C[α1, . . . , αs]. Then As+1 = {∑ aiα
i
s+1|ai ∈ As} =

As[αs+1]. Let us prove by induction on s that there exists a ring homomorphism
f : As −→ C (which sends 1 to 1). For s = 0 the statement is obvious. Now, let us
show how to construct a homomorphism g : As+1 −→ C from the homomorphism
f : As −→ C. For this let us consider two cases.

a) The element x = αs+1 is transcendental over As. Then for any ξ ∈ C there is
determined a homomorphism g such that g(anxn+ · · ·+a0) = f(an)ξn+ · · ·+f(a0).
Setting ξ = 0 we get a homomorphism g such that g(1) = 1.

b) The element x = αs+1 is algebraic overAs, i.e., bmxm+bm−1x
m−1+· · ·+b0 = 0

for certain bi ∈ As. Then for all ξ ∈ C such that f(bm)ξm + · · · + f(b0) = 0 there
is determined a homomorphism g(

∑
akx

k) =
∑
f(ak)ξk which sends 1 to 1.

As a result we get a homomorphism h : A −→ C such that h(1) = 1. It is also
clear that h−1(0) is an ideal and there are no nontrivial ideals in the field A. Hence,
h is a monomorphism. Since A0 = C ⊂ A and the restriction of h to A0 is the
identity map then h is an isomorphism.

Thus, we may assume that αi ∈ C. The projection p maps the polynomial
fi(x1, . . . , xn) ∈ K to fi(α1, . . . , αn) ∈ C. Since f1, . . . , fr ∈ I, then p(fi) = 0 ∈ C.
Therefore, fi(α1, . . . , αn) = 0. Contradiction. ¤
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A.5. Theorem. Polynomials fi(x1, . . . , xn) = xmii + Pi(x1, . . . , xn), where i =
1, . . . , n, are such that degPi < mi; let I(f1, . . . , fn) be the ideal generated by f1,
. . . , fn.

a) Let P (x1, . . . , xn) be a nonzero polynomial of the form
∑
ai1...inx

i1
1 . . . xinn ,

where ik < mk for all k = 1, . . . , n. Then P 6∈ I(f1, . . . , fn).
b) The system of equations xmii + Pi(x1, . . . , xn) = 0 (i = 1, . . . , n) is always

solvable over C and the number of solutions is finite.

Proof. Substituting the polynomial (fi−Pi)tixqi instead of xmiti+qii , where 0 ≤
ti and 0 ≤ qi < mi, we see that any polynomial Q(x1, . . . , xn), can be represented
in the form

Q(x1, . . . , xn) = Q∗(x1, . . . , xn, f1, . . . , fn) =
∑

ajsx
j1
1 . . . xjnn f

s1
1 . . . fsnn ,

where j1 < m1, . . . , jn < mn. Let us prove that such a representation Q∗

is uniquely determined. It suffices to verify that by substituting fi = xmii +
Pi(x1, . . . , xn) in any nonzero polynomial Q∗(x1, . . . , xn, f1, . . . , fn) we get a non-
zero polynomial Q̃(x1, . . . , xn). Among the terms of the polynomial Q∗, let us select
the one for which the sum (s1m1 +j1)+ · · ·+(snmn+jn) = m is maximal. Clearly,
deg Q̃ ≤ m. Let us compute the coefficient of the monomial xs1m1+j1

1 . . . xsnmn+jn
n

in Q̃. Since the sum
(s1m1 + j1) + · · ·+ (snmn + jn)

is maximal, this monomial can only come from the monomial xj11 . . . xjnn f
s1
1 . . . fsnn .

Therefore, the coefficients of these two monomials are equal and deg Q̃ = m.
Clearly, Q(x1, . . . , xn) ∈ I(f1, . . . , fn) if and only if Q∗(x1, . . . , xn, f1, . . . , fn) is

the sum of monomials for which s1 + · · · + sn ≥ 1. Besides, if P (x1, . . . , xn) =∑
ai1...inx

i1
1 . . . xinn , where ik < mk, then

P ∗(x1, . . . , xn, f1, . . . , fn) = P (x1, . . . , xn).

Hence, P 6∈ I(f1, . . . , fn).
b) If f1, . . . , fn have no common zero, then by Hilbert’s Nullstellensatz the

ideal I(f1, . . . , fn) coincides with the whole polynomial ring and, therefore, P ∈
I(f1, . . . , fn); this contradicts heading a). It follows that the given system of equa-
tions is solvable. Let ξ = (ξ1, . . . , ξn) be a solution of this system. Then ξmii =
−Pi(ξ1, . . . , ξn), where degPi < mi, and, therefore, any polynomial Q(ξ1, . . . ξn)
can be represented in the form Q(ξ1, . . . , ξn) =

∑
ai1...inξ

i1
1 . . . ξinn , where ik < mk

and the coefficient ai1...in is the same for all solutions. Let m = m1 . . .mn.
The polynomials 1, ξi, . . . , ξmi can be linearly expressed in terms of the ba-
sic monomials ξi11 . . . ξinn , where ik < mk. Therefore, they are linearly depen-
dent, i.e., b0 + b1ξi + · · · + bmξ

m
i = 0, not all numbers b0, . . . , bm are zero and

these numbers are the same for all solutions (do not depend on i). The equation
b0 + b1x+ · · ·+ bmx

m = 0 has, clearly, finitely many solutions. ¤
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