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Editor’s preface

In this Volume 2, a sequel to the standard text-book material on the representa-
tion theory succinctly given in the first volume, I’ve collected the information needed
to begin his or her own research.

Mathematics is a language of sciences, and any language requires a dictionary.
This volume is an analog of an annotated dictionary: It contains few theorems but
lots of notions. One should not try to learn all the examples of (simple) Lie super-
algebras; for the first reading it is better to concentrate on the simplest examples
and most profound notions (gl or sl, vect, q) and try to apply the rare theorems to
these particular examples.

One of the goals of this volume is to give information needed to discover new
simple modular Lie superalgebras and begin studying their representations. In doing
so the non-integrable distributions (a.k.a. nonholonomic structures) and deforma-
tions are very important. To emphasize this, I used the not very well known term
“nonholonomic” (whose meaning is explained in due course) in the title. To see
how reasonable is the choice of the material having in mind the task of selecting
a reasonably interesting topic for a Ph.D. thesis with severe restriction on time al-
located, the reader should have in mind that the chapters written by A. Lebedev
and E. Poletaeva contain main parts of their respective Ph.D. theses written within
1.5–2 years. B. Clark’s contribution was written within a month. (Poletaeva’s thesis
took longer but she was working as a TA.)

Computer-aided scientific research. Most of the open problems offered as
possible topics for Ph.D. theses in this Volume 2 are easier to solve with the help of
the Mathematica-based package SuperLie for scientific research designed by Pavel
Grozman. This feature of these problems encourages to master certain basic skills
useful in the modern society in general and for a university professor and researcher
in particular.

The references currently IN PREPARATION are to be found in arXiv.
I encourage the reader to contact me (mleites@math.su.se) to avoid nuisance of

queueing selecting problems and to inform if something is solved. I will be thankful
for all remarks that will help to improve the text for the second printing.

Acknowledgements. I am thankful: To my students who taught me no less than
my teachers did.

To the chairmen of the Department of Mathematics of Stockholm University
(T. Tambour, C. Löfwall, and M. Passare) for the possibility to digress to other
places to do research.

To J. Jost, the Director of MPIMiS, for inviting me to MPIMiS, where I served
as a Sophus Lie Professor, and to MPIMiS for excellent working conditions during
2004–6.

To TBSS (Teknikbrostiftelse i Stockholm = Foundation Bridging Technology and
Science in Stockholm), and grants of the Higher Education Commission, Pakistan,
as well as of the Russian Foundation for Basic Research RFBR-06-01-00469 that
supported parts of this project.



Notation often used

In what follows, the ground field is denoted by K, and its characteristic
by p. The parity function on the superspaces is denoted by P or (seldom) by
Π but the usual notation of the parity function is p.

The elements of Z/n are denoted by 0, 1, . . . , n− 1 to distinguish them
from elements of Z.

The superdimension of a given superspace V is sdim V = dimV0̄+ε dimV1̄,
where ε is an indeterminate such that ε2 = 1;

the supercharacter of a Z-graded superspace V = ⊕
i∈Z

Vi is

sch V =
∑

i∈Z

(sdim Vi)t
i.

The character of a Z-graded space (in particular, of a superspace with super-
structure forgotten) V = ⊕

i∈Z
Vi is

ch V =
∑

i∈Z

(dim Vi)t
i.

For a set x = (x1, . . . , xn) of homogeneous with respect to parity indeter-
minates that span a superspace V , we write

T [x] or T (V ) for the tensor algebra of the superspace V ,
S[x] or S(V ) for the (super)symmetric algebra of the superspace V ,
Λ[x], or Λ(V ) or E(V ) for the exterior or anti-(super)symmetric algebra

of the space V .
The exterior powers and symmetric powers of the vector space V are de-

fined as quotients of its tensor power

T 0(V ) := ∧0(V ) := S0(V ) := K;
T 1(V ) := ∧1(V ) := S1(V ) := V ;
T i(V ) := V ⊗ · · · ⊗ V︸ ︷︷ ︸

i factors

for i > 0;

∧.(V ) := T
.
(V )/(x⊗ x | x ∈ V );

S
.
(V ) := T

.
(V )/(x⊗ y + y ⊗ x | x, y ∈ V ),

where T
.
(V ) := ⊕T i(V ); let ∧i(V ) and Si(V ) be homogeneous components

of degree i. Some authors instead of ∧i(V ) or ∧.(V ) write Ei(V ) or E
.
(V ).

Supersymmetrization is performed by means of the Sign Rule (1.1.2).
For any simple Lie algebra g, we denote the g-module with the ith funda-

mental weight πi by R(πi) (as in [OV, Bou]; these modules are denoted by Γi
in [FH]).

For o(2k + 1), the spinor representation spin2k+1 is defined to be the kth
fundamental representation, whereas for oΠ(2k), the spinor representations
are the kth and the (k− 1)st fundamental representations. The realizations of

x Notation often used

these representations and the corresponding modules by means of quantization
(as in [LSh3]) can be defined even in the modular cases, since quantization
is well-defined for the restricted version of the Poisson algebra. To describe
all deformations of the modular Poisson algebras and its super versions (even
restricted) is an Open Problem.

Let ad denote both the adjoint representation and the module in which
it acts, let id denote both the identity (a.k.a. standard) representation of the
linear Lie (super)algebra g ⊂ gl(V ) in the (super)space V and V itself. In
particular, having fixed a basis in the n-dimensional space and having realized
gl(V ) as gl(n), we write id instead of V , so V does not explicitly appear.

Z+ is the set of nonnegative integers,
N is the set of positive integers.
The ground field K is assumed to be algebraically closed unless specified

(certain results are true for perfect but not algebraically closed fields); its
characteristic is denoted by p; we assume that p = 2 unless specified; vector
spaces V are finite dimensional unless specified.

We often use the following matrices

J2n =


 0 1n

−1n 0


,

Πn =





Π2k := antidiag2(1k, 1k) =

(
0 1k

1k 0

)
if n = 2k,

Π2k+1 := antidiag3(1k, 1, 1k) =




0 0 1k

0 1 0

1k 0 0


 if n = 2k + 1,

Sn = antidiagn(1, . . . , 1),

Z2k = diagk(Π2, . . . , Π2);

1(m,n,p) :=



p m− p

p 1p 0
n− p 0 0


, 1(m,n,q) =



n− q q

m− q 0 0
q 0 1q


,

J(n,2q) =



n− 2q 2q

m− 2q 0 0
q 0 J2q


;

Add(A, . . . , Z) := Addiag(A,...,Z) .

(0.1)

Let oI(n), oΠ(n) and oS(n) be Lie algebras that preserve bilinear forms
1n, Πn and Sn, respectively.

We identify a given bilinear form with its Gram matrix. Different normal
forms of symmetric bilinear forms are used: In some problems, the form 1n
is used; in other problems (usually, mathematical ones) the forms Πn and Sn



Notation often used xi

are more preferable (so that the corresponding orthogonal Lie algebra has a
Cartan subalgebra consisting of diagonal matrices).

Let Πk|k := Π2k and Jk|k := J2k, but considered as supermatrices in the
standard format k|k.

Let Ei,j be the (i, j)th (super)matrix unit.
Any square matrix is said to be zero-diagonal if it has only zeros on the

main diagonal;
ZD(n) is the space (Lie algebra if p = 2) of symmetric zero-diagonal

n× n-matrices.
For any Lie algebra g (or Lie superalgebra and p 6= 2), its derived algebras

are defined to be

g(0) := g, g(1) := [g, g], g(i+1) = [g(i), g(i)].

Describing the g0̄-module structure of g1̄ for a Lie superalgebra g, we write
g1̄ ' R(.), though it is, actually, Π(R(.)).

The symbols A n B and B o A denote a semi-direct sum of modules of
which A is a submodule; when dealing with algebras, A is an ideal.

A× is the set of invertible elements of the algebra A.
Deform is the result of a deformation, and prolong the result of a prolon-

gation (same as the conventional transform is the result of a transformation).
cg or c(g) is the trivial central extension of the Lie superalgebra g with the

1-dimensional even center generated by z.
〈1〉 or 1 denotes a 1-dimensional trivial module over a Lie (super)algebra

considered.
1, n denotes the set of integers {1, . . . , n}.

Part I

Representations of Lie superalgebras over C



Chapter 1

Background over C (D. Leites)

For further reading, see [D],[LSoS]. The rudiments of algebraic geometry are
based on [MaAG].

1.1. Linear algebra in superspaces

1.1.1. Superspaces. A superspace is a Z/2-graded space; for any super-
space V = V0̄ ⊕ V1̄, we denote by Π(V ) another copy of the same super-
space: with the shifted parity, i.e., (Π(V ))̄i = Vī+1̄. The superdimension of
V is sdimV = p + qε, where ε2 = 1 and p = dimV0̄, q = dim V1̄. (Usu-
ally, sdimV is expressed as a pair (p, q) or p|q; this obscures the fact that
sdimV ⊗W = sdimV · sdimW .)

A superspace structure in V induces natural superspace structures in
the dual space V ∗ and in the tensor products of superspaces. A basis
of a superspace is always a basis consisting of homogeneous vectors; let
Par = (p1, . . . , pdimV ) be an ordered collection of their parities. We call Par
the format of (the basis of) V . A square supermatrix of format (size) Par is
a sdimV ×sdimV matrix whose ith row and ith column are of the same parity
pi ∈ Par. We set |Par | = dimV and s|Par | = sdimV .

Whenever possible, we usually consider one of the simplest formats Par,
e.g., the format Parst of the form (0̄, . . . , 0̄; 1̄, . . . , 1̄) is called standard; that
of the form Paralt := (0̄, 1̄, 0̄, 1̄, . . . ) is called alternating. Systems of simple
roots of Lie superalgebras corresponding to distinct nonstandard formats of
supermatrix realizations of these superalgebras are related by odd reflections.

The matrix unit Eij is supposed to be of parity pi + pj .
A superalgebra is any superspace A whose multiplication m : A⊗A −→ A

must be an even map. A superalgebra morphism is any parity-preserving alge-
bra homomorphism.

1.1.2. The Sign Rule. The superbracket of supermatrices (of the same
format) is defined by means of the Sign Rule:
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if something of parity p moves past something of parity q
the sign (−1)pq accrues; the expressions defined on homogeneous

elements are extended to arbitrary ones via linearity.

Examples of application of the Sign Rule: By setting

[X,Y ] = XY − (−1)p(X)p(Y )Y X

we get the notion of the supercommutator and the ensuing notions of su-
percommutative and superanti-commutative superalgebras; Lie superalgebra
is the one which, in addition to superanti-commutativity, satisfies the super
Jacobi identity, i.e., the Jacobi identity amended with the Sign Rule; the su-
perderivation of a given superalgebra A is a linear map D : A −→ A that
satisfies the super Leibniz rule

D(ab) = D(a)b+ (−1)p(D)p(a)aD(b).

In particular, let A = C[x] be the free supercommutative polynomial super-
algebra in x = (x1, . . . , xn), where the superstructure is determined by the
parities of the indeterminates: p(xi) = pi. Partial derivatives are defined (with
the help of super Leibniz Rule) by the formulas

∂xi

∂xj
= δi,j .

Clearly, the collection der C[x] of all superderivations of A is a Lie superalgebra

whose elements are of the form
∑
fi(x)

∂

∂xi
with fi(x) ∈ C[x] for all i.

Observe that sometimes the Sign Rule requires some dexterity in applica-
tion. For example, we have to distinguish between superskew- and superanti-
although both versions coincide in the non-super case:

ba = (−1)p(b)p(a)ab (supercommutativity)

ba = −(−1)p(b)p(a)ab (anti-supercommutativity)

ba = (−1)(p(b)+1)(p(a)+1)ab (skew-supercommutativity)

ba = −(−1)(p(b)+1)(p(a)+1)ab (antiskew-supercommutativity)

In other words, “anti” means the change of the sign, whereas any “skew”
notions can be straightened by the change of parity. In what follows, the
superanti-symmetric bilinear forms and superanti-commutative superalgebras
are named according to the above definitions.

Given the supercommutative superalgebra F of “functions” in the indeter-
minates x = (x1, . . . , xn+m) of which n are even and m are odd, define the
supercommutative superalgebra Ω of differential forms as polynomial algebra
over F in the dxi, where p(d) = 1̄. Since dxi is even for xi odd, we can consider
not only polynomials in dxi.

Smooth or analytic functions in the dxi are called pseudodifferential forms
on the supermanifold with coordinates xi, see [BL]. We will need them to

Ch. 1. Background over C (D. Leites) 5

interpret bλ(n). The exterior differential is defined on the space of (pseudo)
differential forms by the formulas (mind the Super and Leibniz rules):

d(xi) = dxi and d(dxi) = 0.

The Lie derivative is defined (minding same Rules) by the formula

LD(df) = (−1)p(D)d(D(f)).

In particular,

LD
(
(df)λ

)
= λ(−1)p(D)d(D(f))(df)λ−1 for any λ ∈ C and f odd.

Modules over (anti-)supercommutative superalgebras can naturally be en-
dowed with a two-sided module structures. There are, however, some new
features as compared with modules over fields, see [LSoS] and these subtleties
are vital in computations of (co)homology (e.g., deformations and relations of
Lie superalgebras), see [Gr].

1.1.3. Simple, almost simple and semi-simple Lie superalgebras.
Recall that the Lie superalgebra g without proper ideals and of dimension
> 1 is said to be simple. Examples: sl(m|n) for m > n ≥ 1.

We say that h is almost simple if it can be sandwiched (non-strictly) be-
tween a simple Lie superalgebra s and the Lie superalgebra der s of derivations
of s, i.e., s ⊂ h ⊂ der s.

By definition, a given Lie superalgebra g is said to be semi-simple if its
radical is zero.

Block described semi-simple Lie algebras over the fields of prime char-
acteristic. Literally following Block’s description we describe semi-simple Lie
superalgebras as follows:

Let s1, . . . , sk be simple Lie superalgebras, let n1, . . . , nk be pairs of
non-negative integers nj = (n0̄

j , n
1̄
j), let F(nj) be the supercommutative

superalgebra of polynomials in n0̄
j even and n1̄

j odd indeterminates, and
s = ⊕

j
(sj ⊗ F(nj)). Then

der s = ⊕
j

(
(der sj)⊗ F(nj)⊂+ idsj ⊗vect(nj)

)
. (1.1)

Let g be a subalgebra of ders containing s. If

the projection of g to idsj ⊗vect(nj)−1 is onto for each j, (1.2)

then g is semi-simple and all semi-simple Lie superalgebras arise in the manner
indicated, i.e., as sums of subalgebras of the summands of (1.1) satisfying (1.2).
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1.2. Basics on superschemes (from [LSoS])

1.2.1. The spectrum. An ideal p of a supercommutative superalgebra A
is said to be prime if A/p is an integral domain (i.e., has no zerodivisors and
if we do not forbid 1 = 0, then the zero ring may not be an integral domain).
Equivalently, p is prime if p 6= A and

a ∈ A, b ∈ A, a b ∈ p =⇒ either a ∈ p or b ∈ p. (1.3)

The set of all the prime ideals of A is called the (prime) spectrum of A and is
denoted by SpecA. The elements of SpecA are called its points.

Following Grothendieck, Leites enriched the set SpecA with additional
structure making it into a topological space rigged with a sheaf of superrings
[Le0].

1.2.2. Representable functors. For a given category C we denote by ObC
the set of objects of C. (Instead of X ∈ ObC we often write briefly X ∈ C.)
Given a category C, define its dual C◦ by letting ObC◦ be a copy of ObC
and HomC◦(X◦, Y ◦) to be in one-to-one correspondence with HomC(Y,X),
where X◦ ∈ ObC◦ denotes the object corresponding to X ∈ ObC, so that
if a morphism ϕ◦ : X◦ → Y ◦ corresponds to a morphism ϕ : Y → X , then
ψ◦ϕ◦ = (ϕψ)◦ and idX◦ = (idX)◦.

Speaking informally, C◦ is obtained from C by taking the same objects but
inverting the arrows.

If our universum is not too large, there exists a category whose objects are
categories and morphisms are functors between them. The main example: the
category C∗ = Funct(C◦, Sets) of functors from C◦ into Sets, where Sets is the
category of sets and their maps as morphisms.

1.2.3. Representable functors. Fix any X ∈ C.
1) Denote by PX ∈ C∗ (here: P is for point; usually this functor is denoted

by hX , where h is for homomorphisms) the functor given by

PX(Y ◦) = HomC(Y,X) for any Y ◦ ∈ C◦; (1.4)

to any morphism ϕ◦ : Y ◦
2 −→ Y ◦

1 the functor PX assigns the map of sets
PX(Y ◦

2 ) → PX(Y ◦
1 ) which sends ψ : Y2 −→ X into the composition

ϕψ : Y1 −→ Y2 → X .
To any ϕ ∈ HomC(X1, X2), there corresponds a functor morphism

Pϕ : PX1 −→ PX2 which to any Y ∈ C assigns

Pϕ(Y
◦) : PX1 (Y

◦) −→ PX2(Y
◦) (1.5)

and sends a morphism ψ ∈ HomC(Y
◦, X1) into the composition

ϕψ : Y ◦ −→ X1 −→ X2. (1.6)

Clearly, Pϕψ = PϕPψ.
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2) Similarly, define PX ∈ C∗ by setting

PX(Y ) = HomC(X,Y ) for any Y ∈ C; (1.7)

to any morphism ϕ : Y1 → Y2, we assign the map of sets PX(Y1) −→ PX(Y2)
which sends ψ : X −→ Y 1 into the composition ψϕ : X −→ Y1 −→ Y2.

To any ϕ ∈ HomC(X1, X2), there corresponds a functor morphism
Pϕ : PX2 −→ PX1 which to any Y ∈ C assigns

Pϕ(Y ) : PX2(Y ) −→ PX1(Y ) (1.8)

and sends a morphism ψ ∈ HomC(X2, Y ) into the composition

ψϕ : X1 −→ X2 −→ Y. (1.9)

Clearly, Pϕψ = PψPϕ.
A functor F : C◦ −→ Sets (or a functor F : C −→ Sets) is said to be

(co)representable if it is isomorphic to a functor of the form PX (resp. PX)
for some X ∈ C; then X is called an object that represents F .

Theorem. The map ϕ 7→ Pϕ defines an isomorphism of sets

HomC(X,Y ) ∼= HomC∗(PX , PY ). (1.10)

This isomorphism is functorial in both X and Y . Therefore, the functor
P : C → C∗ determines an equivalence of C with the full subcategory of C∗

consisting of representable functors.

Corollary. If a functor from C∗ is representable, the object that represents it
is determined uniquely up to an isomorphism.

The above Theorem is the source of several important ideas.

1.2.3.1. Passage from the categorical point of view to the structural
one. It is convenient to think of PX as of “the sets of points of an object
X ∈ C with values in various objects Y ∈ C or Y -points”; notation: PX(Y ) or
sometimes X(Y ). (The sets PX(Y ) are also sometimes denoted by X(Y ).)

In other words, PX =
∐
Y ∈C

PX(Y ) with an additional structure: the sets

of maps PX(Y1) −→ PX(Y2) induced by morphisms Y ◦
2 −→ Y ◦

1 for any
Y1, Y2 ∈ C and compatible in the natural sense (the composition goes into
the composition, and so on). The situation with the PX is similar.

Therefore, in principle, it is always possible to pass from the
categorical point of view to the structural one, since all the
categorical properties of X are mirrored precisely by the

functorial properties of the structure of PX .

Motivation. Let ∗ be a one-point set. For categories with sufficiently “sim-
ple” structure of their objects, such as the category of finite sets or even
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category of smooth finite dimensional manifolds, X = PX(∗) for every object
X , i.e., X is completely determined by its ∗-points or just points.

For varieties (or for supermanifolds), when the object may have either
“sharp corners” or “inner degrees of freedom”, the structure sheaf may contain
nilpotents or zero divisors, and in order to keep this information and be able to
completely describe X we need various types of points, in particular, Y -points
for some more complicated Y ’s.

1.2.3.2. Replacing X by PX (resp. by PX) we may transport conventional
set-theoretical constructions to any category: an object X ∈ C is a group,
ring, and so on in the category C, if the corresponding structure is given on
every set PX(Y ) of its Y -points and is compatible with the maps induced by
the morphisms Y ◦

2 −→ Y ◦
1 (resp. Y1 → Y2).

This is exactly the way supergroups are defined and superalgebras should
be defined. However, it is possible to define superalgebras using just one set-
theoretical model and sometimes we have to pay for this deceiving simplicity.

1.2.4. Presheaves. Fix a topological space X . Let P be a law that to every
open set U ⊂ X assigns a set P(U) and, for any pair of open subsets U ⊂ V ,
there is given a restriction map rVU : P(V ) −→ P(U) such that

1) P(∅) consists of one element,
2) rWU = rVU ◦ rWV for any open subsets (briefly: opens) U ⊂ V ⊂W .
Then the system {P(U), rVU | U, V are opens} is called a presheaf (of sets)

on X .
The elements of P(U), also often denoted by Γ (U,P), are called the sections

of the presheaf P over U ; a section may be considered as a “function” defined
over U .

Remark. Axiom 1) is convenient in some highbrow considerations of category
theory. Axiom 2) expresses the natural transitivity of restriction.

1.2.5. The category TopX . The objects of TopX are open subsets
of X and morphisms are inclusions. A presheaf of sets on X is a functor
P : Top◦X −→ Sets.

From genuine functions we can construct their products, sums, and mul-
tiply them by scalars; similarly, we may consider presheaves of groups, rings,
and so on. A formal definition is as follows:

Let P be a presheaf of sets on X ; if, on every set P (U), there is given
an algebraic structure (of a group, ring, A-algebra, and so on) and the re-
striction maps rVU are homomorphisms of this structure, i.e., P is a functor
Top◦X −→ Gr (the category of groups), Rings (that of rings, or superrings),
A-Algs (that of rings, or A-(super)algebras), and so on, then P is called the
presheaf of groups, rings, A-algebras, and so on, respectively.

Finally, we may consider exterior composition laws, e.g., a presheaf of mod-
ules over a presheaf of rings (given on the same topological space). We leave
the task to give a formal definition as an exercise to the reader.
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1.2.6. Sheaves. The presheaves of continuous (infinitely differentiable, ana-
lytic, and so on) functions on a space X possess additional properties (of “an-
alytic continuation” type) which are axiomized in the following definition.

A presheaf P on a topological space X is called a sheaf if it satisfies the
following condition: for any open subset U ⊂ X , its open covering U =

⋃
i∈I

Ui,

and a system of sections si ∈ P(Ui), where i ∈ I, such that

rUiUi∩Uj (si) = rUjUi∩Uj (sj) for any i, j ∈ I, (1.11)

there exists a section s ∈ P(U) such that si = rUUi(s) for any i ∈ I, and such
a section is unique.

In other words, from a set of compatible sections over the Ui a section
over U may be glued and any section over U is uniquely determined by the
set of its restrictions onto the Ui.

Remark. If P is a presheaf of abelian groups, the following reformulation
of the above condition is useful:

A presheaf P is a sheaf if, for any U =
⋃
i∈I

Ui, the following sequence

of abelian groups is exact

0 −→ P(U)
ϕ−→
∏

i∈I

P(Ui)
ψ−→

∏

i,j∈I

P(Ui ∩ Uj), (1.12)

where ϕ and ψ are determined by the formulas

ϕ(s) = (. . . , rUUi , (s), . . .)

ψ(. . . , si, . . . , sj , . . .) = (. . . , rUiUi∩Uj (si)− r
Uj
Ui∩Uj

(sj), . . .).
(1.13)

For a generic presheaf of abelian groups, this sequence is only a complex.
(Its natural extension determines a Čech cochain complex that will be defined
in what follows.)

1.2.7. The structure sheaf OX over X = SpecA. We consider the ele-
ments from A as functions on SpecA. For every x ∈ X , set Ox := AA\px = Apx
(localization of A with respect to the multiplicative system A \ px). For any
open subset U ⊂ X , define the ring of sections of the presheaf OX over U to
be the subring

OX(U) ⊂
∏

x∈U

Ox (1.14)

consisting of the elements (. . . , sx, . . .), where sx ∈ Ox, such that for every
point x ∈ U there exists an open neighborhood D(fx) 3 x (here fx is a func-
tion determined by x) and an element g ∈ Afx such that sy is the image of g
under the natural homomorphism Afx −→ Oy for all y ∈ U .

Define the restriction morphisms rVU as the homomorphisms induced by
the projection

∏
x∈V

Ox −→
∏
x∈U

Ox. It is easy to see that OX is well-defined
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and the natural homomorphism Afx −→ Oy is induced by the embedding
of multiplicative sets

{fnx | n ∈ N} ⊂ A \ py. (1.15)

Theorem. The presheaf OX is a sheaf whose stalk over x ∈ X is isomorphic
to Ox and rUx is the composition

OX(U) −→
∏

x′∈U

Ox′
pr−→ Ox (1.16)

Furthermore, the ring homomorphism

j : Af −→ OX(D(f)), j(g/f) = (. . . , jx(g/f), . . .)x∈U , (1.17)

where jx : Af −→ Ox is a natural homomorphism of quotient rings, is an iso-
morphism.

The sheaf OX over the scheme X = SpecA is called the structure sheaf
of X .

The above-described sheaf over X = SpecA will be sometimes denoted
by Ã. The pair (SpecA, Ã) consisting of a topological space and a sheaf over

it determines the ring A thanks to Theorem 1.2.7: namely, A = Γ (SpecA, Ã).
This pair is the main local object of the algebraic geometry.

1.2.8. Ringed spaces. A ringed topological space is a pair (X,OX) consist-
ing of a space X and a sheaf of (commutative 1)) rings OX over it called the
structure sheaf.

A morphism of ringed spaces F : (X1,OX) −→ (Y1,OY ) is a pair consisting
of a morphism f : X −→ Y of topological spaces and the collection of ring
homomorphisms

{f∗
U : OY (U) −→ OX(f

−1(U)) for every open U ⊂ Y } (1.18)

that are compatible with restriction maps, i.e., such that
(a) the diagrams

OY (U)
f∗
U //

rUV
��

OX(f−1(U))

r
f−1(U)

f−1(V )

��
OY (V )

f∗
V // OX(f−1(V ))

(1.19)

1 Or supercommutative superrings, although nowhere, except in [Le0] that contains
only a definition, did anybody consider spaces ringed — not superringed! — by
supercommutative superrings. The notion of a superringed space introduced
below is something more restricted: only parity preserving homomorphisms of the
rings of sections are considered as morphisms. For more detail, see the Chapter
on Volichenko algebras.
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commute for every pair of open sets V ⊂ U ⊂ Y ;
(b) for any open U ⊂ Y , and a pair u ∈ U and g ∈ OY (U) such that

g(y) = 0, we have

f∗
U (g)(x) = 0 for any x such that f(x) = y. (1.20)

Elucidation. If X and Y are Hausdorff spaces, OX , OY the sheaves
of continuous (smooth, analytic, and so on) functions on them, re-
spectively, then to every morphism f : X −→ Y the ring homomor-
phism f∗

U : OY (U) −→ OX(f
−1(U)) corresponds: f∗

U assigns to any function
g ∈ OY (U) the function

f∗
U (g)(x) = g(f(x)) for any x ∈ f−1(U); (1.21)

i.e., the domain of f∗
U (g) is f−1(U), and f∗

U (g) is constant on the pre-image
of every y ∈ U .

In algebraic geometry, the spaces are not Hausdorff ones and their struc-
ture sheaves are not readily recognized as sheaves of functions. Therefore

1) the collection of ring homomorphisms {f∗
U | U is an open set} is not

recovered from f and must be given separately;
2) the condition

f∗
U (g)(x) = g(f(x)) for any x ∈ f−1(U) (1.22)

is replaced by a weaker condition (b1.20).

These two distinctions from the usual functions are caused by the fact
that the domains of our “make believe” functions have variable ranges and
different sections of the structure sheaf may represent the same function.

A ringed space isomorphic to one of the form (SpecA, Ã) is called an affine
scheme.

1.2.9. Schemes. A ringed topological space (X,OX) is called a scheme if
its every point x has an open neighborhood U such that (U,OX |U ) is an affine
scheme.

One of the methods for explicit description of a global object is just to
define the local objects from which it is glued and the method of gluing. Here
is the formal procedure.

Proposition. Let (Xi,OXi)i∈I be a family of schemes and let in every Xi

open subsets Uij, where i, j ∈ I, be given. Let there be given a system of iso-
morphisms θij : (Uij ,OXi |Uij ) −→ (Uji,OXj |Uji) satisfying the cocycle condi-
tion

θii = id, θij ◦ θji = id, θij ◦ θjk ◦ θki = id . (1.23)

Then there exists a scheme (X,OX), an open covering X =
⋃
i∈I

X ′
i and a family

of isomorphisms ϕi : (X
′
i,OX |X′

i
) −→ (Xi,OXi) such that

(ϕj |Xi∩Xj )−1 ◦ θij ◦ ϕi|Xi∩Xj = id for all i, j. (1.24)
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1.2.9.1. Superringed spaces. Superschemes. In analogy with the defini-
tion of a ringed space, we define a superringed space as a pair (X,F), where X
is a topological space and F is a sheaf of supercommutative superrings overX .
A superringed space morphism ϕ : (X,F)→ (Y,G) is a pair (ϕ̃, {ϕ∗

U | U ⊂ Y })
consisting of

a continuous map ϕ̃ : X → Y and
a collection of superring morphisms ϕ∗

U : G(U) → F(ϕ̃−1(U)) defined for
every open subset U ⊂ Y and consistent with the restrictions maps, i.e.,

r
ϕ̃−1(V )
ϕ̃−1(U)ϕ

∗
V = ϕ∗

Ur
V
U for any opens U ⊂ V ⊂ X. (1.25)

What is the difference between a ringed space and a superringed space?
Answer: for the ringed spaces, morphisms ϕ∗

U are arbitrary algebra homo-
morphisms whereas the morphisms of the same objects considered as super-
ringed spaces must p r e s e r v e p a r i t y.

A superringed space isomorphic to one of the form (SpecA, Ã), where A is
a supercommutative ring, is said to be an affine superscheme. A superringed
topological space (X,OX) is a superscheme if its every point x has an open
neighborhood U such that (U,OX |U ) is an affine superscheme.

1.2.10. A group structure on an object of a category. In this subsec-
tion, we give definitions and several most important examples of affine group
schemes. This notion is not only important by itself, it also lucidly shows the
role and possibilities of the “categorical” and “structural” approaches.

We will give consecutively two definitions of a group structure on an object
of a category and compare them for the category of schemes.

Let C be a category, X ∈ ObC. A group structure on X is said to be
given if there are given (set theoretical) group structures on all the sets
PX(Y ) = HomC(Y,X), and, for any morphism Y1 −→ Y2, the correspond-
ing map of sets PX(Y2) −→ PX(Y1) is a group homomorphism.

An object X together with a group structure on it is said to be a group
in the category C. Let X1, X2 be groups in C; a morphism X1 −→ X2 in C is
said to be a group morphism in C if the maps PX1(Y ) −→ PX2 (Y ) are group
homomorphisms for any Y .

A group in the category of affine schemes will be called an affine group
scheme (never an affine group: this is a fixed term for a different notion).

Here is the list of the most important examples with their standard nota-
tions and names.

Helpful remark. Since Aff Sch◦ = Rings, instead of studying contravariant
functors on Aff Sch represented by an affine group scheme we may discuss the
covariant functors on Rings which are simpler to handle.

1.2.11. Examples.
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1.2.11.1. The additive group Ga = SpecZ[T ]. As above, any morphism
SpecA −→ Ga is uniquely determined by an element t ∈ A0̄, the image of T ,
which may be chosen at random. The collection of groups with respect to
addition A0̄ = Ga(A) for the rings A ∈ Rings determines the group structure
on Ga.

In other words, Ga represents the functor Aff Sch◦ −→ Gr, SpecA 7→ A0̄

or, equivalently, the functor Rings −→ Gr, A 7→ A+
0̄
.

1.2.11.1a. The odd additive supergroup G−
a = SpecZ[θ]. As above,

any morphism SpecA −→ G−
a is uniquely determined by an element t ∈ A1̄,

the image of θ, which may be chosen at random. The collection of groups with
respect to addition A1̄ = G−

a (A) for the rings A ∈ Rings determines the group
structure on Ga.

In other words, G−
a represents the functor Aff Sch◦ −→ Gr, SpecA 7→ A1̄

or, equivalently, the functor Rings −→ Gr, A 7→ A+
1̄
.

1.2.11.2. The multiplicative group Gm = SpecZ[T, T−1]. For any
superschemeX = SpecA, any morphismX −→ Gm is uniquely determined by
an element t ∈ A×

0̄
, the image of T under the homomorphism Z[T, T−1] −→ A,

where A×
0̄
is the group (with respect to multiplication) of invertible elements

of A0̄. Conversely, t corresponds to such a morphism if and only if t ∈ A×
0̄
.

Therefore
PGm(SpecA) = Gm(A) = A×

0̄
, (1.26)

and, on the set of A-points, a natural group structure (multiplication) is de-
fined. Furthermore, any ring homomorphism A −→ B induces, clearly, a group
homomorphism A×

0̄
−→ B×

0̄
which determines the group structure on Gm.

In other words, Gm represents the functor Aff Sch◦ −→ Gr, SpecA 7→ A×
0̄

or, equivalently, the functor Rings −→ Gr, A 7→ A×
0̄
.

1.2.11.2a. The multiplicative group GQm = SpecZ[T, T−1, θ]. For
any superscheme X = SpecA, any morphism ϕ : X −→ Gm is uniquely de-
termined by a pair

t = ϕ∗(T ) ∈ A×
0̄
, ξ = ϕ∗(θ) ∈ A1̄. (1.27)

Therefore
PGQm(SpecA) = GQm(A) = A×, (1.28)

and, on the set of A-points, a natural group structure (multiplication) is de-
fined. Furthermore, any superring homomorphism A −→ B induces, clearly,
a group homomorphism A× −→ B× which determines the group structure on
GQm.

In other words,GQm represents the functor Aff Sch◦ −→ Gr, SpecA 7→ A×

or, equivalently, the functor Rings −→ Gr, A 7→ A×.
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1.2.11.3. The general linear group.

GL(n) = SpecZ[Tij , T ]
n
i,j=1/(T det((Tij))− 1). (1.29)

It represents the functor SpecA 7→ GL(n;A). Obviously, GL(1) ' Gm.
To define the general linear supergroup we have to figure out how to express

the berezinian by means of polynomials: we do not have any other functions
but polynomials in out household. Fortunately, we know that (let us first
consider the standard formats)

(
a

c

b

d

)
is invertible ⇐⇒ a and d are invertible⇐⇒ Ber

((
a

c

b

d

))
is invertible.

(1.30)
Accordingly, set

GL(n|m) = SpecZ[Tij , T, U ]ni,j=1/(TBer(Tij)− 1),

where T = (Tij) :=

((
a

c

b

d

))
is the supermatrix of indeterminates

in the standard format.

(1.31)

This group superscheme represents the functors

SpecA 7→ GL(n|m;A) and A 7→ GL(n|m;A). (1.32)

1.2.11.4. The Galois group Aut(K′/K). Fix a K-algebra K ′ and let K ′

be a free K-module of finite rank. The group Aut(K ′/K) of automorphisms
of the algebra K ′ over K is the main object of the study, e.g., in the Galois
theory (where the case of fields K, K ′ is only considered). This group may
turn to be trivial if the extension is non-normal or non-separable, and so on.

The functorial point of view suggests to consider all the possible changes
of base K, i.e., for a variable K-algebra B, consider the group of automor-
phisms

Aut(B′/B) := AutB(B
′), where B′ = B

⊗

K

K ′. (1.33)

We will prove simultaneously that (1) the map B 7→ Aut(B′/B) is a functor
and (2) this functor is representable.

Select a free basis e1, . . . , en of K ′ over K. In this basis the multiplication
law in K ′ is given by the formula

eiej =
∑

1≤k≤n

ckijek. (1.34)

Denote e′i := 1
⊗
K

ei; then B′ =
⊕

1≤i≤n

B e′i, and any endomorphism t of the

B-module B′ is given by a matrix (tij), where tij ∈ B and 1 ≤ i, j ≤ n. The
condition that this matrix determines an endomorphism of an algebra can be
expressed as the relations
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t(e′i)t(e
′
j) =

∑

1≤k≤n

ckijt(e
′
k). (1.35)

Equating the coefficients of e′k in (1.35) in terms of indeterminates Tij we
obtain a system of algebraic relations for Tij with coefficients from K, both
necessary and sufficient for (tij) to define an endomorphism of B′/B.

To obtain automorphisms, let us introduce an additional variable t and
the additional relation (cf. Example 3) which ensures that det(tij) does not
vanish:

t det(tij)− 1 = 0. (1.36)

The quotient of K[T, Tij]
n
i,j=1/(T det((Tij)) − 1) is a K-algebra representing

the functor
B 7→ Aut(B′/B). (1.37)

This K-algebra replaces the notion of the Galois group of the extension
K ′/K; it generalizes the notion of the group ring of the Galois group.

1.2.11.4a. Consider the simplest particular case:

K ′ = K(
√
a), where a ∈ K× \ (K×)2. (1.38)

We may set e1 = 1, e2 =
√
a; the multiplication table reduces to e22 = a.

Let t(
√
a) = T1 +T2

√
a (obviously, t(1) = 1). Since t(

√
a)2 = a, we obtain

the equations relating T1, T2 and the additional variable T :





T 2
1 + a T 2

2 = a

2T1 T2 = 0

TT2 − 1 = 0.

(1.39)

Now, let us consider separately two cases.
Case 1: CharK 6= 2. Hence, 2 is invertible in any K-algebra. The functor

of automorphisms is represented by the K-algebra

K[T, T1, T2]/(T
2
1 + a T 2

2 − a, T1T2, TT2 − 1). (1.40)

If B has no zero divisors, then the B-points of this K-algebra have a simple
structure: since T2 must not vanish, T1 becomes 0 implying that the possible
values of T2 in the quotient ring are ±1. As the conventional Galois group
this group is isomorphic to Z/2; the automorphisms simply change the sign
of
√
a.
The following case illustrates that when B does have zero divisors the

group of B-points of AutK×/K can be much larger.
Case 2: CharK = 2. The functor of automorphisms is represented by the

K-algebra
K[T, T1, T2]/(T

2
1 + aT 2

2 − a, TT2 − 1). (1.41)



16 Ch. 1. Background over C (D. Leites)

In other words, the B-points of the automorphism group are all the B-points
of the circle T 2

1 + aT 2
2 − a = 0 at which T2 is invertible!

Let us investigate this in detail. LetB be a field and let (t1, t2) be a B-point
of the circle at which T2 is invertible. Then either t2 = 1, t1 = 0, and we obtain

the identity automorphism, or a =
(

t1
t2 + 1

)2
. Therefore there are nontrivial

B-points only if
√
a ∈ B, in which case the equation of the circle turns into

the square of a linear one (T1 +
√
a T2 +

√
a)2 = 0. We have the punctured

line (the line without point T2 = 0) of automorphisms!
Obviously, Aut(B′/B) is isomorphic in this case to B×—the multiplicative

group of B (under the composition of automorphisms the coefficients of
√
a

are multiplied). So, the non-separable extensions have even more, in a certain
sense, automorphisms than separable ones.

The reason why this phenomenon takes place is presence of nilpotents in
the algebraB

⊗
K

K ′ if
√
a ∈ L. Indeed,K(

√
a) ⊂ L, soK(

√
a)⊗KK(

√
a) ⊂ L′;

on the other hand, this product is isomorphic to

K(
√
a)[x]/(x2 − a) ' K(

√
a)[y]/(y2) :

the automorphisms just multiply y by invertible elements.
One can similarly investigate arbitrary inseparable extensions and con-

struct for them a Galois theory, a generalization of the Jacobson theory.

1.2.11.5. The group µn of nth roots of unity. Set

µn = SpecZ[T ]/(T n − 1) = SpecZ[T, T−1]/(T n − 1). (1.42)

This group represents the functor SpecA 7→ {t ∈ A×
0̄
| tn = 1}.

Let X be a closed affine group scheme and Y its closed subscheme Y such
that PY (Z) ⊂ PX(Z) is a subgroup for any Z. We call Y with the induced
group structure a closed subgroup of X .

Therefore µn is a closed subgroup of Gm. Explicitly, the homomorphism
T 7→ T n determines a group scheme homomorphism Gm −→ Gm of “raising
to the power n” and µn represents the kernel of this homomorphism.

1.2.11.5a. The supergroup µn,m of nth roots of unity. Set

µn,m = SpecZ[T, θ]/(T n − 1) = SpecZ[T, T−1, θ]/(T n − 1), (1.43)

where θ = (θ1, . . . , θm). This supergroup represents the functor

SpecA 7→ {(t ∈ A×
0̄
, ξ ∈ Am1̄ ) | tn = 1}. (1.44)

1.2.11.6. The scheme of a finite group G. Let G be a conventional (set-
theoretical) finite group. Set A = Z(G) :=

∏
g∈G

Z. In other words, A is a free

module
⊕
g∈G

Z(g) (|G| copies of Z) with the multiplication table
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egeh =

{
0 = (0, . . . , 0) if h 6= g,

eg if h = g.
(1.45)

The space X = SpecA is disjoint; each of its components is isomorphic to
SpecZ and these components are indexed by the elements of G. For any
ring B, whose spectrum is connected, the set of morphisms SpecB −→ SpecA
is, therefore, in the natural one-to-one correspondence with the elements of G.

If SpecB is disjoint, then any morphism SpecB −→ SpecA is determined
by the set of its restrictions onto the connected components of SpecB. Let
ConnB be the set of these components; then, clearly, the point functor is
given by

PX(SpecB)
∼−→ (G)ConnB := Hom(G,ConnB). (1.46)

and therefore X is endowed with a natural group structure called the scheme
of the group G.

1.2.11.7. The relative case. Let S = SpecK. A group object in the cat-
egory Aff SchS of affine schemes over S is said to be an affine S-group (or
an affine K-group). Setting Gm /K = Gm×S and µn /K = µn×S, and so on,
we obtain a series of groups over an arbitrary scheme S (or a ring K). Each
of them represents “the same” functor as the corresponding absolute group,
but restricted onto the category of K-algebras.

1.2.11.8. Linear algebraic groups. LetK be a field. Any closed subgroup
of GLn(A)/K is said to be a linear algebraic group over K.

In other words, a linear algebraic group is determined by a system of
equations

Fk(Tij) = 0, for i, j = 1, . . . , n and k ∈ I (1.47)

such that if (t′ij) and (t′′ij) are two solutions of the system (1.47) in a K-al-
gebra A such that the corresponding matrices are invertible, then the matrix
(t′ij)(t

′′
ij)

−1 is also a solution of (1.47)

1.2.12. Linear algebraic groups. The place of linear algebraic groups
in the general theory is elucidated by the following fundamental theorem
(cf. [OV]).

Theorem. Let X be an affine group scheme of finite type over K. Then X
is isomorphic to a linear algebraic group.

1.2.13. Statement (Cartier). Let X be the scheme of a linear algebraic
group over a field of characteristic zero. Then X is reduced, i.e., X = Xred,
its ring has no nilpotents.

If CharK = p, then the statement of the theorem is false (cf. also with
the group superscheme case) as demonstrated by the following

Example. Set

µp /K = SpecK[T ]/(T p−1) = SpecK[T ]/((T − 1)p). (1.48)
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Obviously, K[T ]/((T − 1)p) is a local artinian algebra of length p, and its
spectrum should be considered as a “point of multiplicity p”. This is a nice
agreement with our intuition: all the roots of unity of degree p are glued
together and turn into one root of multiplicity p.

More generally, set

µpn /K = SpecK[T ]/((T − 1)p
n

). (1.49)

We see that the length of the nilradical may be however great.

1.2.14. The set-theoretical definition of the group structure. Let
a category C contain a final 2) object E and products. Let X be a group
with a unit (identity) 1; let x, y, z ∈ X ; then, in the standard notations 3), we
obtain

m(x, y) = xy, i(x) = x−1, u(E) = 1, (1.50)

and the conventional axioms of the associativity, the left inverse and the left
unit have, respectively, the form

(xy)z = x(yz), x−1x = 1, 1x = x (1.51)

The usual set-theoretical definition of the group structure on a set X given
above is, clearly, equivalent to the existence of three morphisms

m : X ×X −→ X (multiplication, x, y 7→ xy)

i : X −→ X (inversion, x 7→ x−1 )

u : E −→ X (unit, the embedding of E)

(1.52)

that satisfy the axioms of associativity, left inversion and left unit, respectively,
expressed as commutativity of the following diagrams:

X ×X ×X (m, idX) //

(idX ,m)

��

X ×X
m

��
X ×X m // X

(1.53)

X ×X
(i, idX) // X ×X

m

��
X

δ

OO

• // E
u // X

(1.54)

X ×X (•, idX) // E ×X (u, idX) // X ×X
m

��
X

δ

OO

idX // X
idX // X

(1.55)

2 An object E is said to be final if card(Hom(X,E)) = 1 for any X ∈ ObC.
3 Here we denote the group unit by 1; it is the image of E.
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(In diagrams (1.54), (1.55) the morphism of contraction to a point (E) is
denoted by “•”.)

In the category Sets the axioms (1.53)–(1.55) turn into the usual definition
of a group though in an somewhat non-conventional form.

1.2.15. Equivalence of the two definitions of the group structure.
Let a group structure in the set-theoretical sense be given on X ∈ ObC.
Then, for every Y ∈ ObC, the morphisms m, i, u induce the group structure
on the set of Y -points thanks to the above subsection. The verification of the
compatibility of these structures with the maps PX(Y1) −→ PX(Y2) is left to
the reader.

Conversely, let a group structure in the sense of the first definition be given
on X ∈ ObC. How to recover the morphisms m, i, u? We do it in three steps:

a) The group PX(X ×X) contains projections π1, π2 : X ×X −→ X . Set
m = π1 ◦ π2 (the product ◦ in the sense of the group law).

b) The group PX(X) contains the element idX . Denote its inverse (in the
sense of the group law) by i.

c) The group PX(E) has the unit element. Denote it by u : E −→ X .

1.2.16. How to describe the group structure on an affine group (su-
per)scheme X = SpecA in terms of A. We will consider the general,
i.e., relative, case, i.e., assume A to be a K-algebra.

The notion of a group G is usually formulated in terms of the states, i.e.,
points of G. In several questions, however, for example, to quantize it, we
need a reformulation in terms of observables, i.e., the functions on G. Since
any map of sets ϕ : X −→ Y induces the homomorphism of the algebras of
functions ϕ∗ : F (Y ) −→ F (X), we dualize the axioms of sec. 1.2.14 and obtain
the following definition.

A bialgebra structure on a K-algebra A is given by three K-algebra homo-
morphisms:

m∗ : A −→ A
⊗
K

A co-multiplication

i∗ : A −→ A co-inversion

u∗ : A −→ K co-unit

(1.56)

which satisfy the axioms of co-associativity, left co-inversion and left co-unit,
respectively, expressed in commutativity of the following diagrams:
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A⊗A⊗A A⊗Am∗⊗ idAoo

A⊗A

idA⊗m∗

OO

A

m∗

OO

m∗
oo

(1.57)

A⊗A
µ

��

A⊗Ai∗⊗ idAoo

A Koo A

m∗

OO

u∗
oo

(1.58)

(the left vertical arrow is the multiplication µ : a ⊗ b 7→ a b in A, the left
horizontal arrow is given by 1 7→ 1).

A⊗A
µ

��

Aoo A⊗Au∗⊗ idAoo

A A

m∗

OO

idAoo

(1.59)

(the left arrow in the top line is a 7→ 1⊗ a).
It goes without saying that this definition is dual to that from sec. 1.2.14,

and therefore the group structures on the K-scheme SpecA are in one-to-one
correspondence with the co-algebra structures on the K-algebra A.

Example. The homomorphisms m∗, i∗, u∗ for the additive group scheme
Ga = SpecZ[T ] are:

m∗(T ) = T ⊗ 1 + 1⊗ T, i∗(T ) = −T, u∗(T ) = 0. (1.60)

1.2.17. What a Lie superalgebra is. Dealing with superalgebras it some-
times becomes useful to know their definition. Lie superalgebras were distin-
guished in topology in 1930’s, the Grassmann superalgebras half a century
earlier. So when somebody offers a “better than usual” definition of a notion
which seemed to have been established about 70 year ago this might look
strange, to say the least. Nevertheless, the answer to the question “what is
a (Lie) superalgebra?” is still not a common knowledge.

So far we defined Lie superalgebras naively: via the Sign Rule (sect. 1.1.2).
However, the naive definition suggested above (“apply the Sign Rule to the
definition of the Lie algebra”) is manifestly inadequate for considering the
supervarieties of deformations and for applications of representation theory
to mathematical physics, for example, in the study of the coadjoint represen-
tation of the Lie supergroup which can act on a supermanifold but never on
a superspace — an object from another category. We were just lucky in the
case of finite dimensional Lie algebras over C that the vector spaces can be
viewed as manifolds. In the case of spaces over K and in the super setting, to
be able to deform Lie (super)algebras or to apply group-theoretical methods,
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we must be able to recover a supermanifold or supervariety from a superspace,
and vice versa.

A proper definition of Lie superalgebras is as follows. The Lie superalgebra
in the category of supervarieties 4) corresponding to the “naive” Lie superal-
gebra L = L0̄ ⊕ L1̄ is a linear supermanifold L = (L0̄,O), where the sheaf of
functions O consists of functions on L0̄ with values in the Grassmann super-
algebra on L∗

1̄; this supermanifold should be such that for “any” (say, finitely
generated, or from some other appropriate category) supercommutative su-
peralgebra C, the space L(C) = Hom(SpecC,L), called the space of C-points
of L, is a Lie algebra and the correspondence C −→ L(C) is a functor in C.
(A. Weil introduced this approach in algebraic geometry in 1953; in super set-
ting it is called the language of points or families.) This definition might look
terribly complicated, but fortunately one can show that the correspondence
L ←→ L is one-to-one and the Lie algebra L(C), also denoted L(C), admits
a very simple description: L(C) = (L⊗ C)0̄.

A Lie superalgebra homomorphism ρ : L1 −→ L2 in these terms is
a functor morphism, i.e., a collection of Lie algebra homomorphisms
ρC : L1(C) −→ L2(C) such that any homomorphism of supercommuta-
tive superalgebras ϕ : C −→ C1 induces a Lie algebra homomorphism
ϕ : L(C) −→ L(C1) and products of such homomorphisms are naturally com-
patible. In particular, a representation of a Lie superalgebra L in a superspace
V is a homomorphism ρ : L −→ gl(V ), i.e., a collection of Lie algebra homo-
morphisms ρC : L(C) −→ (gl(V )⊗ C)0̄.
1.2.17.1. Example. Consider a representation ρ : g −→ gl(V ). The space of
infinitesimal deformations of ρ is isomorphic to H1(g;V ⊗ V ∗). For example,
if g is the 0|n-dimensional (i.e., purely odd) Lie superalgebra (with the only
bracket possible: identically equal to zero), its only irreducible representations
are the trivial one, 1, and Π(1). Clearly, 1 ⊗ 1∗ ' Π(1) ⊗ Π(1)∗ ' 1,
and, because the Lie superalgebra g is commutative, the differential in the
cochain complex is zero. ThereforeH1(g;1) = E1(g∗) ' g∗, so there are dim g

odd parameters of deformations of the trivial representation. If we consider g
“naively”, all of these odd parameters will be lost.

Which of these infinitesimal deformations can be extended to a global one
is a separate much tougher question, usually solved ad hoc.

4 That is ringed spaces such that the sections of their sheaves of “functions” form
supercommutative superrings and morphisms of supervarieties are only those ring
space morphisms that preserve parity of the superrings of sections of the structure
sheaves.
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Examples of simple Lie superalgebras and their
relatives over C (D. Leites, I. Shchepochkina)

For details of the proofs, see [LSh].

2.1. On setting of the problem

Selection of Lie algebras with reasonably nice properties is a matter of taste
and is influenced by the underlying “meta”-problem. One of the usual choices
is the class of simple algebras: they have a richer structure, and therefore
are easier to study than other types of Lie algebras; they also illuminate
important symmetries. Even representatives of the “complementary” type —
solvable algebras (and their particular case, nilpotent algebras) — are often
of real interest only when subalgebras of simple algebras.

Of simple Lie algebras, the finite dimensional ones are naturally the first
to study. Over C, they constitute three “classical” series (sl, o and sp) and
five exceptional algebras; all are neatly encoded by Cartan matrices or, in an
even more graphic way, by very simple graphs — Dynkin diagrams.

Next on the agenda are Z-graded Lie algebras of polynomial growth (let us
call them ZGLAPGs for short). Some of these algebras have Cartan matrix;
they resemble finite dimensional simple Lie algebras more than others, and
have proved very useful in various branches of mathematics and theoretical
physics, cf. [K3].

Let us recall the meaning of the terms entering ZGLAPG. A Z-graded
algebra A = ⊕Ai is said to be simple graded if it has no homogeneous or
better say graded ideals (i.e., no ideals I = ⊕Ii such that Ii = I ∩Ai; a simple
graded algebra can be non-simple as an abstract algebra: e.g., loop algebras
with values in a simple Lie algebra are simple graded but not simple). If
dimAi <∞ for all i, one can define the growth of A to be

gth(A) = lim
n−→∞

ln dim ⊕
|i|≤n

Ai

lnn
.
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We say that A is of polynomial growth if gth(A) < ∞, i.e., dim ⊕
|i|≤n

Ai ∼ nr

as n −→∞.
Around 1966, V. Kac and B. Weisfeiler started to study simple filtered

Lie algebras of polynomial growth, i.e., Lie algebras such that the associated
graded algebra is of polynomial growth. The first step in the study was, of
course, the simple graded algebras. Kac classified simple ZGLAPGs provided
they are generated by elements of degree −1 and 1.

Among simple ZGLAPGs, only vect(1) = der C[x] and

vectL(1) := der C[x−1, x]

are not generated by elements of degree ±1 with respect to any grading.
Kac conjectured that these two examples, plus his list, exhaust all the simple
ZGLAPGs. Twenty years after, O. Mathieu proved this conjecture in a string
of rather complicated papers culminating in [M].

It goes without saying that we look at the simple Lie algebras as a pre-
liminary (though vital) material. The central extensions, deformations and
algebras of outer derivations of simple Lie superalgebras are often more in-
teresting in applications (e.g., affine Kac–Moody algebras are “more useful”
than loop algebras; likewise, Poisson algebras and their deformations are often
no less appealing to the heart of the physicist than even the Lie algebras of
Hamiltonian vector fields, vital in the classical mechanics). So the real object
of interest is the answer to the following Main Problem:

2.1.1. Problem. Starting with a simple Lie algebra of class ZGLAPG, list
the results of iterated combinations of the following operations:

a) g −→ e(g), the nontrivial central extension of g (example: central ex-
tensions of loop algebras; the Poisson algebra);

b) g −→ der(g), the whole derivation algebra of g or a subalgebra of der(g)
(example: affine Kac–Moody algebras);

c) deformations of g (although they sometimes lead out of the class
ZGLAPG, such deformed Lie algebras are often no less important in appli-
cations than the original algebras; examples: the result of the quantization of
either the Poisson algebra or of the algebra of Hamiltonian vector fields; the
Krichever-Novikov algebras);

d) all filtered completions of g;
e) forms of these algebras over non-closed fields.

We will loosely refer to the results of the iterated procedures described in
Main Problem as classical Lie algebras and call the algebras obtained from
a simple one, g, by the iterations of the above procedures a) and b) (and
sometimes even by all the procedures a) –d)) the relatives of g and each other
(from the next of kin to distant ones). To list them, their counterparts in the
super setting and over fields of prime characteristic, and ALL their various
gradings, is the main strategic goal of Leites’s Seminar on Supersymmetries
([LSoS]).
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2.1.1.1. Remark. The reader should not think, as was customary 30 years
ago, that algebras “bigger” than the Z-graded of polynomial growth type are
useless or too difficult to study. For example, various versions of gl(∞) and
algebras studied by Borcherds or Gritsenko and Nikulin are, though huge, of
huge interest and (some of) their representations are describable.

2.1.2. Types of the classical Lie algebras. Let us qualitatively describe
the simple Lie algebras of polynomial growth to better visualize them. They
break into the disjoint union of the following types:

1) Finite dimensional algebras (growth 0).
2) Loop algebras, perhaps twisted (of growth 1); more important in appli-

cations are their non-simple “relatives” called affine Kac–Moody algebras, cf.
[K3].

3) Vectorial algebras, i.e., Lie algebras of vector fields 1) with polynomial
coefficients (growth is equal to the number of indeterminates) or their com-
pletions with formal power series as coefficients.

4) Stringy algebra 2) vectL(1) = der C[t−1, t], where the superscript stands
for Laurent.

This class consists of one algebra. It is often called Witt algebra and de-
noted witt in honor of Witt who considered its analog over fields of prime
characteristic, and by physicists the centerless Virasoro algebra because its
nontrivial central extension (discovered by Fuchs and Gelfand), vir, is called
the Virasoro algebra in honor of Virasoro who rediscovered the corresponding
central extension and indicated its importance in physical models.

Strictly speaking, stringy algebras are also vectorial, but we retain the
generic term vectorial for algebras with polynomial or formal coefficients.

The above are graded algebras. Filtered algebras are not classified. Among
the known examples of filtered algebras, we distinguish various deformations
of the above-listed graded algebras, several more examples listed in the next
item, and random examples to Main Problem given above.

1 These algebras are sometimes known under a clumsy name “algebras of Cartan
type” introduced in the 1960s: just imagine “the Cartan subalgebra in the Lie
superalgebra of Cartan type with Cartan matrix” (svectLα(1|2) is an example of a
Lie superalgebra of Cartan type with Cartan matrix).

2 The term “stringy algebra” is induced by the lingo of imaginative physicists who
now play with the idea that an elementary particle is not a point but rather
a slinky springy string. (We share with these physicists the sensation of beauty of
stringy superalgebras [GSW] and urge to investigate them, even if beware of the
social dangers in overvaluing their importance [WL].) The term “stringy algebra”
means “pertaining to string theory” but also mirrors their structure as a collection
of several strings — the witt-modules. In our works “stringy” means either “simple
vectorial superalgebra on a supermanifold whose underlying manifold is a circle or
a relative (in the sense of Main Problem) of such algebra”. Other appellations,
not quite equivalent, are “vertex superalgebras” and somewhat self-contradictory
“superconformal algebras”.
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5) Lie algebra of matrices of complex size and its generalizations, cf.
[GL2, LSe, DGS]. These algebras are simple filtered Lie algebras of polynomial
growth whose associated graded algebras are not simple. Up to some twists,
the examples known to us are multiparameter deformations of the Poisson
algebras of functions on the orbits in the coadjoint representation of simple
finite dimensional or Lie algebras of matrices over the rings of differential op-
erators. Super version of this class is even wider due to S. Montgomery’s and
Konstein’s constructions ([GL2, KV]). Though they are much more numerous
than simple graded ones, we still hope that it is possible to distill a tame sub-
problem. Still more examples are given by the current algebras and vectorial
algebras on varietiesM , cf. [Le4]; such examples are lately known for compact
Riemann surfaces M as Krichever–Novikov algebras.

The algebras of the above classes 1) – 5) can be characterized by other
properties that are sometimes taken for their definition, cf. [FSS], making the
nomenclature rather complicated. We think that the situation is, actually,
rather simple: There are only two major types of Lie superalgebras (“sym-
metric” and “skew”):

(SY) For symmetric algebras, related with a Cartan subalgebra (or a max-
imal toral subalgebra which might be smaller than Cartan subalgebra) is a
root decomposition such that

sdim gα = sdim g−α for any root α; (2.1)

(SK) For skew algebras, related with a Cartan subalgebra (or a maximal
torus) is a root decomposition such that (2.1) fails. (Usually, skew algebras
can be realized as vectorial Lie superalgebras — subalgebras of the Lie su-
peralgebra of vector fields vect(n|m) = derK[x, θ], where x = (x1, . . . , xn) are
even indeterminates and θ = (θ1, . . . , θm) are odd indeterminates.

(Of course, symmetric algebras can sometimes be realized as subalgebras
of vect(n|m), but this is beside the point.)

Algebras of classes 1) and 2) have an additional property: they have a
Cartan matrix (the algebras of class 5) also have a Cartan matrix, albeit
in a very generalized sense, see [SV]). For Lie algebras of classes 1) and 2),
this Cartan matrix is always symmetrizable and, moreover, not only with
integer entries but of so simple form that it can be encoded by a simple graph
(Dynkin graph). Generally, Lie algebras with a symmetrizable Cartan matrix
and “most” of the algebras of class 5) possess an invariant symmetric non-
degenerate bilinear form — a powerful tool for solving numerous problems,
see Dynkin index in [CES].

2.1.3. Superization. Even before Wess and Zumino made importance of
supersymmetries manifest in physics, cf. [D, GSW, WZ], the definition of what
was later called superschemes (1972) made it manifest that most of notions
of differential and algebraic geometry have a super counterpart. In 1972, af-
ter Leites gave a talk on supermanifolds and supergroups at the seminar of
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Vinberg and Onishchik, the leaders of the seminar addressed Kac and Leites
with an assignment: Classify simple (finite dimensional) Lie superalgebras. It
immediately turned out that the above types of simple Lie algebras and their
properties become intermixed under superization.

• Finite dimensional superalgebras. They split into the following two types:
“symmetric” ones, subdivided into
SYCM, the class of algebras with Cartan matrix;
SYWCM, the class of algebras without Cartan matrix in the con-

ventional sense (only, perhaps, in the sense of Saveliev and Vershik, [SV])
but with a non-degenerate supersymmetric bilinear form — an analog of the
Killing form — that can be either even or odd;

“skew” or vectorial types: with more positive roots than it has negative
ones.

2.1.3.1. Remark. A posteriori we see that the matrix is symmetrizable;
since the Cartan matrix is symmetrizable, these algebras possess an invari-
ant non-degenerate even supersymmetric bilinear form (not necessarily related
with any representation.

• (Twisted) loop superalgebras. It is obvious that loop superalgebras with
values in simple Lie superalgebras are also simple (as graded algebras). Unlike
Lie algebras, some of the loop superalgebras have no Cartan matrix, some have
a non-symmetrizable Cartan matrix, and so on, so classification of (twisted)
loop superalgebras splits into several very different cases.

The very first examples showed that even if a finite dimensional Lie su-

peralgebra g possesses a Cartan matrix, the twisted loop superalgebra g
(k)
ϕ

(for notations and theory in non-super case, see [K3]) may possess no Cartan
matrix and vice versa.

An intrinsic characterization of loop superalgebras without appeal to Car-
tan matrix (deduced from [M]) is given in [GLS1] together with an intrinsic
characterization of stringy superalgebras: both types of algebras are Z-graded

g =
∞
⊕

i=−d
gi of infinite depth d =∞ but in the adjoint representation they act

differently:

for the loop-type algebras, every root vector corresponding to any
real root acts locally nilpotently in the adjoint representation;

for the stringy algebras, this is not so.

Recall that a root is said to be real, if only finitely many of its multiples are
roots (otherwise the root is said to be imaginary. Recall also that the action
of an operator X on a space V is said to be nilpotent if XN(v) = 0 for any
v ∈ V and some N ; the action is said to be locally nilpotent N depends on v.

Before we came to the above intrinsic definition, Leites conjectured that, as
for Lie algebras, simple twisted loop superalgebras correspond to outer auto-
morphisms of ϕ ∈ Aut g/ Int g, where Aut g is the group of all automorphisms g
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and Int g is the subgroup of the inner automorphisms. Serganova listed these
automorphisms and amended the conjecture: to get distinct algebras, one
should factorize Aut g modulo a group somewhat larger than Int g, namely,
the connected component of the unit, see [Se], [FLS]. An a priori classifica-
tion of Lie superalgebras of polynomial growth with symmetrizable Cartan
matrix is due to J. van de Leur [vdL]; his classification and Serganova’s re-
cently published classification of Lie superalgebras of polynomial growth with
non-symmetrizable Cartan matrix [HS] cited in [GLS1] support the Leites-
Serganova conjecture on the completeness of the list of simple loop-type su-
peralgebras with Cartan matrix given in [FLS].

• Stringy Lie superalgebras. For the conjectural list of simple ones, see
[GLS1]. Partly (with several extra conditions) this conjecture is proved in
[KvdL], [K4]. Observe that some of the stringy superalgebras possess Car-
tan matrix, though non-symmetrizable ones [GLS1], and some of them have
deformations whereas their vectorial namesakes are rigid.

We suggested the term stringy for the general class of algebras inside of
which some are conformal, some are simple, and so on.

Some of the simple stringy superalgebras ([GLS1]) are distinguished: they
admit a nontrivial central extensions. In [GLS1], there are also indicated ex-
ceptional stringy superalgebras and occasional isomorphisms unnoticed in pre-
vious papers and often ignored in later ones.

In this paper we consider the remaining type of simple Z-graded Lie su-
peralgebras of polynomial growth:

• Vectorial Lie superalgebras. The main examples to look at with the
mind’s eye are the Lie algebra L = der C[x] of polynomial vector fields with
grading and filtration given by setting deg xi = 1 for all i, and its (x)-adic
completion, the filtered Lie algebra L = der C[[x]] of formal vector fields.

É. Cartan came to the classification problem of simple vectorial algebras
from geometrical problems in which “primitive”, rather than simple, Lie alge-
bras naturally arise. Infinite dimensional primitive Lie algebras are isomorphic
to the algebras of derivations of simple ones, and since dim der g/g ≤ 1, to
classify infinite dimensional primitive algebras is practically the same as to
classify the simple vectorial ones. (The list of finite dimensional primitive al-
gebras is much longer than that of simple ones but still manageable: [O].)
Contrariwise, the classification problem of primitive Lie superalgebras is wild,
as shown in [ALSh].

2.1.4. Classification problems. Consider infinite dimensional complex fil-
tered Lie superalgebras G with decreasing filtration of the form

G = G−f ⊃ G−f+1 ⊃ · · · ⊃ G0 ⊃ G1 ⊃ . . . (2.2)

where depth f is finite and where

1) G0 is a maximal subalgebra (usually, of finite codimension);
2) G0 does not contain ideals of the whole G.
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The algebra G with such a subalgebra G0 is called a primitive Lie superalgebra.
We assume that these Lie superalgebras G are complete with respect to

a natural topology whose basis of neighborhoods of zero is formed by the
spaces of finite codimension, e.g., the Gi. (In the absence of odd indeterminates
this topology is a most natural one: we consider two vector fields k-close if their
coefficients coincide up to terms of degree ≤ k.) This topology is naturally
(see. §1) called, “briefly”, projective limit topology but even more unfortunate
term “linearly compact topology” is also used. No other topology will be
encountered, so all topological terms (complete, open, closed) refer to this
topology.

Observe that the very term “filtered algebra” implies that [Gi,Gj ] ⊂ Gi+j .
Set Gi = Gi/Gi+1. Conditions 1) and 2) manifestly imply that dimGi < ∞
for all i and the Z-graded Lie superalgebra G = ⊕

k≥−f
Gk associated with G

grows polynomially, i.e., dim ⊕
k≤n

Gk grows as a polynomial in n.

Weisfeiler endowed every such filtered Lie algebra G with another, refined,
filtration (here G = L as abstract algebras):

L = L−d ⊃ L−d+1 ⊃ · · · ⊃ L0 ⊃ L1 ⊃ . . . (2.3)

by setting L0 = G0 and letting L−1 to be a minimal L0-invariant subspace
strictly containing L0, different from L0, and L0-invariant, the other terms
being defined by the formula (for i ≥ 1):

L−i−1 = [L−1,L−i] + L−i and Li = {D ∈ Li−1 | [D,L−1] ⊂ Li−1}. (2.4)

The d in (2.3) is called the depth of L and of the associated graded Lie super-
algebra L.

An advantage of the Weisfeiler filtrations is that for the corresponding
regraded Lie superalgebra L the L0-action on L−1 is irreducible. These refined
filtrations are called, after [W], Weisfeiler filtrations and the term is applied
even to Lie superalgebras, where Weisfeiler’s construction is literally applied;
we will shortly write W-filtrations and call the gradings associated with W-
filtrations W-gradings.

Now, observe that condition 2) on filtrations considered is equivalent
to the following condition which is sometimes more convenient to use. Set
Gk = Gk/Gk+1. We have:

2′) For any non-zero x ∈ Gk, where k ≥ 0, there exists y ∈ G−1 such that
[x, y] 6= 0.

When the L0-module L−1 is faithful, as is always the case for the simple Lie
superalgebras L, such filtered Lie superalgebras L (and the associated with
them graded ones, L) can be realized by vector fields on the supermanifold
corresponding to the linear superspace (L/L0)

∗ with formal (resp. polynomial)
coefficients. So, being primarily interested in simple Lie superalgebras, we
assume that the L0-module L−1 is faithful.
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The following problems arise:
A′) Classify simple W-graded vectorial Lie superalgebras as ab-

stract ones, i.e., distinction in grading disregarded.
We immediately see that this problem is very unnatural: quite distinct

algebras become equivalent. Indeed, as early as in [ALSh], we observed that
vect(1|1), the Lie algebra of all vector fields on (1|1)-dimensional superspace,
is isomorphic as an abstract algebra to k(1|2), the Lie algebra of contact vector
fields on (1|2)-dimensional superspace (and also to m(1), another, “odd” type
of contact Lie superalgebra). A more natural formulation is, therefore, the
following one:

A) Classify simple W-graded vectorial Lie superalgebras.
In some applications it suffices to confine ourselves to graded algebras

([Le5]), but in applications (e.g., in the study of representations, complete al-
gebras are usually more important and more natural than the associated with
them graded ones. So the following problem might look like as a reasonable
goal:

B) Classify simple W-filtered complete vectorial Lie superalge-
bras.

Observe natural (“trivial”) examples of complete algebras: the algebras L̂
obtained from the list of examples L that answers to Problem A by taking
formal series, rather than polynomials, as coefficients. In addition to these
examples there might occur nontrivial filtered deforms (as Gerstenhaber calls
the result of a deformation), i.e., complete algebras L̃ such that the graded

algebras associated with L̂ and L̃ are isomorphic (to L). Examples of filtered
deforms will be given later.

On the road to solution of Problem B the following problem seems to be
a natural step:

B′) Classify simple W-filtered complete vectorial Lie superalge-
bras as abstract ones, i.e., distinction in filtrations disregarded.

Observe that whereas the difference between Problems A′ and B′ is as large
as that between Problems A and B, the difference between Problems B and
B′ is negligible. Actually, it is impossible to solve Problem B′ and not solve
Problem B. Indeed, various filtered deformations are not a priori isomorphic
as abstract algebras, so, in order to solve Problem B′, we have to know first
all the W-filtrations or the associated W-gradings and then describe filtered
deformations for every W-grading.

However, even Problem B is not the most natural one: there exist deforms
of algebras from class B which do not lie in class B: e.g., the result of the
factorization of the quantized Poisson algebra modulo center. So the true
problem one should solve is

C) Describe all the deformations (not only filtered ones) of the
simple W-graded vectorial Lie superalgebras.
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2.2. The linear Lie superalgebras

2.2.1. General linear Lie superalgebras.

2.2.1.1. The straightforward superization. The general linear Lie su-
peralgebra of all supermatrices of size Par is denoted by gl(Par), where
Par = (p1, . . . , p|Par |) is the ordered collection of parities of the rows iden-
tical to that of the columns; usually, for the standard (simplest) format,
gl(0̄, . . . , 0̄, 1̄, . . . , 1̄) is abbreviated to gl(dim V0̄| dim V1̄). Any nonzero super-
matrix from gl(Par) can be uniquely expressed as the sum of its even and odd
parts; in the standard format this is the following block expression:

(
A

C

B

D

)
=

(
A

0

0

D

)
+

(
0

C

B

0

)
, p

((
A

0

0

D

))
= 0̄, p

((
0

C

B

0

))
= 1̄.

The supertrace is the map

gl(Par) −→ C, (Aij) 7→
∑

(−1)piAii, where Par = (p1, . . . , p|Par |).

Since (this is a characteristic property of the (super)traces — to vanish on
the derived algebra)

str[x, y] = 0, (2.5)

the subsuperspace of supertraceless matrices constitutes the special linear Lie
subsuperalgebra sl(Par).

2.2.1.2. The queer superization. There are, however, at least two super
versions of gl(n), not one. The other version — q(n) — is called the queer Lie
superalgebra and is defined as the one that preserves the complex structure
given by an odd operator J , i.e., q(n) is the centralizer C(J) of J :

q(n) = C(J) = {X ∈ gl(n|n) | [X, J ] = 0}, where J2 = − id .

It is clear that by a change of basis we can reduce J to the form

J2n =

(
0 1n
−1n 0

)
in the standard format and then q(n) takes the form

q(n) =

{(
A B
B A

) ∣∣∣ A,B ∈ gl(n)

}
. (2.6)

The nonstandard formats q(Par) of q(n) for |Par | = n are of the form (2.6)
with A,B ∈ gl(Par).

On q(n), the queertrace is defined:

qtr :

(
A

B

B

A

)
7→ trB. (2.7)

Denote by sq(n) the Lie superalgebra of queertraceless matrices.
Observe that the standard representations of q(V ) and sq(V ) in V , though

irreducible in super sense (no invariant subsuperspaces), are not irreducible in
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the ungraded sense: take homogeneous (with respect to parity) and linearly
independent vectors v1, . . . , vn from V ; then Span(v1+J(v1), . . . , vn+J(vn))
is an invariant subspace of V which is not a subsuperspace. In particular,
the irreducible representation of the least dimension of q(Par) is of dimension
|Par | = n.

A representation is said to be irreducible of general type or just of G-type
if there is no invariant subspaces, an irreducible representation of Q-type has
no invariant subsuperspaces but has an invariant subspace.

Both Lie superalgebras q(n) and sq(n) contain a center consisting of scalar
matrices; factorizing them by the center we get algebras pq(n) and psq(n). The
Lie superalgebra psq(n) is simple.

2.2.2. Lie superalgebras that preserve bilinear forms: two types. To
the linear map F : V −→ W of superspaces there corresponds the dual map
F ∗ : W ∗ −→ V ∗ between the dual superspaces. In a basis consisting of the
vectors vi of format Par, the formula

F (vj) =
∑

i

viAij

assigns to F the supermatrix A. In the dual bases, the supertransposed super-
matrix Ast corresponds to F ∗:

(Ast)ij = (−1)(pi+pj)(pi+p(A))Aji. (2.8)

The supermatrices X ∈ gl(Par) such that

XstB + (−1)p(X)p(B)BX = 0 for a fixed B ∈ gl(Par) (2.9)

constitute the Lie superalgebra aut(B) that preserves the bilinear form Bf on
V whose matrix B is given by the formula

Bij = (−1)p(Bf )p(vi)Bf (vi, vj)

for the basis vectors vi.
The supersymmetry of the homogeneous bilinear form Bf means that its

matrix B =

(
R

T

S

U

)
satisfies the condition

Bu = B, where Bu =

(
Rt

(−1)p(B)St

(−1)p(B)T t

−U t

)
.

Similarly, anti-supersymmetry of B means that Bu = −B. Thus, we see that
the upsetting of bilinear forms u : Bil(V,W ) −→ Bil(W,V ), which for the
spaces and the case where V = W is expressed on matrices in terms of the
transposition, is a new operation.

Most popular canonical forms of the even non-degenerate supersymmetric
form are the ones whose supermatrices in the standard format are the following
canonical ones, Bev or B′

ev:
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B′
ev(m|2n) =

(
1m
0

0

J2n

)
, where J2n =

(
0

−1n
1n
0

)
,

or

Bev(2k|2n) =
(
Π2k

0

0

J2n

)
, where Π2k =

(
0

1k

1k
0

)
,

Bev(2k + 1|2n) =
(
Π2k+1

0

0

J2n

)
, where Π2k+1 =




0 0 1k
0 1 0
1k 0 0



.

The ortho-symplectic Lie superalgebra aut(Bev(m|2n)) is usually denotated
osp(m|2n); sometimes we will write more precisely, ospsy(m|2n). Observe that
the passage from V to Π(V ) sends the supersymmetric forms to superanti-
symmetric ones, preserved by the “symplectico-orthogonal” Lie superalgebra,
spo(2n|m) or, more prudently, ospa(m|2n), which is isomorphic to ospsy(m|2n)
but has a different matrix realization.

In the standard format the matrix realizations of these algebras are:

osp(m|2n) =








E Y Xt

X A B

−Y t C −At






 ; ospa(m|2n) =







A B X

C −At Y t

Y −Xt E






 ,

where

(
A B
C −At

)
∈ sp(2n), E ∈ o(m).

A given non-degenerate supersymmetric odd bilinear form Bodd(n|n) can
be reduced to a canonical form whose matrix in the standard format is J2n.
A canonical form of the superanti-symmetric odd non-degenerate form in the
standard format is Π2n. The usual notation for aut(Bodd(Par)) is pe(Par).

The passage from V to Π(V ) gives an isomorphism pesy(Par) ∼= pea(Par).
These isomorphic Lie superalgebras are called, as A. Weil suggested, periplec-
tic. The matrix realizations in the standard format of these superalgebras
is:

pesy (n) =

{(
A B

C −At

)
, where B = −Bt, C = Ct

}
;

pea(n) =

{(
A B

C −At

)
, where B = Bt, C = −Ct

}
.

Observe that, despite the isomorphisms ospsy(m|2n) ' ospa(m|2n) and
pesy(n) ' pea(n), the difference between the different incarnations is some-
times crucial, e.g., their Cartan prolongs are totally different.

The special periplectic superalgebra is

spe(n) = {X ∈ pe(n) | strX = 0}.
Of particular interest to us will be also the Lie superalgebras

spe(n)a,b = spe(n)⊂+ C(az + bd), where z = 12n, d = diag(1n,−1n) (2.10)

and the nontrivial central extension as of spe(4) that will be described after
some preparation.
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2.2.3. Projectivization. If s is a Lie algebra of scalar matrices, and
g ⊂ gl(n|n) is a Lie subsuperalgebra containing s, then the projective Lie
superalgebra of type g is pg = g/s.

Projectivization sometimes leads to new Lie superalgebras, for example:
pq(n), psq(n); pgl(n|n), psl(n|n); whereas pgl(p|q) ∼= sl(p|q) if p 6= q.

2.2.4. A. Sergeev’s central extension. In 1970’s, A. Sergeev proved that
there is just one nontrivial central extension of spe(n) for n > 2. It exists only
for n = 4 and we denote it by as. Let us represent an arbitrary element A ∈ as

as a pair A = x+ d · z, where x ∈ spe(4), d ∈ C and z is the central element.
The bracket in as is
[(
a b

c −at
)
+ d · z,

(
a′ b′

c′ −a′t
)
+ d′ · z

]
=

[(
a b

c −at
)
,

(
a′ b′

c′ −a′t
)]

+ tr cc̃′ · z,
(2.11)

where ˜ is extended via linearity from matrices cij = Eij − Eji on which
c̃ij = ckl for any even permutation (1234) 7→ (ijkl).

The Lie superalgebra as can also be described with the help of the spinor
representation. For this, we need several vectorial superalgebras. Consider
po(0|6), the Lie superalgebra whose superspace is the Grassmann superalgebra
Λ(ξ, η) generated by ξ1, ξ2, ξ3, η1, η2, η3 and the bracket is the Poisson bracket
(2.36).

Recall that h(0|6) = Span(Hf | f ∈ Λ(ξ, η)). Now, observe that spe(4)
can be embedded into h(0|6). Indeed, setting deg ξi = deg ηi = 1 for all i we
introduce a Z-grading on Λ(ξ, η) which, in turn, induces a Z-grading on h(0|6)
of the form h(0|6) = ⊕

i≥−1
h(0|6)i. Since sl(4) ∼= o(6), we can identify spe(4)0

with h(0|6)0.
It is not difficult to see that the elements of degree −1 in the standard

gradings of spe(4) and h(0|6) constitute isomorphic sl(4) ∼= o(6)-modules. It is
subject to a direct verification that it is possible to embed spe(4)1 into h(0|6)1.

Sergeev’s extension as is the result of the restriction to spe(4) ⊂ h(0|6) of
the cocycle that turns h(0|6) into po(0|6). The quantization deforms po(0|6)
into gl(Λ(ξ)); the through maps

Tλ : as −→ po(0|6) −→ gl(Λ(ξ))

are representations of as in the 4|4-dimensional modules spinλ isomorphic to
each other for all λ 6= 0. The explicit form of Tλ is as follows:

Tλ :

(
a b

c −at
)
+ d · z 7→

(
a b− λc̃
c −at

)
+ λd · 14|4, (2.12)

where 14|4 is the unit matrix and c̃ is defined in eq. (2.11). Clearly, Tλ is an
irreducible representation for any λ.
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2.3. Vectorial Lie superalgebras

2.3.1. The standard realization. The elements of the Lie algebra
L = der C[[u]] are considered as vector fields. The Lie algebra L has only
one maximal subalgebra L0 of finite codimension (consisting of the fields that
vanish at the origin). The subalgebra L0 determines a filtration of L: set

L−1 = L and Li = {D ∈ Li−1 | [D,L] ⊂ Li−1} for i ≥ 1. (2.13)

The associated graded Lie algebra L = ⊕
i≥−1

Li, where Li = Li/Li+1, consists

of the vector fields with polynomial coefficients.
Superization. For a simple Lie superalgebra L (for example, take

L = derC[u, ξ]), suppose L0 ⊂ L is a maximal subalgebra of finite codi-
mension. Let L−1 be a minimal subspace of L containing L0, different from
L0 and L0-invariant. A Weisfeiler filtration of L is determined by setting for
i ≥ 1:

L−i−1 = [L−1,L−i] + L−i and Li = {D ∈ Li−1 | [D,L−1] ⊂ Li−1}. (2.14)

Since the codimension of L0 is finite, the filtration takes the form

L = L−d ⊃ · · · ⊃ L0 ⊃ . . . (2.15)

for some d. This d is called the depth of L and of the associated graded Lie
superalgebra L.

Considering the subspaces (2.13) as the basis of a topology, we can com-
plete the graded or filtered Lie superalgebras L or L; the elements of the com-
pletion are the vector fields with formal power series as coefficients. Though
the structure of the graded algebras is easier to describe, in applications the
completed Lie superalgebras are usually needed.

2.3.1.1. Remarks. 1) Not all filtered or graded Lie superalgebras of finite
depth are vectorial, i.e., realizable with vector fields on a supermanifold of
the same dimension as that of L/L0; only those with faithful L0-action on
L− = ⊕

i<0
Li are.

2) Unlike Lie algebras, simple vectorial Lie superalgebras possess several
non-isomorphic maximal subalgebras of finite codimension, see sec. 1.3.

1) General algebras. Let x = (u1, . . . , un, θ1, . . . , θm), where the ui are
even indeterminates and the θj are odd ones. Set vect(n|m) = der C[x]; it is
called the general vectorial Lie superalgebra.

On vectorial Lie superalgebras, there are two analogs of trace.

More precisely, there are traces, and there are their Cartan prolongations,
called divergencies. On any Lie (super)algebra g over a field K, a trace is any
map tr : g −→ K such that
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tr([g, g]) = 0. (2.16)

The straightforward analogs of the trace are, therefore, the linear function-
als that vanish on g′, the first derived of g; the number of linearly independent
traces is equal to codim g′, these traces (or supertraces if g is a Lie superal-
gebra) can be even or odd. Obviously, each trace is defined up to a non-zero
scalar factor selected ad lib.

Let now g be a Z-graded vectorial Lie superalgebra with g− := ⊕
i<0

gi gen-

erated by g−1, and let tr be a (super)trace on g0. The divergence div : g −→ F

is an adg−1-invariant prolongation of the trace satisfying the following condi-
tions:

div : g −→ F preserves the degree, i.e., deg div = 0;
Xi(divD) = div[Xi, D] for all elements Xi that span g−1;
div |g0 = tr;
div |g− = 0.

By construction, the Lie (super)algebra sg := Ker div |g of divergence-free
elements of g is the complete prolong of (g−,Ker tr |g0). This fact explains
why we say that div is the prolongation of the trace.

Strictly speaking, divergences are not traces (they do not satisfy (2.16))
but for vectorial Lie (super)algebras they embody the idea of the trace (un-
derstood as property (2.16)) better than the traces. We denote the special
(divergence free) subalgebra of a vectorial algebra g by sg, e.g., svect(n|m). If
there are several traces on g0, there are several types of special subalgebras
of g and we need a different name for each.

2) Special algebras. The divergences (depending on a fixed volume ele-
ment) belong to the other type of traces. Accordingly, the special (divergence
free) subalgebra of a vectorial algebra g is denoted by sg, e.g., svect(n|m); the
superscript ′ denotes the derived algebra.

The divergence of the field D =
∑
i

fi
∂

∂ui
+
∑
j

gj
∂

∂θj
corresponding to

the volume element with constant coefficient is the function (in our case:
a polynomial, or a series)

divD =
∑

i

∂fi
∂ui

+
∑

j

(−1)p(gj) ∂gi
∂θj

. (2.17)

• The Lie superalgebra svect(n|m) = {D ∈ vect(n|m) | divD = 0} is called
the special (or divergence-free) vectorial superalgebra.

It is clear that it is also possible to describe svect(n|m) as

{D ∈ vect(n|m) | LD volx = 0},

where volx is the volume form with constant coefficients in coordinates x and
LD the Lie derivative with respect to D.
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• The Lie superalgebra svect′(1|m) = [svect(1|m), svect(1|m)] is said to be
the traceless special vectorial superalgebra.
• The Lie superalgebra

svectλ(0|m) = {D ∈ vect(0|m) | div(1 + λθ1 · · · · · θm)D = 0},

where p(λ) ≡ m (mod 2), — the deform of svect(0|m) — is called the deformed
special (or divergence-free) vectorial superalgebra. Clearly,

svectλ(0|m) ∼= svectµ(0|m) for λµ 6= 0.

So we briefly denote these deforms by s̃vect(0|m).
Observe that for m odd, the parameter of deformation, λ, is odd.

2.3.1.2. Remark. As is customary in differential geometry, we sometimes
write vect(x) or vect(V ) if V = Span(x) and use similar notations for the
subalgebras of vect introduced below. Some algebraists sometimes abbreviate
vect(n) and svect(n) to W (n) (in honor of Witt) and S(n), respectively.

3) The algebras that preserve Pfaff equations and differential 1-
and 2-forms.
• Set u = (t, p1, . . . , pn, q1, . . . , qn); let

α̃1 = dt+
∑

1≤i≤n

(pidqi − qidpi) +
∑

1≤j≤m

θjdθj and ω̃0 = dα̃1 . (2.18)

The form α̃1 is called contact, the form ω̃0 is called symplectic. Sometimes it
is more convenient to redenote the θ’s and set Θ = (ξ, η), or Θ = (ξ, η, θ),
where

ξj =
1√
2
(θj − iθk+j); ηj =

1√
2
(θj + iθk+j) for j ≤ k =

[
m

2

]
;

here i2 = −1, θ = θ2k+1 for m = 2k + 1
(2.19)

and in place of ω̃0 or α̃1 take α1 and ω0 = dα1, respectively, where

α1 = dt+
∑

1≤i≤n

(pidqi−qidpi)+
∑

1≤j≤k

(ξjdηj+ηjdξj)

{
if m = 2k

+θdθ if m = 2k + 1.

(2.20)
The Lie superalgebra that preserves the Pfaff equation

α1(X) = 0 for X ∈ vect(2n+ 1|m),

i.e., the superalgebra

k(2n+1|m) = {D ∈ vect(2n+1|m) | LDα1 = fDα1 for some fD ∈ C[t, p, q, θ]},
(2.21)

is called the contact superalgebra. The Lie superalgebra
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po(2n|m) = {D ∈ k(2n+ 1|m) | LDα1 = 0} (2.22)

is called the Poisson superalgebra. (An interpretation of the Poisson super-
algebra: it is the Lie superalgebra that preserves the connection with form α
in the line bundle over a symplectic supermanifold with the symplectic form
dα.)

The above “symmetric” expression of α1 is popular among algebraists; due
to its symmetry it is convenient in computations. In mechanics and differen-
tial geometry, however, the following expression of the form α1 (without odd
coordinates, of course) is natural (the passage from one form to the other one
can be performed by an invertible change of indeterminates):

α1(2) = dt−
∑

1≤i≤n

pidqi +
∑

1≤j≤k

ξjdηj

{
if m = 2k

+θdθ if m = 2k + 1.
(2.23)

The form α1(2) is the only reasonable shape of the contact form over the fields
of characteristic 2 whereas the symmetric expression of the contact forms are
unnatural: dα1 = 2ω = 0.
• Similarly, set u = q = (q1, . . . , qn), let θ = (ξ1, . . . , ξn; τ) be odd. Set

α0 = dτ +
∑
i

(ξidqi + qidξi), ω1 = dα0 (2.24)

and call these forms, as A. Weil advised, the pericontact and periplectic, re-
spectively. The periplectic form is odd.

In characteristic 2, we should take one of the following forms, where
0 ≤ r ≤ n (the passage from one form to the other one can be performed
by an invertible change of indeterminates):

α0(2,r) = dτ +
∑

1≤i≤r

ξidqi +
∑

r+1≤i≤n

qidξi. (2.25)

The Lie superalgebra that preserves the Pfaff equation

α0(X) = 0 for X ∈ vect(n|n+ 1),

i.e., the superalgebra

m(n) = {D ∈ vect(n|n+1) | LDα0 = fD ·α0 for some fD ∈ C[q, ξ, τ ]} (2.26)

is called the pericontact superalgebra. 3)

The Lie superalgebra

b(n) = {D ∈ m(n) | LDα0 = 0} (2.27)

3 The unfortunate term m “odd contact superalgebra” (still used sometimes) is
misleading since the even part of m is nonzero.
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is called the Buttin superalgebra. (A geometric interpretation of the Buttin su-
peralgebra: it is the Lie superalgebra that preserves the connection with form
α0 in the line bundle of superrank ε = (0|1) over a periplectic supermanifold,
i.e., over a supermanifold with the periplectic form dα0.)

The Lie superalgebras

sm(n) = {D ∈ m(n) | div D = 0},
sb(n) = {D ∈ b(n) | div D = 0} (2.28)

are called the divergence-free (or special) pericontact and special Buttin super-
algebras, respectively.

2.3.1.3. Remark. A relation with finite dimensional geometry is as follows.
Clearly, kerα1 = ker α̃1. The restriction of ω0 to kerα1 is the ortho-symplectic
form Bev(m|2n); the restriction of ω̃0 to ker α̃1 is B′

ev(m|2n). Similarly, the
restriction of ω1 to kerα0 is Bodd(n|n).
2.3.1.4. Generating functions. A laconic way to describe k, m and their
subalgebras is via generating functions. There are several standard realizations
of the Lie algebra of contact vector fields, all are usually given in an “unnat-
ural” basis of partial derivatives which suffices, however, for calculations. We
will also give a representation of the contact fields in “natural” bases.
• Odd form α1. For any f ∈ C[t, p, q, θ], set :

Kf = (2− E)(f)
∂

∂t
−Hf +

∂f

∂t
E, (2.29)

where E =
∑
i

yi
∂

∂yi
(here the yi are all the coordinates except t) is the Euler

operator, and Hf is the hamiltonian vector field with Hamiltonian f that
preserves dα̃1:

Hf =
∑

i≤n

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

)
− (−1)p(f)


∑

j≤m

∂f

∂θj

∂

∂θj


 . (2.30)

The choice of the form α1 instead of α̃1 only affects the shape of Hf that we
give for m = 2k + 1:

Hf =
∑

i≤n

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

)
− (−1)p(f)

∑

j≤k

(
∂f

∂ξj

∂

∂ηj
+

∂f

∂ηj

∂

∂ξj
+
∂f

∂θ

∂

∂θ

)
.

(2.31)
The expression of the contact field corresponding to the form α1 or α̃1 is as
follows:

Kf = (2− E)(f)
∂

∂t
−Hf +

∂f

∂t
E, (2.32)

where E =
∑
i

pi
∂

∂pi
+
∑
j

ξj
∂

∂ξj
, and Hf is the hamiltonian vector field with

Hamiltonian f that preserves dα̃1, see (2.30).
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• Even form α0. For any f ∈ C[q, ξ, τ ], define the (peri)contact vector field
to be

Mf = (2 − E)(f)
∂

∂τ
− Lef − (−1)p(f) ∂f

∂τ
E, (2.33)

where E =
∑
i

yi
∂

∂yi
(here the yi are all the coordinates except τ), and where

the periplectic vector field is

Lef =
∑

i≤n

(
∂f

∂qi

∂

∂ξi
+ (−1)p(f) ∂f

∂ξi

∂

∂qi

)
. (2.34)

Since

LKf (α1) = 2
∂f

∂t
α1 = K1(f)α1,

LMf
(α0) = −(−1)p(f)2∂f∂τ α0 = −(−1)p(f)M1(f)α0,

(2.35)

it follows that Kf ∈ k(2n+ 1|m) and Mf ∈ m(n). Observe that

p(Lef ) = p(Mf ) = p(f) + 1̄.

• To the (super)commutators [Kf ,Kg] or [Mf ,Mg] there correspond con-
tact brackets of the generating functions:

[Kf ,Kg] = K{f, g}k.b. ;

[Mf ,Mg] =M{f, g}m.b. .

The explicit expressions for the contact brackets are as follows. Let us first
define the brackets on functions that do not depend on t (resp. τ).

The Poisson bracket {·, ·}P.b. (in the realization with the form ω̃0) is given
by the equation

{f, g}P.b. =
∑

i≤n

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
− (−1)p(f)

∑

j≤m

∂f

∂θj

∂g

∂θj

for any f, g ∈ C[p, q, θ]

(2.36)

and in the realization with the form ω0 for m = 2k + 1 it is given by the
formula

{f, g}P.b. =
∑

i≤n

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
−

(−1)p(f)
(∑

j≤m

(
∂f

∂ξj

∂g

∂ηj
+

∂f

∂ηj

∂g

∂ξj

)
+
∂f

∂θ

∂g

∂θ

)
for f, g ∈ C[p, q, ξ, η, θ].

(2.37)

The Buttin bracket {·, ·}B.b. is given by the formula

{f, g}B.b. =
∑

i≤n

(
∂f

∂qi

∂g

∂ξi
+ (−1)p(f) ∂f

∂ξi

∂g

∂qi

)
for any f, g ∈ C[q, ξ]. (2.38)
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2.3.1.5. Remark. What Leites christened in [Le2] the “Buttin bracket” was dis-
covered in pre-super era by Schouten (in the particular case of the supermanifold
ringed by the sheaf of sections of the Grassmann algebra of the tangent bundle
and with the Lie superalgebra structure on the same space of sections but with the
opposite parity); Buttin was the first to prove that this bracket establishes a Lie
superalgebra structure. The interpretations of the Buttin superalgebra similar to
that of the Poisson algebra and of the elements of le as analogs of Hamiltonian
vector fields was given in [Le2]. The Buttin bracket and “odd mechanics” intro-
duced in [Le2] was rediscovered by Batalin with Vilkovisky (and, even earlier, by
Zinn-Justin, but his papers went mainly unnoticed); it gained a great deal of cur-
rency under the name antibracket. The Schouten bracket was originally defined on
the superspace of polyvector fields on a manifold, i.e., on the superspace of sec-
tions of the exterior algebra (over the algebra F of functions) of the tangent bundle,
Γ (Λ

.
(T (M))) ∼= Λ

.
F(V ect(M)). The explicit expression of the Schouten bracket (in

which the hatted slot should be ignored, as usual) is

[X1 ∧ · · · ∧ · · · ∧Xk, Y1 ∧ · · · ∧ Yl] =
∑

i,j(−1)i+j [Xi, Yj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xk ∧ Y1 ∧ · · · ∧ Ŷj ∧ · · · ∧ Yl.
(2.39)

With the help of the Sign Rule (sect. 1.1.2) we easily superize eq. (2.39), i.e., replace
M by a supermanifold M. Let x and ξ be the even and odd coordinates on M. By
setting

θi = Π

(
∂

∂xi

)
= x̌i, qj = Π

(
∂

∂ξj

)
= ξ̌j (2.40)

we get an identification of the Schouten bracket of polyvector fields on M with the
Buttin bracket of functions on the supermanifold M̌ with coordinates x, ξ and x̌, ξ̌,
and the transformation rule of the checked variables induced by that of unchecked
ones via (2.40).

In terms of the Poisson and Buttin brackets, respectively, the contact
brackets are

{f, g}k.b. = (2− E)(f)
∂g

∂t
− ∂f

∂t
(2− E)(g)− {f, g}P.b. (2.41)

and

{f, g}m.b. = (2− E)(f)
∂g

∂τ
+ (−1)p(f) ∂f

∂τ
(2− E)(g)− {f, g}B.b.. (2.42)

The Lie superalgebras of Hamiltonian vector fields (or Hamiltonian super-
algebra) and its special subalgebra (defined only if n = 0) are

h(2n|m) = {D ∈ vect(2n|m) | LDω0 = 0},
h′(m) = {Hf ∈ h(0|m) |

∫
f volθ = 0}.

(2.43)

The “odd” analogues of the Lie superalgebra of Hamiltonian fields are the Lie
superalgebra of vector fields Lef introduced in [Le2] and its special subalgebra:
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le(n) = {D ∈ vect(n|n) | LDω1 = 0},
sle(n) = {D ∈ le(n) | divD = 0}.

(2.44)

It is not difficult to prove the following isomorphisms (as superspaces):

k(2n+ 1|m) ∼= Span(Kf | f ∈ C[t, p, q, ξ]);

le(n) ∼= Span(Lef | f ∈ C[q, ξ]);

m(n) ∼= Span(Mf | f ∈ C[τ, q, ξ]);

h(2n|m) ∼= Span(Hf | f ∈ C[p, q, ξ]).

(2.45)

We have

po′(m) = {Kf ∈ po(0|m) |
∫
fvolξ = 0};

h′(m) = po′(m)/C ·K1.

2.3.1.6. Divergence-free subalgebras. Since, as is easy to calculate,

divKf = (2n+ 2−m)K1(f), (2.46)

it follows that the divergence-free subalgebra of the contact Lie superalgebra
either coincides with it (for m = 2n+ 2) or is the Poisson superalgebra. For
the pericontact series, the situation is more interesting: the divergence free
subalgebra is simple and new (as compared with the above list).

Since

divMf = (−1)p(f)2


(1 − E)

∂f

∂τ
−
∑

i≤n

∂2f

∂qi∂ξi


 , (2.47)

it follows that the divergence-free subalgebra of the pericontact superalgebra
is

sm(n) = Span


Mf ∈ m(n) | (1− E)

∂f

∂τ
=
∑

i≤n

∂2f

∂qi∂ξi


 . (2.48)

In particular,

divLef = (−1)p(f)2
∑

i≤n

∂2f

∂qi∂ξi
. (2.49)

The odd analog of the Laplacian, namely, the operator

∆ =
∑

i≤n

∂2

∂qi∂ξi
(2.50)

on a periplectic supermanifold appeared in physics under the name of BRST
operator, cf. [GPS], or Batalin-Vilkovysky operator. Observe that ∆ is just
the Fourier transform (with respect to the “ghost indeterminates” x̌ (the odd
ones, if considered on manifolds) of the exterior differential d.
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The divergence-free vector fields from sle(n) are generated by harmonic
functions, i.e., such that ∆(f) = 0.

Lie superalgebras sle(n), sb(n) and svect(1|n) have traceless ideals sle′(n),
sb′(n) and svect′(n) of codimension 1 defined from the exact sequences

0 −→ sle′(n) −→ sle(n) −→ C · Leξ1...ξn −→ 0,

0 −→ sb′(n) −→ sb(n) −→ C ·Mξ1...ξn −→ 0,

0 −→ svect′(n) −→ svect(1|n) −→ C · ξ1 . . . ξn ∂∂t −→ 0.

(2.51)

2.3.2. The Cartan prolongs. We will repeatedly use the Cartan prolon-
gation. So let us first recall its definition and then that of its generalization.

Let g be a Lie algebra, V a g-module, Si the operator of the ith symmetric
power. Set g−1 = V and g0 = g.

Recall that, for any (finite dimensional) vector space V , we have

Hom(V,Hom(V, . . . ,Hom(V, V ) . . .)) ' Li(V, V, . . . , V ;V ),

where Li is the space of i-linear maps and we have (i+ 1)-many V ’s on both
sides. Now, we recursively define, for any i > 0:

gi = {X ∈ Hom(g−1, gi−1) | X(v1)(v2, v3, ..., vi+1) = X(v2)(v1, v3, ..., vi+1)

where v1, . . . , vi+1 ∈ g−1}.
(2.52)

The space gi is said to be the ith Cartan prolong (the result of the Cartan
prolongation) of the pair (g−1, g0).

Equivalently, let

i : Sk+1(g−1)
∗ ⊗ g−1 −→ Sk(g−1)

∗ ⊗ g∗−1 ⊗ g−1 (2.53)

and
j : Sk(g−1)

∗ ⊗ g0 −→ Sk(g−1)
∗ ⊗ g∗−1 ⊗ g−1 (2.54)

be the natural maps. Then gk = i(Sk+1(g−1)
∗ ⊗ g−1) ∩ j(Sk(g−1)

∗ ⊗ g0).
The Cartan prolong of the pair (V, g) is (g−1, g0)∗ = ⊕

k≥−1
gk.

(In what follows . in superscript denotes, as is now customary, the collection of
all degrees, while ∗ is reserved for dualization; in the subscripts we retain the old-
fashioned ∗ instead of . to avoid too close a contact with the punctuation marks.)

Suppose that the g0-module g−1 is faithful. Then, clearly,

(g−1, g0)∗ ⊂ vect(n) = der C[x1, ..., xn], where n = dim g−1 and

gi = {D ∈ vect(n) | degD = i, [D,X ] ∈ gi−1 for any X ∈ g−1}. (2.55)

It is subject to an easy verification that the Lie algebra structure on vect(n)
induces a Lie algebra structure on (g−1, g0)∗; actually, (g−1, g0)∗ possesses
a Lie algebra structure even if the g0-module g−1 is not faithful.
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Of the four simple vectorial Lie algebras, three are Cartan prolongs:

vect(n) = (id, gl(n))∗,

svect(n) = (id, sl(n))∗,

h(2n) = (id, sp(n))∗.

(2.56)

The fourth one — k(2n+1) — is the result of a trifle more general construction
described as follows.

2.3.2.1. A generalization of the Cartan prolong: The Tanaka–
Shchepochkina prolong. Let g− = ⊕

−d≤i≤−1
gi be a nilpotent Z-graded Lie

algebra and g0 ⊂ der0g a Lie subalgebra of the Z-grading-preserving deriva-
tions. Let

i : Sk+1(g−)
∗ ⊗ g− −→ Sk(g−)

∗ ⊗ g∗− ⊗ g− (2.57)

and
j : Sk(g−)

∗ ⊗ g0 −→ Sk(g−)
∗ ⊗ g∗− ⊗ g− (2.58)

be the natural maps similar to (2.53) and (2.54), respectively. For k > 0,
define the kth prolong of the pair (g−, g0) to be:

gk = (j(S
.
(g−)

∗ ⊗ g0) ∩ i(S.(g−)∗ ⊗ g−))k , (2.59)

where the subscript k in the right hand side singles out the component of
degree k.

Set (g−, g0)∗ = ⊕
i≥−d

gi; then, as is easy to verify, (g−, g0)∗ is a Lie algebra.

What is the Lie algebra of contact vector fields in these terms? Denote by
hei(2n) the Heisenberg Lie algebra: its space is W ⊕C · z, where W is a 2n-di-
mensional space endowed with a non-degenerate anti-symmetric bilinear form
B and the bracket in hei(2n) is given by the following relations:

z is in the center and [v, w] = B(v, w) · z for any v, w ∈ W . (2.60)

Clearly, k(2n+ 1) ∼= (hei(2n), csp(2n))∗.

2.3.2.2. Lie superalgebras of vector fields as Cartan prolongs. The
superization of the constructions of Cartan prolongations are straightforward:
via Sign Rule (1.1.2). We thus get infinite dimensional Lie superalgebras

vect(m|n) = (id, gl(m|n))∗;
svect(m|n) = (id, sl(m|n))∗;
h(2m|n) = (id, ospa(m|2n))∗;
le(n) = (id, pea(n))∗;

sle(n) = (id, spea(n))∗.

(2.61)
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2.3.2.3. Remark. Observe that the Cartan prolongs (id, ospsy(m|2n))∗ and
(id, pesy(n))∗ are finite dimensional.

Observe that there are two superizations of the contact series: k and m.
• Define the Lie superalgebra hei(2n|m) on the direct sum of a (2n,m)-di-

mensional superspace W endowed with a non-degenerate anti-symmetric bi-
linear form B and a (1, 0)-dimensional space spanned by z by (2.60).

Clearly, we have

k(2n+ 1|m) = (hei(2n|m), cospa(m|2n))∗ (2.62)

and, given hei(2n|m) and a subalgebra g of cospa(m|2n), we call (hei(2n|m), g)∗
the k-prolong of (W, g), where W is the standard ospa(m|2n)-module.

2.3.2.3a. The Fock space. Let hei(2m|2n) = Span(p, q, ξ, η, z), with the
odd elements ξ = (ξ1, . . . , ξn) and η = (η1, . . . , ηn), and the even elements
p = (p1, . . . , pm), q = (q1, . . . , qm) and z, and where the brackets are

[pi, qj ] = δijz, [ξi, ηj ] = δijz, [z, hei(2m|2n)] = 0. (2.63)

In what follows we will need the Lie superalgebra hei(2m|2n) (for the cases
wheremn = 0) and its only (up to the change of parity) non-trivial irreducible
representation, called the Fock space, which is K[q, ξ] on which the elements
qi and ξj act as operators of left multiplication by qi and ξj , respectively,
whereas pi and ηj act as h∂qi and h∂ξj , where h ∈ K \ {0} can be fixed to be
equal to 1 by a change of the basis.
• The “odd” analog of k is associated with the following “odd” analog

of hei(2n|m). Denote by ab(n) the antibracket Lie superalgebra: its space is
W ⊕ C · z, where W is an n|n-dimensional superspace endowed with a non-
degenerate anti-symmetric odd bilinear form B; the bracket in ab(n) is given
by the following relations:

z is odd and lies in the center; [v, w] = B(v, w) · z for any v, w ∈ W . (2.64)

Clearly,
m(n) = (ab(n), cpea(n))∗ (2.65)

and, given ab(n) and a subalgebra g of cpea(n), we call (ab(n), g)∗ the m-pro-
long of (W, g), where W is the standard pea(n)-module.

Generally, given a non-degenerate form B on a superspace W and a Lie
subsuperalgebra g ⊂ aut(B), we refer to the above generalized prolongations
as to mk-prolongation of the pair (W, g).

2.3.2.4. Partial Cartan prolongs: Prolongations of a positive part.
Let h1 ∈ g1 be a g0-submodule such that [g−1, h1] = g0. If such h1 exists
(usually, [g−1, h1] ⊂ g0), define the 2nd prolongation of ( ⊕

i≤0
gi, h1) to be

h2 = {D ∈ g2 | [D, g−1] ∈ h1}. (2.66)

The terms hi, where i > 2, are similarly defined. Set hi = gi for i < 0 and
h∗ = ⊕hi and call this Lie superalgebra the partial Cartan prolong.



46 Ch. 2. Simple Lie superalgebras

2.3.2.5. Examples. The Lie superalgebra vect(1|n;n) is a subalgebra of
k(1|2n;n). The former is obtained as the Cartan prolong of the same non-
positive part as k(1|2n;n) and a submodule of k(1|2n;n)1. The simple excep-
tional superalgebra kas is another example.

2.3.2.6. Remark. In non-super setting, the generalized Cartan prolonga-
tion was first introduced by Tanaka [T], see a clarifying review [Y]. Different
from ours emphasis of these papers delayed our recognition of similarity of
constructions. The partial prolong was first discovered in [ALSh].

2.3.2.7. The exceptional Lie superalgebras as Cartan prolongs. The
five families of exceptional Lie superalgebras are given below in their minimal
realizations as Cartan prolongs (g−1, g0)∗ or generalized (see sec. 2.5) Cartan
prolongs (g−, g0)

mk
∗ .

For depth ≤ 2, for g− = ⊕
−2≤i≤−1

gi, we write (g−2, g−1, g0)
mk
∗ instead of

(g−, g0)
mk
∗ . In the table below (2.67), indicated is also one of the Lie super-

algebras from the list of series (2.93) − (2.95) as an ambient which contains
the exceptional one as a maximal subalgebra. The W-graded superalgebras
of depth 3 appear as regradings of the listed ones at certain values of r; the
corresponding terms gi for i ≤ 0 will be given below.

vle(4|3; r) = (Π(Λ(3))/C · 1, cvect(0|3))∗ ⊂ vect(4|3;R) r = 0, 1,K

vas(4|4) = (spin, as)∗ ⊂ vect(4|4)
kasξ(1|6; r) ⊂ k(1|6; r) r = 0, 1ξ, 3ξ

kasξ(1|6; 3η) = (Vol0(0|3), c(vect(0|3)))∗ ⊂ svect(4|3)
mb(4|5; r) = (ab(4), cvect(0|3))m∗ ⊂ m(4|5;R) r = 0, 1,K

ksle(9|6; r) = (hei(8|6), svect(0|4)3,4)k∗ ⊂ k(9|6; r) r = 0, 2, CK

ksle(9|6;K) = (idsl(5), Λ
2(id∗

sl(5)), sl(5))
k
∗ ⊂ svect(5|10;R)

(2.67)

In (2.67), most of the regradings R of the ambients are the same as that of
the embedded algebra, i.e., R(r) = r. Certain regradings R(r) of the ambients
are so highly nonstandard that even the homogeneous fibers are of infinite
dimension.

For kas, the notations r = 0, 1ξ, 3ξ are clear: none, or one or three of the
ξ’s have degree 0 (and the corresponding η’s acquire degree 2). The following
table describes these regradings: (the degrees of the even indeterminates | the
degrees of the odd indeterminates; after semicolon stands the degree of t (resp.
τ)):

vle(4|3) R(K) = (2220|111), R(0) = (1111|111), R(1) = (2110|011)
mb(4|5) R(K) = (0222|3111; 3), R(0) = (1111|1111; 2), R(1) = (0211|2011; 2)
ksle(9|6) R(K) = (22222|11111111)

(2.68)
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2.3.3. The modules of tensor fields. To advance further, we have to
recall the definition of the modules of tensor fields over vect(m|n) and its
subalgebras, see [BL2], [Le3].

Let g = vect(m|n) and g≥ = ⊕
i≥0

gi. For any other Z-graded vectorial Lie

superalgebra, the construction is identical.
Clearly, vect0(m|n) ∼= gl(m|n). Let V be the gl(m|n)-module with the

lowest weight λ = lwt(V ). Make V into a g≥-module setting g+ · V = 0
for g+ = ⊕

i>0
gi. Let us realize g by vector fields on the m|n-dimensional

linear supermanifold Cm|n with coordinates x = (u, ξ). The superspace
T (V ) = HomU(g≥)(U(g), V ) is isomorphic, due to the Poincaré–Birkhoff–Witt
theorem, to C[[x]] ⊗ V . Its elements have a natural interpretation as formal
tensor fields of type V . When λ = (a, . . . , a) we will simply write T (a) in-
stead of T (λ). We will usually consider g-modules induced from irreducible
g0-modules.

2.3.4. Examples. As vect(m|n)- and svect(m|n)-module, vect(m|n) is T (id).
More examples:

T (0) is the superspace of functions;
Vol(m|n) = T (1, . . . , 1;−1, . . . ,−1) (the semicolon separates the first m

(“even”) coordinates of the weight with respect to the matrix units Eii of
gl(m|n)) is the superspace of densities or volume forms.

We denote the generator of Vol(m|n) corresponding to the ordered set of
coordinates x by vol(x). The space of λ-densities — called weighted densities of
weight λ — is denoted by Volλ(m|n) = T (λ, . . . , λ;−λ, . . . ,−λ). In particular,

Volλ(m|0) = T (λ) but Volλ(0|n) = T (
−→−λ). We set:

Vol0(0|m) = {v ∈ Vol |
∫
v = 0} and T0(0) = Λ(m)/C · 1. (2.69)

If the generator vol of Vol is fixed, then Vol ∼= T (0), as svect(m|n)-modules.
Denote the svect(0|m)-module Vol0(0|m)/C vol(ξ) by T 0

0 (0).

2.3.4.1. Remark. To view the volume element as “dmudnξ” is totally wrong: the
superdeterminant can never appear as a factor under the changes of variables. We
can try to use the usual notations of differentials provided all the differentials an-
ticommute. Then at least the linear transformations that do not intermix the even
u’s with the odd ξ’s multiply the volume element vol(x), viewed as the fraction
du1 · ... · dum

dξ1 · ... · dξn
, by the correct factor, the Berezinian of the transformation. But how

to justify this? Let X = (x, ξ). If we consider the usual, exterior, differential forms,
then the dXi’s super anti-commute, hence the dξi commute; whereas if we consider
the symmetric product of the differentials, as in the metrics, then the dXi’s super-
commute, hence the dxi commute. So, neither exterior nor symmetric product is
what we need: All factors should anti-commute.

However, from transformations’ point of view,
∂

∂ξi
=

1

dξi
, and the

∂

∂ξi
anticom-

mute. The notation, dum

(
∂

∂ξ

)n

:= du1 · ... ·dum ·
∂

∂ξ1
· . . . · ∂

∂ξn
, is, nevertheless, still
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wrong: the generic transformation A : (u, ξ) 7→ (v, η) sends du1 ·....·dum ·
∂

∂ξ1
·...· ∂

∂ξn

to the correct element, ber(A)(dum · ∂
∂ξ1
· ... · ∂

∂ξn
), plus extra terms. Indeed, the

fraction du1 · .... ·dum ·
∂

∂ξ1
· ... · ∂

∂ξn
is the highest weight vector of an indecomposable

gl(m|n)-module and vol(x) is the notation of the image of this vector in the 1-di-
mensional quotient module modulo the invariant submodule that consists precisely
of all the extra terms.

2.3.5. Deformations of the Buttin superalgebra. As is clear from the
definition of the Buttin bracket, there is a regrading (namely, b(n;n) given
by deg ξi = 0, deg qi = 1 for all i) under which b(n), initially of depth 2, takes
the form g = ⊕

i≥−1
gi with g0 = vect(0|n) and g−1

∼= Π(C[ξ]). Replace now

the vect(0|n)-module g−1 of functions (with inverted parity) by the module of
λ-densities, i.e., set g−1

∼= Π(Vol(0|n)λ), where

LD(volξ)
λ = λdivD · volλξ and p(volξ)

λ = 1̄. (2.70)

Define bλ(n;n) to be the Cartan prolong

(g−1, g0)∗ = (Π(Vol(0|n)λ), vect(0|n))∗. (2.71)

Clearly, this is a deform of b(n;n). The collection of these bλ(n;n) for all λ’s is
called the main deformation, the other deformations, defined in what follows,
will be called singular.

The deform bλ(n) of b(n) is a regrading of bλ(n;n) described as follows.

For λ =
2a

n(a− b) , set

ba,b(n) = {Mf ∈ m(n) | a divMf = (−1)p(f)2(a− bn)∂f
∂τ
}. (2.72)

For future use, we will denote the operator that singles out bλ(n) in m(n) as
follows:

divλ = (bn− aE)
∂

∂τ
− a∆, for λ =

2a

n(a− b) and ∆ =
∑

i≤n

∂2

∂qi∂ξi
. (2.73)

Taking into account the explicit form of the divergence of Mf we get

ba,b(n) = {Mf ∈ m(n) | (bn− aE)
∂f

∂τ
= a∆f} =

{D ∈ vect(n|n+ 1) | LD(volaq,ξ,τ αa−bn0 ) = 0}.
(2.74)

It is subject to a direct verification that ba,b(n) ' bλ(n) for λ =
2a

n(a− b) .

This isomorphism shows that λ actually runs over CP 1, not C.
As follows from the description of vect(m|n)-modules ([BL2]) and the cri-

teria for simplicity of Z-graded Lie superalgebras ([K2]), the Lie superalgebras
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bλ(n) are simple for n > 1 and λ 6= 0, 1, ∞. It is also clear that the bλ(n) are
non-isomorphic for distinct λ’s, bar occasional isomorphisms (2.97).

The Lie superalgebra b(n) = b0(n) is not simple: it has an ε-dimensional,
i.e., (0|1)-dimensional, center. At λ = 1 and∞ the Lie superalgebras bλ(n) are
not simple either: they has an ideal of codimension εn and εn+1, respectively.
The corresponding exact sequences are

0 −→ CM1 −→ b(n) −→ le(n) −→ 0,

0 −→ b′1(n) −→ b1(n) −→ C ·Mξ1...ξn −→ 0,

0 −→ b′∞(n) −→ b∞(n) −→ C ·Mτξ1...ξn −→ 0.

(2.75)

Clearly, at the exceptional values of λ, i.e., 0, 1, and ∞, the deformations
of bλ(n) should be investigated extra carefully. As we will see immediately, it
pays: at each of exceptional points we find extra deformations. An exceptional

deformation at λ = −1 remains inexplicable. Other exceptional values (λ =
1

2

and −3

2
) come from the isomorphisms b1/2(2; 2) ∼= h1/2(2|2) = h(2|2) and

hλ(2|2) ∼= h−1−λ(2|2), see (2.97).
For g = bλ(n), set H = H2(g; g).

2.3.5.1. Theorem. 1) sdim H = (1|0) for g = bλ(n) unless λ = 0, −1, 1,
∞ for n > 2. For n = 2, in addition to the above, sdim H 6= (1|0) at λ =

1

2

and λ = −3

2
.

2) At the exceptional values of λ listed in heading 1) we have
sdim H = (2|0) at λ = ±1 and n odd, or λ = ∞ and n even, or n = 2

and λ =
1

2
or λ = −3

2
.

sdim H = (1|1) at λ = 0, or λ =∞ and n odd, or λ = ±1 and n even.
The corresponding cocycles C are given by the following nonzero values in
terms of the generating functions f and g, where d1̄(f) is the degree of
f with respect to odd indeterminates only (here k = (k1, . . . , kn); we set
qk = qk11 . . . qknn and |k| =∑ ki):

bλ(n) p(C) C(f, g)

b0(n) odd (−1)p(f)(d1̄(f)− 1)(d1̄(g)− 1)fg

b−1(n) n+ 1 (mod 2) f = qk, g = ql 7→ (4− |k| − |l|)qk+lξ1 . . . ξn+

τ∆(qk+lξ1 . . . ξn)

b1(n) n+ 1 (mod 2) f = ξ1 . . . ξn, g 7→
{
(d1̄(g)− 1)g if g 6= af , a ∈ C

2(n− 1)f if g = f and n is even

b∞(n) n (mod 2) f = τξ1 . . . ξn, g 7→
{
(d1̄(g)− 1)g if g 6= af , a ∈ C

2f if g = f and n is odd

b 1
2
(2) even described below
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On b 1
2
(2) ' b

− 3
2
(2) ' h(2|2; 1), the cocycle C is the one induced on

h(2|2) = po(2|2)/C K1 by the usual deformation (quantization) of po(2|2):
we first quantize po(2|2) and then take the quotient modulo the center (gener-
ated by constants).

3) The space H is diagonalizable with respect to the Cartan subalgebra of
der g. Let the cocycle M corresponding to the main deformation be one of
the eigenvectors. Let C be another eigenvector in H, it determines a singular
deformation from heading 2). The only cocycles kM + lC, where k, l ∈ C, that
can be extended to a global deformation are those for kl = 0, i.e., either M
or C.

All the singular deformations of the bracket {·, ·}old in bλ(n), except the

one for λ =
1

2
(or λ = −3

2
) and n = 2, have the following very simple form

even for the even ~:

{f, g}sing
~

= {f, g}old + ~ · C(f, g) for any f, g ∈ bλ(n). (2.76)

Since the elements of bλ(n) are encoded by functions (for us: polynomials)
in τ , q and ξ subject to one relation with an odd left hand side in which
τ enters, it seems plausible that the bracket in bλ(n) can be, at least for
generic values of parameter λ, expressed solely in terms of q and ξ. Indeed,
here is the explicit expression (in which {f, g}B.b. is the usual antibracket and
∆ =

∑
i≤n

∂2

∂qi∂ξi
):

{f1, f2}mainλ = {f1, f2}B.b.+
λ(cλ(f1, f2)f1∆f2 + (−1)p(f1)cλ(f2, f1)(∆f1)f2),

(2.77)

where

cλ(f1, f2) =
deg f1 − 2

2 + λ(deg f2 − n)
and deg is computed with respect to the standard grading deg qi = deg ξi = 1.

2.3.5.2. Deformations of g = b1/2(n;n). Clearly, g−1 is isomorphic to

Π(
√
V ol). Therefore, there is an embedding

b1/2(n;n) ⊂
{
h(2n−1|2n−1) for n even

le(2n−1) for n odd.
(2.78)

It is tempting to determine quantizations of g in addition to those considered
by Kochetkov, as the composition of embedding (2.78) and the subsequent
quantization.

For n = 2, when (2.78) is not just an embedding but an isomorphism,
this idea certainly works and we get the following extra quantization of the
antibracket described in Theorem 2.3.5.1: We first deform the antibracket to
the point λ =

1

2
(or λ = −3

2
) along the main deformation, and then quantize
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it as the quotient of the Poisson superalgebra. This scheme fails to give new
algebras for n = 2k > 2:

2.3.5.3. Theorem. For n = 2k > 2, the image of b1/2(n;n) under embed-
ding (2.78) is rigid under the quantization of the ambient.

2.3.6. Nonstandard realizations. The following nonstandard gradings
exhaust all the W-gradings of all the simple vectorial Lie superalgebras. In
particular, the gradings in the series vect induce the gradings in the series
svect, svect′ and the exceptional families vle(4|3) and vas(4|4); the gradings in
m induce the gradings in bλ, le, sle, sle

′, b, sb, sb′ and the exceptional family
mb; the gradings in k induce the gradings in po, h, h′ and the exceptional
families kas and ksle.

Lie superalgebra its Z-grading

vect(n|m; r), deg ui = deg ξj = 1 for any i, j (∗)
0 ≤ r ≤ m deg ξj = 0 for 1 ≤ j ≤ r;

deg ui = deg ξr+s = 1 for any i, s

m(n; r), deg τ = 2, deg qi = deg ξi = 1 for any i (∗)
0 ≤ r < n− 1 deg τ = deg qi = 2, deg ξi = 0 for 1≤ i≤ r < n− 1;

deg qr+j = deg ξr+j = 1 for any j

m(n;n) deg τ = deg qi = 1, deg ξi = 0 for 1 ≤ i ≤ n
k(2n+ 1|m; r), deg t = 2, whereas, for any i, j, k, (∗)

deg pi = deg qi = deg ξj = deg ηj = deg θk = 1

0 ≤ r ≤
[m
2

]
deg t= deg ξi = 2, deg ηi = 0 for 1≤ i≤ r ≤

[m
2

]
;

r 6= k − 1 for m = 2k and n = 0 deg pi = deg qi = deg θj = 1 for j ≥ 1 and all i

k(1|2m;m) deg t = deg ξi = 1, deg ηi = 0 for 1 ≤ i ≤ m

Here we consider k(2n + 1|m) as preserving the Pfaff equation α̃(X) = 0
for X ∈ vect(2n+ 1|m), where (see (2.18))

α̃ = dt+
∑

i≤n

(pidqi − qidpi) +
∑

j≤r

(ξjdηj + ηjdξj) +
∑

k≥m−2r

θkdθk.

The standard realizations correspond to r = 0, they are marked by an
(∗). Observe that the codimension of L0 attains its minimum in the standard
realization.

2.3.6.1. The exceptional nonstandard regrading Regb. This is a re-
grading of ba,b(2) given by the formulas:

deg τ = 0; deg ξ1 = deg ξ2 = −1; deg q1 = deg q2 = 1. (2.79)

We have the following two cases:
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1) b = 0 or a = b : ba,0(2; Regb)
∼= le(2) and ba,a(2; Regb)

∼= b′∞(2),

in particular, g−2 = 0;

2) a and b generic:

g−2 = Span{Leξ1ξ2} and g−1 = Span{Leξ1 ,Leξ2 ,LeQ1 ,LeQ2},

(2.80)

where Q1 = Aξ1ξ2q1 + Bτξ2, Q2 = Aξ1ξ2q2 − Bτξ1 and where A and B are
some coefficients determined by a and b. The bracket on g−1 is determined
by the odd form ω = c

∑
dQidξi, so g0 must be contained in m(2)0. Direct

calculations show that sdim g0 = 4|4 and

g0 = spe(2)⊕ CX, where X = Leaτ+b
∑
qiξi . (2.81)

Indeed,

spe(2)0 ∼= sl(2) = Span{Leq1ξ2 ,Leq2ξ1 ,Leq1ξ1−q2ξ2}, spe(2)−1 = C · Le1,
(2.82)

and
spe(2)1 = CLeαξ1ξ2P (q)+βτ∆(ξ1ξ2P (q)), (2.83)

where P (q) is a monomial of degree 2 and α, β are some constants and where

∆ =
∑ ∂2

∂qi∂ξi
, see (2.50).

The eigenvalues of X on g−1 are: −a+ b on the even part and a+ b an the
odd part. So

ba,b(2; Regb)
∼= b−b,−a(2) ∼= bb,a(2). (2.84)

For n > 2, as well as for m(n) with n > 1, similar regradings are not
Weisfeiler ones, as is not difficult to see.

The exceptional grading Regb of bλ(2) induces the exceptional grading
Regh of the isomorphic algebra hλ(2|2), see (2.97).

Thus, the exceptional regradings Regb or Regh do not provide with new
W-graded vectorial algebras. Still, they are important for description of au-
tomorphisms.

2.3.6.2. The fifteen W-regradings of exceptional algebras.

2.3.6.3. Theorem ([Sh, CK]). The W-regradings of the exceptional sim-
ple vectorial Lie superalgebras are given by the following regradings of their
“standard” ambients listed in (2.67):

1) vle(4|3; r) = (Π(Λ(3)/C · 1), cvect(0|3))∗ ⊂ vect(4|3) for r = 0, 1,K;
r = 0: deg y = deg ui = deg ξi = 1;
r = 1: deg y = deg ξ1 = 0, deg u2 = deg u3 = deg ξ2 = deg ξ3 = 1,

deg u1 = 2;
r = K: deg y = 0, deg ui = 2; deg ξi = 1.

2) vas(4|4) = (spin, as)∗ ⊂ vect(4|4);
3) kas ⊂ k(1|6; r) for r = 0, 1, 3ξ;
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r = 0: deg t = 2, deg ηi = 1; deg ξi = 1;
r = 1: deg ξ1 = 0, deg ξ2 = deg ξ3 = deg η2 = deg η3 = 1,

deg η1 = deg t = 2;
r = 3ξ: deg ξi = 0, deg ηi = deg t = 1;
r = 3η: deg ηi = 0, deg ξi = deg t = 1;

warning: kas(1|6; 3η) ⊂ svect(4|3).
4) mb(4|5; r) = (ab(4), cvect(0|3))m∗ ⊂ m(4) for r = 0, 1,K;

r = 0: deg τ = 2, deg ui = deg ξi = 1 for i = 0, 1, 2, 3;
r = 1: deg τ = deg ξ0 = deg u1 = 2, deg ξ1 = deg u0 = 0;

deg u2 = deg u3 = deg ξ2 = deg ξ3 = 1;
r = K: deg τ = deg ξ0 = 3, deg u0 = 0, deg ui = 2; deg ξi = 1 for i > 0.

5) ksle(9|6; r) = (hei(8|6), svect3,4(4))k∗ ⊂ k(9|6) for r = 0, 2, CK;
r = 0: deg t = 2, deg pi = deg qi = deg ξi = deg ηi = 1;
r = 2: deg t = deg q3 = deg q4 = deg η1 = 2,

deg q1 = deg q2 = deg p1 = deg p2 = deg η2 = deg η3 = deg ζ2 = deg ζ3 = 1;
deg p3 = deg p4 = deg ζ1 = 0;

r = CK: deg t = deg q1 = 3, deg p1 = 0;
deg q2 = deg q3 = deg q4 = deg ζ1 = deg ζ2 = deg ζ3 = 2;
deg p2 = deg p3 = deg p4 = deg η1 = deg η2 = deg η3 = 1;

r = K: deg t = deg qi = 2, deg pi = 0; deg ζi = deg ηi = 1;

warning: ksle(9|6;K) ⊂ svect(5|10;R).
Thus, from the point of view of classification of the W-filtered Lie su-

peralgebras, there are five families of exceptional algebras consisting of 15
individual algebras.

2.3.6.4. Several first terms that determine the Cartan and mk-pro-
longations. To facilitate the comparison of various vectorial superalgebras,
we offer the following Table. The most interesting phenomena occur for ex-
tremal values of parameter r and small values of superdimension m|n.

The central element z ∈ g0 is supposed to be chosen so that it acts on gk
as k · id.

Let Λ(r) = C[ξ1, . . . , ξr] be the Grassmann superalgebra generated by the
ξi, each of degree 0. We set (for more elucidations, see sec. 2.6):

vect(0|m)-modules : Λ(0) = C, T (0) := Λ(m);

T0(0) := Λ(m)/C · 1;
Vol0(0|m) := {v ∈ Vol(0|m) |

∫
v = 0};

svect(0|m)-modules : T 0
0 (0) := Vol0(0|m)/C · 1 .

(2.85)

Over svect(0|m), it is convenient to consider Vol0(0|m) as a submodule of
Λ(m).
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Recall that the range of the parameter r (see sec. 1.3 and 2.11) is the
set of integers from [0,m], where m is the number of odd indeterminates; for

the series k and h the range is [0, [
m

2
]]; for the series m(n), bλ(n), and related

subalgebras, the range is the set of integers from [0, n] with r = n−1 excluded.
Recall that we exclude certain values of r, namely, r = k−1 for k(1|2k), as

well as r = n− 1 for m(n) and its subalgebras, because, for these values of r,
the corresponding grading is not a W-grading: the g0-module g−1 is reducible.

The g0-modules g−1 for N = 5′, 5′′ and 9 are described as vect(0|2)-mod-
ules.

N g g−2 g−1 g0

1 vect(n|m; r) − id⊗Λ(r) gl(n|m− r)⊗ Λ(r)⊂+ vect(0|r)
2 vect(1|m;m) − Λ(m) Λ(m)⊂+ vect(0|m)

3 svect(n|m; r), n 6= 1 − id⊗Λ(r) sl(n|m− r)⊗ Λ(r)⊂+ vect(0|r)
4 svect′(1|m; r), r 6= m − id⊗Vol0(0|r) sl(n|m− r)⊗ Λ(r)⊂+ vect(0|r)
5 svect′(1|m;m) − Vol0(0|m) Λ(m)⊂+ svect(0|m)

5′ svect′(1|2) − T0(0) sl(1|2) ∼= vect(0|2)
5′′ svect(2|1) − Π(T0(0)) sl(2|1) ∼= vect(0|2)

6 h(2n|m) − id osp(m|2n)
7 h(2n|m; r) T0(0) id⊗Λ(r) osp(m− 2r|2n) ⊗ Λ(r)⊂+ vect(0|r)
8 h(2n|2r; r) − id⊗Λ(r) sp(2n)⊗ Λ(r)⊂+ vect(0|r)

9 hλ(2|2) − Π(Volλ(0|2)) osp(2|2) ∼= vect(0|2)
10 hλ(2|2; 1) − idsp(2) ⊗Volλ(0|1) sp(2)⊗ Λ(1)⊂+ vect(0|1)

11 k(2n+ 1|m; r) Λ(r) id⊗Λ(r) cosp(m− 2r|2n) ⊗ Λ(r)⊂+ vect(0|r)
12 k(1|2m;m) − Λ(m) Λ(m)⊂+ vect(0|m)

13 k(1|2m + 1;m) Λ(m) Π(Λ(m)) Λ(m)⊂+ vect(0|m)

In what follows, for N = 16, we set p(µ) ≡ n (mod 2), so µ can be odd

indeterminate. The Lie superalgebras s̃vectµ(0|n) are isomorphic for nonzero

µ’s; and therefore so are the algebras s̃bµ(2
n−1 − 1|2n−1). So, for n even, we

can set µ = 1, whereas if µ is odd, we should consider it as an additional
indeterminate on which the coefficients depend.

N g g−2 g−1 g0

14 m(n; r) Π(Λ(r)) id⊗Λ(r) cpe(n− r) ⊗ Λ(r)⊂+ vect(0|r)

15 m(n;n) − Π(Λ(n)) Λ(n)⊂+ vect(0|n)

16 s̃bµ(2
n−1 − 1|2n−1) −

Π(Vol(0|n))
C(1 + µξ1 . . . ξn) vol(ξ)

s̃vectµ(0|n)
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In what follows λ =
2a

n(a− b) 6= 0, 1, ∞; the three exceptional cases (cor-

responding to the “drop-outs” le(n), b′1(n) and b′∞(n), respectively) are con-
sidered separately.

The irreducibility condition of the g0-module g−1 for g = b′∞ excludes
r = n− 1.

The case r = n− 2 is extra exceptional, so in the following tables, unless
specified, we assume that

0 < r < n− 2; additionally a 6= b and (a, b) 6= α(n, n− 2) for any α ∈ C.
(2.86)

To further clarify the following tables, denote the superspace of the stan-
dard k|k-dimensional representation of spe(k) by V ; let

d = diag(1k,−1k) ∈ pe(k).

Let W = V ⊗ Λ(r) and D ∈ vect(0|r). Let Ξ = ξ1 · · · ξn ∈ Λ(ξ1, . . . , ξn).
Denote by T r the representation of vect(0|r) in spe(n− r)⊗Λ(r) given by

the formula
T r(D) = 1⊗D + d⊗ 1

n− r divD. (2.87)

g = sle′(n; r)0 for r 6= n− 2. For g0, we have:

vect(0|r) acts on the ideal spe(n− r) ⊗ Λ(r) via T r;
any X ⊗ f ∈ spe(n− r)⊗ Λ(r) acts in g−1 as id⊗f and in g−2 as 0;

any D ∈ vect(0|r) acts in g−1 via T r and in g−2 as D.

(2.88)
g = sle′(n;n− 2). For g0, we observe:

spe(2) ∼= C(Leq1ξ1−q2ξ2)⊂+ CLeξ1ξ2 ,

whereas g−2 and g−1 are as above, for r < n− 2. Set h = C(Leq1ξ1−q2ξ2). In
this case,

g0 ∼= (h⊗ Λ(n− 2)⊂+CLeξ1ξ2 ⊗(Λ(n− 2) \ Cξ3 · · · ξn))⊂+ T 1(vect(0|n− 2)).

(2.89)
The action of vect(0|n− 2), the quotient of g0 modulo the underlined ideal, is
performed via (2.88). In the subspace ξ1ξ2 ⊗ Λ(n− 2) ⊂ g0 this action is the
same as in the space of volume forms. So we can throw away Ξ, or, speaking
more correctly, take the irreducible submodule of functions with integral 0.

For N = 21, 22, the terms “g−i” denote the superspace isomorphic to
the one in quotation marks but with the action given by formulas (2.88) and
(2.89).
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N g g−2 g−1 g0

17 le(n) − id pe(n)

18 le(n; r) Π(T0(0)) id⊗Λ(r) pe(n− r) ⊗ Λ(r)⊂+ vect(0|r)
19 le(n;n) − Π(T0(0)) vect(0|n)
20 sle′(n) − id spe(n)

21 sle′(n; r) “Π(T0(0))” “id⊗Λ(r)” spe(n− r)⊗ “Λ(r)′′⊂+ T 1(vect(0|r))
22 sle′(n;n− 2) “Π(T0(0))” “id⊗Λ(r)” see (2.89)

23 sle′(n;n) − Π(T 0
0 (0)) svect(0|n)

Next, in the table below, we consider ba,b(n; r) for 0 < r < n − 2
and ar − bn 6= 0; in particular, this excludes b′∞(n;n) = b′a,a(n;n) and
b′1(n;n− 2) = b′n,n−2(n;n− 2).

If z is the central element of cspe(n− r) that acts on g−1 as − id, then

z ⊗ ψ acts on g−1 as − id⊗ψ, and on g−2 as −2 id⊗ψ. (2.90)

Set
c =

a

ar − bn . (2.91)

Let a · str⊗ id be the representation of pe(n − r) = spe(n − r)⊂+ Cd which
is idspe(n−r) on spe(n − r) and sends d to 2a · id. Recall that C[k] is the
1-dimensional representation of g0 where k is the value of the central element
z from g0, where z is chosen so that z|gi = i · idgi .

For N = 27, 32, 33, the terms “gi” denote the superspace isomorphic to
the one in quotation marks but with the action given by eq. (2.90).

In the exceptional case ar = bn, i.e., λ =
2

n− r , we see that the

vect(0|r)-action on the ideal cspe(n− r)⊗Λ(r)⊂+ vect(0|r) of g0, and on g−, is
the same as for sle′, see (2.88).

2.3.6.5. The exceptional Lie subsuperalgebras. In the table below are
the terms gi for −2 ≤ i ≤ 0 of the 15 exceptional W-graded algebras.

Observe that none of the simple W-graded vectorial Lie superalgebras is
of depth > 3 and only two algebras are of depth 3: mb(4|5;K), for which we
have

mb(4|5;K)−3
∼= Π(idsl(2)),

and another one, ksle(9|6;CK) = ksle(9|11), for which we have

ksle(9|11)−3 ' Π(idsl(2)⊗C[−3]).

2.3.7. The exceptional Lie subsuperalgebra kas of k(1|6). Like
vect(1|m;m), the Lie superalgebra kas is not determined by its non-positive
part and requires a closer study. The Lie superalgebra g = k(1|2n) is generated
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by the functions from C[t, ξ1, . . . , ξn, η1, . . . , ηn]. The standard Z-grading of g
is induced by the Z-grading of C[t, ξ, η] given by

degKf = deg f − 2, where deg t = 2, deg ξi = deg ηi = 1.

Clearly, in this grading, g is of depth 2. Let us consider the functions that
generate several first homogeneous components of g = ⊕

i≥−2
gi:

component g−2 g−1 g0 g1

its generators 1 Λ1(ξ, η) Λ2(ξ, η) ⊕ C · t Λ3(ξ, η)⊕ tΛ1(ξ, η)

As one can prove directly, the component g1 generates the whole subalgebra
g+ = ⊕

i>0
gi. The component g1 splits into two g0-modules g11 = Λ3 and

g12 = tΛ1. It is obvious that g12 is always irreducible and the component g11
is trivial for n = 1.

The partial Cartan prolongs of g11 and g12 are well-known:

(g− ⊕ g0, g11)
mk
∗
∼= po(0|2n)⊕ C ·Kt

∼= d(po(0|2n));
(g− ⊕ g0, g12)

mk
∗ = g−2 ⊕ g−1 ⊕ g0 ⊕ g12 ⊕ C ·Kt2

∼= osp(2n|2).

Observe a remarkable property of k(1|6): only for n = 3 the component

g11 splits into 2 irreducible modules; we will denote gξ11 the one that contains
ξ1ξ2ξ3, let g

η
11 be the other one, that contains η1η2η3.

Observe further, that g0 = co(6) ∼= gl(4). As gl(4)-modules, gξ11 and g
η
11

are the symmetric squares S2(id) and S2(id∗) of the standard 4-dimensional
representation and its dual, respectively.

2.3.8. Theorem ([Sh]). The partial Cartan prolongs

kasξ = (g− ⊕ g0, g
ξ
11 ⊕ g12)

mk
∗ ' kasη = (g− ⊕ g0, g

η
11 ⊕ g12)

mk
∗

are infinite dimensional, simple and isomorphic.

When it does not matter which of isomorphic algebras kasξ ' kasη to take,
we will simply write kas.
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N g g−2 g−1 g0

24 bλ(n) Π(C[−2]) id spe(n)⊂+ C(az + bd)

25 bλ(n; r) Π((−c) str)⊗ (Vol(0|r))2c
(
(− c

2
) str)⊗ id

)
⊗ (Vol(0|r))c (pe(n− r) ⊗ Λ(r))⊂+ vect(0|r)

26 bλ(n;n) − Π(Volλ(0|n)) vect(0|n)

27 b2/(n−r)(n; r) Π(C)⊗ Λ(r) id⊗“Λ(r)′′ cpe(n− r)⊗ “Λ(r)′′⊂+ T r(vect(0|r))

28 b′∞(n) Π(C) id spe(n)a,a

29 b′∞(n; r) Π(C)⊗ Λ(r) id⊗Λ(r) ((spe(n− r)a,a)⊗ Λ(r))⊂+ vect(0|r)
30 b′∞(n;n), n > 2 − Π(Λ(n)) (Λ(n) \ CΞ)⊂+ svect(0|n)

31 b′1(n) Π(C) id spe(n)n,n−2

32 b′1(n; r) “Π(Vol0(0|r))” id⊗“Λ(r)” ((spe(n− r)n,n−2)⊗ “Λ(r)′′)⊂+ T r(vect(0|r))
33 b′1(n;n− 2) “Π(T0(0))” id⊗“Λ(r)” (2.89) for the above line

with cspe(2) instead of spe(2)

34 b′1(n;n) − Π(Vol0(0|n)) vect(0|n)

g g−2 g−1 g0 sdim g−

vle(4|3) − Π(Λ(3)/C1) c(vect(0|3)) 4|3
vle(4|3; 1) C[−2] id⊗Λ(2) c(sl(2)⊗ Λ(2)⊂+ T 1/2(vect(0|2)) 5|4
vle(4|3;K) idsl(3)⊗C[−2] id∗sl(3)⊗ idsl(2)⊗C[−1] sl(3)⊕ sl(2)⊕ Cz 3|6
vas(4|4) − spin as 4|4

kas C[−2] Π(id) co(6) 1|6
kas(; 1ξ) Λ(1) idsl(2)⊗ idgl(2)⊗Λ(1) (sl(2)⊕ gl(2)⊗ Λ(1))⊂+ vect(0|1) 5|5
kas(; 3ξ) − Λ(3) Λ(3)⊕ sl(1|3) 4|4
kas(; 3η) − Vol0(0|3) c(vect(0|3)) 4|3
mb(4|5) Π(C[−2]) Vol(0|3) c(vect(0|3)) 4|5
mb(4|5; 1) Λ(2)/C1 idsl(2)⊗Λ(2) c(sl(2)⊗ Λ(2)⊂+ T 1/2(vect(0|2)) 5|6
mb(4|5;K) idsl(3)⊗C[−2] Π(id∗sl(3)⊗ idsl(2)⊗C[−1]) sl(3)⊕ sl(2)⊕ Cz 3|8
ksle(9|6) C[−2] Π(T 0

0 (0)) svect(0|4)3,4 9|6
ksle(9|6; 2) Π(idsl(1|3)) idsl(2)⊗Λ(3) (sl(2)⊗ Λ(3))⊂+ sl(1|3) 11|9
ksle(9|6;K) id Π(Λ2(id∗)) sl(5) 5|10
ksle(9|6;CK) id∗sl(3)⊗Λ(1) idsl(2)⊗

(
idsl(3)⊗Λ(1)

)
sl(2)⊕ (sl(3)⊗ Λ(1)⊂+ vect(0|1)) 9|11
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2.3.9. Grozman’s theorems and a description of g as g0̄ ⊕ g1̄. It
is convenient to describe the Lie superalgebra g of twisted polyvector fields
as vect-module. Similarly, in [CK] the exceptional algebras are described as
g = g0̄ ⊕ g1̄. For most of the series, such description is of little value because
each homogeneous component g0̄ and g1̄ has a complicated structure. For the
exceptions (when g0̄ is simple, or almost), the situation is totally different!
Observe that apart from being beautiful, such a description is useful for the
construction of simple Volichenko algebras, i.e., inhomogeneous with respect
to parity subalgebras of simple Lie superalgebras, cf. [LSa2].

Recall in relation to this a theorem of Grozman. He completely described
bilinear differential operators acting in the spaces of tensor fields and invariant
under all changes of coordinates. Miraculously, almost each of the first order
invariant operators determine a Lie superalgebra on its domain. Some of these
superalgebras turn out to be very close to simple. In the constructions below
we use some of these invariant operators.

Let ρ be an irreducible representation of the group GL(n) in a finite di-
mensional vector space V and λ = (λ1, . . . , λn) its lowest weight. The tensor
field of type ρ or V on an n-dimensional connected manifold M is any section
t of the locally trivial vector bundle overM with fiber V such that, under the
change of coordinates,

t(y(x)) = ρ
(
∂y

∂x

)
t(x).

The space of tensor field of type ρ or V will be denoted by T (ρ) or T (V ) or
even T (λ).

Denote by T (µ, . . . , µ) = Volµ the space of µ-densities. Other impor-
tant examples: Ωr, the space of differential r-forms, is T (0, . . . , 0, 1, . . . , 1)
with r-many 1’s; in particular, T (0) = Ω0 is the space of functions;
vect(n) = T (−1, 0, . . . , 0); set

LrΩ0(vect(n)) = T (−1, . . . ,−1, 0, . . . , 0)
with r-many −1’s, this is the space of r-vector fields, i.e., the rth exterior
power of vect(n); hereafter in this sec., tensor, exterior, and symmetric powers
are taken over the algebra of functions.

The spaces of twisted r-forms and twisted r-vector fields with twist µ are
defined to be, respectively,

Ωrµ = Ωr ⊗Ω0 Volµ and Lrµ = Lr ⊗Ω0 Volµ .

Obviously, Lrµ ' Ωn−rµ−1 and Vol1 = Ωn.
The following statements are excerpts from Grozman’s difficult result [G].

To describe one of the operators, P4, we need the Nijenhuis bracket, originally
defined by the formula

ωk ⊗ ξ, ωl ⊗ η 7→ (ωk ∧ ωl)⊗ [ξ, η]+
(
ωk ∧ Lξ(ωl) + (−1)kdωk ∧ ι(ξ)(ωl)

)
⊗ η+

(
−Lη(ωk) ∧ ωl + (−1)lι(η)(ωk) ∧ dωl)

)
⊗ ξ,
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where ι is the inner product and LX is the Lie derivative with respect to the
field X . The Nijenhuis bracket has the following interpretation which implies
its invariance: the invariant operator D : (Ωk ⊗ vect(M), Ω

.
) −→ Ω

.
given by

the formula

D(ωk ⊗ ξ, ω) =
d
(
ωk ∧ ι(ξ)(ω) + (−1)kωk ∧ ι(ξ)(dω)

)
= dωk ∧ ι(ξ)(ω) + (−1)kωk ∧ Lξ(ω)

is, for a fixed ωk ⊗ ξ, a superderivation of the supercommutative superal-
gebra Ω

.
and the Nijenhuis bracket is just the supercommutator of these

superderivations. So we can identify Ω
.⊗ vect(M) with the Lie subsuperalge-

bra C(d) ⊂ vect(M̂), where M̂ is the supermanifold (M,Ω
.
(M)), i.e., C(d) is

the centralizer of the exterior differential on M :

C(d) = {D ∈ vect(M̂) | [D, d] = 0}.

2.3.9.1. Dualizations. To any map F : T (V ) −→ T (W ), the dual map
F ∗ : (T (W ))∗ −→ (T (V ))∗ corresponds. If we consider tensors with com-
pact support, so integration can be performed, we can identify (T (V ))∗ with
T (V ∗)⊗Vol ' T (V ∗ ⊗ tr), where str is the 1-dimensional gl-module given by
the trace or supertrace, if M is a supermanifold. We will formally define
(T (V ))∗ to be T (V ∗ ⊗ str).

Given a bilinear map F : T (V1)⊗ T (V2) −→ T (W ), we can dualize it with
respect to each argument:

F ∗1 : T (W ∗ ⊗ str)⊗ T (V2) −→ T (V ∗
1 ⊗ str),

F ∗2 : T (V1)⊗ T (W ∗ ⊗ str) −→ T (V ∗
2 ⊗ str).

2.3.9.2. Theorem ([G]). Irreducible differential bilinear operators

D : T (ρ1)⊗ T (ρ2) −→ T (ρ3)

of order 1 invariant under arbitrary changes of variables are, up to dualiza-
tions and permutation of arguments, only the following ones:

P1 : Ω
r ⊗ T (ρ2) −→ T (ρ3), (w, t) 7→ Z(dw, t),

where Z is the zeroth order operator, the extension of the projection
ρ1 ⊗ ρ2 −→ ρ3 onto any of the irreducible components;

P2 : V ect⊗ T (ρ) −→ T (ρ), the Lie derivative;

P3 : T (S
p(id∗))⊗T (Sq(id∗)) −→ T (Sp+q−1(id∗)), the Poisson bracket;

P4 : On manifolds, the bracket in C(d) is called the Nijenhuis bracket.

This bracket is a linear combination of operators P1, P
∗1
1 , their composition
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with the permutation operator T (V ) ⊗ T (W ) −→ T (W ) ⊗ T (V ), and a new,
irreducible, operator which Grozman denoted P4;

P5 : Ω
p ⊗Ωq −→ Ωp+q+1; ω1, ω2 7→ (−1)p(ω1)a(dω1ω2) + b(ω1dω2),

where a, b ∈ C;

P6 : Ω
p
µ ⊗Ωqν −→ Ωp+q+1

µ+ν , where |µ|2 + |ν|2 6= 0 and p+ q < n;

ω1 vol
µ, ω2 vol

ν 7→ (ν(−1)p(ω1)dω1ω2 − µω1dω2) vol
µ+ν ;

P7 : L
p ⊗ Lq −→ Lp+q−1 the Schouten bracket;

P8 : L
p
µ ⊗ Lqν −→ Lp+q−1

µ+ν , a generalization of the Schouten bracket given
by the next formula on manifolds for p + q ≤ n and on supermanifolds of
superdimension n|1 for p, q ∈ C:

X volµ, Y volν 7→ ((ν − 1)(µ+ ν − 1) divX · Y+

(−1)p(X)(µ− 1)(µ+ ν − 1)X div Y−
(µ− 1)(ν − 1) div(XY )) volµ+ν ,

(2.92)

where the divergence of a polyvector field f is defined to be

div(f) =
∑

i≤n

∂2f

∂xi∂x̌i

in local coordinates (x, x̌) on the supermanifold M̌ associated to the sheaf of
sections of the exterior algebra of the tangent bundle on any supermanifold
M : the checked coordinates on M̌ being

θi = Π(
∂

∂xi
) = x̌i.

2.3.10. Theorem ([G]). The following natural invariant operators deter-
mine associative or Lie superalgebras on their domains. Some of these Lie
superalgebras are close to simple ones:

P3, P8 and P4 (by definition). The vectorial Lie superalgebra C(d) is not,
however, transitive.

P5: For ab = 0, it determines an associative superalgebra structure.
For a = b, it determines the structure of a nilpotent Lie superalgebra on

Π(Ω
.
).

The bracket given by dω1ω2−ω1dω2 determines a Lie algebra structure on
the space Ω

.
.

P6 multiplied by
µ− ν
µν

determines structures of nilpotent Lie superalgebras

on the superspaces
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Π( ⊕
λ∈C

Ω
. ⊗Volλ)/dΩ

.
,

Ω
.
+ = Π( ⊕

λ>0;λ∈R
Ω
. ⊗Volλ),

Ω
.
− = Π( ⊕

λ<0;λ∈R
Ω
. ⊗Volλ).

P6 multiplied by
µ− ν
µ+ ν

determines a nilpotent Lie superalgebra structure
on

Π(dΩ
. ⊕ ⊕

λ6=0;λ∈R
Ω
. ⊗Volλ).

P8 multiplied by
1

µν
determines a nilpotent Lie superalgebra structures on

Ω
.
+ and Ω

.
−.

2.3.10.1. Remark. The operator P8 is a deformation of the Schouten
bracket considered here as the multiplication in bλ(n) and P6 is its “Fourier
transform”.

2.3.11. W-like gradings. It is sometimes convenient to consider gradings
of our vectorial Lie superalgebras which lead them out of the polynomial
growth class but still preserve the finiteness of depth and preserve the two
characteristic features of the W-gradings: for these grading ⊕gi, the subal-
gebra g≥0 := ⊕

i≥0
gi is a maximal subalgebra and the g0-module g−1 is irre-

ducible. Namely, we set deg xi = 0 for r even indeterminates x; we denote
this grading r̄. Then the exceptional Lie superalgebras and bλ(n; n̄) look as
follows:
g = ksle(5|10): g0̄ = svect(5|0) ' dΩ3, g1̄ = Π(dΩ1) with the natural
g0̄-action on g1̄ and the bracket of any two odd elements being their product;
we identify

dxi ∧ dxj ∧ dxk ∧ dxl ⊗ vol−1 = sign(ijklm)
∂

∂xm

for any permutation (ijklm) of (12345).

g = vas(4|4): g0̄ = vect(4|0), and g1̄ = Ω1⊗Vol−1/2 with the natural g0̄-action
on g1̄ and the bracket of odd elements being given by

[
ω1√
vol
,
ω2√
vol

]
=
dω1 ∧ ω2 + ω1 ∧ dω2

vol
,

where we identify

dxi ∧ dxj ∧ dxk

vol
= sign(ijkl)

∂

∂xl
for any permutation (ijkl) of (1234).

g = vle(3|6): g0̄ = vect(3|0)⊕ sl(2)
(1)
≥0, where g

(1)
≥0 = g⊗ C[x1, x2, x3] , and

g1̄ =
(
Ω1 ⊗Vol−1/2

)
⊗ id

sl(2)
(1)

≥0

with the natural g0̄-action on g1̄.
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Recall that idsl(2) is the irreducible sl(2)-module L1 with highest weight
1; its tensor square splits into the symmetric square L2 ' sl(2) and the anti-
symmetric square — the trivial module L0; accordingly, denote by v1 ∧ v2
and v1 • v2 the projections of v1 ⊗ v2 ∈ L1 ⊗ L1 onto the anti-symmetric and
symmetric components, respectively. For any f1, f2 ∈ Ω0, ω1, ω2 ∈ Ω1 and
v1, v2 ∈ L1, we set

[
ω1 ⊗ v1√

vol
,
ω2 ⊗ v2√

vol

]
=

(ω1 ∧ ω2)⊗ (v1 ∧ v2) + (dω1 ∧ ω2 + ω1 ∧ dω2)⊗ (v1 • v2)
vol

,

where we naturally identify Ω0 with Ω3 ⊗Ω0 Vol−1 and Ω2 ⊗Ω0 Vol−1 with
vect(3|0) by setting

dxi ∧ dxj

vol
= sign(ijk)

∂

∂xk

for any permutation (ijk) of (123).

g = mb(3|8): g0̄ = vect(3|0) ⊕ sl(2)
(1)
≥0, as for vle(3|6), while g1̄ = g11 ⊕ g12,

where

g11 =
(
Vol−1/2

)
⊗ id

sl(2)
(1)

≥0

and g12 =
(
Ω2 ⊗Vol−1/2

)
⊗ id

sl(2)
(1)

≥0

.

Multiplication is similar to that of g = vle(3|6). For any f1, f2 ∈ Ω0,
ω1, ω2 ∈ Ω1 and v1, v2 ∈ L1, we set

[
ω1 ⊗ v1√

vol
,
ω2 ⊗ v2√

vol

]
= 0,

[
f1 ⊗ v1√

vol
,
f2 ⊗ v2√

vol

]
=

(df1 ∧ df2)⊗ (v1 ∧ v2)
vol

,
[
f1 ⊗ v1√

vol
,
ω1 ⊗ v2√

vol

]
=
f1ω1 ⊗ (v1 ∧ v2) + (df1ω1 + f1dω1)⊗ (v1 • v2)

vol
.

g = kas: g0̄ = vect(1|0)⊃+ sl(4)
(1)
≥0, where sl(4)

(1)
≥0 = sl(4) ⊗ C[x], and

g1̄ = g−1 ⊕ g1, where g−1 = Λ2(id
sl(4)

(1)
≥0

) and g1 = S2(id∗

sl(4)
(1)
≥0

); clearly,

one can interchange g−1 and g1.
The multiplication is natural: the bracket of g1 and g−1 (or the other way

round) is the product of the anti-symmetric matrix by symmetric one (or

vice versa); the action of sl(4)
(1)
≥0 on g±1 is the natural action in the space of

bilinear forms (or its dual), vect(1|0) acts on functions-coefficients.
g = bλ(n; n̄): here n̄ denotes the non-Weisfeiler grading given by the formulas
deg qi = 0, deg ξi = 1 for i = 1, . . . , n. Then we have

gi =
(
Π(Λi−1(vect(n|0))

)
⊗Vol−(i−1)λ

for i = −1, 0, . . . , n − 1. The multiplication is given by Grozman’s operator
P8, see (2.92).
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Consider n = 2 more attentively. Clearly, one can interchange g−1 and g1;
this possibility explains the isomorphism

bλ(2; 2̄) ' b1−λ(2; 2̄),

and hence the mysterious isomorphism hλ(2|2) ' h−1−λ(2|2) mentioned in
(2.97).

In particular, we have additional outer automorphisms of b−1/2(2; 2̄),

whereas for λ =
1

2
(and λ = −3

2
) there is a nontrivial central extension

missed in [Ko1].
Therefore to the generic exceptional values of λ = 0, 1 and ∞, we should

add, for n = 2, also λ = −1 and −2.
2.3.12. The structures preserved. It is always desirable to find the struc-
ture preserved by the Lie superalgebra under the study. To see what do the
vectorial superalgebras in nonstandard realizations preserve, we have to say,
first of all, what is the structure that g0 = vect(0|n) preserves on g−1 = Λ(n).

Let g = vect(0|n); set further

W = Λ(n), V = Λ(n)/C · 1, V0 = {ϕ ∈ Λ(n) | ϕ(0) = 0}.

The projection p : W −→ V establishes a natural isomorphism between V and
V0. Let i : V0 −→W be the “inverse” embedding.

Denote by mult : W ⊗W −→ W the multiplication on W given by the
tensor mult of valency (2, 1). Since V0 is an ideal in the associative supercom-
mutative superalgebra W , the image mult |V0⊗V0 is contained in V0. Denote
by mult′ the tensor which coincides with mult on V0 ⊗ V0 and vanishes on
C · 1 ⊗W⊕

W ⊗ C · 1. By means of the projection p and the embedding i
we can g-invariantly transport mult′ to V . The tensor obtained will be also
denoted by mult′.

For any monomial ϕ ∈ W , denote by ϕ∗ the dual functional; let B(W )
denote the monomial basis in W . Then

mult = mult′ +
∑

ϕ∈B(W )

1∗ ⊗ ϕ∗ ⊗ ϕ = mult′ +1∗ ⊗
∑

ϕ∈B(W )

ϕ∗ ⊗ ϕ.

By definition of g, it preserves mult, i.e., LD(mult) = 0 for any D ∈ g. Hence,

LD(mult′) = −LD(1∗)⊗
∑

ϕ∈B(W )

ϕ∗ ⊗ ϕ− (1∗)⊗ LD


 ∑

ϕ∈B(W )

ϕ∗ ⊗ ϕ


 .

Under the restriction onto V0 ⊗ V0 the second summand vanishes. Observe
that ∑

ϕ∈B(W )

ϕ∗ ⊗ ϕ = id |W .

Thus,
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LD(mult′ |V0⊗V0) = −LD(1∗)⊗ id |V0 .

The lift of the identity operator id |V0 to W reads as follows:

LD(mult) = α(D)⊗ id |W for a 1-form α on W.

Thus, all the structures preserved by g0 on g−1 are clear, except for those
preserved by several of the exceptional algebras. Namely, these structures are:

(1) the tensor products B⊗mult of a bilinear or a volume form B preserved
(perhaps, conformally, up to multiplication by a scalar) in the fiber of a vector
bundle over a 0|r-dimensional supermanifold on which the structure governed
by mult is preserved,

(2) mult′, or mult twisted by λ-density. Observe that the volume element
B may be not just vol(ξ) but (1 + αξ1 . . . ξn) vol(ξ) as well.

The structures of other types, namely certain pseudodifferential forms pre-
served by bλ(n), are already described.

2.4. Summary: The list of simple Z-graded Lie
superalgebras of polynomial vector fields

2.4.0.1. Notation. Comments. We will describe all the Lie superalgebras
from the tables in our Main Theorem in detail in due course, but to sim-
plify grasping the general picture from the displayed formulas of the following
theorem, let us immediately inform the reader that the prime example, the
general vectorial algebra, vect(m|n; r), is the Lie superalgebra of vector fields
whose coefficients are polynomials (or formal power series, depending on the
setting) in m commuting and n anti-commuting indeterminates with the fil-
tration (and grading) determined by equating the degrees of r (0 ≤ r ≤ m) of
odd indeterminates to 0, the degrees of all (even and odd) of the remaining
indeterminates being equal to 1. The regradings of other series are deter-
mined similarly, but in a more complicated way, see below. Usually, we do not
indicate parameter r if r = 0.

k and h are the straightforward analogs of the contact and hamiltonian
series, respectively; po(2n|m), the central extension of h(2n|m), is the Poisson
Lie superalgebra.

m and le are the “odd” analogs of the contact and hamiltonian series,
respectively. The bracket in b, the central extension of le, is the classical
Schouten bracket, more popular now under the name antibracket. We say
“odd” in quotation marks: the series m preserves the Pfaff equation with an
even contact form, and all these “odd” analogs have both even and odd parts.

The antibracket can be deformed, the corresponding deforms within
ZGLAPG class are bλ, where λ ∈ CP 1.

The algebras sm, sle, and sb are divergence free subalgebras in respective
algebras.

s̃b is a simple algebra, it is a deformation of a non-simple Lie superalgebra
sb(n|n+ 1;n).
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Observe an outstanding property of the bracket in hλ(2|2) ' bλ(2; 2):
it can be considered as a deformation of an even bracket as well as
a deformation of an odd one.

The standard (a.k.a. identity or natural) representation of a matrix Lie
superalgebra g or its subalgebra g ⊂ gl(V ) in V , and sometimes the module
V itself are denoted by id or, for clarity, idg. The contents prevents confusion
of these notations with that of the identity (scalar) operator idV on the space
V , as in the next paragraph:

For g = ⊕i∈Zgi, the trivial representation of g0 is denoted by C (if g0 is
simple) whereas C[k] denotes a representation of g0 trivial on its semi-simple
part and such that k is the value of the central element z from g0, where z is
chosen so that z|gi = i · idgi .

Further elucidations. In formulas (2.93)–(2.96) below: in parentheses
after the “family name” of the algebra there stands the superdimension of the
superspace of indeterminates and — after semicolon — a shorthand descrip-
tion of the regrading r 6= 0.

Passing from one regrading to another one, we take a “minimal” realization
(i.e., with a minimal dimL/L0) as the point of reference. For the exceptional
Lie superalgebras, another point of reference — the compatible (with parity)
grading — is often more convenient, it is denoted by K.

The regradings of the series are governed by a parameter r described in
sec. 2.3.6. All regradings are given in (hopefully) suggestive notations, e.g.,
kasξ(1|6; 3η) means that, having taken kasξ as the point of reference, we set
deg η = 0 for each of the three η’s (certainly, this imposes some conditions on
the degrees of the other indeterminates).

The exceptional grading Regh of hλ(2|2) is described in passing in the
list of occasional isomorphisms (2.97); it is described in detail for another
incarnation of this algebra (2.79).

The finite dimensional Lie superalgebra h(0|n) of hamiltonian vector fields
is not simple: it contains a simple ideal h′(0|n).

On drop-outs. Several algebras are “drop-outs” from the series. Exam-
ples: the algebras svect′(1|n; r) are “drop-outs” from the series svect(m|n; r)
since the latter are not simple for m = 1 but contain the simple ideal
svect′(1|n; r).

Similarly, le(n|n; r), b′1(n|n+1; r) and b′∞(n|n+1; r) are “drop-outs” from
the series bλ(n|n+1; r) corresponding to λ = 0, 1 and∞, respectively, having
either a simple ideal of codimension 1 or a center the quotient modulo which
is simple. (For n = 2, there are more exceptional values of λ.)

Though sm is not a drop-out due to the above reason, it is singled out by
its divergence free property, hence deserves a separate line.

One should not treat the drop-outs lightly, be it the case of characteristic
p, or the super-case. People justly consider the Lie algebras of Hamiltonian
vector fields and its central extension, Poisson algebra (or loop algebra and its
affine Kac-Moody relative) as totally distinct algebras. Likewise, the difference
between sl and psl in characteristic p and in the super-case is enormous: For
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example, the irreducible representation of least dimension of psl is the adjoint
one.

Thus, all drop-outs, without exception, are quite separate items on the
list.

2.4.1. Theorem (Solution to Problem A). The simple W-graded vectorial
Lie superalgebras g constitute the following series (2.93)–(2.95) and five ex-
ceptional families of fifteen individual algebras (2.96). They are pair-wise non-
isomorphic, as graded and filtered superalgebras, bar occasional isomorphisms
(2.97).

For completeness, our tables include finite dimensional “degenerations”
labeled by “FD” instead of the number.

All these algebras are the results of the (generalized) Cartan prolongation
(described below), and therefore are determined by the terms gi with i ≤ 0 (or
i ≤ 1 in some cases).

N the family and conditions for its simplicity

1 vect(m|n; r) for m ≥ 1 and 0 ≤ r ≤ n
FD vect(0|n; r) for n > 1 and 0 ≤ r ≤ n
2 svect(m|n; r) for m > 1, 0 ≤ r ≤ n

FD svect(0|n; r) for n > 2 and 0 ≤ r ≤ n
3 svect′(1|n; r) for n > 1, 0 ≤ r ≤ n
FD s̃vect(0|n) for n > 2

(2.93)

N the family and conditions for its simplicity

4 k(2m + 1|n; r) for 0 ≤ r ≤ [
n

2
] unless (m|n) = (0|2k)

k(1|2k; r) for 0 ≤ r ≤ k except r = k − 1

5 h(2m|n; r) for m > 0 and 0 ≤ r ≤ [
n

2
]

hλ(2|2; r) for λ 6= −2,−1, 0, 1,∞, and

r = 0, 1 and Regh (see (2.97) and sec. 1.3.1)

FD h′(0|n) for n > 3

(2.94)
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N the family and conditions for its simplicity

6 m(n|n + 1; r) for 0 ≤ r ≤ n except r = n− 1

7 sm(n|n+ 1; r) for n > 1 but n 6= 3 and 0 ≤ r ≤ n except r = n− 1

8 bλ(n|n+ 1; r) for n > 1, where λ 6= 0, 1,∞ and 0 ≤ r ≤ n except r = n− 1

bλ(2|3; r), for λ 6= −2,−1, 0, 1,∞, and

r = 0, 1 and Regb (see (2.97) and sec. 1.3.1)

9 b′1(n|n+ 1; r) for n > 1 and 0 ≤ r ≤ n except r = n− 1

10 b′∞(n|n+ 1; r) for n > 1 and 0 ≤ r ≤ n except r = n− 1

11 le(n|n; r) for n > 1 and 0 ≤ r ≤ n except r = n− 1

12 sle′(n|n; r) for n > 2 and 0 ≤ r ≤ n except r = n− 1

13 s̃bµ(2
n−1 − 1|2n−1) for µ 6= 0 and n > 2

(2.95)

More notations. Hereafter we abbreviate algebras m(n|n + 1; r),
bλ(n|n + 1; r), le(n|n; r) and so on from (2.95) to m(n; r), bλ(n; r), le(n; r),
and so on, respectively.

Let λ =
2a

n(a− b) ∈ C ∪ {∞}. Then, as we will see, ba,b(n; r) is a more

natural notation of bλ(n; r). The notations svecta,b(0|n) and spea,b(n) though
look similar to ba,b(n; r) mean something different: they are shorthand for
g⊂+ C(az + bd), where g stands for svect(0|n) or spe(n), respectively, d is the
operator that determines the standard Z-grading of g, and z is the trivial
center.

Exceptional simple algebras. We concede that our notations of excep-
tional simple vectorial superalgebras, though reflect the way they are con-
structed and the geometry preserved (ksle reflects that it is a subalgebra of
k related to sle, and so on), are rather long. But to write just e(sdim) is to
create confusion: the superdimensions of the superspaces (L/L)∗ on which the
algebra L is realized may coincide for different regradings. So, in accordance
with table (2.67), we set (by K we denote compatible gradings, CK is an
exceptional grading found by Cheng and Kac):

Lie superalgebra its regradings (shorthand)

vle(4|3; r), r = 0, 1,K vle(4|3), vle(5|4), and vle(3|6)
vas(4|4) vas(4|4)
kas(1|6; r), r = 0, 1ξ, 3ξ, 3η kas(1|6), kas(5|5), kas(4|4), and kas(4|3)
mb(4|5; r), r = 0, 1, K mb(4|5), mb(5|6), and mb(3|8)
ksle(9|6; r), r = 0, 2,K, CK ksle(9|6), ksle(11|9), ksle(5|10), and ksle(9|11)

(2.96)

2.4.1.1. Occasional isomorphisms. We have:
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vect(1|1) ∼= vect(1|1; 1);
svect(2|1) ∼= le(2; 2); svect(2|1; 1) ∼= le(2)

sm(n) ∼= b2/(n−1)(n); in particular, sm(2) ∼= b2(2), and sm(3) ∼= b1(3),

hence sm(3) is not simple;

sle′(3) ∼= sle′(3; 3);

b1/2(2; 2) ∼= h1/2(2|2) = h(2|2); hλ(2|2) ∼= bλ(2; 2); hλ(2|2; 1) ∼= bλ(2);

b′1(2; Regb)
∼= le(2), le(2; Regb)

∼= b′1(2) and b′∞(2; Regb)
∼= b′∞(2);

bλ(2; Regb)
∼= b−1−λ(2) and hλ(2|2) ∼= h−1−λ(2|2), hence

the fundamental domain is Reλ ≥ −1

2
for λ 6= 0, 1,∞

or Reλ ≤ −1

2
for λ 6= −2,−1;

s̃bµ(2
n−1 − 1|2n−1) ∼= s̃bν(2

n−1 − 1|2n−1) for µν 6= 0.

(2.97)
The isomorphism hλ(2|2) ∼= bλ(2; 2) and the exceptional regrading Regb

of bλ(2) and the determine an exceptional grading Regh of hλ(2|2). These
regradings (Regb and Regh) are not, however, of any interest from the classi-
fication point of view, thanks to isomorphisms (2.97). On the other hand, these
regradings contribute to the group of automorphisms of hλ(2|2) ∼= bλ(2; 2).

2.4.1.2. Remarks. 1) Though bλ(2; r) and hλ(2|2; r) are isomorphic, we
consider them separately because they are deformations of very distinct struc-
tures: the odd and the even bracket, respectively.

Actually, hλ(2|2) ∼= bλ(2; 2) should be considered as an exceptional
family.

2) Warning. Isomorphic abstract Lie superalgebras might be quite dis-
tinct as filtered or graded: e.g., regradings provide us with isomorphisms
([ALSh])

k(1|2) ∼= vect(1|1) ∼= m(1) as abstract algebras. (2.98)

Observe that only one of the above three non-isomorphic graded algebras is
W-graded.

3) The excluded regrading k(1|2) is often considered in physical papers,
despite the fact that this grading (or filtration) is not a Weisfeiler one: For it,
the g0-module g−1 is reducible. Over R, however, k(1|2k; k−1) is a W-grading,
at least, for some real forms, and it is these forms that physicists consider.

4) s̃vect(0|n), as well as s̃bµ(2n−1 − 1|2n−1), depend on an odd parameter
if n is odd.

5) The above Lie superalgebras sometimes admit deformations that do not
possess Weisfeiler filtrations.

Chapter 3

Invariant differential operators: solving
O. Veblen’s problem (P. Grozman, D. Leites,

I. Shchepochkina)

3.1. Introduction

This chapter is a version of the paper [GLS2]. In particular, we have elim-
inated references (which can be found in [GLS2]) to inaccessible papers by
Kochetkov, whose results we redo, anyway.

Setting of the problem. The problem we address — calculation of in-
variant differential operators acting in the (super)spaces of tensor fields on
(super)manifolds with various structures — was a part of the agenda of our
Seminar on Supersymmetries since mid-1970’s. Here we use Grozman’s code
SuperLie [Gr] to verify and correct earlier results and obtain new ones, es-
pecially when bare hands are inadequate. The awful-looking lists of singular
vectors we give in this chapter are to be interpreted in reasonable terms of in-
variant operators acting in the spaces of tensor fields; this is an interesting and
important open problem. We review the whole field with its open problems
and recall interesting Kirillov’s results and problems buried in the VINITI col-
lection [Ki] which is not very accessible. Another nice (and accessible) review
we can recommend in addition to [Ki] is [KMS].

3.1.1. Veblen’s problem. The topology of differentiable manifolds has al-
ways been related with various geometric objects on them and, in particular,
with operators invariant with respect to the group of diffeomorphisms of the
manifold, operators which act in the spaces of sections of “natural bundles”
([KMS]) whose sections are tensor fields, or connections, and so on. For ex-
ample, an important invariant of the manifold, its cohomology, stems from
the de Rham complex whose neighboring terms are bridged by an invariant
differential operator — the exterior differential.

The role of invariance had been appreciated already in XIX century in
relation with physics; indeed, differential operators invariant with respect to
the group of diffeomorphisms preserving a geometric structure are essential
both in formulation of Maxwell’s laws of electricity and magnetism and in
Einstein–Hilbert’s formulation of relativity.
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Simultaneously, invariance became a topic of conscious interest for mathe-
maticians: the representation theory flourished in works of F. Klein, followed
by Lie and É. Cartan, to name the most important contributors; it provided
with the language and technique adequate in the study of geometric struc-
tures. Still, it was not until O. Veblen’s talk in 1928 at the Mathematical
Congress in Bologna ([Veb]) that invariant operators (such as, say, Lie deriva-
tive, the exterior differential, or integral) became the primary object of the
study. In what follows we rule out the integral and other non-local operators;
except in Kirillov’s example, we only consider local operators.

Schouten and Nijenhuis tackled Veblen’s problem: they reformulated it in
terms of modern differential geometry and found several new bilinear invariant
differential operators. Schouten conjectured that there is essentially one unary
invariant differential operator: the exterior differential of differential forms.
This conjecture had been proved in particular cases by a number of people, and
in full generality in 1977–78 by A. A. Kirillov and, independently, C. L. Terng
([Ki], [Ter]).

Thanks to the usual clarity and an enthusiastic way of Kirillov’s presenta-
tion he drew new attention to this problem, at least, in Russia. Under the light
of this attention it became clear (to J. Bernstein) that in 1973 A. Rudakov
[R1] also proved this conjecture (or, rather, an equivalent to it dual problem)
by a simple algebraic method which reduces Veblen’s problem for differential
operators to a “computerizable” one.

Thus, a tough analytic problem was reduced to a problem formally under-
standable by any first year undergraduate: a series of systems of linear equa-
tions in small dimensions plus (easy) induction on dimension. The only snag is
the volume of calculations: to list all unary operators in the key cases requires
a half page; for binary operators one needs about 30 pages and the induc-
tion becomes rather nontrivial, see [G]; for r-nary operators with r > 2 only
some cases seem to be feasible (and of interest), for example, anti-symmetric
operators described by Feigin and Fuchs on the line.

Later Rudakov for the Lie algebras g of divergence-free and Hamiltonian
(and his student I. Kostrikin for the contact series) classified unary g-invariant
differential operators D : T (V ) −→ T (W ), where T (U) is the space of formal
tensor fields with fiber U on the manifold with the g0-structure

1) (resp. with
the contact structure). Or, rather, they listed the corresponding singular vec-
tors, i.e., the vacuum vectors in the dual spaces I(U) corresponding to the
maps D∗ : I(W ∗ ⊗ str) −→ I(V ∗ ⊗ str).

In passing, the definition of the tensor field was generalized and primitive
forms came to foreground.

Speculations on modern physical applications. Broadhurst and Kac
observed [Ka1] that some of the exceptional Lie superalgebras (listed in [Sh],
[CK]) might pertain to a SUSY GUTs (Supersymmetric Grand Unified The-

1 We advise the reader to refresh the definition of the G-structure on a manifold,
see Index.
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ories) or the Standard Model, their linear parts being isomorphic to sl(5) or
sl(3) ⊕ sl(2) ⊕ gl(1). Kac demonstrated [Ka2] that, for the Standard Model
with su(3) ⊕ su(2) ⊕ u(1) as the gauge group, a certain remarkable relation
between vle(3|6) and some of the known elementary particles does take place;
it seems that, for mb(3|8), there is an even better correspondence.

The total lack of enthusiasm from the physicists’ community concerning
these correspondences is occasioned, perhaps, by the fact that no real form of
any of the simple Lie superalgebras of vector fields with polynomial coefficients
has a unitary Lie algebra as its linear part.

Undeterred by this, Kac and Rudakov calculated [KR1] some vle(3|6)-
invariant differential operators D : T (V ) −→ T (W ), where T (U) is the space
of formal tensor fields with irreducible over (vle(3|6))0 (in the standard Z-
grading) and finite dimensional fiber U . More precisely, they have calculated
singular vectors in the dual spaces I(U) := (T (U∗ ⊗ str))∗. To interpret the
answer obtained in terms of singular vectors of the spaces I(U) in geometric
terms of tensor fields is an open problem.

The restriction on finite dimension of fibers makes calculations a sight
easier but strikes out many operators. Nevertheless, the amount of calculations
for mb(3|8) is too high to be performed by hands without mistakes.

Main results of this Chapter. (1) We observe that the linear parts of two
of the W-regradings of mb are Lie superalgebras containing sl(3)⊕sl(2)⊕gl(1).
They (or certain of their real forms) are natural candidates for the algebras
of The would be Standard Models since the modern “no-go” theorems do not
preclude them.

(2) We list (degeneracy conditions for) all invariant differential operators,
or rather the corresponding to them so-called singular vectors, of degrees 1,
and 2 and, in some cases, of all possible degrees (which often are ≤ 2), where
invariance is considered with respect to (separately, not simultaneously) each
of the exceptional simple Lie superalgebras of polynomial vector fields. When
degeneracy conditions are violated (absence of singular vectors) the corre-
sponding induced and coinduced modules are irreducible. For some of these
exceptional simple Lie superalgebras, EVERY module I(V ) has a singular
vector. This is a totally new feature never encountered before in the study of
singular vectors in modules over simple serial vectorial Lie superalgebras (of
series vect, svect, h and k in their standard grading).

3.2. How to solve Veblen’s problem

3.2.1. Rudakov’s breakthrough (following Bernstein [BL2]). Here-
after the ground field K is C or R. Without going into details which will be
given later, observe that the spaces in which invariant operators act fall into
two major cases: spaces of tensor fields (transformations depend on the 1-jet
of diffeomorphism) and spaces depending on higher jets, called HJ-tensors for
short. We will only study tensors here, not HJ-tensors.
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1) Instead of considering Diff(U)-invariant operators, where U is a lo-
cal chart, let us consider vect(U)-invariant operators, where vect(U) is the Lie
algebra of vector fields on U with polynomial coefficients, or its formal comple-
tion. (A posteriori one proves that the global and the local problems are equiv-
alent, cf. [BL2]). Accordingly, instead of tensor fields with smooth coefficients,
we consider their formal version: T (V ) = V ⊗ K[[x]], where x = (x1, . . . , xn)
and n = dimU .

2) We assume here that V is an irreducible gl(n)-module with lowest
weight. Observe that while the requirement of lowest weight seems to be “ob-
viously” reasonable, that on irreducibility is not, unless we confine ourselves
to finite dimensional modules V . In super setting we are forced, in the absence
of complete reducibility, to consider indecomposable representations even for
finite dimensional modules. Irreducible modules is just the simplest first step.

3) Instead of the coinduced module, T (V ), consider the dual induced mod-

ule, I(V ∗) = K[∂] ⊗ V ∗, where ∂i =
∂

∂xi
. The reason: formulas for vect(U)-

action are simpler for I(V ∗) than for T (V ). (The results, contrariwise, are
more graphic in terms of tensor fields.)
Observe that each induced module is a “highest weight one” with respect to
the whole g = vect(U), i.e., the vector of the most highest weight with respect
to the linear vector fields from g0 = gl(n) is annihilated by g+, the subalgebra
of g consisting of all operators of degree > 0 relative the standard grading
(deg xi = 1 for all i).
In what follows the vectors annihilated by g+ will be called singular ones.

4) To every r-nary operator D : T (V1) ⊗ · · · ⊗ T (Vr) −→ T (V ) the dual
operator corresponds

D∗ : I(W ) −→ I(W1)⊗ · · · ⊗ I(Wr), where W = V ∗, Wi =W ∗
i ,

and, since (for details, see [R1]) each induced module is a highest weight one,

to list all the D’s, is the same as
to list all the g0-highest singular vectors D

∗ ∈ I(W1)⊗ · · · ⊗ I(Wr).
(3.1)

In what follows r is called the arity of D.
5) In super setting, as well as for non-super but infinite dimensional fibers,

the above statement (3.1) is not true: The submodule generated by a singular
vector does not have to be a maximal one; it could have another singular
vector of the same degree due to the lack of complete reducibility.
For unary operators invariant with respect to Lie algebras over ground fields
of characteristic 0, this nuisance does not happen; this was one of the (unrea-
sonable) psychological motivations to stick to the finite dimensional case even
for Lie superalgebras, compare [BL2] and [Sm4].

6) Rudakov’s paper [R1] contains two results:
(A) description of vect(n)-singular vectors which in terms of invariant

differential operators in tensor fields reads (thanks to the Poincaré
lemma): only the exterior differential exists;

Ch. 3. Invariant operators 75

(B) proof of the fact that between the spaces of HJ-tensors there are
no unary invariant operators.

3.2.2. Problems. 1) Describe r-nary invariant operators in the spaces of
HJ-tensors for r > 1.

2) Describe r-nary invariant operators in the superspaces of HJ-tensors.

The dual operators. Kirillov noticed Ki that by means of the invariant
pairing (we consider tensor fields with compact support on a manifold M and
tensoring is performed over the space F of functions on M)

B : T (V )× (T (V ∗)⊗F Vol(M)) −→ R, (t, t∗ ⊗ vol) 7→
∫
(t, t∗) vol

one can define the duals of the known invariant operators. For the fields with
formal coefficients we consider there is, of course, no pairing, but we consider a
would be pairing induced by smooth fields with compact support. So the formal
dual of T (V ) is not T (V ∗) because the pairing returns a function instead of a
volume form to be integrated to get a number, and not T (V )∗ because T (V )∗

is a highest weight module while we need a lowest weight one. Answer: the
formal dual of T (V ) is T (V ∗)⊗F Vol(M).

Possibility to dualize, steeply diminishes the number of cases to consider
in computations and helps to check the results. Indeed, with every invariant
operator D : T (V ) −→ T (W ) the dual operator

D∗ : T (W ∗)⊗F Vol(M) −→ T (V ∗)⊗F Vol(M)

is also invariant. For example, what is the dual of d : Ωk −→ Ωk+1? Clearly,
it is the same d but in another incarnation: d : Ωn−k−1 −→ Ωn−k. Though,
roughly speaking, we only have one operator, d (even its expression in co-
ordinates d =

∑
dxi∂i does not depend on its domain of definition, on the

degree of the space of exterior forms it acts on), the shape of singular vectors
corresponding to d differs with k and having found several “new” singular
vectors we must verify that the corresponding operators are indeed distinct.
This might be not easy.

Observe that the dualization arguments do not work when we allow infinite
dimensional fibers (dualization sends the highest module into a lowest weight
one, so it is unclear if a highest weight module with a singular vector always
correspond to this lowest weight one). Sometimes, being tired of calculations,
or when the computer gave up, we formulated the description of singular
vectors “up to dualization”; sometimes even the computer became “tired”.
We will mention such cases extra carefully.

3.2.2.1. Problem. To reconsider these cases on a more powerful computer
is an open Problem.

3.2.3. Further ramifications of Veblen’s problem. Rudakov’s argu-
ments [R1] show that the fibers of HJ-tensors have to be of infinite dimen-
sion; the same holds for Lie superalgebras, though arguments are different.
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Traditionally, fibers of tensor bundles were only considered to be of finite di-
mension, though even in his first paper on the subject Rudakov [R1] digressed
from traditions.

1◦. In the study of invariant operators, one of the “reasons” for confining
to tensors, moreover, the ones corresponding to finite dimensional fibers, is
provided by two of Rudakov’s results:

(1) there are no invariant operators between HJ-tensors,
(2) starting with any highest weight modules I(V ), Rudakov unearthed

singular vectors only for fundamental (hence, finite dimensional) representa-
tions.

Though (1) only applies to unary operators, researchers were somewhat
discouraged to consider HJ-tensors even speaking about operators of higher
arity.

3.2.3.1. Problem. Consider invariant operators of arity > 1 between the
spaces of HJ-tensors. Is it true that in this case there are no invariant operators
either?

2◦. Kirillov proved that (having fixed the dimension of the manifold and
arity) the degree of invariant (with respect to vect(n)) differential operators
is bounded, even dim of the space of invariant operators is bounded.

There seemed to be no doubt that a similar statement holds on superman-
ifolds ... but Kochetkov’s examples reproduced below and our own ones show
that these expectations are false in some cases.

3.2.3.2. Problem. Figure out the conditions under which the dimension of
the space of invariant operators is bounded. (We conjecture that this is true
for all the serial simple vectorial Lie superalgebras in their standard gradings.)

3◦. On the line, all tensors are λ-densities and every r-linear differential
operator is of the form

L : (f1dx
λ1 , . . . , frdx

λr ) −→ PL(f1, . . . , fr)dx
λ.

Kirillov showed (with ease and elegance) that invariance of L is equivalent to
the system

r∑

s=1

[
ts
∂j+1

∂tj+1
s

+ (j + 1)λs
∂j

∂tjs

]
PL(t) =

{
λPL(t) for j = 0

0 for j > 0.
(3.2)

Clearly, differential operators correspond to polynomial solutions PL(t) and

in this case λ =
r∑
s=1

λs − degPL. Kirillov demonstrated that nonpolynomial

solutions of (3.2) do exist: for r = 2 and λ1 = λ2 = 0 the function

PL(t) =
t1 − t2
t1 + t2

satisfies (3.2) for λ = 0.
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3.2.3.3. Problem. What invariant operator corresponds to this solution?
Describe all (any) of the nonpolynomial solutions of (3.2) and the correspond-
ing operators.

4◦. To select a reasonable type of r-nary operators is a good problem.
Symmetric and anti-symmetric operators, as well as operators on λ-densities
are the first choices but even in such simple cases there are few results. These
results, though scanty, are rather interesting: quite unexpectedly, some of them
are related to calculation of the N. Shapovalov determinant for the Virasoro
algebra, cf. [FF1, FF2].

5◦. Since the real forms of simple vectorial Lie algebras are only trivial
ones (in the natural polynomial basis replace all complex coefficients with
reals), the results for R and C are identical. In super cases for nontrivial real
forms some new operators might appear.

3.2.3.4. Problem. To consider these cases is an open Problem.

3.2.4. Arity > 1. Grozman added a new dimension to Rudakov’s solution
of Veblen’s problem: In 1978, he described all binary invariant differential
operators ([G]). It turned out that there are plenty of them but not too many:
modulo dualizations and permutations of arguments there are eight series of
first order operators and several second and third order operators all of which
are compositions of first order operators with one exception: the 3rd order
irreducible Grozman operator on the line. There are no invariant bilinear
operators of order > 3.

Miraculously, the 1st order differential operators determine, bar a few ex-
ceptions, a Lie superalgebra structure on their domain. (Here Lie superal-
gebras timidly indicated their usefulness in a seemingly non-super problem.
Other examples, such as Quillen’s proof of the index theorem, and several
remarkable Witten’s super observations followed soon.)

Limits of applicability of Rudakov’s method. Though fans of
Rudakov’s method, 2) let us point out that its application to simple finite
dimensional subalgebras of the algebras of vector fields is extremely volumi-
nous computational job; therefore, it is ill applicable, say, to isometries of a
Riemannian manifold or the group preserving the Laplace operator.

Fortunately, usually if Rudakov’s method fails, one can apply other meth-
ods (Laplace-Casimir operators, the Shapovalov determinant, etc.).

3.2.5. Generalized tensors and primitive forms. In [R2], Rudakov
considered differential operators invariant with respect to the Lie algebra
of Hamiltonian vector fields on the symplectic manifold (M2n, ω). Thanks
to non-degeneracy of ω we can identify Ωi with Ωn−i. So the operator
d : Ωn−i−1 −→ Ωn−i dual to the exterior differential d : Ωi −→ Ωi+1, and

2 Interplay between restriction and induction functors goes back to Frobenius, but
discovery of each instance deserves an acknowledgement, we presume.
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which, as we already know, is another incarnation of d, looks like a com-
pletely new operator, δ : Ωi+1 −→ Ωi, the co-differential. There are also (pro-
portional to each other) compositions δ ◦ ω ◦ δ and d ◦ ω−1 ◦ d, where ω−1 is
the convolution with the bivector dual to ω.

A novel feature is provided by the fact that “tensors” now are sections of
the representation of sp(V ), not gl(V ). Since various representations of sp(V )
can not be extended to representations of gl(V ) these “tensors” are, strictly
speaking, new notions.

Another novel feature we encounter considering subalgebras g of vect are
primitive forms. If the vect-module I(V ) contains a singular vector with re-
spect to vect, then it also contains a singular vector with respect to g. But
the irreducible vect0-module V does not have to remain irreducible with re-
spect to submodule of the g0. The g0-irreducible component with the biggest
highest weight in V is called the g0-primitive (usually, briefly called just primi-
tive) component. Examples: the primitive components appeared in symplectic
geometry (we encounter their counterparts in finite dimensional purely odd
picture as spherical harmonics, [Shap2, LSH1]) contact analogues of primitive
forms are described in [Le3]. Spaces of primitive differential and integrable
forms are just restrictions of the “usual” domain of the exterior differential;
but for the other types of Lie superalgebras g we may encounter new types of
primitive tensors as domains of totally new invariant operators.

Further examples. A. Shapovalov and Shmelev considered the Lie su-
peralgebras of Hamiltonian vector fields and (following Bernstein who consid-
ered the non-super case) their central extension, the Poisson Lie superlagebra,
see [Shap1], [Shap2] and [Sm2]–[Sm4]. Shmelev also considered the operators
invariant with respect to the funny exceptional deformation hλ(2|2) of the
Lie superalgebra h(2|2) of Hamiltonian vector fields, cf. [Sm1]. For further
description of hλ(2|2), see also [LSh].

By that time I. Kostrikin described singular vectors for the contact Lie
algebras and found a “new” 2nd order invariant operator. This operator was
actually well-known in differential geometry as an Euler operator (for its de-
scription, see [Ly]; here we just briefly observe that it is not

∑
xi∂i, this is an-

other Euler operator); it is needed for invariant formulation of Monge-Ampére
equations, cf. [LRC]. Leites [Le3] generalized I. Kostrikin’s calculations to con-
tact Lie superalgebras and found out that there seem to be no analogue of
Euler’s operator in the super setting. This makes one contemplate on the
following:

3.2.5.1. Problem. What are superanalogs of Monge-Ampére equations, if
any?

In 1977, “odd” analogs of the hamiltonian and contact series (le, m,
their divergence free subalgebras and their deformations) were discovered
[Le2, ALSh]. Batalin and Vilkovisky rediscovered the antibracket related to
these series and showed its importance, cf. [GPS]. In a series of papers, Ko-
chetkov undertook the task of calculating the singular vectors in the modules
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I(V ) over the Lie superalgebras of series le, m, sle, sm which constituted his
Ph.D. thesis. He also considered two of the three known at that time Shchep-
ochkina’s exceptions (and named W1 and W2 after her using the first Cyrillic
letter of her name), one of these exceptional Lie superalgebras was recently
reconsidered in another realization in [KR1]. We have found out more singular
vectors (= invariant operators) than Kochetkov did, even with finite dimen-
sional fibers; SuperLie is indeed indispensable. We have also considered W2;
we reproduce Kochetkov’s result for comparison. For the lack of resources we
left out some possible cases of singular vectors, but we are sure they are im-
probable. Though for vle(4|3) and mb(4|5), all degrees can occur, we are sure
induction à la Kochetkov (complete list of singular vectors) can be performed.
Various W-regradings of ksle seem to be a tougher problem.

3.2.6. Superization leads to new developments. The study of invari-
ant differential operators on supermanifolds began in 1976 as a byproduct
of attempts to construct an integration theory on supermanifolds similar to
the integration theory of differential forms on manifolds. Bernstein and Leites
became interested in Veblen’s problem when they tried to construct an inte-
gration theory for supermanifolds containing an analog of the Stokes formula
([LSoS]). At that time there were only known the differential forms which are
impossible to integrate and the volume forms of the highest degree. Unlike the
situation on manifolds, no volume form coincides with any differential form,
and there was known no analogs of volume forms of lesser degrees.

Having discovered integrable forms [LSoS] (i.e., the forms that can be in-
tegrated; Deligne calls them integral forms [D]) Bernstein and Leites wanted
to be sure that there were no other tensor objects that can be integrated.
Observe several points of this delicate question.

(1) The conventional Stokes formula on a manifold exists due to the fact
that there is an invariant operator on the space of differential forms. The
uniqueness of the integration theory with Stokes formula follows then from
the above result by Rudakov and its superization due to Bernstein and Leites.

Since there are several superanalogs of the determinant, it follows that on
supermanifolds, there are, perhaps, several analogs of integration theory, see
[LInt], some of them without Stokes formula. Still, if we wish to construct an
integration theory for supermanifolds containing an analog of the Stokes for-
mula, and, moreover, coinciding with it when the supermanifold degenerates
to a manifold, we have to describe all differential operators in tensor fields on
supermanifolds.

(2) Bernstein and Leites confined themselves to the study of spaces
of tensor fields T (V ) with f i n i t e d i m e n s i o n a l modules V ow-
ing to the tradition which says that a t e n s o r f i e l d i s a s e c t i o n
o f a v e c t o r b u n d l e w i t h a f i n i t e d i m e n s i o n a l f i b e r V
o n w h i c h t h e g e n e r a l l i n e a r g r o u p o r i t s L i e a l g e b r a
gl(n) a c t s. Even sticking to the “traditional” definition, Bernstein and
Leites had to digress somewhat from the conventions and consider, since it
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was natural, ALL finite dimensional irreducible modules V over the general
linear Lie superalgebra. Some of such representations can not be integrated
to a representation of the general linear supergroup.

Inspired by Duflo, and courageous physicists who incorporated infinite di-
mensional representations in their household long ago, Leites used calculations
of [BL2] to describe invariant differential operators acting in the superspaces
of tensor fields with infinite dimensional fibers, see [LKV]. These operators of
order > 1 are totally new, though similar to fiber-wise integration along the
odd coordinates. The operators of order 1 are also not bad: though they are,
actually, the good old exterior differential d, the new domain is that of semi-
infinite forms, certain class of pseudodifferential forms. Observe that quite
criminally (using V. I. Arnold’s terms) no example of the corresponding new
type homology is calculated yet (and this is an open problem), except some
preliminary (but important) results of Shander, and Voronov and Zorich (see
[LSoS]).

(3) Even under all the restrictions Bernstein and Leites imposed, to say
that “the only invariant differential operator is just the exterior differential”
would be to disregard how drastically they expanded its domain (even though
they ignored semi-infinite possibilities). It acts in the superspace of differential
forms and in the space of integrable forms, which is natural, since the space of
integrable forms is just the dual space to the superspace of differential forms.
Though Bernstein and Leites did not find any new invariant differential oper-
ator (this proves that an integration theory on supermanifolds containing an
analog of the Stokes formula can only be constructed with integrable forms),
they enlarged the domain of the exterior differential to the superspace of pseu-
dodifferential and pseudointegrable forms. These superspaces are not tensor
fields on Mm,n unless n = 1, but they are always tensor fields on the su-
permanifold M̂ whose structure sheaf O

M̂
is a completion of the sheaf of

differential forms on M; namely, the sections of O
M̂

are arbitrary functions of
differentials, not only polynomial ones.

(4) Bernstein and Leites did not consider indecomposable representations
ρ which are more natural in both the supersetting and for infinite dimen-
sional fibers. The first to consider indecomposable cases was Shmelev; [Sm4]
his result was, however, “not interesting”: there are no totally new opera-
tors, just compositions of the known ones with projections. For a review of
indecomposable representations of simple Lie superalgebras, see [LInd].

3.2.6.1. Integration and invariant differential operators for infinite
dimensional fibers. There are new operators invariant with respect to the
already considered (super)groups of diffeomorphisms or, equivalently, their
Lie superalgebras, if we let them act in the superspaces of sections of vec-
tor bundles with infinite dimensional fibers. These operators of high order
have no counterparts on manifolds and are versions of the Berezin integral
applied fiber-wise. A year after the talk with these results was delivered (see
[LKV]), I. Penkov and V. Serganova interpreted some of these new operators
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as acting in the superspaces of certain tensor fields on “curved” superflag and
supergrassmann supervarieties, see [PS].

We hope to relate with some of these operators new topological invariants
(or perhaps old, like cobordisms, but from a new viewpoint). Recall that
since the de Rham cohomology of a supermanifold are the same as those of
its underlying manifold, the “old type” operators are inadequate to study
“topological” invariants of supermanifolds. The operators described here and
related to vector bundles of infinite rank lead to new (co)homology theories
(we prefix them with a “pseudo”). This pseudocohomology provide us with
invariants different from de Rham cohomology; regrettably, never computed
yet.

The approach adopted here for the operators in the natural bundles with
infinite dimensional fibers on supermanifolds prompts us to start looking for
same on manifolds. From the explicit calculations in Grozman’s thesis,[G] it
is clear that there are some new bilinear operators acting in the spaces of
sections of tensor fields with infinite dimensional fibers.

3.2.7. An infinitesimal version of Veblen’s problem. Let F = K[[x]],
where x = (u1, . . . , un, ξ1, . . . , ξm) so that p(ui) = 0̄ and p(ξj) = 1̄. Denote by
(x) the maximal ideal in F generated by the xi. Define a topology in F so that
the ideals (x)r , r = 0, 1, 2, . . . are neighborhoods of zero, i.e., two series are
r-close if they coincide up to order r. We see that F is complete with respect
to this topology.

Denote by vect(n|m) the Lie superalgebra of formal vector fields, i.e., of
continuous derivations of K[[x]]. By abuse of notations we denote derK[x], the
Lie superalgebra of polynomial vector fields, also by vect(n|m).

Define partial derivatives ∂i =
∂

∂xi
∈ vect(n|m) by setting ∂i(xj) = δij

with super-Leibniz rule. Clearly, p(∂i) = p(xi) and [∂i, ∂j ] = 0. Any ele-
ment D ∈ vect(n|m) is of the form D =

∑
fi∂i, where fi = D(xi) ∈ F.

We will denote vect(n|m) by L. In L, define a filtration of the form
L = L−1 ⊃ L0 ⊃ L1 ⊃ . . . setting

Lr = {D ∈ vect(n|m) | D(F) ⊂ (x)r+1}.

This filtration defines a topology on L, the superspaces Lr being the base of
the topology, open neighborhoods of zero.

Denote by L = ⊕Lr, where Lr = Lr/Lr+1, the associated graded Lie
superalgebra. Clearly, L0 ' gl(n|m) with Eij ←→ xj∂i.

Let ρ be an irreducible representation of the Lie superalgebra L0 = gl(n|m)
with lowest weight in a superspace V . Define a vect(n|m)-module T (ρ) also
denoted by T (V ) by setting T (V ) = F ⊗K V . The superspace T (V ) evi-
dently inherits the topology of F. To any vector field D, assign the operator
LD : T (V ) −→ T (V ) — the Lie derivative — such that for f ∈ F and v ∈ V

LD(fv) = D(f)v + (−1)p(D)p(f)
∑

Dijρ(Eij)(v), (3.3)
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where Dij = (−1)p(xi)(p(f)+1)∂ifj . We will usually write just D instead of LD.
The elements t ∈ T (V ) will be called tensor fields of type V . The modules

T (V ) are topological; their duals are spaces with discrete topology.
Observe that even if V is finite dimensional, the elements of T (V ) are

generalized tensors as compared with the classical notion: the space V might
not be realized in the tensor product of co- and contra-variant tensors, only
as a subquotient of such; e.g., unlike the determinant (or trace, speaking on
the Lie algebra level), the supertrace is not realized in tensors and we have to
introduce new type of “tensors” — the λ-densities.

For any L0-module V with highest weight and any L0-module W with
lowest weight set

I(V ) = U(L)⊗U(L0) V ; T (W ) = HomU(L0)(U(L), (3.4)

where we have extended the action of L0 to a U(L0)-action by setting L1V = 0
and L1W = 0. Clearly,

a) I(V ) is an L-module with discrete topology;
b) (I(V ))∗ ∼= T (V ∗); observe that this — correct — answer differs from

our “formally dual” answer (T (V ))∗ := T (V ∗ ⊗ str) which we had to invent
wishing to confine dualization within the class of tensor fields with lowest
weight vectors (analogously, “formally dual” answer in the dual category is
(I(W ))∗ := I(W ∗ ⊗ str) for the highest weight modules);

c) definition of the tensor fields with L-action (3.3) is equivalent to the
one given by (3.4).

Thus, instead of studying invariant maps T (W1) −→ T (W2) (or
T (W1) ⊗ T (W2) −→ T (W3), etc.) we may study submodules — or, equiv-
alently, singular vectors — of I(V ) (resp. of I(V1) ⊗ I(V2), etc.). They are
much easier to describe.

Further generalization of tensors. Let

L = L−d ⊃ · · · ⊃ L0 ⊃ L1 ⊃ . . .

be a Lie superalgebra of vector fields with formal or polynomial coefficients
and endowed with a Weisfeiler filtration/grading described in what follows (for
the time being consider a “most natural” grading, like that in vect above). We
define the space of generalized tensor fields and its dual by the same formula
(3.4) as for the usual tensor fields given any L0-module V with highest weight
and any L0-module W with lowest weight such that L1V = 0 and L1W = 0.

Observe that for the Lie algebra of divergence-free vector fields the spaces
T (W ) are the same as for vect. For some other Lie superalgebras the notion
of tensors we give is different because there are representations of L0 distinct
from tensor powers of the identity one. For example, for the Lie superalgebra
L of Hamiltonian vector fields h(2n|m) such is the spinor representation (for
n = 0); if we consider infinite dimensional fibers such is the oscillator repre-
sentation (for m = 0), and in the general case such is the spinor/oscillator
representation, cf. [LSH1].
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Thus, the first step in the study of L-invariant operators is a description
of irreducible L0-modules, at least in terms of the highest/lowest weight. For
the majority of the L0’s this is not a big deal, but the catch is that for
some L0’s there is no (easy to formulate, or even none at all) highest/lowest
weight theorem, even for finite dimensional modules. We will encounter this
phenomenon with as, the linear part of vas.

An aside remark: being interested not only in representations of vecto-
rial algebras (with polynomial coefficients) but in their stringy analogs (with
Laurent coefficients), too, observe that vacuum over L0 can be degenerate.

3.2.7.1. Problem. For all Weisfeiler gradings of simple vectorial superalge-
bras L, describe conditions for the highest (lowest) weight under which the
irreducible quotient of the Verma module over L0 is finite dimensional and
describe the corresponding module (say, in terms of a character formula, cf.
[PS]).

Examples of generalized tensor fields. Clearly, for L = vect(n|m) we
have L ≡ T (id), where id = Span(∂i | 1 ≤ i ≤ n+m) is the (space V of the)
identity representation of L0 = gl(V ) = gl(n|m). The spaces T (Ei(id∗)) are
denoted by Ωi; their elements are called differential i-forms and the right dual
elements to ∂i are denoted by x̂i = dxi, where p(x̂i) = p(xi)+1̄. In particular,
let F = Ω0 be the algebra of functions.

The algebra Ω̂ of arbitrary, not only polynomial, functions in x̂i = dxi
is called the algebra of pseudodifferential forms. An important, as Shander
showed in [LSoS], subspace Ω̂(λ) of homogeneous pseudodifferential forms of
homogeneity degree λ ∈ K is naturally defined as functions of homogeneity
degree λ with respect to the hatted indeterminates.

Define the space of volume forms Vol to be T (str); denote the volume
element by vol(x) or vol(u|θ). (Observe again that it is a bad habit to denote,
as many people still do, vol by dnudmθ: their transformation rules are totally
different, see, e.g., [BL2], [D].)

The space of integrable i-forms is Σi = HomF(Ω
i,Vol). In other words, in-

tegrable forms are Vol-valued polyvector fields. Pseudointegrable forms are de-
fined as elements of Σ̂ = HomF(Ω̂,Vol); the subspace Σ̂(λ) = HomF(Ω̂

(λ),Vol)
of homogeneous forms is also important.

Particular cases: a) m = 0. We see that Ωi = 0 for i > n and Σi = 0
for i < 0. In addition, the mapping vol 7→ x̂1 · · · x̂n defines an isomorphism of
Ωi with Σi preserving all structures.

b) n = 0. In this case there is an even L-module morphism
∫
: Σ−m −→ K

called the Berezin integral. It is defined by the formula

∫
ξ1 · · · ξm vol = 1, and

∫
ξν11 · · · ξνmm vol = 0 if

∏
νi = 0.

We will also denote by
∫

the composition
∫
: Σ−m → K ↪→ Ω0 of the

Berezin integral and the natural embedding.
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c) m = 1. We generalize Ωi and Σj to the spaces Φλ of pseudointegrodif-
ferential forms containing Ωi and Σj , where λ ∈ K. Let x = (u1, · · · , un, ξ).
Consider a K-graded Ω-module Φ = ⊕Φλ (we assume that deg x̂i = 1 ∈ K)

generated by ξ̂λ, where deg ξ̂λ = λ and p(ξ̂λ) = 0̄, with relations ξ̂ · ξ̂λ = ξ̂λ+1.

Define the action of partial derivatives ∂i and ∂̂j for 1 ≤ i, j ≤ n + 1 via

∂̂j(xi) = 0, ∂i(ξ̂
λ) = 0, ∂ûi(ξ̂

λ) = 0 and ∂ξ̂(ξ̂
λ) = λξ̂λ−1.

On Φ, the derivations d, iD and LD consistent with the exterior derivation
d, the inner product iD and the Lie derivative LD on Ω are naturally defined.

It is easy to see that Φ = ⊕Φλ is a supercommutative superalgebra.
Clearly, Φ is a superspace of tensor fields and for ΦZ = ⊕r∈ZΦ

r we have a
sequence

0 −→ Ω
α−→ ΦZ β−→ Σ −→ 0 (3.5)

where the maps α and β are defined by

α(ω) = ωξ̂0, β(û1 · · · ûnξ̂−1) = vol .

Clearly, the homomorphisms α and β are consistent with the Ω-module struc-
ture and the operators d, iD and LD. The explicit form of the F-basis in Ω,
Σ and Φ easily implies that (3.5) is exact.
3.2.8. Operators invariant with respect to nonstandard realizations.
At the moment the L-invariant differential operators are described for all but
one series of simple vectorial Lie superalgebras in the standard realization.
Contrariwise, about operators invariant with respect to same in nonstandard
realizations almost nothing is known, except for vect(m|n; 1), see [LKV].

For series, the standard realization is the one for which dimL/L0 is min-
imal; for exceptional algebras the notion of the standard realization is more
elusive, and since there are 1 to 4 realizations, it is reasonable and feasible to
consider all of them. It is also natural to consider hλ(2|2) and hλ(2|2; 1) as
exceptional algebras, especially at exceptional values of λ.
3.2.9. On description of irreducible L-modules. Having described
vect(n|m)-invariant differential operators in tensor fields with finite dimen-
sional fibers (answer: only d, and

∫
if n = 0, m 6= 0), we consider the quo-

tients of T (V ) modulo the image of the invariant operator. It could be that
the quotient also contains a submodule. In the general case there are no such
submodules (Poincaré lemma), in other cases anything can happen.

Observe that to describe irreducible L-modules, it does not always suffice
to consider only one realization of L. It is like considering generalized Verma
modules induced or co-induced from distinct parabolic subalgebras. Similarly,
the description of invariant operators must be performed from scratch in each
realization.

Here we do not specifically consider the irreducible L-modules; so far,
the answers are known for tensors with finite dimensional fibers and in two
cases only: [KR2] (vle(3|6)) and [Le3] (k(1|n); weights of singular vectors are
corrected below).
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In what follows in this Chapter, m1 is a nonzero highest weight
vector in the irreducible g0-module V .

3.3. Singular vectors for g = vle(3|6)

We denote the indeterminates by x (even) and ξ (odd); the corresponding
partial derivatives by ∂ and δ. The Cartan subalgebra is spanned by

h1 = −2 x4 ⊗ ∂4 − ξ1 ⊗ δ1 − ξ2 ⊗ δ2 − ξ3 ⊗ δ3,
h2 = −x2 ⊗ ∂2 − x3 ⊗ ∂3 − ξ1 ⊗ δ1,
h3 = −x1 ⊗ ∂1 − x3 ⊗ ∂3 − ξ2 ⊗ δ2,
h4 = −x1 ⊗ ∂1 − x2 ⊗ ∂2 − ξ3 ⊗ δ3

We consider the following negative operators from g0:

a1 = ∂4,
a12 = − x42∂4 − x4ξ1δ1 − x4ξ2δ2 − x4ξ3δ3 + ξ1ξ2∂3 − ξ1ξ3∂2 + ξ2ξ3∂1

a2 = −x1∂1 − x2∂2 − x3∂3 + x4∂4, a3 = x2∂2 + x3∂3 + ξ1δ1
a4 = −x2∂1 + ξ1δ2, a5 = −x3∂1 + ξ1δ3
a6 = −x1∂2 + ξ2δ1, a7 = x1∂1 + x3∂3 + ξ2δ2
a8 = −x3∂2 + ξ2δ3, a9 = −x1∂3 + ξ3δ1
a10 = −x2∂3 + ξ3δ2, a11 = x1∂1 + x2∂2 + ξ3δ3

and the operators from g−:

n1 = δ1, n4 = x4δ3 − ξ1∂2 + ξ2∂1, n7 = ∂1

n2 = δ2, n5 = x4δ2 − ξ1∂3 + ξ3∂1, n8 = ∂2

n3 = δ3, n6 = x4δ1 − ξ2∂3 + ξ3∂2, n9 = ∂3

The mi are the following elements of the irreducible g0-module V :

m1 is the highest weight vector

m2 = a12 ·m1

m3 = a4 ·m1

m4 = a8 ·m1

m5 = a12 · a12 ·m1

m6 = a12 · a4 ·m1

m7 = a12 · a8 ·m1

m8 = a4 · a4 ·m1

m9 = a4 · a8 ·m1

m10 = a8 · a8 ·m1

m11 = a5 ·m1

m12 = a12 · a12 · a12 ·m1

m13 = a12 · a12 · a4 ·m1

m14 = a12 · a12 · a8 ·m1

m15 = a12 · a4 · a4 ·m1

m16 = a12 · a4 · a8 ·m1

Theorem. In I(V ), there are only the following singular vectors of degree d):

1a) (k, k, l, l) −→ (k + 1, k + 1, l, l): n1 ⊗m1;

1b) (k, k, k − 1, k − 1) −→ (k + 1, k, k, k − 1): n2 ⊗m1 + n1 ⊗m3;
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1c) (k − 3, k, k, k − 1) −→ (k − 2, k, k, k): n3 ⊗m1 + n2 ⊗m4 + n1 ⊗m9;

1d) (−k, k − 2, l, 1) −→ (−k − 1, k − 1, l, l), where k 6= 0

k n6 ⊗m1 + n1 ⊗m2;

1e) (−k, k − 2, k − 1, k − 1) −→ (−k − 1, k − 2, k, k), where k 6= 0,−1

k (n5 ⊗m1 + n6 ⊗m3)− n2 ⊗m2 + n1 ⊗m6;

1f) (−k, k + 1, k + 1, k) −→ (−k − 1, k + 1, k + 1, k + 1), where k 6= 0

k (n4 ⊗m1 − n5 ⊗m4 + n6 ⊗m9) + n3 ⊗m2 + n2 ⊗m7 + n1 ⊗m16;

2a) (0,−2, k, k) −→ (0, 0, k − 1, k − 1): (n6·n1)⊗m1;

2b) (0,−2, 0, 0) −→ (0,−1, 1, 0):

(n5·n1 − n6·n2)⊗m1 + (n6·n1)⊗m3

2c) (1, 0, 0,−1) −→ (1, 1, 0, 0):

−(n8+n4·n1)⊗m1+(n3·n1)⊗m2+(n9+n5·n1)⊗m4+(n2·n1)⊗m7−(n6·n1)⊗m9

2d) (−3, 0, 0,−1) −→ (−3, 1, 0, 0)

(n8 + n4·n1 − 2 (n6·n3))⊗m1 + (n3·n1)⊗m2

− (n9 + n5·n1 + 2 (n6·n2))⊗m4 + (n2·n1)⊗m7 − (n6·n1)⊗m9

2e) (0, k,−1, k+1) −→ (0, k, 1, k+1) (The dual cases were not calculated.)

−k (1 + k) (n5·n2)⊗m1 − k (n5·n1 − k n6·n2)⊗m3 + (n6·n1)⊗m8

3a) (k − 2, k, k, k) −→ (k + 1, k + 1, k + 1, k + 1): (n3·n2·n1)⊗m1;

3b) (−3,−1,−1,−1) −→ (−2, 0, 0, 0) (The dual cases were not calculated.)

(n7·n1+n8·n2+n9·n3−n4·n2·n1−n5·n3·n1−n6·n3·n2)⊗m1−(n3·n2·n1)⊗m2

3.4. Singular vectors for g = vle(4|3)

Here g = vle(4|3), former w1. In g0 = c(vect(0|3)) considered in the stan-

dard grading, we take the usual basis of Cartan subalgebra, ξi
∂

∂i
, and z we

identify the g0-module g−1 with Π(Λ(ξ)/C · 1), by setting

∂i = Π(ξi); ∂0 = Π(ξ1ξ2ξ3),

δi = sign(ijk)Π(ξjξk) for (i, j, k) ∈ S3.
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We consider the following negative operators from g0:

y1 = −x1∂2 + ξ2δ1 y2 = −x2∂3 + ξ3δ2

y3 = −x0δ3 − ξ1∂2 + ξ2∂1 y4 = x1∂3 − ξ3δ1
y5 = x0δ2 − ξ1∂3 + ξ3∂1 y6 = x0δ1 + ξ2∂3 − ξ3∂2

and the basis of Cartan subalgebra:

h0 = x1∂1 + x2∂2 + x3∂3 + x0∂0 + ξ1δ1 + ξ2δ2 + ξ3δ3

h1 = x2∂2 + x3∂3 + ξ1δ1

h2 = x1∂1 + x3∂3 + ξ2δ2

h3 = x1∂1 + x2∂2 + ξ3δ3

The mi are the following elements of the irreducible g0-module V :

m2 = y1m1

m3 = y2m1

m7 = y3m1

m8 = y4m1

m12 = y1 y3m1

m15 = y2 y3m1

m17 = y5m1

m26 = y1 y5m1

m31 = y3 y4m1

m32 = (y4)
2m1

m33 = y6m1

m46 = y1 y2 y5m1

m54 = y2 y3 y4m1

m57 = y3 y5m1

m82 = y1 y3 y5m1

m94 = y3 y6m1

m148 = y3 y4 y5m1

m150 = y5 y6m1

and m320 = y3 y5 y6m1. Observe that our choice of ordering obscures the fact
that the vectors m129, m148, and m150 are proportional.

Theorem. In I(V ) in degrees indicated, there are only the following singular
vectors:

1a) λ −→ λ+ (−1, 1, 1, 1), where 2λ1 = λ2 + λ3 + λ4: ∂0m1

1b) (k, l, l, k− l+1) −→ (k− 1, l+1, l+1, k− l+1): ∂0m7 +(k− l)δ3)m1

1c) (k, k − 1, 1, k) −→ (k − 1, k, 1, k + 1):

∂0 (m15 + (k − 2)m17)− (k − 1)δ2m1 + δ3m3

1d) (k, l, k − l, k − l) −→ (k − 1, l, k − l+ 1, k − l + 1):

∂0 (m26+m31+(1−k+2l)m33)+((k−2l)(1+l))δ1m1−(l+1)δ2m2+(l+1)δ3m8

1e) (1, 1, 0, 0) −→ (0, 1, 1, 0):

−2∂1m2+2∂2m1+∂0 (m82+2m94)+2δ1m7+2δ2m12+δ3 (m26−m31+2m33)

1f) (0, 0, 0,−1) −→ (−1, 0, 0, 0):

−∂1m8 + ∂2m3 − ∂3m1

+∂0 (m129 +m148) + δ1 (2m15 −m17) + δ2 (2m31 −m33) + δ3 (m46 +m54)
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2a) λ −→ λ+ (−2, 2, 2, 2), where λ1 = λ2 + λ3 + λ4 + 1: ∂20 m1

2b) (k, k − 2, k − 2, 3) −→ (k − 2, k, k, 4): ∂20 m7 + 2∂0 δ3m1

2c) (k, k − 2, 2, k − 1) −→ (k − 2, k, 3, k + 1):

∂20 (m15 + (k − 4)m17)− 2(k − 3)∂0 δ2m1 + 2∂0 δ3m3

2d) (k, 1, k − 1, k − 1) −→ (k − 2, 2, k + 1, k + 1):

∂20 (m26 +m31 + (3− k)m33) + 2(k − 2)∂0 δ1m1 − 2∂0 δ2m2 + 2∂0 δ3m8

2e) (2, 1, 1, 1) −→ (0, 2, 2, 2):

∂20 m320 + 2∂1 ∂0 (m26 +m31) + 2∂1 δ1m1 − 2∂1 δ2m2

+2∂1 δ3m8 − 2∂2 ∂0m15 + 2∂2 δ2m1 − 2∂2 δ3m3

+2∂3 ∂0m7 + 2∂3 δ3m1 − 2∂0 δ1m57 + ∂0 δ2 (−m82 +m94)

+∂0 δ3 (m148 + 2m150)− 2δ1 δ2m7 − 2δ1 δ3m17 + 2δ2 δ3m33

3a) λ −→ λ+ (−3, 3, 3, 3), where λ1 = λ2 + λ3 + λ4 + 2: ∂30 m1

3b) (k, k − 3, k − 3, 4) −→ (k − 3, k, k, 6): ∂30 m7 + 3∂20 δ3m1

3c) (k, k − 3, 3, k − 2) −→ (k − 3, k, 5, k + 1):

∂30 (m15 + (k − 6)m17)− 3(k − 5)∂20 δ2m1 + 3∂20 δ3m3

3d) (k, 2, k − 2, k − 2) −→ (k − 3, 4, k + 1, k + 1):

∂30 (m26 +m31 + (5− k)m33) + 3(k − 4)∂20 δ1m1 − 3∂20 δ2m2 + 3∂20 δ3m8

3e) (2k, k, k, k) −→ (2k − 3, k + 2, k + 2, k + 2):

∂30 m320 + (k + 1)∂1 ∂
2
0 (m26 +m31) + k(k + 1)∂1 ∂0 δ1m1

−k(k + 1)∂1 ∂0 δ2m2 + k(k + 1)∂1 ∂0 δ3m8

−(k + 1)∂2 ∂
2
0 m15 + k(k + 1)∂2 ∂0 δ2m1

−k(k + 1)∂2 ∂0 δ3m3 + (k + 1)∂3 ∂
2
0 m7

+k(k + 1)∂3 ∂0 δ3m1 − (k + 1)∂20 δ1m57

+∂20 δ2 (−m82 + km94) + ∂0 δ3 (m148 + (k + 1)m150)

−k(k + 1)∂0 δ1 δ2m7 − k(k + 1)∂0 δ1 δ3m17

+k(k + 1)∂0 δ2 δ3m33 − (k − 1)k(k + 1)δ1 δ2 δ3m1

Remarks. Cases a) have an obvious generalization to any degree. Some ex-
pressions can be shortened by an appropriate ordering of the elements of the
enveloping algebra, in other words, some vectors represent zero, e.g., m2, m3,
m8, m15 in cases 2e) and 3e). We did not always perform such renormaliza-
tion; the cases 2e) and 3e) are left as they are to entertain the reader. The
following case — g = mb(4|5) — is strikingly similar.

Ch. 3. Invariant operators 89

3.5. Singular vectors for g = mb(4|5) (after Kochetkov)

Here g = mb(4|5), former W2. Recall that in terms of generating functions
we identify the g0-module g−2 with Π(C ·1); we denote by 1 ∈ m(4) the image
of Π(1); so f1 denotes MfM1. We identify g−1 with Π(Λ(ξ)) by setting

x0 = Π(1), xi = sign(ijk)Π(ξjξk) for (i, j, k) ∈ S3,

η0 = Π(ξ1ξ2ξ3), ηi = Π(ξi).

Let V be an irreducible finite dimensional g0-module with highest weight Λ,
and vΛ the corresponding vector; let f ∈ I(V ) be a nonzero singular vector.

3.5.1. Theorem. In I(V ), there are only the following singular vectors:

1) Λ = (
1

2
,
1

2
,
1

2
, 3), and m = 1 or 3

ηm0 ⊗ v +
∑

1≤i≤3

ηm−1
0 xi ⊗ vi +

∑
1≤i≤3

ηm−1
0 ηi ⊗ wi + ηm−1

0 x0 ⊗ vΛ

2) Λ = (0, 0, 0; 2) and m = 3

η0(
∑

0≤i≤3

ηixi)⊗ vΛ + 2η01⊗ vΛ;

3) Λ = (0, 0, 0; a): ∂20 ⊗ vΛ
4) Λ = (0, 0,−1; 0) for m = 1 or 3

∂m0 ⊗ vΛ +
∑

1≤i≤3

∂m−1
0 δi ⊗ wi +

∑

1≤i≤3

∂m−1
0 ∂j ⊗ vj , where v3 = vΛ.

3.5.2. Remark. In Kochetkov’s paper no description of the vj and wj is
given; now we can compare his result with our latest result:

We give the weights with respect to the following basis of Cartan subalge-
bra:

h1 = τ ; h2 = −q0 ξ0 + q1 ξ1,

h3 = −q0 ξ0 + q2 ξ2, h4 = −q0 ξ0 + q3 ξ3.

For the negative elements of g0 we take

y1 = q2 ξ1, y2 = q3 ξ2, y3 = −q0 q1 + ξ2 ξ3,

y4 = −q3 ξ1, y5 = −q0 q2 − ξ1 ξ3, y6 = −q0 q3 + ξ1 ξ2.

The mi are the following elements of the irreducible g0-module V :
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m2 = y1m1,

m3 = y2m1,

m5 = y1 y2m1

m7 = y3m1,

m8 = y4m1,

m12 = y1 y3m1

m17 = y5m1

m24 = y1 y2 y3m1

m30 = y2 y5m1

m31 = y3 y4m1

m33 = y6m1

m320 = y3 y5 y6m1

m57 = y3 y5m1

m91 = y2 y3 y5m1

m94 = y3 y6m1

m148 = y3 y4 y5m1

m150 = y5 y6m1

Observe that our choice of ordering obscures the fact that some of the vectors
either are proportional or represent zero.

3.5.3. Theorem. In I(V ), there are only the following singular vectors:

1a) λ −→ λ+ (−1, 1, 1, 1), where λ1 = λ2 + λ3 + λ4: ξ0m1.

1b) (−k + 2l − 2, k, l, l) −→ (−k + 2l− 3, k + 1, l, l): −kq1m1 + ξ0m7

1c) (k, k, k + 1, k + 1) −→ (k − 1, k, k + 2, k + 1):

−kq1m2 − kq2m1 + ξ0m12

1d) (2k + 1, k, 0, k + 1) −→ (2k, k, 1, k + 1)

q1m2 − kq2m1 + ξ0 (m12 − (k + 1)m17)

1e) (k + 3, k, k, k − 1) −→ (k + 2, k, k, k)

−(k−3)q1(m5+m8)+2(k−3)q2m3−2(k−3)q3m1+ξ0(m24−3m30+m31+5m33)

1f) (2k + 1, k, k, 1) −→ (2k, k, k, 2)

q1 (m5 + (k − 1)m8)− kq2m3 + k(k − 1)q3m1

+ξ0 (m24 − (k + 1)m30 + (k − 1)m31 + (k2 + 1)m33)

1g) (3, 1, 1, 1) −→ (2, 0, 0, 0)

q0m1 − q1 (m132 +m148) + q2m91 − q3m57 − ξ0m320

+ξ1m7 + ξ2m12 − ξ3 (−m30 +m31)

2a) λ −→ λ+ (−2, 2, 2, 2), where λ1 = λ2 + λ3 + λ4 + 2: ξ20 m1.

2b) (2k,−2, k, k) −→ (2k − 2, 0, k + 1, k + 1): ξ20 m7 + 2q1 ξ0m1.

2c) (2k, k − 1,−1, k) −→ (2k − 2, k, 1, k+ 1)

ξ20 (m12 − (k + 1)m17) + 2q1 ξ0m2 − 2kq2 ξ0m1

2d) (2k + 2, k, k, 0) −→ (2k, k + 1, k + 1, 2)

ξ20 (−m30 +m31 + (k + 1)m33) + q1 ξ0 (m5 +m8)

−2q2 ξ0m3 + 2kq3 ξ0m1

Ch. 3. Invariant operators 91

2e) (2k, 0, 0, 0) −→ (2k − 2, 0, 0, 0)

((3 − k) + q0 ξ0 + q1 ξ1) + q2 ξ2 + q3 ξ3)m1

3a) λ −→ λ+ (−3, 3, 3, 3), where λ1 = λ2 + λ3 + λ4 + 4: ξ0m1.

3b) (2k + 1,−3, k, k) −→ (2k − 2, 0, k + 2, k + 2): ξ30 m7 + 3q1 ξ
2
0 m1.

3c) (2k + 1, k + 1,−2, k) −→ (2k − 2, k + 4, 1, k + 2)

ξ30 (m12 − (k + 2)m17) + 3q1 ξ
2
0 m2 − 3(k + 1)q2 ξ

2
0 m1

3d) (2k + 3, k, k,−1) −→ (2k, k + 2, k + 2, 2)

ξ30 (m24 − 2m30 + (3 + k)m33) + q1 ξ
2
0 ((2 − k)m5 + (1 + k)m8)

−3q2 ξ20 m3 + 3(1 + k)q3 ξ
2
0 m1

3e) (2, 0, 0, 0) −→ (−1, 1, 1, 1)

(q0 ξ
2
0 + 3ξ30 + q1 ξ0 ξ1 + q2 ξ0 ξ2 + q3 ξ0 ξ3)m1

3f) (k + 2, k, k, k) −→ (k − 1, k + 1, k + 1, k + 1)

ξ30 m320 + (−2 + k)q0 ξ
2
0 m1 + q1 ξ

2
0 (m132 +m148 + (1− k)m150)

+q2 ξ
2
0 (−m91 + (−1 + k)m94) + (2− k)q3 ξ20 m57

−(−3 + k)(−2 + k)ξ0m1 + (−2 + k)ξ20 ξ1m7) + (−2 + k)ξ20 ξ2m12

+ξ20 ξ3 ((−2 + k)m30 + (2− k)m31)− (−2 + k)(−1 + k)kq1 q2 q3m1

+q1 q2 ξ0 (m24 − km30 + (−2 + k)m31 + (2− 2k + k2)m33)

+q1 q3 ξ0 ((−2 + k)m12 − (−2 + k)km17)− (−2 + k)(−1 + k)q1 ξ0 ξ1m1

−(−2 + k)kq1 ξ0 ξ2m2 + q1 ξ0 ξ3 ((2− k)m5 + (−2 + k)km8)

+(−2 + k)(−1 + k)(q2 q3 ξ0m7 − (−2 + k)(−1 + k)q2 ξ0 ξ2m1

−(−2 + k)(−1 + k)q2 ξ0 ξ3m3 − (−2 + k)(−1 + k)q3 ξ0 ξ3m1

3.6. Singular vectors for g = mb(3|8)

We give the weights with respect to the following basis of Cartan subalge-
bra:

H1 =
1

2
τ +

3

2
q1ξ1 − 1

2
q2ξ2 − 1

2
q3ξ3 − 1

2
q4ξ4;

H2 = −q1ξ1 + q2ξ2, H3 = −q1ξ1 + q3ξ3, H3 = −q1ξ1 + q4ξ4.

The basis elements of g− are denoted by

q0 q1 q2 q3,

I ξ1 ξ2 ξ3,
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and
A = −q0q1 + ξ2ξ3, B = −q0q2 − ξ1ξ3, C = −q0q3 + ξ1ξ2.

3.6.1. Theorem. In I(V ), there are only the following singular vectors cal-
culated up to dualization (though some dual vectors are also given):

1a) (k, 0, l, l) −→ (k + 1, 0, l− 1, l− 1): A⊗m1;

1b) (k, l,−k, l+ 1) −→ (k − 1, l,−k + 1, l+ 1), where k 6= 0,−l

k q1⊗ (q2ξ1·m1)− (k+ l)B⊗ (ξ0·m1)− k (k + l) q2 ⊗m1 +A⊗ (ξ0·q2ξ1·m1) .

1c) (k, l, l, 2) −→ (k + 1, l− 1, l − 1, 2), where l 6= 2

A⊗ (q2ξ1·q3ξ2·m1)−B ⊗ (q3ξ2·m1)− (2− l)C ⊗m1.

1d) (k, l, l, 1− k) −→ (k − 1, l, l, 2− k), where k + l 6= 1

−k q1 ⊗ (q3ξ1·m1)−B ⊗ (ξ0·q3ξ2·m1)− k (1− k − l) q3 ⊗m1

−(1− k − l)C ⊗ (ξ0·m1)− k q2 ⊗ (q3ξ2·m1)− A⊗ (ξ0·q3ξ1·m1) .

1e) (k, l, 1, l+ 1) −→ (k + 1, l− 1, 1, l− 1), where l 6= 1

(1− l)B ⊗m1 +A⊗ (q2ξ1·m1) .

1f) (k,−k − 1, l, l) −→ (k − 1,−k + 1, l, l), where k 6= 0

k q1 ⊗m1 +A⊗ (ξ0·m1) .

2a) (0,−1, l, l) −→ (0, 0, l− 1, l− 1): (q1·A)⊗m1;

2b) (0,−1, 1, 1) −→ (0,−1, 1, 0)

(q2·A+ q1·B)⊗m1 + (q1·A)⊗ (q2ξ1·m1) .

2c) (2, 0, 0,−1) −→ (2, 0,−1,−1)

2 ξ2 ⊗m1 + 2 ξ3 ⊗ (q3ξ2·m1)− 2 (q1·A)⊗ (q2ξ1·q3ξ2·m1) + 2 (q2·A)⊗ (q3ξ2·m1)

−2 (q3·A)⊗m1 + (B·A)⊗ (ξ0·q3ξ2·m1)− (C·A)⊗ (ξ0·m1)

2d) (−4, 3, 3, 2) −→ (−4, 3, 2, 2)

−2 (q1·A)⊗ (q2ξ1·q3ξ2·m1)− ξ2 ⊗m1 − ξ3 ⊗ (q3ξ2·m1)− (C·A)⊗ (ξ0·m1)

−3 ( q1·C)⊗m1 + (q3·A)⊗m1 + 3 (q1·B)⊗ (q3ξ2·m1)− (q2·A)⊗ (q3ξ2·m1)

+ (B·A)⊗ (ξ0·q3ξ2·m1) .
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2e) (0, k, 0, k + 1) −→ (0, k − 1, 1, k)

(q1·A)⊗
(
(q2ξ1)

2·m1

)
+ (1− k) (q1·B)⊗ (q2ξ1·m1)

+(1− k) (q2·A)⊗ (q2ξ1·m1) + (−1 + k) k (q2·B)⊗m1.

2f) (0, 1, 0, 2) −→ (0, 0, 0, 2)

(q1·A)⊗
(
(q2ξ1)

2·q3ξ2·m1

)
− (q1·B)⊗ (q2ξ1·q3ξ2·m1)

−2 (q1·C)⊗ (q2ξ1·m1)− (q2·A)⊗ (q2ξ1·q3ξ2·m1)

+2 (q2·B)⊗ (q3ξ2·m1) + 2 (q2·C)⊗m1 − 2 (q3·A)⊗ (q2ξ1·m1) + 2 (q3·B)⊗m1.

3a) (−3, 2, 2, 2) −→ (−2, 1, 1, 1)
− q0 ⊗m1 − (ξ1·A)⊗m1 − (ξ2·B)⊗m1 − (ξ3·C)⊗m1 − (q1·C·B)⊗m1

+(q2·C·A)⊗m1 − (q3·B·A)⊗m1 + (C·B·A)⊗ (ξ0·m1) .

3a∗) (−2, 2, 2, 2) −→ (−3, 2, 2, 2)
−4 I ⊗m1 − 2 q0 ⊗ (ξ0·m1) + 2 (ξ1·q1)⊗m1 − 2 (ξ1·A)⊗ (ξ0·m1)

+2 (ξ2·q2)⊗m1 − 2 (ξ2·B)⊗ (ξ0·m1) + 2 (ξ3·q3)⊗m1 − 2 (ξ3·C)⊗ (ξ0·m1)

−2 (q1·C·B)⊗ (ξ0·m1) + 2 (q2·q1·C)⊗m1 + 2 (q2·C·A)⊗ (ξ0·m1)

−2 (q3·q1·B)⊗m1 + 2 (q3·q2·A)⊗m1 − 2 (q3·B·A)⊗ (ξ0·m1) + C·B·A⊗
(
ξ20 ·m1

)

3b) (1− k, k, k, k) −→ (−2− k, k + 1, k + 1, k + 1), where k 6= −1, 0, 1
−2 k (1 + k) I ⊗ (ξ0·m1)− (1 + k) q0 ⊗

(
ξ0

2·m1

)
+ k (1 + k) (ξ1·q1)⊗ (ξ0·m1)

− (1 + k) (ξ1·A)⊗
(
ξ0

2·m1

)
+ k (1 + k) (ξ2·q2)⊗ (ξ0·m1)

− (1 + k) (ξ2·B)⊗
(
ξ0

2·m1

)
+ k (1 + k) (ξ3·q3)⊗ (ξ0·m1)

− (1 + k) (ξ3·C)⊗
(
ξ0

2·m1

)
− (1 + k) (q1·C·B)⊗

(
ξ0

2·m1

)

+k (1 + k) (q2·q1·C)⊗ (ξ0·m1) + (1 + k) (q2·C·A)⊗
(
ξ0

2·m1

)

−k (1 + k) (q3·q1·B)⊗ (ξ0·m1)

− (−1 + k) k (1 + k) (q3·q2·q1)⊗m1

+k (1 + k) (q3·q2·A)⊗ (ξ0·m1)− (1 + k) (q3·B·A)⊗
(
ξ0

2·m1

)

+(C·B·A)⊗
(
ξ0

3·m1

)

3b∗) (k, 2, 2, 2) −→ (k + 3, 0, 0, 0): C·B·A⊗m1.

4a) (0, 2, 2, 1) −→ (2, 0, 0, 0)

(q0·A)⊗ (q2ξ1·q3ξ2·m1)− (q0·B)⊗ (q3ξ2·m1) + (q0·C)⊗m1

+(ξ1·B·A)⊗ (q3ξ2·m1)− (ξ1·C·A)⊗m1 + (ξ2·B·A)⊗ (q2ξ1·q3ξ2·m1)

+ (ξ2·C·A)⊗ (q2ξ1·m1)− (ξ2·C·B)⊗m1 + (ξ3·C·A)⊗ (q2ξ1·q3ξ2·m1)

− (ξ3·C·B)⊗ (q3ξ2·m1) + (q1·C·B·A)⊗ (q2ξ1·q3ξ2·m1)

− (q2·C·B·A)⊗ (q3ξ2·m1) + (q3·C·B·A)⊗m1



94 Ch. 3. Invariant operators

3.7. Singular vectors for g = ksle(5|10)

We set: δij =
∂

∂θij
+

∑
even permutations (ijklm)

θkl∂m ; e.g.,

δ12 =
∂

∂θ12
+ θ34∂5 + θ45∂3 − θ35∂4,

δ13 =
∂

∂θ13
+ θ25∂4 − θ24∂5 − θ45∂2,

δ14 =
∂

∂θ14
+ θ23∂5 + θ35∂2 − θ25∂3, etc.

The x-part of the elements of g0 = sl(5) is obvious. The negative elements
are:

yij = xi∂j +
∑

k

θjkδki for i < j

and the basis of Cartan subalgebra is hi = yii − yi+1,i+1.
Let us estimate the possible degree of invariant operators. Since the Z-

grading is compatible (with parity) and g0̄ ' svect(5|0), we see that the degree
of the singular vector can not exceed 2× 2 + 10 = 14: each element from g−1

can only contribute once and the degree of singular vector of the svect(5|0)
modules can not exceed 2; each counted with weight 2. In reality, the degree
of singular vectors is much lower, even with infinite dimensional fibers. To
compute the singular vectors directly is possible on modern computers, but
hardly on a workstation; the in-built Mathematica’s restrictions aggravate the
problem.

Still, even simple-minded direct calculations provide us with several first
and second order operators. The only “known” operator, the exterior differen-
tial, is inhomogeneous in the consistent grading and consists of parts of degree
1 and parts of degree 2. To match these parts with our operators is a problem.

The mi are the following elements of the irreducible g0-module V :

m2 = y21 · m1

m3 = y32 · m1

m4 = y43 · m1

m5 = y54 · m1

m7 = y21 · y32 · m1

m8 = y21 · y43 · m1

m9 = y21 · y54 · m1

m11 = y32 · y43 · m1

m12 = y32 · y54 · m1

m14 = y43 · y54 · m1

m16 = − y31 · m1

m17 = − y42 · m1

m18 = − y53 · m1

m24 = y21 · y32 · y43 · m1

m25 = y21 · y32 · y54 · m1

m30 = − y21 · y42 · m1

m31 = − y21 · y53 · m1

m36 = y32 · y43 · y54 · m1

m40 = − y32 · y53 · m1

m44 = − y43 · y31 · m1

m48 = − y54 · y31 · m1

m49 = − y54 · y42 · m1

m51 = − y41 · m1

m52 = − y52 · m1
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m70 = y21 · y32 · y43 · y54 · m1

m73 = − y21 · y32 · y42 · m1

m74 = − y21 · y32 · y53 · m1

m83 = − y21 · y54 · y42 · m1

m86 = − y21 · y52 · m1

m101 = − y32 · y43 · y53 · m1

m115 = − y43 · y54 · y31 · m1

m124 = − y54 · y41 · m1

m127 = y31 · y42 · m1

m128 = y31 · y53 · m1

m130 = y42 · y53 · m1

m132 = − y51 · m1

m171 = y21 · y32 · y32 · y43 · y54 · m1

m175 = − y21 · y32 · y32 · y53 · m1

m181 = − y21 · y32 · y43 · y53 · m1

m184 = − y21 · y32 · y54 · y42 · m1

m187 = − y21 · y32 · y52 · m1

m241 = − y32 · y43 · y54 · y31 · m1

m250 = − y32 · y54 · y41 · m1

m254 = y32 · y31 · y53 · m1

m258 = − y32 · y51 · m1

m279 = y43 · y31 · y53 · m1

m291 = y54 · y31 · y42 · m1

m298 = y31 · y52 · m1

m301 = y53 · y41 · m1

m397 = − y21 · y32 · y32 · y43 · y53 · m1

m539 = y32 · y43 · y31 · y53 · m1

The Cartan subalgebra is spanned by

h1 =x1∂1−θ12δ12−θ13δ13−θ14δ14−θ15δ15−x2∂2−θ12δ12−θ23δ23−θ24δ24−θ25δ25
h2 =x2∂2−θ12δ12−θ23δ23−θ24δ24−θ25δ25−x3∂3−θ13δ13−θ23δ23−θ34δ34−θ35δ35
h3 =x3∂3−θ13δ13−θ23δ23−θ34δ34−θ35δ35−x4∂4−θ14δ14−θ24δ24−θ34δ34−θ45δ45
h4 =x4∂4−θ14δ14−θ24δ24−θ34δ34−θ45δ45− ξ1∂5−θ15δ15−θ25δ25−θ35δ35−θ45δ45

3.7.1. Theorem. In I(V ) in degree d), there are only the following singular
vectors (computed for degree 2 up to dualization):

1a) (k, l, 0, 0) −→ (k, l+ 1, 0, 0): δ12 ⊗m1;

1a∗) (0, 0, k, l) −→ (0, 0, k − 1, l), where k 6= 0 and k + l + 1 6= 0; 3)

2k (1 + k + l) δ45 ⊗ m1 − 2 (1 + k + l) δ35 ⊗ m4

+2δ25 ⊗ ((1 + k − l) m11 + 2 l m17)

+2δ15 ⊗ (3 (−1 + k − l) m24 − 2 (−1 + 2 k − 2 l) m44 + 2 (−1 + 2 k − l) m51)

+2δ34 ⊗ (m14 − (1 + k) m18) + 2δ24 ⊗ (m36 + (1 + k) m40 − 2m49 + 2m52)

−2δ23 ⊗ (m101 + 2m130)

+2δ14 ⊗(3m70+ 3 (−1+k)m74− 4m115+ 2m124− 2 (−1+2 k)m128− 2m132)

−2δ13 ⊗ (3m181 − 4m279 + 2m301) + δ12 ⊗ (m397 − 4m539)

1b) (k, l,−k − 1, 0) −→ (k + 1, l− 1,−k, 0), where l 6= 0

−l δ13 ⊗m1 + δ12 ⊗m3

3 Hereafter in similar statements the reader can check our restrictions: the coeffi-
cient of ⊗m1 must not vanish.
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1b∗) (0, k, l,−k − 1) −→ (0, k − 1, l + 1,−k), where k 6= 0,−1 and l 6= −1

k(1 + k)(1 + l)δ35 ⊗ m1 − (1 + k)(1 + l)δ25 ⊗ m3

+δ15 ⊗ ((1 + k) (1 + k − l) m7 − (1 + k) (k − 2 l) m16)

+k(1 + l)δ34 ⊗m5 − (1 + l)δ24 ⊗ m12

+δ23 ⊗ (m36 − (1 + k) m40 − (1 + k) m49 − k (1 + k) m52)

+δ14 ⊗ ((1 + k − l) m25 − (k − 2 l) m48)

+δ13 ⊗ (m70 −m74 + (1 + k) m83 + km86 − 2m115 + 2m124 + (2 + k) m128

−
(
2 + k2

)
m132

)
− δ12 ⊗ (m184 − km258 − 2m291 − km298)

1c) (k, 0, l,−l− 1) −→ (k + 1, 0, l− 1,−l), where l 6= 0

l δ14 ⊗m1 − δ13 ⊗m4 + δ12 ⊗m17

1c∗) (k,−k − 1, 0, l) −→ (k − 1,−k, 0, l− 1), where k 6= 0 and l 6= 0

−k lδ25 ⊗m1 + l δ15 ⊗m2 + k δ24 ⊗m5 − k δ23 ⊗m18 − δ14 ⊗m9

+δ13 ⊗m31 + δ12 ⊗ (m86 + (1 + k) m132)

1d) (k, l,−k−l−2, 0) −→ (k−1, l,−k−l−1, 0), where k 6= 0 and k+l+1 6= 0

k(1 + k + l)δ23 ⊗ m1 − (1 + k + l)δ13 ⊗ m2

+δ12 ⊗ (m7 + (−1− k) m16)

1d∗) (0, k, l,−k−l−2) −→ (0, k−1, l,−k−l−1), where k 6= 0 and k+l+1 6= 0

k(1 + k + l)δ34 ⊗ m1 − (1 + k + l)δ24 ⊗m3 + δ23 ⊗ (m11 − (1 + k)m17)

+δ14 ⊗ ((1+k−l)m7 + 2 l m16) + δ13 ⊗ (m24 + (1 + k)m30 − 2m44 + 2m51)

−δ12 ⊗ (m73 − 2m127)

1e) (k, 0, 0, l) −→ (k + 1, 0, 0, l− 1), where l 6= 0

l δ15 ⊗m1 − δ14 ⊗m5 + δ13 ⊗m18 + δ12 ⊗m52

1f) (k,−k−1, l,−l−1) −→ (k−1,−k, l−1,−l), where k 6= 0 and l 6= 0,−1

(k l − 1− l)δ24 ⊗ m1 + k(1 + l)δ23 ⊗ m4 + l(1 + l)δ14 ⊗ m2

− (1 + l) δ13 ⊗ m8 + δ12 ⊗ (m24 + l m30 − (1 + k) m44 + (1 + k) (1 + l) m51)

2a) (k, 0, 0, 1) −→ (k + 1, 1, 0, 0)

δ15δ12m1 − δ14δ12m5 + δ13δ12m18

2b) (k,−k − 1, 0, 1) −→ (k − 1,−k + 1, 0, 0), where k 6= 0

−k δ25δ12m1+δ15δ12m2+k δ24δ12m5−δ14δ12m9−k δ23δ12m18+δ13δ12m31
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3.8. Singular vectors for g = ksle(9|11)

Consider the following negative operators from g0:

y1 = x2∂1 − θ13δ23 − θ14δ24 − θ15δ25
y2 = x3∂2 − θ12δ13 − θ24δ34 − θ25δ35
y3 = δ12 + θ34∂5 + θ45∂3 − θ35∂4
y4 = x5∂4 − θ14δ15 − θ24δ25 − θ34δ35

y5 = −x3∂1 − θ12δ23 + θ14δ34 + θ15δ35

y6 = −δ13 − θ25∂4 + θ24∂5 + θ45∂2

y7 = −δ23 − θ14∂5 − θ45∂1 + θ15∂4

and the operators from g−:

n1 = ∂4

n2 = ∂5

n3 = δ14 + θ23∂5 + θ35∂2 − θ25∂3
n4 = δ15 + θ24∂3 − θ23∂4 − θ34∂2
n5 = δ24 + θ15∂3 − θ13∂5 − θ35∂1
n6 = δ25 + θ13∂4 + θ34∂1 − θ14∂3
n7 = δ34 + θ12∂5 + θ25∂1 − θ15∂2
n8 = δ35 + θ14∂2 − θ12∂4 − θ24∂1
n9 = x4∂1 + θ12δ24 + θ13δ34 − θ15δ45

n10 = ξ1∂1 + θ12δ25 + θ13δ35 + θ14δ45

n11 = x4∂2 − θ12δ14 + θ23δ34 − θ25δ45
n12 = ξ1∂2 − θ12δ15 + θ23δ35 + θ24δ45

n13 = x4∂3 − θ13δ14 − θ23δ24 − θ35δ45
n14 = ξ1∂3 − θ13δ15 − θ23δ25 + θ34δ45

n17 = ∂1

n18 = ∂2

n19 = ∂3

n20 = δ45 + θ12∂3 + θ23∂1 − θ13∂2

n15 = − ξ1θ12∂3 + ξ1θ13∂2 − ξ1θ23∂1 + 2 θ12θ13θ23∂4 − θ12θ13θ24∂3+
θ12θ13θ34∂2 − θ12θ14θ23∂3 − θ12θ23θ34∂1 + θ13θ14θ23∂2 + θ13θ23θ24∂1 − ξ1δ45+
2 θ12θ13δ15 + 2 θ12θ23δ25 − θ12θ34δ45 + 2 θ13θ23δ35 + θ13θ24δ45 + θ14θ23δ45

n16 = − x4θ12∂3 + x4θ13∂2 − x4θ23∂1 + 2 θ12θ13δ14 + 2 θ12θ23δ24 + θ12θ35δ45+

2 θ13θ23δ34 − θ13θ25δ45 − θ15θ23δ45 − 2 θ12θ13θ23∂5 + θ12θ13θ25∂3 − θ12θ13θ35∂2+
θ12θ15θ23∂3 + θ12θ23θ35∂1 − θ13θ15θ23∂2 − θ13θ23θ25∂1 − x4δ45

The mi are the following elements of the irreducible g0-module V :

m1 is the highest weight vector

m2 = y1 ·m1

m3 = y2 ·m1

m4 = y3 ·m1

m5 = y4 ·m1

m7 = y1 · y2 ·m1

m9 = y1 · y4 ·m1

m10 = y2 · y2 ·m1

m11 = y2 · y3 ·m1

m12 = y2 · y4 ·m1

m13 = y3 · y4 ·m1

m15 = y5 ·m1

m21 = y1 · y2 · y2 ·m1

m22 = y1 · y2 · y3 ·m1

m27 = y1 · y6 ·m1

m31 = y2 · y3 · y4 ·m1

m36 = y3 · y5 ·m1

m39 = y4 · y5 ·m1

m41 = y7 ·m1

m56 = y1 · y2 · y3 · y4 ·m1

m65 = y1 · y4 · y6 ·m1

m82 = y3 · y4 · y5 ·m1

m88 = y4 · y7 ·m1

m91 = y1 · y1 · y1 · y1 · y1 ·m1

m92 = y1 · y1 · y1 · y1 · y2 ·m1

m93 = y1 · y1 · y1 · y1 · y3 ·m1

m94 = y1 · y1 · y1 · y1 · y4 ·m1

m95 = y1 · y1 · y1 · y2 · y2 ·m1

m96 = y1 · y1 · y1 · y2 · y3 ·m1

m97 = y1 · y1 · y1 · y2 · y4 ·m1

m98 = y1 · y1 · y1 · y3 · y4 ·m1

m99 = y1 · y1 · y1 · y4 · y4 ·m1

m100 = y1 · y1 · y1 · y5 ·m1

3.8.1. Theorem. In I(V ) in degree 1) (higher degrees were not considered),
there are only the following singular vectors:

1a) λ −→ λ+ (0, 0,−2, 1): n16 ⊗m1 for ANY λ;

1b) λ −→ λ+ (0, 0,−1,−1): −λ4n15 ⊗m1 + n16 ⊗m5 for ANY λ;
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1c) (k, l, 1, 1) −→ (k, l+ 1, 0, 0)

−n15 ⊗m4 + 2n14 ⊗m1 + n16 ⊗m13 − 2n13 ⊗m5

1d) (k, l, 2, 0) −→ (k, l+ 1, 0, 1): n16 ⊗m4 − 2n13 ⊗m1;

1e) (k,−1, 1, 1) −→ (k, 0, 1, 0)

−n15⊗m11− 2n12⊗m1+2n14⊗m3+n16⊗m31+2n11⊗m5− 2n13⊗m12

1f) (−1, k, k + 2, 1) −→ (−2, k, k + 2, 0), where k 6= 0

−n15 ⊗ (m22 − (1 + k)m27)− 2 k n10 ⊗m1 + 2 k n12 ⊗m2 + 2n14 ⊗m7

+n16 ⊗ (m56 − (1 + k)m65) + 2 k n9 ⊗m5 − 2 k n11 ⊗m9 − 2n13 ⊗m23

1g) (k, 0,−k − 1, 1) −→ (k − 1, 0,−k − 1, 0), where k 6= 0,−1

−n15 ⊗ (m22 − (k + 2)m27 − (k + 1)m36 − (k + 1)2m41)

+2 k (k + 1)n10 ⊗m1 + 2 (k + 1)n12 ⊗m2

+n14 ⊗ (−2(3 + 2 k)m7 − 2 (1 + k)m15)

+n16 ⊗ (m56 − (k + 2)m65 − (k + 1)m82 − (k + 1)2m88)

−2 k (1 + k)n9 ⊗m5 − 2 (1 + k)n11 ⊗m9 + 2 (1 + k)n13 ⊗ (m23 +m39)

1h) (k,−k − 2, 1, 1) −→ (k − 1,−k − 2, 1, 0), where k 6= 0

−n15 ⊗ (m22 − (1 + k)m36 + (1 + k)m41)− 2 k n10 ⊗m1 − 2n12 ⊗m2

+2n14 ⊗ (m7 − (1 + k)m15) + n16 ⊗ (m56 − (1 + k)m82 + (1 + k)m88)

+2 k n9 ⊗m5 + 2n11 ⊗m9 − 2n13 ⊗ (m23 − (1 + k)m39)

3.9. Singular vectors for g = ksle(11|9)

Here we realize the elements of g, as in [KR1], as divergence-free vector
fields and closed 2-forms with shifted parity. We consider the following nega-
tive operators from g0:

y1 = x2∂1 y2 = x4∂3 y3 = x5∂4

y4 = πdx1dx2 y5 = −x5∂3

and the elements of Cartan subalgebra

h1 = x1∂1 − x2∂2 h2 = −1

2
(x1∂1 + x2∂2) + x3 ∂3,

h3 = −1

2
(x1∂1 + x2∂2) + x4 ∂4, h4 = −1

2
(x1∂1 + x2∂2) + x5 ∂5

The mi are the following elements of the irreducible g0-module V :
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m2 = y1m1

m3 = y2m1

m4 = y3m1

m6 = y1 y2m1

m7 = y1 y3m1

m8 = (y2)
2m1

m9 = y2 y3m1

m10 = (y3)
2m1

m11 = y5m1

m15 = y1 (y2)
2m1

m16 = y1 y2 y3m1

m18 = y1 y5m1

m20 = (y2)
2 y3m1

m21 = y2 (y3)
2m1

m22 = y2 y5m1

m24 = y3 y5m1

m25 = y4m1

m34 = y1 (y2)
2 y3m1

m36 = y1 y2 y5m1

m39 = y1 y4m1

m42 = (y2)
2 (y3)

2m1

m45 = y2 y3 y5m1

m49 = y3 y4m1

m50 = (y5)
2m1

m74 = y1 y3 y4m1

m85 = y2 y3 y4m1

m89 = (y3)
2 y4m1

m126 = y1 y2 y3 y4m1

m146 = y2 (y3)
2 y4m1

m231 = (y2)
2 (y3)

2 y4m1

3.9.1. Theorem. In I(V ) in degrees d), there are only the following singular
vectors (where xi∂jxk∂lmr means (xi∂j)(xk∂l)mr):

1a) (2k,−k, l,m) −→ (2k + 1,−k + 3

2
, l +

1

2
,m+

1

2
): x3 ∂2m1;

1b) (2k, l, 1− k,m) −→ (2k + 1, l+
1

2
,−k + 5

2
,m+

1

2
):

(x3 ∂2)m3 + (1 − k − l)(x4 ∂2)m1;

1c) (2k, l,m, 2− k) −→ (2k + 1, l+
1

2
,m+

1

2
,−k + 7

2
)

(x3∂2)(m11+(−2+k+m)m15)+(1−k−l)(x4∂2)m4+(−1+k+l)(−2+k+m)(x5∂2)m1

1d) (2k, 3− k, 3− k, 2− k) −→ (2k + 1,
5

2
− k, 5

2
− k, 5

2
− k)

(πdx1dx3)m11−(πdx1dx4)m4+(πdx1dx5)m1−(x3∂2)m85+(x4∂2)m49−(x5∂2)m25

1e) (2k, k+1, l,m) −→ (2k−1, k+ 5

2
, l+

1

2
,m+

1

2
): 2k(x3 ∂1)m1+(x3 ∂2)m2

1f) (2k, l, 2 + k,m) −→ (2k − 1, l+
1

2
, k +

7

2
,m+

1

2
)

2k(x3 ∂1)m3 + (x3 ∂2)m6 + 2k(2 + k − l)(x4 ∂1)m1 + (2 + k − l)(x4 ∂2)m2

1g) (2k, l,m, 3 + k) −→ (2k − 1, l+
1

2
,m+

1

2
, k +

9

2
)

(x3 ∂1) (2km9 − 2k(3 + k −m)m11) + (x3 ∂2) (m16 + (−3− k +m)m18)

+2k(2 + k − l)(x4 ∂1)m4 + (2 + k − l)(x4 ∂2)m7

+2k(2 + k − l)(3 + k −m)(x5 ∂1)m1 + (2 + k − l)(3 + k −m)(x5 ∂2)m2

1h) (2k, 4 + k, 4 + k, 3 + k) −→ (2k − 1,
7

2
− k, 7

2
− k, 7

2
− k)
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(π dx1dx3)m18 − (π dx1dx4)m7(π dx1dx5)m2 − 2k(π dx2dx3)m112k(π dx2dx4)m4

−2k(π dx2dx5)m1 − 2k(x3 ∂1)m85 − (x3 ∂2)m126 + 2k(x4 ∂1)m49 + (x4 ∂2)m74)

−2k(x5 ∂1)m25 − (x5 ∂2)m39

2a) (2k,−k − 1, l,m) −→ (2k + 2,−k + 2, l+ 1,m+ 1): (x3 ∂2)
2m1

2b) (2k,−k − 1,−k + 1, l) −→ (2k + 2,−k + 1,−k + 3, l+ 1):

(x3 ∂2)
2m3 + 2x3∂2 x4∂2m1

2c) (2k,−k − 1, l,−k+ 2) −→ (2k + 2,−k + 1, l + 1,−k + 4)

(x3∂2)
2 (m9 + (−2 + k+ l)m11) + 2x3∂2 x4∂2m4 − 2(−2+ k+ l)x3∂2 x5∂2m1

2d) (2k, l,−k,m) −→ (2k + 2, l+ 1,−k + 3,m+ 1)

(x3∂2)
2m8 + (−1 + k + l)(k + l)(x4∂2)

2m1 − 2(−1 + k + l)x3∂2 x4∂2m3

2e) (2k, l,−k,−k+ 2) −→ (2k + 2, l+ 1,−k + 2,−k + 4)

(x3∂2)
2 (m20 − (2m22)) + (−1 + k + l)(k + l)(x4∂2)

2m4

−2(−1 + k + l)x3∂2 x4 ∂2 (m9 −m11)− 2(−1 + k + l)x3 ∂2 x5∂2m3

+2(−1 + k + l)(k + l)x4∂2 x5∂2m1

In particular,

2ea) l = 1− k:

(x3∂2)
2m22 + (x4∂2)

2m4 − x3∂2 x4∂2m9 − 2x3∂2 x5∂2m3 + 2x4∂2 x5∂2m1

2f) (2k, l,m,−k + 1) −→ (2k + 2, l + 1,m+ 1,−k + 4)

(x3∂2)
2(m42+2(−2+k+m)m45+(−2+k+m)(−1+k+m)m50)

+(−1+k+l)(k+l)(x4∂2)
2m10+(−1+k+l)(k+l)(−2+k+m)(−1+k+m)(x5∂2)

2m1

−2(−1+k+l)x3∂2x4∂2(m21+(−2+k+m)m24)

+2(−1+k+l)(−2+k+m)x3∂2x5∂2(m9+(−1+k+m)m11)−
2(−1+k+l)(k+l)(−2+k+m)x4∂2x5∂2m4

In particular,

2fa) (2k,−k + 1,−k,−k+ 1) −→ (2k + 2,−k + 2,−k + 1,−k + 4):

(x3∂2)
2 (m42 − 4m50) + 2(x4∂2)

2m10 + 4(x5∂2)
2m1

+4x3∂2 x4∂2 (−m21 + 2m24) + 8x3∂2 x5∂2) (−m9 +m11) + 8x4∂2 x5∂2m4

2fb) (2k,−k,−k,−k+ 1) −→ (2k + 2,−k + 1,−k + 1,−k + 4):

(x3∂2)
2m45+(x4∂2)

2m10+2(x5∂2)
2m1−x3∂2x4∂2m21−4x3∂2x5∂2m9+4x4∂2x5∂2m4
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2g) (2k, 3− k, 3− k, 1− k) −→ (2k + 2, 3− k, 3− k, 3− k)

(x3∂2)
2m231 + 2(x4∂2)

2m89 + 4(x5 ∂2)
2m25

−4πdx1dx3 x3∂2m45 + 4πdx1dx3 x4∂2m24 − 4πdx1dx3 x5∂2m11

+4πdx1dx4 x3∂2 (m21 −m24)− 4πdx1dx4 x4∂2m10 + 4πdx1dx4 x5∂2m4

+4πdx1dx5 x3∂2 (−3m9 + 2m11) + 4πdx1dx5 x4∂2m4 − 8πdx1dx5 x5∂2m1

−2x3∂2 x4∂2m146 + 4x3∂2 x5∂2m85

−4x4∂2 x5∂2m49

2h) (−2, 0, k, l) −→ (−2, 3, k + 1, l+ 1): (x3∂2)
2m2 − 2x3∂1 x3∂2m1

2i) (2k,−k, l,m) −→ (2k,−k + 2, l+ 2,m+ 1)

(x3∂2)
2m6 + 2kx3∂1 x3∂2m3 + 4k(1 + k)x3∂2 x4∂1m1 + 2(1 + k)x3∂2 x4∂2m2

2j) (2k, k + 1, l,m) −→ (2k, k + 3, l+ 2,m+ 1)

(x3∂2)
2m6 +2kx3∂1 x3∂2m3− 2k(1+ 2k)x3∂1 x4∂2m1

+2kx3∂2 x4∂1m1− 2kx3∂2 x4∂2m2− 2(−1+ k+ l)(k+ l)(−2+ k+m)x4∂2 x5∂2m4

In particular,

2ja) (0, 1, 1,m) −→ (0, 3, 3,m+ 1):

−x3∂1 x4∂2m1 + x3∂2 x4∂1m1

2k) (2k,−k, l, k + 3) −→ (2k,−k + 2, l+ 1, k + 4)

(x3∂2)
2 (m16 + (−3− k + l)m18) + 2kx3∂1 x3∂2 (m9 − (3 + k − l)m11)

+4k(1 + k)x3∂2 x4∂1m4 + 2(1 + k)x3∂2 x4∂2m7

+4k(1 + k)(3 + k − l)x3∂2 x5∂1m1 + 2(1 + k)(3 + k − l)x3∂2 x5∂2m2

2l) (2k, k + 1, l, 2− k) −→ (2k, k + 3, l+ 1, 4− k)

(x3∂2)
2 (m16 + (−2 + k + l)m18) + 2kx3∂1 x3∂2 (m9 + (−2 + k + l)m11)

−2k(1 + 2k)x3∂1 x4∂2m4 + 2k(1 + 2k)(−2 + k + l)x3∂1 x5∂2m1

+2kx3∂2 x4∂1m4 − 2kx3∂2 x4∂2m7

−2k(−2 + k + l)x3∂2 x5∂1m1 + 2k(−2 + k + l)x3∂2 x5∂2m2

In particular,

2la) (0, 1, l, 2) −→ (0, 3, l+ 1, 4):

x3∂1 x4∂2m4 − (l − 2)x3∂1 x5∂2m1 − x3∂2 x4∂1m4 + (l − 2)x3∂2 x5∂1m1

2m) (−2, k, 1, l) −→ (−2, k + 1, 4, l+ 1)

(x3∂2)
2m15+(−2+k)(−1+k)(x4∂2)

2m2−2x3∂1x3∂2m8+2(−2+k)x3∂1x4∂2m3

+2(−2+k)x3∂2x4∂1m3−2(−2+k)x3∂2x4∂2m6−2(−2+k)(−1+k)x4∂1x4∂2m1
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2n) (2k, l,−k + 1, k + 3) −→ (2k, l + 1,−k + 3, k + 5)

(x3∂2)
2(m34−2(1+k)m36)−(2+k−l)(−1+k+l)(x4∂2)

2m7+

2kx3∂1x3∂2(m20−2(1+k)m22)+2k(−1+k+l)x3∂1x4∂2(−m9

+2(1+k)m11)+2kx3∂2x4∂1((3+k−l)m9−2(1+k)m11)+

2x3∂2x4∂2(−(−2+l)m16+(1+k)(−2+k+l)m18)+4k(1+k)(2+k−l)x3∂2x5∂1m3

+2(1+k)(2+k−l)x3∂2x5∂2m6−2k(2+k−l)(−1+k+l)x4∂1x4∂2m4−
4k(1+k)(2+k−l)(−1+k+l)x4∂2x5∂1m1−2(1+k)(2+k−l)(−1+k+l)x4∂2x5∂2m2

2o) (2k, l, k + 2,−k + 2) −→ (2k, l + 1, k + 4,−k + 4)

(x3∂2)
2(m34+(2k)m36)−(2+k−l)(−1+k+l)(x4∂2)

2m7+2kx3∂1x3∂2(m20+2km22)

+2k(−1+k+l)x3∂1x4∂2(−m9+m11)+2k(1+2k)(−1+k+l)x3∂1x5∂2m3

+2kx3∂2x4∂1((3+k−l)m9+(1+5k+2k2−l−2kl)m11)

+2x3∂2x4∂2(−(−2+l)m16+k(3+k−l)m18)−2k(−1+k+l)x3∂2x5∂1m3

+2k(−1+k+l)x3∂2x5∂2m6−2k(2+k−l)(−1+k+l)x4∂1x4∂2m4

+2k(1+2k)(2+k−l)(−1+k+l)x4∂1x5∂2m1−2k(2+k−l)(−1+k+l)x4∂2x5∂1m1

+2k(2+k−l)(−1+k+l)x4∂2x5∂2m2

3.10. Singular vectors for g = kas and g = k(1|n)

The coordinates of the weights are given with respect to the following basis
of g0:

(Kt,Kξ1η1 , . . . ,Kξsηs), s =
[
n

2

]
,

and, for brevity, hereafter in this Chapter we write just f instead of Kf , so
f · g := KfKg whereas fg := Kfg.

3.10.1. Theorem. In I(V ), there are only the following singular for k(1|3)
vectors:

1a) (k,−k) −→ (k − 1,−k + 1): ξ1 ⊗m1;

1a∗) (k + 1, k) −→ (k, k − 1)

ξ1 ⊗
(
(η1θ1)

2·m1

)
− k (−1 + 2 k) η1 ⊗m1 + (1− 2 k) θ1 ⊗ (η1θ1·m1)

1b) (1,−1) −→ (0,−1): ξ1 ⊗ (η1θ1·m1) + θ1 ⊗m1;

2a)
1

2
(3, 1) −→ 1

2
(−1, 1)

I ⊗m1 − 2 (ξ1·θ1)⊗ (η1θ1·m1) + (η1·ξ1)⊗m1
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3.10.2. Theorem. In I(V ), there are only the following singular for k(1|4)
vectors:

1a) (k,−k, 0) −→ (k − 1,−k + 1, 0): ξ1 ⊗m1;

1a∗) (k + 1,−1, k) −→ (k,−1, k − 1), where k 6= 1

ξ1 ⊗ (η1η2·m1) + (1− k) η2 ⊗m1

1b) (k,−1, 1− k) −→ (k − 1,−1, 2− k), where k 6= 2

(−2 + k) ξ2 ⊗m1 + ξ1 ⊗ (ξ2η1·m1)

1c) (k + 2, k, 0) −→ (k + 1, k − 1, 0), where k 6= 0

ξ1 ⊗ (η1η2·m1)− k η2 ⊗m1

2a) (1,−1,−1) −→ (−1, 0, 0): (ξ2·ξ1)⊗m1;

2b) (2,−1, 1) −→ (0, 0, 0): (η2·ξ1)⊗m1;

2c) (2,−1,−1) −→ (0,−1,−1)

I ⊗m1 − (ξ2·ξ1)⊗ (η1η2·m1) + (η1·ξ1)⊗m1 + (η2·ξ2)⊗m1

3.10.3. Theorem. In I(V ), there are only the following singular for k(1|6)
and kas vectors:

1a) λ = (k,−k, l, l) −→ λ+ (−1, 1, 0, 0); kas and k(1|6): ξ1 ⊗m1 (for k(1|6)
only if l = 0; for kas without restrictions);

1a∗) λ = (k, l, 1− k, l+ 1) −→ λ+ (−1, 0, 1, 0)

kas : (−1 + k + l) ξ2 ⊗m1 + ξ1 ⊗ (ξ2η1·m1)

k(1|6) : the above for l = −1

1b) λ = (k, l, l, 2− k) −→ λ+ (−1, 0, 0, 1), where l + k 6= 2

kas : ξ1 ⊗ (ξ2η1·ξ3η2·m1) + ξ2 ⊗ (ξ3η2·m1) + (−2 + k + l) ξ3 ⊗m1

k(1|6) : the above for l = −1

1c) λ = (k, l,−l − 2, k − 2) −→ λ + (−1, 0, 0,−1), where l + k 6= 1 and
k − l 6= 4

kas : ξ1 ⊗ (ξ2η1·η2η3·m1) + (−4 + k − l) ξ1 ⊗ (η1η3·m1)

+(−1 + k + l) ξ2 ⊗ (η2η3·m1)− (−4 + k − l) (−1 + k + l) η3 ⊗m1

k(1|6) : the above for l = −1

The singular vectors of degree 2 for kas and k(1|6) are the same:
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2a) (3,−1,−1,−1) −→ (1,−1,−1,−1)

−2 I ⊗m1 + (ξ2·ξ1)⊗ (ξ3η2·η1η3·m1) + (ξ3·ξ1)⊗ (η1η3·m1)

+ (ξ3·ξ2)⊗ (η2η3·m1)− (η1·ξ1)⊗m1 − (η2·ξ1)⊗ (ξ2η1·m1)

− (η2·ξ2)⊗m1 + (η3·ξ1)⊗ (ξ2η1·ξ3η2·m1)

− (η3·ξ1)⊗ (ξ3η1·m1)− (η3·ξ3)⊗m1

2a∗) (3,−1, 0, 0) −→ (1,−1, 0, 0)

− I ⊗m1 + (ξ2·ξ1)⊗ (ξ3η2·η1η3·m1) + (ξ3·ξ1)⊗ (η1η3·m1)

+ (ξ3·ξ2)⊗ (η2η3·m1)− (η1·ξ1)⊗m1 − (η2·ξ1)⊗ (ξ2η1·m1)

+ (η3·ξ1)⊗ (ξ2η1·ξ3η2·m1)− (η3·ξ1)⊗ (ξ3η1·m1)− (η3·ξ2)⊗ (ξ3η2·m1)

2b) (3,−1,−1, 1) −→ (1,−1,−1, 1)

− I ⊗m1 + (ξ2·ξ1)⊗ (η2η3·ξ3η1·m1)− (ξ3·ξ1)⊗ (ξ2η1·η2η3·m1)

+ (ξ3·ξ1)⊗ (η1η3·m1)− (η1·ξ1)⊗m1 − (η2·ξ1)⊗ (ξ2η1·m1)

− (η2·ξ2)⊗m1 − (η3·ξ1)⊗ (ξ3η1·m1)

− (η3·ξ2)⊗ (ξ3η2·m1) + (η3·ξ3)⊗m1

3.11. Singular vectors for g = kas(1|6; 3ξ)

Set
m2 = ξ1η2m1

m3 = ξ3η1m1

m4 = η3m1

m6 = ξ1η2 ξ3η1m1

m7 = ξ1η2 η3m1

m9 = ξ3η1 η3m1

m10 = ξ3η2m1

m11 = η1m1

m15 = ξ1η2 (ξ3η1)
2m1

m16 = ξ1η2 ξ3η1 η3m1

m18 = ξ1η2 η1m1

m23 = η3 ξ3η2m1

m25 = −(η2m1)

m34 = ξ1η2 (ξ3η1)
2 η3m1

m36 = ξ1η2 ξ3η1 η1m1

m46 = −(ξ3η1 η2m1)

m49 = ξ3η2 η1m1

3.11.1. Theorem. In I(V ) in degrees d), there are only the following sin-
gular vectors:

1a) λ −→ λ+ (1, 1, 1, 1) for ANY λ: ξ1ξ2ξ3m1;

1b) (k, l − 1,−l− 1, k) −→ (k, l,−l, k): ξ1ξ2m1 + ξ1ξ2ξ3m4;

1c) (k, l, k − 1,−l− 1) −→ (k, l, k,−l), where k + l 6= 0

ξ1ξ2m3 − (k + l)ξ2ξ3m1 + ξ1ξ2ξ3 (m9 − (k + l + 1)m11)

1d) (k + 1, k − 1, l,−l) −→ (k + 1, k − 1, l + 1,−l + 1), where k + l 6= 0,
k 6= l+ 1
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ξ1ξ2 (m6 + (−k + l)m10)− (−1 + k − l)(k + l)ξ1ξ3m1

−(k + l)ξ2ξ3m2 + ξ1ξ2ξ3 (m16 − (k + l + 1)m18 + (−k + l)m23 − (k − l)(k + l)m25)

1e) (k + 1, k − 1, 0, 0) −→ (k + 1, k − 1, 1, 1), where k 6= 1 (new for k = 0
only)

ξ1ξ2 (m6 − 2m10) + 2(1− k)ξ1ξ3m1

−2ξ2ξ3m2 − 2ξ1ξ2ξ3 (m18 +m23 + km25)

2a) λ −→ λ+ (1, 2, 2, 1), where λ4 = −2− λ3: ξ1ξ2 · ξ1ξ2ξ3m1;

2b) λ −→ λ+ (1, 2, 1, 2), where λ4 = −1− λ2, λ2 + λ3 6= −1

ξ1ξ2 · ξ1ξ2ξ3m3 + (−1− λ2 − λ3)(ξ2ξ3 · ξ1ξ2ξ3m1)

2c) λ −→ λ+ (1, 1, 2, 2), where λ4 = −λ3, λ2 6= λ3, λ2 + λ3 6= −1

(ξ1ξ2 · ξ1ξ2ξ3) (m6 + (−1− λ2 + λ3)m10)− (λ2 − λ3)(1 + λ2 + λ3)

×(ξ1ξ3 · ξ1ξ2ξ3)m1 + (−1− λ2 − λ3)(ξ2ξ3 · ξ1ξ2ξ3)m2

2d) (k, l, 0, 0) −→ (k + 1, l+ 1, 2, 2), where l 6= 0 (new for l = −1 only)

(ξ1ξ2 · ξ1ξ2ξ3)m10 + l(ξ1ξ3 · ξ1ξ2ξ3)m1 + (ξ2ξ3 · ξ1ξ2ξ3)m2

2e) (k,−k, k − 3, k − 1) −→ (k,−k + 2, k − 2, k)

(ξ1ξ2)
2m3−2ξ2 ·ξ1ξ2ξ3m1+2ξ1ξ2 ·ξ2ξ3m1+ξ1ξ2 ·ξ1ξ2ξ3 (m9−m11)+2ξ2ξ3 ·ξ1ξ2ξ3m4

2f) (k,−k, l, l) −→ (k,−k + 2, l + 1, l+ 1), where k 6= l

(ξ1ξ2)
2m3 − 4(k − l)ξ2 · ξ1ξ2ξ3m1 − 4ξ1ξ2 · ξ1ξ2ξ3m11 + 4ξ2ξ3 · ξ1ξ2ξ3m4

2g) (1 + k, l,−k, 1 + l) −→ (1 + k, l+ 1, 2− k, 2 + l)

(k − l)(1 + k − l)(k + l)ξ1 · ξ1ξ2ξ3m1 + (k − l)(1 + k − l)ξ2 · ξ1ξ2ξ3m2

+ξ1ξ2 · ξ1ξ2ξ3 (m16 + (k − l)m18 + (−1− k − l)m23 + (1 + k − l)(1 + k + l)m25)

−(1 + k − l)(k + l)ξ1ξ3 · ξ1ξ2ξ3m4 + (−1− k + l)ξ2ξ3 · ξ1ξ2ξ3m7

2h) (k + 2, k − 2, k,−k) −→ (k + 2, k − 1, k + 1,−k + 2)

(ξ1ξ2)
2m15 + 2k(−1 + 2k)(ξ2ξ3)

2m2 − 2(−1 + 2k)ξ1 · ξ1ξ2ξ3m3

−2ξ2 · ξ1ξ2ξ3 (m6 + 2km10)− 4k(−1 + 2k)ξ3 · ξ1ξ2ξ3m1 + 2(−1 + 2k)ξ1ξ2 · ξ1ξ3m3

−2(−1 + 2k)ξ1ξ2 · ξ2ξ3m6 + ξ1ξ2 · ξ1ξ2ξ3 (m34 − 2(1 + k)m36 − 2km46 − 2km49)

−4k(−1 + 2k)ξ1ξ3 · ξ2ξ3m1 + 2(−1 + 2k)ξ1ξ3 · ξ1ξ2ξ3 (m9 − (1 + 2k)m11)

+2ξ2ξ3 · ξ1ξ2ξ3 (−(−1 + k)m16 + (−1 + 2k2)m18 + km23 + 2(−1 + 2k)m25)



106 Ch. 3. Invariant operators

2i) (−l + 1, k, k, l+ 1) −→ (−l + 2, k + 2, k + 2, l+ 2)

(k − l)(ξ2ξ3)2m2 − 2(k + l)ξ1 · ξ1ξ2ξ3m3 + 2ξ2 · ξ1ξ2ξ3 (−m6 + (1− k − l)m10)

−2(−1 + k − l)(k + l)ξ3 · ξ1ξ2ξ3m1 + 2ξ1ξ2 · ξ2ξ3 (−m6 +m10)

+2ξ1ξ2 · ξ1ξ2ξ3 (m46 +m49) + 2ξ1ξ3 · ξ1ξ2ξ3 (−m9 + (k − l)m11)

+2ξ2ξ3 · ξ1ξ2ξ3 (m18 −m23 + (2− k + l)m25)

3.12. Singular vectors for g = kas(1|6; 3η)

The mi are the following elements of the irreducible g0-module V :

m2 = ξ2m1

m3 = ξ1η2m1

m4 = ξ3η1m1

m5 = ξ2 ξ1η2m1

m6 = ξ2 ξ3η1m1

m7 = (ξ1η2)
2m1

m8 = ξ1η2 ξ3η1m1

m9 = (ξ3η1)
2m1

m10 = ξ1m1

m11 = ξ3η2m1

m13 = ξ2 ξ1η2 ξ3η1m1

m16 = ξ2 ξ3η2m1

m18 = (ξ1η2)
2 ξ3η1m1

m19 = ξ1η2 (ξ3η1)
2m1

m21 = ξ1η2 ξ3η2m1

m23 = ξ3η1 ξ1m1

m24 = ξ3η1 ξ3η2m1

m25 = −(ξ3m1)

m27 = ξ2 (ξ1η2)
2 ξ3η1m1

m30 = ξ2 ξ1η2 ξ3η2m1

m34 = −(ξ2 ξ3m1)

m37 = (ξ1η2)
2 (ξ3η1)

2m1

m41 = ξ1η2 ξ3η1 ξ1m1

m42 = ξ1η2 ξ3η1 ξ3η2m1

m43 = −(ξ1η2 ξ3m1)

m48 = ξ1 ξ3η2m1

m49 = (ξ3η2)
2m1

m86 = −(ξ1 ξ3m1)

3.12.1. Theorem. In I(V ) in degrees d), there are only the following sin-
gular vectors:

1a) (k, l,m,−m) −→ (l, l,m− 1,−m− 1): η1η3m1;

1b) (k, l,m,−l− 1) −→ (k, l − 1,m,−l− 2): η1η3m3 + (−l +m)η2η3m1;

1c) (k, l,−l− 2,m) −→ (k, l − 1,−l− 3,m)

(1+l−m)(2+l+m)η1η2m1+η1η3 (m8+(−2−l−m)m11)+(−1−l+m)η2η3m4

1d) (k + 3,−k − 2, k, k − 1) −→ (k + 2,−k − 2, k − 1, k − 1)

2kη1m1 − 2kη3m4 + 2kη1η2m2 + η1η3 (m13 +m16) + 2kη2η3m6

1e) (k + 3, k − 1,−k − 1, k − 1) −→ (k + 2, k − 2,−k − 1, k − 1)

2kη1m3 − 4k2η2m1 + 2kη3 (−m8 + (1 + 2k)m11)

+2kη1η2 (m5 + 2km10) + η1η3 (m27 − 2km30 + 2km41 − 2km43 − 4k2m48)

+2kη2η3 (−m16 −m23 +m25)

1f) (4, 0,−1,−1) −→ (3,−1,−1,−1)

−2η1m3) + 2η2m1 + η3 (m8 − 2m11)− η1η2 (m5 +m10)

+η1η3 (m27 +m43 +m48)− η2η3 (2m13 −m16 +m23)
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1g) (4, 0, 0, 0) −→ (2, 0, 0, 0)

6m1+η1 (m5+3m10)+3η2m2−η3 (m16+m23)+η1η2m15+η1η3m86+η2η3m34

2a) (k, l,m, 2−m) −→ (k, l,m− 2,−m): (η1η3)
2m1;

2b) (k, l, l+ 2,−l− 1) −→ (0, l− 1, l+ 1,−l− 3)

(η1η3)
2m3 + 2η1η3 · η2η3m1

2c) (k, l − 2,−l, l+ 1) −→ (k, l − 3,−l− 2, l), where l 6= −1

2

(η1η3)
2 (m8 − (1 + 2l)m11)− 2(1 + 2l)η1η2 · η1η3m1 + 2η1η3 · η2η3m4

2d) (k, l,m,−l) −→ (k, l − 2,m,−l− 2)

(η1η3)
2m7 + (−1 + l −m)(l −m)(η2η3)

2m1 − 2(−1 + l −m)η1η3 · η2η3m3

2e) (k, l − 1,−l− 1,−l+ 1) −→ (k, l − 3,−1− 2,−l)

(η1η3)
2 (m18 − 2m21) + 2l(−1 + 2l)(η2η3)

2m4 + 2(−1 + 2l)η1η2 · η1η3m3

−4l(−1 + 2l)η1η2 · η2η3m1 + 2(−1 + 2l)η1η3 · η2η3 (−2m8 +m11)

2ea) Particular solution for l =
1

2
:

(η1η3)
2m21 + (η2η3)

2m4 + 2η1η2 · η1η3m3 − 2η1η2 · η2η3m1 − η1η3 · η2η3m8

2f) (k, l,−l−1,m) −→ (k, l−2,−l−3,m), where m 6= l, l+1,−l−1,−l−2

(l −m)(1 + l −m)(1 + l +m)(2 + l +m)(η1η2)
2m1

+(η1η3)
2 (m37 − 2(2 + l +m)m42 + (1 + l +m)(2 + l +m)m49)

+(l −m)(1 + l −m)(η2η3)
2m9

+2(l −m)(2 + l +m)η1η2 · η1η3 (m8 − (1 + l +m)m11)

−2(l −m)(1 + l −m)(2 + l +m)η1η2 · η2η3m4

+2(l −m)η1η3 · η2η3 (−m19 + (2 + l +m)m24)

2fa) Particular solution for l = m = 0:

4(η1η2)
2m1 + (η1η3)

2 (m37 − 4m49) + 2(η2η3)
2m9

+8η1η2 · η1η3 (m8 −m11)− 8η1η2 · η2η3m4 + 4η1η3 · η2η3 (−m19 + 2m24)

2fb) Particular solution for l = −1

2
, m =

1

2
:

2(η1η2)
2m1 + (η1η3)

2m42 + (η2η3)
2m9 + 4η1η2 · η1η3m8

−4η1η2 · η2η3m4 − η1η3 · η2η3m19

2g) (4,−3, 1, 0) −→ (3,−3,−1,−1)
(η1η3)

2 (m13+m16)+2η1 ·η1η3m1−2η3 ·η1η3m4+2η1η2 ·η1η3m2+2η1η3 ·η2η3m6
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3.13. Singular vectors for g = vas(4|4)

We consider the following negative operators from g0:

a5 = x2δ3 + x3δ2

a6 = x3δ3

a8 = x2δ4 + x4δ2

a9 = x3δ4 + x4δ3

a10 = x4δ4

a12 = −x2∂1 + ξ1δ2

a13 = −x3∂1 + ξ1δ3

a14 = −x4∂1 + ξ1δ4

a15 = −2x3δ4 − ξ1∂2 + ξ2∂1

a18 = −x3∂2 + ξ2δ3

a19 = −x4∂2 + ξ2δ4

a20 = 2x2δ4 − ξ1∂3 + ξ3∂1

a25 = −x4∂3 + ξ3δ4

a26 = −2x2δ3 − ξ1∂4 + ξ4∂1

For the basis of Cartan subalgebra we take

a11 = −1

2
x1∂1 +

1

2
x2∂2 +

1

2
x3∂3 +

1

2
x4∂4 + ξ1δ1)

a17 =
1

2
x1∂1 −

1

2
x2∂2 +

1

2
x3∂3 +

1

2
x4∂4 + ξ2δ2

a24 =
1

2
x1∂1 +

1

2
x2∂2 −

1

2
x3∂3

1

2
x4∂4 + ξ3δ3

a32 =
1

2
x1∂1 +

1

2
x2∂2 +

1

2
x3∂3 −

1

2
x4∂4 + ξ4δ4)

The mi are the following elements of the irreducible g0-module V :

m1 is the highest weight vector

m2 = a5 ·m1

m3 = a25 ·m1

m4 = a26 ·m1

m8 = a25 · a26 ·m1

m10 = a8 ·m1

m11 = a20 ·m1

m24 = a26 · a20 ·m1

m27 = − a12 ·m1

3.13.1. Theorem. In I(V ), there are only the following singular vectors:

1a) (k, l, l, l) −→ (k + 1, l, l, l): δ1 ⊗m1;

1b) (−1, 0, 0, 0) −→ 1

2
(−1, 1, 1,−1): ∂4m1 + δ1m4

1c)
1

2
(−1, 1, 1,−1) −→ (0, 1, 0, 0): ∂3m1 − ∂4m3 + δ1m11

1d) (l, k + l, l, l) −→ (l, k + l + 1, l, l); two particular cases:

1da) l 6= 0 =⇒ k 6= −1:

−∂3 (4 l m2 +m4)− ∂4 (−m8 + 4 lm10) + δ1 (m24 − 4 l m27)− 4 (1+ k) l δ2m1

1db) l = 0 =⇒ k 6= 0: ∂3m2 + ∂4m10 + δ1m27 + k δ2m1

Chapter 4

The Lie superalgebra osp(1|2), connections
over symplectic manifolds and representations

of Poisson algebras (J. Bernstein)

4.0. Introduction

Here, I describe irreducible representations of Poisson algebras. For this, I
study actions of the central extension of the group of symplectomorphisms on
tensor fields with values in the line bundle (L,∇) endowed with a “maximally
non-flat” connection∇. The language of Lie superalgebras enables us to divide
the space of primitive forms with values in this bundle into tinier parts.

This decomposition is a particular case of manifestation of the Howe du-
ality. A similar construction takes place in the hyperkälerian case. General-
ization of this construction to supermanifolds is also possible, in, at least, two
ways, see [Shap2] and [LSH1, LSh3].

We show that each continuous (with respect to a natural topology) irre-
ducible representation of the Poisson algebra po(2n) is realized in the space of
sections of “twisted” tensor fields over the symplectic manifold. The Lie su-
peralgebra osp(1|2) appears in this description of irreducible representations
of po(2n) in the same way as sl(2) appears to introduce the primitive forms
on the symplectic manifold. Thus with the help of osp(1|2) we construct a
“square root” of the Hodge–Lepage 1) decomposition.

I am thankful to D. Leites who took notes of my 1977 talk at his “Seminar on

Supersymmetries”, and the Department of Mathematics of Stockholm University

for financing a preprint of these notes.

4.1. Primitive forms, invariant differential operators and
irreducible representations of Lie algebras of
Hamiltonian vector fields

4.1.1. Let (M,ω) be a 2n-dimensional (real) symplectic manifold, G the
group of its diffeomorphisms preserving symplectic structure, Ω = ⊕Ωi the
1 For history and more, see [KLR].
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algebra of differential forms on M . The following result is well known, see
[Bou], [Weil].

In Ω, let X+ be the operator of (left exterior) multiplication by ω, let X−

be the operator of the inner multiplication by (i.e., the convolution with) the
bivector dual to the form ω and let H := [X+, X−]. The following statement
is an obvious corollary of definitions, but very important.

4.1.1.1. Theorem. On Ω, the operators X+, X− and H define an sl(2)-
action commuting with the G-action.

The elements of the space P i = KerX− ∩ Ωi are said to be primitive
forms of degree i. The sl(2)-action in Ω is completely reducible; it is the sum
of an infinite number of finite dimensional sl(2)-modules with lowest weights
−n,−n+1, . . . , 0. The primitive forms are, in fact, the lowest weight vectors
of the irreducible components.

4.1.2. Let ρ be a representation of the group Sp(2n;R) in a finite dimensional
space V . Let us give two equivalent definitions of tensor fields of type (ρ, V )
on the symplectic manifold (M,ω). The space of tensor fields of type (ρ, V )
will be denoted by T (ρ, V ) or just T (V ).

a) The group G naturally acts on the space T (ρ): in any coordinate system
x the object t ∈ T (ρ) is defined by the V -valued vector function t(x) such that

t(y(x)) = ρ
(
∂y

∂x

)
t(x), where

∂y

∂x
is the Jacobi matrix.

b) LetGp ⊂ G be the stabilizer of point p ∈M . Clearly,Gp ∼= Sp(2n;R)·N ,
where N is a normal subgroup. Let E −→ M be a vector bundle with fibres
isomorphic to V and let the G-action on E be such that Gp acts in the fibre
over point p via ρ. Then the space of sections of the bundle E and the space
T (ρ) from definition a) coincide.

In this subsection we will describe all G-invariant differential operators
c : T (ρ1) −→ T (ρ2). The problem of their description is, in fact, equivalent
to the following formal problem raised and solved by A. N. Rudakov. For its
various generalizations, see [GLS2].

Let K be an algebraically closed field, CharK = 0. The Lie algebra of
Hamiltonian vector fields h(2n) consists of fields that preserve the form ω,
i.e., h(2n) = {D | LD(ω) = 0}. In other words, h(2n) consists of the vector
fields of the form

Hf =
∑(

∂f

∂qi

∂

∂pi
− ∂f

∂pi

∂

∂qi

)
for any f ∈ K[[q, p]].

The filtration of K[[q, p]] defined by the powers of the maximal ideal (q, p)
induces on h(2n) = L the filtration

L = L−1 ⊃ L0 ⊃ Li ⊃ . . . ,

where Li = {Hf | f ∈ (q, p)i+2}. Set Li = Li/Li+1. Note that L0
∼= sp(2n).
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Let V be an L0-module relative a representation ρ. Let us extend this
representation to L0-module such that L1V = 0. The elements of the space

T (ρ, V ) := HomU(L0)(U(L), V ) ' K[[q, p]]⊗ V

are said to be (formal) tensor fields of type (ρ, V ) because of the isomorphism
above which follows from the Poincaré-Birkhoff-Witt theorem: Indeed,

U(L) ' U(L0 ⊕ L−1) ' U(L0)⊗ U(L−1) and U(L−1) ' K[∂q, ∂p], so

U(L−1)
∗ ' K[[q, p]].

4.1.2.1. Theorem. Let V1 and V2 be irreducible sp(2n)-modules with lowest
weight vector and c : T (V1) −→ T (V2) a non-zero h(2n)-invariant differential
operator. Then one and only one of the following cases may occur:

1) V1 ∼= V2 and c is a scalar operator extending this isomorphism;
2) T (V1) and T (V2) are neighboring terms in the sequence of primitive

forms induced by the de Rham complex

P 0 dp−→ P 1 dp−→ · · · dp−→ Pn
d∗p−→ Pn−1

d∗p−→ · · · d∗p−→ P 0 (4.1)

and c is a multiple of dp, where dp is the composition of the exterior differential
d and the projection Ωi −→ P i.

3) T (V1) = T (V2) = P i and c is a multiple of dpX−d.

This theorem and Appendix to [BL2] imply that G-invariant differential
operators are the same as in the formal case. Actually, Appendix to [BL2] im-
plies that L-invariant differential operators are also invariant with respect to
the Lie algebra of smooth Hamiltonian vector fields. Since L-invariant opera-
tors are also invariant with respect to reflections, i.e., with respect to elements
of G/G0, where G0 is the connected component of the unit, they are also G-
invariant.

The operator d∗p : P
i −→ P i−1 is often called the codifferential and denoted

by δ.

4.1.3. The description of h(2n)-modules. Sec. 4.1.2 and the following
analogue of the Poincaré lemma imply the description of irreducible topolo-
gical representations of the Lie algebra h(2n).

4.1.3.1. Theorem. The sequence (4.1) is exact in all terms except P 0; we
have P 0 ∩Ker dp = K.

The proof of this theorem is analogous to that of Theorem 1 of [BL2].

4.1.3.2. Theorem. ([R2]) Let V be an irreducible sp(2n)-module. Let

irr T (V ) =





T (V ) if T (V ) 6' P i,
Im dpX−d ∩ P i if T (V ) ' P i for i > 0,

K if T (V ) ' P 0.
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All irreducible topological h(2n)-modules are submodules of the modules of
tensor fields T (V ) and are of the form irr T (V ) for some V .

In other words, if V is an irreducible sp(2n)-module and T (V ) 6= P i, then
the module T (V ) is irreducible, whereas if T (V ) = P i, then the structure
of its submodules, though not extremely complicated, requires a moment of
consideration: there are two submodules: kernels of d and δ, respectively, and
the quotient modulo their union is isomorphic to their intersection.

4.2. The Lie superalgebra osp(1|2) and forms with
values in the bundle with the most curved connection on
(M,ω)

4.2.1. The Lie superalgebra osp(1|2) and its representations. The
Lie superalgebra osp(1|2) is the next of kin of the Lie algebra sl(2). Most of
their properties are identical. Here is the standard matrix realization of the Lie
superalgebra osp(1|2), where only basis elements are written. By definition,
X+, X− and H are even, while D+ and D− are odd:

X+ =



0 0 1
0 0 0
0 0 0


, X− =



0 0 0
0 0 0
1 0 0


, H =



1 0 0
0 0 0
0 0 −1




D+ =



0 1 0
0 0 −1
0 0 0


, D− =



0 0 0
1 0 0
0 1 0




The defining relations are

[D+, D−] = H, [H,D±] = ±D±, (4.2)

where we take simultaneously either all the upper or all the lower signs +
or −. Other relations with the non-zero right hand side are listed below for
the convenience of possible computations

[H,X±] = ±X±, [X+, X−] = H,

[X±, D∓] = D±, [D±, D±] = ∓2X±,
(4.3)

Define the osp(1|2)-module Lm: Let {l−m, l−m+1, . . . , lm} be a homoge-
neous basis of Lm, with a parity defined by the eq. p(li) ≡ i mod 2 and the
osp(1|2)-action given by

D−lk = lk−1,

D+lm = 0,

Hlm = mlm.

(4.4)

The relations (4.2) easily imply that

Hlk = klk for any k,

D+lk = c(k)lk+1 for an easy to find coefficient c(k).
(4.5)
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Exercise. Find c(k).

A non-zero vector v ∈ L, where L is an osp(1|2)-module, is said to be the
highest (lowest) weight vector if D+v = 0 (resp., D−v = 0) and Hv = λv for
some λ ∈ K. This λ is called the highest (lowest) weight.

4.2.1.1. Theorem. 1) The element

4 = 2(X+X− +X−X+ +
1

2
(D+D− +D−D+ +H2) =

4X−X+ − 2D−D+ +H2 + 3H

belongs to the center of the universal enveloping algebra of the Lie superalgebra
osp(1|2).

2) If l ∈ Lm, then 4(l) = m(m+ 3)l.
3) Each finite dimensional osp(1|2)-module contains a submodule isomor-

phic to either Lm or Π(Lm) for some m.
4) Finite dimensional representations of osp(1|2) are completely reducible.
5) Lm is an irreducible osp(1|2)-module.
6) Modules Lm and Π(Lm) exhaust the collection of finite dimensional

irreducible osp(1|2)-modules up to isomorphism.

Proof of this theorem is similar to that of corresponding statements for
sl(2), see [Bou]. Note that Theorem 4.2.1.1 implies that any finite dimensional
irreducible osp(1|2)-module is uniquely defined not just by its highest (lowest)
weight, as for simple Lie algebras over C, but by the pair: (the highest (lowest)
weight, and the parity of the highest (lowest) weight vector).

4.2.2. Let L be the space of a (complex) line bundle over a connected sym-
plectic manifold (M,ω) with a connection ∇ such that the curvature form of

∇ is equal to ~ω for some ~ ∈ C. Denote by Ĝ the group of ∇-preserving
automorphisms of the bundle L −→M .

The Ĝ-action on M defines a homomorphism Ĝ −→ G. It is known (see
[Bou]) that this homomorphism is epimorphic in a neighborhood of the unit
of the group G and its kernel is isomorphic to C×.

It is clear that Ĝ acts in the space of tensor fields on M with values in
the bundle L so that 1 ∈ C× acts on these fields as multiplication by ~ ∈ C.
This ~ will be called a weight; the space of tensor fields of type (ρ, V ) and of
weight ~ will be denoted by T~(ρ, V ).

4.2.3. Let us naturally extend the action of X+, X− and H from Ω to Ω~

using the isomorphism of spaces

T~(ρ, V ) ' T (ρ, V )⊗Ω~,

i.e.,X+ 7→ X+⊗1, etc. LetD+ be the connection∇ itself andD− = [X−, D+].
On Ω~, we introduce a superspace structure by setting

p(ϕ⊗ s) = degϕ (mod 2), for any ϕ ∈ Ω and s ∈ Ω0
~.
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Theorem. On Ω~, the operators X+, X−, H and D+, D− define an osp(1|2)-
action commuting with the Ĝ-action.

Proof is a straightforward verification of relations (4.2). ut

The elements of the space
√
P
i

~ = KerD− ∩ P i~ will be called ∇-prim-
itive forms of degree i (and weight ~). Clearly, the osp(1|2)-action on Ω~

is completely reducible. The module Ω~ decomposes into the direct sum
of infinitely many finite dimensional osp(1|2)-modules with lowest weights
−n,−n+ 1, · · · , 0, so that ∇-primitive forms are the lowest weight vectors of
irreducible components.

4.2.4. Coordinate expressions of certain operators in terms of the

supermanifold M̂ = (M,Ω). Though in this paper we can do without
supermanifolds, the formulas of this section will be clearer in terms of super-
manifolds. For the definition of general supermanifolds as ringed spaces whose
structure sheaf is locally isomorphic to the sheaf of sections of the exterior
algebra of a vector bundle, see Ch. 1.

Consider Ω as the superalgebra of functions on a supermanifold, denoted
in what follows M̂ = (M,Ω); the coordinates on M̂ are the even x’s and the
odd x̂’s, where, speaking informally, x̂i = dxi.

Let D =
∑
fi∂i be a vector field on (M,ω). Then, in the coordinates x, x̂,

where x = (q, p), ∂i =
∂

∂xi
, we have the following expressions for the Lie

derivative and several other operators on Ω(M):

LD = D +
∑

x̂j
∂fi
∂xj

∂i;

d =
∑

x̂i∂i;

δ =
∑ ∂

∂p̂i

∂

∂qi
− ∂

∂q̂i

∂

∂pi
;

X+ =
∑

q̂ip̂i; X− = −
∑ ∂

∂p̂i

∂

∂q̂i
; H =

∑
x̂i

∂

∂x̂i
− n.

Let

α = dt+
~

2

∑
(pidqi − qidpi)

be the form of the connection ∇; here t is the coordinate in the fiber of the
line bundle. Then the operators D+ and D− are of the form

D+ =
∑

x̂i
∂

∂x̂i
− ~

2

∑
(q̂ipi − p̂iqi),

D− =
∑(

∂

∂p̂i

∂

∂qi
− ∂

∂q̂i

∂

∂pi

)
− ~

2

∑(
pi

∂

∂p̂i
+ qi

∂

∂q̂i

)
.
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4.3. Irreducible representations of Poisson algebras

4.3.1. The space of the Poisson algebra is the space of functions on a sym-
plectic manifold; the Lie algebra structure is locally defined by the Poisson
bracket.

Denote by po(2n) the formal analogue of this Lie algebra. Explic-
itly, the space of po(2n) coincides with K[[q, p]], where q = (q1, . . . , qn),
p = (p1, . . . , pn), and the Poisson bracket is given by the formula

{f, g} =
∑(

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
.

The powers of the maximal ideal x = (q, p) define a filtration in po(2n) of the
form

L̂ = L̂−2 ⊂ L̂−1 ⊂ L̂0 ⊂ L̂1 ⊂ . . . ,
where L̂i = {f | f ∈ (x)i+2}. Set L̂ = po(2n) and let L̂i = L̂i/L̂i+1. Clearly,
L̂0
∼= sp(2n).
To any function f ∈ po(2n) we assign the Hamiltonian vector field

Hf =
∑(

∂f

∂qi

∂

∂pi
− ∂f

∂pi

∂

∂qi

)
.

Sometimes we have to distinguish between the functions f from C[[q, p]] and
the elements of po(2n) these functions generate; we denote the latter by Kf

(for reasons, see Ch. 2). Obviously, the sequence

0 −→ KK1 −→ po(2n) −→ h(2n) −→ 0

is exact.
Let V be an L̂0-module such that L̂1V = 0. The elements of the space

T~(V ) = Hom
U(L̂0)

(U(L̂)/(K1 − ~), V )

are called (formal) tensor fields of type V and of weight ~.

The operator Kf ∈ L̂ acts in T~(V ) by the formula

Kf (s) = LHf (s) + (~f + α(Hf ))s,

where s ∈ T~(V ) and α is the form of the connection ∇. This formula implies

a geometric interpretation of the Lie algebra L̂ = po(2n) as t h e L i e a l -
g e b r a p r e s e r v i n g t h e c o n n e c t i o n w i t h f o r m α, cf. [Ko].

4.3.2. In this subsection we will assume that ~ 6= 0. The case ~ = 0 is
completely considered in Theorem 4.1.2.1.

Theorem. A) P i~ =
√
P
i

~ ⊕D+

√
P
i−1

~ .
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B) Let V1 and V2 be irreducible sp(2n)-modules with lowest weight vector
and c : T~1(V1) −→ T~2(V2) a non-zero po(2n)-invariant differential operator.
Then ~1 = ~2 = ~ and only the following possibilities may occur:

1) V1 ∼= V2 and c is either the scalar operator extending this isomorphism
or T~(V1) = T~(V2) = P i~ and c is a multiple of D+D−;

2) T~(V1) and T~(V2) are neighboring terms in the sequence

P 0
~

D+◦pr−→ P 1
~

D+◦pr−→ . . .
D+◦pr−→ Pn~

D−−→ Pn−1
~

D−−→ . . .
D−−→ P 0

~ (4.6)

and c is a multiple of the respective D− or D+.

4.3.3. Proof of Theorem 4.3.2. This proof is a direct generalizes the
method due to A. N. Rudakov [R1], [R2] (for an account, see [BL2, GLS2]).
In this subsection we use the results and notations from [R2], [BL2]. Set

L̂ = po(2n) and

I~(V ) = U(L̂)/(K1 − ~)⊗U(L̂0)
V.

4.3.3.1. Lemma. I~(V )∗ = T−~(V
∗).

The L̂-module I~, where ~ is the value of the scalar by which the operator
K1 ∈ L̂ multiplies it, is called discrete whenever dim U(L̂0)v < ∞ and

L̂
r(v)
1 v = 0 for some r(v) ∈ N for any vector v ∈ I~. The modules I~(V ) are

examples of discrete L̂-modules.

Clearly, Hom
L̂
(I~1 , I~2) = 0 if ~1 6= ~2. The elements of IL̂1

~
are called

singular vectors, see [R2].

4.3.3.2. Lemma. Hom
L̂
(I~(V ), I~) ∼= HomL̂0

(V, IL̂1

~
).

This lemma reduces the problem of description of L̂-invariant operators

c : I~(V1) −→ I~(V2) to that of L̂0-homomorphisms c0 : V1 −→ I~(V2)
L̂1 . If

V1 is irreducible, then c0 is defined by the highest weight singular vector;
therefore, the description of different homomorphisms c is reduced to that of
highest weight singular vectors in I~(V ). The identification

U(L̂)/(K1 − ~) ∼= K[∂̂q, ∂̂p]⊗ U(L̂0)

implies that I~(V ) ∼= K[∂̂q, ∂̂p] ⊗ V , where ∂̂qi and ∂̂pi do not commute but
satisfy the relation

[∂̂qi , ∂̂pj ] = δij~ (4.7)

The singular vectors in the po(2n)-modules I~(V ) are the same as in the
h(2n)-modules I(V ) (found in [R1]), but because of relations (4.7) the fact
that the vector is singular does not yet guarantee that this vector spans a
proper submodule. However, singular vectors may only occur in the dual of
P i~; hence, the proof of headings 1)–3) of Theorem 4.3.2 is completed.
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4.3.3.3. Corollary. Let V be an irreducible sp(2n)-module. Let

irr T~(V ) := T~(V ) if T (V ) 6= P i

irr P i~ =
√
P
i

~.

The modules irr T~(V ) exhaust all irreducible continuous po(2n)-modules.



Chapter 5

Poisson superalgebras as analogs of the general
linear Lie algebra. The spinor and oscillator

representations (D. Leites, I. Shchepochkina)

5.1. Introduction

Traditionally, mathematicians learn about the Lie algebra gl(n) rather
early, in courses of Linear Algebra and, in accordance with modern overspe-
cialization and divorce of physics from mathematics in the standard curricula,
may graduate from the university without taking any course where the Poisson
algebra is mentioned.

Unlike mathematicians, physics majors do learn about Poisson algebra,
perhaps, even earlier than Linear Algebra, but the revelation of the crucial
fact that the Poisson algebra po(2n) is, basically, a “quasiclassical limit” of the
“quantum object” — gl(∞) (in one of many incarnations of the general linear
algebra acting on an infinite dimensional space) is seldom made. Students
discover this later, in the postgraduate school.

And, until now, no student ever hears that the there is a one-parameter
family of simple Lie superalgebras isomorphic to gl, or its “queer” version
q, at all values of the parameter but one, and the spinor representations —
traditionally looked at as weird second cousins in the family of tensors — are
just the identity representations of the Lie superalgebras from the mentioned
parametric family at the generic value of the parameter.

The super point of view makes the notions involved simple and transpar-
ent.

The importance of the spinor representation became clear rather early,
more than a century ago. One of the reasons is the following. As is known
from any textbook on representation theory 1), the fundamental represen-
tations (the ones whose highest weights constitute a basis of the lattice of
weights)

R(ϕ1) =W, R(ϕ2) = Λ2(W ), . . . , R(ϕn−1) = Λn−1(W ) (5.1)

1 Among the best, currently, are [FH], [OV].
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of sl(W ), where dimW = n and ϕi is the highest weight of Λi(W ), are ir-
reducible. Any finite dimensional irreducible sl(n)-module Lλ is completely
determined by its highest weight λ =

∑
λiϕi with λi ∈ Z+. The module Lλ

can be realized as a submodule (or quotient) of ⊗
i

(
R(ϕi)

⊗λi
)
.

Similarly, every irreducible gl(n)-module Lλ, where λ = (λ1, . . . λn−1; c)
and c is the eigenvalue of the unit matrix, is realized in the space of ten-
sors, perhaps, twisted with the help of c-densities, namely in the space
⊗
i

(
R(ϕi)

⊗λi
)
⊗ trc, where trc is the 1-dimensional representation — the Lie

algebraic (infinitesimal) version of the representation given by the cth power
of the determinant, i.e., infinitesimally, by c-multiple of trace — given, for any
c ∈ C, by the formula

X 7→ c · tr(X) for any matrix X ∈ gl(W ). (5.2)

Thus, all the irreducible finite dimensional representations of sl(W ) are natu-
rally realized in the space of tensors, i.e., in the subspaces or quotient spaces
(in view of complete reducibility both are true) of the space

T pq =W ⊗ · · · ⊗W︸ ︷︷ ︸
p

⊗W ∗ ⊗ · · · ⊗W ∗

︸ ︷︷ ︸
q

, (5.3)

where W is the space of the identity representation.
For gl(W ), we have to consider the spaces T pq ⊗ trc.
For sp(W ), the construction of irreducible finite dimensional modules is

similar to that for sl(W ), except that the fundamental module R(ϕi) is now
not the whole module Λi(id) but a part of it consisting of the primitive forms.

For o(W ), the situation is totally different: not all fundamental representa-
tions can be realized as (parts of) the modules Λi(id). The exceptional one (or
two, for o(2n)) of them is called the spinor representation; for o(W ), where
dimW = 2n, it is realized in the Grassmann algebra E

.
(V ) of a “half” of

W , where W = V ⊕ V ∗ is a decomposition into the direct sum of subspaces
isotropic with respect to the form preserved by o(W ). For dimW = 2n+1, it
is realized in the Grassmann algebra E

.
(V ⊕W0), whereW = V ⊕V ∗⊕W0 and

W0 is the 1-dimensional space on which the orthogonal form is nondegenerate.
The quantization of the harmonic oscillator leads to an infinite dimensional

analog of the spinor representation which, following Howe, we call the oscil-
lator representation of sp(W ). It is realized in S

.
(V ), where as above, V is a

maximal isotropic subspace of W (with respect to the skew form preserved by
sp(W )). The remarkable likeness of the spinor and oscillator representations
was explained and generalized in a theory of dual Howe’s pairs, [H1], [H2].

The importance of spinor-oscillator representations is different for distinct
classes of Lie algebras and their representations. In the description of irre-
ducible finite dimensional representations of the classical matrix Lie algebras
gl(n), sl(n) and sp(2n) we can do without either spinor or oscillator representa-
tions. We can not do without spinor representation for o(n), but a pessimist
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might say that spinor representation constitutes only
1

n
th of the building

bricks. Our, optimistic, point of view identifies the spinor representations as
one of the two possible types of the building bricks.

For the Witt algebra witt and its central extension, the Virasoro algebra
vir, every irreducible highest weight module is realized as a quotient of a
spinor or, equivalently, oscillator representation, see [FF]. This miraculous
equivalence is known in physics under the name of bose-fermi correspondence,
see [GSW], [K3].

For the list of generalizations of witt and vir, i.e., simple (or close to simple)
stringy Lie superalgebras (in other words, Lie superalgebras of vector fields
on N -extended supercircles), often called by an unfortunate (as explained
in [GLS1]) name “superconformal algebras”, see [GLS1]. The importance of
spinor-oscillator representations diminishes as N grows, but for the most in-
teresting — distinguished ([GLS1]) — stringy superalgebras it is as high as
for vir, cf. [FST].

5.2. The Poisson superalgebra g = po(2n|m)

5.2.1. Certain Z-gradings of g. Recall that g is the Lie superalgebra
whose superspace is C[q, p, Θ], where q = (q1, . . . , qn), p = (p1, . . . , pn),
Θ = (Θ1, . . . , Θm), and the bracket is the Poisson bracket {·, ·}P.b. (in the
realization with the form ω0) given by the formula

{f, g}P.b. =
∑
i≤n

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
−

(−1)p(f) ∑
j≤m

∂f

∂Θj

∂g

∂Θj
for any f, g ∈ C[p, q, Θ].

(5.4)

It is often more convenient to redenote the Θ’s and set (over R such a trans-
formation is impossible)





ξj =
1√
2
(Θj − iΘr+j)

ηj =
1√
2
(Θj + iΘr+j)

for j ≤ r =
[
m

2

]
( here i2 = −1),

θ = Θ2r+1

(5.5)

and accordingly modify the bracket (if m = 2r, there is no term with θ):

{f, g}P.b. =
∑
i≤n

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
−

(−1)p(f)
( ∑
j≤m

(
∂f

∂ξj

∂g

∂ηj
+

∂f

∂ηj

∂g

∂ξj
) +

∂f

∂θ

∂g

∂θ

)
.

(5.6)

Setting deg pi = deg qi = deg θj for all i, j, and further setting
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degLie f = deg f − 2 for any monomial f ∈ C[p, q, θ], (5.7)

we obtain the standard Z-grading of g (indicated are elements that span gk):

degree −2 −1 0 1 . . .
elements 1 p, q, θ f | deg f = 2 f | deg f = 3 . . .

Clearly, g = ⊕
i≥−2

gi.

Exercise. g0 ' osp(m|2n).
Consider now another, “rough”, grading of g. To this end, introduce:

Q = (q, ξ), P = (p, η) and set

degQi = 0, deg θ = 1, degPi =

{
1 if m = 2k
2 if m = 2k + 1.

(5.8)

Remark. Physicists prefer to use half-integer values of the degree for m odd

by setting deg θ =
1

2
and degPi = 1 at all times. Like other mathematicians,

we prefer to deal with integers rather than with fractions.

The above grading (5.8) of the polynomial algebra induces the following
rough grading of the Lie superalgebra g:

m = 2k :
degree . . . −1 0 1

elements . . . C[Q]P 2 C[Q]P C[Q]

m = 2k + 1 :
degree . . . −2 −1 0 1 2

elements . . . C[Q]P 2 C[Q]Pθ C[Q]P C[Q]θ C[Q]

(5.9)

5.2.2. Quantization. The nontrivial deformation Q of the Lie algebra g is
called quantization. There are many ways to quantize g, but all of them are
equivalent (for an overview of the setting of the problem and formulation of
results, see [LSh3]). Recall that we only consider g whose elements are repre-
sented by polynomials; for functions of other types (say, Laurent polynomials)
the uniqueness of quantization may be violated, cf. [Dzh], [KST].

Consider the following quantization, so-called QP -quantization, given on
linear terms by the formulas:

Q : Q 7→ Q̂, P 7→ P̂ := ~
∂

∂Q
, (5.10)

where Q̂ is the operator of left multiplication by Q. Given an arbitrary mono-
mial, rearrange it first so that the Q-terms precede all P -terms and then apply
(5.10) term-wise, assuming Q to be linear over the ground field.

Ch. 5. The spinor and oscillator representations 123

This quantization Q is a deformation of the Lie superalgebra structure (for
every value of parameter ~ the supercommutator of the images [Q(f),Q(g)]
determines a Lie superalgebra structure on Q(po(2n|m)).

The deformed Lie superalgebra Q(po(2n|2k)) is, clearly, the Lie superalge-
bra diff(n|k) of differential operators with polynomial coefficients on Cn|k.

Actually, diff(n|k) is an analog of gl(V ). This is most clearly seen for n = 0,
m = 2k when diff(n|k) IS gl(V ) for V = Λ

.
(ξ). Indeed,

Q(po(0|2k)) = gl(Λ
.
(ξ)) = gl(2k−1|2k−1). (5.11)

For n 6= 0,
Q(po(n|2k)) = “gl”(F(Q)) = diff(Rn|k), (5.12)

We put gl in quotation marks because, for dimV = ∞, there are several
versions of gl(V ), see, e.g., [E].

For m = 2k − 1, we consider po(0|2k − 1) as a subalgebra of po(0|2k).
Exercise. The quantization Q sends po(0|2k) into q(2k−1).

For n 6= 0, the image of Q is an infinite dimensional analog of q(2k), namely,

Q(po(n|2k − 1)) = qdiff(Cn|k) =

D ∈ diff(Cn|k) |




[D, J ] = 0 for J = i(θ +

∂

∂θ
),

[D,Π ] = 0 for Π = (θ +
∂

∂θ
).





(5.13)

5.2.3. Fock spaces and spinor-oscillator representations. The Lie su-
peralgebras diff(Cn|k) and qdiff(Cn|k) have indescribably many irreducible
representations even for n = 0. But one of them, the identity one, in the
superspace of functions on Cn|k, is the “smallest” one.

This smallest representation can be singled out by its other property re-
lated with the fact that on the same space diff(Cn|k) or qdiff(Cn|k) there is not
only a Lie superalgebra structure but also and a structure of an associative
algebra.

To distinguish these Lie and associative structures, we denote the respec-
tive associative algebra by Diff(Cn|k) or QDiff(Cn|k). Each of these associative
superalgebras has only one irreducible representation — the same “smallest”
identity one. This representation is called the Fock space.

As is known, over C, the Lie superalgebras osp(m|2n) are rigid for
(m, 2n) 6= (4, 2). Therefore the through map

h −→ g0 = osp(m|2n) ⊂ g = po(2n|m)
Q−→
{
diff(Cn|k) for m even

qdiff(Cn|k) for m odd

(5.14)
sends any subsuperalgebra h of osp(m|2n) (for (m, 2n) 6= (4, 2)) into its iso-
morphic image.



124 Ch. 5. The spinor and oscillator representations

5.2.3.1. Problem. What are the spinor/oscillator representations of osp(4|2;λ)
or any other non-rigid Lie (super)algebra?

As module over h, the Fock space splits into several submodules. The
irreducible h-submodule which contains the constants is called the spinor-
oscillator representation of h.

In particular cases, for n = 0 and o(m), or m = 0 and sp(2n), this spinor-
oscillator representation turns into the usual spinor representation of o(m) or,
respectively, oscillator representation of sp(2n). We have just given a unified
description of them.

Recall that on the space of functions, even pure even ones, there is a parity
function p̃ given by the property

p̃(f) =

{
˜̄0 if f(−x) = f(x),
˜̄1 if f(−x) = −f(x). (5.15)

To distinguish this parity from the one induced by the Θ’s, we denoted it by
p̃ and will call it t-parity. The Fock space splits, clearly, into the direct sum
of two invariant components: the superspaces of t-even and t-odd functions
with respect to the t-parity; let Π̃ be the functor of t-parity change.

Statement. As o(m)- or sp(2n)-modules, the spaces of t-even and t-odd func-

tions with respect to the t-parity are irreducible and differ by Π̃.

Exercise. 1) As osp(m|2n)-modules, the spaces of t-even and t-odd functions
with respect to the t-parity are irreducible and isomorphic if n = 0; they differ
by Π̃ if n 6= 0.

1) What is the relation between Π̃ and Π?

5.2.4. Primitive alias harmonic elements. The elements of osp(m|2n)
(or its subalgebra h) act in the space of the spinor-oscillator representation
by inhomogeneous differential operators of order ≤ 2 (this order is just the
filtration associated with the “rough” grading):

m = 2k :
degree −1 0 1

elements P̂ 2 P̂ Q̂ Q̂2

m = 2k + 1 :
degree −2 −1 0 1 2

elements P̂ 2 P̂ θ̂ P̂ Q̂ Q̂θ̂ Q̂2

(5.16)

Recall that Mg := {m ∈ M | gm = 0 for any g ∈ g and m ∈M} is a
standard notation of the set of g-invariant elements of the g-module M .

The elements of (C[Q])P̂
2

for m = 2k and (C[Q, θ])P̂ θ̂ for m = 2k + 1 are
called primitive or harmonic ones.

More generally, let h ⊂ osp(m|2n) be a Z-graded Lie superalgebra embed-
ded consistently with the rough grading of osp(m|2n). Then the elements of
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(C[Q])h−1 for m = 2k or (C[Q, θ])h−1 for m = 2k+1 are said to be h-primitive
or h-harmonic.

5.2.4.1. Nonstandard Z-gradings of g. It is well known that one simple
Lie superalgebra can have several nonequivalent Cartan matrices and systems
of Chevalley generators. Accordingly, the divisions into positive and negative
root vectors are distinct.

Problem. How the passage to nonstandard gradings affects the highest
weight of the spinor-oscillator representation defined in sec. 5.2.3 (Cf. [NH])

5.2.5. Examples of dual pairs. Two subalgebras Γ, Γ ′ of g0 = osp(m|2n)
will be called a dual pair if one of them is the centralizer of the other in g0.

If Γ ⊕Γ ′ is a maximal subalgebra in g0, then, clearly, Γ, Γ
′ is a dual pair.

For a number of such examples see [ShM]. Let us consider several of these
examples in detail.

5.2.5.1. Let Γ = sp(2n) = sp(W ) and Γ ′ = sp(2) = sl(2) = sp(V ⊕ V ∗).
Clearly, h = Γ ⊕ Γ ′ is a maximal subalgebra in o(W ⊗ (V ⊕ V ∗)). The Fock
space is just Λ

.
(W ).

The following classical theorem and its analog 5.2.5.2 illustrate the impor-
tance of the above notions and constructions.

Theorem. The Γ ′-primitive elements of Λ
.
(W ) of each degree i constitute

an irreducible Γ -module P i, 0 ≤ i ≤ n.
This action of Γ ′ in the space of differential forms on any symplectic

manifold is well known: Γ ′ is generated (as a Lie algebra) by operators X+

of left multiplication by the symplectic form ω and X−, the convolution with
the dual to ω.

5.2.5.2. Γ = o(2n) = sp(W ) and Γ ′ = sp(2) = sl(2) = sp(V ⊕ V ∗). Clearly,
h = Γ ⊕ Γ ′ is a maximal subalgebra in sp(W ⊗ (V ⊕ V ∗)). The Fock space is
just S

.
(W ).

Theorem. The Γ ′-primitive elements of S
.
(W ) of each degree i constitute

an irreducible Γ -module P i, where i = 0, 1, . . .

This action of Γ ′ in the space of polynomial functions on any Riemann
manifold is also well known: Γ ′ is generated (as a Lie algebra) by operators
X+ of left multiplication by the quadratic polynomial representing the metric
g and X− is the corresponding Laplace operator.

Clearly, a mixture of Examples 5.2.5.1 and 5.2.5.2 corresponding to sym-
metric or skew-symmetric forms on a supermanifold is also possible: the space
of Γ ′-primitive elements of S

.
(W ) of each degree i is an irreducible Γ -module,

cf. [NH], [Ser1], [Ser2].
In [H1], [H2] the dual pairs had to satisfy one more condition: the through

action of both Γ and Γ ′ on the identity g0-module should be completely
reducible. (This is why dual pairs were sometimes referred to as reductive
pairs.) However, the very first example from [H1], [H2] in which superalgebras
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appear not idly — the proof of the Poincaré lemma — fails to satisfy this
requirement and indeed it is seldom needed, cf. [Ser1, Ser2].

5.2.5.3. (Bernstein’s square root of the Lefschetz decomposition) Let L be
the space of a (complex) line bundle over a connected symplectic manifold
(M2n, ω) with connection ∇ such that the curvature form of ∇ is equal to ~ω
for some ~ ∈ C. This ~ will be called a twist; the space of tensor fields of type ρ
(here ρ : sp(2n) −→ gl(U) is a representation which defines the space Γ (M,U)
of tensor fields with values in U), and twist ~ will be denoted by T~(ρ). Let us
naturally extend the action of X+, X− from the space Ω of differential forms
on M onto the space Ω~ of twisted differential forms using the isomorphism
of spaces T~(ρ) ' T (ρ) ⊗ Γ (L), where Γ (L) = Ω0

~ is the space of sections of
the line bundle L, i.e., the space of twisted functions.

Namely, set X+ 7→ X+ ⊗ 1, and so on. Let D+ = d+ α be the connection
∇ itself and

D− = [X−, D+]. (5.17)

On Ω~, introduce a superspace structure setting p(ϕ ⊗ s) = degϕ (mod 2),
for any ϕ ∈ Ω and s ∈ Ω0

~.

Theorem ([Ber]). On Ω~, the operators D+ and D− generate an action of
the Lie superalgebra osp(1|2) commuting with the action of the group Ĝ of
∇-preserving automorphisms of the bundle L.

Bernstein studied the Ĝ-action, more exactly, the action of the Lie algebra
po(2n|0) corresponding to Ĝ; we are interested in the part of this action only:
in po(2n|0)0-action.

In Example 5.2.5.1 the space P i consisted of differential forms with con-
stant coefficients. Denote by Pi = P i ⊗ S.(V ) the space of primitive forms

with polynomial coefficients. The elements of the space
√
P
i

~ = kerD− ∩ Pi~
will be called ∇-primitive forms of degree i (and twist h).

Bernstein showed that
√
P
i

~ is an irreducible g = po(2n|0)-module and
Shapovalov and Shmelev literally generalized his result for supermanifolds,
see review [Le3]. It could be that over subalgebra g0 this module will be
reducible but the general theorem of Howe (which is true for osp(1|2n)) states
that this is not the case, it remains irreducible.

5.2.5.4. Inspired by Bernstein’s construction, let us similarly define a “square
root” of the hyper-Kähler structure. Namely, on any hyper-Kählerean mani-
fold (M,ω1, ω2), consider a line bundle L with two connections: ∇1 and ∇2,
whose curvature forms are equal, respectively, to ~1ω1 and ~2ω2 for some
~1, ~2 ∈ C. The pair ~ = (~1, ~2) will be called a twist; the space of ten-
sor fields of type ρ and twist ~ will be denoted by T~(ρ). Verbitsky [Ver]
defined the action of sp(4) in the space Ω of differential forms on M . Let
us naturally extend the action of the generators X±

j for j = 1, 2 of of sp(4)
from Ω onto the space Ω~ of twisted differential forms using the isomorphism
T~(ρ) ' T (ρ) ⊗ Γ (L), where Γ (L) = Ω0

~ is the space of sections of the line
bundle L.
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Define the space of primitive i-forms (with constant coefficients) on the
hyper-Kählerean manifold (M,ω1, ω2) by setting

P i = kerX−
1 ∩ kerX−

2 ∩Ωi. (5.18)

According to the general theorem of Howe [H2], this space should be an irre-
ducible sp(2n;H)-module.

The promised square root of this decomposition is the space

Pi~ = kerD−
1 ∩ kerD−

2 ∩Ωi~, (5.19)

where the operators D+
i are the above connections. Together with the opera-

tors D−
i = [X−

i , D
+
i ] they generate osp(1|4).

5.2.6. Examples of dual pairs. The following subalgebras g1(V1)⊕g2(V2)
are maximal in g(V1 ⊗ V2):

g1 g2 g

osp(n1|2m1) osp(n2|2m2) osp(n1n2 + 4m1m2|2n1m2 + 2n2m1)
o(n) osp(n2|2m2) osp(nn2|2nm2), n 6= 2, 4
sp(2n) osp(n2|2m2) osp(2mn2|4nm2)
pe(n1) pe(n2) osp(2n1n2|2n1n2), n1, n2 > 2

osp(n1|2m1) pe(n2) pe(n1n2 + 2m1n2) if n1 6= 2m1

spe(n1n2 + 2m1n2) if n1 = 2m1

o(n) pe(m) pe(nm)
sp(2n) pe(m) pe(2nm)

(5.20)

In particular, on the superspace of polyvector fields, there is a natural
pe(n)-module structure, and its dual pe(1) in osp(2n|2n) is spanned by the di-
vergence operator∆ (“odd Laplacian”), called the BRST (in honor of Becchi,
Rouet, Stora, and (independently) Tyutin) operator ([BT]), the even operator

being degx− degθ, where θi =
∂

∂xi
.

For further examples of maximal subalgebras in gl and q, see [ShM]. These
subalgebras give rise to other new examples of Howe dual pairs. For the de-
composition of the tensor algebra corresponding to some of these examples
see [Ser1, Ser2], some of the latter are further elucidated in [CW].



Chapter 6

Irreducible representations of solvable Lie
superalgebras (A. Sergeev)

6.0. Introduction

Hereafter the ground field is C and all the modules and superalgebras are
finite dimensional; Z/2 = {0̄, 1̄} and g = g0̄⊕g1̄ is a solvable Lie superalgebra.

The description of irreducible representations of solvable Lie superalgebras
given in [K2] (Theorem 7) contains an error. In reality, to give such a descrip-
tion one has to imitate the description of infinite dimensional solvable Lie
algebras [Di], i.e., we must consider twisted induced representations. In what
follows I give a correct description of irreducible representations of solvable
Lie superalgebras. I also show where a mistake crept into [K2] (this is a subtle
point) and give a counterexample to Theorem 7 from [K2].

The proof given in what follows was delivered at Leites’ Seminar on Su-
persymmetries in 1983 and is preprinted in [LSoS] #22 in a form considerably
edited by I. Shchepochkina and D. Leites. My acknowledgements are due to
them and also to the Department of Mathematics of Stockholm University
that financed publication of the preprint, see also arXiv:math/9810109 and
Represent. Theory 3 (1999), 435–443.

6.1. Main result

6.1.1. Polarizations. Set L = {λ ∈ g∗ | λ(g1̄) = 0 and λ([g0̄, g0̄]) = 0}.
Recall that a superspace is a Z/2-graded space V = V0̄ ⊕ V1̄ and its superdi-
mension is the pair (dimV0̄, dimV1̄). By the usual abuse of language λ ∈ L
denotes a character and also the (1, 0)-dimensional representation of the Lie
algebra g0̄ determined by the character λ. Every functional λ ∈ L determines
a symmetric form fλ on g1̄ by the formula fλ(ξ1, ξ2) = λ([ξ1, ξ2]).

A subalgebra h ⊂ g is said to be a polarization for λ ∈ L if λ([h, h]) = 0,
h ⊃ g0̄ and h1̄ is a maximal fully isotropic subspace for fλ.

6.1.2. Lemma. For every λ ∈ L, there exists a polarization h.

Proof follows from Lemma 6.2.4.
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6.1.3. Twisted representations. If h is a polarization for λ ∈ L, then,
clearly, λ determines a (1, 0)-dimensional representation of h. Let h ⊂ g be a
Lie subsuperalgebra that contains g0̄. Define a functional θh ∈ L by setting

θh(g) =

{
−1

2
trg/h(adg) for g ∈ g0̄

0 for g ∈ g1̄.

Note that θh([h, h]) = 0. Therefore, θh is a character of a (1, 0)-dimensional
representation of h.

Let h be a polarization for λ ∈ L. Define the twisted (by the character θh)
induced and coinduced representations by setting

Igh(λ) = Indgh(λ+ θh) = U(g)⊗U(h) (λ + θh);

CIgh (λ) = Coindgh(λ − θh) = HomU(h)(U(g), λ− θh).

6.1.4. Lemma. 1) Igh(λ) is finite dimensional and irreducible.

2) Igh(λ) does not depend on the choice of a polarization h; therefore, no-

tation I(λ) (= Igh(λ) for some h) is well-defined.
3) CI(λ) ∼= I(λ).

For the proof, see Corollaries 6.3.3 and 6.4.3.

6.1.5. Main Theorem. Let Z = {(λ, h) | λ ∈ L and let h be a polarization
for λ}. Define an equivalence relation on Z by setting

(λ, h) ∼ (µ, t)⇐⇒ λ− θh = µ− θt

Clearly, this relation is well-defined.
Recall that the representation of a Lie superalgebra g is called irreducible

of G-type if it has no invariant subspaces; it is called irreducible of Q-type
if it has no invariant subsuperspaces. Recall also that to every superspace
V = V0̄ ⊕ V1̄ the change of parity functor Π assigns the superspace Π(V )
such that Π(V )̄i = Vī+1̄. Observe that the modules I(λ) and Π(I(λ)) are
not isomorphic as g-modules (unless they are of Q-type); they are always
isomorphic, however, as g0̄-modules.

6.1.6. Theorem. 1) Every irreducible finite dimensional representation of
g is isomorphic up to application of the change of parity functor Π to a rep-
resentation of the form I(λ) for some λ.

2) The map λ 7→ I(λ) is (up to Π) a 1-1 correspondence between elements
of L and the irreducible finite dimensional representations of g.

3) Let (λ, h), (µ, t) ∈ Z. Then Indg
h(λ)

∼= Indgt (µ) if and only if
(λ, h) ∼ (µ, t).

4) If rk fλ is even, then I(λ) is a G-type representation; if rk fλ is odd,
then I(λ) is a Q-type representation.

For the proof, see sec. 6.3.3, 6.3.5, 6.4.2 and 6.4.3.
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6.1.6.1. Remark. For examples of irreducible representations of dimension
> 1 of solvable Lie superalgebras (and interesting examples of the latter), see
[ShM1].

6.2. Prerequisites for the proof of Main theorem

Let k ⊂ g be a subsuperalgebra, codim k = (0, 1), and µ the character of
the representation of g0̄ in g/k.

6.2.1. Lemma. µ is a character of g.

Proof. Let ξ ∈ g and ξ 6∈ k. Since in g/k there is a k-action, it suffices to prove
that µ([k, ξ]) = µ([ξ, ξ]) = 0. By the Jacobi identity [[ξ, ξ], ξ] = 0 which proves

that µ([ξ, ξ]) = 0. Let η ∈ k1̄. Then [[η, ξ], ξ] =
1

2
[η, [ξ, ξ]] ∈ k, and therefore

µ([k1̄, ξ]) = 0. ut
6.2.2. Corollary. Let k ⊂ k1 be subalgebras in g such that both containing
g0̄ and such that dim k1/k = (0, 1). Let λ be the character of an irreducible
factor of g/k considered as the g0̄-module. Then λ is a character of k1.

Proof. Let dim g/k = (0, l); we will induct on l. If l = 1, the statement of
Corollary holds thanks to Lemma 6.2.1.

Let l > 1 and k2 a subalgebra of g such that dim g/k2 = (0, 1) and k2 ⊃ k1.
Any irreducible factor of g/k is a factor of either k2/k or g/k2. In the first case
Corollary holds by the inductive hypothesis. In the second case let λ be the
character of an irreducible factor of g/k2. Then λ is a character of k2; hence,
a character of k1. ut
6.2.3. Corollary ([K2], Prop. 1.3.3, p. 25). A Lie superalgebra g = g0̄ ⊕ g1̄
is solvable if and only if so is g0̄.

Proof. Here is an independent proof. We induct on l = dim g1̄. If l = 0, the
statement is obvious. Let l > 0. Set

g̃ = [g0̄, g0̄]⊕ [g1̄, g1̄]⊕ g1̄.

Since [g, g] ⊂ g̃, it suffices to demonstrate that g̃ is solvable. Let h ⊂ g

and dim g/h = (0, 1). By Lemma 6.2.1 we see that [g̃0̄, g1̄] ⊂ h1̄. Hence,
[g̃, g̃] ⊂ g̃0̄ ⊕ h1̄. By the inductive hypothesis, g̃0̄ ⊕ h1̄ is a solvable Lie su-
peralgebra, hence, so is g.

The converse statement is obvious. ut
6.2.4. Lemma. Let W be a finite dimensional g-module, f a symmetric
g-invariant form on W and V a g-invariant fully isotropic subspace. Then
there exists a maximal g-invariant f -isotropic subspace in W containing V .

Proof. Without loss of generality we may assume that f is nondegenerate.
Let rk f = dimW = 2l.



132 Ch. 6. Representations of solvable Lie superalgebras

i) Let us prove first thatW contains a nonzero isotropic g-invariant one-di-
mensional subspace. Since g is solvable, there exists a w ∈ W such that
xw = λ(x)w for any x ∈ g. If f(w,w) = 0, we are done. If f(w,w) 6= 0, then
the invariance implies that

0 = f(xw,w) + f(w, xw) = 2λ(x)f(w,w).

Therefore, λ(x) = 0 and w is a g-invariant. Furthermore,W = Span(w)⊕W1,
where W1 = Span(w)⊥.

In W1, select a one-dimensional g-invariant subspace Span(w1). If
f(w1, w1) = 0, we are done. If f(w1, w1) 6= 0, the above arguments show
that w1 is a g-invariant. Then w2 = w + αw1 is an isotropic and g-invariant

vector for α =

√
− f(w,w)

f(w1, w1)
.

ii) Now let us induct on l. If l = 1, let us apply step i). If l > 1 we may
assume, thanks to i), that V 6= 0. If V = V ⊥, we are done. But if V 6= V ⊥, then
V ⊂ V ⊥, since V is fully isotropic; moreover, the restriction of f onto V ⊥/V
is nondegenerate. The equality dim V + dimV ⊥ = 2l implies that dimV ⊥/V
is even. Therefore, by the induction we prove that V ⊥/V contains a maximal
g-invariant fully isotropic subspace Ū . But then its preimage U in V ⊥ is a
maximal fully isotropic g-invariant subspace of W containing V .

The case rk f = dimW = 2l+ 1 is treated similarly. ut
6.2.5. Corollary. If h is a polarization for λ ∈ L, n the kernel of fλ and
λ1, . . . , λl are characters of irreducible subfactors of g1̄/n concidered as a
g0̄-module, then h is also polarization for µ = λ + α1λ1 + · · · + αlλl for any
α1, . . . , αl ∈ C∗.

Proof. Since fλ determines a nondegenerate g0̄-invariant pairing

h⊥/n× g1̄/h −→ C,

the characters λ1, . . . , λl coincide, up to a sign, with characters of irreducible
factors of g1̄/h. But the latter space is a h-module, so λi([h1̄, h1̄]) = 0, and
therefore h1̄ is fully isotropic for fµ.

If h1̄ is a maximal fully isotropic subspace for fµ, we are done. Otherwise,
i.e., if h1̄ is not a maximal fully isotropic subspace for fµ, select a g0̄-invariant
subspace b1̄ of g1̄ distinct from h1̄ containing h1̄ and isotropic with respect to
fµ.

Next, in the module b1̄/h1̄ select a one-dimensional g0̄-invariant subspace
Span(ξ̄), where ξ ∈ b1̄. Then k1̄ = h1̄ ⊕ Span(ξ) is fully isotropic with respect
to fµ and k = g0̄ ⊕ h1̄ is a subalgebra of g. Then λi([k1̄, k1̄]) = 0 by Corollary
6.2.2. But λ = µ−α1λ1 − · · · −αlλl; hence, λ([k1̄, k1̄]) = 0. In other words, k1̄
is fully isotropic with respect to fλ. But this contradicts to the maximality of
h1̄. ut

The following two statements are standard, so their proofs are omitted.
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6.2.6. Lemma. Let k ⊂ g be a Lie subsuperalgebra, dim g/k = (0, 1). If (V, ρ)
is an irreducible representation of k in a superspace V , then W = Indgk (V ) is
reducible if and only if V admits a g-module structure that extends ρ.

6.2.7. Lemma (see [K2], Lemma 5.2.2 b)). Let k ⊂ g be a Lie subsuperal-
gebra, dim g/k = (0, 1). If W is an irreducible g-module and V ⊂ W is an
irreducible proper k-submodule, then W = Indg

k (V ).

6.3. Description of irreducible modules

6.3.1. Proposition. Let λ ∈ L, let p = g0̄⊕ p1̄ be a polarization for λ, let n
be the kernel of fλ and F ⊂ p1̄ a subspace such that p1̄ = F ⊕ n. Define ξ0 as
follows: if rk fλ is even, then we set ξ0 = 0 and let ξ0 be from p⊥1̄ but so as
ξ0 6∈ p1̄ if rk fλ is odd. Let xv = λ(x)v be a one-dimensional representation
of p in V = Span(v). Denote: Igp (λ) = Indgp(V )

If u ∈ Igp (λ) and Fu = 0, then u ∈ Span(v, ξ0v).

Proof. Induction on rk fλ. If rk fλ = 0, then F = 0 and the statement is
obvious.

Let rk fλ > 0. Select a subalgebra h ⊂ p such that dim g1̄/h1̄ = 1. The
two cases are possible: h⊥1̄ 6⊂ h1̄ and h⊥1̄ ⊂ h1̄.

i) h⊥1̄ 6⊂ h1̄. Then g1̄ = h1̄ ⊕ Span(ξ), where ξ ⊥ h1̄. Hence, ξ ⊥ p1̄ and

ξ 6∈ p1̄. Therefore, we may assume that ξ = ξ0 and rk fλ is an odd number.
Clearly, p is a polarization for the restriction fλ onto h1̄ and rk fλ is an even
number. Further on,

Indg
p(λ) = Indh

p(λ)⊕ ξ0 Indgp(λ).

Let u = u0 + ξ0u1 ∈ Indgp(λ) and pu = 0 for any p ∈ F . Then

0 = pu = pu0 + [p, ξ0]u1 + ξ0pu1,

therefore, pu1 = 0. By the induction, u1 ∈ Span(v), where v is the generator
of Indg

p(λ). Since ξ0 ⊥ p1̄, it follows that [p, ξ0]u1 = fλ(p, ξ0)u1 = 0. Therefore,
pu0 = 0 and u0 ∈ Span(v). Hence, u ∈ Span(v, ξ0v).

ii) Let us show now that the weight of ξ0v with respect to g0̄ is also
equal to λ. If ξ0 = 0, all is clear. So let ξ0 6= 0. Since [x, ξ0] ⊥ p1̄ for any
x ∈ g0̄, it follows that [x, ξ0] = µ(x)ξ0 + p for some p ∈ p1̄. Furthermore,
[x, [ξ0, ξ0] = 2[[x, ξ0], ξ0]; hence,

0 = λ([x, [ξ0, ξ0]) = 2λ([µ(x)ξ0 + p, ξ0]) =

2µ(x)λ([ξ0, ξ0]) + 2λ([p, ξ0]) = 2µ(x)λ([ξ0, ξ0]).

But λ([ξ0, ξ0]) 6= 0, so, µ(x) = 0 and the weight of ξ0v is equal to λ.
iii) h⊥1̄ ⊂ h1̄. Then the restriction of the form fλ onto h1̄ is of rank by 2

less than that of fλ itself.
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Select ξ 6∈ h1̄ and set F1 = F ∩ Span(ξ)⊥. Let n be the kernel of fλ. Then

dim h1̄ + dim h⊥1̄ = dim g1̄ + dim n,

so dim h⊥1̄ = dim n + 1. Therefore, there exists an element η ∈ h⊥1̄ ∩ F and
such that η 6∈ n. Clearly, fλ(ξ, η) 6= 0 and p⊥1̄ ⊂ h1̄. Therefore,

F = F1 ⊕ Span(η), ξ ⊥ F1 and fλ(ξ, η) 6= 0.

Let

u = u0+ ξu1, where u ∈ Indgp(λ), u0, u1 ∈ Indhp(λ) and pu = 0 for any p ∈ F.

Then
0 = pu = pu0 + [p, ξ]u1 + ξpu1,

hence, pu1 = 0 and by the induction u1 ∈ Span(v, ξ0v). Thanks to ii)
[p, ξ]u1 = fλ(p, ξ)u1 and if p ∈ F1, then fλ(p, ξ)u1 = 0; hence, pu0 = 0
for any p ∈ F1. By the induction we deduce that u0 ∈ Span(v, ξ0v). Further
on,

0 = ηu = ηu0 + ηξu1 = [η, ξ]u1 = fλ(η, ξ)u1

and since fλ(η, ξ) 6= 0, then u1 = 0 and u = u0 ∈ Span(v, ξ0v). ut
6.3.2. Corollary. If h = g0̄ ⊕ h1̄ is a polarization for λ, then Indgh(λ) is an
irreducible module.

Proof. Observe that irreducibility is equivalent to the absence of vectors
ahhihilated by b1̄ that do not lie in Span(v, ξ0v)). ut
6.3.3. Corollary. Heading 1) of Lemma 6.1.3 and heading 4) of the Main
Theorem 6.1.5 hold.

6.3.4. Corollary. Let U be an irreducible finite dimensional g-module. Then
U = Indg

h(λ) for some λ ∈ L and a polarization h.

Proof. Induction on dim g1̄. If g = g0̄, then this is Lies theorem. Let k ⊂ g

and dim g1̄/k1̄ = 1.
Let U be irreducible as a k-module. Then there exist λ ∈ L and a polar-

ization h ⊂ k for λ ∈ L such that U = Indkh(λ). If h were a polarization for λ
in g, too, then by Corollary 6.3.2 the representation

Indgh(λ) = Indgk (Ind
k
h(λ))

would have been irreducible contradicting Lemma 6.2.6.
Let ĥ ⊃ h be a polarization for λ in g and ξ ∈ ĥ so that ξ 6∈ h. If v is an

element of Indk
h(λ) as the one described in 6.3.1 and p ∈ h1̄, then

pξv = [p, ξ]v = fλ(p, ξ)v = 0,

ξξv =
1

2
[ξ, ξ]v =

1

2
fλ(ξ, ξ)v = 0.
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Therefore, there exists a non-zero g-module homomorphism

Indg

ĥ
λ −→ Indk̂h(λ) = U

and since both modules are irreducible, this is an “odd isomorphism”, i.e., the
composition of an isomorpism with the change of parity.

Now let U be reducible as a k-module. Then by Lemma 6.2.7 U = Indg
k V ,

and, by the induction, V = Indkh(λ) for a polarization h ⊂ k and λ ∈ L.

If h is not a polarization for λ in g, then let ĥ ⊃ h be a polarization. We
have a non-zero g-module homomorphism U = Indgh(λ) −→ Indg

ĥ
(λ) and

since both modules are irreducible, this is an isomorphism which is impossible
because dim Indg

ĥ
(λ) < dim Indg

h(λ). Therefore, h is a polarization for λ in g

and U = Indgh(λ). ut
6.3.5. Corollary. Heading 1) of Theorem holds.

6.3.6. A subsuperalgebra subordinate for λ ∈ L. Recall, see [K2] p.
79, that if

gλ = {g ∈ g | λ([g, g1]) = 0 for all g1 ∈ g},
then a subalgebra p ⊂ g is said to be subordinate to λ if λ([p, p]) = 0 and
p ⊃ gλ.

6.3.6.1. Corollary. Let λ ∈ L, p a subalgebra subordinate to λ. Then
Indgp(λ) is irreducible if and only if p is a polarization for λ.

6.4. Classification of modules Indg
h(λ)

6.4.1. Lemma. If (λ, h) ∼ (µ, t), then h is a polarization for µ.

Proof. By 6.2.5 h is a polarization for λ− θh. Since λ− θh = µ− θt, then t is
also a polarization for λ− θh. Let n be the kernel of fλ−θh , then t ⊃ n. Hence,
g1̄/t is a subquotient of g1̄/n. Therefore, by Lemma 6.2.5 we see that h is a
polarization for µ = (λ− θh) + θt. ut
6.4.2. Proof of heading 3) of Theorem. Let (λ, h) ∼ (µ, t). We will carry
the proof out by the induction on k = dim h/(h ∩ t). If k = 0 the statement
is obvious. Let k = 1, then, obviously, dim t/(h ∩ t) = 1. Consider the space
h+ t. By Lemma 6.4.1 t is a polarization for λ, and therefore the kernel of fλ
on the subspace h+ t is equal to h ∩ t.

Let ξ ∈ h and η ∈ t be such that ξ̄ ∈ h/(h∩t), ξ̄ 6= 0 and η̄ ∈ t/(h∩t), η̄ 6= 0.
We may assume that fλ(ξ, η) = 1.

Let v ∈ Indgh(λ) be as in Prop. 6.3.1. Then for r ∈ h ∩ t, we have

rηv = [r, η]v = λ([r, η])v = 0, ηηv =
1

2
[η, η]v =

1

2
λ([η, η])v = 0,

i.e., t1̄(ηv) = 0, and therefore there exists a non-zero homomorphism
Indgt (µ̃) −→ Indgh(λ), where µ̃ is the weight of ηv.
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Since Indg
h(λ) is irreducible and dim Indgt (µ) = dim Indgh(λ), this homo-

morphism is an isomorphism. Let g ∈ g0̄. Then

g(ηv) = η(gv) + [g, η]v = [λ+ trt/(t∩h) adg]ηv,

i.e., µ̃ = λ+ trt/(t∩h) adg.
Since λ ∈ L, it follows that

0 = λ([g, [ξ, η]]) = λ([[g, ξ], η]) + λ([ξ, [g, η]]) =

= (trt/t∩h adg +trh/t∩h adg)λ([ξ, η]).

Since λ([ξ, η] = 1, it follows that trt/t∩h adg = − trh/t∩h adg, and

µ = λ− θp − θt = λ+ trt/t∩h = µ̃,

i.e., Indgt (µ)
∼= π(Indgh(λ)).

Let k > 1. On g1̄, consider the form fλ. Let h = g0̄ + h1̄ and t = g0̄ ⊕ t1̄.
Select F so that h1̄ ∩ t1̄ ⊂ F ⊂ h1̄, F 6= h1̄ and F 6= h1̄ ∩ t1̄, where F is a
g0̄-submodule in g1̄. Set r1̄ = F + (F⊥ ∩ t1̄). It is not difficult to verify that
r = g0̄ ⊕ r1̄ is a polarization for λ. Set

ν(x) = λ(x) − trh1̄/(h1̄∩r1̄)(adx).

Since h1̄/(h1̄ ∩ r1̄) is a subfactor in g1̄/n, where n is the kernel of fλ, it follows
from Lemma 6.2.5 that n is a polarization for ν.

Since h1̄ ∩ r1̄ ⊃ F ⊃ h1̄ ∩ t1̄, then dim r1̄/(h1̄ ∩ r1̄) < dim h1̄/(h1̄ ∩ t1̄).
Further, the diagram of inclusions

h1̄ ∩ r1̄ //

��

h1̄

��
r1̄ // g1̄

shows that

2θh(x) − trh1̄/(h1̄ ∩ r1̄) adx = 2θr(x)− trr1̄/(r1̄ ∩ h1̄) adx .

By duality, there exists a nondegenerate pairing

(h1̄/(h1̄ ∩ r1̄))× (r1̄/(h1̄ ∩ r1̄)) −→ C

and since
trh1̄/(h1̄ ∩ r1̄) adx = − trr1̄/(h1̄ ∩ r1̄) adx,

then
trr1̄/(h1̄ ∩ r1̄) adx = −θh(x) + θr(x).

Thus,
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ν(x) − θr(x) = λ(x) + trr1̄/(h1̄ ∩ r1̄) adx−θr(x) = λ(x) − θh(x),
i.e., (λ, h) ∼ (ν, r) and, by the induction, Indgh(λ) = Indgr (ν). Besides,

ν − θr = λ − θh = µ − θt and t1̄ ∩ r1̄ ⊃ F⊥ ∩ t1̄ ⊃ t1̄ ∩ h1̄, where the lat-
ter inclusion is a strict one because F 6= h1̄; therefore,

dim t1̄/t1̄ ∩ r1̄ < dim t1̄/(t1̄ ∩ h1̄).

By the induction, Indg
r (ν)

∼= Indg
t (µ), therefore, Ind

g
h(λ) = Indgt (µ).

Conversely, let Indgh(λ)
∼= Indgt (µ). Then λ = µ+ λ1 + · · ·+ λk, where the

λi are the weights of g1̄/t1̄. Therefore, by Lemma 6.2.5 t is a polarization for
λ and, thanks to sec. 6.4.1, for µ̃ = λ − θh + θt, too. Since µ̃ − θt = λ − θh,
then by the above Indgt (µ̃) = Indgh(λ) = Indg

t (µ). Let ṽ ∈ Indgt (µ̃) be as in

Prop. 6.3.1 and t1̄ṽ = 0. By 6.4.1 ṽ ∈ Span(v, ξ0v), where v ∈ Indgt (µ) be as
in Prop. 6.3.1; therefore, µ̃ = µ and (µ, t) ∼ (λ, h). ut
6.4.3. Corollary. Heading 2) of Theorem and heading 2) of Lemma 6.1.3
hold.

Proof. Due to sec. 6.2.5 it is clear that h is a polarization for λ + θh, and
therefore Igh (λ) is irreducible. If t is another polarization for λ, then by sect.
6.4.2

Igt (λ) = Indgt (λ+ θt) = Indgh(λ+ θh) = Igh(λ).

If U is irreducible, then by sect. 6.3.4 U ∼= Igh(λ) for some λ and h.

If I(λ) = I(µ), then Indgh(λ+ θh) ∼= Indgt (µ+ θt) and by sect. 6.4.2

λ = λ+ θh − θh = µ+ θt − θt = µ. ut
Proof of heading 3) of Lemma 6.1.3. Let us prove that

Igp (λ)
∼= CIgp (λ).

For this, we use the isomorphisms

(Igp (λ))
∗ ∼= CIgp (−λ) and (Igp (λ))

∗ ∼= Igp (−λ+ 2θp).

The first of these isomorphisms follows from the definitions of the induced
and coinduced modules.

Let us prove the other one. Select a basis ξ1, . . . , ξn in the complement to
p1̄ in g1̄ and consider the following filtration of Igp (λ):

I0 = Span(v) ⊂ I1 = Span(v, ξ1v, ξ2v, . . . , ξnv) ⊂ · · · ⊂ In = Igp (λ),

where v is as in Prop. 6.3.1. It is clear that the elements ξ1, ξ2, . . . , ξn can be
chosen so that each Ik is a g0̄-module. Let l ∈ (Igp (λ))

∗ be such that l(In) 6= 0
while l(In−1) = 0. Then it is easy to verify that p1̄l = 0 and the weight l
with respect to g0̄ is equal to −λ + 2θp. Therefore, there exists a nonzero
homomorphism ϕ : Igp (−λ+ 2θp) −→ (Igp (λ))

∗.
Since the dimensions of these modules are equal and the first of them is

irreducible, ϕ is an isomorphism. Hence,

CI(λ) = CIgp (λ− θp) ∼= (Igp (−λ+ θp))
∗ = Igp (λ− θp + 2θp) = I(λ). ut
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6.5. An example

Let Λ(2) = C[ξ1, ξ2] be the Grassmann superalgebra on two indeterminates
with the natural Z/2-grading (parity). In gl(Λ(2)), consider the linear hull g
of the operators

x = ξ1
∂

∂ξ1
, y = ξ2

∂

∂ξ1
, z = ξ1ξ2, u = 1;

η1 =
∂

∂ξ1
, η2 =

∂

∂ξ2
− ξ1ξ2 ∂

∂ξ1
,

η−1 = ξ1, η−2 = ξ2,

where f ∈ Λ(2) is identified with the operator of left multiplication by f . It
is not difficult to verify that g = g0̄ ⊕ g1̄ is a Lie superalgebra. It is solvable
since so is g0̄. Moreover, [g0̄, g0̄] = Span(y, z) and [g1̄, g1̄] = g0̄.

Let u∗, y∗, z∗, x∗ be the basis of g∗0̄ left dual u, y, z, x, respectively, and
let λ = u∗. Then h = g0̄ ⊕ Span(η−1, η−2) and t = g0̄ ⊕ Span(η1, η2) are
polarizations for λ.

As is easy to verify, the characters of the irreducible factors of the g0̄-mod-
ule Igh(λ) are λ and λ−x∗ whereas the characters of the irreducible factors of

the g0̄-module Igt (λ) are λ and λ+ x∗. Hence, Igh(λ) 6' Igt (λ).
Moreover, λ−(λ−x∗) = x∗ but x∗([g1̄, g1̄]) 6= 0 contradicting the statement

of Theorem 7 of [K2].
The error in the proof of Theorem 7 of [K2] is not easy to find: it is an

incorrect induction in the proof of heading a) on p. 80 (of [K2]). Namely,
if, in notations of [K2], the subalgebra H is of codimension (0, 1), then the
irreducible factors of W considered as G0-modules belong by the inductive
hypothesis to one class from L/LH0 , where

LH0 = {λ ∈ g∗ | λ([H,H ]) = 0},

NOT to one class from L/LG0 as stated on p. 80, line 13 from below.

Chapter 7

How to realize Lie algebras by vector fields
(I. Shchepochkina)

7.1. Introduction

This chapter is a version of the paper [Shch].
Here I offer an algorithm which explicitly describes how to embed any

Z-graded Lie algebra (or Lie superalgebra) n := ⊕
k≥−d

nk such that

n−1 generates n− := ⊕
k<0

nk and dim n− <∞ (7.1)

into a Lie algebra (resp., Lie superalgebra) of polynomial vector fields over R
or C or over a field K of characteristic p > 0. 1)

For almost a decade, whenever asked, I described the algorithm I propose
here but was reluctant to publish it as a research paper: the algorithm is
straightforward and was, actually, used more than a century ago by Cartan
[C], and recently by Yamaguchi [Y].

Grozman and Leites convinced me, however, that the algorithm, and its
usefulness, were never expressed explicitly. Most convincingly, they used the
algorithm not only for interpreting known, but mysterious, simple Lie alge-
bras, and Lie superalgebras, especially in characteristic p > 0, but in order
to get new examples in the absence of classification ([GL3]). So here it is.
Grozman already implemented it in his SuperLie package [Gr].

Having started to write, I added something new as compared with [C]:
a description by means of differential equations of partial prolongs — subal-
gebras of the Lie algebras of polynomial vector fields embedded “projective-
like”. Such description is particularly important if p > 0, and for some Lie
superalgebras.

At the last moment, I learned that, for p > 0, Fei and Shen [FSh] proved
existence of embeddings I consider and illustrated it with a description of the

1 Although p denotes the characteristic of the ground field, parity, and is also used
as an index, the context is always clear.
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simple Lie algebras of contact vector fields for p = 2. They also formulate
questions this chapter answers.

For reviews of related to our result realizations of Lie (super)algebras
by differential operators (not necessarily first order homogeneous ones), see
[BGLS, VM].

Problem formulation, facts known, and our reasons. Let n :=
−1
⊕

k=−d
nk,

be an n-dimensional Z-graded Lie algebra of depth d > 1 satisfying (7.1). Let
f : n −→ vect(n) = derK[x1, . . . , xn] be an embedding. The image f(n) is a
subspace in the space of vector fields; every vector field can be evaluated at
any point; let f(n)(0) be the span of these evaluations at 0.

Problem 1. Embed n into vect(n) so that the dim f(n)(0) = n.

Comment. Roughly speaking, we wish the image of n be spanned by all
partial derivatives modulo vector fields that vanish at the origin.

Such an embedding determines a non-standard 2) grading of depth d on
vect(n). We will denote vect(n) considered with this non-standard grading by

v =
∞
⊕

k=−d
vk. Let g− be the image of n in v, i.e., g− ⊂ v− := ⊕

k<0
vk.

Problem 2. Compute the complete algebraic prolong of g−, i.e., the
maximal subalgebra (g−)∗ = ⊕

k≥−d
gk ⊂ v with the given negative part.

Problem 3. Single out partial prolongs of g− in (g−)∗. In particular, given
not only n, but n0 ⊂ der0n, where the subscript 0 singles out derivations that
preserve the Z-grading, we should automatically have an embedding n0 ⊂ g0.

If the inclusion n0 ⊂ g0 is a strict one, we wish to be able to single out n0
in g0 as well as to single out the algebraic prolong (g−, n0)∗ — the maximal
subalgebra of v with a given non-positive part — in (g−)∗.

If n0 = g0 but the component g1 forms a reducible g0-module with a sub-
module h1, how to singe out the maximal subalgebra (g− ⊕ g0 ⊕ h1)∗ ⊂ v with
a given “beginning part”(components of grading ≤ 1)?

In utmost generality, single out in v the maximal subalgebra h∗ = ⊕
k≥−d

hk

with a given beginning part h = g− ⊕
(
⊕

0≤k≤K
hk

)
. Naturally, the beginning

part h should be compatible with the bracket, i.e., [hi, hj ] ⊂ hi+j for all i, j
such that i+ j ≤ K.

The components hk with k > K are defined recurrently:

hk = {X ∈ gk | [X, g−1] ⊂ hk−1}. (7.2)

2 The grading deg xi = 1 for all i associated with the (x)-adic filtration is said to
be standard; any other grading is non-standard.
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We prove the inclusion [hk, hl] ⊂ hk+l for all indices by induction on k+ l with

an appeal to (1); it guarantees that h∗ := g−⊕
(
⊕
0≤k

hk

)
is a subalgebra of v.

The Lie algebra h∗ = ⊕
k≥−d

hk is a generalization of Cartan prolong.

Remark. De facto, for simple Lie algebras over R and C, the number K is
always ≤ 1, but if CharK > 0, and for superalgebras, then K > 1 is possible.

Discussion. If a Lie group N with a Lie algebra n is given explicitly, i.e., if
we know explicit expressions for the product of the group elements in some
coordinates, then there is no problem to describe an embedding n ⊂ vect(n):
the Lie algebras of left- and right-invariant vector fields on N are isomorphic
to n. (This is, actually, one of the definitions of the Lie algebra of N .) If the
group N is not explicitly given, then to describe an embedding n ⊂ vect(n)
is a part of the problem of recovering the Lie group from its Lie algebra (in
the cases where one can speak about Lie groups). Of course, the Campbell-
Hausdorff formula gives a solution to this problem. Unfortunately, despite its
importance in theoretical discussions, the Campbell-Hausdorff formula is not
convenient in actual calculations.

For K = R and C, another method of constructing an embedding
n ⊂ vect(n) and recovering a Lie group from its Lie algebra is integration
of the Maurer-Cartan equations, cf. [DFN]. Although the algorithm I offer
does not use a Lie group of n and is applicable even for the cases where no
analog of a Lie groups can be offered, it is viewing a given Lie algebra as the
Lie algebra of left-invariant vector fields on a Lie group that gives us a key
lead.

For other algorithms for embedding n ⊂ vect(n), based on explicit descrip-
tions of the n-action in U(n), see [BGLS, VM]. Now, let me list reasons that
lead to the algorithm.

Reason 1. LetX1, . . . , Xn be vector fields linearly independent at each point
of an n-dimensional (super)domain, and

[Xi, Xj] =
∑

k

ckijXk, ckij ∈ K. (7.3)

Let ω1, . . . ωn be the dual basis of differential 1-forms (ωi(Xj) = δij). Then
(a standard exercise)

dωk = −1

2

∑

ij

ckijω
i ∧ ωj = −

∑

i<j

ckijω
i ∧ ωj, (7.4)

and vise versa: if the 1-forms ω1, . . . ωn satisfy (7.4) then the dual vector fields
X1, . . . , Xn satisfy (7.3).

Observe that, although in the super setting the expression for dω, i.e.,

dω(X,Y ) = Xω(Y )− Y ω(X)− ω([X,Y ]), (7.5)
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acquires some signs, eq. (7.4) is valid for superalgebras as well: the extra signs
in eq. (7.5) appearing due to super nature of its constituents do not affect
(7.4).

Recall that if the fields Xi form a basis of left-invariant vector fields on
the group N , eqs. (7.4) are called the Maurer-Cartan equations; in this case,
ckij are the structure constants of the Lie algebra n.

If ωi =
∑

k V
i
k (x)dx

k , then eqs. (7.4) can be expressed as equations for the
functions V ik :

∂jV
k
i − ∂iV kj =

∑

p,q

ckpqV
p
i V

q
j . (7.6)

Reason 2. In the real or complex situation, eqs. (7.6) are easy to integrate
in “nice”coordinates for any Lie algebra n (not only nilpotent). Namely, in-
troduce functions

W i
j (t, x) = tV ij (exp(tx)), where t ∈ R, x ∈ n∗.

(In other words, we should integrate eqs. (7.6) along one-parameter sub-
groups.) As is easy to check, the functions W satisfy ODE

dW i
j

dt
= δij +

∑

p,q

cipqW
p
j x

q (7.7)

with the initial condition W i
j (0, x) = 0.

Actually, since n is Z-graded nilpotent, the system (7.6) is so simple that
one can integrate it directly, without appealing to auxiliary functions W , and
over any ground field. This direct solution of (7.6) allows us to construct
an embedding n −→ vect(n) most suitable for our purposes 3), and find all
possible embeddings.

Namely, select a basis B = {e1, . . . , en} of n compatible with the grading.
This means that its first n1 elements form a basis of n−1, the next n2 elements
form a basis of n−2, and so on. Let Is be the set of indices corresponding to
n−s, and I = ∪Is. Let ckij be the structure constants in this basis:

[ei, ej ] =
∑

k

ckijek, (7.8)

and x1, . . . , xn be the determined by B coordinates of n∗, the dual space to
n. The nonstandard Z-grading v = ⊕

k≥−d
vk of vect(n) compatible with the

Z-grading of n is determined by setting

3 For example, why even the authors of [BGLS] were reluctant to use any of the
three algorithms presented in [BGLS]? I tested all of their three algorithms: they
work, although some clarifications are needed. The only explanation I can deduce
from the questions Grozman and Leites asked me, is the fact that the formulas in
[BGLS] are fixed, and some of them involve divisions. And what to do if, say, one
wants to avoid division (by 2 or 3) in coefficients?! Whereas I give the customer
a possibility to select the embedding to taste. I. Shch.
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deg xi = s for any i ∈ Is. (7.9)

Let Xi ∈ v be the image of ei under our embedding. Then the value of Xi

at 0 is equal to ∂xi := ∂i and the value of the dual form ωi at 0 is equal to
dxi. If i ∈ Is, then the field Xi and the form ωi are homogeneous of degree
−s and s respectively. We have

ωi = dxi for i ∈ I1;
ωi = dxi +

∑
j,k∈I1

aijkx
jdxk for i ∈ I2;

ωi = dxi +
∑

j∈I1,k∈I2

aijkx
jdxk+

∑
k∈I1

(
∑

s,t∈I1

aistkx
sxt +

∑
s∈I2

aiskx
s

)
dxk for i ∈ I3;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The grading guarantees automatic fulfillment of a part of conditions (7.6): For
example, for k ∈ I1, all the functions V ki are known: V ki = δki ; for k ∈ I2, the
rhs of (7.6) only contains the known functions (V ki with k ∈ I1), and so on.

The system for aijk is highly undetermined but if we are interested in
getting some embedding only, we do not need all the solutions; any solution
(the simpler looking, the better) will do. Then we proceed in the same way
with V ki for k ∈ I3, and so on. The Jacobi identity guarantees the compatibility
of the system.

Reason 3. How the complete prolongations are singled out. Over R,
the connected simply connected Lie group N with Lie algebra n, left-invariant
forms ωi, where i ∈ I, and the structure constants ckij given by (7.4) possess
a universal property ([St2]):

Let M be a smooth manifold with a collection of linearly independent at
each point differential 1-forms αi, satisfying (7.4) with the same constants
ckij . Then, for every point x ∈ M , there exists its neighborhood U and a
diffeomorphism f : U −→ N such that

αi = f∗(ωi).

Any two such diffeomorphisms differ by a translation.
Hence, as soon as we have found forms ωi satisfying (7.4), we can think

of them as of left-invariant forms of the group N and of the dual vector fields
Xi as of left-invariant vector fields, g− = Span{X1, . . . , Xn} ⊂ vect(N).

Let Y1, . . . , Yn be the right-invariant vector fields, such that

Xi(e) = Yi(e),

and θ1, . . . , θn be the dual right-invariant 1-forms.
Clearly, both {Xi}i∈I and {Yi}i∈I span Lie subalgebras of v−.
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Let us define a right-invariant distribution D on N such that D(e) = n−1.
Clearly, D is singled out by the system of equations for X ∈ vect(n):

θi(X) = 0 for any i ∈ I2 ∪ I3 ∪ · · · ∪ Id. (7.10)

Since left- and right-invariant vector fields on a Lie group always commute
with each other, each Xj preserves D and hence the Lie algebra g− preserves
D. Moreover, since n is Z-graded, it follows that the fact “X ∈ v− preserves
D”is equivalent to the fact “X commutes with all Yi, where i ∈ I1”, and hence
with all Yi, where i ∈ I, since n−1 generates n.

Thus, g− is characterized as the maximal subalgebra of v− preserving D.
But then the complete prolongation of g− is the maximal subalgebra of vect(n)
preserving D.

Of course we can reformulate all this without appealing to N . All we
need is centv−(g−), the centralizer of g− in v−. It is also clear that, having
represented Y ∈ v−s as a sum of homogeneous components in the standard
grading (deg xi = 1):

Y =

d−s−1∑

p=−1

Y(p),

we see that for the fields that vanish at the origin (for them, Y(−1) = 0), the
lowest component of [Xi, Y ] coincides with the bracket of the lowest compo-
nent of Y with ∂i, and therefore is nonzero.

The other way round, for any Y such that Y(−1) 6= 0 the equations
[Xi, Y ] = 0, where i = 1, . . . , n, enable us to uniquely recover, consecutively,
all the components Y(p) for p ≥ 0 starting with Y(−1) using the recurrence:

[∂i, Y(p)] = −
p−1∑

s=−1

[(Xi)(p−1−s) , Y(s)] for i = 1, . . . , n. (7.11)

Let Yi ∈ centv−(g−) be such that (Yi)(−1) = ∂i. Then

[Yi, Yj ](−1) = [∂i, (Yj)(0)] + [(Yi)(0) , ∂j ] = −[(Xi)(0) , ∂j ]− [∂i, (Xj)(0)] =

−[Xi, Xj ](−1) = −
∑
k c

k
ij (Xk)(−1) = −

∑
k c

k
ij (Yk)(−1) ,

(7.12)
and, since the fields from centv−(g−) are uniquely determined by their (−1)st
components, we get:

[Yi, Yj ] = −
∑

k

ckijYk,

i.e., centv−(g−) is isomorphic to n.
Let the θi constitute a basis of 1-forms dual to the {Yi}i∈I (i.e.,

θi(Yj) = δij). Then any vector field X ∈ vect(n) is of the form

X =
∑

i

θi(X)Yi.
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Since [Xi, Yj ] = 0 for any i, j = 1, . . . , n, we have

θi([Xj , X ]) = Xj(θ
i(X)). (7.13)

Now let us consider the distribution D defined by (7.10). As we have
already observed, g− is characterized as the maximal subalgebra of v− pre-
serving D.

Observe, first of all, that although “any Xi preserves any form θj”, the
condition in quotation marks does not survive the operation (7.2) of complete
prolongation whereas the condition “preserveD” is not so strong and survives
it.

Indeed, a field X ∈ v preserves D if and only if

θk([X,Yi]) = 0 for any i = 1, . . . , n1, and any k > n1. (7.14)

Let (7.14) be valid for any X ∈ gs−1. Then, due to (7.2), X ∈ gs if and only
if

θk([[Xj , X ], Yi]) = Xjθ
k([X,Yi]) = 0 for any i, j = 1, . . . , n1, and k > n1.

(7.15)
(We have taken (7.13) into account.)

Finally, since n−1 generates the algebra n, (7.15) is equivalent to

∂j(θ
k([X,Yi]) = 0 for all j = 1, . . . , n. (7.16)

But if k ∈ Il (l ≥ 2), then θk([X,Yi]) is a homogeneous (in our nonstandard
grading) polynomial of degree s − 1 + l ≥ s + 1 ≥ 1, and hence (7.16) is
equivalent to

θk([X,Yi]) = 0 for any i = 1, . . . , n1, and k > n1, (7.17)

and hence X preserves D.
Let us rewrite the system (7.14) for coordinates of X more explicitly:

Yi(θ
k(X))−∑j(−1)p(Yi)p(θ

j(X))ckijθ
j(X) = 0

for any i = 1, . . . , n1, and k = n1 + 1, . . . , n.
(7.18)

Since g− is Z-graded, eqs. (7.18) are of a particular form. Let

Fi = θn−nd+i(X), where i = 1, . . . , nd,

be the coordinates of a vector field X lying in the component g−d of maximal
depth.

If the functions Fi are given, then eqs. (7.18), where k ∈ Id−1, constitute
a system of linear (not differential) equations for the coordinates θj(X) cor-
responding to the component g−d+1, and if this component does not contain
central elements of the whole algebra g−, then all the coordinates of the level
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−d+1 enter the system. After all these coordinates are determined, eqs. (7.18),
where now k ∈ Id−2, become a system of linear equations for coordinates on
the next level, −d+ 2, and so on.

Therefore, the Fi are generating functions for X . In the general case, one
should take for generating functions the functions corresponding to all central
basis elements of g−.

Now, we are able to formulate the algorithm for the first two of our prob-
lems.

7.2. The algorithm: Solving Problems 1 and 2

• In n, take a basis B compatible with the grading and compute the
corresponding structure constants ckij .

• Seek the basis of 1-forms {ωi}i∈I satisfying (7.4), i.e., solve system (7.6)
upwards, i.e., starting with degree 1 and proceeding up to degree d.
• Seek the dual basis of vector fields {Xi}i∈I upwards, i.e., starting with

degree −d and proceeding up to degree −1. The fields {Xi}i∈I determine an
embedding of n into vect(n).

Problem 1 is solved.
• Seek a basis {Yi}i∈I of centv−(g−) in v− by means of (7.11) and the dual

basis of 1-forms {θi}i∈I .
• To find the component gs of the complete prolongation of g−, we seek

the field X ∈ gs in the form X =
∑
θi(X)Yi. For this, we express each of the

nd generating functions F i = θn−nd+i(X) as a sum of monomials of degree
d + s (in the nonstandard grading) with undetermined coefficients and solve
the system (7.18) of linear homogeneous equations for these coefficients.

For debugging, we compare, for s < 0, the fields thus obtained with the
Xi.

Problem 2 is solved.

7.2.1. Example. Consider the exceptional Lie algebra g(2) 4) in its Z-
grading of depth 3, as in [C, Y]. In what follows,

x(k) denotes




xk

k!
over R or C

u(k)(the divided power) in characteristic p > 0.

Then (recall that n is the given abstract algebra whose image in the Lie algebra
of vector fields is designated by g)

n = n−3 ⊕ n−2 ⊕ n−1, where dim n−1 = 2, dim n−2 = 1, dim n−3 = 2.

4 We denote the exceptional Lie algebras in the same way as the serial ones, like
sl(n); we thus avoid confusing g(2) with the second component g2 of a Z-graded
Lie algebra g. I. Shch.
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Let us see how the algorithm works for the embedding f(n) = g− ⊂ vect(5).
1) A basis compatible with the Z-grading and structure constants are of

the form:

n−1 = Span(e1, e2), n−2 = Span(e3), n−3 = Span(e4, e5);

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5;

ckij = 0 for k = 1, 2; c312 = −c321 = 1, c3ij = 0 otherwise ;

c413 = −c431 = 1, c4ij = 0 otherwise;

c523 = −c532 = 1, c5ij = 0 otherwise.

2) We have

ω1 = dx1, ω2 = dx2 =⇒ V ki = δki for k = 1, 2

ω3 = dx3 +
2∑

i,j=1

a3ijx
idxj =⇒ V 3

4 = V 3
5 = 0; V 3

3 = 1;

V 3
1 = a311x

1 + a321x
2; V 3

2 = a312x
1 + a322x

2.

Eqs. (7.6) give one non-trivial relation on the V 3
i :

∂2V
3
1 − ∂1V 3

2 = V 1
1 V

2
2 − V 2

1 V
1
2 = 1,

or, equivalently,
a321 − a312 = 1. (7.19)

Select a solution which seems to be a simplest one:

a311 = a322 = a312 = 0, a321 = 1.

(In canonical coordinates of first kind, a311 = a322 = 0, a312 = a321 =
1

2
.

These are most symmetric coordinates. We wish, however, to evade division
if possible.) Thus, V 3

1 = x2, V 3
2 = 0, and hence

ω3 = dx3 + x2dx1.

Further, for k = 4, 5,

ωk = dxk +

3∑

j=1

V kj dx
j ,

where

V k3 = ak1x
1 + ak2x

2,

V kj = αkj (x
1)(2) + βkj x

1x2 + γkj (x
2)(2) + εkjx

3, j = 1, 2.

Eqs. (7.6) give three nontrivial relation for each function V kj , where k = 4, 5,
j = 1, 2, 3:
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∂2V
4
1 − ∂1V 4

2 = 0; ∂3V
4
1 − ∂1V 4

3 = 1; ∂3V
4
2 − ∂2V 4

3 = 0;

∂2V
5
1 − ∂1V 5

2 = −x2; ∂3V
5
1 − ∂1V 5

3 = 0; ∂3V
5
2 − ∂2V 5

3 = 1,

or, in terms of coefficients:

β4
1x

1 + γ41x
2 = α4

2x
1 + β4

2x
2; ε41 − a41 = 1; ε42 − a42 = 0;

β5
1x

1 − γ51x2 − α5
2x

1 − β5
2x

2 = −x2; ε51 − a51 = 1; ε52 − a52 = 1.

Select a simpler looking solution:

ω4 = dx4 − x1dx3, ω5 = dx5 − x2dx3 − (x2)(2)dx1.

Finally,

ω1 = dx1, ω2 = dx2,

ω3 = dx3 + x2dx1,

ω4 = dx4 − x1dx3,
ω5 = dx5 − x2dx3 − (x2)(2)dx1.

3) Now seek the dual fields Xi:

X5 = ∂5, X4 = ∂4,

X3 = ∂3 + x1∂4 + x2∂5,

X2 = ∂2, X1 = ∂1 − x2∂3 − x1x2∂4 − (x2)(2)∂5.

We get g− = Span{X1, . . . , X5}.
4) Now we seek homogeneous fields Yi = ∂i+ . . . , commuting with all the

Xj . Since the brackets with X2, X4, X5 vanish, the coordinates of the Yi can
only depend on x1 and x3. Therefore

Y4 = ∂4, Y5 = ∂5;

Y3 = ∂3 + ax1∂4 + bx1∂5,

and [X1, Y3] = 0 implies that Y3 = ∂3.
Finally, for i = 1, 2, we have

Yi = ∂i + αix
1∂3 +

5∑

j=4

(βji (x
1)(2) + γji x

3)∂j .

Bracketing Yi with X1 and X3, we get

Y1 = ∂1 + x3∂4,

Y2 = ∂2 − x1∂3 − (x1)(2)∂4 + x3∂5.
(7.20)
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It only remains to find the forms θi left-dual to Yi. The routine computations
yield: θi = dxi for i = 1, 2 and

θ3 = dx3 + x1dx2;

θ4 = dx4 − x3dx1 + (x1)(2)dx2;

θ5 = dx5 − x3dx2.
(7.21)

5) Now, we seek all the vector fields X preserving D = Span{Y1, Y2}, or,
which is the same, all the fields that belong to the complete prolong of g−.
Let X =

∑
f iYi, where f

i = θi(X). To find the f i, we solve eqs. (7.18). In
our case they are:

Y1(f
4)= f3, Y1(f

5)=0, Y2(f
4)=0, Y2(f

5)= f3, Y1(f
3)= f2, Y2(f

3)=−f1.

We see that X is completely determined by the functions f4 and f5 which
must satisfy the three relations:

Y1(f
5) = 0, Y2(f

4) = 0, Y1(f
4) = Y2(f

5). (7.22)

For control, let us look what are the corresponding fields in the component
v−2. In this case, both f4 and f5 should be of degree 1 in our grading, i.e., must
be of the form f i = aix1 + bix2 for i = 4, 5. Then Y1(f

i) = ai, Y2(f
i) = bi,

and hence eqs. (7.22) mean that

f4 = ax1, f5 = ax2 =⇒ f3 = a, f1 = f2 = 0.

Therefore, any field preserving D and lying in v−2 is proportional to

X = Y3 + x1Y4 + x2Y5 = ∂3 + x1∂4 + x2∂5 = X3,

as should be.
We similarly check that, in v−1, our equations single out precisely the

subspace spanned by X1 and X2.
Now, let us compute g0. Its generating functions must be of degree 3 in

our grading, i.e., of the form (for i = 4, 5)

f i = ai1(x
1)(3) + ai2(x

1)(2)x2 + ai3x
1(x2)(2) + ai4(x

2)(3)+

bi1x
1x3 + bi2x

2x3 + ci1x
4 + ci2x

5.

Then

Y1(f
i) = ai1(x

1)(2) + ai2x
1x2 + ai3(x

2)(2) + (bi1 + ci1)x
3;

Y2(f
i) = (ai2 − 2bi1 − ci1)(x1)(2) + (ai3 − bi2)x1x2 + ai4(x

2)(2) + (bi2 + ci2)x
3.

In this case, eqs. (7.22) take the following form:
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a51 = a52 = a53 = 0,

b51 + c51 = 0,

a44 = 0,

b42 + c42 = 0,

a43 − b42 = 0,

a42 − 2b41 + c41 = 0,

a41 = a52 − 2b51 − c51,
a42 = a53 − b52,
a43 = a54,

b41 + c41 = b52 + c52.

The solution to this system is:

a41 = −b51 = c51 = α,

a42 = −b52 = β,

a43 = a54 = b42 = −c42 = γ,

a44 = a51 = a52 = a53 = 0,

b41 = δ,

c41 = β − 2δ,

c52 = 2β − δ.
Hence

f4 = α(x1)(3) + β(x1)(2)x2 + γx1(x2)(2) + δx1x3 + γx2x3 + (β − 2δ)x4 − γx5,
f5 = γ(x2)3 − αx1x3 − βx2x3 + αx4 + (2β − δ)x5,
f3 = α(x1)(2) + βx1x2 + γ(x2)(2) + (β − δ)x3,
f2 = Y1(f

3) = αx1 + βx2,

f1 = −Y2(f3) = −δx1 − γx2.
For a basis of g0 we take the vectorsXα, Xβ , Xγ , Xδ corresponding to the only
one non-zero parameter (for example,Xα corresponds to α = 1, β = γ = δ = 0
and so on):

Xα = x1Y2 + (x1)(2)Y3 + (x1)(3)Y4 + (−x1x3 + x4)Y5 =

x1∂2 + x4∂5 − (x1)(2)∂3 − 2(x1)(2)∂4,

Xβ = x2∂2 + x3∂3 + x4∂4 + 2x5∂5,

Xγ = −x2∂1 − x5∂4 + (x2)(2)∂3 + x1(x2)(2)∂4 + (x2)(3)∂5,

Xδ = −x1∂1 − x3∂3 − 2x4∂4 − x5∂5.
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For α = γ = 0, δ = −β = 1, we get the grading operator

X = −x1∂1 − x2∂2 − 2x3∂3 − 3x4∂4 − 3x5∂5.

The higher components can be calculated in a similar way.

Interpretation. There are three realizations of g = g(2) as a Lie algebra
that preserves a non-integrable distribution on g− related with the three (in-
compressible) Z-gradings of g: with one or both coroots of degree 1. Above we
considered the grading (1, 0); Cartan used it to give the first interpretation of
g(2), then recently discovered by Killing, see [C]. 5)

In this realization (by fields Xi) g = g(2) preserves the distribution in
the tangent bundle on g− given by the system of Pfaff equations for vector
fields X

θ3(X) = 0; θ4(X) = 0; θ5(X) = 0.

Equivalently, but a bit more economically, we can describe g = g(2) as pre-
serving the codistribution in the cotangent bundle on g− given by the vectors
(7.20), i.e., as the following system of equations for 1-forms α:

α(Y1) = 0; α(Y2) = 0.

Obviously, description in terms of codistributions is sometimes shorter:
any distribution of codimension r requires for its description r Pfaff equations,
whereas the dual codistribution requires n− r equations.

One can similarly describe the remaining realizations of g(2) corresponding
to the other Z-gradings, various realizations of f(4) and e(6)− e(8) and of ex-
ceptional Lie superalgebras, as well as Lie algebras over fields of characteristic
p.

There s e e m e d to be no need to consider nonintegrable distributions as-
sociated with various Z-gradings of non-exceptional Lie algebras (their usual
description as preserving volume or a nondegenerate form seems to be suf-
ficiently clear); Cartan himself, though understood importance of descrip-
tion of Lie algebras in terms of distributions, only considered one or two
Z-gradings and related distributions of exceptional Lie algebras and none for
non-exceptional. If, however, we apply the algorithm presented here to g(2),
o(7), sp(4) and sp(10) in characteristic p = 2, 3 or 5, we elucidate the meaning
of some of the simple Lie algebras specific to p = 2, 3, 5 and, with luck and in
the absence of classification, distinguish new examples, as in [GL3].

Other gradings of other algebras are now being under consideration.

5 Cartan also considered the grading (1, 1), see [Y]; Cartan used it to study Hilbert’s
equation f ′ = (g′′)2. I. Shch.
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7.3. How to single out partial prolongs: Solving
Problem 3

Thus, we have described the complete prolong of the Lie (super)algebra
g−, i.e., as we have already observed, the maximal subalgebra g = (g−)∗ ⊂ v

with a given negative part. Let us consider now a subspace

h = g− ⊕
(
⊕

0≤k≤K
hk

)
⊂ g,

closed with respect to the bracket within limits of its degrees, i.e., such that
[hi, hj ] ⊂ hi+j whenever i + j ≤ K. Let us describe the partial prolong
h∗ = ⊕

k≥−d
hk ⊂ g of the subspace h, i.e., the maximal subalgebra of g with

the given beginning part h. The components hk with k > K are singled out by
condition (7.2). Here by description we mean a way to single out h in g by a
system of differential equations.

7.3.1. Remark. Observe that the Cartan prolong (g−, g0)∗ (where g− is
commutative, the depth is d = 1, and g0 ⊂ gl(n)) is a particular case of
the above construction with g = vect(n), and h = g− ⊕ g0. For examples
of descriptions of Cartan prolongations by means of differential equations,
see[Sh], and [ShP].

The homogeneous component hm of h is said to be defining, if hk = gk for
all k < m but hm 6= gm. Let us consider an algorithm of description of h∗ in
the case where the defining component is of the maximal degree — hK . The
case of defining component of smaller degree m < K can be reduced to our
case; indeed, we first describe the partial prolong

hm∗ =

(
⊕

0≤k≤m
hk

)

∗

,

compare the components hk, where m < k ≤ K with the corresponding
components of this prolong hm∗ , find out the new defining component, if any,
and so on.

Thus, let Z1, . . . , ZdimhK be a basis of the defining component hK ⊂ gK .
The first thing to do is to single out the subspace hK in gK by means of a

system of linear (algebraic) equations (i.e., find out a basis of the annihilator
of hK in (gK)∗, or, equivalently, find out the fundamental system of solutions
α1, . . . , αr of the system of equations for an unknown 1-form α ∈ (gK)∗:

α(Zi) = 0 for all i = 1, . . . , dim hK . (7.23)

The subspace hK is then singled out by a system of homogeneous linear equa-
tions for an unknown vector field X ∈ gK :

αi(X) = 0 for all i = 1, . . . , r. (7.24)
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Observe now that in gK there is a convenient for us basis consisting of the
fields of the form fYj , where f is a monomial of degree K + s if j ∈ Is.
Accordingly, the dual basis consists of the elements of degree −K and of the
form

Aji1,...,it = S(Yi1 . . . Yit)θ
j ,

and the forms αl can be expressed in this basis as

αl =
∑

al;i1,...,itj Aji1,...,it . (7.25)

Substituting (7.25) into (7.24) we get a system of homogeneous linear differ-
ential equations with constant coefficients for the coordinates of the vector
field X = θi(X)Yi ∈ hK :

∑
al;i1,...,itj S(Yi1 . . . Yit)θ

j(X) for all l = 1, . . . , r. (7.26)

Observe now that, for Lie algebras, equation (7.26) survive prolongation
procedure (7.2). Indeed, for k > K, by the induction hypothesis X ∈ hk if
and only if the brackets [Xi, X ] satisfy (7.26) for any i = 1, . . . , n1. Set

f l =
∑

al;i1,...,itj S(Yi1 . . . Yit)θ
j(X).

Since all the Xi commute with all the Yj , the system (7.26) for the brackets
[Xi, X ] is equivalent to the system

Xi(f
l) = 0 for all i = 1, . . . , n1 and l = 1, . . . , r, (7.27)

which thanks to (7.1) is, in its turn, equivalent to the system

∂i(f
l) = 0 for all i = 1, . . . , n and l = 1, . . . , r.

This implies that f l = const for all l = 1, . . . , r. Since the functions f l are
homogeneous polynomials of degree k−K > 0, it follows that f l = 0. Hence,
X ∈ hk if and only if X satisfies system (7.26).

In super case the fields Xi and Yj supercommute, not commute, and this
does not allow us, generally speaking, break out the Xi and pass from sys-
tem (7.26) for the brackets to the system (7.27). There is, however, a simple
and well-know consideration that saves us. Recall that p denotes the parity
function and Pty is the parity operator, i.e.,

Pty(x) = (−1)p(x)x.

7.3.2. Lemma. Let X,Y ∈ EndV supercommute and p(Y ) = 1̄. Then X
and Ŷ = Y Pty commute (in the usual sense), i.e., XŶ = Ŷ X.

Indeed,
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XŶ (v) = XY Pty(v) = (−1)p(v)XY (v) =

(−1)p(v)(−1)p(X)p(Y )Y X(v) = (−1)p(v)+p(X)Y X(v) = Ŷ X(v).

Therefore, in the super case, the system (7.26) should be written with opera-
tors Ŷi instead of Yi (if p(Yi) = 0̄, we set Ŷi = Yi).

Finally, if d > 1, then any field X ∈ g is completely determined by its
generating functions F i. Therefore, it suffices to write equations (7.26) for the
generating functions only.

Examples: Depth 1. Let g− = g−1 be commutative, hence

g = (g−)∗ = vect(n)

in the standard Z-grading (the degree of each indeterminate is equal to 1).
Let g0 = gl(n) = vect(n)0. The degree 1 component vect(n)1 consists, as is
well-known, of the two irreducible gl(n)-modules. Let

X =
∑

akijx
ixj∂k :=

∑
fk(x)∂k. (7.28)

Then these submodules are:

h1(1) := Span{xi
∑

j

xj∂j | i = 1, . . . , n} (7.29)

and

h1(2) := Span{X =

n∑

j=1

dkijx
ixj∂k | diii+

∑
djij = 0 for i = 1, . . . , n.} (7.30)

Let us single out the partial prolongs h∗(i) = (g−1 ⊕ gl(n) ⊕ h1(i))∗, where

i = 1, 2 in vect(n) by means of differential equations on the functions fk(x),
see (7.28). In this case Xi = Yi = ∂i.

The conditions on h1(2) can be immediately expressed as

∑

j

∂i∂j(f
j) = 0 for all i = 1, . . . , n

or, equivalently, as

∂i


∑

j

∂f j

∂xj


 = 0 for all i = 1, . . . , n. (7.31)

This is exactly the system (7.26) for h∗(2) which can be rewritten in a well-
known way: ∑

j

∂f j

∂xj
= divX = const .
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Hence, as is well-known,

h∗(2) = dsvect(n) := svect(n)⊂+KE, where E =
∑

xi∂i.

Now let us consider h∗(1) (which is, of course, sl(n + 1) embedded into
vect(n)). Having expressed X ∈ h1(1) as

(c1(x
1)2+c2x

1x2+ · · ·+cnx1xn)∂1+ · · ·+(c1x
1xn+c2x

2xn+ · · ·+cn(xn)2)∂n

we immediately see that dkij = 0 if i 6= k and j 6= k, and dkkk = diki for any
i 6= k. The corresponding system of differential equations is

∂2fk

∂xi∂xj
= 0 for i, j 6= k;

1

2

∂2fk

(∂xk)2
=

∂2f i

∂xi∂xk
for i 6= k.

(7.32)

Superization. For superalgebras, as we have seen, one should take compo-
sitions of Yi = ∂i with the parity operators, i.e., instead of the ∂i we should
take operators

∇i(f) := (−1)p(f)p(∂i)∂i(f).
These ∇i commute (not supercommute) with any operator Xj = ∂j from g−1.
The system (7.31) will take form

∇i


∑

j

∇j(f j)


 = 0 for all i = 1, . . . , n,

which yields, nevertheless, the same condition divX = const. (This is one
more way to see why the coordinate expression of divergence in the super
case must contain some signs: eqs. (7.31) do not survive the prolongation
procedure (7.2).)

Having in mind that

dkij = −(−1)p(f
k) ∂2fk

∂xi∂xj
; so dkkk = 0 for xk odd (7.33)

we deduce that the second line in (7.32) takes the following form

1

2

∂2fk

(∂xk)2
= (−1)p(xi)p(fi)+1 ∂2f i

∂xi∂xk
for p(xi) = 0̄ and i 6= k;

(−1)p(xj)p(fj) ∂2f i

∂xj∂xk
= (−1)p(xi)p(fi) ∂2f i

∂xi∂xk
for p(xi) = 1̄ and i, j 6= k.

(7.34)
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Depth > 1. We consider several more-or-less well-known examples and a
new one (kas).

Let n = n−1 ⊕ n−2 be the Heisenberg Lie algebra: dim n−1 = 2n,
dim n−2 = 1. The complete prolong of n is the Lie algebra k(2n + 1) of con-
tact vector fields. Having embedded n into vect(p1, . . . , pn, q1, . . . , qn; t) with
the grading deg pi = deg qi = 1 for all i and deg t = 2 we can take for the
X-vectors, for example,

Xqi = ∂qi + pi∂t, Xpi = ∂pi − qi∂t; Xt = ∂t.

Hence g− = Span{Xp1 , . . . , Xpn , Xq1 , . . . , Xqn , Xt} and the contact vector
fields in consideration preserve the distribution D given by the Pfaff equa-
tion α(X) = 0 for vector fields X , where α = dt+

∑
i(pidqi − qidpi).

The Y -vectors in this case are of the form

Yqi = ∂qi − pi∂t, Ypi = ∂pi + qi∂t; Yt = ∂t.

In this particular example, a contact vector field K is determined by only
one generating function F which is exactly the coefficient of Yt in the decom-
position of K with respect to the Y -basis and there are no restrictions on the
function F . Denoting F = 2f and solving eqs. (7.18), we get the formula for
any contact vector field Kf :

Kf = 2fYt +
∑
i(−Yqi(f)Ypi + Ypi(f)Yqi) =

(2− E)(f)∂t +
∂f

∂t
E +

∑
i

(
∂f

∂pi
∂qi −

∂f

∂qi
∂pi

)
,

(7.35)

where E =
∑

i(pi∂pi + qi∂qi). Of course, this is exactly the standard formula
of the contact vector field with the generating function f . Further we use the
realization of k(2n+ 1) in generation functions f .

If h0 6= k0, then h0 is the defining component. The component k0 is gen-
erated by 2nd order homogeneous polynomials in p, q, t. Thus, for a basis Z
in k0 we can take monomials pipj , qiqj , piqj ; t and for a basis Z∗ of the dual
space we then take operators

YpiYpj , YqiYqj , YpiYqj for i 6= j;
1

2
(YpiYqi + YqiYpi) ; Yt.

To describe the complete prolongation of g− ⊕ h0, one should first single
out h0 in k0 in terms of equations for functions generating h0 in basis Z, then
rewrite the equations in terms of Z∗.

1) If h0 = sp(2n), the generating functions do not depend on t, which
means that

Yt(f) = 0.

This equation singles out the Poisson subalgebra po(2n) in k(2n+ 1).
2) If h0 ' C id, the generating function is t, which means that
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YpiYpj (f) = 0, YqiYqj (f) = 0, YpiYqj (f) = 0 for i 6= j;

(YpiYqi + YqiYpi) (f) = 0.
(7.36)

For i 6= j, these equations imply

YqiYpiYpj (f)− YpiYqiYpj (f) = YtYpj (f) = Ypj (Yt(f)) = 0.

Analogously, Yqj (Yt(f)) = 0, and hence Yt (Yt(f)) = 0, i.e., Yt(f) = const
and f = ct + f0 while eqs. (7.36) imply degp,q f0 ≤ 1. Hence the prolong of
g− ⊕ h0 coincides with g− ⊕ h0.

Let h0 = k0, and h1 ⊂ k1. As a k0-module, k1 decomposes into the direct
sum of two (over C; for CharK = 3 and in super setting, even over C, the sit-
uation is more involved) irreducible submodules, W1 spanned by cubic mono-
mials in p and q, andW2 spanned by tpi and tqi. The dual bases ofW1 andW2

are given by order 3 symmetric polynomials in the Ypi , Yqi , and, respectively,
spanned by YpjYt and YqjYt.

Hence the subspace W1 is singled out by conditions

YpjYt(f) = YqjYt(f) = 0 =⇒ Yt(f) = const.

In k(2n+1), this equation singles out der(po(2n)) = po(2n)⊕CKt, the deriva-
tion algebra of the Poisson algebra.

To single out W2, we have the system

YpiYpjYpk(f) = 0, YqiYqjYqk(f) = 0,

YpiYpjYqk(f) = 0, YpkYqiYqj (f) = 0, for k 6= i, j;

Ypi
(
YpjYqj + YqjYpj

)
(f) = 0, Yqi

(
YpjYqj + YqjYpj

)
(f) = 0 for i 6= j;

(
Y 2
piYqi + YpiYqiYpi + YqiY

2
pi

)
(f) = 0,

(
Y 2
qiYpi + YqiYpiYqi + YpiY

2
qi

)
(f) = 0.

(7.37)
which implies that Yt(f) satisfies eqs. (7.36), and hence

∂f

∂t
∈ Span{1; p1, . . . , pn, q1, . . . , qn, ; t},

whereas

f ∈ Span{1; p1, . . . , pn, q1, . . . , qn; t, tp1, . . . , tpn, tq1, . . . , tqn; t2}.

Hence the complete prolongation (k−⊕ k0⊕W2)∗ is isomorphic to sp(2n+2).
kas ⊂ k(1|6). Let n = n−1 ⊕ n−2 be the Heisenberg Lie superalgebra

hei(1|6): dim n−1 = 0|6, dim n−2 = 1|0. The complete prolong of n is g = k(1|6)
with g0 = co(6). The component g1 consists of three irreducible g0-modules.

If we consider k(1|6) in realization by generating functions in t, θ1, . . . , θ6,
i.e., when
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Kf = (2 − E)(f)∂t +
∂f

∂t
E − (−1)p(f)

∑

i

∂f

∂θi
∂θi , f ∈ C[t, θ1, . . . , θ6],

where E =
∑

i θi∂θi and {θi, θj}k.b. = δij , then

g1 ' tΛ(θ)⊕ Λ3(θ) = tΛ(θ)⊕ g+1 ⊕ g−1

with g±1 ⊂ Λ3(θ) singled out with the help of the Hodge star ∗:

g±1 = {f ∈ Λ3(θ) | f∗ = ±
√
−1f}. (7.38)

Recall that the Hodge star ∗ is just the Fourier transformation in odd inde-
terminates whereas t is considered a parameter:

∗ : f(ξ, t) 7→ f∗(η, t) =

∫
exp(

∑
ηiξi)f(ξ, t) vol(ξ).

The exceptional simple Lie superalgebra kas is defined as a partial prolong

of h =
1
⊕

k=−2
hk, where hk = k(1|6)k for −2 ≤ k ≤ 0 and where h1 = tΛ(θ)⊕g+1 .

Hence h1 is the defining component.
Then

Xi = ∂θi + θi∂t for i = 1, . . . 6, X7 = ∂t,

and
Yi = ∂θi − θi∂t for i = 1, . . . 6, Y7 = X7.

Let I = {i1, i2, i3} ⊂ {1, . . . , 6} be an ordered subset of indices, and
I∗ = {j1, j2, j3} the dual subset of indices (i.e., {I, I∗} is an even permu-
tation of {1, . . . , 6}). Set:

YI = Yi1Yi2Yi3 , YI∗ = Yj1Yj2Yj3 ,

and define ∆YI : C[t, θ] −→ C[t, θ] by the eqs.

∆YI (f) = (−1)p(f)YI(f).

Observe that ∆YI (tθs) = 0 for any s = 1, . . . , 6. Therefore h1 can be singled
out in k(1|6)1 by the following 10 equations parameterized by partitions (I, I∗)
of (1, . . . , 6) constituting even permutations:

(∆YI −
√
−1∆Y ∗

I
)(f) = 0. (7.39)

Clearly, (7.39) is equivalent to

(YI −
√
−1YI∗)(f) = 0.

The solutions of this system span the following subspace of the space of gen-
erating functions:
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f(t)−
√
−1f ′′′(t)1∗,

fj(t)θj −
√
−1f ′′

j (t)θ
∗
j ,

fjk(t)θjθk −
√
−1f ′

jk(t)(θjθk)
∗,

fjkl(t)
(
θjθkθl −

√
−1(θjθkθl)∗

)
.

(7.40)

In (7.40), j, k, l are distinct indices 1 to 6.



Chapter 8

The analogs of Riemann and Penrose tensors
on supermanifolds (E. Poletaeva)

This chapter is an edited version of [Po]. It expounds the results that ap-
peared mainly in not very accessible papers listed in [Po] and complements
[LPS]. Meanwhile there appeared Grozman’s package SuperLie that con-
firmed our — not very easy — calculations; for some of Grozman’s inde-
pendently obtained results (the cases of exceptional algebras), see [LPS].

Our results also make it clear why one can not just “superize” metric in
order to get Einstein-Hilbert’s equations. Their true superizations — various
SUGRAs — correspond to Z-graded Lie superalgebras of depth d > 1. Such
Lie superalgebras were discussed by Yu. Manin [MaG] but the corresponding
structure functions were not calculated yet except in the cases considered by
Grozman and Leites in [GL11].

There is, however, a paper ([GL22]) where approach similar to the one
described in what follows is applied to Z-graded Lie superalgebras of depth
d = 1 and the results are interpreted as supergravity equations since the
tensor, obtained after deleting everything that depends on odd parameters, is
exactly the standard Riemannian tensor.

8.0. Introduction

8.0.1. Structure functions. The main object of the study of Riemannian
geometry is the properties of the Riemann tensor, which in turn splits into the
Weyl tensor, the traceless Ricci tensor, and the scalar curvature. All these ten-
sors are obstructions to the possibility of “flattening” the manifold on which
they are considered. The word “splits” above means that at every point of the
Riemannian manifold Mn for n 6= 4 the space of values of the Riemann ten-
sor constitutes an O(n)-module which splits into the sum of three irreducible
components (for n = 4 there are four of them, because the Weyl tensor splits
additionally in this case) [ALV, Kob].
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More generally, let G ⊂ GL(n) be any Lie group, not necessarily O(n). A
reduction of the principal GL(n)-bundle on M to the principal G-bundle is
called a G-structure on M .

Recall that on a manifold with a G-structure there is a canonical con-
nection. For a Riemannian manifold this is the Levi-Civita connection. The
so-called structure functions (SFs) constitute the complete set of obstructions
to integrability of the canonical connection or, in other words, to the possi-
bility of local flattening of a manifold with G-structure. The Riemann tensor
is an example of a SF. Among the most known other examples of SFs are the
following ones:

• a conformal structure, G = O(n) × R∗, SFs are called the Weyl tensor ;
• Penrose’s twistor theory, G = S(U(2)×U(2))×C∗, SFs-Penrose’s tensors

— split into two components called the “α-forms” and “β-forms”;
• an almost complex structure, G = GL(n;C) ⊂ GL(2n;R), SFs are called

the Nijenhuis tensor ;
• an almost symplectic structure, G = Sp(2n), no accepted name for SFs.

8.0.2. Spencer cohomology groups. Recall necessary definitions [St2,
Gu].

The simplest G-structure is the flat G-structure defined as follows. Let V
be Kn with a fixed frame. Consider the bundle over V whose fiber over v ∈ V
consists of all frames obtained from the fixed one under the G-action, V being
identified with TvV .

Obstructions to identification of the (k + 1)-st infinitesimal neighborhood
of a point m ∈ M on a manifold M with G-structure and that of a point of
the flat manifold V with the above G-structure are called structure functions
of order k. The identification is performed inductively and is possible provided
the obstructions of lesser orders vanish. At each point of a manifold M SFs
take values in certain cohomology groups, called Spencer cohomology groups.
The corresponding complex is defined as follows. Let SiV denote the i-th
symmetric power of a vector space V and Lie(G) denote the Lie algebra of
the Lie group G. Set g−1 = TmM, g0 = g = Lie(G) and for i > 0 set:

gi = {X ∈ Hom(g−1, gi−1) | X(v)(w) = X(w)(v) for any v, w ∈ g−1}
= (g0 ⊗ Si(g−1)

∗) ∩ (g−1 ⊗ Si+1(g−1)
∗).

Now set g∗(g−1, g0) = ⊕
i≥−1

gi. Suppose that the g0-module g−1 is faithful.

Then g∗(g−1, g0) ⊂ vect(n) = derK[[x1, . . . , xn]], where n = dim g−1.
It can be verified that the Lie algebra structure on vect(n) induces such a
structure on g∗(g−1, g0). The Lie algebra g∗(g−1, g0), usually abbreviated
g∗, will be called the Cartan prolong of the pair (g−1, g0).

Let EiV be the i-th exterior power of a vector space V . Set

Ck,sg0
= gk−s ⊗ Es(g∗−1).
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Define the differentials ∂k,sg0
: Ck,sg0

−→ Ck,s+1
g0

as follows: for any
g1, . . . , gs+1 ∈ g−1

(∂k,sg0
f)(g1, . . . , gs+1) =

∑

i

(−1)i[f(g1, . . . , ˆgs+1−i, . . . , gs+1), gs+1−i] (8.1)

As expected, ∂k,sg0
∂k,s+1
g0

= 0. The cohomology of bidegree (k, s) of this com-

plex is called the (k, s)-th Spencer cohomology group Hk,s
g0

. It turns out that
structure functions of order k on a manifold M with G-structure are sections
of certain vector bundles over M with fiber over a point m ∈ M isomorphic
to Hk,2

g (TmM), where g = Lie(G).

8.0.3. Generalized conformal structures. A generalization of the notion
of conformal structure is a G-structure of type X , where X is a classical
space, i.e., an irreducible compact Hermitian symmetric space (CHSS). These
G-structures were introduced and intensively studied by A. Goncharov, who
calculated the corresponding structure functions [Go]. In his examplesG is the
reductive part of the stabilizer of a point of X . The usual conformal structure
is the one that corresponds to X = Qn, a quadric in the projective space. The
complex grassmannian X = Gr42 corresponds to Penrose’s twistors.

Recall that Penrose’s idea is to embed the Minkowski space M4 into the
complex Grassmann manifold Gr42 of planes in C4 (or straight lines in CP3)
and to express the conformal structure onM4 in terms of the incidence relation
of the straight lines in CP3 [Pen].

The conformal structure onM4 is given by a field of quadratic cones in the
tangent spaces to the points of M4. In Penrose’s case these cones possess two
families of two-dimensional flat generators, the so-called “α-planes” and “β-
planes.” The geometry of these families is vital for Penrose’s considerations. In
particular, the Weyl tensor gets a lucid description in terms of these families.

It is interesting to include 4-dimensional Penrose theory into a more gen-
eral theory of geometric structures. A. Goncharov has shown that there is
an analogous field of quadratic cones for any irreducible compact Hermitian
symmetric space X of rank greater than one [Go].

Let S be a simple complex Lie group, P its parabolic subgroup with the
Levi decomposition P = GN , i.e., G is reductive and N is the radical of P .
As is known (see [He]), N is Abelian if and only if X = S/P is a CHSS, and
in this case G = G0 × C∗, where G0 is semisimple.

Let Px = GxNx be the Levi decomposition of the stabilizer of x ∈ X in S.
Denote by Cx the cone of highest weight vectors in the Gx-module TxX , i.e.,
each element in Cx is highest with respect to some Borel subgroup in Gx.
Since s ∈ S transforms Cx to Csx, then with X there is associated the cone
C(X) ⊂ TēX , where ē is the image of the unit e ∈ S in X .

Let rk(X) > 1, i.e., X 6= CPn. Then on a manifold M said to be a
generalized conformal structure of type X is given if M is endowed with a
family of cones Cm and C-linear isomorphisms Am : TēX −→ TmM such that
Am(C(x)) = Cm.
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Goncharov has shown (see [Go]) that a manifold M with generalized con-
formal structure of type X is a manifold with a G̃-structure, where G̃ is a
group of linear automorphisms of the cone C(X) and the connected compo-
nent of the identity of this group is precisely G.

8.0.4. The case of a simple Lie algebra g∗ over C. The following
remarkable fact, though known to experts, is seldom formulated explicitly
[LRC, KN].

8.0.5. Proposition. Let K = C, g∗ = g∗(g−1, g0) be simple. Then only the
following cases are possible:

1) g2 6= 0, then g∗ is either vect(n) or its special subalgebra svect(n) of
divergence-free vector fields, or its subalgebra h(2n) of Hamiltonian vector
fields.

2) g2 = 0, g1 6= 0, then g∗ is the Lie algebra of the complex Lie group of
automorphisms of a CHSS (see sect. 8.0.3).

Let R(
∑
i

aiπi) be the irreducible g0-module with the highest weight
∑
i

aiπi, where πi is the i-th fundamental weight.

8.0.6. Theorem (Serre [St2]). In case 1) of Proposition 8.0.5, SFs can only
be of order 1. More precisely: for g∗ = vect(n) and svect(n), SFs vanish, for
g∗ = h(2n), the nonzero SFs constitute R(π1) for n = 2, and R(π1)⊕R(π3)
for n > 2.

When g∗ is a simple finite dimensional Lie algebra over C computation of
SFs becomes an easy corollary of the Bott-Borel-Weil (BBW) theorem in a
form due to W. Shmid [Shm], cf. [Go]. Indeed, by definition,

⊕
k
Hk,2

g0
= H2(g−1, g∗).

The BBW theorem implies that as a g0-module, H2(g−1, g∗) has as
many components as H2(g−1). Thanks to commutativity of g−1 one has
H2(g−1) = E2g∗−1, which facilitates the count of components. The BBW
theorem also gives the formula for the highest weights of these components.

8.0.7. Reduced structures. Let X = S/P , where

Lie(S) = g∗ = g−1⊕ g0⊕ g1, Lie(P ) = g0⊕ g1,

be a CHSS. Let ĝ0 be the semisimple part of g0 = Lie(G). A Ĝ-structure,
where Lie(Ĝ) = ĝ0, will be referred to as a Riemannian structure of type X.
To reduce the structure group G to its semisimple part Ĝ is an action similar
to distinguishing a metric from a conformal class on a conformal manifold.

The structure functions of the Ĝ-structures form an analogue of the Rie-
mann tensor for the metric. They include the structure functions of the G-
structure and several other irreducible components, some of which are ana-
logues of the traceless Ricci tensor or the scalar curvature.
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More precisely, the structure functions of the G-structure are defined as
the part of the structure functions of the Ĝ-structure obtained by a reduc-
tion of the G-structure that does not depend on the choice of reduction. In
other words, this is a generalized conformally invariant part of the structure
functions of the Ĝ-structure.

In the case of the Riemannian structure we have

g∗(g−1, ĝ0) = g−1⊕ ĝ0,

so there only exist SFs of orders 1 and 2. Though the BBW theorem doesn’t
work in this case, SFs are describable thanks to the following proposition:

8.0.8. Proposition ([Go]). 1) H1,2
ĝ0

= H1,2
g0 ;

2) H2,2
ĝ0

= H2,2
g0 ⊕S2(g∗−1).

8.0.9. The Riemannian structure in the classical case of Riemannian
geometry. Einstein equations. Let G = O(n). In this case g1 = g−1 and a
1-dimensional subspace is distinguished in S2(g−1)

∗. The sections through this
subspace constitute a Riemannian metric g onM . The usual way to determine
a metric onM is to define a matrix-valued function, but actually this function
with values in symmetric matrices depends only on one functional parameter.
The values of the Riemann tensor at a point ofM constitute an O(n)-module
H2(g−1, g∗), which contains a trivial component. Let a section through it be
denoted by R. This trivial component is naturally realized as a submodule in
a module isomorphic to S2(g−1)

∗.
Thus, there exist two matrix-valued functions: g and R, both preserved

by O(n). Now let R correspond to the Levi-Civita connection. The process
of restoring R from g involves differentiations and in this way one gets a
nonlinear PDE, which constitutes one of the two conditions called Einstein
equations [Le4, LSV, LPS]:

•1

•
[ Ol: a kak zdes’? Ostavit’ tak? ] 1

R = λg, where λ ∈ R. (EE0)

The other condition is that the other component belonging to S2(g−1)
∗, the

traceless Ricci tensor Ric, vanishes:

Ric = 0. (EEric)

There is a close relation between G-structures and so-called F -structures,
which are also of interest, in particular, because of their application to Pen-
rose’s geometry. This relation will now be explained.

8.0.10. F-structures and their structure functions. Recall that the
notion of F -structure is a generalization of the notion of distribution, i.e., a
subbundle in TM and the SFs of an F -structure generalize the notion of the
Frobenius form [Go].

Let V = TmM , F ⊂ Grk(V ) be a manifold with a transitive action of a
subgroup GF ⊂ GL(V ), F(M) be a subbundle of Grk(TM), where the fiber of
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Grk(TM) is Grk(TmM). The bundle F(M) −→M is called an F-structure on
M if, for any point m of M , there is a linear isomorphism Im : V −→ TmM ,
which induces a diffeomorphism Im(F ) = F(m). A submanifold Z ⊂ M of
dimension k such that TzZ ⊂ F(z) for any z ∈ Z is called an integral sub-
manifold. An F -structure is integrable if for any z ∈ Z and for any subspace
V (z) ⊂ F(z) there is an integral manifold Z with TzZ = V (z).

SFs of an F -structure are defined as follows. For f ∈ F let Vf ⊂ V be the
subspace corresponding to f . Set

(TfF )−1 = V/Vf , (TfF )0 = TfF.

Define
(TfF )s = ((TfF )s−1 ⊗ V ∗

f ) ∩ ((TfF )s−2 ⊗ S2V ∗
f )

for s > 0, and
Ck,sTfF = (TfF )k−s ⊗ EsV ∗

f

Define the differentials as in (8.1). Then the cohomology groups Hk,s
TfF

are
naturally defined. It turns out that the obstruction to integrability of order k
of an F -structure on a manifold M is a section of a certain vector bundle over
F(M) with fiber over a point ψ ∈ F(m) isomorphic to Hk,2

T
I
−1
m (ψ)

F . Moreover,

there exists a map Hk,s
gF −→ Hk,s

TfF
, where gF = Lie(GF ) (see [Go]).

The relation between SFs of a GF -structure and the obstructions to inte-
grability of an F -structure generalizes a theorem of Penrose, which states that
the anti-selfdual part of the Weyl tensor on a 4-dimensional manifold with a
conformal structure vanishes if and only if α-surfaces exist, in other words,
the metric is α-integrable [AHS, Gi].

More precisely, for a generalized conformal structure of type X , where
X = Grm+n

m (C), there exist two families of m and n-dimensional flat
generators–analogues of Penrose’s α-planes and β-planes. When neither m
nor n is equal to 1, i.e., the grassmannian is not a projective space, SFs de-
compose into the direct sum of two components, which are analogues of the
self-dual and anti-self-dual parts of the Weyl tensor on a 4-dimensional man-
ifold with a conformal structure. The integrability of each of two families of
generators is equivalent to the vanishing of the corresponding component of
the SFs.

8.0.11. Structure functions on supermanifolds. The necessary back-
ground on Lie superalgebras and supermanifolds is gathered in [LSoS].

The classical superspaces (homogeneous compact Hermitian symmetric su-
perspaces), which are the super analogues of CHSS, considered by Goncharov,
are listed in [LPS].

The above definitions of SFs are generalized to Lie superalgebras via the
Sign Rule. However, in the super case new phenomena appear, which have no
analogues in the classical case:
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• Cartan prolongations of (g−1, g0) and of (Πg−1, g0) are essentially differ-
ent;

• faithfulness of the g0-action on g−1 is violated in natural examples of su-
pergrassmannians of subsuperspaces in an (n, n)-dimensional superspace
when the center z of g0 acts trivially.

• the formulation of Serre’s theorem and the BBW theorem fail to be literally
true for Lie superalgebras.

8.0.12. Description of results. In §1 I compute the SFs for the odd ana-
logue of the metric on the supermanifolds and for several related G-structures
(see section 8.1.2). In this case g0 = Lie(G) is the periplectic Lie superalgebra,
the special periplectic Lie superalgebra, or their central extensions. It turns
out that unlike the classical case of Riemannian geometry, the g0-module Hk,2

g0

is not completely reducible, and I describe the Jordan-Hölder series for this
module. Thus, my computations show that there is no analogue of (EE0) for
the odd metric.

In §2 and §3 I obtain an explicit description of the Spencer cohomology
groups Hk,2

g0
for simple finite-dimensional complex classical Lie superalgebras

endowed with Z-grading of depth 1: g = ⊕
i≥−1

gi, where g0 is the zero-th part

of the grading.
It is known [K1, Se2] that all such Z-gradings are of the form

g = g−1 ⊕ g0 ⊕ g1,

except for the case where g is the special periplectic superalgebra considered
in §1. Thus, the cohomology groups Hk,2

g0 constitute the space of values of SFs
of G-structures corresponding to homogeneous compact Hermitian symmetric
superspaces, where G is a reductive complex Lie supergroup of classical type
and g0 = Lie(G). The groups Hk,2

ĝ0
correspond to structures of Riemannian

type.
An important particular case is g = sl(m|n), where m 6= n, corresponding

to general supergrassmannians.
In §2 I consider a Z-grading of g for which g0 is a reductive Lie algebra.

Thus, the g0-module Hk,2
g0 is completely reducible, and for m,n > 2 decom-

poses into the direct sum of two irreducible components — super analogues of
Penrose’s tensors for the usual complex grassmannians (see Theorem 8.2.3.1

•2

•
2

[ Ol: 8.2.3.1 or 8.2.5.1? ]).
The case g = sl(n|n) is also interesting, because I discovered a phenomenon

which has no an analogue in the classical case. Indeed, the center z of g0 acts
trivially on g−1. If one retains the same definition of the Cartan prolongation,
then it has the form of the semidirect sum S∗(g∗−1)⊂+ g∗(g−1, g0/z) (the ideal
is S∗(g∗−1)) with the natural Z-grading and Lie superalgebra structure, but
this Lie superalgebra is not a subsuperalgebra of vect(dim g−1) anymore (see
Theorem 8.2.1.1).

In §3 I describe the Spencer cohomology groups for the other Z-grad-
ings of depth 1 of sl(m|n) and psl(n|n) (see Theorem 8.3.1.4 and Theorem
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8.3.1.5). These theorems show that the superspace of SFs can be not com-
pletely reducible, and I get the answer in terms of non-split exact sequences
of g0-modules.

Finally, in the cases when m or n are equal to 1, I get SFs of the Lie super-
algebra of vector fields vect(m|n) or of divergence-free vector fields svect(m|n)
(see Theorem 8.2.3.1 and Theorem 8.3.1.3).

Theorem 8.3.2.3 shows that the SFs for queer grassmannians constitute a
module looking exactly the same as that for grassmannians of generic dimen-
sions.

The case g = osp(m|2n) is similar to Riemannian geometry. The SFs
constitute an irreducible g0-module, which is an analogue of the Weyl tensor,
and the superspace of the SFs for the reduced structure decomposes into the
direct sum of three components–the super analogues of the Weyl tensor, the
traceless Ricci tensor, and the scalar curvature. I find the highest weights of
these components (see Theorem 8.3.3.3).

Finally, I describe the Spencer cohomology groups for exceptional Lie su-
peralgebras osp(4|2;α) and ab(3) (see Theorem 8.3.4.3 and Theorem 8.3.5.3,
respectively).

8.0.13. Algebraic methods. As in the classical case (Lie theory), compu-
tation of Spencer cohomology groups reduces to certain problems of represen-
tation theory. However, in the super case computations become much more
complicated, because of the absence of complete reducibility. I could not di-
rectly apply the usual tools for computing (co)homology (spectral sequences
and the BBW theorem) to superalgebras and had to retreat a step and ap-
ply these tools to the even parts of the considered Lie superalgebras. Then,
using certain necessary conditions, I verified whether two modules over a Lie
superalgebra that could be glued into an indecomposable module were glued
or not.

My method of computing the structure functions is based on the
Hochshild-Serre spectral sequence [Fu]. Let g = g0 ⊕ g1 be a Lie superal-
gebra and M be a g-module. On the superspace of k-dimensional cochains
Ck = Ck(g,M) define a filtration:

F 0Ck = Ck ⊃ F 1Ck ⊃ F 2Ck ⊃ . . . F jCk ⊃ . . . ⊃ F k+1Ck = 0,

where for 0 ≤ j ≤ k + 1, we have

F jCk = {c ∈ Ck | c(g1, . . . , gi, . . . , gk) = 0 if k − j + 1 arguments lie in g0}.
Using this filtration define the usual corresponding spectral sequence Ep,qr
[GM]. Thus,

H2(g,M) = ⊕
p+q=2

Ep,q∞ = E2,0
3 ⊕ E1,1

3 ⊕ E0,2
4 .

In particular, Ep,q1 = Hq(g0, M ⊗Spg∗1) [Fu]. Since, in the case of Spencer
cohomology, g = g−1 = (g−1)0 ⊕ (g−1)1 is a commutative Lie superalgebra,
we have
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Ep,q1 = Hq((g−1)0, g∗ ⊗ Sp(g−1)
∗
1) = Hq((g−1)0, g∗)⊗ Sp(g−1)

∗
1.

Then in special cases I use the BBW theorem to compute Hq((g−1)0, g∗) as
a module over (g0)0.
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It is interesting to compute the Spencer cohomology groupsHk,s
g0

for simple
finite-dimensional Lie superalgebras of vector fields with nonstandard Z-grad-
ings of depth 1. For example, for g = vect(0|n) and h′(0|n).

It is much more difficult to compute the Spencer cohomology groups for
vectorial Lie superalgebras than for “matrix” ones, because in this case the
number of the irreducible quotient modules in the Jordan-Hölder series does
depend on n. Moreover, even for small n computations seem to be very com-
plicated, because of the absence of complete reducibility with respect to g0,
cf. [LPS].

8.1. The analogues of the Riemannian tensors for the
odd metric on supermanifolds

8.1.1. Periplectic superalgebras and their Cartan prolongations.
Let z = 12n be the unit matrix and τ = diag(1n, − 1n).

Let P be a nondegenerate supersymmetric odd bilinear form on a super-
space V . Clearly, dimV = (n, n). Define the odd analogue of the symplectic
Lie algebra, the periplectic Lie superalgebra pe(n), and its special subsuper-
algebra spe(n), setting

pe(n) = {X ∈ gl(n|n) | XstP + (−1)p(X)PX = 0},
spe(n) = pe(n) ∩ sl(n|n).

Thus,
pe(n) = spe(n)⊂+〈τ〉.

Denote by ε1, . . . , εn the standard basis of the space dual to the space of
diagonal matrices in gl(n) ⊂ pe(n). Denote by Vλ the irreducible gl(n)-mod-
ule with highest weight λ and highest vector vλ and by Xλ the irreducible
pe(n)-module with highest weight λ and an even highest vector.

Let V = V0 ⊕ V1 be the standard (identity) pe(n)-module, e1, . . . , en be a
basis of V0, and f1, . . . , fn be a basis of V1 with respect to which the form P on
V takes the form P = antidiag(1n, 1n). With respect to this basis the elements
X ∈ pe(n) are represented by matrices of the standard format (n, n):

X = diag(A,−At) + antidiag(B,C), where A ∈ gl(n), Bt = B, Ct = −C.

In what follows we will often use a natural abbreviation: e.g., B1,n stands for
the matrix X whose components A and C are zero and all the entries of B
are also zero except for (1, n)-th and (n, 1)-st.

Denote by ẽ1, . . . , ẽn and f̃1, . . . , f̃n the basis of V ∗ dual to the above
basis of V , i.e., f̃i(ej) = ẽi(fj) = δij . Since the form P preserved by pe(n)
is odd, then V ∗ and Π(V ) are isomorphic as pe(n)-modules. Notice that as
pe(n)-modules,
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pe(n) ∼= Π(E2V ∗).

8.1.1.1. Lemma. a) There exists a Z-grading of the Lie superalgebra pe(n+1)
of the form

g−1 ⊕ g0 ⊕ g1 ⊕ g2,

where
g−1 = V,

g0 = cpe(n),

g1 = V ∗ = Π(V ),

g2 = Π(〈1〉).
b) There exists a Z-grading of the Lie superalgebra spe(n+ 1) of the form

g−1 ⊕ g0 ⊕ g1 ⊕ g2,

where
g−1 = V,

g0 = spe(n)⊂+〈τ + nz〉,
g1 = V ∗ = Π(V ),

g2 = Π(〈1〉).
Proof. Let W = W0 ⊕ W1 be the standard (identity) pe(n + 1)-module,
e1, . . . , en+1 be a basis of W0, and f1, . . . , fn+1 be a basis of W1 with respect
to which the form P on W takes the form P = antidiag(1n+1, 1n+1). Denote
by ẽ1, . . . , ẽn+1 and f̃1 . . . , f̃n+1 the basis of W ∗ dual to the above basis of W ,
e.g., f̃i(ej) = ẽi(fj) = δij .

Note that

pe(n+ 1) = Π(E2W ∗) = Π(E2W1 ⊕W0 ∧W1 ⊕ S2W0).

Thus,
pe(n+ 1) = 〈eiẽj, ei ∧ f̃j, fi ∧ f̃j〉(1 ≤ i, j ≤ n+ 1),

where

eiẽj =
1

2
(ei ⊗ ẽj + ej ⊗ ẽi),

ei ∧ f̃j = 1

2
(ei ⊗ f̃j − fj ⊗ ẽi),

fi ∧ f̃j = 1

2
(fi ⊗ f̃j − fj ⊗ f̃i).

(8.2)

Note that the commutator in pe(n+ 1) is defined as follows:

[wi ∧ w̃j , ws ∧ w̃t] = 1

2
(w̃j(ws)(wi ∧ w̃t)− (−1)p(ws)w̃t(wi)(ws ∧ w̃j)), (8.3)

where wl ∈ {e1, . . . , en+1; f1, . . . , fn+1} for 1 ≤ l ≤ n+ 1.
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Let V = V0 ⊕ V1 = 〈e1, . . . , en; f1, . . . , fn〉 be (n, n)-dimensional subsu-
perspace in W . Then

Π(E2W1) = Π(E2V1)⊕ V1 ∧ 〈f̃n+1〉,
Π(W0 ∧W1) = Π(V0 ∧ V1)⊕ V0 ∧ 〈f̃n+1〉 ⊕ V1 ∧ 〈ẽn+1〉 ⊕ 〈en+1 ∧ f̃n+1〉,
Π(S2W0) = Π(S2V0)⊕ V0 ∧ 〈ẽn+1〉 ⊕ 〈en+1ẽn+1〉.

Set
g−1 = V0 ∧ 〈f̃n+1〉 ⊕ V1 ∧ 〈f̃n+1〉,
g0 = Π(E2V1 ⊕ V0 ∧ V1 ⊕ S2V0)⊕ 〈en+1 ∧ f̃n+1〉,
g1 = V0 ∧ 〈ẽn+1〉 ⊕ V1 ∧ 〈ẽn+1〉,
g2 = 〈en+1ẽn+1〉.

(8.4)

According to (8.3), formulas (8.4) indeed define a Z-grading of pe(n+ 1),
described in Lemma 8.1.1.1.

In order to define a Z-grading of spe(n+ 1) we set

g0 = Π(E2V1 ⊕ S2V0)⊕
〈 ∑

i,j=1,...,n

aijei ∧ f̃j |
∑

i=1,...,n

aii = 0
〉
⊕

〈( ∑

i=1,...,n

ei ∧ f̃i
)
− nen+1 ∧ f̃n+1

〉
.

Note that by (8.3) we have 2[en+1 ∧ f̃n+1, gi] = igi for −1 ≤ i ≤ 2. Hence,
−2en+1 ∧ f̃n+1 = z. Since by (8.2) 2

∑
i=1,...,n

ei ∧ f̃i = τ , then

2
( ∑

i=1,...,n

ei ∧ f̃i − nen+1 ∧ f̃n+1

)
= τ + nz.

Thus, g0 = spe(n)⊂+〈τ + nz〉. This proves Lemma 8.1.1.1. ut

8.1.1.2. Theorem. Let g−1 = V. Then
a) If g0 = spe(n), pe(n), cspe(n) or spe(n)⊂+〈aτ + bz〉, where a, b ∈ C are

such that a, b 6= 0 and b/a 6= n, then g∗(g−1, g0) = g−1 ⊕ g0.
b) If g0 = cpe(n) or spe(n)⊂+〈τ +nz〉, then g∗(g−1, g0) is either pe(n+1)

or spe(n+ 1), respectively, in the Z-grading described in Lemma 8.1.1.1.

Proof. Let us consider the case where g0 = cpe(n). By Lemma 8.1.1.1 we
have

pe(n+ 1) = g−1 ⊕ g0 ⊕ g1 ⊕ g2,

where
g−1 = V,

g0 = cpe(n),

g1 = V ∗ = Π(V ),

g2 = Π(〈1〉).
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Therefore,
pe(n+ 1) ⊂ g∗(g−1, g0). (8.5)

In fact, since spe(n+1) is a simple Lie superalgebra, then it is transitive, (i.e.,
if there exists g ∈ gi(i ≥ 0) such that [g−1, g] = 0, then g = 0). It follows
that gi ⊂ gi−1 ⊗ g∗−1. The Jacobi identity implies gi ⊂ gi−2 ⊗ S2g∗−1. ut

Let us find g1.

8.1.1.3. Lemma. As a gl(n)-module, g0⊗g∗−1 is the direct sum of irreducible
gl(n)-submodules whose highest weights and highest vectors are listed in Ta-
ble 1.

Convention. Let v, w be elements of a vector space. Set

vw =
1

2
(v ⊗ w + (−1)p(v)p(w)w ⊗ v), v ∧ w =

1

2
(v ⊗ w − (−1)p(v)p(w)w ⊗ v).

Proof of Lemma 8.1.1.3 consists of:
a) a verification of the fact that vectors v from Table 1 are indeed highest

with respect to gl(n), i.e., Ai,jv = 0 for i < j,
b) a calculation of dimensions of the corresponding irreducible submodules

by the formula from Appendix. ut
Let us show with the help of Table 1 that if λ 6= ε1, − εn, then

vλ 6∈ g−1 ⊗ S2g∗−1. Indeed, if λ = −εn−1 − 2εn, then

vλ(en)(en−1) = −1

2
fn, vλ(en−1)(en) = 0;

if λ = −εn−2 − εn−1 − εn, then

vλ(en)(en−1) =
1

2
fn−2, vλ(en−1)(en) = −1

2
fn−2;

if λ = ε1 − 2εn, then

vλ(en)(f1) =
1

2
fn, vλ(f1)(en) = 0;

if λ = ε1 + ε2 − εn, then

vλ(f2)(en) = −1

2
e1, vλ(en)(f2) = 0;

if λ = 3ε1, then
vλ(f1)(f1) = e1 6= 0;

if λ = 2ε1 + ε2, then

vλ(f1)(f1) =
1

2
e2 6= 0.

Let λ = ε1 − εn−1 − εn. According to Table 1, g0 ⊗ g∗−1 contains two highest
vectors of weight λ. Let
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vλ = k1fn−1∧ f̃n⊗ ẽ1+k2(fn−1∧ ẽ1⊗ f̃n−fn∧ ẽ1⊗ f̃n−1), where k1, k2 ∈ C,

be a linear combination of these vectors. The condition

vλ(en)(en−1) = vλ(en−1)(en)

implies k2 = 0. Then the condition

vλ(en)(f1) = vλ(f1)(en)

implies k1 = 0.
Let λ = 2ε1 − εn. Let

vλ = k1fn ∧ ẽ1 ⊗ ẽ1 + k2e1ẽ1 ⊗ f̃n, where k1, k2 ∈ C,

be a linear combination of the highest vectors of weight λ which belong to
g0 ⊗ g∗−1. The condition vλ(f1)(f1) = 0 implies k1 = 0. Then the condition
vλ(en)(f1) = vλ(f1)(en) implies k2 = 0. Therefore, if λ 6= ε1, − εn, then
vλ 6∈ g−1 ⊗ S2g∗−1, hence vλ 6∈ g1.

Let λ = ε1. According to Table 1, g0 ⊗ g∗−1 has four highest vectors of
weight λ. Let

vλ = k1

n∑

i=1

fi ∧ ẽi⊗ ẽ1 + k2

n∑

i=1

fi ∧ ẽ1⊗ ẽi+ k3

n∑

i=1

e1ẽi⊗ f̃i+ k4

n∑

i=1

eif̃i⊗ ẽ1,

where k1, k2, k3, k4 ∈ C, be their linear combination. Note that
vλ ∈ g−1 ⊗ S2g∗−1 if and only if the following conditions are satisfied:

vλ(f1)(f1) = 0,

vλ(f1)(fi) = −vλ(fi)(f1) for i 6= 1,

vλ(f1)(e1) = vλ(e1)(f1),

vλ(f1)(ei) = vλ(ei)(f1) for i 6= 1,

vλ(fi)(ei) = vλ(ei)(fi) for i 6= 1,

which determine, respectively, the following system of linear equations:

k1 + k2 + k4 = 0,

k1 + k4 = −k2,
1

2
(−k1 − k2 + k4) = k3,

− k1 + k4 = k3,

− k2 = k3.

The solution of this system is

k1 = 0, k3 = −k2 = k4.
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Therefore,

vε1 = −
n∑

i=1

fi ∧ ẽ1 ⊗ ẽi +
n∑

i=1

e1ẽi ⊗ f̃i +
n∑

i=1

eif̃i ⊗ ẽ1 ∈ g1. (8.6)

Since g1 is a pe(n)-module and vε1 is an odd vector, we have g1 = V ∗.
Let us find g2.

8.1.1.4. Lemma. There exist the following nonsplit sequences of pe(n)-mod-
ules:

0 −→ X2ε1 −→ E2V ∗ −→ Π(〈1〉) −→ 0, (8.7)

0 −→ Π(〈1〉) −→ S2V ∗ −→ Xε1+ε2 −→ 0. (8.8)

Proof. First of all recall that Π(E2V ∗) and pe(n) itself are isomorphic
pe(n)-modules and there exists the following nonsplit sequence of pe(n)-mod-
ules

0 −→ spe(n) −→ pe(n) −→ 〈τ〉 −→ 0. (8.9)

Note that as a gl(n)-module, E2V ∗ is isomorphic to

E2V ∗
0 ⊕ V ∗

0 ∧ V0 ⊕ S2V0, where S
2V0 = V2ε1 , v2ε1 = ẽ21. (8.10)

Since Bi,jv2ε1 = 0, then v2ε1 is a pe(n)-highest vector. Since spe(n) is simple,
we get eq. (8.7) after the change of parity.

Let us prove eq. (8.8). Notice that, as gl(n)-modules,

S2V ∗ = S2V ∗
0 ⊕ V ∗

0 · V0 ⊕ E2V0, where

S2V ∗
0 = V−2εn , v−2εn = f̃2

n,

V ∗
0 · V0 = Vε1−εn ⊕ 〈v0〉, vε1−εn = f̃nẽ1, v0 =

n∑
i=1

f̃iẽi,

E2V0 = Vε1+ε2 , vε1+ε2 = ẽ1 ∧ ẽ2.
(8.11)

Note that 〈v0〉 is the trivial 1-dimensional pe(n)-module. Indeed,

Bi,j(v0) = −ẽj ∧ ẽi +−ẽi ∧ ẽj = 0, Ci,j(v0) = f̃if̃j + f̃j(−f̃i) = 0.

Since Bi,jvε1+ε2 = 0, then vε1+ε2 is a pe(n)-highest vector.
Let us prove that as gl(n)-modules,

Xε1+ε2
∼= Vε1+ε2 ⊕ Vε1−εn ⊕ V−2εn .

Indeed,
C2,n(vε1+ε2) = vε1−εn , −B2,n(vε1−εn) = vε1+ε2 ,

C1,n(vε1−εn) = v−2εn , B1,n(v−2εn) = vε1−εn .

Finally, we get

v0 =
1

2

n−1∑

i=1

Bi,nAn,i + nBn,nv−2εn .

This proves (8.8) and Lemma 8.1.1.4. ut



176 Open problems

Let us prove that if vλ from g1 ⊗ g∗−1 is a pe(n)-highest vector of weight
either λ = 2ε1 or ε1 + ε2, then vλ 6∈ g0 ⊗ S2g∗−1. In fact, if λ = 2ε1, then by
(8.6) and (8.10) we have

vλ =
(
−

n∑

i=1

fi ∧ ẽ1 ⊗ ẽi +
n∑

i=1

e1ẽi ⊗ f̃i +
n∑

i=1

eif̃i ⊗ ẽ1
)
⊗ ẽ1.

Then

vλ(f1)(f1) = −f1 ∧ ẽ1 +
n∑

i=1

eif̃i 6= 0.

Therefore, vλ 6∈ g0 ⊗ S2g∗−1.
If λ = ε1 + ε2, then by (8.6) and (8.11)

vλ =
(
−

n∑

i=1

fi ∧ ẽ1 ⊗ ẽi +
n∑

i=1

e1ẽi ⊗ f̃i +
n∑

i=1

eif̃i ⊗ ẽ1
)
⊗ ẽ2

−
(
−

n∑

i=1

fi ∧ ẽ2 ⊗ ẽi +
n∑

i=1

e2ẽi ⊗ f̃i +
n∑

i=1

eif̃i ⊗ ẽ2
)
⊗ ẽ1.

Thus,
vλ(f2)(ei) = e1ẽi 6= 0 and vλ(ei)(f2) = 0.

Hence, vλ 6∈ g0 ⊗ S2g∗−1.
Let λ = 0. According to Lemma 8.1.1.4, the Jordan-Hölder series of the

pe(n)-module g1 ⊗ g∗−1 contains two pe(n)-modules with highest weight 0. By
Lemma 8.1.1.4 the sequence (8.7) is nonsplit and we have already proved that
g2 has no irreducible pe(n)-module with highest weight 2ε1. Therefore, either
g2 consists of one trivial pe(n)-module or g2 = 0. But by (8.5)

pe(n+ 1) ⊂ g∗(g−1, g0).

Hence, g2 = Π(〈1〉).
Finally, let us show that g3 = 0. By definition

g3 = (g2 ⊗ g∗−1) ∩ (g1 ⊗ S2g∗−1).

Note that
g2 ⊗ g∗−1 = Π(〈1〉)⊗ V ∗ ∼= V,

as pe(n)-modules. By (8.4) the pe(n)-highest vector in g2⊗g∗−1 is v = en+1ẽn+1⊗ẽ1.
By the explicit formula (8.3) of multiplication in pe(n+ 1) we have

v(f1)(e1) = [en+1ẽn+1, e1 ∧ f̃n+1] = e1ẽn+1 ∈ g1.

On the other hand, v(e1)(f1) = 0. Therefore, v 6∈ g1 ⊗ S2g∗−1. Hence, g3 = 0.
Thus, Theorem 8.1.1.2 is proved for g0 = cpe(n). This result and

part b) of Lemma 8.1.1.1 imply the statement of Theorem 8.1.1.2 for
g0 = spe(n)⊂+〈τ + nz〉.
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Let us prove that g1 = 0 for g0 = spe(n), pe(n), cspe(n), or
spe(n)⊂+〈aτ + bz〉, where a, b ∈ C, a, b 6= 0, and b/a 6= n.

Indeed, as has been shown, g1 = Π(V ) for g0 = cpe(n) or spe(n)⊂+〈τ+nz〉,
and by (8.6) the corresponding spe(n)-highest vector is

vε1 = −
n∑

i=1

fi ∧ ẽ1 ⊗ ẽi +
n∑

i=1

e1ẽi ⊗ f̃i +
n∑

i=1

eif̃i ⊗ ẽ1.

Then

vε1(f1) = −f1 ∧ ẽ1 +
n∑

i=1

eif̃i ∈ spe(n)⊂+〈τ + nz〉.

Note that

−f1 ∧ ẽ1 +
n∑

i=1

eif̃i 6∈ spe(n).

Hence vε1(f1) 6∈ g0 for g0 = spe(n)⊂+〈aτ + bz〉, where a, b ∈ C, a 6= 0 and
b/a 6= n, or a = 0. Therefore,

g1 = 0 for g0 = spe(n), pe(n), cspe(n), or spe(n)⊂+〈aτ + bz〉,

where a, b ∈ C, a, b 6= 0 and b/a 6= n. Thus, in these cases

g∗(g−1, g0) = g−1 ⊕ g0.

8.1.2. The main theorem. The following theorem describes SFs for the
odd analogues of Riemannian metric and various conformal versions.

8.1.2.1. Theorem. For the G-structures with the following Lie (G) = g0 the
nonzero SFs are of orders not exceeding 2 and as follows:

order 1: if g0 = spe(n) or spe(n)⊂+〈τ + nz〉 we have V ∗;
order 2: if g0 = spe(n), where n > 3, we have the following non-split exact

sequence of spe(n)-modules:

0 −→ Xε1+ε2 −→ H2,2
g0
−→ Π(X2ε1+2ε2) −→ 0;

if g0 = spe(3), then another space is added to the SFs: we have the following
nonsplit exact sequence of spe(3)-modules:

0 −→ X −→ H2,2
g0
−→ Π(X3ε1) −→ 0,

where X is determined from the following non-split exact sequence of
spe(3)-modules:

0 −→ Xε1+ε2 −→ X −→ Π(X2ε1+2ε2) −→ 0;

if g0 = spe(n)⊂+〈aτ + bz〉, where a, b ∈ C are such that a = 0, b 6= 0 or
a 6= 0, b/a 6= n, then for n > 2, we have the following non-split exact sequence
of spe(n)-modules:
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0 −→ H2,2
spe(n) −→ H2,2

g0
−→ X2ε1 −→ 0;

if g0 = spe(n)⊂+〈τ + nz〉, then for n > 3, H2,2
g0 = Π(X2ε1+2ε2) is an irre-

ducible spe(n)-module, whereas for n = 3, we have the following non-split
exact sequence of spe(3)-modules:

0 −→ Π(X2ε1+2ε2) −→ H2,2
g0
−→ Π(X3ε1) −→ 0;

if g0 = cpe(n), n > 2, then

H2,2
cpe(n) = Π(S2(E2V/Π(〈1〉))/E4V ),

more precisely, we have the following non-split exact sequence of spe(n)-mod-
ules:

0 −→ H2,2

spe(n)⊂+〈τ+nz〉
−→ H2,2

g0
−→ X2ε1 −→ 0.

8.1.3. Proof of the main theorem.

8.1.3.1. Calculation of SFs of order 1. Recall that the bidegree of the
differentials in the Spencer complex is (−1, 1). We will often refer to the
following

Lemma. Let (g−1, g0) be an arbitrary pair, where g−1 is a faithful module
over a Lie superalgebra g0, and let

•3

•
[ Ol: m.b. nizhe (k ≥ 1) pridvinut’ k3

f-le, chtob ne vyglyadelo, kak nomer? ]

gk−1 ⊗ g∗−1

∂k+1,1
g0−→ gk−2 ⊗ E2g∗−1

∂k,2g0−→ gk−3 ⊗ E3g∗−1 (k ≥ 1)

be the corresponding Spencer cochain sequence. Then

Im ∂k+1,1
g0

∼= (gk−1 ⊗ g∗−1)/gk. (8.12)

Proof. By the definition of the Cartan prolongation

gk = (gk−1 ⊗ g∗−1) ∩ (gk−2 ⊗ S2g∗−1).

Let c ∈ gk−1 ⊗ g∗−1. Then c ∈ gk if and only if c(g1)g2 = (−1)p(g1)p(g2)c(g2)g1
for any (homogeneous) g1, g2 ∈ g−1. On the other hand

∂k+1,1
g0

c(g1, g2) = −(−1)p(g1)p(g2)c(g2)g1 + c(g1)g2.

Hence, Ker ∂k+1,1
g0 = gk. This proves the Lemma. ut

In particular, to define H1,2
g0

, we have the following Spencer cochain se-
quence:

g0 ⊗ g∗−1

∂2,1
g0−→ g−1 ⊗ E2g∗−1

∂1,2
g0−→ 0, where Ker ∂2,1g0

= g1.
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Let us prove that

H1,2
g0

= 0 if either g0 = cpe(n) or g0 = spe(n)⊂+〈aτ + bz〉,
where a = 0, b 6= 0 or a 6= 0, b/a 6= n.

Let g0 = spe(n)⊂+〈τ〉 = pe(n). Since pe(n) and Π(E2V ∗) are isomorphic
g0-modules, we see that the pe(n)-module g0 ⊗ g∗−1 is isomorphic to

Π(E2V ∗)⊗ V ∗ ∼= E2V ∗ ⊗ V ∼= g−1 ⊗ E2g∗−1 = Ker ∂1,2g0
.

By part a) of Theorem 8.1.1.2 we have g1 = 0. Therefore, by (8.12)

Im ∂2,1g0
∼= g0 ⊗ g∗−1

∼= Ker ∂1,2g0
,

i.e., H1,2
pe(n) = 0.

Let g0 = spe(n)⊂+〈aτ + bz〉, where a = 0, b 6= 0 or a 6= 0, b/a 6= n. By
Theorem 8.1.1.2, g1 = 0 for such g0. Note that dim g0 = dim pe(n). Therefore,

dim Im ∂2,1g0
= dim g0⊗g∗−1 = dim pe(n)⊗V ∗ = dimE2V ∗⊗V = dimKer ∂1,2g0

.

Hence, H1,2
g0 = 0.

Let g0 = cpe(n). Then by part b) of Theorem 8.1.1.2 g1 = V ∗. Note that

g0 ⊗ g∗−1 = (pe(n)⊕ 〈z〉)⊗ V ∗ = pe(n)⊗ V ∗ ⊕ 〈z〉 ⊗ V ∗ ∼= V ⊗ E2V ∗ ⊕ V ∗.

Therefore,
Im ∂2,1g0

= V ⊗ E2V ∗ = Ker ∂1,2g0
.

Hence, H1,2
cpe(n) = 0.

Let us prove that

H1,2
g0

= V ∗ if g0 = spe(n) or spe(n)⊂+〈τ + nz〉.
Let g0 = spe(n). By part a) of Theorem 8.1.1.2 g1 = 0. Therefore,

Im ∂2,1g0
∼= g0 ⊗ g∗−1 = spe(n)⊗ V ∗.

As has been shown for the case g0 = cspe(n) = spe(n)⊕ 〈z〉, we have

g0 ⊗ g∗−1 = (spe(n)⊕ 〈z〉)⊗ V ∗ ∼= V ⊗ E2V ∗.

Therefore,
Ker∂1,2

spe(n)/ Im∂2,1
spe(n)

∼= V ∗.

Hence H1,2
spe(n) = V ∗.

Finally, let g0 = spe(n)⊂+〈τ +nz〉. By part b) of Theorem 8.1.1.2 g1 = V ∗.
Since

g0 ⊗ g∗−1 = (spe(n)⊂+〈τ + nz〉)⊗ V ∗,

we see that the Jordan-Hölder series for the spe(n)-module Im ∂2,1g0 contains the
same irreducible quotient modules as that for the spe(n)-module spe(n)⊗V ∗.
Since

Ker ∂1,2g0
= V ⊗ E2V ∗ ∼= (spe(n)⊕ 〈z〉)⊗ V ∗,

then H1,2
g0 = V ∗. This proves Theorem 8.1.2.1 in the case of the SFs of the

first order.
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8.1.3.2. Hochschild-Serre spectral sequence. The continuation of the
proof of Theorem 8.1.2.1 is based on the Hochschild-Serre spectral sequence.
Let us recall the corresponding formulations in a form convenient for us, since
the case of Lie superalgebras is hardly reflected in the literature (one might
think that the union of [Fu] and [GM] should suffice, but the sign rule applied
to the Lie algebra case does not completely solve the problem).

Let g = g0 ⊕ g1 be a Lie superalgebra and M be a g-module. On the
superspace of k-dimensional cochains Ck = Ck(g,M) define a filtration:

F 0Ck = Ck ⊃ F 1Ck ⊃ F 2Ck ⊃ . . . ⊃ F jCk ⊃ . . . ⊃ F k+1Ck = 0,

where

F jCk = {c ∈ Ck | c(g1, . . . , gi, . . . , gk) = 0 if k − j + 1 arguments lie g0},
0 ≤ j ≤ k + 1. Set

Zp,qr = {c ∈ F pCp+q | dc ∈ F p+rCp+q+1}. (8.13)

Finally, set
Ep,qr = Zp,qr /(Zp+1,q−1

r−1 + dZp−r+1,q+r−2
r−1 ). (8.14)

Notice that the differential d induces the differentials

dp,qr : Ep,qr −→ Ep+r,q−r+1
r (8.15)

and Ep,qr+1 = Hp,q(Er) [GM].
Since d(F jCk) ⊂ F jCk+1, we get the induced filtration onHk = Hk(g,M)

such that F pHk/F p+1Hk = Ep,q∞ , where p+ q = k.
We want to compute the group H2(V, g∗), where V = V0 ⊕ V1 is the

standard pe(n)-module, g∗ = g∗(V, cpe(n)). The Hochschild-Serre spectral
sequence corresponding to the subalgebra V0 converges to H2(V, g∗). Thus,
H2(V, g∗) = ⊕p+q=2E

p,q
∞ and in order to compute the limit terms of the

spectral sequence Ep,q∞ we have to consider three cases:
1) p = 2, q = 0. Then by formula (8.15) we have

E1,0
1

d1,01−→ E2,0
1

d2,01−→ E3,0
1 ,

E0,1
2

d0,12−→ E2,0
2

d2,02−→ 0,

0
d−1,2
3−→ E2,0

3

d2,03−→ 0.

(8.16)

Therefore, E2,0
∞ = E2,0

3 .
2) p = 1, q = 1. Then by formula (8.15) we have

E0,1
1

d0,11−→ E1,1
1

d1,11−→ E2,1
1 ,

0
d−1,2
2−→ E1,1

2

d1,12−→ E3,0
2 ,

0
d−2,3
3−→ E1,1

3

d1,13−→ 0.

(8.17)
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Therefore, E1,1
∞ = E1,1

3 .
3) p = 0, q = 2. Then by formula (8.15) we have

0
d−1,2
1−→ E0,2

1

d0,21−→ E1,2
1 ,

0
d−2,3
2−→ E0,2

2

d0,22−→ E2,1
2 ,

0
d−3,4
3−→ E0,2

3

d0,23−→ E3,0
3 ,

0
d−4,5
4−→ E0,2

4

d0,24−→ 0.

(8.18)

Therefore, E0,2
∞ = E0,2

4 .

8.1.3.3. Continuation of the proof. Notice that by [Fu]

Ep,q1 = Hq(g0, M ⊗ Spg∗1).

Since in our case V = V0 ⊕ V1 is a commutative Lie superalgebra, then

Ep,q1 = Hq(V0, g∗ ⊗ SpV ∗
1 ) = Hq(V0, g∗)⊗ SpV ∗

1 . (8.19)

Let us calculate Hq(V0, g∗) for q = 0, 1, 2. By Lemma 8.1.1.1

g∗ = pe(n+ 1) = g−1 ⊕ g0 ⊕ g1 ⊕ g2, where
g−1 = V0 ⊕ V1, g0 = cpe(n) = sl(n)⊕Π(S2V0)⊕Π(E2V1)⊕ 〈τ〉 ⊕ 〈z〉,
g1 = Π(V1)⊕Π(V0),
g2 = Π(〈1〉).

(8.20)
Recall that as an sl(n+ 1)-module,

pe(n+ 1) ∼= sl(n+ 1)⊕ E2W ∗
0 ⊕ S2W0 ⊕ 〈 d 〉,

where d is diag(1n+1, − 1n+1) and W0 is the standard sl(n + 1)-module.
Clearly,

E2W ∗
0 = Π(E2V1)⊕ V1,

S2W0 = Π(S2V0)⊕Π(V0)⊕ g2,

sl(n+ 1) = sl(n)⊕ 〈τ + nz〉 ⊕ V0 ⊕Π(V1),

d = τ − z.
Let ε1, . . . , εn+1 be the standard basis of the dual space to the space of the
diagonal matrices in gl(n+ 1) and the ordering is performed so that

∆+ = {εi − εj , i < j}, ∆− = {εi − εj , i > j}.

Let Eεi−εj (i 6= j) be the corresponding root vectors. Then V0 is the subspace
of sl(n+ 1) generated by

Eε1−εn+1 , Eε2−εn+1 , . . . , Eεn−εn+1 .
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Let Vλ be the irreducible sl(n+ 1)-module with highest weight λ. The BBW
theorem says [Kos] that there exists a 1-1 correspondence between the irre-
ducible components of Hq(V0, Vλ), considered as gl(n)-module, and elements
w ∈W (sl(n+1)) of length q from the Weyl group of the Lie algebra sl(n+1)
such that

w(∆−) ∩∆+ ⊂ {ε1 − εn+1, ε2 − εn+1, . . . , εn − εn+1}. (8.21)

Moreover, the highest weight of the gl(n)-module corresponding to w is equal

to w(λ+ ρ)− ρ, where ρ =
1

2
(
∑

α∈∆+

α).

Notice that E2W ∗
0 , S

2W0, sl(n + 1), and 〈τ − z〉 are all irreducible
sl(n+ 1)-modules with highest weights, respectively,

ε1 + . . .+ εn−1, 2ε1, 2ε1 + ε2 + . . .+ εn, 0.

Let us find the highest weights of irreducible gl(n)-submodules of
Hq(V0, Vλ) for each of the indicated λ.

1) q = 0. The only element of the Weyl group of length 0 is the unit. Hence
w(λ + ρ)− ρ = λ.

2) q = 1. Let 〈α1, . . . , αn〉, where

α1 = ε1 − ε2, . . . , αi = εi − εi+1, . . . , αn = εn − εn+1

be the system of simple roots. The elements of the Weyl group of length 1 are
reflections corresponding to the simple roots:

rαi : α −→ α− 2(αi, α)

(αi, αi)
αi.

Since the only element rαi satisfying (8.21) is rαn , we have

w(λ + ρ)− ρ = rαn(λ)− αn.

For
λ = ε1 + . . .+ εn−1, 2ε1, 2ε1 + ε2 + . . .+ εn, 0

this expression is equal to, respectively:

− 2εn, ε1 − ε2 − . . .− εn−1 − 2εn,

− ε2 − ε3 − . . .− εn−1 − 3εn, −ε1 − ε2 − . . .− εn−1 − 2εn.

3) q = 2. The elements of length 2 are of the form rαirαj . The only such
element satisfying (8.21) is rαnrαn−1 . Then

w(λ+ ρ)− ρ = rαnrαn−1(λ)− αn−1 − 2αn.

For λ = ε1 + . . .+ εn−1, 2ε1, 2ε1 + ε2 + . . .+ εn, 0 this expression is equal to,
respectively:
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−2ε1−2ε2− . . .−2εn−2−4εn−1−4εn,

−3ε2−3ε3 (if n=3) or −2ε2− . . .−2εn−2−3εn−1−3εn (if n> 3),

−ε1−3ε2−4ε3 (if n=3) or −ε1−2ε2− . . .−2εn−2−3εn−1−4εn (if n> 3),

−2ε1− . . .−2εn−2−3εn−1−3εn.

Remark. We have obtained the weights with respect to gl(n) = sl(n)⊕〈τ+nz〉
embedded into sl(n+1). Now it is not difficult to rewrite these weights as the
highest ones with respect to pe(n)0 = sl(n)⊕〈τ〉. We collect all our results in
the following

8.1.3.4. Lemma. gl(n) = pe(n)0 module Hq(V0, g∗) (q = 0, 1, 2) is the di-
rect sum of irreducible submodules with the highest weights and highest vectors
listed in Table 2.

8.1.3.5. Lemma. Let Vλ be an irreducible gl(n)-module with highest weight
λ. Then Ep,01 (p = 1, 2, 3), Ep,11 (p = 0, 1, 2), Ep,21 (p = 0, 1) are the di-
rect sums of irreducible gl(n)-submodules with highest weights given in the
corresponding columns of Tables 3, 4, and 5, respectively.

Proof. By formula (8.19) the following gl(n)-modules are isomorphic:
Ep,q1

∼= Hq(V0, g∗) ⊗ SpV0. Making use of the description of Hq(V0, g∗) as
a gl(n)-module given in Lemma 8.1.3.4 we find the decomposition of the in-
dicated tensor product into irreducible components described in Tables 3, 4,
and 5. ut

8.1.3.6. Lemma. Ep,00 (p = 1, 2, 3) are the direct sums of the irreducible
gl(n)-modules with highest weights described in the corresponding columns of
Table 6.

Proof. By formula (8.14) we have

Ep,00 = Zp,00 = g∗ ⊗ SpV ∗
1 = g∗ ⊗ SpV0.

Making use of the description of g∗ as gl(n)-module given in (8.20) we find
the decomposition of the indicated tensor products into direct sum of the
irreducible components described in Table 6. ut

8.1.3.7. Lemma. E2,0
∞ is an irreducible gl(n)-module with highest weight

2ε1 + 2ε2.

Proof. First, recall that H1,2
cpe(n) = 0 by the already proved part of Theorem

8.1.2.1 for the case of SFs of order 1. Making use of Lemma 8.1.3.4, we note
that if E2,0

∞ had contained a gl(n)-submodule belonging to either V−εn ⊗S2V0
or Vε1 ⊗ S2V0, then this submodule would have belonged to H1,2

cpe(n). ut
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Therefore, with the help of Table 3 we deduce that E2,0
∞ has no gl(n)-sub-

modules with highest weights 2ε1 − εn, ε1, 3ε1, 2ε1 + ε2.
Let us show that E2,0

∞ has no irreducible gl(n)-submodules with highest
weights 4ε1, 3ε1 + ε2, and 2ε1 either. More precisely, let us show that even
E2,0

2 does not have them.
Recall that the corresponding differentials act as follows:

E1,0
1

d1,01−→ E2,0
1

d2,01−→ E3,0
1 .

Note that according to (8.14), Ep,01 = Zp,01 for p = 1, 2, 3. Let us show that
Ker d2,01 has no components with weights 4ε1, 3ε1 + ε2, and 2ε1. It follows
from Tables 2 and 3 that the corresponding highest vectors in E2,0

1 are

v4ε1 = e1ẽ1 ⊗ ẽ21, v3ε1+ε2 = e1ẽ2 ⊗ ẽ21 − e1ẽ1 ⊗ ẽ1ẽ2, v2ε1 = (τ − z)⊗ ẽ21.

We remind the reader that the differentials d in our case are the same as the
differentials ∂k,sg0 . Notice that if c ∈ E2,0

1 then

d2,01 c(f1, f1, f1) = dc(f1, f1, f1) = −3c(f1, f1)(f1).

Therefore,

d2,01 v4ε1(f1, f1) = 3e1, d
2,0
1 v3ε1+ε2(f1, f1) =

3

2
e2, d

2,0
1 v2ε1(f1, f1) = −6f1.

(8.22)
Hence,

v4ε1 , v3ε1+ε2 , v2ε1 6∈ Ker d2,01 .

Finally, let us prove that in E2,0
∞ there is an irreducible gl(n)-submodule

of highest weight 2ε1+2ε2. Notice that E
2,0
2 has submodule of highest weight

2ε1 + 2ε2, since according to Table 3, this module is contained in E2,0
1 and is

not contained in either E1,0
1 or E3,0

1 . Recall that the corresponding differentials
act as follows:

E0,1
2

d0,12−→ E2,0
2

d2,02−→ 0.

Therefore, Ker d2,02 = E2,0
2 has a component of weight 2ε1 + 2ε2. By Table 4

E0,1
1 has no components of weight 2ε1 + 2ε2. Hence, neither E

0,1
2 nor Im d0,12

has such a component. Therefore, it must be in E2,0
3 = E2,0

∞ .

8.1.3.8. Lemma. a) As a gl(n)-module, E1,1
∞ can only have the irreducible

submodules with the following highest weights, each of multiplicity not greater
then 1:

2ε1, 2ε1 + ε2 − εn, ε1 + ε2 − 2εn, and ε1 − εn;
b) E1,1

∞ has an irreducible gl(n)-submodule with highest weight 2ε1.

Proof. By Theorem 8.1.2.1 for the case of SFs of order 1 and Tables 2 and 4
we see that E1,1

∞ has no irreducible gl(n)-submodules of highest weight ε1−2εn
and −εn, since they would have corresponded to SFs of order 1.
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Let us show that there are no components of weight 2ε1 − 2εn or 0 in
E1,1

∞ , more precisely, that even E1,1
2 does not have them. Recall that the

corresponding differentials act as follows:

E0,1
1

d0,11−→ E1,1
1

d1,11−→ E2,1
1 .

By (8.14) we have

E0,1
1 = Z0,1

1 /(Z1,0
0 + dZ0,0

0 ),

E1,1
1 = Z1,1

1 /(Z2,0
0 + dZ1,0

0 ),

E2,1
1 = Z2,1

1 /(Z3,0
0 + dZ2,0

0 ).

(8.23)

By Tables 2 and 4 the highest vectors of weights 2ε1 − 2εn and 0 in E1,1
1

are, respectively,

v2ε1−2εn = (e1 ∧ f̃n)⊗ ẽ1 ∧ f̃n and v0 =

n∑

i=1

(τ − z)⊗ f̃i ∧ ẽi.

We see that

dv2ε1−2εn(en,f1,f1)=−v2ε1−2εn(f1,f1)(en)−2v2ε1−2εn(en,f1)(f1)=−
1

2
fn 6=0,

dv0(e1,f1,f1)=−v0(f1,f1)(e1)−2v0(e1,f1)(f1)=2f1 6=0.

Suppose that
dv2ε1−2εn ∈ Z3,0

0 + dZ2,0
0 .

Then there exist highest gl(n)-vectors v′2ε1−2εn ∈ Z
3,0
0 and v′′2ε1−2εn ∈ dZ

2,0
0

of weight 2ε1 − 2εn such that

dv2ε1−2εn = v′2ε1−2εn + v′′2ε1−2εn .

Since en ∈ V0, it follows that v′2ε1−2εn(en, f1, f1) = 0. Hence v′′2ε1−2εn 6= 0 and

therefore, dZ2,0
0 has an irreducible gl(n)-submodule of highest weight 2ε1−2εn.

Similarly, having assumed that dv0 ∈ Z3,0
0 + dZ2,0

0 , we deduce that dZ2,0
0

has an irreducible gl(n)-submodule of weight 0. Note that according to Table
6, E2,0

0 has no submodules of highest weight 2ε1−2εn or 0. Since E2,0
0 = Z2,0

0 ,
then Z2,0

0 and dZ2,0
0 have no such components, either. Therefore, dv2ε1−2εn

and dv0 do not lie in Z3,0
0 + dZ2,0

0 . Thanks to eq. (8.23) this implies that

d1,11 v2ε1−2εn 6= 0 and d1,11 v0 6= 0.

Hence, Ker d1,11 , and therefore E1,1
2 , have no irreducible gl(n)-submodules of

highest weight 2ε1 − 2εn and 0.
Let us prove now that E1,1

∞ = E1,1
3 has no irreducible gl(n)-submodule of

highest weight 3ε1− εn. Notice that E1,1
2 has such a submodule, since thanks

to Table 4 it is contained in E1,1
1 and is not contained in either E0,1

1 or E2,1
1 .
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Tables 2 and 4 imply that the gl(n)-highest vector in E1,1
1 of weight 3ε1 − εn

is v3ε1−εn = e1ẽ1 ⊗ f̃n ∧ ẽ1.
Recall that the corresponding differentials act as follows:

0
d−1,2
2−→ E1,1

2

d1,12−→ E3,0
2 .

By formula (8.14) we have

E1,1
2 = Z1,1

2 /(Z2,0
1 + dZ0,1

1 ),

E3,0
2 = Z3,0

2 /dZ2,0
1 .

(8.24)

Thanks to formulas (8.23) we see that the gl(n)-highest vector in E1,1
2 of

weight 3ε1 − εn is

w3ε1−εn = v3ε1−εn + v′3ε1−εn + v′′3ε1−εn ,

where v′3ε1−εn and v′′3ε1−εn are gl(n)-highest vectors in Z2,0
0 and dZ1,0

0 , respec-
tively.

Since by eq. (8.13)
•4

•
dw3ε1−εn ∈ Z3,0

2 , then dw3ε1−εn(en, f1, f1) = 0. Since4 ?

v′′3ε1−εn ∈ dZ
1,0
0 , then dv′′3ε1−εn = 0. We have

dv3ε1−εn(en, f1, f1) = −2v3ε1−εn(en, f1)(f1) = −e1 6= 0.

Therefore, v′3ε1−εn 6= 0. Looking at Table 6 we see that the unique highest vec-

tor of weight 3ε1−εn in Z2,0
0 is e1∧f̃n⊗ẽ21. Hence, v′3ε1−εn = ke1∧f̃n⊗ẽ21, where

k ∈ C∗. Note that since v3ε1−εn(f1, f1) = 0, then dv3ε1−εn(f1, f1, f1) = 0.
Therefore,

dw3ε1−εn(f1, f1, f1) = dv′3ε1−εn(f1, f1, f1) =

− 3v′3ε1−εn(f1, f1)(f1) = −
3

2
kfn 6= 0.

Note that dw3ε1−εn 6∈ dZ2,0
1 . In fact, by Table 3 E2,0

1 has no irreducible
gl(n)-component with highest weight 3ε1 − εn. Since E2,0

1 = Z2,0
1 , then Z2,0

1

and dZ2,0
1 have no such component, either. Therefore, by (8.24) we have

d1,12 w3ε1−εn 6= 0. Hence, Ker d1,12 = E1,1
3 has no components with highest

weight 3ε1 − εn.
Let us prove that the irreducible component with highest weight ε1 − εn

cannot be contained in E1,1
∞ with multiplicity greater than 1. Note that E1,1

1

has two components of weight ε1−εn. According to Tables 2 and 4, one of the
gl(n)-highest vectors of weight ε1 − εn in E1,1

1 is vε1−εn = (τ − z)⊗ f̃n ∧ ẽ1.
We see that

dvε1−εn(en, f1, f1) = −2vε1−εn(en, f1)(f1) = −(τ − z)(f1) = 2f1 6= 0.

Suppose that dvε1−εn ∈ Z3,0
0 + dZ2,0

0 . Then there exist gl(n)-highest vectors
v′ε1−εn ∈ Z

3,0
0 and v′′ε1−εn ∈ dZ

2,0
0 of weight ε1 − εn such that
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dvε1−εn = v′ε1−εn + v′′ε1−εn .

Since en ∈ V0, then v′ε1−εn(en, f1, f1) = 0. Therefore, v′′ε1−εn 6= 0. Now note
that

dvε1−εn(e1, f1, f1) = −vε1−εn(f1, f1)(e1)− 2vε1−εn(e1, f1)(f1) = 0.

Since e1 ∈ V0, then v′ε1−εn(e1, f1, f1) = 0. Therefore,

v′′ε1−εn(e1, f1, f1) = 0. (8.25)

By Table 6 E2,0
0 = Z2,0

0 contains a unique highest vector of weight ε1 − εn,
namely,

n∑

i=1

fn ∧ f̃i ⊗ ẽiẽ1.

Then

v′′ε1−εn = kd(

n∑

i=1

fn ∧ f̃i ⊗ ẽiẽ1), where k ∈ C∗.

Note that in this case

v′′ε1−εn(e1, f1, f1) = kd(

n∑

i=1

fn ∧ f̃i ⊗ ẽiẽ1)(e1, f1, f1) =

− k(
n∑

i=1

fn ∧ f̃i ⊗ ẽiẽ1)(f1, f1)(e1) = k

2
fn 6= 0,

which contradicts (8.25). Thus, dv3ε1−εn 6∈ Z3,0
0 + dZ2,0

0 . Then (8.23) yields
d1,11 vε1−εn 6= 0. Therefore, the component of highest weight ε1 − εn can not
be contained in Ker d1,11 and hence, in E1,1

∞ , with multiplicity exceeding 1. So
part a) of Lemma 8.1.3.8 is proved.

Let us prove that E1,1
∞ = E1,1

3 contains an irreducible gl(n)-submodule of
highest weight 2ε1. Note that E1,1

2 does contain such a submodule, since by
Table 4 it is contained in E1,1

1 and is not contained in either E0,1
1 or E2,1

1 .
Let u2ε1 be the gl(n)-highest vector of weight 2ε1 in E1,1

1 . By (8.23) u2ε1 can
be chosen so that

u2ε1(v1, v2) = 0 for any v1, v2 ∈ V1.

According to (8.23), the gl(n)-highest vector of weight 2ε1 in E1,1
2 is

w2ε1 = u2ε1 + t2ε1 + s2ε1 , (8.26)

where t2ε1 ∈ Z2,0
0 and s2ε1 ∈ dZ1,0

0 are gl(n)-highest vectors. If dw2ε1 = 0,
then

w2ε1 ∈ Ker d1,12 = E1,1
3
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and therefore, E1,1
∞ has an irreducible gl(n)-submodule with highest weight

2ε1.
Suppose that dw2ε1 6= 0. Let us prove that then

dw2ε1 ∈ dZ2,0
1 . (8.27)

Recall that Z2,0
1 = E2,0

1 and by Table 3 E2,0
1 has one highest vector of weight

2ε1, namely, v2ε1 . Let us show that

dw2ε1 = kdv2ε1 , where k ∈ C∗. (8.28)

Note that by (8.13) dw2ε1 ∈ Z3,0
2 and dZ2,0

1 ⊂ Z3,0
0 . Therefore, in order to

prove (8.28), it suffices to show that

dw2ε1 (v1, v2, v3) = kdv2ε1 (v1, v2, v3), where k ∈ C∗, for any v1, v2, v3 ∈ V1.

We have
du2ε1(v1, v2, v3) = 0 for any v1, v2, v3 ∈ V1.

Since s2ε1 ∈ dZ1,0
0 , then ds2ε1 = 0. Therefore,

dw2ε1(v1, v2, v3) = dt2ε1(v1, v2, v3) for any v1, v2, v3 ∈ V1. (8.29)

Since t2ε1 ∈ Z2,0
0 , then dt2ε1 ∈ Z2,1

0 . Hence dt2ε1 = t′2ε1 + t′′2ε1 ,where t
′
2ε1 , t

′′
2ε1

are gl(n)-highest vectors from Z2,1
0 such that

t′2ε1(v1, v2, v3) = 0 for all v1, v2, v3 ∈ V1 and t′′2ε1 ∈ Z
3,0
0 .

Since by hypothesis dw2ε1 6= 0, then t′′2ε1 6= 0. Since v2ε1 ∈ Z2,0
1 , then

dv2ε1 ∈ Z3,0
0 .

In Lemma 8.1.3.7 we have proved that dv2ε1 6= 0 (see (8.22)). By Table
6 Z3,0

0 = E3,0
0 has only one irreducible gl(n)-submodule with highest weight

2ε1. Hence t
′′
2ε1 = kdv2ε1 , where k ∈ C∗. Therefore,

dt2ε1 (v1, v2, v3) = kdv2ε1(v1, v2, v3) for any v1, v2, v3 ∈ V1.

Thus, by (8.29)

dw2ε1 (v1, v2, v3) = kdv2ε1 (v1, v2, v3) for any v1, v2, v3 ∈ V1

and formula (8.28) is proved. Then by (8.24) d1,12 w2ε1 = 0. Therefore,
w2ε1 ∈ Ker d1,12 = E1,1

3 . Thus, E1,1
∞ contains an irreducible gl(n)-submodule

with highest weight 2ε1. This proves part b) of Lemma 8.1.3.8. ut

8.1.3.9. Lemma. Only the following highest weights of irreducible gl(n)-sub-
modules can be encountered among those in E0,2

∞ :

−2εn−1 − 2εn, 2ε1 − εn−1 − εn, ε1 − εn−1 − 2εn, − εn−1 − εn.
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Proof. By Table 5 E0,2
1 is a direct sum of irreducible gl(n)-components with

the indicated highest weights.
Note that due to Table 2 H2(V, g∗) can only possess first and second order

SFs. By the statement of Theorem 8.1.2.1 for SFs of order 1, H1,2
cpe(n) = 0.

Therefore, by Lemmas 8.1.3.7–8.1.3.9 H2,2
cpe(n) can only contain irreducible

gl(n)-submodules with the following highest weights:

2ε1 + 2ε2, 2ε1, 2ε1 + ε2 − εn, ε1 + ε2 − 2εn, ε1 − εn,
− 2εn−1 − 2εn, 2ε1 − εn−1 − εn, ε1 − εn−1 − 2εn, − εn−1 − εn

each with multiplicity not greater than one, and the components with highest
weights 2ε1+2ε2 and 2ε1 are contained in H2,2

cpe(n) with multiplicity one each.

Recall that by definition H2,2
g0

is determined by the sequence

g1 ⊗ g∗−1

∂3,1
g0−→ g0 ⊗ E2g∗−1

∂2,2
g0−→ g−1 ⊗ E3g∗−1.

Thus, g0 ⊗ E2g∗−1 for

g0 = cpe(n) or spe(n)⊂+〈τ + nz〉

is equal to

cpe(n)⊗ E2g∗−1 or (spe(n)⊂+〈τ + nz〉)⊗ E2g∗−1,

respectively. Note that Im ∂3,1
cpe(n) ' Im ∂3,1

spe(n)⊂+〈τ+nz〉
as spe(n)-modules by

part b) of Theorem 8.1.1.2 and eq. (8.12)
•5

•
. 5 ?

Note also that by Lemma 8.1.1.4 the Jordan-Hölder series for E2V ∗

contains spe(n)-modules with highest weights 2ε1 and 0. Therefore, the
Jordan-Hölder series of the spe(n)-module H2,2

cpe(n), as compared with that

of H2,2

spe(n)⊂+〈τ+nz〉
, can additionally contain only the irreducible spe(n)-mod-

ules with highest weights 2ε1 and 0. But we have shown that H2,2
cpe(n) has no

trivial gl(n)-submodule and therefore, H2,2
cpe(n) and H2,2

spe(n)⊂+〈τ+nz〉
can only

differ by an irreducible spe(n)-submodule with highest weight 2ε1, which, be-
ing considered as sl(n)-module, is the sum of irreducible sl(n)-submodules
with highest weights

2ε1, ε1 − εn, and − εn−1 − εn (see (1.4.4)).

ut

8.1.3.10. Lemma. H2,2

spe(n)⊂+〈τ+nz〉
has no irreducible sl(n)-submodule with

highest weight 2ε1.
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Proof. Making use of Lemma 8.1.3.8, let us prove that E1,1
∞ considered as

an sl(n)-module has no irreducible component with highest weight 2ε1 in the
case where g0 = spe(n)⊂+〈τ + nz〉.

Indeed, in Lemma 8.1.3.8 we have shown that if w2ε1 is the sl(n)-highest
vector of weight 2ε1 in E1,1

2 such that dw2ε1 6= 0 then dw2ε1 ∈ dZ2,0
1 (see

(8.27)).
According to Table 2, H0(V0, g∗(g−1, g0)) has no irreducible sl(n)-sub-

module with highest weight 0 when g0 = spe(n)⊂+〈τ + nz〉 Therefore, by Ta-
ble 3 E2,0

1 has no irreducible sl(n)-submodule with highest weight 2ε1. Since
Z2,0
1 = E2,0

1 , then Z2,0
1 and dZ2,0

1 have no such component either. Thus, by
(8.24) d1,12 w2ε1 6= 0 and therefore, w2ε1 6∈ E1,1

3 = E1,1
∞ . It remains to show that

dw2ε1 6= 0. Recall that w2ε1 = u2ε1 + t2ε1 +s2ε1 , where u2ε1 ∈ E1,1
1 , t2ε1 ∈ Z2,0

0

and s2ε1 ∈ dZ1,0
0 are sl(n)-highest vectors (see (8.26)). By Tables 2 and 4

u2ε1 = 2

n∑

i=1

e1ẽi ⊗ f̃i ∧ ẽ1 − (n+ 1)

n∑

i=1

e1ẽ1 ⊗ f̃i ∧ ẽi. (8.30)

Therefore,

du2ε1(e1, f1, f1) = −u2ε1(f1, f1)(e1)− 2u2ε1(e1, f1)(f1) =

− 2(e1ẽ1 − n+ 1

2
e1ẽ1)(f1) = (n− 1)e1 6= 0.

Since s2ε1 ∈ dZ1,0
0 , then ds2ε1 = 0. Hence, if dw2ε1 = 0, then t2ε1 6= 0 and

since u2ε1 is an even vector, then the vector t2ε1 must be even.
By Table 6 the space Z2,0

0 = E2,0
0 has 4 irreducible sl(n)-submodules with

highest weight 2ε1. The corresponding highest vectors are

(

n∑

i=2

ei ∧ f̃i − (n− 1)e1 ∧ f̃1)⊗ ẽ21 − n
n∑

i=2

e1 ∧ f̃i ⊗ ẽ1ẽi,

τ ⊗ ẽ21, z ⊗ ẽ21, and g2 ⊗ ẽ21.
.

Only the first three of these vectors are even. Therefore, if we confine ourselves
to the case g0 = spe(n)⊂+〈τ+nz〉, we see that there should be two sl(n)-highest
vectors of weight 2ε1 in E2,0

0 . Let

t2ε1 = k1((

n∑

i=2

ei ∧ f̃i − (n− 1)e1 ∧ f̃1)⊗ ẽ21 − n
n∑

i=2

e1 ∧ f̃i ⊗ ẽ1ẽi)

+ k2((τ + nz)⊗ ẽ21), where k1, k2 ∈ C,

be a linear combination of these vectors. Note that

du2ε1(e2, f2, f1) = −u2ε1(f2, f1)(e2)− u2ε1(e2, f1)(f2)− u2ε1(e2, f2)(f1) =

− 2(
1

2
e1ẽ2)(f2) + (n+ 1)(

1

2
e1ẽ1)(f1) = −1

2
e1 +

n+ 1

2
e1 =

n

2
e1,
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dt2ε1(e2, f2, f1) = −t2ε1(f2, f1)(e2)− t2ε1(e2, f1)(f2)− t2ε1(e2, f2)(f1) =

− 1

2
k1ne1 ∧ f̃2(e2) = −1

4
k1ne1.

Therefore, if dw2ε1 = 0, then k1 = 2. Observe that

dt2ε1(e1, f1, f1) = −t2ε1(f1, f1)(e1)− 2t2ε1(e1, f1)(f1) =

− k1(n− 1)(e1 ∧ f̃1)(e1) + k2(τ + nz)(e1) = (−k1 n− 1

2
+ k2(n+ 1))e1.

Since du2ε1(e1, f1, f1) = (n− 1)e1, then

−(n− 1) + k2(n+ 1) + (n− 1) = 0.

Hence, k2 = 0. But then

dw2ε1 (f1, f1, f1) = dt2ε1(f1, f1, f1) = −3t2ε1(f1, f1)(f1) =

− 3k1(n− 1)e1 ∧ f̃1(f1) = 3

2
k1(n− 1)f1 = 3(n− 1)f1 6= 0.

This proves Lemma 8.1.3.10. ut
Lemma 8.1.3.10 implies that H2,2

cpe(n) and H2,2

spe(n)⊂+〈τ+nz〉
differ by an ir-

reducible spe(n)-module with highest weight 2ε1. Thus, H
2,2

spe(n)⊂+〈τ+nz〉
can

only contain irreducible sl(n)-submodules with highest weights

2ε1 + 2ε2, 2ε1 + ε2 − εn, ε1 + ε2 − 2εn,

− 2εn−1 − 2εn, 2ε1 − εn−1 − εn, ε1 − εn−1 − 2εn

each with multiplicity not greater than 1, and the multiplicity of the submod-
ule with highest weight 2ε1 + 2ε2 is precisely 1.

8.1.3.11. Lemma. The irreducible pe(n)-module with highest weight 2ε1+2ε2
is the direct sum of irreducible gl(n)-modules with the following highest
weights:

a) for n > 3:

2ε1 + 2ε2, 2ε1 + ε2 − εn, ε1 + ε2 − 2εn,

− 2εn−1 − 2εn, 2ε1 − εn−1 − εn, ε1 − εn−1 − 2εn;

b) for n = 3:

2ε1 + 2ε2, 2ε1 + ε2 − ε3, ε1 + ε2 − 2ε3.

Proof. Let us consider the pe(n)-module S2(S2V ). Note that

v2ε1+2ε2 = (e1e2)
2 − (e21)(e

2
2)

is a pe(n)-highest vector. Indeed, Bi,jv2ε1+2ε2 = 0 for any i and j. Set
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v2ε1+ε2−εn = (e1e2)(e1fn)− (e21)(e2fn),

vε1+ε2−2εn = (e1fn) ∧ (e2fn),

v−2εn−1−2εn = (fn−1 ∧ fn)(fn−1 ∧ fn),
v2ε1−εn−1−εn = (e1fn−1) ∧ (e1fn)− (e21)(fn−1 ∧ fn),
vε1−εn−1−2εn = (fn−1 ∧ fn)(e1fn).

Notice that these vectors are the gl(n)-highest ones. Moreover,

C2,nv2ε1+2ε2 = 2v2ε1+ε2−εn , (8.31)

B2,nv2ε1+ε2−εn = v2ε1+2ε2 , (8.32)

C1,nv2ε1+ε2−εn = −3vε1+ε2−2εn , (8.33)

B1,nvε1+ε2−2εn = −v2ε1+ε2−εn . (8.34)

If n > 3, then additionally

C2,n−1v2ε1+ε2−εn = v2ε1−εn−1−εn ,

B2,n−1v2ε1−εn−1−εn = v2ε1+ε2−εn ,

C1,nv2ε1−εn−1−εn = −3vε1−εn−1−2εn ,

B1,nvε1−εn−1−2εn = −v2ε1−εn−1−εn ,

C1,n−1vε1−εn−1−2εn = v−2εn−1−2εn ,

B1,n−1v−2εn−1−2εn = 2vε1−εn−1−2εn .

Therefore, if n > 3, then the irreducible pe(n)-module with highest weight
2ε1 + 2ε2 contains irreducible gl(n)-modules with highest weights

2ε1 + 2ε2, 2ε1 + ε2 − εn, ε1 + ε2 − 2εn,

− 2εn−1 − 2εn, 2ε1 − εn−1 − εn, ε1 − εn−1 − 2εn.

We have already shown that the spe(n)-module H2,2

spe(n)⊂+〈τ+nz〉
does contain

irreducible sl(n)-submodules with these highest weights exactly, their multi-
plicities are not greater than 1, and the multiplicity of sl(n)-submodule with
highest weight 2ε1 + 2ε2 is precisely one.

From Tables 2 and 3 we see that the corresponding sl(n)-highest vector is

v2ε1+2ε2 = (e1ẽ1)⊗ (ẽ2ẽ2) + (e2ẽ2)⊗ (ẽ1ẽ1)− 2(e1ẽ2)⊗ (ẽ1ẽ2). (8.35)

Hence, v2ε1+2ε2 is an odd spe(n)-highest vector. So part a) of Lemma 8.1.3.11
and Theorem 8.1.2.1 for the case where g0 = spe(n)⊂+〈τ + nz〉, n > 3, are
proved.

Let n = 3. Consider the spe(3)-module E3V . As an sl(3)-module, this
module is isomorphic to

E3(V0 ⊕ V ∗
0 ) = E3V0 ⊕ (E2V0)(V

∗
0 )⊕ V0(S2V ∗

0 )⊕ S3V ∗
0 .
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Therefore, E3V is the direct sum of irreducible sl(3)-modules with the highest
weights and highest vectors listed in Table 7. Note that the vectors of weights
0 and ε1 are the spe(3)-highest ones. Therefore, the Jordan-Hölder series of the
spe(3)-module E3V contains as quotient modules the trivial and the standard
ones. Notice that the vector of weight −2ε3 is the spe(3)-highest one in the
corresponding quotient module which can only contain sl(3)-submodules with
highest weights −2ε3, ε1 − 2ε3, and − 3ε3.

Since v2ε1+2ε2 is the sl(3)-highest vector of weight −2ε3, then the relations
(8.31)–(8.34) imply part b) of Lemma 8.1.3.11. ut

8.1.3.12. Lemma. For n = 3 we have the following non-split exact sequence
of spe(3)-modules

0 −→ Π(X2ε1+2ε2) −→ H2,2

spe(3)⊂+〈τ+3z〉
−→ Π(X3ε1) −→ 0. (8.36)

Proof. By part b) of Lemma 8.1.3.11 and (8.35) we see that H2,2

spe(3)⊂+〈τ+3z〉

contains an irreducible spe(3)-module with highest weight −2ε3, which being
considered as an sl(3)-module, is the sum of irreducible sl(3)-components with
highest weights −2ε3, ε1 − 2ε3, and− 3ε3.

In addition to these sl(3)-components, H2,2

spe(3)⊂+〈τ+3z〉
can only contain

irreducible sl(3)-components with the following highest weights:

3ε1, 2ε1, and 2ε1 − ε3.

Let us show that these components are indeed contained in H2,2

spe(3)⊂+〈τ+3z〉
,

and that their sum is an irreducible spe(3)-quotient module with highest
weight 3ε1.

First, note that E0,2
∞ = E0,2

4 has an irreducible gl(n)-module with highest
weight 2ε1 − εn−1 − εn. In fact, by Table 5 such a submodule is contained in
E0,2

1 but is not contained in E1,2
1 . Therefore, by (8.18) it is contained in E0,2

2 .
According to Table 4, in E2,1

1 there is no submodule with highest weight
2ε1 − εn−1 − εn, hence such a submodule is not contained in E2,1

2 either.
Therefore, by (8.18) the submodule with this highest weight is contained in
E0,2

3 .
According to Table 6, E3,0

0 has no submodule with highest weight
2ε1 − εn−1 − εn, hence it is not contained in E3,0

3 either. Therefore, by (8.18)
it is contained in E0,2

∞ = E0,2
4 .

By Tables 2 and 5 the gl(n)-highest vectors in E0,2
1 of weights

−2εn−1 − 2εn, 2ε1 − εn−1 − εn, and ε1 − εn−1 − 2εn

are, respectively,

v−2εn−1−2εn = (fn−1 ∧ f̃n)⊗ (f̃n−1 ∧ f̃n),
v2ε1−εn−1−εn = (e1ẽ1)⊗ (f̃n−1 ∧ f̃n), and
vε1−εn−1−2εn = (e1 ∧ f̃n)⊗ (f̃n−1 ∧ f̃n).
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Note that

C1,nv2ε1−εn−1−εn = −2vε1−εn−1−2εn ,

B1,nvε1−εn−1−2εn = −v2ε1−εn−1−εn − (e1 ∧ f̃n)⊗ (f̃n−1 ∧ ẽ1),

C1,n−1vε1−εn−1−2εn = v−2εn−1−2εn ,

B1,n−1v−2εn−1−2εn = vε1−εn−1−2εn + (fn−1 ∧ f̃n)⊗ (ẽ1 ∧ f̃n).
Therefore, for n = 3, the components with highest weights 3ε1, 2ε1, and

2ε1 − ε3 constitute an irreducible quotient module with highest weight 3ε1.
From Tables 2 and 4 we see that the gl(n)-highest vector in E1,1

1 of weight
2ε1 + ε2 − εn is

v2ε1+ε2−εn = (e1ẽ2)⊗ (ẽ1 ∧ f̃n)− (e1ẽ1)⊗ (ẽ2 ∧ f̃n).

Observe that

(B1,2A2,1 − 1

2
B2,2)(v2ε1−ε2−ε3) = 2v2ε1+ε2−ε3 .

Therefore, the sequence (8.36) is non-split. This proves Lemma 8.1.3.12, and
Theorem 8.1.2.1 in the case where g0 = spe(3)⊂+〈τ + 3z〉. ut

Recall that the Jordan-Hölder series of spe(n)-moduleH2,2
cpe(n), as compared

to that of H2,2

spe(n)⊂+〈τ+nz〉
, contains in addition the spe(n)-component with

highest weight 2ε1. Recall that by (8.30) the highest gl(n)-vector with weight
2ε1 in E1,1

1 is

u2ε1 = 2
n∑

i=1

e1ẽi ⊗ f̃i ∧ ẽ1 − (n+ 1)
n∑

i=1

e1ẽ1 ⊗ f̃i ∧ ẽi.

Note that

Cn−1,n(u2ε1) = −2(n+1)v2ε1−εn−1−εn+2(e1∧f̃n−1⊗f̃n∧ẽ1−e1∧f̃n⊗f̃n−1∧ẽ1).

This proves Theorem 8.1.2.1 in the case where g0 = cpe(n).
The proof of Theorem 8.1.2.1 in the case where g0 = spe(n) follows from

the fact that the Jordan-Hölder series of spe(n)-module H2,2
spe(n), as compared

to that of H2,2

spe(n)⊂+〈τ+nz〉
, contains in addition the spe(n)-component with

highest weight ε1 + ε2.
Finally, the proof of Theorem 8.1.2.1 in the case where g0 = spe(n)⊂+〈aτ+bz〉,

where a, b ∈ C are such that a = 0, b 6= 0, or a 6= 0, b/a 6= n, follows from
the fact that the Jordan-Hölder series of spe(n)-module Ker ∂2,2

spe(n)⊂+〈aτ+bz〉
,

as compared to that of Ker ∂2,2
spe(n), contains in addition the spe(n)-component

with highest weight 2ε1.
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8.2. The analogues of Penrose’s tensors

8.2.1. Standard Z-grading of sl(m|n) and the corresponding Cartan
prolongations. Let V = V (m|0) and U = U(0|n) be the standard (identity)
gl(m)- and gl(n)-modules. (Hereafter gl(m) = gl(m|0), gl(n) = gl(0|n), etc.)

In what follows we will consider the standard (compatible) Z-grading of
g = sl(m|n) with m ≤ n and let the degrees of all even roots be zero. This
yields the Z-grading of the form:

g = g−1 ⊕ g0 ⊕ g1, where g0 = sl(m)⊕ sl(n)⊕ C, g−1 = g∗1 = U ⊗ V ∗.

Let ĝ0 be the Levi subalgebra of g0, i.e., ĝ0 = sl(m) ⊕ sl(n). The weights
are given with respect to the bases ε1, . . . , εm and δ1, . . . , δn of the dual
spaces to the maximal tori of gl(m|n). Let e1, . . . , em be the weight basis
of V and f1, . . . , fn be the weight basis of U . Let ẽ1, . . . , ẽm and f̃1, . . . , f̃n
be the bases of the dual spaces to V and U , respectively, normed so that
ẽi(ej) = f̃i(fj) = δij . If ⊕

λ
kλVλ is a direct sum of irreducible g0-modules (here

kλ is the multiplicity of Vλ) with highest weight λ, denote by viλ the highest
weight vectors of the corresponding components: i = 1, . . . , kλ. We will often
represent the elements of gl(m|n) by the matrices

X = diag(A, D) + antidiag(B, C)

where the dimensions of the matrices A, B, C, and D arem×m, m×n, n×m
and n × n, respectively. Denote by Ai,j the matrix X whose components
B,C, and D are zero and all the entries of A are also zero except for the
(i, j)-th. The matrices Bi,j , Ci,j , and Di,j are defined similarly.

8.2.1.1. Theorem. a) If m = 1, n > 1, then g∗(g−1, g0) = vect(0|n),
g∗(g−1, ĝ0) = svect(0|n);

b) if m, n > 1 and m 6= n, then g∗(g−1, g0) = g, g∗(g−1, ĝ0) = g−1⊕ ĝ0;
c) if m = n = 2, then

g∗(g−1, ĝ0) = h(0|4) and g∗(g−1, g0) = S∗(g∗−1)⊂+ h(0|4);

d) if m = n > 2, then

g∗(g−1, ĝ0) = psl(n|n) and g∗(g−1, g0) = S∗(g∗−1)⊂+ psl(n|n).

Proof. Consider all cases mentioned in Theorem 8.2.1.1.

8.2.1.2. m = 1, n ≥ 2. Then g0 = sl(n) ⊕ C = gl(n) and
ĝ0 = sl(n), where g−1 is the standard g0 (or ĝ0) module. Therefore,
g∗(g−1, g0) = vect(0|n), g∗(g−1, ĝ0) = svect(0|n).

Notice that if m 6= n, then

sl(m|n) ⊂ g∗(g−1, g0) (8.37)
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and if m = n, then
psl(n|n) ⊂ g∗(g−1, ĝ0). (8.38)

Indeed, the Lie superalgebras sl(m|n), where m 6= n, and psl(n|n) are simple
and therefore, they are transitive (i.e., if there exists g ∈ gi (i ≥ 0) such that
[g−1, g] = 0, then g = 0. It follows that g1 is embedded into g0 ⊗ g∗−1 (or
ĝ0 ⊗ g∗−1). The Jacobi identity implies g1 ⊂ g−1 ⊗ S2g∗−1.

8.2.1.3. Calculation of the first term of the Cartan prolongation for
m, n ≥ 2, m 6= n. Let g′1 be the first term of the Cartan prolongation of
the pair (g−1, g0). Let us show that g′1 = g1. By definition,

g′1 = (g0 ⊗ g∗−1) ∩ (g−1 ⊗ S2g∗−1), where, as gl(m)⊕ gl(n)-modules ,

g0 ⊗ g∗−1
∼= [(V ⊗ V ∗)/C⊕ (U ⊗ U∗)/C⊕ C]⊗ (U∗ ⊗ V ).

Note that if g ∈ g0 ⊗ g∗−1, then

g ∈ g−1 ⊗ S2g∗−1 if and only if g(g1)(g2) = −g(g2)(g1) for any g1, g2 ∈ g−1,

since g−1 is purely odd.

8.2.2. Lemma. The gl(m)⊕ gl(n)-module g0⊗ g∗−1 is the direct sum of irre-
ducible submodules whose highest weights and respective vectors are listed in
Table 8.

Proof. The proof of the Lemma consists of: a) a verification of the fact that
vectors vλ from Table 8 are indeed highest with respect to gl(m)⊕ gl(n), i.e.
Ai,jvλ = Di,jvλ = 0 for i < j;

b) a calculation of dimension of g0 ⊗ g∗−1 and of dimensions of the irre-
ducible submodules of g0 ⊗ g∗−1 by the formula from Appendix.

Let us show that if

λ = 2ε1 − εm − δn, ε1 + δ1 − 2δn, ε1 + ε2 − εm − δn (if m ≥ 3),

or
λ = ε1 + δ1 − δn−1 − δn (if n ≥ 3),

then vλ 6∈ g′1. For this it suffices to indicate g1, g2 ∈ g−1 such that

vλ(g1)(g2) 6= −vλ(g2)(g1) (8.39)

or, perhaps, there exists just one g ∈ g−1 such that

vλ(g)(g) 6= 0. (8.40)

Let λ = 2ε1 − εm − δn. Then

vλ(fn ⊗ ẽ1)(fn ⊗ ẽ1) = A1,m(fn ⊗ ẽ1) = −fn ⊗ ẽm 6= 0.

If λ = ε1 + δ1 − 2δn, then
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vλ(fn ⊗ ẽ1)(fn ⊗ ẽ1) = D1,n(fn ⊗ ẽ1) = f1 ⊗ ẽ1 6= 0.

If λ = ε1 + ε2 − εm − δn (for m ≥ 3), then

vλ(fn ⊗ ẽ2)(fn−1 ⊗ ẽ1) = A1,m(fn−1 ⊗ ẽ1) = −fn−1 ⊗ ẽm,
but vλ(fn−1 ⊗ ẽ1)(fn ⊗ ẽ2) = 0.

Finally, if λ = ε1 + δ1 − δn−1 − δn (for n ≥ 3), then

vλ(fn ⊗ ẽ1)(fn−1 ⊗ ẽ2) = D1,n−1(fn−1 ⊗ ẽ2) = f1 ⊗ ẽ2,
but vλ(fn−1 ⊗ ẽ2)(fn ⊗ ẽ1) = 0.

Now, let us show that if λ = ε1−δn, then g′1 contains precisely one irreducible
gl(m)⊕gl(n)-module with highest weight λ. Notice that by (8.37) g′1 contains
at least one such module. Let

vλ = k1v
1
λ + k2v

2
λ + k3v

3
λ, where k1, k2, k3 ∈ C,

be a linear combination of highest vectors of weight λ. Then the condition

vλ(fn ⊗ ẽ2)(fn−1 ⊗ ẽ1) = −vλ(fn−1 ⊗ ẽ1)(fn ⊗ ẽ2)

implies
mk1 = nk2, (8.41)

whereas the condition

vλ(fn ⊗ ẽ1)(fn ⊗ ẽ1) = 0

implies
k1(m− 1) + k2(1− n) + k3(m− n) = 0.

Hence,
k2 = mk1/n and k3 = −k1/n. (8.42)

Thus, g′1 = Vε1−δn and g′1 = g1. ut
8.2.2.1. Calculation of the second term of the Cartan prolongation
for m, n ≥ 2, m 6= n. Let g2 be the second term of the Cartan prolonga-
tion of (g−1, g0).

Let us show that g2 = 0. Indeed, g2 := (g1 ⊗ g∗−1) ∩ (g0 ⊗ S2g∗−1). Notice
that, as g0-module,

g1 ⊗ g∗−1
∼= (U∗ ⊗ V )⊗ (U∗ ⊗ V ) =

S2U∗ ⊗ S2V ⊕ Λ2U∗ ⊗ Λ2V ⊕ Λ2U∗ ⊗ S2V ⊕ S2U∗ ⊗ Λ2V.

This decomposition and Table 5 of [OV] imply the following

Lemma. The gl(m) ⊕ gl(n)-module (U∗ ⊗ V ) ⊗ (U∗ ⊗ V ) is the direct sum
of irreducible submodules whose highest weights and the corresponding highest
vectors are listed in Table 9.
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Let us show that vλ 6∈ g2, where vλ is any of the highest vectors listed in
Table 9. Let us indicate g1, g2 ∈ g−1 for which either (8.6) or (8.40) holds.

Let λ = 2ε1 − 2δn. Then

vλ(fn⊗ ẽ1)(fn⊗ ẽ2) = B1,n(fn⊗ ẽ2) = e1⊗ ẽ2, but vλ(fn⊗ ẽ2)(fn⊗ ẽ1) = 0.

If λ = ε1 + ε2 − 2δn, then

vλ(fn ⊗ ẽ2)(fn ⊗ ẽ2) = B1,n(fn ⊗ ẽ2) = e1 ⊗ ẽ2 6= 0.

If λ = 2ε1 − δn−1 − δn, then

vλ(fn−1 ⊗ ẽ1)(fn ⊗ ẽ2) = −B1,n(fn ⊗ ẽ2) = −e1 ⊗ ẽ2,

but vλ(fn ⊗ ẽ2)(fn−1 ⊗ ẽ1) = 0. Let λ = ε1 + ε2 − δn−1 − δn. Then if n > 2,
we have

vλ(fn−1 ⊗ ẽ2)(f1 ⊗ ẽ1) = B1,n(f1 ⊗ ẽ1) = f1 ⊗ f̃n,
but vλ(f1 ⊗ ẽ1)(fn−1 ⊗ ẽ2) = 0. If m > 2, then

vλ(fn−1 ⊗ ẽ2)(fn ⊗ ẽm) = B1,n(fn ⊗ ẽm) = e1 ⊗ ẽm,

but vλ(fn ⊗ ẽm)(fn−1 ⊗ ẽ2) = 0. Therefore, g2 = 0 and g∗(g−1, g0) = g.
Note that by (8.42) we have g∗(g−1, ĝ0) = g−1 ⊕ ĝ0. This proves part b) of
Theorem 8.2.1.1.

8.2.2.2. m = n. Let m = n = 2. Since ĝ0 = sl(2) ⊕ sl(2) = o(4) and
g−1 is the standard o(4)-module (considered as purely odd superspace), then
g∗(g−1, ĝ0) = h(0|4).

Let m = n > 2 and g′1 be the first term of the Cartan prolongation of
the pair (g−1, ĝ0). Let us show that g′1 = g1. Indeed, by (8.38) g1 ⊂ g′1. By
the results of 8.2.1.3 and Table 8 we see that the only highest weights of g′1
are all equal to ε1 − δn. Then formula (8.41) implies that the highest vector
of such weight in g′1 is precisely one and therefore, g′1 = g1. By the results
of 8.2.2.1 the second term of the Cartan prolongation of the pair (g−1, ĝ0) is
zero. Hence, for m = n > 2, we have g∗(g−1, ĝ0) = psl(n|n).

Let m = n > 1 and let

gk = (g0 ⊗ Skg∗−1) ∩ (g−1 ⊗ Sk+1g∗−1) for k ≥ 1

be the k-th term of the Cartan prolongation of the pair (g−1, g0). Observe
that

g0 ⊗ Skg∗−1 = (ĝ0 ⊕ 〈z〉)⊗ Skg∗−1, where z = 12n is the center of sl(n|n).

Note that
〈z〉 ⊗ Skg∗−1 ⊂ g−1 ⊗ Sk+1g∗−1.

Therefore,
g∗(g−1, g0) = S∗(g∗−1)⊂+ g∗(g−1, ĝ0).

ut
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8.2.3. Structure functions of Lie superalgebras vect(0|n) and
svect(0|n). Let U be the purely odd standard gl(n)-module.

8.2.3.1. Theorem. If m = 1, n > 1, then

a) Hk,2
g0

= 0 for any k > 0;

b) Hk,2
ĝ0

= Πn(C)δkn.

8.2.3.2. Proof of part a). Since g∗(g−1, g0) = vect(0|n) =
n−1
⊕

i=−1
gi, where

g0 = gl(n), and the gl(n)-module gi is isomorphic to U ⊗ Si+1U∗, then for

k ≥ n + 2, we have Hk,2
g0

= 0, and for k ≤ n + 1, there exist the following
Spencer cochain sequences:

gl(n)⊗ U∗
∂2,1
gl(n)−→ U ⊗ Λ2U∗

∂1,2
gl(n)−→ 0 (k = 1),

Ck+1,1
gl(n)

∂k+1,1
gl(n)−→ Ck,2

gl(n)

∂k,2
gl(n)−→ Ck−1,3

gl(n) (2 ≤ k ≤ n),

0
∂n+2,1
gl(n)−→ Cn+1,2

gl(n)

∂n+1,2
gl(n)−→ Cn,3

gl(n) (k = n+ 1),

where
Ck+1,1

gl(n) = gk−1 ⊗ g∗−1
∼= (U ⊗ SkU∗)⊗ U∗,

Ck,2
gl(n) = gk−2 ⊗ Λ2g∗−1

∼= (U ⊗ Sk−1U∗)⊗ Λ2U∗,

Ck−1,3
gl(n) = gk−3 ⊗ Λ3g∗−1

∼= (U ⊗ Sk−2U∗)⊗ Λ3U∗.

Recall (see section 8.1.3.1) that if g−1 is a faithful g0-module and
•6

•
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logichno ]

gk−1 ⊗ g∗−1

∂k+1,1
g0−→ gk−2 ⊗ Λ2g∗−1

∂k,2g0−→ gk−3 ⊗ Λ3g∗−1 (k ≥ 1)

is the Spencer cochain sequence corresponding to the pair (g−1, g0), then

Im ∂k+1,1
g0

∼= (gk−1 ⊗ g∗−1)/gk. (8.43)

Let us show that H1,2
g0 = 0. Indeed, by (8.43)

Im ∂2,1g0
∼= (gl(n)⊗ U∗)/(U ⊗ S2U∗) ∼= U ⊗ Λ2U∗ = Ker∂1,2g0

.

We will prove that for 2 ≤ k ≤ n+ 1, we have Hk,2
gl(n) = 0, using the following

8.2.4. Lemma. As gl(n)-modules Ck,2
gl(n), C

k+1,1
gl(n) , and gk, where 2≤k≤n+1,

are the direct sums of the irreducible submodules whose highest weights and
highest vectors are listed in Tables 10, 11, and 12, respectively. (Here r, s,
and t denote the cyclic permutations of (n− k, . . . , n), (n− k+1, . . . , n), and
(n− k + 2, . . . , n), respectively.)
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Proof. The proof of the Lemma consists of
a) a verification of the fact that vectors vλl , vβl , vγl from Tables 10, 11,

and 12 are indeed highest with respect to gl(n), i.e.,

Di,jvλl = Di,jvβl = Di,jvγl = 0 for i < j;

b) a calculation of dimensions of given modules and dimensions of their
irreducible submodules by the formula from Appendix.

Notice that Di,jfp = δjpfi, Di,j f̃p = −δipf̃j. According to Table 10,

λ1 = δ1−δn−k+2−. . .−δn−1−3δn, vλ1 = (f1⊗f̃n−k+2∧f̃n−k+3∧. . .∧f̃n)⊗f̃n
2
.

Then for i < n − k + 2, we have Di,jvλ1 = 0. For j > i ≥ n − k + 2, we
have

Di,j(vλ1) = Di,j(f1 ⊗ f̃n−k+2 ∧ . . . ∧ f̃i ∧ . . . ∧ f̃j ∧ . . . ∧ f̃n)⊗ f̃n
2
=

(f1 ⊗ f̃n−k+2 ∧ . . . ∧ (−f̃j) ∧ . . . ∧ f̃j ∧ . . . ∧ f̃n)⊗ f̃n
2
= 0.

Thus, vλ1 is a highest vector. The proof of the fact that the other vectors from
Tables 10, 11, and 12 are highest with respect to gl(n) is similar.

Using the formula from Appendix we find the dimensions of the gl(n)-mod-
ules given in Table 10:

dimVλ1 = n(n+3)(n+1)!
2(n−k+2)(k+1)(k−2)!(n−k)! if 2 ≤ k ≤ n,

dimVλ1 = (n−1)n(n+2)
2 if 3 ≤ k = n+ 1,

dimVλ2 = (n+1)!
(k−2)!((n−k+1)!k if 2 ≤ k ≤ n+ 1,

dimVλ3 = dimVλ2 if k = 2 ≤ n,
dimVλ3 = (n+2)!

2(k−3)!(n−k+2)!k if 3 ≤ k ≤ n,
dimVλ4 = n2 − 1 if 3 ≤ k = n,

dimVλ4 = n(n+2)n!
(n−k+1)(k−1)!(n−k−1)!(k+1) if 2 ≤ k ≤ n− 1,

dimVλ5 = n!
k!(n−k)! if 2 ≤ k ≤ n,

dimVλ6 = dimVλ2 if 3 ≤ k ≤ n− 1.

(8.44)

Therefore, if 2 = k = n, then

dimVλ1 + 2dimVλ2 + dimVλ5 =
n3(n+ 1)

2
= dim(U ⊗ U∗)⊗ Λ2U∗,

5∑
l=1

dimVλl =
n3(n+1)

2 = dim(U ⊗ U∗)⊗ Λ2U∗, if 2 = k ≤ n− 1,

2∑
l=1

dimVλl =
n2(n+1)

2 = dimU ⊗ Λ2U∗ if 3 ≤ k = n+ 1,

5∑
l=1

dimVλl =
n3(n+1)

2 = dim(U ⊗ Sn−1U∗)⊗ Λ2U∗ if 3 ≤ k = n;
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if 3 ≤ k ≤ n− 1, then

6∑

l=1

dimVλl =
n2(n+ 1)!

2(n− k + 1)!(k − 1)!
= dim(U ⊗ Sk−1U∗)⊗ Λ2U∗.

In order to find the dimensions of the gl(n)-modules given in Table 11,
note that if k ≥ 2, then β1 = λ4, β2 = β4 = λ5, β3 = λ2. Using the formula
from Appendix we get

dimVβ5 =
(n+ 1)!

(n− k)(k + 1)!(n− k − 2)!
for 2 ≤ k ≤ n− 2. (8.45)

Therefore

2∑
l=1

dim Vβl = n2 = dimU ⊗ U∗ if 2 ≤ k = n,

4∑
l=1

dim Vβl = n3 = dim(U ⊗ Sn−1U∗)⊗ U∗ if 2 ≤ k = n− 1,

5∑
l=1

dim Vβl =
n2n!

(n−k)!k! = dim(U ⊗ SkU∗)⊗ U∗ if 2 ≤ k ≤ n− 2.

Finally, in order to find the dimensions of the gl(n)-modules given in Table
12, note that if 2 ≤ k ≤ n − 2, then γ1 = β5, and γ2 = λ5. Therefore, if
2 ≤ k ≤ n− 2, then

2∑

l=1

dim Vγl =
nn!

(n− k − 1)!(k + 1)!
= dim(U ⊗ Sk+1U∗) = dim gk,

and if k = n− 1, then dimVγ1 = n = dimU = dim gk. ut
Let k ≥ 2 and λ = λ1, λ2, λ3. Then

vλ 6∈ Ker ∂k,2
gl(n). (8.46)

Indeed,
∂k,2
gl(n)vλ(fn, fn, fn) = −3vλ(fn, fn)(fn),

and according to Table 10, vλ(fn, fn)(fn) 6= 0. Note that if 2 ≤ k = n, then

Im ∂k+1,1
gl(n) = Vλ2 ⊕ Vλ5 . (8.47)

In fact, according to Table 11,

Ck+1,1
gl(n) = Vλ2 ⊕ Vλ5 ,

and we get (8.47) by (8.43), since gk = 0. Note that if 2 ≤ k ≤ n− 1, then

Im ∂k+1,1
gl(n) = Vλ2 ⊕ Vλ4 ⊕ Vλ5 . (8.48)
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Indeed, according to Table 11, if 2 ≤ k = n− 1, then

Ck+1,1
gl(n) = Vλ2 ⊕ Vλ4 ⊕ 2Vλ5 , (8.49)

and if 2 ≤ k ≤ n− 2, then

Ck+1,1
gl(n) = Vλ2 ⊕ Vλ4 ⊕ 2Vλ5 ⊕ Vβ5 . (8.50)

Since by Table 12

gk = Vλ5 for 2 ≤ k = n− 1,

gk = Vλ5 ⊕ Vβ5 for 2 ≤ k ≤ n− 2,

we get (8.48) by (8.43).
We will show now that for 2 ≤ k ≤ n+ 1, we have

Ker ∂k,2
gl(n) = Im ∂k+1,1

gl(n) . (8.51)

Let
Ker ∂k,2

gl(n) = ⊕
λ
kλVλ. (8.52)

Let k = 2. According to Table 10, if n = 2, then

Ck,2
gl(n) = Vλ1 ⊕ 2Vλ2 ⊕ Vλ5 , (8.53)

and if n ≥ 3, then

Ck,2
gl(n) = Vλ1 ⊕ 2Vλ2 ⊕ Vλ4 ⊕ Vλ5 .

Therefore, in (8.52) kλ5 ≤ 1, and by (8.46) kλ1 = 0, kλ2 ≤ 1. Note that if
n = 2, then kλ4 = 0, and if n ≥ 3, then kλ4 ≤ 1. Thus, by (8.47) and (8.48)
we get (8.51).

Let k ≥ 3. Then according to Table 10, if k = n+ 1, then

Ck,2
gl(n) = Vλ1 ⊕ Vλ2 .

Hence, by (8.46) Ker ∂k,2
gl(n) = 0. If k = n, then

Ck,2
gl(n) = Vλ1 ⊕ 2Vλ2 ⊕ Vλ3 ⊕ Vλ5 . (8.54)

Therefore, in (8.52) kλ5 ≤ 1 and by (8.46) kλ1 = kλ3 = 0, kλ2 ≤ 1. So from
(8.47) we get (8.51).

Finally, if k ≤ n− 1, then

Ck,2
gl(n) = Vλ1 ⊕ 2Vλ2 ⊕ Vλ3 ⊕ Vλ4 ⊕ Vλ5 .

Therefore, in (8.52) kλ4 ≤ 1, kλ5 ≤ 1 and by (8.46) kλ1 = kλ3 = 0, kλ2 ≤ 1.
Thus, by (8.48) we get (8.51). This proves part a) of Theorem 8.2.3.1.
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8.2.4.1. Proof of part b) of Theorem 8.2.3.1. Note that

g∗(g−1, ĝ0) = svect(0|n) =
n−2
⊕

i=−1
gi,

where ĝ0 = sl(n), and the sl(n)-module gi is isomorphic to U if i = −1 and
to Vδ1−δn−k−δn−k+1−...−δn if 0 ≤ k ≤ n− 2.

Hence, for k ≥ n + 1, we have Hk,2
sl(n) = 0 and for 1 ≤ k ≤ n, there exist

the following Spencer cochain sequences:

sl(n)⊗ U∗
∂2,1
sl(n)−→ U ⊗ Λ2U∗

∂1,2
sl(n)−→ 0 (k = 1),

Ck+1,1
sl(n)

∂k+1,1
sl(n)−→ Ck,2

sl(n)

∂k,2
sl(n)−→ Ck−1,3

sl(n) (2 ≤ k ≤ n− 1),

0
∂n+1,1
sl(n)−→ Cn,2

sl(n)

∂n,2
sl(n)−→ Cn−1,3

sl(n) (k = n).

First, we will show that H1,2
sl(n) = 0. In fact, since g1 ∼= Vδ1−δn−1−δn , then

by (8.43)
•7

•
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Im ∂2,1
sl(n)

∼= (sl(n)⊗ U∗)/Vδ1−δn−1−δn .

Since dim sl(n)⊗ U∗ = (n2 − 1)n and by the formula from Appendix

dimVδ1−δn−1−δn =
n(n+ 1)(n− 2)

2
,

then

dim Im ∂2,1
sl(n) = (n2 − 1)n− n(n+ 1)(n− 2)

2
=
n3 + n2

2
=

dimU ⊗ Λ2U∗ = dimKer ∂1,2
sl(n).

Next, we will prove that for 2 ≤ k ≤ n− 1, we have Hk,2
sl(n) = 0.

Lemma. If 2 ≤ k = n− 1, then

Ck+1,1
sl(n) = Vλ4 ⊕ Vλ5 . (8.55)

If 2 ≤ k ≤ n− 2, then

Ck+1,1
sl(n) = Vλ4 ⊕ Vλ5 ⊕ Vβ5 . (8.56)

Proof. Let c ∈ Ck+1,1
gl(n) . Then c ∈ C

k+1,1
sl(n) if and only if

c ∈ (sl(n)⊗ Sk−1U∗)⊗ U∗. (8.57)

Let
Ck+1,1

sl(n) = ⊕
β
kβVβ . (8.58)
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Using the decomposition ofCk+1,1
gl(n) into direct sum of irreducible gl(n)-modules

given in (8.49) and (8.50), we check condition (8.57) for the corresponding
highest vectors: let β = λ4 = β1, then up to a complex constant,

vβ1(fn)(fj1 ∧ fj2 ∧ . . . ∧ fjk−1
) = f1 ⊗ f̃jk , where 2 ≤ jk ≤ n.

Since f1 ⊗ f̃jk ∈ sl(n), then in (8.58) kλ4 = 1. Let β = λ2 = β3, then up to a
nonzero constant,

vβ3(fn)(fn−k+2 ∧ fn−k+3 ∧ . . . ∧ fn) =
n∑

j=1

fj ⊗ f̃j .

Since
n∑
j=1

fj ⊗ f̃j 6∈ sl(n), then kλ2 = 0. Let β = β5. Then up to a constant,

vβ5(fj1)(fj2 ∧ . . . ∧ fjk) = f1 ⊗ f̃jk+1
, where 2 ≤ jk+1 ≤ n.

Since f1 ⊗ f̃jk+1
∈ sl(n), then kβ5 = 1. Let us show that kλ5 = 1. Indeed, by

the formula from Appendix

dimVδ1−δn−k+1−...−δn =
(n+ 1)!

(n− k + 1)k!(n− k − 1)!
.

Therefore,

dimCk+1,1
sl(n) = dim(Vδ1−δn−k+1−...−δn ⊗ U∗) =

n(n+ 1)!

(n− k + 1)k!(n− k − 1)!
.

Then by (8.44) and (??)
•8
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dimCk+1,1
sl(n) = dimVλ4 + dimVλ5 ,

if 2 ≤ k ≤ n− 2, then by (8.44), (??)
•9

•
[ Ol: f-la mezhdu (8.44) i (8.45) ], and9

(8.45)

dimCk+1,1
sl(n) = dimVλ4 + dimVλ5 + dimVβ5 ,

Thus, kλ5 = 1. This proves the Lemma. ut

8.2.4.2. Lemma. Ker ∂k,2
sl(n) does not contain irreducible sl(n)-submodules

with highest weight λ2.

Proof. Let c ∈ Ck,2
gl(n). Then c ∈ C

k,2
sl(n) if and only if

c ∈ (sl(n)⊗ Sk−2U∗)⊗ λ2U∗.

According to Table 10, each highest vector with weight λ2 in Ck,2
gl(n) is
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v = avλ2 + bvλ3 , if k = 2 ≤ n,
v = avλ2 + bvλ6 , if 3 ≤ k ≤ n− 1, where a, b ∈ C.

Therefore, up to a nonzero constant,

v(fn, fn)(fn−k+2 ∧ . . . ∧ fn−1) = (−1)kafn ⊗ f̃n + b

n∑

j=1

fj ⊗ f̃j.

Note that

(−1)kafn ⊗ f̃n + b

n∑

j=1

fj ⊗ f̃j ∈ sl(n)

if and only if (−1)ka+ nb = 0. But in this case v 6∈ Kerk,2
sl(n) . In fact,

∂k,2
sl(n)(fn, fn, fn) = −3v(fn, fn)(fn) 6= 0.

This proves Lemma 8.2.4.2. ut
In order to prove that for 2 ≤ k ≤ n− 1

Im ∂k+1,1
sl(n) = Ker ∂k,2

sl(n), (8.59)

observe that if 2 ≤ k = n−1, then gk = 0 and if 2 ≤ k ≤ n−2, then gk = Vβ5 .
Thus, by (8.43)

•10
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Im ∂k+1,1
sl(n) = Vλ4 ⊕ Vλ5 .

Therefore, by (8.48), (8.51), and Lemma 8.2.4.2, we get (8.59).
Finally, let 2 ≤ k = n. Notice that by (8.47) and (8.51)

Ker ∂n,2
gl(n) = Vλ2 ⊕ Vλ5 , (8.60)

where Vλ5 is a trivial sl(n)-module. By (8.53) and (8.54) the multiplicity of λ5
in Cn,2

gl(n) is 1. Moreover, this trivial submodule is contained in Cn,2
sl(n), because

the sl(n)-module Cn,2
sl(n) is isomorphic to Λ2U ⊗Λ2U∗, which contains a trivial

sl(n)-submodule (generated by
∑
i,j

fifj ⊗ f̃if̃j). Thus, Ker ∂n,2
sl(n) must contain

a trivial submodule. According to (8.60) and Lemma 8.2.4.2, Ker ∂n,2
sl(n) is a

trivial sl(n)-submodule, generated by

vλ5 =
n−1∑

j=0

(−1)(n−1)j
n∑

i=1

fi ⊗ f̃sj(1) ∧ f̃sj(2) ∧ . . . ∧ f̃sj(n−1) ⊗ f̃sj(n)f̃i,

where s is a cyclic permutation of (1, 2, . . . , n). This proves Theorem 8.2.3.1.
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8.2.5. Penrose’s tensors.

8.2.5.1. Theorem. If m,n > 1, then Hk,2
g0 = 0 for k > 2 and the g0-modules

H1,2
g0 and H2,2

g0 are the direct sums of irreducible submodules whose highest
weights are given in Table 13.

If m = n, then Hk,2
ĝ0

= Hk,2
g0 for any k and if m 6= n, then H1,2

ĝ0
= H1,2

g0

whereas
H2,2

ĝ0
= H2,2

g0
⊕ Vε1+ε2−2δn ⊕ V2ε1−δn−1−δn

if either m = 2 or n = 2;
H2,2

ĝ0
= H2,2

g0
⊕ Vε1+ε2−2δn ⊕ V2ε1−δn−1−δn ⊕ Vε1+ε2−δn−1−δn if m, n > 2.

8.2.5.2. Calculation of H1,2
g0

and H1,2
ĝ0

for m, n ≥ 2, m 6= n. For
k = 1 the Spencer cochain sequence is of the form

g0 ⊗ g∗−1

∂2,1
g0−→ g−1 ⊗ Λ2g∗−1

∂1,2
g0−→ 0.

Observe that

g−1 ⊗ Λ2g∗−1 = (U ⊗ V ∗)⊗ Λ2(U∗ ⊗ V ) ∼=
(U ⊗ V ∗)⊗ (Λ2U∗ ⊗ S2V ⊕ S2U∗ ⊗ Λ2V ) ∼=
(Λ2U∗ ⊗ U)⊗ (S2V ⊗ V ∗)⊕ (S2U∗ ⊗ U)⊗ (Λ2V ⊗ V ∗),

g0 ⊗ g∗−1 = (V ⊗ V ∗/C⊕ U ⊗ U∗/C⊕ C)⊗ (U∗ ⊗ V ),

g1 = U∗ ⊗ V.

Therefore, as gl(m)⊕ gl(n)-modules,

Im ∂2,1g0
∼= (V ⊗ V ∗/C⊕ U ⊗ U∗/C)⊗ (U∗ ⊗ V ) (8.61)

and H1,2
g0
∼=

(Λ2U∗ ⊗ U/U∗)⊗ (S2V ⊗ V ∗/V )⊕ (S2U∗ ⊗ U/U∗)⊗ (Λ2V ⊗ V ∗/V ).

Note that
S2V ⊗ V ∗/V = V2ε1−εm ,

Λ2V ⊗ V ∗/V = Vε1+ε2−εm for m > 2,

Λ2V ⊗ V ∗/V = 0 for m = 2.

Since U is purely odd, we deduce with the help of Table 5 of [OV] that

Λ2U∗ ⊗ U/U∗ = Vδ1−2δn ,

S2U∗ ⊗ U/U∗ = Vδ1−δn−1−δn for n > 2,

S2U∗ ⊗ U/U∗ = 0 for n = 2.

Therefore, we have
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H1,2
g0

= V2ε1−εm+δ1−2δn if m = 2, n > 2

and

H1,2
g0

= V2ε1−εm+δ1−2δn ⊕ Vε1+ε2−εm+δ1−δn−1−δn if m, n > 2.

By part b) of Theorem 8.2.1.1 g∗(g−1, ĝ0) = g−1 ⊕ ĝ0. Therefore, by (8.43)
•11

•
,

we have
Im ∂2,1

ĝ0
= ĝ0 ⊗ g∗−1 = Im ∂2,1g0

.

Hence, H1,2
ĝ0

= H1,2
g0
.

8.2.5.3. Calculation of H1,2
ĝ0

for m = n > 1. Since by parts c) and d)
of Theorem 8.2.1.1 the first term of the Cartan prolongation g∗(g−1, ĝ0) is
U∗ ⊗ V , then by (8.43)

•12

•
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Im ∂2,1
ĝ0

= [(V ⊗ V ∗/C⊕ U ⊗ U∗/C)⊗ (U∗ ⊗ V )]/(U∗ ⊗ V ).

Therefore, by (8.61) and (8.2.5.2),

H1,2
ĝ0
∼= (Λ2U∗⊗U/U∗)⊗(S2V ⊗V ∗/V )⊕(S2U∗⊗U/U∗)⊗(Λ2V ⊗V ∗/V )⊕(U∗⊗V ).

Hence,
H1,2

ĝ0
= V2ε1−ε2+δ1−2δ2 ⊕ Vε1−δ2 for n = 2

and

H1,2
ĝ0

= V2ε1−εn+δ1−2δn ⊕ Vε1+ε2−εn+δ1−δn−1−δn ⊕ Vε1−δn for n > 2.

8.2.5.4. Calculation of H2,2
g0

for m, n > 1, m 6= n. For k = 2 the
Spencer cochain sequence is of the form

g1 ⊗ g∗−1

∂3,1
g0−→ g0 ⊗ Λ2g∗−1

∂2,2
g0−→ g−1 ⊗ Λ3g∗−1.

Observe that

g0 ⊗ Λ2g∗−1 = (V ⊗ V ∗/C⊕ U ⊗ U∗/C⊕ C)⊗ (Λ2U∗ ⊗ S2V ⊕ S2U∗ ⊗ Λ2V ),

g1 ⊗ g∗−1 = (U∗ ⊗ V )⊗ (U∗ ⊗ V ),

g2 = 0.

Lemma. As gl(m)⊕ gl(n)-module, g0 ⊗ Λ2g∗−1 is the direct sum of the irre-
ducible submodules whose highest weights and highest vectors are listed in
Table 14. (Here s and t denote the cyclic permutations of (1, 2, 3) and
(n− 2, n− 1, n), respectively.)

The proof follows from the formula given in Appendix.
Let us show that if

λ = 3ε1− εm − 2δn, 2ε1 + ε2− εm− 2δn (m> 2), 2ε1 + ε2 − εm − δn−1 − δn,
2ε1 + δ1 − 3δn, 2ε1 + δ1 − δn−1 − 2δn (n > 2), or ε1 + ε2 + δ1 − δn−1 − 2δn,
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then vλ 6∈ Ker ∂2,2g0
. Recall that if v ∈ g0 ⊗ Λ2g∗−1, then

∂2,2g0
v(g1, g2, g3) = −v(g1, g2)g3 − v(g1, g3)g2 − v(g2, g3)g1 (8.62)

for any g1, g2, g3 ∈ g−1.
Let λ = 3ε1 − εm − 2δn. Then

∂2,2g0
vλ(fn ⊗ ẽ1, fn ⊗ ẽ1, fn ⊗ ẽ1) = −3vλ(fn ⊗ ẽ1, fn ⊗ ẽ1)(fn ⊗ ẽ1) =

= 3A1,m(fn ⊗ ẽ1) = −3fn ⊗ ẽm 6= 0.

Let λ = 2ε1 + ε2 − εm − 2δn (m > 2). Then

∂2,2g0
vλ(fn ⊗ ẽ1, fn ⊗ ẽ1, fn−1 ⊗ ẽ2) = −vλ(fn ⊗ ẽ1, fn ⊗ ẽ1)(fn−1 ⊗ ẽ2) =

= −A2,m(fn−1 ⊗ ẽ2) = fn−1 ⊗ ẽm 6= 0.

Let λ = 2ε1 + ε2 − εm − δn−1 − δn. Then

∂2,2g0
vλ(fn ⊗ ẽ1, fn ⊗ ẽ1, fn−1 ⊗ ẽ2) = −2vλ(fn ⊗ ẽ1, fn−1 ⊗ ẽ2)(fn ⊗ ẽ1) =

= −A1,m(fn ⊗ ẽ1) = fn ⊗ ẽm 6= 0.

The proof of the fact that vλ 6∈ Ker ∂2,2g0
for

λ = 2ε1+δ1−3δn, 2ε1+δ1−δn−1−2δn (n > 2), and ε1+ε2+δ1−δn−1−2δn

is similar.
Let λ = ε1 + ε2 + ε3 − εm− δn−1 − δn (m > 3). Let us show that if n = 2,

then vλ ∈ Ker ∂2,2g0 and if n > 2, then vλ 6∈ Ker ∂2,2g0 . Indeed, if n = 2, then for
j = 0, 1, 2 we have

∂2,2g0
vλ(f1 ⊗ ẽsj(2), f2 ⊗ ẽsj(3), f1 ⊗ ẽsj(1)) =

− vλ(f1 ⊗ ẽsj(2), f2 ⊗ ẽsj(3))(f1 ⊗ ẽsj(1))
− vλ(f2 ⊗ ẽsj(3), f1 ⊗ ẽsj(1))(f1 ⊗ ẽsj(2)) =

Asj(1),m
1

2
(f1 ⊗ ẽsj(1))−Asj(2),m

1

2
(f1 ⊗ ẽsj(2)) =

− 1

2
f1 ⊗ ẽm +

1

2
f1 ⊗ ẽm = 0,

∂2,2g0
vλ(f1 ⊗ ẽsj(2), f2 ⊗ ẽsj(3), f2 ⊗ ẽsj(1)) =

− vλ(f1 ⊗ ẽsj(2), f2 ⊗ ẽsj(3))(f2 ⊗ ẽsj(1))−
− vλ(f2 ⊗ ẽsj(1), f1 ⊗ ẽsj(2))(f2 ⊗ ẽsj(3)) =

Asj(1),m
1

2
(f2 ⊗ ẽsj(1))−Asj(3),m

1

2
(f2 ⊗ ẽsj(3)) =

− 1

2
f2 ⊗ ẽm +

1

2
f2 ⊗ ẽm = 0.

Therefore, vλ ∈ Ker ∂2,2g0
. If n > 2, then
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∂2,2g0
vλ(fn−1 ⊗ ẽ2, fn ⊗ ẽ3, f1 ⊗ ẽ1) = −vλ(fn−1 ⊗ ẽ2, fn ⊗ ẽ3)(f1 ⊗ ẽ1) =

= A1,m(f1 ⊗ ẽ1)/2 = −f1 ⊗ ẽm/2 6= 0.

The proof of the fact that if λ = ε1 + ε2+ δ1− δn−2− δn−1− δn (n ≥ 4), then
vλ ∈ Ker ∂2,2g0 for m = 2 and vλ 6∈ Ker ∂2,2g0 for m > 2 is similar.

Finally, let us show that if

λ = 2ε1 − 2δn, ε1 + ε2 − 2δn, 2ε1 − δn−1 − δn, or ε1 + ε2 − δn−1 − δn

and vλ ∈ Ker ∂2,2g0 , then vλ ∈ Im ∂3,1g0 . Note that since g2 = 0, then, as
gl(m)⊕ gl(n)-modules,

Im ∂3,1g0
∼= g1 ⊗ g∗−1 = (U∗ ⊗ V )⊗ (U∗ ⊗ V ).

Therefore, by Table 9,

Im ∂3,1g0
= V2ε1−2δn ⊕ Vε1+ε2−δn−1−δn ⊕ Vε1+ε2−2δn ⊕ V2ε1−δn−1−δn .

Let λ = ε1 + ε2 − 2δn. By Table 14 g0 ⊗ Λ2g∗−1 contains two irreducible
components with the indicated highest weight, and one of the corresponding
highest vectors is v1λ. Observe that

∂2,2g0
v1λ(fn ⊗ ẽ1, fn ⊗ ẽ1, fn−1 ⊗ ẽ2) = −v1λ(fn ⊗ ẽ1, fn ⊗ ẽ1)(fn−1 ⊗ ẽ2) =

= −A2,1(fn−1 ⊗ ẽ2) = fn−1 ⊗ ẽ1 6= 0.

Therefore, Ker ∂2,2g0 contains precisely one irreducible submodule with high-

est weight ε1 + ε2 − 2δn and this submodule belongs to Im ∂3,1g0 . Simi-
larly, g0 ⊗ Λ2g∗−1 contains two irreducible submodules with highest weight

2ε1 − δn−1 − δn, one of which belongs to Ker ∂2,2g0
, and therefore to Im ∂3,1g0

.
Let λ = 2ε1 − 2δn. Then by Table 14 any gl(m) ⊕ gl(n)-highest vector of

weight λ, which belongs to g0 ⊗ Λ2g∗−1, is

vλ = k1v
1
λ + k2v

2
λ + k3v

3
λ, where k1, k2, k3 ∈ C.

If vλ ∈ Ker ∂2,2g0 , then the condition ∂2,2g0 vλ(fn⊗ ẽ1, fn⊗ ẽ1, fn⊗ ẽ1) = 0 implies

k1(m− 1)− k2(n− 1) + k3(m− n) = 0, (8.63)

and the condition ∂2,2g0 vλ(fn ⊗ ẽ2, fn ⊗ ẽ1, f1 ⊗ ẽ1) = 0 implies that

k1m− k2n = 0. (8.64)

Thus, for m 6= n we have

k2 = mk1/n, k3 = −k1/n. (8.65)

Therefore, Ker ∂2,2g0
contains precisely one irreducible submodule with highest

weight 2ε1 − 2δn and this submodule belongs to Im ∂3,1g0
.
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Finally, let λ = ε1 + ε2 − δn−1 − δn. Then by Table 14 any highest vector
with weight λ, which belongs to g0 ⊗ Λ2g∗−1, is

vλ = k1v
1
λ + k2v

2
λ + k3v

3
λ, where k1, k2, k3 ∈ C,

and if m = 2, then k1 = 0. Note that if vλ ∈ Ker ∂2,2g0
, then

∂2,2g0
vλ(fn−1 ⊗ ẽ1, fn ⊗ ẽ2, fn ⊗ ẽ1) = 0

implies that
k1 + k2 + k3(n−m) = 0. (8.66)

Thus, if m = 2, then
k2 = (2− n)k3. (8.67)

If m, n > 2, then the condition

∂2,2g0
vλ(fn−1 ⊗ ẽm, fn ⊗ ẽ2, f1 ⊗ ẽ1) = 0 (8.68)

implies that k1 + k2 = 0. Hence,

k2 = −k1, k3 = 0. (8.69)

Therefore, Ker ∂2,2g0 contains precisely one highest vector of weight

ε1 + ε2 − δn−1 − δn

which belongs to Im ∂3,1g0
. Thus, we have the description of H2,2

g0
given in

Table 13.

8.2.5.5. Calculation of H2,2
ĝ0

for m, n > 1, m 6= n. By part b) of
Theorem 8.2.1.1

g∗(g−1, ĝ0) = g−1 ⊕ ĝ0.

Therefore, the Spencer cochain sequence for k = 2 takes the form

0
∂3,1
ĝ0−→ ĝ0 ⊗ Λ2g∗−1

∂2,2
ĝ0−→ g−1 ⊗ Λ3g∗−1.

Note that since g0 = ĝ0 ⊕ C, then

g0 ⊗ Λ2g∗−1 = ĝ0 ⊗ Λ2g∗−1 ⊕ V2ε1−2δn ⊕ Vε1+ε2−δn−1−δn . (8.70)

As we have shown in sec. 8.2.5.4,
•13

•
if λ is one of the weights from Table 14, then13 ?

an irreducible module with highest weight λ is contained in the decomposition
of Ker∂2,2g0

into irreducible gl(m)⊕ gl(n)-modules if and only if

λ = ε1 + ε2 + ε3 − εm − δn−1 − δn (m > 3),

ε1 + ε2 + δ1 − δn−2 − δn−1 − δn (n > 3),

ε1 + ε2 − 2δn, 2ε1 − δn−1 − δn, 2ε1 − 2δn or ε1 + ε2 − δn−1 − δn
(8.71)
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and its multiplicity is 1. Therefore, by (8.70), if

λ = ε1 + ε2 + ε3 − εm − δn−1 − δn (m > 3),

ε1 + ε2 + δ1 − δn−2 − δn−1 − δn (n > 3),

ε1 + ε2 − 2δn, or 2ε1 − δn−1 − δn,

then the corresponding submodule is contained in Ker ∂2,2
ĝ0

as well.

Let λ = 2ε1 − 2δn and vλ ∈ Ker ∂2,2g0 . Then (8.65) where k3 = 0, implies

that vλ 6∈ Ker ∂2,2
ĝ0

.

Let λ = ε1 + ε2 − δn−1 − δn, vλ ∈ Ker∂2,2g0
. Then (8.67) implies that

vλ 6∈ Ker∂2,2
ĝ0

for m = 2, and (8.69) implies that vλ ∈ Ker ∂2,2
ĝ0

for m, n > 2.
Thus, we have

H2,2
ĝ0

= H2,2
g0
⊕ Vε1+ε2−2δn ⊕ V2ε1−δn−1−δn if either m = 2 or n = 2

and

H2,2
ĝ0

= H2,2
g0
⊕ Vε1+ε2−2δn ⊕ V2ε1−δn−1−δn ⊕ Vε1+ε2−δn−1−δn if m, n > 2.

8.2.5.6. Calculation of H2,2
ĝ0

for m = n > 1. By parts c) and d) of
Theorem 8.2.1.1 the first term of g∗(g−1, ĝ0) is isomorphic to U∗⊗V and the
second one to C for n = 2 and is 0 for n > 2. By formula (8.43)

•14
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Im ∂3,1
ĝ0

= (U∗ ⊗ V )⊗ (U∗ ⊗ V ) for n > 2 (8.72)

and
Im ∂3,1

ĝ0
= (U∗ ⊗ V )⊗ (U∗ ⊗ V )/C for n = 2. (8.73)

Therefore, by Table 9,

Im ∂3,1
ĝ0

= V2ε1−2δn ⊕ V2ε1−δn−1−δn ⊕ Vε1+ε2−2δn for n = 2

and

Im ∂3,1
ĝ0

= V2ε1−2δn ⊕ V2ε1−δn−1−δn ⊕ Vε1+ε2−2δn ⊕ Vε1+ε2−δn−1−δn for n > 2.

Therefore, by (8.67) and (8.71),

H2,2
ĝ0

= 0 for n = 2, 3

and

H2,2
ĝ0

= Vε1+ε2+ε3−εn−δn−1−δn ⊕ Vε1+ε2+δ1−δn−2−δn−1−δn for n > 3.
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8.2.5.7. Computation of H3,2
g0

for m, n > 1, m 6= n. For k = 3, the
Spencer cochain sequence is of the form

g2 ⊗ g∗−1

∂4,1
g0−→ g1 ⊗ Λ2g∗−1

∂3,2
g0−→ g0 ⊗ Λ3g∗−1.

Observe that

g1 ⊗ Λ2g∗−1 = (U∗ ⊗ V )⊗ Λ2(U∗ ⊗ V ) ∼=
(Λ2U∗ ⊗ U∗)⊗ (S2V ⊗ V )⊕ (S2U∗ ⊗ U∗)⊗ (Λ2V ⊗ V ),

g2 = 0.

By Table 5 from [OV]

S2V ⊗ V = V3ε1 ⊕ V2ε1+ε2 ,
Λ2V ⊗ V = V2ε1+ε2 ⊕ Vε1+ε2+ε3 for m > 2,

Λ2V ⊗ V = V2ε1+ε2 for m = 2.

Since U is purely odd,

Λ2U∗ ⊗ U∗ = V−3δn ⊕ V−δn−1−2δn ,

S2U∗ ⊗ U∗ = V−δn−1−2δn ⊕ V−δn−2−δn−1−δn for n > 2,

S2U∗ ⊗ U∗ = V−δn−1−2δn for n = 2.

The above decompositions imply the following

Lemma. The gl(m)⊕gl(n)-module g1⊗Λ2g∗−1 is the direct sum of irreducible
submodules whose highest weights and highest vectors are listed in Table 15.
(Here s and t denote the cyclic permutations of (1, 2, 3) and (n−2, n−1, n),
respectively.)

Let us show that Ker ∂3,2g0 = 0. Let λ = 3ε1 − 3δn. Then

∂3,2g0
vλ(fn ⊗ ẽ1, fn ⊗ ẽ1, fn ⊗ ẽ1) = 3B1,n(fn ⊗ ẽ1) = 3(e1 ⊗ ẽ1 + fn ⊗ f̃n) 6= 0.

Let λ = 2ε1 + ε2 − 3δn. Then

∂3,2g0
vλ(fn ⊗ ẽ1, fn ⊗ ẽ1, fn ⊗ ẽ1) = −3B2,n(fn ⊗ ẽ1) = −3e2 ⊗ ẽ1 6= 0.

Let λ = 3ε1 − δn−1 − 2δn. Then

∂3,2g0
vλ(fn ⊗ ẽ1, fn ⊗ ẽ1, fn ⊗ ẽ1) = 3B1,n−1(fn ⊗ ẽ1) = 3fn ⊗ f̃n−1 6= 0.

Let λ = 2ε1+ε2− δn−1−2δn. Since by Table 15 g1⊗Λ2g∗−1 contains two irre-
ducible submodules with highest weight λ, then any highest vector of weight
λ in g1 ⊗ Λ2g∗−1 is of the form

vλ = k1v
1
λ + k2v

2
λ, where k1, k2 ∈ C.
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Let vλ ∈ Ker ∂3,2g0
. If m > 2, then

∂3,2g0
vλ(fn−1⊗ ẽ2, fn⊗ ẽ1, fn⊗ ẽm) = −1

2
k2B1,n(fn⊗ ẽm) = −1

2
k2e1⊗ ẽm = 0.

Therefore, k2 = 0. Moreover,

∂3,2g0
vλ(fn ⊗ ẽ1, fn ⊗ ẽ1, fn−1 ⊗ ẽm) = k1B2,n−1(fn−1 ⊗ ẽm) = k1e2 ⊗ ẽm = 0.

Hence, k1 = 0. If n > 2, then

∂3,2g0
vλ(fn−1 ⊗ ẽ2, fn ⊗ ẽ1, f1 ⊗ ẽ1) = −1

2
k2B1,n(f1 ⊗ ẽ1) = −1

2
k2f1 ⊗ f̃n = 0.

Therefore, k2 = 0. Moreover,

∂3,2g0
vλ(fn ⊗ ẽ1, fn ⊗ ẽ1, f1 ⊗ ẽ2) = k1B2,n−1(f1 ⊗ ẽ2) = k1f1 ⊗ f̃n−1 = 0.

Hence, k1 = 0.
Let λ = ε1 + ε2 + ε3 − δn−1 − 2δn. Then

∂3,2g0
vλ(fn−1 ⊗ ẽ2, fn ⊗ ẽ3, fn ⊗ ẽ2) = 1

2
B1,n(fn ⊗ ẽ2) = 1

2
e1 ⊗ ẽ2 6= 0.

Let λ = 2ε1 + ε2 − δn−2 − δn−1 − δn. Then
∂3,2g0

vλ(fn−1 ⊗ ẽ2, fn ⊗ ẽ1, fn−1 ⊗ ẽ1) =
1

2
B1,n−2(fn−1 ⊗ ẽ1) = 1

2
fn−1 ⊗ f̃n−2 6= 0.

Finally, let λ = ε1 + ε2 + ε3 − δn−2 − δn−1 − δn. Then
∂3,2g0

vλ(fn−1 ⊗ ẽ2, fn ⊗ ẽ3, fn−2 ⊗ ẽ1) =
1

2
(B1,n−2(fn−2 ⊗ ẽ1) +B3,n(fn ⊗ ẽ3) +B2,n−1(fn−1 ⊗ ẽ2)) =

1

2
(e1 ⊗ ẽ1 + fn−2 ⊗ f̃n−2 + e3 ⊗ ẽ3 + fn ⊗ f̃n + e2 ⊗ ẽ2 + fn−1 ⊗ f̃n−1) 6= 0.

Thus, H3,2
g0

= 0.

8.2.5.8. Calculation of H3,2
ĝ0

for m = n > 1. By part d) of Theorem
8.2.1.1 for n > 2 the first term of the Cartan prolongation of the pair (g−1, ĝ0)
is U∗⊗V and the second one is zero. Therefore, by arguments similar to those
from section 8.2.5.7 we get H3,2

ĝ0
= 0.

If n = 2, then by part c) of Theorem 8.2.1.1 the first term of g∗(g−1, ĝ0) is
U∗⊗V , the second one is the 1-dimensional gl(2)⊕gl(2)-module with highest
weight ε1 + ε2 − δ1 − δ2, and the third one is zero. Thus, by (8.43)

•15

•
, 15

Im ∂4,1
ĝ0

= V2ε1+ε2−δ1−2δ2 .

By Table 15 (U∗⊗V )⊗Λ2(U∗⊗V ) contains two irreducible gl(2)⊕gl(2)-mod-
ules with highest weight λ = 2ε1 + ε2− δ1− 2δ2 and one of the corresponding
highest vectors is v2λ. Since

∂3,2
ĝ0
v2λ(f1 ⊗ ẽ1, f2 ⊗ ẽ2, f2 ⊗ ẽ2) = B1,2(f2 ⊗ ẽ2) = e1 ⊗ ẽ2 6= 0,

then Ker ∂3,2
ĝ0

= Im ∂4,1
ĝ0

. Thus, H3,2
ĝ0

= 0.
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8.2.5.9. Calculation of H4,2
ĝ0

for m = n = 2. For k = 4, the Spencer
cochain sequence is of the form

g3 ⊗ g∗−1

∂5,1
ĝ0−→ g2 ⊗ Λ2g∗−1

∂4,2
ĝ0−→ g1 ⊗ Λ3g∗−1.

By part c) of Theorem 8.2.1.1 the second term of g∗(g−1, ĝ0) is

g2 = Vε1+ε2−δ1−δ2 = 〈g〉,

the 1-dimensional gl(2) ⊕ gl(2)-module, and the third term is zero. Since by
Table 9

Λ2g∗−1 = V2ε1−2δ2 ⊕ Vε1+ε2−δ1−δ2 ,
then

g2 ⊗ Λ2g∗−1 = V3ε1+ε2−δ1−3δ2 ⊕ V2ε1+2ε2−2δ1−2δ2 .

Let λ = 3ε1 + ε2 − δ1 − 3δ2. Then by Table 9 vλ = g ⊗ (f̃2 ⊗ e1) ∧ (f̃2 ⊗ e1).
Let v be an element from the basis of g−1 such that g(v) 6= 0. If v = f2 ⊗ ẽ1,
then

∂4,2
ĝ0

(f2 ⊗ ẽ1, f2 ⊗ ẽ1, v) = −3vλ(f2 ⊗ ẽ1, f2 ⊗ ẽ1)(v) = 3g(v) 6= 0,

and if v 6= f2 ⊗ ẽ1, then

∂4,2
ĝ0
vλ(f2 ⊗ ẽ1, f2 ⊗ ẽ1, v) = −vλ(f2 ⊗ ẽ1, f2 ⊗ ẽ1)(v) = g(v) 6= 0.

Let λ = 2ε1 + 2ε2 − 2δ1 − 2δ2. Then by Table 9

vλ = g ⊗ ((f̃2 ⊗ e1) ∧ (f̃1 ⊗ e2)− (f̃2 ⊗ e2) ∧ (f̃1 ⊗ e1)−
− (f̃1 ⊗ e1) ∧ (f̃2 ⊗ e2) + (f̃1 ⊗ e2) ∧ (f̃2 ⊗ e1)).

Let v be an element of the basis of g−1 such that g(v) 6= 0. Then

∂4,2
ĝ0
vλ(f2 ⊗ ẽ1, f1 ⊗ ẽ2, v) = −2vλ(f2 ⊗ ẽ1, f1 ⊗ ẽ2)(v) = g(v) 6= 0

if either v = f2 ⊗ ẽ1 or v = f1 ⊗ ẽ2,

and

∂4,2
ĝ0
vλ(f1 ⊗ ẽ1, f2 ⊗ ẽ2, v) = −2vλ(f1 ⊗ ẽ1, f2 ⊗ ẽ2)(v) = −g(v) 6= 0

if either v = f2 ⊗ ẽ2 or v = f1 ⊗ ẽ1.

Therefore, H4,2
ĝ0

= 0.
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8.2.5.10. Calculation of Hk,2
g0

for m = n > 1, k > 0.

Lemma. Hk,2
g0 = Hk,2

ĝ0
.

Proof. Note that if g∗(g−1, ĝ0) = g−1 ⊕ ( ⊕
k≥0

ĝk) is the Cartan prolongation

of the pair (g−1, ĝ0), then, since gk = ĝk ⊕ Sk(g∗−1) (k ≥ 0), the Spencer
cochain sequence is of the form

(ĝ0 ⊕ C)⊗ g∗−1

∂2,1
g0−→ g−1 ⊗ Λ2g∗−1

∂1,2
g0−→ 0 for k = 1,

(ĝk−1 ⊕ Sk−1(g∗−1))⊗ g∗−1

∂k+1,1
g0−→ (ĝk−2 ⊕ Sk−2(g∗−1))⊗ Λ2g∗−1

∂k,2g0−→
(ĝk−3 ⊕ Sk−3(g∗−1))⊗ Λ3g∗−1 for k > 1.

Note that since g∗(g−1, g0) = S∗(g∗−1)⊂+ g∗(g−1, ĝ0), then the sequence

Sk−1(g∗−1)⊗ g∗−1

∂̄k+1,1
g0−→ Sk−2(g∗−1)⊗Λ2g∗−1

∂̄k,2g0−→ Sk−3(g∗−1)⊗Λ3g∗−1 for k ≥ 1,

where ∂̄k+1,1
g0 and ∂̄k,2g0 are the restrictions of the operators ∂k+1,1

g0 and ∂k,2g0 to
Sk−1(g∗−1) ⊗ g∗−1 and Sk−2(g∗−1) ⊗ Λ2g∗−1, respectively, and S

k(g∗−1) = 0 for
k < 0, is well-defined. Hence the corresponding cohomology groups

H̄k,2
g0

= Ker ∂̄k,2g0
/ Im ∂̄k+1,1

g0

are well-defined and Hk,2
g0

= Hk,2
ĝ0
⊕ H̄k,2

g0
.

Let us show that H̄k,2
g0 = 0 for k > 0. For k = 1 this is obvious. Let k = 2.

Since Sk−2(g∗−1)⊗ Λ2g∗−1 = 〈z〉 ⊗Λ2g∗−1, where z is a generator of the center
of gl(n|n), then

Ker ∂̄k,2g0
∼= Λ2g∗−1.

By formula (8.43)
•16

•
16

Im ∂̄k+1,1
g0

∼= g∗−1 ⊗ g∗−1/S
2g∗−1 = Λ2g∗−1.

Therefore, H̄2,2
g0 = 0. Let k = 3. Observe that

S2(U∗⊗V )⊗(U∗⊗V ) = (S2U∗⊗U∗)⊗(S2V ⊗V )⊕(Λ2U∗⊗U∗)⊗(Λ2V ⊗V ).

By Table 5 from [OV] we get:

S2V ⊗ V = V3ε1 ⊕ V2ε1+ε2 , Λ2V ⊗ V = V2ε1+ε2 if n = 2,

Λ2V ⊗ V = V2ε1+ε2 ⊕ Vε1+ε2+ε3 if n > 2.

Since U is odd,

Λ2U∗ ⊗ U∗ = V−3δn ⊕ V−δn−1−2δn ,

S2U∗ ⊗ U∗ = V−δn−1−2δn if n = 2,

S2U∗ ⊗ U∗ = V−δn−1−2δn ⊕ V−δn−2−δn−1−δn if n > 2.
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Therefore,

S2(U∗ ⊗ V )⊗ (U∗ ⊗ V ) =
V3ε1−δn−1−2δn ⊕ V2ε1+ε2−3δn ⊕ 2V2ε1+ε2−δn−1−2δn if n = 2

and

S2(U∗ ⊗ V )⊗ (U∗ ⊗ V ) =
V3ε1−δn−1−2δn ⊕ V2ε1+ε2−3δn ⊕ 2V2ε1+ε2−δn−1−2δn ⊕ V3ε1−δn−2−δn−1−δn⊕
Vε1+ε2+ε3−3δn ⊕ V2ε1+ε2−δn−2−δn−1−δn ⊕ Vε1+ε2+ε3−δn−1−2δn if n > 2.

Moreover, S3(U∗ ⊗ V ) =

{
V2ε1+ε2−δ1−2δ2 if n = 2

Vε1+ε2+ε3−3δn ⊕ V3ε1−δn−2−δn−1−δn ⊕ V2ε1+ε2−δn−1−2δn if n > 2.

Thus, by (8.43)
•17

•
17

Im ∂̄4,1g0
= V3ε1−δn−1−2δn ⊕ V2ε1+ε2−3δn ⊕ V2ε1+ε2−δn−1−2δn if n = 2,

Im ∂̄4,1g0
= V3ε1−δn−1−2δn ⊕ V2ε1+ε2−3δn ⊕ V2ε1+ε2−δn−1−2δn⊕

⊕V2ε1+ε2−δn−2−δn−1−δn ⊕ Vε1+ε2+ε3−δn−1−2δn if n > 2.

Finally, the decomposition of the gl(n) ⊕ gl(n)-module g∗−1 ⊗ Λ2g∗−1 into
the direct sum of irreducible components is given in Table 15. Checking the
action of ∂̄3,2g0 on the highest vectors we get:

Im ∂̄4,1g0
= Ker ∂̄3,2g0

.

Note that for k > 3 the cohomology groups H̄k,2
g0 coincide with the

Spencer cohomology groups Hk−2,2
o(n2) corresponding to the Cartan prolonga-

tion g∗(V (0|n2), o(n2)) = h(0|n2), where V (0|n2) is the standard (odd)
o(n2)-module. These groups vanish for k > 3 (see Theorem 8.3.1.3).

ut

8.3. The analogues of the Riemann–Weyl tensors for
classical superspaces

Recall that Z-grading of depth 1 of a Lie (super)algebra g is the Z-grading
of the form g = ⊕

i≥−1
gi. All such Z-gradings of simple finite-dimensional com-

plex Lie superalgebras are listed in [S2]. Denote by Vλ the irreducible module
over a Lie superalgebra with highest weight λ and an even highest vector.

8.3.1. Spencer cohomology of sl(m|n) and psl(n|n).
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8.3.1.1. Description of the Z-gradings of depth 1. Let V (m−p|q) and
U(p|n− q) be the standard sl(m− p|q) and sl(p|n− q)- modules, respectively.

All Z-gradings of depth 1 of g = sl(m|n) and psl(n|n) are of the form
g = g−1 ⊕ g0 ⊕ g1, where g1 = g∗−1 = V (m− p|q)⊗ U(p|n− q)∗.

A) For sl(m|n), where m 6= n, there are the following possible values of g0
for the Z-gradings of depth 1:

a) c(sl(m)⊕ sl(n));
b) c(sl(m|q)⊕ sl(n− q)), if p = 0, q 6= 0, n− q 6= 0;
c) c(sl(m− p)⊕ sl(p|n)), if q = 0, p 6= 0,m− p 6= 0;
d) c(sl(m− p|q)⊕ sl(p|n− q)), if p 6= 0, q 6= 0.
B) For sl(n|n), there are the following possible values of g0 for the Z-grad-

ings of depth 1:
a) c(sl(n)⊕ sl(n));
b) c(sl(n|q)⊕ sl(n− q)), if p = 0, q 6= 0, n− q 6= 0;
c) c(sl(n− p)⊕ sl(p|n)), if q = 0, p 6= 0, n− p 6= 0;
d) c(sl(n− p|q)⊕ sl(p|n− q)), if p 6= 0, q 6= 0.
C) The Z-gradings of psl(n|n) are similar to those of sl(n|n), only g0 is

centerless.

8.3.1.2. Theorem (Cartan prolongs). For the cases of section 8.3.1.1, we
have:

A) g = sl(m|n), where m 6= n. Then g∗(g−1, g0) = g, except for the
following cases:

a) if n = 1, then g∗ = vect(0|m), if m = 1, then g∗ = vect(0|n);
b) if n−q = 1, then g∗ = vect(q|m), if m = 0, q = 1, then g∗ = vect(n−1|0);
c) if m−p = 1, then g∗ = vect(p|n), if n = 0, p = 1, then g∗ = vect(m−1|0);
d) if n− q = 0, p = 1, then g∗ = vect(m− 1|n), if m− p = 0, q = 1, then

g∗ = vect(n− 1|m).
B) g = sl(n|n). Then g∗(g−1, g0) = S∗(g∗−1)⊂+ psl(n|n), except for the

following cases:
a) if n = 2, then g∗ = S∗(g∗−1)⊂+ h(0|4);
b) if n− q = 1, then g∗ = vect(q|n);
c) if n− p = 1, then g∗ = vect(p|n);
d) if n− q = 0, p = 1 or n− p = 0, q = 1 then g∗ = vect(n− 1|n).
C) g = psl(n|n). Then g∗(g−1, g0) = g, except for the following cases:
a) if n = 2, then g∗ = h(0|4);
b) if n− q = 1, then g∗ = svect(q|n);
c) if n− p = 1, then g∗ = svect(p|n);
d) if n− q = 0, p = 1 or n− p = 0, q = 1, then g∗ = svect(n− 1|n).
Let g = sl(m|n), where m 6= n, or psl(n|n). We will describe the Spencer

cohomology groups for all Z-gradings of depth 1 listed in section 8.3.1.1.
First consider the cases easiest to formulate. Let 〈πi〉 be the irreducible

module whose highest weight is the i-th fundamental weight of g0.
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8.3.1.3. Theorem. 1) For g∗ = vect(m|n), svect(m|n), SFs vanish except for
svect(0|n), when SFs are of order n and constitute the g0-module Πn(〈1〉).

2) For g∗ of series h(0|n), the nonzero SFs are of order 1. For n > 3, SFs
constitute g0-module Π(V3π1 ⊕ Vπ1).

3) For g∗ = sh(0|n), the nonzero SFs are the same as for h(0|n) and
additionally Πn−1(Vπ1) of order n− 1.

Consider the Z-gradings of depth 1 of g = sl(m|n) (m 6= n) and psl(n|n)
listed in section 8.3.1.1 for which g∗(g−1, g0) = g. Describe the corresponding
SFs.

Case a) was discussed in §2. Consider case b).

8.3.1.4. Theorem. The nonzero SFs are of orders 1 and 2. The g0-module
H2,2

g0 splits into the direct sum of irreducible components whose weights are
given in Table 16. Table 16 also contains the highest weights (with respect to
the bases ε1, . . . , εm+q and δ1, . . . , δn−q of the dual spaces to the maximal tori

of sl(m|q) and sl(n − q), respectively) of irreducible components of H1,2
g0

for

the cases when H1,2
g0

does split into the direct sum of irreducible g0-modules.

Exceptional cases are as follows: if m = q − 1,m > 1, n− q ≥ 3, then

H1,2
g0

= Vε1+ε2−εm+q+δ1−δn−q−1−δn−q ⊕X,
where X is given by the non-split exact sequence of g0-modules

0 −→ V2ε1−εm+q+δ1−2δn−q −→ X −→ Π(Vε1+δ1−2δn−q ) −→ 0; (8.74)

if m = q − 1,m > 1, n− q = 2, then H1,2
g0 = X , where X is given by (8.74);

if m = 1, q = 2, n− q ≥ 3, then

H1,2
g0

= Π(Vε1+ε2−ε3+δ1−δn−q−1−δn−q )⊕X,
where X is given by the non-split exact sequence of g0-modules

0 −→ V2ε1−ε3+δ1−2δn−q ⊕Π(V−ε1+ε2+ε3+δ1−2δn−q )

−→ X −→ Π(Vε1+δ1−2δn−q ) −→ 0;
(8.75)

if m = 1, q = 2, n − q = 2, then H1,2
g0

= X , where X is given by (8.75); if
m = q + 1, n− q ≥ 3, then

H1,2
g0

= V2ε1−εm+q+δ1−2δn−q ⊕X,
where X is given by the non-split exact sequence of g0-modules

0 −→ Vε1+ε2−εm+q+δ1−δn−q−1−δn−q −→ X

−→ Π(Vε1+δ1−δn−q−1−δn−q ) −→ 0 (q ≥ 2),

0 −→ Vε1−ε2+ε3+δ1−δn−2−δn−1 ⊕ Vε1+ε2−ε3+δ1−δn−2−δn−1 −→ X

−→ Π(Vε1+δ1−δn−2−δn−1) −→ 0 (q = 1).

Case c) is similar to case b). Consider case d).
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8.3.1.5. Theorem. The nonzero SFs are of orders 1 and 2. The g0-module
H2,2

g0 splits into the direct sum of irreducible components whose weights are
given in Table 17. Table 17 also contains the highest weights (with respect to
the bases ε1, . . . , εm−p+q and δ1, . . . , δp+n−q of the dual spaces to the maximal
tori of sl(m − p|q) and sl(p|n − q), respectively) of irreducible components
of H1,2

g0
for the cases when H1,2

g0
does split into the direct sum of irreducible

g0-modules.

Exceptional cases are m = p+ q ± 1 and n = p+ q ± 1. More precisely: if
m = p+ q + 1, n 6= p+ q ± 1, q, then

H1,2
g0

= V2ε1−εm−p+q+δ1−2δp+n−q ⊕ Y,

where Y is given by the non-split exact sequence of g0-modules

0−→Vε1+ε2−ε3+δ1−δp+n−2−δp+n−1⊕Vε1−ε2+ε3+δ1−δp+n−2−δp+n−1−→Y

−→Vε1+δ1−δp+n−2−δp+n−1−→0 (q=1),

0−→Vε1+ε2−εm−p+q+δ1−δp+n−q−1−δp+n−q−→Y

−→Vε1+δ1−δp+n−q−1−δp+n−q−→0 (q≥2);

if m = p+ q+1, n = p+ q− 1, then H1,2
g0 = X ⊕ Y , where X is given by the

non-split exact sequence of g0-modules

0 −→ V2ε1−εm−2+q+δ1−2δ3 ⊕ V2ε1−εm−2+q−δ1−δ2+δ3 −→
X −→ V2ε1−εm−2+q−δ3 −→ 0 (p = 2),

0 −→ V2ε1−εm−p+q+δ1−2δp+n−q −→ X

−→ V2ε1−εm−p+q−δp+n−q −→ 0 (p ≥ 3),

and Y is given by the non-split exact sequence of g0-modules

0−→Vε1+ε2−ε3+δ1−δp+n−2−δp+n−1⊕Vε1−ε2+ε3+δ1−δp+n−2−δp+n−1 −→
Y −→Vε1+δ1−δp+n−2−δp+n−1 −→ 0 (q=1),

0−→Vε1+ε2−εm−p+q+δ1−δp+n−q−1−δp+n−q −→Y

−→Vε1+δ1−δp+n−q−1−δp+n−q −→ 0 (q≥ 2);

if m = p+ q + 1, n = q, then

H1,2
g0

= V2ε1−εm−p+q+δ1−δp−1−δp ⊕ Y (p ≥ 3) or H1,2
g0

= Y (p = 2),

where Y is given by the non-split exact sequence of g0-modules

0−→Vε1+ε2−ε3+δ1−2δp⊕Vε1−ε2+ε3+δ1−2δp −→Y −→Vε1+δ1−2δp −→0 (q=1),

0−→Vε1+ε2−εm−p+q+δ1−2δp −→Y −→Vε1+δ1−2δp−→0 (q≥ 2);

if n = p+ q + 1, m 6= p+ q ± 1, p, then



220 Open problems

H1,2
g0

= V2ε1−εm−p+q+δ1−2δp+n−q ⊕ Y,

where

0 −→ Vε1+ε2−εm−1+q+δ1−δ2−δ3 ⊕ Vε1+ε2−εm−1+q−δ1+δ2−δ3 −→
Y −→ Vε1+ε2−εm−1+q−δ3 −→ 0 (p = 1),

0 −→ Vε1+ε2−εm−p+q+δ1−δp+n−q−1−δp+n−q −→ Y

−→ Vε1+ε2−εm−p+q−δp+n−q −→ 0 (p ≥ 2);

if n = p+ q + 1, m = p+ q − 1, then H1,2
g0 = X ⊕ Y , where

0 −→ V2ε1−ε3+δ1−2δp+n−2 ⊕ V−ε1+ε2+ε3+δ1−2δp+n−2 −→ X

−→ Vε1+δ1−2δp+n−2 −→ 0 (q = 2),

0 −→ V2ε1−εm−p+q+δ1−2δp+n−q −→ X −→ Vε1+δ1−2δp+n−q −→ 0 (q ≥ 3),

and Y is given by the non-split exact sequence of g0-modules

0 −→ Vε1+ε2−εm−1+q+δ1−δ2−δ3 ⊕ Vε1+ε2−εm−1+q−δ1+δ2−δ3

−→ Y −→ Vε1+ε2−εm−1+q−δ3 −→ 0 (p = 1),

0 −→ Vε1+ε2−εm−p+q+δ1−δp+n−q−1−δp+n−q −→ Y

−→ Vε1+ε2−εm−p+q−δp+n−q −→ 0 (p ≥ 2);

if n = p+ q + 1, m = p, then

H1,2
g0

= Vε1+ε2−εq+δ1−2δp+n−q ⊕ Y (q ≥ 3), and H1,2
g0

= Y (q = 2),

where

0−→V2ε1−εq+δ1−δ2−δ3⊕V2ε1−εq−δ1+δ2−δ3 −→Y −→V2ε1−εq−δ3 −→0 (p=1),

0−→V2ε1−εq+δ1−δp+n−q−1−δp+n−q −→Y −→V2ε1−εq−δp+n−q −→0 (p≥ 2);

if m = p+ q − 1, n 6= p+ q ± 1, q, then

H1,2
g0

= X ⊕ Vε1+ε2−εm−p+q+δ1−δp+n−q−1−δp+n−q ,

where X is given by the non-split exact sequence of g0-modules

0 −→ V2ε1−ε3+δ1−2δp+n−2 ⊕ V−ε1+ε2+ε3+δ1−2δp+n−2 −→
X −→ Vε1+δ1−2δp+n−2 −→ 0 (q = 2),

0 −→ V2ε1−εm−p+q+δ1−2δp+n−q −→ X −→ Vε1+δ1−2δp+n−q −→ 0 (q ≥ 3);

if m = p+ q − 1, n = q, then

H1,2
g0

= X ⊕ Vε1+ε2−εm−p+q+δ1−2δp (p ≥ 3),
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where X is given by the non-split exact sequence of g0-modules

0 −→ V2ε1−ε3+δ1−δp−1−δp ⊕ V−ε1+ε2+ε3+δ1−δp−1−δp −→
X −→ Vε1+δ1−δp−1−δp −→ 0 (q = 2),

0 −→ V2ε1−εm−p+q+δ1−δp−1−δp −→ X −→ Vε1+δ1−δp−1−δp −→ 0 (q ≥ 3);

if n = p+ q − 1, m 6= p+ q ± 1, p, then

H1,2
g0

= X ⊕ Vε1+ε2−εm−p+q+δ1−δp+n−q−1−δp+n−q ,

where X is given by the non-split exact sequence of g0-modules

0 −→ V2ε1−εm−2+q+δ1−2δ3 ⊕ V2ε1−εm−2+q−δ1−δ2+δ3 −→
X −→ V2ε1−εm−2+q−δ3 −→ 0 (p = 2),

0 −→ V2ε1−εm−p+q+δ1−2δp+n−q −→ X −→ V2ε1−εm−p+q−δp+n−q −→ 0 (p ≥ 3);

if n = p+ q − 1, m = p, then

H1,2
g0

= X ⊕ V2ε1−εq+δ1−δp+n−q−1−δp+n−q (q ≥ 3),

where X is given by the non-split exact sequence of g0-modules

0 −→ Vε1+ε2−εq+δ1−2δ3 ⊕ Vε1+ε2−εq−δ1−δ2+δ3 −→
X −→ Vε1+ε2−εq−δ3 −→ 0 (p = 2),

0 −→ Vε1+ε2−εq+δ1−2δp+n−q −→ X −→ Vε1+ε2−εq−δp+n−q −→ 0 (p ≥ 3);

if m = n = p+ q + 1, then

H1,2
g0

= X ⊕ V2ε1−εm−p+q+δ1−2δp+n−q ⊕ Vε1−δp+n−q ,

where X is given by the non-split exact sequence of g0-modules

0 −→ Y −→ X −→ Vε1−δp+n−q −→ 0,

and Y is given by the non-split exact sequence of g0-modules

0−→Vε1+ε2−εm−p+q+δ1−δp+n−q−1−δp+n−q−→Y

−→Vε1+δ1−δp+n−q−1−δp+n−q⊕Vε1+ε2−εm−p+q−δp+n−q−→0 (p≥2, q≥2),

0−→Vε1+ε2−εm−1+q+δ1−δ2−δ3⊕Vε1+ε2−εm−1+q−δ1+δ2−δ3−→Y

−→Vε1+ε2−εm−1+q−δ3⊕Vε1+δ1−δ2−δ3⊕Vε1−δ1+δ2−δ3−→0 (p=1, q≥2),

0−→Vε1+ε2−ε3+δ1−δp+n−2−δp+n−1⊕
Vε1−ε2+ε3+δ1−δp+n−2−δp+n−1−→Y −→Vε1+ε2−ε3−δp+n−1⊕
Vε1+δ1−δp+n−2−δp+n−1⊕Vε1−ε2+ε3−δp+n−1−→0 (p≥2, q=1),

0−→Vε1+ε2−ε3+δ1−δ2−δ3⊕Vε1−ε2+ε3+δ1−δ2−δ3⊕
Vε1+ε2−ε3−δ1+δ2−δ3⊕Vε1−ε2+ε3−δ1+δ2−δ3−→Y −→Vε1+ε2−ε3−δ3⊕
Vε1−ε2+ε3−δ3⊕Vε1+δ1−δ2−δ3⊕Vε1−δ1+δ2−δ3−→0 (p=1, q=1)
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if m = n = p+ q − 1, then

H1,2
g0

= X ⊕ Vε1+ε2−εm−p+q+δ1−δp+n−q−1−δp+n−q ⊕ Vε1−δp+n−q ,

where X is given by the non-split exact sequence of g0-modules

0 −→ Y −→ X −→ Vε1−δp+n−q −→ 0,

and Y is given by the non-split exact sequence of g0-modules

0−→V2ε1−εm−p+q+δ1−2δp+n−q−→Y

−→V2ε1−εm−p+q−δp+n−q⊕Vε1+δ1−2δp+n−q−→0 (p≥3,q≥3),

0−→V2ε1−εm−2+q+δ1−2δ3⊕V2ε1−εm−2+q−δ1−δ2+δ3−→Y

−→V2ε1−εm−2+q−δ3⊕Vε1+δ1−2δ3⊕Vε1−δ1−δ2+δ3−→0 (p=2, q≥3),

0−→V2ε1−ε3+δ1−2δp+n−2⊕V−ε1+ε2+ε3+δ1−2δp+n−2−→Y

−→Vε1+δ1−2δp+n−2⊕V2ε1−ε3−δp+n−2⊕V−ε1+ε2+ε3−δp+n−2−→0 (p≥3, q=2),

0−→V2ε1−ε3+δ1−2δ3⊕V−ε1+ε2+ε3+δ1−2δ3⊕V2ε1−ε3−δ1−δ2+δ3⊕
V−ε1+ε2+ε3−δ1−δ2+δ3−→Y −→V2ε1−ε3−δ3⊕V−ε1+ε2+ε3−δ3⊕
Vε1+δ1−2δ3⊕Vε1−δ1−δ2+δ3−→0 (p=2, q=2).

Remark. The irreducible g0-modules in the above listed non-split exact se-
quences are given regardless of their parity, which can be easily recovered from
the corresponding highest weights.

8.3.2. Spencer cohomology of psq(n).

8.3.2.1. Definitions. Set

s(q(p)⊕ q(n− p)) = {X ∈ q(p)⊕ q(n− p) | qtr q(p) + qtr q(n− p) = 0},

ps(q(p)⊕ q(n− p)) = s(q(p)⊕ q(n− p))/〈1p + 1n−p〉.
8.3.2.2. Z-gradings of depth 1 of psq(n). Let V (n | n) be the stan-
dard q(n)-module. All Z-gradings of depth 1 of g = psq(n) are of the form
g−1 ⊕ g0 ⊕ g1, where g0 = ps(q(p) ⊕ q(n − p)), p > 0, and as g0-mod-
ules g1 ∼= g∗−1, where g−1 is either one of the two irreducible g0-modules
in V (p | p)∗ ⊗ V (n− p | n− p). Explicitly:

g−1 = 〈(x±Π(x))⊗ (y±Π(y))〉, where x ∈ V (p | p)∗, y ∈ V (n− p | n− p).

Let ε1, . . . , εp and δ1, . . . , δn−p be the standard bases of the dual spaces to
the spaces of diagonal matrices in q(p) and q(n− p), respectively.
8.3.2.3. Theorem. 1) g∗(g−1, g0) = g,

2) all SFs are of order 1 and split into the direct sum of two irreducible
g0-submodules with highest weights 2ε1 − εp + δ1 − 2δn−p and ε1 − δn−p.
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8.3.3. Spencer cohomology of osp(m|2n).

8.3.3.1. Definition of osp(m|2n). Let osp(m|2n) be the Lie superalge-
bra, which preserves a nondegenerate supersymmetric even bilinear form on
a superspace V of sdimV = (m|2n).
8.3.3.2. Consider the Z-grading of depth 1 of g = osp(m|2n), which is defined
as follows: g = g−1⊕g0⊕g1, where g0 = cosp(m−2|2n) is the central extension
of ĝ0 = osp(m− 2|2n), g1 ∼= g−1 is the standard g0-module.

Let m = 2r + 2 or m = 2r + 3, n > 0. Let ε1, . . . , εr and δ1, . . . , δn be
the standard bases of the dual spaces to the spaces of diagonal matrices in
o(m− 2) and sp(n), respectively.

8.3.3.3. Theorem. 1) g∗(g−1, g0) = g, g∗(g−1, ĝ0) = g−1 ⊕ ĝ0.

2) If k 6= 2, then Hk,2
g0 = Hk,2

ĝ0
= 0. As a ĝ0-module H2,2

ĝ0
is isomorphic

to S2(E2(g−1))/E
4(g−1) and splits into the direct sum of three irreducible

components (analogues of the Weyl tensor, the traceless Ricci tensor, and the
scalar curvature). The highest weights of these components are listed in Table
18. As ĝ0-modules, H2,2

ĝ0

∼= H2,2
g0 ⊕S2(g−1). The g0-module H2,2

g0 is irreducible.

8.3.4. Spencer cohomology of osp(4|2;α).

8.3.4.1. Definition of osp(4|2;α). osp(4|2;α), where α ∈ C\{0,−1}, is
a one-parameter family consisting of all simple Lie superalgebras for which
osp(4|2;α)0 = sl(2)1 ⊕ sl(2)2 ⊕ sl(2)3 and its representation on osp(4|2;α)1 is
V1 ⊗ V2 ⊗ V3, where Vi is the standard sl(2)i-module.

8.3.4.2. Z-gradings of depth 1 of osp(4|2;α). Let ε1, ε2, ε3 be the stan-
dard basis of the dual space to the space of diagonal matrices in gl(1|2), Vλ
be the irreducible sl(1|2)-module with highest weight λ and an even high-
est weight vector. All Z-gradings of depth 1 of osp(4|2;α) are of the form
g = g−1⊕ g0 ⊕ g1, where g0 ∼= gl(1|2). There are the following possible values
of g1 and g−1 for the Z-gradings of depth 1:

a) g1 = V(1+α)ε1 , g−1 = V−αε1 ,
b) g1 = V( 1+α

α )ε1
, g−1 = V− 1

α ε1
,

c) g1 = V( α
1+α )ε1 , g−1 = V 1

1+α ε1
.

More explicitly, let ei1, e
i
2 be the basis of the standard sl(2)i-module Vi.

Then the Z-grading in case a) can be described as follows: g0 = (g0)0⊕ (g0)1,
where

(g0)0 = sl(2)1⊕〈
(

1 0

0− 1

)

2

〉 ⊕ 〈
(

1 0

0− 1

)

3

〉, (g0)1 = V1⊗ e21⊗ e32⊕V1⊗ e22⊗ e31;

g1 = (g1)0 ⊕ (g1)1, where

(g1)0 = 〈
(
0 1

0 0

)

2

〉 ⊕ 〈
(
0 1

0 0

)

3

〉, (g1)1 = V1 ⊗ e21 ⊗ e31;

g−1 = (g−1)0 ⊕ (g−1)1, where
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(g−1)0 = 〈
(
0 0

1 0

)

2

〉 ⊕ 〈
(
0 0

1 0

)

3

〉, (g−1)1 = V1 ⊗ e22 ⊗ e32.

The Z-gradings in cases b) and c) can be described similarly.

8.3.4.3. Theorem. For all Z-gradings of depth 1 of g = osp(4|2;α) we have
1) g∗(g−1, g0) = g.
2) The nonzero SFs are of order 2, and for the cases considered in section

8.3.4.2, the g0-module H2,2
g0 is isomorphic to

a) Π(V(2α+1)ε1+ε2),
b) Π(V(α+2

α )ε1+ε2
),

c) Π(V(α−1
α+1 )ε1+ε2

), respectively.

8.3.5. Spencer cohomology of ab(3).

8.3.5.1. Definition of ab(3). ab(3) is a simple Lie superalgebra for which
(ab(3))0 = sl(2)⊕ o(7) and its representation on (ab(3))1 is V ⊗ spin7.

8.3.5.2. Z-grading of depth 1 of ab(3). Let ε1, δ1, δ2 be the standard
basis of the dual space to the space of diagonal matrices in osp(2|4), Vλ be an
irreducible osp(2|4)-module with highest weight λ and an even highest vector.

There is only one Z-grading of depth 1 in g = ab(3), namely,
g = g−1 ⊕ g0 ⊕ g1, where g−1 = V−ε1+δ1+δ2 , g0 = cosp(2|4), g1 = V3ε1 .

Note that o(7) = V1⊕ o(5)⊕C⊕V2, where V1, V2 are standard o(5)-mod-
ules. The space of the representation spin7 after restriction of o(7) to o(5)
decomposes into the direct sum of two irreducible subspaces, which we denote
by U1 and U2. Let e1, e2 be the basis of the standard sl(2)-module V . Then
g0 = (g0)0 ⊕ (g0)1, where

(g0)0 = 〈
(
1 0
0−1

)
〉 ⊕ o(5)⊕ C, (g0)1 = e1 ⊗ U1 ⊕ e2 ⊗ U2;

g1 = (g1)0 ⊕ (g1)1, where (g1)0 = 〈
(
0 1
0 0

)
〉 ⊕ V2, (g1)1 = e1 ⊗ U2;

g−1 = (g−1)0 ⊕ (g−1)1, where (g−1)0 = 〈
(
0 0
1 0

)
〉 ⊕ V1, (g−1)1 = e2 ⊗ U1.

8.3.5.3. Theorem. 1) g∗(g−1, g0) = g.
2) The nonzero SFs are of order 1. The g0- module H1,2

g0 is given by the
non-split exact sequence of g0- modules

0 −→ X −→ H1,2
g0
−→ Vε1+2δ1 −→ 0,

where X is given by the non-split exact sequence of g0-modules

0 −→ Π(V4ε1+2δ1+δ2) −→ X −→ V3ε1+2δ1 −→ 0.

Appendix. The dimension formula for

irreducible sl(n)-modules

Let ε1, . . . , εn be the standard basis of the dual space to the space of
diagonal matrices in gl(n), Vλ be the irreducible sl(n)-module with highest
weight λ = k1ε1 + k2ε2 + . . .+ knεn, where ki ∈ Z. Then

dimVλ =

n−1∏

i=1

n−i∏

j=1

(
1 +

ki − ki+j
j

)
.

Proof. A weight λ is the highest weight of an irreducible sl(n)-module if and
only if λ is a dominant integer form, i.e., if

2
(λ, αi)

(αi, αi)
∈ Z+.

It is known [GG1] that the inner products of the weights εi and of weight ρ,

where ρ =
1

2

∑
β∈∆+

β, with fundamental weights αj are:

(ε1, α1) =
1

2n
, (ε1, αj) = 0 for 2 ≤ j ≤ n− 1;

(εi, αi−1) = − 1

2n
, (εi, αi) =

1

2n
, (εi, αj) = 0 for 2 ≤ i ≤ n− 1, j 6= i− 1, i;

(εn, αn−1) = − 1

2n
(εn, αj) = 0 for 1 ≤ j ≤ n− 2;

(ρ,αi) =
1

2n
for 1 ≤ i ≤ n− 1.

Thus,

(λ, αi) =
ki − ki+1

2n
and ki ≥ ki+1.

By Weyl’s character formula [GG1]

dimVλ =
∏

β∈∆+

(
1 +

(λ, β)

(ρ, β)

)
.

For sl(n),we have ∆+ = {αi + αi+1 + . . .+ αj | 1 ≤ i ≤ n− 1, j ≥ i}. Since

(λ, αi+. . .+αj) =
1

2n
((ki−ki+1)+(ki+1−ki+2)+. . .+(kj−kj+1)) =

ki − kj+1

2n
,

we have

∏

β∈∆+

(
1 +

(λ, β)

(ρ, β)

)
=

n−1∏

i=1

n−1∏

j=i

(
1 +

ki−kj+1

2n
j−i+1
2n

)
=

n−1∏

i=1

n−i∏

j=1

(
1 +

ki − ki+j
j

)
. ut
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Table 1. Irreducible gl(n)-submodules of cpe(n) ⊗ V ∗.

gl(n)-submodule Highest weight Highest weight vector

E2V ∗
0 ⊗ V0 ε1 − εn−1 − εn fn−1 ∧ f̃n ⊗ ẽ1

−εn
n∑

i=1

fn ∧ f̃i ⊗ ẽi
E2V ∗

0 ⊗ V ∗
0 −εn−1 − 2εn fn−1 ∧ f̃n ⊗ f̃n

−εn−2 − εn−1 − εn fn−2 ∧ f̃n−1 ⊗ f̃n + fn−1 ∧ f̃n ⊗ f̃n−2

+fn ∧ f̃n−2 ⊗ f̃n−1

V ∗
0 ∧ V0 ⊗ V0 2ε1 − εn fn ∧ ẽ1 ⊗ ẽ1

ε1 + ε2 − εn fn ∧ ẽ1 ⊗ ẽ2 − fn ∧ ẽ2 ⊗ e1
ε1

n∑
i=1

fi ∧ ẽi ⊗ ẽ1

ε1
n∑

i=1

fi ∧ ẽ1 ⊗ ẽi
V ∗
0 ∧ V0 ⊗ V ∗

0 ε1 − 2εn fn ∧ ẽ1 ⊗ f̃n
ε1 − εn−1 − εn fn−1 ∧ ẽ1 ⊗ f̃n − fn ∧ ẽ1 ⊗ f̃n−1

−εn
n∑

i=1

fi ∧ ẽi ⊗ f̃n

−εn
n∑

i=1

fn ∧ ẽi ⊗ f̃i
S2V0 ⊗ V0 3ε1 e1ẽ1 ⊗ ẽ1

2ε1 + ε2 e1ẽ2 ⊗ ẽ1 − e1ẽ1 ⊗ ẽ2
S2V0 ⊗ V ∗

0 2ε1 − εn e1ẽ1 ⊗ f̃n
ε1

n∑
i=1

e1ẽi ⊗ f̃i

z ⊗ V0 ε1
n∑

i=1

eif̃i ⊗ ẽ1

z ⊗ V ∗
0 −εn

n∑
i=1

eif̃i ⊗ f̃n

Table 2. Irreducible gl(n)-submodules of Hq(V0, g∗).

q Highest weight Highest weight vector

0 −εn fn
2ε1 e1ẽ1
ε1 e1
0 τ − z

1 −2εn fn ⊗ f̃n
2ε1 − εn (e1ẽ1)⊗ f̃n
ε1 − 2εn (e1 ∧ f̃n)⊗ f̃n
−εn (τ − z)⊗ f̃n

2 −2εn−1 − 2εn (fn−1 ∧ f̃n)⊗ f̃n−1 ∧ f̃n
2ε1 − εn−1 − εn e1ẽ1 ⊗ f̃n−1 ∧ f̃n
ε1 − εn−1 − 2εn (e1 ∧ f̃n)⊗ f̃n−1 ∧ f̃n
−εn−1 − εn (τ − z)⊗ f̃n−1 ∧ f̃n
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Table 3. Irreducible gl(n)-submodules of Ep,0
1 .

weight

λ E1,0
1

= ⊕
λ
Vλ ⊗V0 E2,0

1
= ⊕

λ
Vλ ⊗ S2V0 E3,0

1
= ⊕

λ
Vλ ⊗ S3V0

−εn ε1 − εn 2ε1 − εn 3ε1 − εn
0 ε1 2ε1

2ε1 3ε1 4ε1 5ε1
2ε1 + ε2 2ε1 + 2ε2 4ε1 + ε2

3ε1 + ε2 3ε1 + 2ε2
ε1 2ε1 3ε1 4ε1

ε1 + ε2 2ε1 + ε2 3ε1 + ε2
0 ε1 2ε1 3ε1

Table 4. Irreducible gl(n)-submodules of Ep,1
1 .

weight

λ E0,1
1

= ⊕
λ
Vλ E1,1

1
= ⊕

λ
Vλ ⊗V0 E2,1

1
= ⊕

λ
Vλ ⊗ S2V0

−2εn −2εn ε1 − 2εn 2ε1 − 2εn
−εn ε1 − εn

0

2ε1 − εn 2ε1 − εn 3ε1 − εn 4ε1 − εn
2ε1 3ε1

2ε1 + ε2 − εn 3ε1 + ε2 − εn
2ε1 + 2ε2 − εn

2ε1 + ε2
ε1 − 2εn ε1 − 2εn 2ε1 − 2εn 3ε1 − 2εn

ε1 + ε2 − 2εn 2ε1 − εn
ε1 − εn ε1

2ε1 + ε2 − 2εn
ε1 + ε2 − εn

−εn −εn ε1 − εn 2ε1 − εn
0 ε1

Table 5. Irreducible gl(n)-submodules of Ep,2
1 .

weight

λ E0,2
1

= ⊕
λ
Vλ E1,2

1
= ⊕

λ
Vλ ⊗V0

−2εn−1 − 2εn −2εn−1 − 2εn ε1 − 2εn−1 − 2εn
−εn−1 − 2εn

2ε1 − εn−1 − εn 2ε1 − εn−1 − εn 3ε1 − εn−1 − εn
2ε1 − εn

ε1 − εn−1 − 2εn ε1 − εn−1 − 2εn 2ε1 − εn−1 − 2εn
ε1 − 2εn

ε1 − εn−1 − εn
−εn−1 − εn −εn−1 − εn ε1 − εn−1 − εn

−εn
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Table 6. Irreducible gl(n)-submodules of Ep,0
0 .

U E1,0
0

= ⊕
U

U⊗V0 E2,0
0

= ⊕
U

U⊗ S2V0 E3,0
0

= ⊕
U

U⊗ S3V0

V0(mult 2) 2ε1 3ε1 4ε1
ε1 + ε2 2ε1 + ε2 3ε1 + ε2

V ∗
0 (mult 2) ε1 − εn 2ε1 − εn 3ε1 − εn

0 ε1 2ε1
S2V0 3ε1 4ε1 5ε1

2ε1 + ε2 3ε1 + ε2 4ε1 + ε2
2ε1 + 2ε2 3ε1 + 2ε2

E2V ∗
0 ε1 − εn−1 − εn 2ε1 − εn−1 − εn 3ε1 − εn−1 − εn

−εn ε1 − εn 2ε1 − εn
sl(n) 2ε1 − εn 3ε1 − εn 4ε1 − εn

ε1 2ε1 3ε1 + ε2 − εn
ε1 + ε2 − εn 2ε1 + ε2 − εn 3ε1

ε1 + ε2 2ε1 + ε2
C(mult 3) ε1 2ε1 3ε1

Table 7. Irreducible gl(n)-submodules of E3V .

Space Highest weight vectors Highest weights

E3V0 e1 ∧ e2 ∧ e3 0

(E2V0)(V
∗
0 ) (e1 ∧ e2)f3 −2ε3

3∑
i=1

(e1 ∧ ei)fi ε1

V0(S
2V ∗

0 ) e1f
2
3 ε1 − 2ε3

3∑
i=1

eifif3 −ε3

S3V ∗
0 f3

3 −3ε3
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Table 8. Irreducible gl(m) ⊕ gl(n)-submodules of g0 ⊗ g∗
−1.

gl(m)⊕ gl(n)-module Highest weight Highest weight vector

(V ⊗ V ∗)/C ⊗ (U∗ ⊗ V ) 2ε1 − εm − δn (e1 ⊗ ẽm)⊗ (f̃n ⊗ e1)
ε1 − δn v1λ =

m∑
i=1

(ei ⊗ ẽi)⊗ (f̃n ⊗ e1)−

−m
m∑
i=1

(e1 ⊗ ẽi)⊗ (f̃n ⊗ ei)

ε1 + ε2 − εm − δn (e1 ⊗ ẽm)⊗ (f̃n ⊗ e2)−
(if m ≥ 3) −(e2 ⊗ ẽm)⊗ (f̃n ⊗ e1)

(U ⊗ U∗)/C⊗ (U∗ ⊗ V ) ε1 + δ1 − 2δn (f1 ⊗ f̃n)⊗ (f̃n ⊗ e1)
ε1 − δn v2λ =

n∑
i=1

(fi ⊗ f̃i)⊗ (f̃n ⊗ e1)−

−n
n∑

i=1

(fi ⊗ f̃n)⊗ (f̃i ⊗ e1)

ε1 + δ1 − δn−1 − δn (f1 ⊗ f̃n−1)⊗ (f̃n ⊗ e1)−
(if n ≥ 3) −(f1 ⊗ f̃n)⊗ (f̃n−1 ⊗ e1)

C⊗ (U∗ ⊗ V ) ε1 − δn v3λ = (n
m∑
i=1

ei ⊗ ẽi+

+m
n∑

i=1

fi ⊗ f̃i)⊗ (f̃n ⊗ e1)

Table 9. Irreducible gl(m)⊕gl(n)-submodules of (U∗⊗V )⊗(U∗⊗V ).

gl(m)⊕ gl(n)-module Highest weight Highest weight vector

Λ2U∗ ⊗ S2V 2ε1 − 2δn (f̃n ⊗ e1)⊗ (f̃n ⊗ e1)
S2U∗ ⊗ Λ2V ε1 + ε2 − δn−1 − δn (f̃n ⊗ e1)⊗ (f̃n−1 ⊗ e2)−

−(f̃n ⊗ e2)⊗ (f̃n−1 ⊗ e1)−
−(f̃n−1 ⊗ e1)⊗ (f̃n ⊗ e2)+
+(f̃n−1 ⊗ e2)⊗ (f̃n ⊗ e1)

Λ2U∗ ⊗ Λ2V ε1 + ε2 − 2δn (f̃n ⊗ e1)⊗ (f̃n ⊗ e2)−
−(f̃n ⊗ e2)⊗ (f̃n ⊗ e1)

S2U∗ ⊗ S2V 2ε1 − δn−1 − δn (f̃n−1 ⊗ e1)⊗ (f̃n ⊗ e1)−
−(f̃n ⊗ e1)⊗ (f̃n−1 ⊗ e1)
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Table 10. Irreducible gl(n)-submodules of Ck,2
gl(n).

k Highest weight Highest weight vector

2 λ1 = δ1 − 3δn vλ1 = (f1 ⊗ f̃n)⊗ f̃2
n

λ2 = −2δn vλ2 =
n∑

j=1

(fj ⊗ f̃n)⊗ f̃j f̃n

λ3 = −2δn vλ3 =
n∑

j=1

(fj ⊗ f̃j)⊗ f̃2
n

λ4 = δ1 − δn−1 − 2δn( if n ≥ 3) vλ4 = (f1 ⊗ f̃n−1)⊗ f̃2
n − (f1 ⊗ f̃n)⊗ f̃n−1f̃n

λ5 = −δn−1 − δn vλ5 =
n∑

j=1

((fj ⊗ f̃n−1)⊗ f̃j f̃n − (fj ⊗ f̃n)⊗ f̃j f̃n−1)

3 ≤ k ≤ n+ 1 λ1 = δ1 − δn−k+2 − . . .− δn−1 − 3δn vλ1 = (f1 ⊗ f̃n−k+2 ∧ . . . ∧ f̃n)⊗ f̃2
n

λ2 = −δn−k+2 − . . .− δn−1 − 2δn vλ2 =
n∑

j=1

(fj ⊗ f̃n−k+2 ∧ . . . ∧ f̃n)⊗ f̃j f̃n

3 ≤ k ≤ n λ3 = −δn−k+3 − . . .− δn − 2δn vλ3 =
n∑

j=1

(fj ⊗ f̃j ∧ f̃n−k+3 ∧ . . . ∧ f̃n)⊗ f̃2
n

λ4 = δ1 − δn−k+1 − . . .− δn−1 − 2δn vλ4 =
k−1∑
j=0

(−1)(k−1)j(f1 ⊗ f̃sj(n−k+1) ∧ . . .

∧f̃sj(n−1))⊗ f̃sj(n)f̃n

λ5 = −δn−k+1 − δn−k+2 − . . .− δn vλ5 =
k−1∑
j=0

(−1)(k−1)j
n∑

i=1

(fi ⊗ f̃sj(n−k+1) ∧ . . .

∧f̃sj(n−1))⊗ f̃if̃sj (n)

3 ≤ k ≤ n− 1 λ6 = −δn−k+2 − . . .− δn−1 − 2δn vλ6 =
k−2∑
j=0

(−1)(k−2)j
n∑

i=1

(fi ⊗ f̃i ∧ f̃tj(n−k+2) ∧ . . .

∧f̃tj(n−1))⊗ f̃tj(n)f̃n
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Table 11. Irreducible gl(n)-submodules of Ck+1,1
gl(n) .

k Highest weight Highest weight vector

2 ≤ k ≤ n β1 = δ1 − δn−k+1 − . . .− δn−1 − 2δn vβ1 = (f1 ⊗ f̃n−k+1 ∧ . . . ∧ f̃n−1 ∧ f̃n)⊗ f̃n
β2 = −δn−k+1 − . . .− δn−1 − δn vβ2 =

n∑
j=1

fj ⊗ f̃n−k+1 ∧ . . . ∧ f̃n−1 ∧ f̃n)⊗ f̃j

2 ≤ k ≤ n− 1 β3 = −δn−k+2 − . . .− δn−1 − 2δn vβ3 =
n∑

j=6

(fj ⊗ f̃j ∧ f̃n−k+2 ∧ . . . ∧ f̃n−1 ∧ f̃n)⊗ f̃n

β4 = −δn−k+1 − . . .− δn−1 − δn vβ4 =
k−1∑
j=0

(−1)(k−3)j
n∑

i=1

(fi ⊗ f̃i ∧ f̃sj(n−k+1) ∧ . . .

∧fsj(n−1))⊗ f̃sj(n)

2 ≤ k ≤ n− 2 β5 = δ1 − δn−k − . . .− δn−1 − δn vβ5 =
k∑

j=0

(−1)kj(f1 ⊗ f̃rj(n−k) ∧ . . .

∧f̃rj(n−1))⊗ f̃rj(n)

Table 12. Irreducible gl(n)-submodules of gk.

k Highest weight Highest weight vector

2 ≤ k ≤ n− 1 γ1 = δ1 − δn−k − δn−k+1 − . . .− δn vγ1 = f1 ⊗ f̃n−k ∧ . . . ∧ f̃n
2 ≤ k ≤ n− 2 γ2 = −δn−k+1 − δn−k+2 − . . .− δn vγ2 =

n∑
j=1

fj ⊗ f̃j ∧ f̃n−k+1 ∧ . . . ∧ f̃n
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Table 14. Irreducible gl(m) ⊕ gl(n)submodules of g0 ⊗ Λ2g∗
−1.

gl(m) ⊕ gl(n)-module Highest weight Highest weight vector

V ⊗ V ∗/C ⊗ Λ2U∗ ⊗ S2V 3ε1 − εm − 2δn (e1 ⊗ ẽm) ⊗ (f̃n ⊗ e1) ∧ (f̃n ⊗ e1)

2ε1 − 2δn v1λ =
m∑
i=1

(ei ⊗ ẽi) ⊗ (f̃n ⊗ e1) ∧ (f̃n ⊗ e1)−

m
m∑
i=1

(e1 ⊗ ẽi) ⊗ (f̃n ⊗ ei) ∧ (f̃n ⊗ e1)

ε1 + ε2 − 2δn v1λ =
m∑
i=1

((e1 ⊗ ẽi) ⊗ (f̃n ⊗ ei) ∧ (f̃n ⊗ e2)−

(e2 ⊗ ẽi) ⊗ (f̃n ⊗ ei) ∧ (f̃n ⊗ e1))

2ε1 + ε2 − εm − 2δn (m ≥ 3) (e1 ⊗ ẽm) ⊗ (f̃n ⊗ e1) ∧ (f̃n ⊗ e2)−

(e2 ⊗ ẽm) ⊗ (f̃n ⊗ e1) ∧ (f̃n ⊗ e1)

V ⊗ V ∗/C ⊗ S2U∗ ⊗ Λ2V 2ε1 + ε2 − εm − δn−1 − δn (e1 ⊗ ẽm) ⊗ (f̃n−1 ⊗ e1) ∧ (f̃n ⊗ e2)−

(e1 ⊗ ẽm) ⊗ (f̃n ⊗ e1) ∧ (f̃n−1 ⊗ e2)

2ε1 − δn−1 − δn (m ≥ 3) v1λ =
m∑
i=1

(e1 ⊗ ẽi) ⊗ (f̃n−1 ⊗ ei) ∧ (f̃n ⊗ e1)−

(e1 ⊗ ẽi) ⊗ (f̃n ⊗ ei) ∧ (f̃n−1 ⊗ e1)

ε1 + ε2 − δn−1 − δn v1λ =
m∑
i=1

((e1 ⊗ ẽi) ⊗ (f̃n−1 ⊗ ei) ∧ (f̃n ⊗ e2)−

(m ≥ 3) (e1 ⊗ ẽi) ⊗ (f̃n ⊗ ei) ∧ (f̃n−1 ⊗ e2)−

(e2 ⊗ ẽi) ⊗ (f̃n−1 ⊗ ei) ∧ (f̃n ⊗ e1)+

(e2 ⊗ ẽi) ⊗ (f̃n ⊗ ei) ∧ (f̃n−1 ⊗ e1))

ε1 + ε2 + ε3 − εm − δn−1 − δn
2∑
j=0

((esj(1) ⊗ ẽm) ⊗ (f̃n−1 ⊗ esj (2)) ∧ (f̃n ⊗ esj(3))−

(m ≥ 4) (esj(1) ⊗ ẽm) ⊗ (f̃n ⊗ esj (2)) ∧ (f̃n−1 ⊗ esj (3)))

U ⊗ U∗/C ⊗ Λ2U∗ ⊗ S2V 2ε1 + δ1 − 3δn (f1 ⊗ f̃n) ⊗ (f̃n ⊗ e1) ∧ (f̃n ⊗ e1)

2ε1 − 2δn v2λ =
n∑
i=1

(fi ⊗ f̃i) ⊗ (f̃n ⊗ e1) ∧ (f̃n ⊗ e1)−

n
n∑
i=1

(fi ⊗ f̃n) ⊗ (f̃i ⊗ e1) ∧ (f̃n ⊗ e1)

2ε1 − δn−1 − δn v2λ =
n∑
i=1

((fi ⊗ f̃n−1) ⊗ (f̃i ⊗ e1) ∧ (f̃n ⊗ e1)−

(fi ⊗ f̃n) ⊗ (f̃i ⊗ e1) ∧ (f̃n−1 ⊗ e1))

2ε1 + δ1 − δn−1 − 2δn (f1 ⊗ f̃n) ⊗ (f̃n−1 ⊗ e1) ∧ (f̃n ⊗ e1)−

(n ≥ 3) (f1 ⊗ f̃n−1) ⊗ (f̃n ⊗ e1) ∧ (f̃n ⊗ e1)
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Table 14 (cont). Irreducible gl(m) ⊕ gl(n)submodules of g0 ⊗ Λ2g∗
−1.

gl(m) ⊕ gl(n)-module Highest weight Highest weight vector

U ⊗ U∗/C ⊗ S2U∗ ⊗ Λ2V ε1 + ε2 + δ1 − δn−1 − 2δn (f1 ⊗ f̃n) ⊗ (f̃n−1 ⊗ e1) ∧ (f̃n ⊗ e2)−

(f1 ⊗ f̃n) ⊗ (f̃n ⊗ e1) ∧ (f̃n−1 ⊗ e2)

ε1 + ε2 − 2δn (n ≥ 3) v2λ =
n∑
i=1

((fi ⊗ f̃n) ⊗ (f̃i ⊗ e1) ∧ (f̃n ⊗ e2)−

(fi ⊗ f̃n) ⊗ (f̃n ⊗ e1) ∧ (f̃i ⊗ e2))

ε1 + ε2 − δn−1 − δn (n ≥ 3) v2λ =
n∑
i=1

((fi ⊗ f̃n) ⊗ (f̃i ⊗ e1) ∧ (f̃n−1 ⊗ e2)−

(fi ⊗ f̃n) ⊗ (f̃i ⊗ e2) ∧ (f̃n−1 ⊗ e1)−

(fi ⊗ f̃n−1) ⊗ (f̃i ⊗ e1) ∧ (f̃n ⊗ e2)+

(fi ⊗ f̃n−1) ⊗ (f̃i ⊗ e2) ∧ (f̃n ⊗ e1))

ε1 + ε2 + δ1 − δn−2 − δn−1 − δn
2∑
j=0

((f1 ⊗ f̃tj(n−2)) ⊗ (f̃tj (n−1) ⊗ e1) ∧ (f̃tj (n) ⊗ e2)−

(n ≥ 4) (f1 ⊗ f̃tj (n−2)) ⊗ (f̃tj(n−1) ⊗ e2) ∧ (f̃tj (n) ⊗ e1))

C ⊗ Λ2U∗ ⊗ S2V 2ε1 − 2δn v3λ = (n
m∑
i=1

ei ⊗ ẽi+

+m
n∑
i=1

fi ⊗ f̃i) ⊗ (f̃n ⊗ e1) ∧ (f̃n ⊗ e1)

C ⊗ S2U∗ ⊗ Λ2V ε1 + ε2 − δn−1 − δn v3λ = (n
m∑
i=1

ei ⊗ ẽi+

+m
n∑
i=1

fi ⊗ f̃i) ⊗ ((f̃n−1 ⊗ e1) ∧ (f̃n ⊗ e2)−

(f̃n ⊗ e1) ∧ (f̃n−1 ⊗ e2))

Table 15. Irreducible gl(m) ⊕ gl(n)-submodules of g1 ⊗ Λ2g∗
−1.

gl(m)⊕ gl(n)-module Highest weight Highest weight vector

(Λ2U∗ ⊗ U∗)⊗ (S2V ⊗ V ) 3ε1 − 3δn (f̃n ⊗ e1)⊗ (f̃n ⊗ e1) ∧ (f̃n ⊗ e1)
2ε1 + ε2 − 3δn (f̃n ⊗ e1)⊗ (f̃n ⊗ e2) ∧ (f̃n ⊗ e1)−

(f̃n ⊗ e2)⊗ (f̃n ⊗ e1) ∧ (f̃n ⊗ e1)
3ε1 − δn−1 − 2δn (f̃n−1 ⊗ e1)⊗ (f̃n ⊗ e1) ∧ (f̃n ⊗ e1)−

(f̃n ⊗ e1)⊗ (f̃n−1 ⊗ e1) ∧ (f̃n ⊗ e1)
2ε1 + ε2 − δn−1 − 2δn v1λ = (f̃n ⊗ e1)⊗ (f̃n−1 ⊗ e1) ∧ (f̃n ⊗ e2)−

(f̃n ⊗ e2)⊗ (f̃n−1 ⊗ e1) ∧ (f̃n ⊗ e1)−
(f̃n−1 ⊗ e1)⊗ (f̃n ⊗ e1) ∧ (f̃n ⊗ e2)+
(f̃n−1 ⊗ e2)⊗ (f̃n ⊗ e1) ∧ (f̃n ⊗ e1)

(S2U∗ ⊗ U∗)⊗ (Λ2V ⊗ V ) 2ε2 + ε2 − δn−1 − 2δn v2λ = (f̃n ⊗ e1)⊗ (f̃n−1 ⊗ e1) ∧ (f̃n ⊗ e2)−
(f̃n ⊗ e1)⊗ (f̃n−1 ⊗ e2) ∧ (f̃n ⊗ e1)

ε1 + ε2 + ε3 − δn−1 − 2δn
2∑

j=0

((f̃n ⊗ esj(1))⊗ (f̃n−1 ⊗ esj(2)) ∧ (f̃n ⊗ esj(3))−

(m ≥ 3) (f̃n ⊗ esj(1))⊗ (f̃n ⊗ esj(2)) ∧ (f̃n−1 ⊗ esj(3))
2ε1 + ε2 − δn−2 − δn−1 − δn

2∑
j=0

((f̃tj(n−2) ⊗ e1)⊗ (f̃tj(n−1) ⊗ e2) ∧ (f̃tj(n) ⊗ e1)−

(n ≥ 3) (f̃tj(n−2) ⊗ e1)⊗ (f̃tj(n−1) ⊗ e1) ∧ (f̃tj(n) ⊗ e2))
ε1 + ε2 + ε3 − δn−2 − δn−1 − δn

2∑
i=0

2∑
j=0

((f̃tj(n−2) ⊗ esi(1))⊗ (f̃tj(n−1) ⊗ esi(2))∧

(m, n ≥ 3) (f̃tj(n) ⊗ esi(3))− (f̃tj(n−2) ⊗ esi(1))⊗
(f̃tj(n) ⊗ esi(2)) ∧ (f̃tj(n−1) ⊗ esi(3)))



Table 16. Spencer cohomology of sl(m|n) endowed with a Z-grading, where g0 = c(sl(m|q) ⊕ sl(n − q)).

m q n− q H1,2
g0 H2,2

g0

≥ 2 ≥ 1 ≥ 3 m 6= q ± 1
2ε1 − εm+q + δ1 − 2δn−q

ε1 + ε2 − εm+q + δ1 − δn−q−1 − δn−q
——

ε1 − δn−q (if m = n)

≥ 3 ≥ 1 2 m 6= q − 1
2ε1 − εm+q + δ1 − 2δ2 ε1 + ε2 + ε3 − εm+q − δ1 − δ2
ε1 − δ2 (if m = n)

2 ≥ 2 2 q 6= 3 ε1 + ε2 + ε3 − εq+2 − δ1 − δ2
2ε1 − εq+2 + δ1 − 2δ2

2 1 2 2ε1 − ε3 + δ1 − 2δ2 ε1 + ε3 − δ1 − δ2
1 ≥ 1 ≥ 3 q 6= 2

2ε1 − εq+1 + δ1 − 2δn−q ——
ε1 + ε2 − εq+1 + δ1 − δn−q−1 − δn−q

1 ≥ 1 2 q 6= 2 ε1 + 2ε2 − εq+1 − δ1 − δ2 (q 6= 1)
2ε1 − εq+1 + δ1 − 2δ2 2ε2 − δ1 − δ2 (q = 1)

0 2 2 3ε1 − ε2 − δ1 − δ2——
ε1 + ε2 + δ1 − 3δ2

0 2 ≥ 3 2ε1 − ε2 + δ1 − δn−3 − δn−2 ε1 + ε2 + δ1 − 3δn−2

0 ≥ 3 2 ε1 + ε2 − εq + δ1 − 2δ2 3ε1 − εq − δ1 − δ2
0 ≥ 3 ≥ 3 2ε1 − εq + δ1 − δn−q−1 − δn−q

ε1 + ε2 − εq + δ1 − 2δn−q
——

Table 17. Spencer cohomology of sl(m|n) endowed with a Z-grading, where g0 = c(sl(m−p|q)⊕sl(p|n−q)).

m− p q p n− q H1,2
g0 H2,2

g0

0 2 2 0 2ε1 − ε2 + δ1 − 2δ2
ε1 − δ2

——

0 2 3 0 2ε1 − ε2 + δ1 − 2δ3 ——

0 3 2 0 2ε1 − ε3 + δ1 − 2δ2 ——

0 2 ≥ 4 0 2ε1 − ε2 + δ1 − 2δp ε1 + ε2 + δ1 − δp−2 − δp−1 − δp
0 ≥ 4 2 0 2ε1 − εq + δ1 − 2δ2 ε1 + ε2 + ε3 − εq − δ1 − δ2
0 ≥ 3 ≥ 3 0 2ε1 − εq + δ1 − 2δp

ε1 + ε2 − εq + δ1 − δp−1 − δp ——
ε1 − δp (m = n)

0 2 ≥ 1 ≥ 1 n 6= p+ q + 1
2ε1 − ε2 + δ1 − δp+n−3 − δp+n−2 ε1 + ε2 + δ1 − 3δp+n−2

ε1 − δp+n−2 (m = n)

≥ 1 ≥ 1 2 0 m 6= p+ q + 1
ε1 + ε2 − εm−p+q + δ1 − 2δ2 3ε1 − εm−p+q − δ1 − δ2

ε1 − δ2 (m = n)

0 ≥ 3 ≥ 1 ≥ 1 n 6= p+ q ± 1
ε1 + ε2 − εq + δ1 − 2δp+n−q

2ε1 − εq + δ1 − δp+n−q−1 − δp+n−q
——

ε1 − δp+n−q (m = n)

≥ 1 ≥ 1 ≥ 3 0 m 6= p+ q ± 1
2ε1 − εm−p+q + δ1 − δp−1 − δp
ε1 + ε2 − εm−p+q + δ1 − 2δp

——

ε1 − δp (m = n)

≥ 1 ≥ 1 ≥ 1 ≥ 1 m,n 6= p+ q ± 1
2ε1 − εm−p+q + δ1 − 2δp+n−q

ε1 + ε2 − εm−p+q + δ1 − δp+n−q−1 − δp+n−q
——

ε1 − δp+n−q (m = n ≥ 3)
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Table 18. Spencer cohomology of osp(m|2n), where m = 2r+2, 2r+3.

r n H2,2
g0

S2(g−1)

0 (if m = 2)

0 1 ——

0, δ1 (if m = 3)

0 ≥ 2 2δ1 + 2δ2 δ1 + δ2, 0

1 1 ε1 + δ1 2ε1, 0

1 ≥ 2 2ε1 + δ1 + δ2 2ε1, 0

≥ 2 ≥ 1 2ε1 + 2ε2 2ε1, 0

Chapter 9

The nonholonomic Riemann and Weyl tensors
for flag manifolds (P. Grozman, D. Leites)

This chapter is an edited excerpt from [GL] which contains proof of Premet’s
important theorems and our calculations. In Chapter 8 the Z-graded Lie (su-
per)algebras of depth 1 were studied; here we tackle depth d > 1.

9.0. Introduction

H. Hertz [Hertz] coined the term nonholonomic during his attempts to
geometrically describe motions in such a way as to exorcize the concept of
“force”. A manifold (phase space) is said to be nonholonomic if endowed
with a nonintegrable distribution (a subbundle of the tangent bundle). A
simplest example of a nonholonomic dynamical system is given by a body
rolling without gliding over another body. Among various images that spring
to mind, the simplest is a ball on a rough plane ([Poi]) or a bike on asphalt.
At the tangency point of the wheel with asphalt, the velocity of the wheel
is zero. (This is a linear constraint. We will not consider here more general
non-linear constraints.) A famous theorem of Frobenius gives criteria of local
integrability of the distribution: its sections should form a Lie algebra.

For a historical review of nonholonomic systems, see [VG2] and a very in-
teresting paper by Vershik [Ve] with first rigorous mathematical formulations
of nonholonomic geometry and indications to applications to various, partly
unexpected at that time, areas (like optimal control or macro-economics,
where nonlinear constraints are also natural, cf. [AS], [Bl], [S]); recent book by
Kozlov [Koz] is extremely instructive. In [Ve], Vershik summarizes about 100
years of studies of nonholonomic geometry (Hertz, Carathéodory, Vrănceanu,
Wagner, Schouten, Faddeev, Griffiths, Godbillon; now MathSciNet returns
thousands entries for “nonholonomic” and its synonyms (anholonomic, “sub-
Riemannian”, “autoparallel”) and particular cases leading to nonholonomic
constraints (“Finsler”, “cat’s problem”). There seems to be “more”, actually,
nonholonomic dynamical systems than holonomic ones.
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A relatively new theory, “supergravity” (the theory embodying Einstein’s
dream of a Unified Field Theory), also deals exclusively with nonholonomic
structures, albeit on supermanifolds.)

At the end of [Ve] Vershik summarized futile attempts of the researchers to
define an analog of the Riemann tensor for the general nonholonomic manifold
in a conjecture that “though known in some cases, it is probably impossible
to define such a general analog”.

However, in 1989, during his stay at IAS, DL gave such a general definition
and lectured on it at various schools and conferences (ICTP, Euler Math. Inst.,
JINR, etc.), see [Le5], [LP0]; later we applied it to supergravity [GL31].

Main results of this chapter are (1) elucidation of this general
definition of the nonholonomic counterparts of the Riemann tensor
and its conformal, Weyl, analog; (2) Premet’s theorems that facil-
itate computation of these tensors in some cases (for flag varieties
G/P , where G is a simple Lie group and P is its parabolic subalge-
bra). For the results of computation of these tensors in some of these cases,
see [GL].

Tanaka [T] tackled the same, actually, problem for totally different reasons
(in [T] and even in more recent [Y] and [YY] even the word “nonholonomic” is
never used). Tanaka’s results (especially their lucid exposition in Yamaguchi’s
paper [Y]) are easier to understand than the first attempts (by Schouten,
Wagner, see [DG]) because, after some experiments, he used the hieroglyphics
of Lie algebra cohomology which are much more graphic than coordinate
tensor notations. Tanaka’s tensor coincides with the one we suggest.

We illustrate the main definitions by computing the nonholonomic analogs
of the Riemann and Weyl tensor in several particular cases — the simplest
analogs of “classical domains”. In doing so we rely on Premet’s theorems and
a Mathematica-based package SuperLie.

Computations of nonholonomic analogs of Riemann tensor are rather dif-
ficult technically and the rare examples of works with actually computed
results are [C1]–[C5], [GIOS], [HH], [Y, YY, EKMR, Ta] and refs. therein.
In non-super setting, they used Tanaka’s definition of nonholonomic Riemann
tensor, identical to ours, but lack Premet’s theorems and SuperLie and so
could not compute as much as anybody is able to now with their help. 1)

9.0.1. General description of classical tensors and our examples. In
mid-1970s, Gindikin formulated a problem of local characterization of compact
Hermitian symmetric domains X = S/P , where S is a simple Lie group and P
its parabolic subgroup. Goncharov solved this problem [Go] having considered
the fields of certain quadratic cones and having computed the structure

1 In 2000, S. Vacaru informed us of his and mathematician’s from Vrănceanu’s
school definitions partly summarized in [Va6] and refs. therein. It is not easy
to see through the forest of non-invariant cumbrous tensor expressions that a
number of components is lacking in [Va6] as well as in [DG], as compared with
Tanaka’s or our definitions.
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functions (obstructions to flatness) of the corresponding G-structures, where
G is the Levi (reductive) part of P .

9.0.2. Examples.
•18

•
[ Ol: ssbegin ili sssbegin? ] Let the ground field be C. 18

1) For S = O(n+2) and G = CO(n) = O(n)×C×, the structure functions
were known; they constitute the Weyl tensor — the conformally invariant part
of the Riemann curvature tensor.

2) For S = SL(n+m) and G = S(GL(n)×GL(m)), the structure functions
are obstructions to integrability of multidimensional analogs of Penrose’s α-
and β-planes on the Grassmannian Grn+mn (Penrose considered Gr42).

Not any simple complex Lie group S and its subgroup P can form a clas-
sical domain: S is any but G(2) 2), F (4) and E(8) and P = Pi is a maximal
parabolic subgroup generated by all Chevalley generators of S, but one (ith),
say, negative. The group P , or which is the same, the ith Chevalley generator
of S (in what follows referred to as selected) can not be arbitrary, either. To
describe the admissible P ’s, let us label the nodes of the Dynkin graph of S
with the coefficients of the maximal root expressed in terms of simple roots.
The selected generator may only correspond to the vertex with label 1 on the
Dynkin graph.

It is natural to consider the following problems:

For any simple Lie group S, fix an arbitrary Z-grading of its
Lie algebra s = Lie(S).
For any subgroup P ⊂ S, generated by elements of s cor-
responding to nonnegative roots, what are the analogs of
the Goncharov conformal structure and the corresponding
analogs of Riemann and projective structures, which of these
structures are flat, and what are the obstructions to their
flatness?

9.0.3. Remark.
•19

•
[ Ol: ssbegin ili sssbegin? ] The adjective “arbitrary” (Z- 19

grading of s) in the above formulation appeared thanks to J. Bernstein who
reminded us that parabolic subgroups are a particular case of such gradings.
All Z-gradings are obtained by setting degX±

i = ±ki, where ki ∈ Z, for
the Chevalley generators X±

i and parabolic subgroups appear if ki ≥ 0 for
all i. Recently Kostant [Ko2] considered an analog of the Bott-Borel-Weil
(BBW) theorem — one of our main tools — for the non-parabolic case, but
the answer is not yet as algebraic as we need, so having answered the above
displayed questions in full generality we calculate the nonholonomic invariants
for parabolic subgroups only.

Modern descriptions of structure functions is usually given in terms of the
Spencer cohomology, cf. [St2] (we will recall all definitions needed in (0.1) and

2 We denote the exceptional groups and their Lie algebras in the same way as the
serial ones, like SL(n); we thus avoid confusing g(2) with the second component
g2 of a Z-grading of a Lie algebra g.
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(0.2) in due course). Goncharov expressed the structure functions as tensors
taking values in the vector bundle over X = G/P , whose fibers at every point
x ∈ X are isomorphic to each other and to

H2(g−1; (g−1, g0)∗), where g0 = Lie(G), g−1 = TxX ,

and where (g−1, g0)∗ = ⊕
i≥−1

gi is the Cartan prolong of (g−1, g0).
(0.2)

The conventional representation of the structure functions as bigraded Spencer
cohomologyHk,2 can be recovered any time as the homogeneous degree k com-
ponent of H2(g−1; (g−1, g0)∗) corresponding to the Z-grading of (g−1, g0)∗.

At about the same time Goncharov got his result, physicists trying to write
down various supergravity equations (for standard or “exotic” N -SUGRAs,
see [WB], [MaG], [GIOS], [HH]) bumped into the same problem (0.1) with
the supergroup S = SL(4|N) for N ≤ 8 and P generated by all the (analogs of
the) Chevalley generators of G but two. The corresponding coset superspace
X is a flag supervariety and the difficulties with SUGRAs spoken about, e.g.,
in [WB] (“we do not know how to define the analog of the Riemann tensor for
N > 2”, in other words: we do not know what might stand in the left-hand
sides of the SUGRA equations), were caused not by a super nature of X but
by its nonholonomic nature.

Shchepochkina introduced nonholonomic generalizations (g−, g0)∗ of Car-
tan prolongation (g−1, g0)∗ for needs of our classification of simple infinite
dimensional Lie superalgebras of vector fields ([?]). She introduced them (to-
gether with several new types of prolongation, e.g., partial prolongation) in
[Sh1], [?], [?]. These generalizations are precisely what is needed to define the
nonholonomic analog of the Weyl and Riemann tensors in the general case.

Observe that our nonholonomic invariants, though natural analogs of the
curvature and torsion tensors, do not coincide on nonholonomic manifolds with
the classical ones and bearing the same name. Indeed, on any nonholonomic
manifold, there is, by definition, a nonzero classical torsion (the Frobenius
form that to a pair of sections of the distribution assigns their bracket) while,
for example, every contact manifold is flat in our sense. To avoid confusion,
we should always add adjective “nonholonomic” for the invariants introduced
below. Since this is too long, we will briefly say N-curvature tensor and specify
its degree (=the order of the structure function) if needed; to require vanishing
of the torsion is analogous of imposing Wess-Zumino constraints [WB].

The main thing is to answer the questions (0.1). Having done this (having
given appropriate definitions in the general case of manifolds with nonholo-
nomic structure) we explicitly compute the analogs of (0.2) — the space of
nonholonomic structure functions — possible values of the nonholonomic ver-
sions of the Weyl and Riemann tensors. We do so for the simplest nonholo-
nomic flag manifolds of the form S/P with one selected Chevalley generator.
In most of our cases (g−, g0)∗ = s, the Lie algebra of S, and therefore we can
apply the BBW theorem (reproduced below; for a nice review, see [Wo]). If
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(g−, g0)∗ strictly contains s, we consider the values of cocycles in s as well as
in (g−, g0)∗.

We cite Premet’s theorems that show how to compute the N-Weyl and
N-Riemann tensors and use the theorems to get an explicit answer.

The implicit form of the answer in [Go] hides phenomena manifest if the
answer is explicit, as in [LPS], where, thanks to an explicit form of the answer
we suggested some analogs of Einstein equations (EE) for certain Grassman-
nians. For the cases we consider here, a phenomenon similar to that observed
in [LPS] is manifest, e.g., for the nodes at the base of the forks in e(6) and
o(8). We intend to consider the related analogs of EE elsewhere.

We illustrate usefulness of computer-aided study by using SuperLie to
compute the structure functions for the G(2)-structure, so popular lately, cf.
[AW, B, FG]. The package SuperLie already proved useful in many instances
(see [GL]), and is indispensable for Lie superalgebras: for practically all of
them, there exists nothing as neat as the BBW theorem ([PS1]). We also
apply SuperLie to compute the structure functions for a super version of
the G(2)-structure on the projective superspace CP 1,7 with a nonholonomic
distribution.

9.1. Structure functions of G-structures

Let Mn be a manifold over a field K. Let FM be the frame bundle over
M , i.e., the principal GL(n)-bundle. Let G ⊂ GL(n) be a Lie group. A G-
structure on M is a reduction of the principal GL(n)-bundle to the principal
G-bundle. Another formulation is more understandable: a G-structure is a
selection of transition functions from one coordinate patch to another so that
they belong to G for every intersecting pair of patches.

Thus, in the definition of G-structure the following characters partici-
pate: Mn and two vector bundles over it: TM and FM and the two groups
G ⊂ GL(n) both acting in each fiber of each bundle.

The simplest G-structure is the flat G-structure defined as follows. For a
model manifold with the flat G-structure we take V = Cn with a fixed frame.
The key moment is identification of the tangent spaces TvV at distinct points
v. This is performed by means of parallel translations along v. This means that
we consider V as a commutative Lie group and identify the tangent spaces to
it at various points with its Lie algebra, v. Thanks to commutativity:

v can be naturally identified with V itself;
it does not matter whether we use left or right translations.

(1.1)

In this way, we get a fixed frame in every TvV . The flat G-structure is the
bundle over V whose fiber over v ∈ V consists of all frames obtained from the
fixed one under the G-action. In textbooks on differential geometry (e.g., in
[St2]), the obstructions to identification of the kth infinitesimal neighborhood
of a pointm ∈M on a manifoldM with G-structure with the kth infinitesimal
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neighborhood of a point of the manifold V with the above flat G-structure
are called structure functions of order k.

To precisely describe the structure functions, set

g−1 = TmM, g0 = g = Lie(G).

Recall that, for any (finite dimensional) vector space V , we have

Hom(V,Hom(V, . . . ,Hom(V, V ) . . .)) ' Li(V, V, . . . , V ;V ),

where Li is the space of i-linear maps and we have (i+ 1)-many V ’s on both
sides. Now, we recursively define, for any i > 0:

gi = {X ∈ Hom(g−1, gi−1) | X(v1)(v2, v3, ..., vi+1) = X(v2)(v1, v3, ..., vi+1)

where v1, . . . , vi+1 ∈ g−1}.

Let the g0-module g−1 be faithful. Then, clearly,

(g−1, g0)∗ ⊂ vect(n) = der C[x1, . . . , xn]], where n = dim g−1.

It is subject to an easy verification that the Lie algebra structure on vect(n)
induces same on (g−1, g0)∗. (It is also easy to see that even if g−1 is not a
faithful g0-module (g−1, g0)∗ is a Lie algebra, but can not be embedded into
vect(g∗−1).) The Lie algebra (g−1, g0)∗ will be called the Cartan’s prolong (the
result of Cartan’s prolongation) of the pair (g−1, g0). The Cartan prolong is
the Lie algebra of symmetries of the G-structure in the space TmM .

Let Ei be the operator of the ith exterior power, V ∗ the dual of V . Set

Ck,s(g−1,g0)∗
= gk−s ⊗ Es(g∗−1).

The differential ∂s : Ck,s(g−1,g0)∗
−→ Ck,s+1

(g−1,g0)∗
is given by (as usual, the slot

with the hatted variable is to be ignored):

(∂sf)(v1, . . . , vs+1) =
∑

i

(−1)i[f(v1, . . . , v̂s+1−i, . . . , vs+1), vs+1−i]

for any v1, . . . , vs+1 ∈ g−1. As expected, ∂s∂s+1 = 0. The homology of this
bicomplex is called Spencer cohomology of the pair (g−1, g0) and denoted by

Hk,s
(g−1,g0)∗

.

9.1.1. Proposition ([St2]). The order k structure functions of the G-
structure — obstructions to identification of the kth infinitesimal neighbor-
hood of the point in a manifold with a flat G-structure with that at a given
point m ∈ M — span, for every m, the space Hk,2

(g−1,g0)∗
. These obstructions

are defined provided obstructions of lesser orders vanish.

9.1.2. Example. All structure functions of any GL(n)-structure vanish
identically, so all GL(n)-structures are locally equivalent, in particular, lo-
cally flat. Indeed: by a theorem of Serre ([St2]) H2(V ; (V, gl(V ))∗) = 0 .
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Clearly, the order of the structure functions of a given G-structure may

run 1 to N + 2 (or 1 to ∞ if N =∞), where (g−1, g0)∗ =
N
⊕

i=−1
gi.

9.1.3. Example. Let g0 = co(V ) := o(V ) ⊕ Cz be the Lie algebra of con-
formal transformations, g−1 = V , dim V = n. For n = 2, let V = V1 ⊕ V2
with basis ∂x and ∂y and let o(V ) := C(x∂x−y∂y). Then (Liouville’s theorem,
[St2])

(V, co(V ))∗ =






vect(V ∗) for n = 1,

vect(V ∗
1 )⊕ vect(V ∗

2 ) for n = 2,

V ⊕ co(V )⊕ V ∗ ' o(n+ 2) for n > 2,

(V, o(V ))∗ =

{
V for n = 1,

V ⊕ o(V ) for n ≥ 2 .

The values of the Riemann tensor on any n-dimensional Riemannian manifold
belong to H2,2

(V,o(V ))∗
whereas H1,2

(V,o(V ))∗
= 0.

The fact that H1,2
(V,o(V ))∗

= 0 (no torsion) is usually referred to as (a part

of) the Levi-Civita theorem. It implies that, in the Taylor series expansion
of the metric at some point (here η is the canonical form; x is the vector of
coordinates, so x2 is the vector of pairs of coordinates, etc.),

g(x) = η + s1x+ s2x
2 + s3x

3 + . . .

the term s1 can be eliminated by a choice of coordinates. Since there are no
structure functions of orders > 2, all the si with i ≥ 2 only depend on the
Riemann tensor.

9.1.4. Remark (cf. [Go]). LetHs
k be the degree k component ofHs(g−1; (g−1, g0)∗)

with respect to the Z-grading induced by the Z-grading of (g−1, g0)∗. Clearly,

Hk,s
(g−1,g0)∗

= Hs
k, so

⊕
k
Hk,s

(g−1,g0)∗
= Hs(g−1; (g−1, g0)∗).

This remark considerably simplifies calculations, in particular, if the Lie
algebra (g−1, g0)∗ is simple and finite dimensional, we can apply the BBW
theorem. In the nonholonomic case considered in what follows we apply the
remark to give a compact definition 3) of structure functions. We can recover
the bigrading at any moment but to work with just one grading is much
simpler.

9.2. Structure functions of nonholonomic structures

To embrace contact-like structures, we have to slightly generalize the no-
tion of Cartan prolongation: with the tangent bundle over every nonholonomic

3 Cf. with the problems encountered in the pioneer papers [T], where only d = 2 is
considered. Wagner’s tensors (for any d) look even more horrible, see [DG], [Va6].
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manifold there is naturally associated a bundle of graded nilpotent Lie alge-
bras, cf. [VG], [M2]. For example, for any odd dimensional manifolds with a
contact structure, this is a bundle of Heisenberg Lie algebras.

9.2.1. Nonholonomic manifolds ([VG, VG2]). Nonholonomic man-
ifolds. Tanaka-Shchepochkina prolongs. Let Mn be an n-dimensional
manifold with a nonintegrable distribution D. Let

D = D−1 ⊂ D−2 ⊂ D−3 · · · ⊂ D−d

be the sequence of strict inclusions, where the fiber of D−i at a point x ∈M
is

D−i+1(x) + [D−1,D−i+1](x)

(here [D−1,D−i−1] = Span ([X,Y ] | X ∈ Γ (D−1), Y ∈ Γ (D−i−1))) and d is
the least number such that

D−d(x) + [D−1,D−d](x) = D−d(x).

In case D−d = TM the distribution is called completely nonholonomic. The
number d = d(M) is called the nonholonomicity degree. A manifold M with a
distribution D on it will be referred to as nonholonomic one if d(M) 6= 1. Let

ni(x) = dimD−i(x); n0(x) = 0; nd(x) = n− nd−1. (9.1)

The distribution D is said to be regular if all the dimensions ni are con-
stants onM . We will only consider regular, completely nonholonomic distribu-
tions, and, moreover, satisfying certain transitivity condition (9.2) introduced
below.

To the tangent bundle over a nonholonomic manifold (M,D) we assign
a bundle of Z-graded nilpotent Lie algebras as follows. Fix a point pt ∈ M .
The usual adic filtration by powers of the maximal ideal m := mpt consisting
of functions that vanish at pt should be modified because distinct coordi-
nates may have distinct “degrees”. The distribution D induces the following
filtration in m:

mk = {f ∈ m | Xa1
1 . . . Xan

n (f) = 0 for any X1, . . . , Xn1 ∈ Γ (D−1),

Xn1+1, . . . , Xn2 ∈ Γ (D−2),. . . , Xnd−1+1, . . . , Xn ∈ Γ (D−d)

such that
∑

1≤i≤d

i
∑

ni−1<j≤ni

aj ≤ k},
(2.2)

where Γ (D−j) is the space of germs at pt of sections of the bundle D−j . Now,
to a filtration

D = D−1 ⊂ D−2 ⊂ D−3 · · · ⊂ D−d = TM,

we assign the associated graded bundle
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gr(TM) = ⊕ grD−i, where grD−i = D−i/D−i+1

and the bracket of sections of gr(TM) is, by definition, the one induced by
bracketing vector fields, the sections of TM . We assume a “transitivity con-
dition”: The Lie algebras

gr(TM)|pt (9.2)

induced at each point pt ∈M are isomorphic.
The grading of the coordinates determines a nonstandard grading of

vect(n) (recall (9.1)):

deg x1 = . . . = deg xn1 = 1,

deg xn1+1 = . . . = deg xn2 = 2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

deg xn−nd−1+1 = . . . = deg xn = d.

(9.3)

Denote by v = ⊕
i≥−d

vi the algebra vect(n) with the grading (2.4). One

can show that the “complete prolong” of g− to be defined shortly, i.e.,
(g−)∗ := (g−, g̃0)∗ ⊂ v, where g̃0 := der0g−, preserves D.

For nonholonomic manifolds, an analog of the group G from the term “G-
structure”, or rather of its Lie algebra, g = Lie(G), is the pair (g−, g0), where
g0 is a subalgebra of the Z-grading preserving Lie algebra of derivations of g−,
i.e., g0 ⊂ der0 g−. If g0 is not explicitly indicated, we assume that g0 = der0 g−,
i.e., is the largest possible.

Given a pair (g−, g0) as above, define its Tanaka-Shchepochkina prolong to
be the maximal subalgebra (g−, g0)∗ = ⊕

k≥−d
gk of v with given non-positive

part (g−, g0). For an explicit construction of the components, see [?], [Y],
[Shch] and below.

Natural bases in TmM : the Di’s and the Qi’s ([Shch]). Vershik and
Gershkovich showed [VG] that every nonholonomic structure D on M deter-
mines a structure of Z-graded nilpotent Lie algebra in gr(TM). We will only
consider manifolds with a transitive action of the diffeomorphism group ofM ,
i.e., the manifolds for which these Lie algebras are isomorphic.

A natural basis in every tangent space TmM to any manifold M is given
by partial derivatives. If M is endowed with a nonholonomic structure, then
there are two types of natural bases in gr TmM . In physics literature on su-
persymmetry and supergravity, the elements of these two bases that generate
the Lie algebra gr TmM are denoted the Di’s and the Qi’s, respectively.

Let us consider the simplest example. Let dimM = 2n + 1 and
let the nonholonomic structure on M be given by the contact form
α = dt −∑ (pidqi − qidpi). The vector fields that belong to the distribu-
tion D are the fields
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X = f∂t +
∑

(gi∂qi + hi∂pi) such that α(X) = f −
∑

(pigi + qihi) = 0.

(2.5)
In particular, we see that neither ∂qi nor ∂pi belongs to D, but rather

Dpi = ∂qi + pi∂t and Dqi = ∂pi − qi∂t.

These Dpi and Dqi are examples of the D-type basis vectors. They, and their
brackets, span the space of sections of gr(TM) at any given point m. By
abuse of speech, we say that the D-vectors span TmM , and same applies to
Q-vectors defined below.

Now, the Lie algebra that preserves D consists of vector fields X such
that (here LX is the Lie derivative along X)

LX(α) = 0. (2.6)

The corresponding vector fields in our particular case of the contact distribu-
tion are contact vector fields Kf generated by f ∈ C[t, p, q]:

Kf = (2− E)(f)
∂

∂t
−Hf +

∂f

∂t
E, (2.7)

where E =
∑
i

yi
∂

∂yi
(here the yi are all the coordinates except t) is the Euler

operator, and Hf is the Hamiltonian field with Hamiltonian f that preserves
dα:

Hf =
∑

i≤n

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

)
.

(As is easy to see,

LKf (α) = 2
∂f

∂t
α, (2.8)

where LX is the Lie derivative along X .) The basis of the tangent space is
spanned by

Kpi = ∂qi − pi∂t and Kqi = ∂pi + qi∂t

and their brackets. These Kpi and Kqi are examples of the Q-type basis vec-
tors.

How to interpret the D-type and the Q-type vectors? Let

n = ⊕
−d≤i≤−1

ni

be a nilpotent Lie algebra generated by n−1. Let B = {b1, . . . , bn} be a graded
basis of n (the basis is said to be graded if its first n1 := dim n−1 elements
span g−1, the next n2 := dim n−2 elements span n−2, and so on). Let N be
the connected and simply connected Lie group with the Lie algebra n. On N ,
consider the two systems of vector fields: the left-invariant fields Di and the
right-invariant fields Qi such that (e is the unit of N)
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Di(e) = Qi(e) = bi for all i = 1, . . . , n.

NB: Here we deviate from the conventions of physical papers where the sym-
bols Di and Qi are only applied to the generators of n, i.e., to the first n1

elements.
Let g− be a realization of n by left-invariant vector fields, so the vectors

Di(e) span g−. Let θ
i be right-invariant 1-forms on N such that

θi(Qj) = δij .

Now, any vector field X on N is of the form

X =

n∑

i=1

θi(X)Qi. (2.9)

Since each Di commutes with each Qj (if n is a Lie superalgebra, they su-
percommute), it follows that

θi([Dj , X ]) = Dj(θ
i(X)).

Now, let us determine a right-invariant distribution D on N such that
D|e = n−1. Clearly, D is singled out in TN by eqs. for X ∈ vect(n)

θn1+1(X) = 0, . . . , θn(X) = 0.

Since each Di commutes with each Qj , the algebra g− preserves D. The
coordinates (2.4) on N described above determine two embeddings of n into
vect(n): one is spanned by the Di and the other one by the Qi.

Denote by g = ⊕
i≥−d

gi the algebra vect(n) with the grading (9.3). Then

g− = ⊕
i<0

gi preserves D. We will show later that the “complete prolongation”

of g−, i.e., (g−)∗ := (g−, g̃0)∗, where g̃0 := der0g−, also preserves D.
Thus we see that, with every nonholonomic manifold (M,D), a natural G-

structure is associated, its Lie algebra is Lie(G) = der0 g−. But the structure
functions of this G-structure do not reflect the nonholonomic nature of M .

Indeed, recall an example from [St2]. LetW1 ⊂W be a subspace of dimen-
sion k and G ⊂ GL(W ) the parabolic subgroup that preserves the subspace.
Then to determine a G-structure on M , where dimM = dimW , is the same
as to determine a differential k-system or a k-dimensional distribution. A fixed
frame f in TmM determines an isomorphism f : W −→ TmM . Given a G-
structure on M , we set D(m) = f(W1). Since G preserves W1, the subspace
D(m) indeed depends only on m, not on f .

The other way round, given a distribution D, consider the frames f such
that f−1(D(m)) = W1. They form a G-structure. The flat G-structures cor-
respond to integrable distributions.

To take the nonholonomic nature of M into account, we need something
new — an analog of the above Proposition 1.1 for the case where the nat-
ural basis of the tangent space consists not of partial derivatives but rather
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of covariant derivatives corresponding to the connection determined by the
same Pfaff equations that determine the distribution, and therefore instead of
TmM = g−1 we have (gr(TM))m = g−. To be able to formulate such Propo-
sition, we have to define (1) the simplest nonholonomic structure — the “flat”

one,
(2) the analog of g0 when g−1 is replaced by g− and only distribution is

given,
(3) what is the analog of (g−1, g0)∗,

(4) what is the analog of Hk,2
(g−1,g0)∗

.

Here are the answers:
1) Let D be a nonholonomic distribution in M , let F be the flag which D

determines at a point m ∈ M . Let N := Kn with a fixed flag F and a fixed
frame f . Having identified TnN with N by means of the translation by n
considered as an element of the nilpotent Lie group N whose Lie algebra is g−
(since the group N is not commutative now, we select, say, left translations)
we fix a frame and a flag — the images of f and F — in each TnN . A
flat nonholonomic structure on N is the pair of bundles (the frame bundle,
the distribution D); the fibers of both bundles over n are obtained from the
fixed frame and flag, respectively, by means of the G-action, where G is the
(connected and simply connected) Lie group whose Lie algebra g0 is defined
at the next step.

2) If only a distribution D is given, we set g0 := der0g−; it is often interest-
ing to consider an additional structure on the distribution, say Riemannian,
cf. [VG2], as in the case of Carnot-Carathéodory metric in which case g0 is a
subalgebra of der0g−, e.g., der0g− ∩ o(g−1).

3) Given a pair (g−, g0) as above, define its kth Tanaka-Shchepochkina
prolong (given simultaneously, although [Sh1] was published later than [T];
[Sh1] also embraces Lie superalgebras and various partial prolongs, see [?]) for
k > 0 to be:

gk = (i(S
.
(g∗−)⊗ g0) ∩ j(S.(g∗−)⊗ g−))k, (2.10)

where the subscript singles out the component of degree k, where S
.
= ⊕Si

and Si denotes the operator of the ith symmetric power, and where

i : Sk+1(g∗−1)⊗ g−1 −→ Sk(g∗−1)⊗ g∗−1 ⊗ g−1,

j : Sk(g∗−1)⊗ g0 −→ Sk(g∗−1)⊗ g∗−1 ⊗ g−1

are natural embeddings.
Similarly to the case where g− is commutative, define (g−, g0)∗ to be
⊕

k≥−d
gk with gk for k > 0 given by (2.10); then, as is easy to verify, (g−, g0)∗

is a Lie algebra.
4) Arguments similar to those of [St2] should show that H2(g−; (g−, g0)∗)

is the space of values of all nonholonomic structure functions — obstructions
to the identification of the infinitesimal neighborhood of a point m of the
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manifold M with a nonholonomic structure (given by g− and g0) with the
infinitesimal neighborhood of a point of a flat nonholonomic manifold with
the same g− and g0. We intend to give a detailed proof of this statement
elsewhere.

The space H2(g−; (g−, g0)∗) naturally splits into homogeneous compo-
nents whose degrees will be called the orders of the structure functions; the
orders run 2 − d to N + 2d (or to ∞ if N = ∞). As in the case of a com-
mutative g− = g−1, the structure functions of order k can be interpreted
as obstructions to flatness of the nonholonomic manifold with the (g−, g0)-
structure provided the obstructions of lesser orders vanish. Observe that, for
nonholonomic manifolds, the order of structure functions is no more in direct
relation with the orders of the infinitesimal neighborhoods of the points we
wish to identify: distinct partial derivatives bear different “degrees”.

Different filtered algebras L with the same graded g− are governed pre-
cisely by the coboundaries responsible for filtered deformations of g−, and all
of them vanish in cohomology, so the above nonholonomic structure functions
are well-defined.

9.3. The Riemann and Weyl tensors. Projective
structures

The conformal case. For the classical domains X = S/P that Goncharov
considered, the structure functions are generalizations of the Weyl tensor —
the conformally invariant part of the Riemann tensor (the case S = O(n+ 2)
and G = CO(n)). In most of these cases

(g−1, g0)∗ = s (:= Lie(S)) (3.1)

and the description of the structure functions is a particular case of the BBW
theorem. In particular, if (3.1) holds, the spaceH2(g−1; (g−1, g0)∗), considered
as a g0-module, has the same number of irreducible components and the same
dimension as E2(g−1); only weights differ.

The generalized Riemannian case. When we reduce g0, by retaining its
semi-simple part ĝ0 and deleting the center, we can not directly apply the
BBW theorem because (g−1, ĝ0)∗ = g−1 ⊕ ĝ0 is not simple but we can reduce
the problem to the conformal case, since, as is known,

H2(g−1; (g−1, ĝ0)∗) = H2(g−1; s)⊕ S2(g∗−1). (3.2)

For the nonholonomic case, a similar reduction is given by Premet’s the-
orem (below). Its general case, though sufficiently neat, is not as simple as
(3.2). However, although the following analog of (3.2) is not always true

H2(g−; (g−, ĝ0)∗) = H2(g−; s)⊕ S2(g∗−1), (3.3)

it is still true in many cases of interest: for the “contact grading”.
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The projective case. Theorems of Serre and Yamaguchi. When (3.1)
fails, s is a proper subalgebra of (g−1, g0)∗. It is of interest therefore

(a) to list all the cases where, having started from a simple Lie (su-
per)algebra s = ⊕

i≥−d
si, we have the following analog of (3.1)

(s−, s0)∗ = s (3.4)

and
(b) find out what is the “complete prolongation” of s−, i.e., what is

(s−)∗ := (s−, s̃0)∗, where s̃0 := der0s−.
For the simple finite dimensional Lie algebras s, Yamaguchi [Y] gives the

answer. It is rather interesting and we reproduce it. The answer for simple Lie
superalgebras is obtained by Shchepochkina (unpublished). Comment: one
would expect that s̃0 strictly contains s0, and hence (s−)∗ should strictly
contain s; instead they are equal (in particular, s̃0 = s0).

Theorem ([Y]). Equality (s−)∗ = s holds almost always. The exceptions are
1) s with the grading of depth d = 1 (in which case (s−)∗ = vect(s∗−));
2) s with the grading of depth d = 2 and dim s−2 = 1, i.e., with the

“contact” grading, in which case (s−)∗ = k(s∗−) (these cases correspond to
exclusion of the nodes on the Dynkin graph connected with the node for the
maximal root on the extended graph);

3) s is either sl(n+1) or sp(2n) with the grading determined by “selecting”
the first and the ith of simple coroots, where 1 < i < n for sl(n+1) and i = n
for sp(2n). (Observe that, in this case, d = 2 with dim s−2 > 1 for sl(n + 1)
and d = 3 for sp(2n).)

Moreover, (s−, s0)∗ = s is true almost always. The cases where this fails
(the ones where a projective action is possible) are sl(n + 1) or sp(2n) with
the grading determined by “selecting” only one (the first) simple coroot.

Case 1) of Yamaguchi’s theorem: for the conformal (Weyl) case, see [Go];
for the Riemannian case, see [LPS] .

For the classical domains X = S/P , (3.1) fails only for S = SL(n+1) and
X = CPn; in this case g0 = gl(n) and (g−1, g0)∗ = vect(n), the Lie algebra
of vector fields in n indeterminates. The space of “total” structure functions
H2(g−1; vect(n)) differs from H2(g−1; s), the latter structure functions corre-
spond to obstructions to the projective structure. For many facets of projective
structures, see [OT] and [BR].

The Riemannian version of this projective case, corresponds to ĝ0 = sl(n)
and (g−1, ĝ0)∗ = svect(n), the Lie algebra of divergence free vector fields.

The cases of “complete prolongation” (s−1)∗ = vect(s∗−1) and their “Rie-
mannian version” (s−1)∗ = svect(s∗−1), as well as (s−1)∗ = h(s∗−1), were con-
sidered by Serre long ago, see [St2], and the answer is as follows:

Theorem (Serre, see [St2]; for super version, see [LPS] and [GLS3]).
1) H2(s−1; vect(n)) = 0 and H2(s−1; svect(n)) = 0.
2) H2(s−1; h(2n)) = E3(s∗−1).
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Case 2) of Yamaguchi’s theorem is taken care of by one of Premet’s theo-
rems and formula (3.5) below.

Case 3) of Yamaguchi’s theorem: see [GL].
In what follows, for manifolds X = S/P with nonholonomic structure, we

say “N-Weyl” or “N-conformal”, for tensors corresponding to cohomology of
g− with coefficients in (g−, g0)∗, “N-Riemannian” for nonholonomic structure
functions (g−, ĝ0)∗, where ĝ0 is the semi-simple part of g0, and “N-projective”
for the coefficients in s = Lie(S) whenever s is smaller than (g−, g0)∗, for
example, for partial Cartan prolongs, see [?].

The simplest examples (exclusion of the first simple coroot of
sp(2n + 2)). Let g− = hei(2n), the Heisenberg Lie algebra. Then
g0 = csp(2n) (i.e., sp(2n) ⊕ Cz) and (g−, g0)∗ is the Lie algebra k(2n + 1)
of contact vector fields.

So far, there is no analog of Serre’s theorem on involutivity for simple Z-
graded Lie algebras of depth > 1, cf. [LPS], and examples from [GLS3] show
that if exists, the theorem is much more involved.

The fact that
H2(hei(2n); k(2n+ 1)) = 0 (3.5)

explains why the Pfaff equation α(X) = 0 for X ∈ vect(2n + 1) can be
reduced to a canonical form, cf. [Z]. This fact is an easy corollary of a
statement on cohomology of coinduced modules [FF2]. For the N-Riemannian
tensor in this case, we have: ĝ0 = sp(2n) and (g−, ĝ0)∗ is the Poisson Lie alge-

bra po(2n). The Poisson Lie algebra is spanned by fields Kf , where
∂f

∂t
= 0.

Now, from (3.5) and the short exact sequence

0 −→ po(2n) −→ k(2n+ 1)
∂
∂t

:Kf 7→
∂f

∂t−→ C[t, p, q] −→ 0

we easily deduce (using the corresponding long exact sequence, see [FF2]) that

H2(hei(2n); po(2n)) = 0.

In our terms, this fact (usually called Darboux’s theorem and proved by ana-
lytic means [Z]) is an explanation why the contact form α can be reduced
to a canonical form not only at any point but locally.

Other examples. For numerous examples of N-projective structures in var-
ious instances, see [C1]–[C5] and [YY], and (in super setting) [MaG]. Armed
with SuperLie, one can now easily perform the computations of relevant
Lie algebra cohomology. Premet’s theorems tell what to compute in the N-
Riemannian case and again with SuperLie this will be easy: we just give a
few samples (one selected simple coroot for every s and two selected coroots
for the two series of one of Yamaguchi’s cases).
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9.4. Premet’s Theorems (from Premet’s letter to DL,
10/17/1990)

In 1990, D.L. asked Alexander Premet: how to reduce computations of the
space of values for a nonholonomic Riemann tensors to that for the nonholo-
nomic Weyl tensor, as in (3.2)? Namely, is (3.3) always true?

Premet wrote two letters with a general answer. One letter is repro-
duced practically without changes below (D.L. is responsible for any mistakes
left/inserted); it shows how to reduce the problem to computing (the 1st)
cohomology of g− with coefficients in a certain g−-module which is not a g-
module. Little was known about such cohomology except theorems of Kostant
(on H1) and of Leger and Luks (on H2) both for the case where g− is the
maximal nilpotent subalgebra. Premet’s second letter (reproduced in [LLS])
contained a mighty generalization of these theorems for Hi for any i and any
g−.

However, in nonholonomic cases, to derive an explicit answer from the
BWB theorem is difficult “by hands”, the extra terms in the Riemannian
case (see sec. 4.4 below) add extra job. So Premet’s theorems were put aside
for 13 years. Now that a package SuperLie ([Gr]), originally designed for
the purposes of supergravity, is sufficiently developed, we are able to give
an explicit answer: see the next section. The cases we consider here (of the
maximal parabolic subalgebras) required several minutes to compute. (But
much longer to document the results, and it will require a while to interpret
them, say as in [LPS].) To our regret, Premet looks at his theorems as a
mere technical exercise (“a simple job for Kostant”) not interesting enough
to co-author the paper.

9.4.1. Terminological conventions. Let g be a simple (finite dimensional)
Lie algebra. Let Lλ denote the irreducible (finite dimensional) g-module with
the highest weight λ; let Eµ be the subspace the module E of weight µ.

Let R be the root system of g and B the base (system of simple roots).
Let W = W (R) be the Weyl group of g and l(w) the length of the element
w ∈ W ; let Wi be the subset of elements of length i. Let RI ⊂ R and let BI
be the base of RI . Set (this is a definition of k(i) as well)

W (I)i = {wi,1, . . . , wi,k(i) ∈ Wi | w−1
i,j (B \BI) > 0 for all 1 ≤ j ≤ k(i)}.

(4.1)
Let the Dynkin graph of B be, for example, as follows:

• • ◦ • • • ◦ ◦ ◦ • • ◦ • • • ◦ • • ◦ ◦

and let BI consist of roots corresponding to the black nodes. Let us represent
BI as the union of connected subgraphs:

BI = B
(1)
I

∐
. . .
∐

B
(s)
I ,
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where s (in our example s = 5) is the number of connected components of

the Dynkin graph DI of BI and where B
(i)
I corresponds to the ith connected

components of DI (counted from left to right). Set

c = card B, ci = card {α ∈ B \BI | (α,B(i)
I ) 6= 0} − 1.

Clearly, if BI 6= B, then ci ∈ {0, 1, 2}. For example, for the graph of o(20)
depicted above, we have:

c = 20, c1 = 0, c2 = 1, c3 = 1, c4 = 1, c5 = 2.

The following statement is obvious.

Statement. 1) ci = 2 if and only if R is of type Dn, E6, E7, E8, one of the

endpoints of D
(i)
I is a branching point for D, and the remaining endpoint of

D
(i)
I is not an endpoint of D.

2) ci = 0 if and only if all but one of the end vertices of the graph of B
(i)
I

are the end vertices for the graph of R.

9.4.2. The Bott-Borel-Weil theorem. Let rk g = r > 1, I ⊂ {1, . . . , r};
let p = pI be a parabolic subalgebra generated by the Chevalley generators
X±
i of g except the X+

i , where i ∈ I. As is known, p = g− ⊕ l, where l is the
Levi (semi-simple) subalgebra generated by all the X±

i , where i 6∈ I. Clearly,
l = l(1)⊕ z, where l(1) is the derived algebra of l, and z = z(l) is the center of l.

So, in terms of §3, g0 = l, ĝ0 = l(1).

Theorem (The BBW Theorem, see [BGG]). Let E = Lλ be an irreducible
(finite dimensional) g-module with highest weight λ. Then Hi(g−;E) is the
direct sum of l-modules with the lowest weights −wi,j(λ + ρ) + ρ, where
wi,j ∈W (I)i, see (4.1); each such module enters with multiplicity 1.

The BBW theorem describes (for i = 2) nonholonomic analogs of Weyl
tensors. Theorem 4.4 describes nonholonomic analogs of the Riemann tensors.

9.4.3. Theorem. H2(g−; g− ⊕ l(1)) = H2(g−; g)⊕H1(g−; (g− ⊕ z)∗).

Corollary. Let B1 = B \BI ; let R1 be the root system generated by B1 and

gab− = (g−/g
(1)
− )∗ = H1(g−).

1) The following sequence is exact:

0 −→ gab− −→ z∗ ⊗ gab− −→ H1(g−; g/(g− ⊕ l(1))) −→ H1(g−; g
∗
−) −→

H2(g−)⊕ ⊕
w∈W (R1)(2)

Lρ−w(ρ) −→ 0.

2) If dim z = 1, then the sequence

0 −→ H1(g−; (g− ⊕ z)∗) −→ H1(g−; g
∗
−) −→ H2(g−) −→ 0
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is exact. In particular, if g− is a Heisenberg algebra (the case of contact grad-
ing), then

H2(g−; g− ⊕ l(1)) ' H2(g−; g)⊕ S2(g−/z(g−))
∗ = H2(g−; g)⊕ S2(g∗−1).

3) if g− = g−1 (is abelian), then

H2(g−; g− ⊕ l(1)) ' H2(g−; g)⊕ S2(g∗−) = H2(g−; g)⊕ S2(g∗−1).

9.4.4. The number of g0-modules. The following Theorem helps to verify
the result. Let IR be the number of irreducible components in the g0-module
H2(g−; (g−, g0)∗).

Theorem. IR =
1

2
c(c+ 1) +

∑
ci.

Chapter 10

Lie superalgebras of supermatrices of complex
size (P. Grozman, D. Leites)

Summary. We distinguish a class of simple filtered Lie algebras (Uλ(g))L of polyno-
mial growth with increasing filtration and whose associated graded Lie algebras are
not simple. We describe presentations of such algebras. The Lie algebras (Uλ(g))L,
where λ runs over the projective space of dimension equal to the rank of g, are quan-
tizations of the Lie algebras of functions on the orbits of the coadjoint representation
of g.

The Lie algebra gl(λ) of matrices of complex size is the simplest example; it is
(Uλ(sl(2)))L. The dynamical systems associated with it in the space of pseudodif-
ferential operators in the same way as the KdV hierarchy is associated with sl(n)
are those studied by Gelfand–Dickey and Khesin–Malikov. For g 6= sl(2) we get gen-
eralizations of gl(λ) and the corresponding dynamical systems, in particular, their
superized versions. The algebras (Uλ(sl(2)))L possess a trace and an invariant sym-
metric bilinear form, hence, with these Lie algebras associated are analogs of the
Yang-Baxter equation, KdV, etc.

Our presentation of (Uλ(s))L for a simple s is related to presentation of s in
terms of a certain pair of generators. For s = sl(n) there are just 9 such relations.

This chapter reproduces (main points of) [GL2].

10.0. Introduction

10.0.0. History. About 1966, V. Kac and B. Weisfeiler began the study
of simple filtered Lie algebras of polynomial growth. Kac first considered the
Z-graded Lie algebras associated with the filtered ones and classified simple
graded Lie algebras of polynomial growth under a technical assumption and
conjectured the inessential nature of the assumption. It took more than 20
years to get rid of the assumption: see very complicated papers by O. Math-
ieu, cf. [K3] and references therein. For a similar list of simple Z-graded Lie
superalgebras of polynomial growth see [KS], [?] (for summary, see Chapter
2).
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The Lie algebras Kac distinguished (or rather the algebras of derivations
of their nontrivial central extensions, the Kac–Moody algebras) proved very
interesting in applications. These algebras aroused such interest that the study
of filtered algebras was arrested for two decades. Little by little, however, the
simplest representative of the new class of simple filtered Lie superalgebras
(of polynomial growth), namely, the Lie algebra gl(λ) of matrices of complex
size, and its projectivization, i.e., the quotient modulo the constants, pgl(λ),
drew its share of attention [F], [KM], [KR].

While we were typing [GL2], Shoikhet [Sho] published a description of
representations of gl(λ); we are thankful to M. Vasiliev who informed us of
possible applications of generalizations of gl(λ) in physics, see [BWV], [KV].

The paper [GL2] began a systematic study of a new class of Lie algebras:
simple filtered Lie algebras of polynomial growth (SFLAPG) for which the
graded Lie algebras associated with the filtration considered are not sim-
ple; sl(λ) is our first example. Actually, an example of a Lie algebra of
class SFLAPG was known even before the notion of Lie algebras was in-
troduced. Indeed, the only deformation (physicists call it quantization) Q
of the Poisson Lie algebra po(2n) sends po(2n) into diff(n), the Lie alge-
bra of differential operators with polynomial coefficients; the restriction of
Q to h(2n) = po(2n)/center, the Lie algebra of Hamiltonian vector fields,
sends h(2n) to the projectivization pdiff(n) = diff(n)/C · 1 of diff(n). The
Lie algebra pdiff(n) escaped Kac’s classification, though it is the deform of
an algebra from his list, because its intrinsically natural filtration given by
deg qi = − deg ∂qi = 1 is not of polynomial growth (the homogeneous compo-
nents are of infinite dimension) while the graded Lie algebra associated with
the filtration of polynomial growth (given by deg qi = deg ∂qi = 1) is not
simple.

Observe that from the point of view of dynamical systems the Lie algebra
diff(n) is not very interesting: it does not possesses a non-degenerate bilinear
symmetric form; we will consider its subalgebras that do.

In what follows we will usually denote the associative (super)algebras by
Latin letters; the Lie (super)algebras associated with them by Gothic letters;
e.g., gl(n) = Mat(n)L, diff(n) = Diff(n)L, where the functor L replaces the
dot product by the bracket.

10.0.1. The construction. Problems related. Each of our Lie algebras
(and Lie superalgebras) (Uλ(g))L is realized as a quotient of the Lie algebra
of global sections of the sheaf of twisted D-modules on the flag variety, cf.
[Ka], [Di]. The general construction consists of the preparatory step 0), the
main steps 1) and 2) and two extra steps 3) and 4).

We distinguish two cases: A) dim g <∞ and g possesses a Cartan matrix
and B) g is a simple vectorial Lie (super)algebra.

Let g = g− ⊕ h ⊕ g+, where g+ = ⊕
α>0

gα and g− = ⊕
α<0

gα, be one of the

simple Z-graded Lie algebras of polynomial growth, either finite dimensional
or of vector fields, represented as the sum of its maximal torus (usually iden-
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tical with the Cartan subalgebra) h and the root subspaces gα corresponding
to an order in the set R of roots.

Observe that each order ofR is in one-to-one correspondence with a system
of simple roots. For the finite dimensional Lie algebras g all systems of simple
roots are equivalent, the equivalence is established by the Weyl group. For Lie
superalgebras and infinite dimensional Lie algebras of vector fields there are
inequivalent systems of simple roots; nevertheless, there is an analog of the
Weyl group and the passage from system to system is described in [PS].

For vectorial Lie algebras and Lie superalgebras, even the dimension of the
superspaces X = (g−)

∗ associated with systems of simple roots can vary. It
is not clear if only essential (see [PS]) systems of simple roots are essential in
the construction of Verma modules (roughly speaking, each Verma module is
isomorphic to the space of functions on X) in which we will realize (Uλ(g))L,
but hopefully not all.

Step 0): From g to g̃. From representation theory it is clear that there ex-
ists a realization of the elements of g by differential operators of degree ≤ 1
on the space X = (g−)

∗. The realization has rank g parameters (coordinates
λ = (λ1, . . . , λn) ∈ h∗ of the highest weight of the g-module Mλ). For the
algorithms of construction and its execution in some cases see Chapter 7 (as
well as [BMP], [Bur], [BGLS]).

Let g̃ be the image of g with respect to this realization. Let

S̃
.
(g̃) be the associative algebra generated by g̃. (10.1)

Clearly, S̃
.
(g̃) ⊂ diff(g−). Set

Uλ(g) = S̃
.
(g̃)/J(λ), where J(λ) is the maximal ideal.

Observe that J(λ) = 0 for λ generic.
Roughly speaking, Uλ(g) is “Mat ”(Lλ), where Lλ is the quotient of Mλ

modulo the maximal submodule I(λ) (it can be determined and described
with the help of the Shapovalov form, see [K3]) and S̃

.
(g̃) is the subalgebra

generated by g̃ in the symmetric algebra of g̃modulo the relations between
differential operators. Clearly,

S̃
.
(g̃) is smaller than S

.
(g) (10.2)

due to the relations between the differential operators that span g̃.
To explicitly describe the generators of J(λ) is a main technical problem.

We solve it here for rk g = 1. The case of algebras of rk > 1 is an open problem.
Step 1) From Uλ(g) to (Uλ(g))L. Recall that (Uλ(g))L is the Lie algebra

whose space is the same as that of Uλ(g) and the bracket is the commutator.
Step 2) The Montgomery functor. S. Montgomery suggested [M1] a con-

struction of simple Lie superalgebras:

Mo: a central simple Z-graded algebra 7→ a simple Lie superalgebra. (Mo)
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Observe that the associative algebras Uλ(g) constructed from simple Lie alge-
bras g are central simple. To consider Montgomery superalgebras Mo(Uλ(g))
and compare them with the Lie superalgebras (Us(λ))L constructed from Lie
superalgebras s is an open problem. The Montgomery functor can produce
new Lie superalgebras, e.g., if g is equal to f(4) or e(i), though not always:

Mo(Uλ(sl(2))) ∼= (Uλ(osp(1|2)))L.

Step 3) Twisted versions. An outer automorphism a of G = (Uλ(g))L or
Mo(Uλ(g)) might single out a new simple Lie subsuperalgebra a0(G), the set
of fixed points of G under a.

For example, the intersection of (Usl(2)(λ))L with the set of anti-adjoint
differential operators is a new Lie algebra o/sp(λ) while the intersection of
Mo(Usl(2)(λ)) = (Uosp(1|2)(λ))L with the set of superanti-adjoint operators is
the Lie superalgebra osp(λ + 1|λ). For the description of the outer automor-
phisms of gl(λ) see [LSe]. In general even the definition is unclear.

Step 4) Deformations. The deformations of Lie algebras and Lie superal-
gebras obtained via steps 1) – 3) may lead to new algebras of class SFLAPG,
cf. [Gol]. A. Sergeev posed the following interesting problem:

what Lie algebras and Lie superalgebras can we get by applying the above
constructions 1) – 3) to the quantum deformation Uq(g) of U(g)?

Remark. The above procedure can be also applied to (twisted) loop algebras
g = h(k) and the stringy algebras; the result will be realized by differential op-
erators of infinitely many indeterminates; these operators remind vertex operators.
The algebra (Uλ(h

(k)))L is not of polynomial growth.

10.0.2. Another description of Uλ(g). For the finite dimensional simple
g there is an alternative description of Uλ(g) as the quotient of U(g) modulo
the ideal C(λ) generated by rank g elements Ci − ki(λ), where the Ci is the
i-th Casimir element and the ki(λ) is the (computed by Harish–Chandra and
Berezin) value of Ci on M

λ. This description of Uλ(g) goes back, perhaps, to
Kostant, cf. [Ka]. From this description it is clear that, after the shift by ρ,
the half sum of positive roots, we get

(Uσ(λ)(g)L ∼= (Uλ(g))L for any σ ∈ W (g).

A similar isomorphism holds for Mo(Uλ(g)). In particular, over R, it suffices
to consider the λ that belong to one Weyl chamber only.

For vectorial Lie algebras, the description of Uλ(g) as U(g)/C(λ) is un-
known. For example, let g = vect(n). The highest weight Verma modules are
(for the standard filtration of g) identical with Verma modules over sl(n+1),
but the center of U(vect(n)) consists of constants only. It is a research problem
to describe the generators of C(λ) in such cases.

Though the center of U(g) is completely described by A. Sergeev for all
simple finite dimensional Lie superalgebras [Ser3], the problem

describe the generators of the ideal C(λ)
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is open for Lie superalgebras g even if g is of the form g(A) (i.e., if g has
Cartan matrix A) different from osp(1|2n): for them the center of U(g) is not
noetherian and it is a priori unclear if C(λ) has infinitely or finitely many
generators.

10.0.3. Our main result. The main result is the statement of the fact that
the above constructions 1) – 4) yield a new class of simple Lie (super) algebras
of polynomial growth (some of which have nice properties).

Observe that our Lie algebras (Uλ(g))L are quantizations of the Lie alge-
bras considered in [DGS1] which are also of class SFLAPG and are contrac-
tions of our algebras. Indeed, Donin, Gurevich and Shnider consider the Lie
algebras of functions on the orbits of the coajoint representation of g with
respect to the Poisson bracket. These DGS Lie algebras are naturally realized
as the quotients of the polynomial algebra modulo an inhomogeneous ideal
that singles out the orbit; we realize the result of quantization of DGS Lie
algebras (i.e., their deforms) by differential operators. Observe that while the
polynomial Poisson Lie algebra has only one class of nontrivial deformations
and all the deformed algebras are isomorphic, cf. [?], the dimension of the
space of parameters of deformations of the DGS Lie algebras is equal to the
rank of g and all of the deforms are pairwise non-isomorphic, generally.

In this Chapter we consider the simplest case of the superization of this
construction: we replace g = sl(2) by osp(1|2). To perform this construction
explicitly for alis an open problem. The next open problem is to describe the
structure of the algebras (Uλ(g))L (real forms, automorphisms, root systems).

An application: The Khesin–Malikov construction [KM] can be applied
almost literally to the Lie (super)algebras (Uλ(g))L such that g admits a
(super)principal embedding, see, e.g., [GL2].

10.0.4. The defining relations. The notion of defining relations is clear for
a nilpotent Lie algebra. This is one of the reasons why the most conventional
way to present a simple Lie algebra g is to split it into the direct sum of
a (commutative) Cartan subalgebra and 2 maximal nilpotent subalgebras g±
(positive and negative). There are about (2·rk g)2 relations between the 2·rk g
generators of g±. The generators of g+ together with the generators of g−
generate g as well. In g, there are about (3 · rk g)2 relations between these
generators; the relations additional to those in g+ or g−, i.e., between the
positive and the negative generators, are easy to grasp. Though numerous,
these relations (called for g± Serre relations) are neat and this is another
reason for their popularity. These relations are good to deal with not only for
humans but for computers as well, cf. sec. 7.3.

Nevertheless, it so happens that the Chevalley-type generators and, there-
fore, the Serre relations are not always available. Besides, as we will see, there
are problems in which other generators and relations naturally appear, cf.
[GL2, Sa].

Though not so transparent as for nilpotent algebras, the notion of gen-
erators and relations makes sense in the general case. For instance, with the
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principal embeddings of sl(2) into g one can associate only two elements
that generate g; we call them Jacobson’s generators, see [GL21]. We explicitly
describe the associated with the principal embeddings of sl(2) presentations
of simple Lie algebras, finite dimensional and certain infinite dimensional;
namely, the Lie algebra “of matrices of complex size” realized as a subalge-
bra of the Lie algebra diff(1) of differential operators in 1 indeterminate or of
gl+(∞), see §2.

The relations obtained are rather simple, especially for non-exceptional
algebras. In contradistinction with the conventional presentation there are
just 9 relations between Jacobson’s generators for sl(λ) series (actually, 8 if
λ ∈ C \ Z) and not many more for the other algebras.

It is convenient to present sl(λ) as the Lie algebra generated by two dif-
ferential operators:

X+ = u2
d

du
− (λ− 1)u and Zsl =

d2

du2
;

its Lie subalgebra o/sp(λ) of anti-adjoint operators—a hybrid of Lie algebras
of series o and sp (do not confuse with the Lie superalgebra of osp type!)—
is generated by

X+ = u2
d

du
− (λ− 1)u and Zo/sp =

d3

du3
;

to make relations simpler, we always add the third generator X− = − d

du
.

For integer λ, each of these algebras has an ideal of finite codimension and
the quotient modulo the ideal is the conventional sl(n) (for λ = n and gl(λ))
and either o(2n+1) (for λ = 2n+1) or sp(2n) (for λ = 2n), respectively , for
o/sp(λ).

In this Chapter we also superize [GL21]: replace sl(2) by its closest relative,
osp(1|2). We denote by sl(λ|λ + 1)the Lie superalgebra generated by

∇+ = x∂θ + xθ∂x − λθ, Z = ∂x∂θ − θ∂x2, U = ∂θ − θ∂x,

where x is an even indeterminate and θ is an odd one. We define osp(λ|λ+1)
as the Lie subsuperalgebra of sl(λ|λ+1) generated by ∇+ and Z. The presen-
tations of sl(λ|λ+1) and osp(λ|λ+1) are associated with the super-principal
embeddings of osp(1|2). For λ ∈ C \ Z, these algebras are simple. For inte-
ger λ = n, each of these algebras has an ideal of finite codimension and the
quotient modulo the ideal is the conventional sl(n|n+ 1) and osp(2n+ 1|2n),
respectively.

10.0.5. Some applications. (1) Integrable systems like continuous Toda
lattice or a generalization of the Drinfeld–Sokolov construction are based on
the super-principal embeddings in the same way as the Khesin–Malikov con-
struction [KM] is based on the principal embedding, cf. [GL2].

(2) To q-quantize the Lie algebras of type sl(λ) à la Drinfeld, using only
Chevalley generators, is impossible; our generators indicate a way to do it.
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10.0.6. Related topics. We would like to draw attention of the reader to
several other classes of Lie algebras. One of the reasons is that, though some
of these classes have empty intersections with the class of Lie algebras we
consider here, they naturally spring to mind and are, perhaps, deformations
of our algebras in some, yet unknown, sense.
• Krichever–Novikov algebras, see [SH] and refs. therein. The KN-algebras

are neither graded, nor filtered (at least, wrt the degree considered usually).
Observe that so are our algebras (Uλ(g))L with respect to the degree induced
from U(g), so a search for a better grading is a tempting problem.
• Odessky or Sklyanin algebras, see [FO] and refs. therein.
• Continuum algebras, see [SV] and refs. therein. In particular cases these

algebras coincide with Kac–Moody or loop algebras, i.e., have a continuum
analog of the Cartan matrix. But to suspect that gl(λ) has a Cartan matrix is
wrong, see sec. 2.2. Nevertheless, in the simplest cases, if rk g = 1, the algebras
(Uλ(g))L and their “relatives” obtained in steps 1) – 3) (and, perhaps, 4)) of
sec 0.1 do possess Saveliev-Vershik’s nonlinear Cartan operator which replaces
the Cartan matrix.

10.1. Recapitulation: finite dimensional simple
Lie algebras

This section is a continuation of [LP], where the case of the simplest base
(system of simple roots) is considered and where non-Serre relations for simple
Lie algebras first appear, though in a different setting. This Chapter is also
the direct superization of [GL21]; we recall its results. For presentations of
Lie superalgebras with Cartan matrix via Chevalley generators, see [LSa1],
[GL1].

What are “natural” generators and relations for a simple finite dimensional
Lie algebra? The answer is important in questions when it is needed to identify
an algebra g given its generators and relations. (Examples of such problems
are connected with Estabrook–Wahlquist prolongations, Drinfeld’s quantum
algebras, symmetries of differential equations, integrable systems, etc.).

10.1.0. Defining relations. If g is nilpotent, the problem of its presenta-
tion has a natural and unambiguous solution: representatives of the homol-
ogy H1(g) ∼= g/[g, g] are the generators of g and the elements from H2(g)
correspond to non-trivial relations. (We will return to this in the study of
presentations of simple modular Lie (super)algebras.)

On the other hand, if g is simple, then g = [g, g] and there is no “most
natural” way to select generators of g. The choice of generators is not unique.

Still, among algebras with the property g = [g, g] the simple ones are
distinguished by the fact that their structure is very well known. By trial and
error people discovered that for finite dimensional simple Lie algebras, there
are certain “first among equal” sets of generators:



264 Ch. 10. Lie superalgebras of supermatrices of complex size

1) Chevalley generators corresponding to positive and negative simple
roots;

2) a pair of generators that generate any finite dimensional simple Lie
algebra associated with the principal sl(2)-subalgebra (considered below).

The relations associated with Chevalley generators are well-known, see e.g.,
[OV], [K3]. These relations (or, rather, their part involving the root elements
of one sign only) are called Serre relations.

The possibility to generate any simple finite dimensional Lie algebra by
two elements was first claimed by N. Jacobson; [BO] is not the first proof,
but a rather detailed one and over various fields. 1) We do not know what
generators Jacobson had in mind; [BO] take for them linear combinations
of positive and negative root vectors with generic coefficients; nothing like a
“natural” choice that we suggest to refer to as Jacobson’s generators was ever
proposed.

To generate a simple algebra with only two elements is tempting but no-
body yet had explicitly described relations between such generators, perhaps,
because to check whether the relations between these elements are nice-looking
is impossible without a modern computer (cf. an implicit description in [F]).
As far as we could test, the relations for any other pair of generators chosen
in a way distinct from ours are too complicated. There seem to be, however,
one exception cf. [GL2].

10.1.1. The principal embeddings. There exists only one (up to equiv-
alence) embedding r : sl(2) −→ g such that g, considered as sl(2)-module,
splits into rk g irreducible modules, cf. [Dy] or [OV]. This embedding is called
principal and, sometimes, minimal because for the other embeddings (there
are plenty of them) the number of irreducible sl(2)-modules is > rk g. Ex-
ample: for g = sl(n), sp(2n) or o(2n+ 1) the principal embedding is the one
corresponding to the irreducible representation of sl(2) of dimension n, 2n,
2n+ 1, respectively.

For completeness, let us recall how the irreducible sl(2)-modules with high-
est weight look like. (They are all of the form Lµ, where Lµ =Mµ if µ 6∈ Z+,
and Ln = Mn/M−n−2 if n ∈ Z+, and where Mµ is described below.) Select
the following basis in sl(2):

X− =

(
0 0
−1 0

)
, H =

(
1 0
0 −1

)
, X+ =

(
0 1
0 0

)
.

The sl(2)-module Mµ is illustrated with a graph whose nodes correspond to
the eigenvectors lµ−2i of H with the weight indicated;

1 There are also similar statements on the Chevalley group level; and lately ap-
peared papers with similar statement for the simple finite dimensional modular
Lie algebras of vectorial type. It seems that the question is obvious for Z-graded
Lie algebras g: take the highest weight (w.r.t. g0) element of g−1 and the lowest
weight vector of the highest component of g; they should do the trick. It only
remain to verify this. The snag is: even if true, are the relations between these
generators sufficiently simple to be useful?
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. . .
µ−2i−2◦ − µ−2i◦ − · · · − µ−2◦ − µ◦

the edges depict the action of X± (the action of X+ is directed to the right,
that of X− to the left: X−lµ−2i = lµ−2i−2 and

X+lµ−2i = X+((X−)ilµ) = i(µ− i+ 1)lµ−2i+2; X+(lµ) = 0. (1.1)

As follows from (1.1), the module Mn for n ∈ Z+ has an irreducible sub-
module isomorphic to M−n−2; the quotient, obviously irreducible, as follows
from the same (1.1), will be denoted by Ln.

There are principal sl(2)-subalgebras in every finite dimensional simple Lie
algebra, though, generally, not in infinite dimensional ones, e.g., not in affine
Kac-Moody algebras. The construction is as follows. Let X±

1 , . . . , X
±
rk g be

Chevalley generators of g, i.e., the generators corresponding to simple roots.
Let the images of X± ∈ sl(2) in g be

X− 7→
∑

X−
i ; X+ 7→

∑
aiX

+
i

and select the ai from the relations [[X+, X−], X±] = ±2X± true in sl(2).
For g = g(A) constructed from a Cartan matrix A, there is a solution for ai
if and only if A is invertible.

In Table 1.1 a simple finite dimensional Lie algebra g is described as the
sl(2)-module corresponding to the principal embedding (cf. [OV], Table 4).
The table introduces the number 2k2 used in relations. We set k1 = 1.

10.1.2. Table. Simple g as the sl(2)-module.

g the sl(2)-spectrum of g = L2 ⊕ L2k2 ⊕ L2k3 . . . 2k2

sl(n) L2 ⊕ L4 ⊕ L6 · · · ⊕ L2n−2 4

o(2n+ 1), sp(2n) L2 ⊕ L6 ⊕ L10 · · · ⊕ L4n−2 6

o(2n) L2 ⊕ L6 ⊕ L10 · · · ⊕ L4n−6 ⊕ L2n−2 6

g(2) L2 ⊕ L10 10

f(4) L2 ⊕ L10 ⊕ L14 ⊕ L22 10

e(6) L2 ⊕ L8 ⊕ L10 ⊕ L14 ⊕ L16 ⊕ L22 8

e(7) L2 ⊕ L10 ⊕ L14 ⊕ L18 ⊕ L22 ⊕ L26 ⊕ L34 10

e(8) L2 ⊕ L14 ⊕ L22 ⊕ L26 ⊕ L34 ⊕ L38 ⊕ L46 ⊕ L58 14

One can show that g can be generated by two elements: x :=X+∈L2= sl(2)
and a lowest weight vector z := l−r from an appropriate module Lr other than
L2 from Table 1.1. For the role of this Lr we take either L2k2 if g 6= o(2n) or
the last module L2n−2 in the above table if g = o(2n). (Clearly, z is defined
up to proportionality; we will assume that a basis of Lr is fixed and denote
z = t · l−r for some t ∈ C that can be fixed at will.)

The exceptional choice for o(2n) is occasioned by the fact that by choosing
z ∈ Lr for r 6= 2n− 2 instead, we generate o(2n− 1).
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We call the above x and z, together with y := X− ∈ L2 taken for good
measure, Jacobson’s generators. The presence of y considerably simplifies the
form of the relations, though slightly increases their number. (One might think
that taking the symmetric to z element lr will improve the relations even more
but in reality just the opposite happens.)

10.1.3. Relations between Jacobson’s generators. First, observe that
if an ideal of a free Lie algebra is homogeneous (with respect to the degrees of
the generators of the algebra), then the number and the degrees of the defining
relations (i.e., the generators of the ideal) is uniquely defined provided the
relations are homogeneous. This is obvious.

A simple Lie algebra g, however, is the quotient of a free Lie algebra F

modulo a inhomogeneous ideal, I, the ideal without homogeneous generators.
Therefore, we can speak about the number and the degrees of relations only
conditionally. Our condition is the possibility to express any element x ∈ I

via the generators g1, . . . of I by a formula of the form

x =
∑

[ci, gi], where ci ∈ F and deg ci + deg gi ≤ deg x for all i. (1.3)

Under condition (1.3) the number of relations and their degrees are
uniquely determined. Now we can explain why do we need an extra gener-
ator y: without y the weight relations would have been of very high degree.

We divide the relations between the Jacobson generators into the types
corresponding to the number of occurrences of z in them:

0. Relations in L2 = sl(2);
1. Relations coming from the sl(2)-action on L2k2 ;
2. Relations coming from L2k1 ∧ L2k2 ;
≥ 3. Relations coming from L2k2 ∧ L2k2 ∧ L2k2 ∧ . . . with ≥ 3 factors;

among the latter relations we distinguish one— of type “∞”— the relation
that shears the dimension. (For small rank g the relation of type ∞ can be of
the above types.)

Observe that, apart form relations of type∞, the relations of type ≥ 3 are
those of type 3 except for e(7) which satisfies stray relations of types 4 and 5,
cf. [GL21].

The relations of type 0 are the well-known relations in sl(2)

0.1. [[x, y], x] = 2x, 0.2. [[x, y], y] = −2y. (Rel 0)

The relations of type 1 mirror the fact that the space L2k2 is the (2k2 + 1)-
dimensional sl(2)-module. To simplify notations we denote: zi = (adx)

iz. Then
the type 1 relations are:

1.1. [y, z] = 0,

1.2. [[x, y], z] = −2k2z, with 2k2 from Table 10.1.2;

1.3. z2k1+1 = 0.

(Rel 1)
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10.1.4. Theorem. For the simple finite dimensional Lie algebras, all the re-
lations between the Jacobson generators are the above relations (Rel0), (Rel1)
and the relations from [GL21]. (In §3, these relations from [GL21] are repro-
duced for the classical Lie algebras.)

10.2. The Lie algebra sl(λ) as a quotient algebra of
diff(1) and a subalgebra of sl+(∞)

10.2.1. gl(λ) is endowed with a trace. The Poincaré-Birkhoff-Witt the-
orem states that, as spaces, U(sl(2)) ∼= C[X−, H,X+]. We also know that to
study representations of g is the same as to study representations of U(g).
Still, if we are interested in irreducible representations, we do not need the
whole of U(g) and can do with a smaller algebra, easier to study.

This observation is used now and again; Feigin applied it in [F] writing,
actually, (as deciphered in [PH], [GL21], [Sho]) that setting

X− = − d

du
, H = 2u

d

du
− (λ− 1), X+ = u2

d

du
− (λ− 1)u (2.1)

we obtain a morphism of sl(2)-modules and, moreover, of associative algebras:

U(sl(2)) −→ C[u,
d

du
]. The kernel of this morphism is the ideal generated by

∆−λ2+1, where ∆ = 2(X+X−+X−X+)+H2. Observe, that this morphism
is not an epimorphism, either. The image of this morphism is our Lie algebra
of matrices of “complex size”.

Remark. In their proof of certain statements from [F] that we will recall,
[PH] used the well-known fact that the Casimir operator ∆ acts on the irre-
ducible sl(2)-module Lµ (see sec 1.1) as the scalar operator of multiplication
by µ2 + 2µ. The passage from [PH]’s λ to [F]’s µ is done with the help of
a shift by the weight ρ, a half sum of positive roots, which for sl(2), can be
identified with 1, i.e., (λ− 1)2 + 2(λ− 1) = λ2 − 1 for λ = µ+ 1.

Consider the Lie algebra (U(sl(2)))L associated with the associative alge-
bra U(sl(2)). Set

Uλ = U(sl(2))/(∆− λ2 + 1). (2.2)

The definition directly implies that gl(−λ) ∼= gl(λ), so speaking about real
values of λ we can confine ourselves to the nonnegative values, cf. sec. 0.2. It
is easy to see that, as sl(2)-module,

Uλ = L0 ⊕ L2 ⊕ L4 ⊕ · · · ⊕ L2n ⊕ . . . (2.3)

It is not difficult to show (see [PH] for details) that the Lie algebra (Un)L for
n ∈ Z\{0} contains an ideal Jn and the quotient (Un)L/Jn is the conventional
gl(n). In [PH] it is proved that, for λ 6= Z \ {0}, the Lie algebra (Uλ)L is the
direct sum of the two ideals— the center L0 (spanned by constants) and its
complement. Set
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pgl(λ) = gl(λ)/L0, where gl(λ) =

{
(Uλ)L for λ 6∈ Z \ {0}
(Un/Jn)L for n ∈ Z \ {0}. (2.4)

Observe, that gl(λ) is endowed with a trace. This follows directly from
(2.3) and the fact that

gl(λ) ∼= L0 ⊕ [gl(λ), gl(λ)].

Therefore, pgl(λ) can be identified with sl(λ), the subalgebra of the trace-
less matrices in gl(λ). We can normalize the trace at will, for example, if
we set tr(id) = λ, then the trace that our trace induces on the quotient of
(Un(sl(2)))L modulo J(n) coincides with the usual trace on gl(n) for n ∈ N.

Another way to introduce the trace was suggested by J. Bernstein. We de-
cipher its description in [KM] as follows. Look at the image ρλ(H) ofH ∈ sl(2)
in gl(Mλ). Bernstein observed that though tr(ρλ(H)) is an infinite sum, the
sum of the first D + 1 summands is a polynomial in D, call it trD(ρλ(H)).

Exercise. Prove that trλ(ρλ(H)) = 0.

LetD(λ) be the value of the dimension of the irreducible finite dimensional
g-module with highest weight λ, for an exact formula, see [Dy], [OV] (or
volume 1). For any x ∈ (Uλ(g))L considered as an element of gl(Mλ), set

tr(x) := tr(x;D(λ)) =

D(λ)∑

i=1

xii;

as is easy to see, this formula determines the trace on (Uλ(g))L for arbitrary
values of λ.

Observe that whereas for any irreducible finite dimensional module over
the simple Lie algebra g, there is just one formula for D(λ) (the H. Weyl
dimension formulas) for Lie superalgebra there are several distinct formulas
depending on how “typical” λ is.

10.2.2. There is no Cartan matrix for sl(λ). What replaces it?. Are
there Chevalley generators in sl(λ)? In other words are there elements X±

i of
degree ±2 and Hi of degree 0 (the degree is the weight with respect to the
sl(2) = L2 ⊂ sl(λ)) such that

[X+
i , X

−
j ] = δijHi, [Hi, Hj ] = 0 and [Hi, X

±
j ] = ±AijX±

j ? (2.5)

The answer is NO: sl(λ) is too small. To see what is the problem, consider
the following elements of degree ±2 from L4 and L6 of gl(λ):

deg = −2 : −4uD2 − 2(λ− 2)D

deg = 2 : −4u3D2 + 6(λ− 2)u2D − 2(λ− 1)(λ− 2)u

deg = −2 : 15u2D3 − 15(λ− 3)uD2 + 3(λ− 2)(λ− 3)D

deg = 2 : 15u4D3 − 30(λ− 3)u3D2+

18(λ− 2)(λ− 3)u2D − 3(λ− 1)(λ− 2)(λ− 3)u
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To satisfy (2.5), we can complete gl(λ) by considering infinite sums of its
elements, but the completion erases the difference between different λ’s:

Proposition. For λ 6= ρ the completion of sl(λ) generated by Jacobson’s
generators (see Tables) is isomorphic to pdiff(1), the quotient of the Lie algebra
of differential operators with formal coefficients modulo constants.

Though there is no Cartan matrix, Saveliev and Vershik [SV] suggested an
operator K which replaces Cartan matrix. For further details, see the paper
by Shoihet and Vershik [ShV].

10.2.3. The outer automorphism of (Uλ(g))L. The invariants of the
mapping

X 7→ −SXtS for X ∈ gl(n), where S = antidiag(1,−1, 1,−1 . . . ) (2.6)

constitute o(n) if n ∈ 2N+ 1 and sp(n) if n ∈ 2N. By analogy, Feigin defined
o/sp(λ) (do not confuse with the Lie superalgebras of series osp) as the sub-
algebra of gl(λ) = ⊕

k≥0
L2k invariant with respect to the involution analogous

to (2.6):

X 7→
{
−X if X ∈ L4k

X if X ∈ L4k+2.
(2.7)

It is clear that

o/sp(λ) =

{
o(λ)⊃+ Iλ if λ ∈ 2N+ 1,
sp(λ)⊃+ Iλ if λ ∈ 2N,

where Iλ is an ideal.

In the realization of sl(λ) by differential operators the transposition is the pas-
sage to the adjoint operator; hence, o/sp(λ) is a subalgebra of sl(λ) consisting
of anti-self-adjoint operators with respect to the involution

a(u)
dk

duk
7→ (−1)k d

k

duk
a(u)∗. (2.8)

The superization of this formula is straightforward: via the Sign Rule.

10.2.4. The Lie algebra gl(λ) as a subalgebra of gl+(∞). Recall that
gl+(∞) often denotes the Lie algebra of infinite (in one direction; index +
indicates that) matrices with nonzero elements inside a (depending on the
matrix) strip along the main diagonal and containing it. The subalgebras
o(∞) and sp(∞) are naturally defined, while the notation sl(∞) is, by abuse
of language, sometimes used to denote pgl(∞).

When it comes to superization, one shall be very careful selecting an ap-
propriate candidate for gl(∞|∞) and its subalgebras: the “correct” answer
depends on the situation and might turn out to be rather unexpected, cf. [E].

The realization (2.1) provides with an embedding sl(λ)⊂sl+(∞)=“sl(Mλ)”,
so for λ 6= N, the Verma module Mλ with highest weight µ is an irreducible
sl(λ)-module.
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Proposition. The completion of gl(λ) (generated by the elements of degree
±2 with respect to H ∈ sl(2) ⊂ gl(λ)) is isomorphic for any noninteger λ to
gl+(∞) = “gl(Mλ)”.

10.2.5. The Lie algebras sl(∗) and o/sp(∗) for ∗ ∈ CP 1 = C ∪ {∗}.
The “dequantization” of the relations for sl(λ) and o/sp(λ) (see §3) is per-
formed by passage to the limit as λ −→∞ under the change:

t 7→





t

λ
for sl(λ)

t

λ2
for o/sp(λ).

(10.3)

So the parameter λ above can actually run over CP 1 = C ∪ {∗}, not just C.
In the realization with the help of deformation, cf. 2.7 below, this is obvious.
Denote the limit algebras by sl(∗) and o/sp(∗) in order to distinguish them
from sl(∞) and o(∞) or sp(∞) from sec. 2.4.

It seems impossible to embed sl(∗) and o/sp(∗) into the “quadrant” alge-
bra sl+(∞): indeed, sl(∗) and o/sp(∗) are subalgebras of the whole “plane”
algebras sl(∞) and o(∞) or sp(∞).

10.2.6. Theorem. For Lie algebras sl(λ) and o/sp(λ), where λ ∈ CP 1, all
the relations between the Jacobson generators are the relations of types 0, 1
with 2k2 found from Table 1.1 and the borrowed from [GL21] relations from
§3.

10.3. The Jacobson generators and relations between
them

In what follows the Eij are matrix units; X±
i stand for the conven-

tional Chevalley generators of g. For sl(λ) and o/sp(λ), the generators

x = u2
d

du
−(λ−1)u and y = − d

du
are common; zsl = t

d2

du2
while zo/sp = t

d3

du3
.

For n ∈ C \ Z, there is no shearing relation of type ∞; for n = ∗ ∈ CP 1 the
relations are obtained by means of the substitution (10.3) with a subsequent
passage to the limit as λ −→∞. The parameter t can be taken equal to 1; we
kept it explicit to clarify how to “dequantize” the relations as λ −→∞.
sl(∗).

2.1. 3[z1, z2]− 2[z, z3] = 24y,

3.1. [z, [z, z1]] = 0,

3.2. 4[[z, z1], z3]]] + 3[z2, [z, z2]] = −576z.

o/sp(∗).
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2.1. 2[z1, z2]− [z, z3] = 72z,

2.2. 9[z2, z3]− 5[z1, z4] = 216z2 − 432y,

3.1. [z, [z, z1]] = 0,

3.2. 7[[z, z1], z3] + 6[z2, [z, z2]] = −720[z, z1].

sl(n) for n ≥ 3. Generators:

x =
∑

1≤i≤n−1

i(n− i)Ei,i+1, y =
∑

1≤i≤n−1

Ei+1,i, z = t
∑

1≤i≤n−2

Ei+2,i.

Relations:

2.1. 3[z1, z2]− 2[z, z3] = 24t2(n2 − 4)y,

3.1. [z, [z, z1]] = 0,

3.2. 4[z3, [z, z1]]− 3[z2, [z, z2]] = 576t2(n2 − 9)z.

∞ = n − 1. (adz1)
n−2z = 0.

For n = 3, 4 the degree of the last relation is lower than the degree of some
other relations, this yields simplifications.

o(2n+ 1) for n ≥ 3. Generators:

x = n(n+ 1)(En+1,2n+1 − En,n+1)+∑

1≤i≤n−1

i(2n+ 1− i)(Ei,i+1 − En+i+2,n+i+1),

y = (E2n+1,n+1 − En+1,n) +
∑

1≤i≤n−1

(Ei+1,i − En+i+1,n+i+2),

z = t
(
(E2n−1,n+1 − En+1,n−2)− (E2n+1,n−1 − E2n,n)+∑

1≤i≤n−3

(Ei+3,i − En+i+1,n+i+4)
)
.

Relations:

2.1. 2[z1, z2]− [z, z3] = 144t(2n2 + 2n− 9)z,

2.2. 9[z2, z3]− 5[z1, z4] = 432t(2n2 + 2n− 9)z2+

1728t2(n− 1)(n+ 2)(2n− 1)(2n+ 3)y,

3.1. [z, [z, z1]] = 0,

3.2. 7[z3, [z, z1]]− 6[z2, [z, z2]] = 2880t(n− 3)(n+ 4)[z, z1],

∞ = n. (adz1)
n−1z = 0.
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sp(2n) for n ≥ 3. Generators:

x = n2En,2n +
∑

1≤i≤n−1

i(2n− i)(Ei,i+1 − En+i+1,n+i),

y = E2n,n +
∑

1≤i≤n−1

(Ei+1,i − En+i,n+i+1),

z = t

(
(E2n,n−2 + E2n−2,n)− E2n−1,n−1 +

∑

1≤i≤n−3

(Ei+3,i − En+i,n+i+3)

)
.

Relations:

2.1. 2[z1, z2]− [z, z3] = 72t(4n2−19)z,

2.2. 9[z2, z3]−5[z1, z4] = 216t(4n2−19)z2+1728t2(n2−1)(4n2−9)y,

3.1. [z, [z,z1]] = 0,

3.2. 7[z3, [z,z1]]−6[z2, [z,z2]] = 720t(4n2−49)[z,z1],

∞=n. (adz1)
n−1z=0.

For Jacobson generators and corresponding defining relations for the ex-
ceptional Lie algebras see [GL21].

10.4. The super-principal embeddings

We will need the orthosymplectic supermatrices in the alternating format;
in this format we take the matrix Bm,2n(alt) = antidiag(1, . . . , 1,−1, . . . ,−1)
with the only nonzero entries on the side diagonal, the last n being −1’s.
The Lie superalgebra of such supermatrices will be denoted by osp(altm|2n),
where, as is easy to see, either m = 2n± 1 or m = 2n.

There is a 1-parameter family of deformations ospα(4|2) of the Lie super-
algebra osp(4|2); its only explicit description for α 6= 1 we know (apart from
[BGLS], of course) is in terms of Cartan matrix [GL1]. (It is also known that,
for generic α, the irreducible ospα(4|2)-module of the least dimension is the
adjoint one. For α = 1, 2 and 3, there are other modules, see Ch. 8.)

Not every simple Lie superalgebra, even a finite dimensional one, hosts
a super-principal osp(1|2)-subsuperalgebra. Let us describe those that do.
(Aside: an interesting open problem is to describe semiprincipal embeddings
into simple Lie superalgebras g, defined as the ones with the least possible
number of irreducible components.)

We select the following basis in osp(1|2) ⊂ sl(0̄|1̄|0̄):

X− =

(
0 0 0
0 0 0
−1 0 0

)
, H =

(
1 0 0
0 0 0
0 0 −1

)
, X+ =

(
0 0 1
0 0 0
0 0 0

)
.
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∇− =

(
0 0 0
1 0 0
0 1 0

)
, ∇+ =

(
0 1 0
0 0 −1
0 0 0

)
.

The highest weight osp(1|2)-module Mµ is illustrated with a graph whose
nodes correspond to the eigenvectors li of H with the weight indicated; the
horizontal edges depict the X±-action (the X+-action is directed to the right,
that ofX− to the left; each horizontal string is an irreducible sl(2)-submodule;
two such submodules are glued together into an osp(1|2)-module by the action
of ∇± (we set ∇+(ln) = 0 and ∇−(li) = li−1; the corresponding edges are not
depicted below); we additionally assume that p(lµ) = 0̄:

. . .
µ−2i◦ ←→ µ−2i+2◦ ←→ ... ... ...←→ µ−2◦ ←→ µ◦
. . .

µ−2i+1◦ ←→ µ−2i+3◦ ←→ ...←→ µ−3◦ ←→ µ−1◦

As follows from the relations of type 0 below in sec 4.2, the module Mn for
n ∈ Z+ has an irreducible submodule isomorphic to Π(M−n−1); the quotient,
obviously irreducible as follows from the same formulas, will be denoted by
Ln.

Serganova completely described super-principal embeddings of osp(1|2)
into a simple finite dimensional Lie superalgebra [LSS] (the main part of her
result was independently obtained in [vJ]).

Each simple finite dimensional Lie superalgebra g is is of the following
form as the osp(1|2)-module corresponding to the super-principal embedding
(the non-listed simple algebras g do not contain any super-principal osp(1|2)):
10.4.1. Table. Simple g as the osp(1|2)-module.

g g = L
2 ⊕ ( ⊕

i>1
L

2ki ) for i ≥ 2 ⊕ (⊕
j
Π(Lmj )) for j ≥ 1

sl(n|n+ 1) L
2 ⊕ L

4 ⊕ L
6 · · · ⊕ L

2n−2 ⊕Π(L1) ⊕Π(L3) ⊕ · · · ⊕Π(L2n−1)

osp(2n− 1|2n) L
2 ⊕ L

6 ⊕ L
10 · · · ⊕ L

4n−6 ⊕Π(L3) ⊕Π(L7) ⊕ · · · ⊕Π(L4n−1)

(n > 1)

osp(2n+ 1|2n) L
2 ⊕ L

6 ⊕ L
10 · · · ⊕ L

4n−2 ⊕Π(L3) ⊕Π(L7) ⊕ · · · ⊕Π(L4n−1)

osp(2|2) ∼= sl(1|2) L
2 ⊕Π(L1)

osp(4|4) L
2 ⊕ L

6 ⊕Π(L3) ⊕Π(L3)

osp(2n|2n) L
2 ⊕ L

6 ⊕ L
10 · · · ⊕ L

4n−2 ⊕L
2n−2 ⊕Π(L3) ⊕Π(L7) ⊕ · · · ⊕Π(L4n−1)

osp(2n+ 2|2n) L
2 ⊕ L

6 ⊕ L
10 · · · ⊕ L

4n+2 ⊕L
2n ⊕Π(L3) ⊕Π(L7) ⊕ · · · ⊕Π(L4n−1)

ospα(4|2) L
2 ⊕L

2 ⊕Π(L3)

The Lie superalgebra g of type osp that contains a super-principal subal-
gebra osp(1|2) can be generated by two elements. For such elements we can
take X := ∇+ ∈ L2 = osp(1|2) and a lowest weight vector Z := l−r from the
module M = Lr or Π(Lr), where for M we take Π(L3) if g 6= osp(2n|2m) or
the last module with the even highest weight vector in the above table (i.e.,
L2n−2 if g = osp(2n|2n) and L2n if g = osp(2n+ 2|2n)).

To generate sl(n|n + 1) we have to add to the above X and Z a lowest
weight vector U from Π(L1). (Clearly, Z and U are defined up to factors that
we can select at our convenience; we will assume that a basis of Lr is fixed
and denote Z = t · l−r and U = s · l−1 for t, s ∈ C.)
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We call the above X and Z, together with U , and fortified by
Y := X− ∈ L2 the Jacobson’s generators. The presence of Y considerably
simplifies the form of the relations, though slightly increases the number of
them.

10.4.2. Relations between Jacobson’s generators. We repeat the argu-
ments from sec. 1.2. Since we obtain the relations recurrently, it could happen
that a relation of higher degree implies a relation of a lower degree. This did
not happen when we studied sl(λ), but does happen in what follows, namely,
relation 1.2 implies relation 1.1.

We divide the relations between Jacobson’s generators into the types cor-
responding the number of occurence of z in them:

0. Relations in sl(1|2) or osp(1|2);
1. Relations coming from the osp(1|2)-action on L2k2 ;
2. Relations coming from L2k1 ∧ L2k2 ;
3. Relations coming from L2k2 ∧ L2k2 ;
∞∞∞. Relation that shear the dimension.

The relations of type 0 are the well-known relations in sl(1|2), those of
them that do not involve U (marked with an ∗) are the relations for osp(1|2).
The relations of type 1 that do not involve U express that the space L2k2 is
the osp(1|2)-module with highest weight 2k2. To simplify notations we denote:
Zi = adiX Z and Yi = adiX Y .

0.1∗. [Y, Y1] = 0, 0.2∗. [Y2, Y ] = 2Y, 0.3∗. [Y2, X ] = −X,
0.4. [Y, U ] = 0, 0.5. [U,U ] = −2Y ; 0.6. [U, Y1] = 0,

0.7. [[X,X ], [X,U ]] = 0, 0.8. [Y2, U ] = U.

1.1. [Y, Z] = 0⇐= 1.2. [[X,Y ], Z] = 0,

1.3. Z4k1 = 0, 1.4. [Y2, Z] = 3Z.

10.4.3. Theorem. For the Lie superalgebras indicated, all the relations be-
tween Jacobson’s generators are the above relations of types 0, 1 and the rela-
tions from §6.

10.5. The Lie superalgebra gl(λ|λ+ 1) as the quotient of
diff(1|1) and a subalgebra of sl+(∞|∞)

There are several ways to superize sl+(∞|∞). For a description of “the
best” one from a certain point of view see [E]. For our purposes any version
of sl+(∞|∞) will do.

10.5.1. The Poincaré–Birkhoff–Witt theorem states that

U(osp(1|2)) ∼= C[X−,∇−, H,∇+, X+],
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as superspaces. Set Uλ = U(osp(1|2))/(∆−λ2+ 9

4
). Denote: ∂x =

∂

∂x
, ∂θ =

∂

∂θ
and set

X− = −∂x, H = 2x∂x + θ∂θ(λ− 1), X+ = x2∂x − (λ− 1)x;

∇− = ∂θ − θ∂x, ∇+ = x∂θ + xθ∂x − λθ.

These formulas establish a morphism of osp(1|2)-modules and, moreover, of
associative superalgebras: Uλ −→ C[x, θ, ∂x, ∂θ].

In what follows we will need a well-known fact: the Casimir operator

∆ = 2(X+X− +X−X+) +∇+∇− −∇−∇+ +H2

acts on the irreducible osp(1|2)-module Lµ as the scalar operator of multipli-
cation by µ2 + 3µ. (The passage from µ to λ is done with the help of a shift

by
3

2
.)

Consider the Lie superalgebra (U(osp(1|2)))L associated with the associa-
tive superalgebra Uλ. It is easy to see that, as an osp(1|2)-module,

(Uλ)L = L0 ⊕ L2 ⊕ · · · ⊕ L2n ⊕ · · · ⊕Π(L1 ⊕ L3 ⊕ . . . ) (5.1)

In the same way as for Lie algebras we show that (Un)L contains an ideal
In for n ∈ N\{0} and the quotient (Un)L/In is the conventional sl(n|n+1). It
is clear that for λ 6= Z the Lie algebra (Uλ)L has only one ideal—the space L0

of constants and (Uλ)L = L0 ⊕ (Uλ)
′
L; hence, there is a supertrace on (Uλ)L.

This justifies the following notations

sl(λ|λ + 1) = gl(λ|λ + 1)/L0, where

gl(λ|λ + 1) =

{
(Uλ)L for λ 6= N \ {0}
(Un)L/In otherwise.

(5.2)

The definition directly implies that gl(−λ| −λ+1) ∼= gl(λ|λ+1), so speaking
about real values of λ we can confine ourselves to the nonnegative values.

Define osp(λ+1|λ) as the Lie subsuperalgebra of sl(λ+1|λ) invariant with
respect to the involution

X →
{
−X if X ∈ L4k or X ∈ Π(L4k±1)

X if X ∈ L4k±2 or X ∈ Π(L4k±3),
(5.3)

which is the analogue of the map

X → −Xst for X ∈ gl(m|n). (5.4)

10.5.2. The Lie superalgebras sl(∗| ∗ +1) and osp(2 ∗ | ∗ +1), for
∗ ∈ CP 1 = C ∪ {∗}. The “dequantization” of the relations for sl(λ|λ + 1)
and osp(λ + 1|λ) is performed by passage to the limit as λ −→ ∞ under the

change t 7→ t

λ
. We denote the limit algebras by sl(∗| ∗+1) and osp(∗+1|∗) in

order not to mix them with sl(∞|∞+ 1) and osp(∞|∞+ 1), respectively.
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10.6. Tables. The Jacobson generators and relations
between them

10.6.1. Table. The infinite dimensional case.
• osp(λ|λ + 1). Generators:

X = x∂θ + xθ∂x − λθ, Y = ∂x, Z = t(∂x∂θ − θ∂x2).

Relations:

2.1. 3[Z,Z3] + 2[Z1, Z2] = 6t(2λ+ 1)Z,

2.2. [Z1, Z3] = 2t2(λ− 1)(λ+ 2)Y + 2t(2λ+ 1)Z1,

3.1. [Z1, [Z,Z]] = 0.

• osp(∗| ∗+1). Relations: the same as in sec 4.2 plus the following relations:

2.1. 3[Z,Z3] + 2[Z1, Z2] = 12tZ,

2.2. [Z1, Z3] = 2t2Y + 4tZ1.

• sl(λ+ 1|λ) for λ ∈ CP 1. Generators (for λ ∈ C): the same as for
osp(λ|λ + 1) and U = ∂θ − θ∂x.

Relations: the same as for osp(λ|λ+ 1) plus the following

1.5. 3[Z, [X,U ]]− [U,Z1] = 0, 2.3. [Z, [U,Z]] = 0,

1.6. [[X,U ], Z1] = 0, 2.4. [Z1, [U,Z]] = 0.

10.6.2. Table. Finite dimensional algebras. In this table Eij are the
matrix units; X±

i stand for the conventional Chevalley generators of g.
• sl(n+ 1|n) for n ≥ 3. Generators:

X =
∑

1≤i≤n

(
(n− i+ 1)E2i−1,2i − iE2i,2i+1

)
, Y =

∑
1≤i≤2n−1

Ei+2,i,

U =
∑

1≤i≤2n

(−1)i+1Ei+1,i, Z =
∑

1≤i≤2n−2

(−1)i+1Ei+3,i.

Relations: those for sl(λ + 1|λ) with λ = n and an extra relation to shear
the dimension:

(adZ)
n([X,X ]) = 0.

For n = 1 the relations degenerate in relations of type 0.
• osp(2n+ 1|2n). Generators:
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X =
∑

1≤i≤n

(
(2n− i+ 1)(E2i−1,2i + E4n+2−2i,4n+3−2i)−

i(E2i,2i+1 − E4n+1−2i,4n+2−2i)
)
,

Y = E2n+2,2n +
∑

1≤i≤2n−1

(Ei+2,i − E4n+2−i,4n−i),

Z = E2n+2,2n−1 − E2n+3,2n +
∑

1≤i≤2n−2

(
(−1)iEi+3,i + E4n+2−i,4n−1−i

)
.

Relations: those for osp(2λ + 1|2λ) with λ = n and an extra relation to
shear the dimension (the form of the relation is identical to that for sl(n+1|n)).
• ospα(4|2). Generators: As osp(1|2)-module, the algebra ospα(4|2) has

2 isomorphic submodules. The generators X and Y belong to one of them.
It so happens that we can select Z from either of the remaining submodules
and still generate the whole Lie superalgebra. The choice (a) is from Π(L3);
it is unique (up to a factor). The choices (b) and (c) are from L2; one of them
gives simpler relations:

X =
α+ 1

α
X+

1 +
α

α+ 1
X+

2 +
1

α(α+ 1)
X+

3 ,

Y = [X−
1 , X

−
2 ] + [X−

1 , X
−
3 ] + [X−

2 , X
−
3 ],

Z =





a) −[[X−
1 ,X

−
2 ],X−

3 ]];

b) −(1+ 2α)[X−
1 ,X

−
2 ] +α2(2+α)[X−

1 ,X
−
3 ] + (α− 1)(1+α)2[X−

2 ,X
−
3 ];

c) −[X−
2 ,X

−
3 ]− (α+1)[X−

1 ,X
−
2 ].

Relations of type 0 are common for cases a) – c):

0.1. [Y, [Y, [X,X ]]] = 4Y ; 0.2. [Y1[X,X ]]] = −2X ;

The other relations are as follows.
Relations a):

1.1. [Y1, Z1] = 3Z, 1.2. (ad[X,X])
3Z1 = 0;

2.1. [Z,Z] = 0; 2.2. [Z1, [[X,X ], Z]] = −4α
2 + α+ 1

α(α+ 1)
Z,

3.1. [ad[X,X](Z1), [Z1, ad[X,X](Z1)]] =

− 16

α(α+ 1)
Y + 8

α2 + α+ 1

α(α+ 1)
[Z1, ad[X,X](Z1)] + 16

(α2 + α+ 1)2

α2(α+ 1)2
Z1.

Relations b):
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1.1. [Y1, Z1] = 2Z; 1.2 (ad[X,X])
2Z1 = 0;

2.1∗. [Z1, Z1] = 2[Z, [Z, [X,X ]]]− 18α2(1 + α)2Y+

4(1− α)(2 + α)(1 + 2α)Z;

3.1. (adZ)
3X = 0,

3.2∗. [[Z,Z1], (ad[X,X])
2Z1] = (−1 + α)(2 + α)(1 + 2α)[Z, [Z, [X,X ]]]+

12(1− α)(2 + α)(1 + 2α)α2(1 + α)2Y+

8(1− 3α2 − α3)(−1− 3α+ α3)Z.

Relations c): same as for b) except that the relations marked in b) by
an ∗ should be replaced by the following ones

2.1. [Z1, Z1] = 2[Z, [Z, [X,X ]]]− 2α2Y + 4(2 + α)Z;

2.2. (ad[X,X])
2Z1 = (−2− α)[Z, [Z, [X,X ]]]− 8(1 + α)Z + 4α2(2 + α)Y.

10.7. Remarks and problems

10.7.1. On proof. For the exceptional Lie algebras and superalgebra
ospα(4|2), the proof is direct: the quotient of the free Lie algebra generated by
x, y and z modulo our relations is the needed finite dimensional one. For rank
g ≤ 12 we similarly computed relations for g = sl(n), o(2n + 1) and sp(2n);
as Post pointed out, together with the result of [PH] on deformation (cf. 2.7)
this completes the proof for Lie algebras. The results of [PH] on deformations
can be directly extended for the case of sl(2) replaced by osp(1|2); this proves
Theorem 4.3.

Our Theorem 2.6 elucidates Proposition 2 of [F]; we just wrote relations
explicitely. Feigin claimed [F] that for sl(λ), the relations of type 3 follow from
the decomposition of L2k2 ∧ L2k2 ⊂ L2k2 ∧ L2k2 ∧ L2k2 . We verified that this
is so not only in Feigin’s case but for all the above-considered algebras except
e(6), e(7) and e(8): for them, one should consider the whole L2k2 ∧L2k2 ∧L2k2 ,
cf. [GL21]. Theorem 4.3 is a direct superization of Theorem 2.6.

10.7.2. Problems. 1) How to present o(2n) and osp(2m|2n)? One can select
z as suggested in sec. 1.1. Clearly, the form of z (hence, relations of type 1)
and the number of relations of type 3 depend on n in contradistinction with
the algebras considered above. Besides, the relations are not as neat as for the
above algebras. We should, perhaps, have taken the generators as for o(2n−1)
and add a generator from L2n−2. We have no guiding idea; to try at random
is frustrating, cf. the relations we got for ospα(4|2).

2) We could have similarly realized the Lie algebra sl(λ) as the quotient of
U(vect(1))L. However, U(vect(1)) has no center except the constants. What
are the generators of the ideal modulo which we should factorize U(vect(1))L
in order to get sl(λ)? (Observe that in case U(g), where g is a simple finite
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dimensional Lie superalgebra such that Z(U(g)) is not noetherian, but the
mysterious ideal is, nevertheless, finitely generated, cf. [GL2].)

3) Feigin realized sl(∗) on the space of functions on the open cell of CP 1,
a hyperboloid, see [F]. Examples of [DGS1] are similarly realized. Give any
realization of o/sp(∗) and its superanalogs.

4) Other problems are listed in sec. 8.1–8.3 below.

10.7.3. Serre relations v. Jacobson ones. The following Table repre-
sents results of V. Kornyak’s computations. NGB is the number of relations in
Groebner basis,Ncomm is the number of non-zero commutators in the multipli-
cation table, DGB is a maximum degree of relations in GB, Space is measured
in in bytes. The corresponding values for Chevalley generators/Serre relations
are given in parenthesis.

alg NGB Ncomm DGB Space Time
sl(3) 23 (24) 21 (21) 9 (4) 1300 (1188) < 1sec (< 1sec)
sl(4) 69 (84) 70 (60) 17 (6) 3888 (3612) < 1sec (< 1sec)
sl(5) 193 (218) 220 (126) 25 (8) 13556 (8716) < 1sec (< 1sec)
sl(6) 444 (473) 476 (225) 33(10) 34692 (18088) 2sec (< 1sec)
sl(7) 893 (908) 937 (363) 41(12) 80272 (33700) 10sec (1sec)
sl(8) 1615(1594) 1632 (546) 49(14) 162128 (57908) 34sec (3sec)
sl(9) 2705(2614) 2714 (780) 57(16) 314056 (93452) 109sec (6sec)
sl(10) 4263 (4063) 4138 (1071) 65 (18) 534684 (143456) 336sec(10sec)
sl(11) 6405 (6048) 6224 (1425) 73 (20) 921972 (211428) 1058sec (19sec)

For the other Lie algebras, especially exceptional ones, the comparison is even
more unfavorable. Nevertheless, for sl(λ) with non-integer λ, there are only
the Jacobson generators and we have to use them.

10.8. Lie (super)algebras of higher ranks. The
exponents, and W -algebras

The following Tables 8.1 and 8.2 introduce the generators for the Lie al-
gebras Uλ(g) and the analogues of the exponents that index the generalized
W -algebras (for their definition in the simplest cases from different points of
view see [FFr] and [KM]; we will follow the lines of [KM]).

Recall (10.1) that one of the definitions of Uλ(g) is as the associative
algebra generated by g̃; we loosely denoted it by S̃

.
(g̃). For the generators of

(Uλ(g))L we take the Chevalley generators of g (since by sect. 7.3 they are
more convenient) and the lowest weight vectors of the irreducible g-modules
that constitute S̃2(g̃).

10.8.1. The exponents. This section is just part of Table 1 from [OV]
reproduced here for the convenience of the reader. Let g be a simple (finite
dimensional) Lie algebra, W = Wg its Weyl group, l = rk g, α1, . . . , αl
the simple roots, α0 the lowest root; the ni the coefficients of linear relation
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among the αi normed so that n0 = 1; let c = r1 · · · · · rl, where the ri ∈ W
are the reflections in simple roots, be the Coxeter element. The order h of
c (the Coxeter number) is equal to

∑
i>0

ni. The eigenvalues of c are εk1 , . . . ,

εkl , where ε is a primitive h-th root of unity. The numbers ki are called the
exponents. Then (see [OV]):

The exponents ki are given by Table 1.1, e.g., k1 = 1. The number of roots
of g is equal to l

∑
i>0

ni = 2
∑
i>0

ki. The order of W is equal to

zl!
∏

ni =
∏

i>0

(ki + 1),

where z is the number of 1’s among the ni’s for i > 0 (the number z is
also equal to the order of the centrum Z(G) of the simply connected Lie
group G whose Lie algebra is g). The algebra of W -invariant polynomials on
the maximal diagonalizable (Cartan) subalgebra of g is freely generated by
homogeneous polynomials of degrees ki + 1.

We will use the following notations:
For a given finite dimensional simple Lie algebra g(A), let R(λ) denote the

irreducible representation with highest weight λ and V (λ) the space of this
representation;

ρ =
1

2

∑
α>0

α or ρ is a weight such that ρ(αi) = Aii for each simple root αi.

The weights of the Lie algebras o(2l) and o(2l+1), sp(2l) and f(4) (l = 4)
are expressed in terms of an orthonormal basis ε1, . . . , εl of the space h

∗ over
Q. The weights of the Lie algebras sl(l + 1) as well as e(7), e(8) and g(2)
(l = 7, 8 and 2, respectively) are expressed in terms of vectors ε1, . . . , εl+1

of the space h∗ over Q such that
∑
εi = 0. For these vectors (εi, εi) =

l

l + 1

and (εi, εj) =
1

l + 1
for i 6= j. The indices in the expression of any weight

are assumed to be different.
The analogues of the exponents for (Uλ(g))L are the highest weights of

the representations that constitute S̃k(g̃).

Problem. Interpret these exponents in terms of the analog of the Weyl group
of (Uλ(g))L in the sense of [PS] and invariant polynomials on (Uλ(g))L.

10.8.2. Table. The Lie algebras (Uλ(g))L as g-modules. Columns 2
and 3 of this Table are derived from Table 5 in [OV]. Columns 4 and 5 are
results of a computer-aided study. To fill in the gaps is a research problem,
cf. [GL2] for the Lie algebras different from sl type.

g ad S̃2(g̃) S̃3(g̃) S̃k(g̃)

sl(2) R(2π) R(4π) R(6π) R(2kπ)

sl(3) R(π1 + π2) R(2π1 + 2π2) R(3π1 + 3π2) R(kπ1 + kπ2)

R(π1 + π2) R(2π1 + 2π2) R((k − 1)π1 + (k − 1)π2)
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g ad S̃2(g̃) S̃3(g̃) S̃k(g̃)

sl(4) R(π1 + π3) R(2π1 + 2π3) R(3π1 + 3π3)

R(π1 + π3) R(2π1 + 2π3)

R(2π2) R(2π1 + π2)

R(π2 + 2π3)

R(π1 + π3)

R(π1 + 2π2 + π3)

sl(n+ 1) R(π1 + πn) R(2π1 + 2πn) R(3π1 + 3πn)

n ≥ 4 R(π1 + πn) R(2π1 + 2πn)

R(π2 + πn−1) R(2π1 + πn−1)

R(π2 + πn−1)

R(π2 + 2πn)

R(π1 + πn)

R(π1 + π2 + πn−1 + πn)

The generators of (Uλ(g))L are the Chevalley generators X±
i of g, AND

the lowest weight vectors zi from S̃2. Then the relations are (recall that
hi = [X+

i , X
−
i ]):

(type 0) the Serre relations in g

(type 1) The relations between X±
i and zj , namely:

X−
i (zj) = 0; hi(zj) = weighti(zj);

(adX+
i
)the power determined by the weight of zj (zj) = 0.

Problem. Give an explicit form of the relations of higher types.

10.8.3. Tougher problems. Even if the explicit realization of the excep-
tional Lie algebras by differential operators on the base affine space were
known at the moment, it is, nevertheless, a difficult computer problem to fill
in the blank spaces in the above table and similar tables for Lie superalgebras.
To make plausible conjectures we have to compute S̃k(g̃) to, at least, k = 4.

Observe that, for simple Lie algebras g, we have a remarkable theorem by
Kostant, which states that Uλ(g) contains every finite dimensional irreducible
g-module V with multiplicity equal to the multiplicity of the zero weight in
V ; in view of this theorem, only the sl(2)-line is complete.

10.9. A connection with integrable dynamical systems

We recall the basic steps of the Khesin–Malikov construction. To superize
them is a very interesting research problem.
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10.9.1. The Hamilton reduction. Let (M2n, ω) be a symplectic manifold
with an action act of a Lie group G on M by symplectomorphisms (i.e.,
G preserves ω). The derivative of the G-action gives rise to a Lie algebra
homomorphism a : g = Lie(G) −→ h(2n). The action a is called a Poisson
one, if a can be lifted to a Lie algebra homomorphism ã : g −→ po(2n).

For any Poisson G-action on M there arises a G-equivariant map
p :M −→ g∗, called the moment map, given by the formula

〈p(x), g〉 = ã(g)(x) for any x ∈M, g ∈ g.

Fix b ∈ g∗; let Gb ⊂ G be the stabilizer of b. Under certain regularity
conditions (see [Ar]) p−1(b)/Gb is a manifold. This manifold is endowed with
the symplectic form

ω(v̄, w̄) = ω(v, w) for arbitrary preimages v, w of v̄, w̄, resp.
w.r.t. the natural projection T (p−1(b)) −→ T (p−1(b)/Gb).

The passage from M to p−1(b)/Gb is called Hamilton reduction. In the above
picture M can be the Poisson manifold, i.e., ω is allowed to be degenerate
on M ; the submanifolds on which ω is non-degenerate are called symplectic
leaves.

Example. Let g = sl(n) and M = g∗, let G be the group N of upper-
triangular matrices with 1’s on the diagonal. The coadjoint N -action on g∗ is
a Poisson one, the moment map is the natural projection g∗ −→ n∗ and g∗/N
is a Poisson manifold.

10.9.2. The Drinfeld–Sokolov reduction. Let g = â(1), where a is a
simple finite dimensional Lie algebra (the case a = sl(n) is the one considered
by Gelfand and Dickii), hat denotes the non-trivial central extension. The
elements ofM = g∗, can be identified with the a-valued differential operators:

(f(t)dt, az∗) 7→ (tf(t) + at
d

dt
))
dt

t
.

Let N be the loop group with values in the group generated by positive roots
of a. For the point b above take the element y ∈ a ⊂ ĝ∗ described in §3. If
a = sl(n), we can represent every element of p−1(b)/N in the form

t
d

dt
+ y +



b1(t) . . . bn(t)
0 . . . 0
0 . . . 0


←→ dn

dϕn
+ b̃1(ϕ)

dn−1

dϕn−1
+ · · ·+ b̃n(ϕ),

To generalize the above to sl(λ), Khesin and Zakharevich described the
Poisson–Lie structure on symbols of pseudodifferential operators, see [KM]
and refs therein. Let us recall the main formulas.
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10.9.3. The Poisson bracket on symbols of ΨDO. Set D =
d

dx
; define

Dλ ◦ f = fDλ +
∑

k≥1

(
λ

k

)
f (k)Dλ−k, where

(
λ

k

)
=
λ(λ− 1) . . . (λ− k + 1)

k!
.

Set

Gλ =



D

λ(1 +
∑

k≥1

uk(x)D
−k)





and

TGλ =




∑

k≥1

vk(x)D
−k



 ◦D

λ, T ∗Gλ = D−λ ◦DO.

For X = D−λ ◦ ∑
k≥0

uk(x)D
k ∈ T ∗Gλ and L =

(
∑
k≥1

vk(x)D
−k

)
◦Dλ ∈ TGλ,

define the pairing 〈X,L〉 to be

〈X,L〉 = tr(L ◦X), where tr(
∑

wk(x)D
k) = Res |x=0w−1.

The Poisson bracket on the spae of psedodifferential symbols ΨDSλ is defined
on linear functionals by the formula

{X,Y }(L) = X(HY (L)), where HY (L) = (LY )+L− L(Y L)+,

where L+ is the differential part of the pseudodifferential differential operator
L expandable in Laurent series in D.

Theorem (Khesin–Malikov). For a = sl(λ) in the Drinfeld–Sokolov picture,
the Poisson manifolds p−1(b)/Nb and ΨDSλ are isomorphic. Each element of
the Poisson leaf has a representative in the form

t
d

dt
+ y +



b1(t) . . . bn(t) . . .
0 . . . 0 . . .
0 . . . 0 . . .


←→ Dλ


1 +

∑

k≥1

b̃k(ϕ)D
(−k)


 .

The Drinfeld–Sokolov construction [DS], as well as its generalization to
sl(λ) and o/sp(λ) ([KM]), hinges on a certain element that can be identified
with the image of X+ ∈ sl(2) under the principal embedding. For the case
of higher ranks, this is the image of the element y ∈ g, described in §3 for

Lie algebras, in Uλ(g). In sl(λ) and o/sp(λ), this image is just
d

dx
(or the

matrix whose only nonzero entries are the 1’s under the main diagonal in the
realization of sl(λ) and o/sp(λ) by matrices).
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10.9.4. Continuous Toda lattices. Khesin and Malikov [KM] considered
straightforward generalizations of the Toda lattices— the dynamical systems
on the orbits of the coadjoint representation of a simple finite dimensional Lie
group G defined as follows. Let X be the image of X+ ∈ sl(2) in g = Lie(G)
under the principal embedding. Having identified g with g∗ with the help of
the invariant non-degenerate form, consider the orbit OX. On OX, the traces
Hi(A) = tr(A+ X)i are the commuting Hamiltonians.

In our constructions we only have to consider in (Uλ(g))L either (for Lie
algebras) the image of X or (for Lie superalgebras) the image of∇+ ∈ osp(1|2)
under the super-principal embedding of osp(1|2). For superalgebras, we also
have to replace trace by the supertrace.

For the general description of dynamical systems on the orbits of the coad-
joint representations of Lie supergroups, see [LST]. A possibility of odd me-
chanics is pointed out in [LST] and in the subsequent paper by R. Yu. Kirillova
in the same Proceedings. To take such a possibility into account, we have to
consider analogs of the principal embeddings for sq(2). Even to define them
is an open problem.

Chapter 11

Symmetries wider than supersymmetry and
simple Volichenko algebras (D. Leites)

11.1. Introduction: Towards noncommutative geometry

This is a version of [LSa2]. Proof of the classification theorem is due to
V. Serganova.

11.1.1. The gist of idea. To describe physical models, the least one needs is
a triple (X,F (X), L), consisting of the “phase space”X , the sheaf of functions
on it, locally represented by the algebra F (X) of “functions” on X — sections
of this sheaf, and a Lie subalgebra L of the Lie algebra of of derivations of
F (X) considered as vector fields on X . Here X can be recovered from F (X)
as the collection Spec(F (X)), called the spectrum and consisting of maximal
ideals (or prime) of F (X) (or some other type of ideals for noncommutative
F (X)). Usually, X is endowed with a suitable topology.

After the discovery of quantum mechanics the attempts to replace F (X)
by the noncommutative (“quantum”) algebra A became more and more pop-
ular. The first successful attempt was superization performed in [Le0], [BLS].
The road to it was prepared in the works of A. Weil, Leray, Grothendieck
and Berezin. It turns out that having suitably generalized the notion of the
tensor product and derivation (by inserting certain signs in the conventional
formulas) we can reproduce on supermanifolds all the characters of differen-
tial geometry and actually obtain a much reacher and interesting plot than
on manifolds. This picture proved to be a great success in theoretical physics
since the language of supermanifolds and supergroups is a “natural” for a uni-
form description of Bose and Fermi particles. Today there is no doubt that
this is the language of the Grand Unified Theories of all known fundamental
forces. There are, however, no observable effects to prove it, see [?]. On a less
ambitious scale, but with tangible results, Efetov [Ef] applied supersymmetry
to problems of solid state physics.

Observe that physicists who, being unaware of [Le0], or even earlier, discov-
ered supersymmetries (Stavraki, Golfand–Likhtman, Volkov–Akulov, Neveu–
Schwartz, Ramond) were studying possibilities to enlarge the group of sym-
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metries (or rather the Lie algebra of infinitesimal symmetries) of the known
objects (in particular, objects described by Maxwell and Dirac equations).
Finally, Wess and Zumino understood some of the consequences of super-
symmetry and indicated several applications which resulted in mid 1970’s in
a euphoria “Einstein’s dream — the Grand Unified theory — will soon be
achieved! There are no divergences in SUSY GUTs!, etc.”.

Though not all of these predictions are realized yet, we believe that ba-
sically they are true, and only “small technical problems” hamper the re-
searchers world-wide for more than 30 years now. One of the mechanisms
these and other wonders (for their list see, e.g., [D]) are due to the fact that
SUSY is a hidden symmetry of known entities, a broader one than the used-
to-be conventional ones.

We will show that the supergroups do not, nevertheless, constitute the
largest symmetries of superspaces; one needs more noncommutativity than
just a mere supercommutativity.

How noncommutative should F (X) be? To define the space corresponding
to an arbitrary algebra is very hard, see Manin’s gloomy remarks in [Mn1],
where he studies quadratic algebras as functions on “perhaps, nonexisting”
noncommutative projective spaces.

Manin’s idea that there hardly exists one uniform definition suitable for
any noncommutative algebra (because there are several quite distinct types
of them) was supported by A. Rosenberg’s studies who managed to define
several types of spectra in order to interpret ANY algebra as the algebra of
functions on a suitable spectrum, see preprints of his two books [?], no. 25,
and [?] nn. 26, 31 (the latter being expanded as [Ro]). In particular, there IS
a space corresponding to a quadratic (or quadraticizable) algebra such as the
so-called “quantum” deformation Uq(g) of the enveloping of a Lie algebra g,
see [Dr].

Unlike numerous previous attempts, Rosenberg’s theory is more natural;
still, it is algebraic, without any real geometry (no differential equations, in-
tegration, etc.). For some noncommutative algebras, certain notions of dif-
ferential geometry can be generalized: such is, now well-known, A. Connes’s
geometry, see [Mn2] and [Co]. Arbitrary algebras seem to be too noncommu-
tative to allow to do any physics.

In contrast, the experience with the simplest non-commutative spaces,
the superspaces, tells us that all constructions expressible in the language of
differential geometry (these are used in physics) can be carried over to the
super case. Still, supersymmetry has, as we will show, its shortcomings, which
disappear in the theory we propose.

Specifically, we continue the study started under Berezin’s influence in
[Le0] (later suppressed under the same influence in [BLS], [DL2]), of algebras
just slightly more general than supercommutative superalgebras, namely their
arbitrary, not necessarily homogeneous, subalgebras. Thanks to Volichenko’s
theorem M ([?], no. 17) such subalgebras are precisely metabelian ones, i.e.,
those that satisfy the identity
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[x, [y, z]] = 0 (here [·, ·] is the usual commutator). (11.1)

Volichenko proved in his theorem M that every metabelian algebra can be
embedded into a universal in a sense supercommutative superalgebra. As in
noncommutative geometries, we think of metabelian algebras as “functions”
on a what we will call metaspace.

Observe that the conventional superspaces considered as metaspaces have,
together with the Lagrangeans currently considered in mathematical physics,
additional symmetries as compared with supersymmetry.

11.1.2. The notion of Volichenko algebras. Thanks to Volichenko’s
Theorem M, we know a natural generalization of the supercommutativity.
It remains to define the analogs of the tensor product and derivation (see
[LSoS, IU]). I’ve conjectured that the analogs of Lie algebras in the new set-
ting are Volichenko algebras defined here as inhomogeneous subalgebras of Lie
superalgebras. For a proof of this conjecture, see [IU].

Our main mathematical result is the classification (under a technical hy-
pothesis) of simple finite dimensional and vectorial Volichenko algebras.

Supersymmetry had been already justified for physicists when mathemati-
cians’ attention was drawn to it by the list of simple finite-dimensional Lie
superalgebras: bar one exception it was discrete and looked miraculously like
the list of simple Lie algebras. Similar is our list of simple Volichenko algebras.

Remarkably, Volichenko algebras are just deformations of Lie algebras
though in an entirely new sense: in a category broader than that of Lie al-
gebras or Lie superalgebras. This feature of Volichenko algebras could be
significant for parastatistics because once we abandon Bose-Fermi statistics,
there seem to be too many ad hoc ways to generalize. Our classification as-
serts that within the natural context of simple Volichenko algebras the set of
possibilities consists only of discretely parameterized or 1-parameter (which
are, anyway, describable!) algebras. This suggests a possibility of associating
distinct types of particles to representations of these structures, so to define
their representations is an important problem.

Our generalization of supersymmetry and its implications for parastatis-
tics appear to be complementary to recent work on braid statistics in two
dimensions [FRS] in the context of [DR], see also [JGW] and are expected to
tie up at some stage.

Examples of what looks like non-simple Volichenko algebras recently ap-
peared in another context in [Bea], [RS], [Sp] and [FIK].

11.1.3. The two intriguing examples. Each of the two super analogs of
gl(n) have a one-parameter Volichenko analog:

11.1.3.1. The general Volichenko algebra vglµ(p|q). Let the space h

of vglµ(p|q) be the space of (p+ q)× (p+ q)-matrices divided into the direct
sum of two subspaces h0̂ and h1̂:
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h0̂ =

{(
A 0
0 D

)
, where

A ∈ gl(p),
D ∈ gl(q)

}
; h1̂ =

{(
0 B
C 0

)
for any B and C

}
.

(11.2)
Here h1̂ is a natural h0̂-module with respect to the bracket of matrices; for any
fixed a, b ∈ C such that a : b = µ, we define the multiplication h1̂ × h1̂ −→ h0̂
by the formula

[X,Y ] = a[X,Y ]− + b[X,Y ]+ for X,Y ∈ h1̂. (11.3)

(The subscript − or + indicates the commutator and the anti-commutator,
respectively; nothing “super”.) As we sill see, h is a simple Volichenko algebra
for any a, b except for ab = 0 when it becomes isomorphic to either the Lie
algebra gl(p+ q) (for b = 0) or the Lie superalgebra gl(p|q) (for a = 0). Since
we do not have an intrinsic definition of Volichenko algebras, to show that
vglµ(p|q) is indeed a Volichenko algebra, we have to realize it as a subalgebra
of a Lie superalgebra. This is done in the proof of heading 2 of Theorem 11.2.7.

11.1.3.2. The queer Volichenko algebra vqµ(n). This is a subalgebra
of vglµ(n|n) consisting of matrices

h0̂ =

{(
A 0
0 A

)
, where A ∈ gl(n)

}
; h1̂ =

{(
0 B
B 0

)
for any B ∈ gl(n)

}
.

(11.4)

11.1.4. Selected open problems. (1) If we abandon the technical hy-
pothesis on epimorphy, do we obtain any new simple Volichenko algebras?
(Conjecture: we do not.)

(2) Describe Volichenko algebras intrinsically, via polynomial identities.
This seems to be a difficult problem.

(3) Classify simple Volichenko algebras related to other known simple Lie
superalgebras of interest (loop and stringy types, of Lie superalgebras of “su-
permatrices of complex size” type).

(4) Define the notion of representation for Volichenko algebra even for the
epimorphic ones. To say “a representation of a Volichenko algebra is a through
map: the composition of an embedding h ⊂ g into a minimal ambient and
a representation g −→ gl(V )” is too restrictive: the adjoint representation
and homomorphisms of Volichenko algebras are ruled out.

(5) The changes of variables on a superdomain constitute a supergroup
(of diffeomorphisms of the domain). Infinitesimally, they constitute a Lie su-
peralgebra of vector fields. The functor of points and formula (11.5) without
doubly underlined terms show that the functor of points assigns to every su-
percommutative superalgebra Λ the Lie algebra (vect(n|m)⊗ Λ)0̄.

What is the Lie algebra corresponding to all terms of (11.5) and func-
torially depending on Λ? To start with, answer the question in the absence
of even variables. Conjecturally, we will obtain a functor representable by
a Volichenko algebra.

(6) See problems at the end of sec. 11.2.5.
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As is clear from the list of these problems, the notion of Volichenko algebras
requires further study. At the beginning we shared a cautious attitude towards
Volichenko algebras. The two facts that make us more optimistic are: the set
of simple Volichenko algebras (under our proviso) is discrete; besides, the
examples vglµ(p|q) and vqµ(p|q) are so beautiful.

Finally, observe an obvious connection of Volichenko algebras with struc-
tures that become more and more fashionable lately, see [KW].

11.2. Metabelean algebra as the algebra of “functions”.
Volichenko algebras as analogs of Lie algebras

11.2.1. Two flaws of supersymmetry. 1) It was the desire to broaden
the notion of a group that lead physicists to supersymmetry. However, in
viewing supergroups as transformations of superspaces we consider only even,
“statistics-preserving”, maps: inhomogeneous “statistics-mixing” maps be-
tween superalgebras are explicitly excluded and this is why and how odd
parameters of supergroups appear.

On the one hand, this exclusion is justified: since we consider graded ob-
jects why should we consider transformations that preserve these objects as
abstract ones but destroy the grading? It seems to be inconsistent on our part.

On the other hand, if such parity violating transformations exist, albeit
purely formally, they deserve to be studied, to ignore them is physically and
mathematically an artificial restriction.

We would like to broaden the notion of supergroups and superalgebras
to allow for the possibility of statistics-changing maps. Soon after Berezin
published his description of automorphisms of the Grassmann algebra Λ(n)
[B1] it became clear that Berezin missed inhomogeneous automorphisms, but
the complete description of automorphisms was unknown for a while. In 1977,
L. Makar-Limanov gave us a correct description of AutΛ(n), Djokovic found
another proof of this fact [Dj1] (and A. Vaintrob independently rediscovered
it). A. A. Kirillov rediscovered both the fact and a proof while editing [B].
Now the most comprehensible exposition of the proof, due to V. Molotkov, is
in [LSoS].

In [LSoS] it was shown that Λ-points of a generic automorphism of a su-
percommutative superalgebra of functions F(x, θ) with n even generators
x1, . . . , xn and m odd ones θ1, . . . , θm is of the form (here p(m) is parity
of m, i.e., either 0 or 1)

xi 7→
(
(fi +

∑
k

f i1...i2k
i θi1 . . . θi2k ) +

∑
k

f
i1...i2k+1

i θi1 . . . θi2k+1

)
(1 + Fiθ1 . . . θmp(m))

θj 7→
(
(
∑
k

g
i1...i2k+1

j θi1 . . . θi2k+1) + gj +
∑
k

g
i1...i2k
j θi1 . . . θi2k

)
(1 + g)

(11.5)

where the fi, Fi, f
i1...i2k
i , and also g

i1...i2k+1

j are even elements (physicists call

them superfields) of F(x, θ)⊗Λ , whereas the f
i1...i2k+1

i , gj and g
i1...i2k
j and also
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g and the Fi are odd superfields. (A mathematician would say that the odd
superfields — underlined once — represent the odd parameters corresponding
to the Λ-points (recall the definition of the functor of points) for the back-
ground supercommutative superalgebra Λ.) Notice that one g serves all the
θj . The twice underlined factors constitute the extra symmetry as compared
with supersymmetry.

Comment. We derive from (11.5) a consequence of fundamental importance:

supersymmetry is not the most broad symmetry of
supercommutative superalgebras.

Its corollary: When the number of odd variables is even, as is usually the case
in modern models of Minkowski superspace, there is only one extra functional
parameter, g. And, on such supermanifolds, since the wave functions of Bose
particles are even and those of Fermi particles are odd, we see that

the notion of a boson is coordinate-free, whereas that of
a fermion depends on coordinates.

Apart from being not the widest possible symmetry, sypersymmetry has
another quite unexpected flaw:

2) The category of supercommutative superalgebras is not closed with re-
spect to complexification. It certainly is if C is understood naively, as a purely
even space. Declaring

√
−1 to be odd we make C into a NONsupercommuta-

tive superalgebra.
This associative superalgebra over R is denoted by Q(1;R). The com-

plex structure given by an odd operator gives rise to a “queer” superana-
logue of the matrix algebra, Q(n;K) over any field K. Its Lie version is
q(n;K) := (Q(n;K))L, the projectivization of its queertraceless Lie subsu-
peralgebra (first discovered by Gell-Mann, Mitchel and Radicatti, cf. [CNS])
is one of main examples of simple Lie superalgebras.

For superalgebras over C, Schur’s Lemma and Burnside’s theorem have
two possibilities, not one as for algebras, and Q(1) corresponds to one of
them. Besides, an infinite dimensional representation of Q(1) is crucial in
A. Connes’ noncommutative differential geometry. In short, this Q(1) — the
non-supercommutative complex structure — is an important structure.

How to modify definition of supermanifold to remedy the flaws?.
Conjecturally, the answer is to consider arbitrary, not necessarily homoge-
neous subalgebras and quotients of supercommutative superalgebras. These
are, clearly, metabelian algebras. But how to describe arbitrary metabelian
algebras? In 1975, D.L. discussed this with V. Kac and V. Kac conjectured
(see [LSoS]) that considering metabelian algebras we do not digress far from
supercommutative superalgebras, namely, every metabelian algebra is a sub-
algebra of a supercommutative superalgebra. Volichenko had read [LSoS] and
observed that “the [Kac’s] conjecture is a well-known fact of the theory of
varieties of associative algebras. From the context of [Le0], however, it is clear
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that the actual problem is, first of all, how to describe the variety of not neces-
sarily homogeneous subalgebras which a priori can be smaller than the variety
G of supercommutative superalgebras”. His answer constituted Volichenko’s
Theorem M. Namely, Volichenko proved that every metabelian algebra admits
an embedding into a universal supercommutative superalgebra and developed
an analogue of Taylor series expansion.

Therefore, the most broad notion of morphisms of supercommutative su-
peralgebras should only preserve their metabelianness but not parity. (Since
C, however understood, is metabelian, we get a category of algebras closed
with respect to all algebra morphisms and complexifications.)

11.2.2. Problem. In mathematics and physics, spaces are needed almost
exclusively to integrate over them. In problems where integration is not in-
volved, we need sheaves of sections of various bundles over the spaces rather
than the spaces themselves. Gauge fields, Lagrangeans, etc. are all sections of
coherent sheaves, corresponding to sections of vector bundles. Now, more than
30 years after the definition of the scheme of a metabelian algebra (metavari-
ety or metaspace) had been delivered at A. Kirillov’s seminar ([Le0]), there is
still no accepted definition of nice (“morally coherent” as Manin says) sheaves
over such a scheme even for superspaces (for a discussion see [Bu]). As to can-
didates for such sheaves see Rosenberg’s books on noncommutative geometry
[?], nos. 25, 26, 31 and [Ro]) and § 9 in [Bu]. This § 9 is, besides all, a possible
step towards “compactification in odd directions”.

Until Volichenko proved his theorems, it was unclear how to work with
metabelian algebras: are there any analogues of differential equations, of in-
tegral, in other words, is there any “real life” on metaspaces? Thanks to
Volichenko, we can consider pairs (a metabelian algebra, its ambient super-
commutative superalgebra) and corresponding (when we consider these alge-
bras as algebras of functions) projections

“superspace −→ metaspace”.

Characterize metabelian algebras which are quotients of supercommutative
superalgebras: in this case the corresponding metaspace can be embedded
into the superspace and we can consider the induced structures (Lagrangeans,
various differential equations, etc.).

But even if we would have been totally unable to work with metaspaces
which are not superspaces, it is manifestly useful to consider superspaces as
metaspaces. In so doing, we retain all the paraphernalia of the differential
geometry for sure, and in addition get more transformations of the same
entities.

For example, it is desirable to use the formula (first applied by Arnowitt,
Coleman and Nath)

Ber exp X = exp str X (11.6)

which extends the domain of the berezinian (superdeterminant) to inhomoge-
neous matrices X . Then we can consider the additional inhomogeneous trans-
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formations, like the ones described in (11.5). All supersymmetric Lagrangeans
admit metasymmetry wider than supersymmetry.

11.2.3. Motivation of the notions of Volichenko algebra as an ana-
logue of Lie algebra. A description of Volichenko algebras. It seemed
natural to get for Lie superalgebras (whose elements are derivations of the al-
gebras (of functions)) a result similar to the above Volichenko’s Theorem M
(concerning the algebras of functions themselves), i.e., describe arbitrary sub-
algebras of Lie superalgebras. Shortly before his untimely death, I. Volichenko
(1955–88) announced such a description (see “Theorem” V below).

In his memory then, a Volichenko algebra is an inhomogeneous subalgebra
h of a Lie superalgebra g. The adjective “Lie” in front of a (super)algebra in-
dicates that the algebra is not associative, likewise the adjective “Volichenko”
reminds that the algebra is neither associative nor should it satisfy Jacobi
or super-Jacobi identities. Thus, a Volichenko algebra h is an inhomogeneous
subspace of a Lie superalgebra g closed with respect to the superbracket in g.
How to describe h by identities, i.e., in inner terms, without appealing to any
ambient? Volichenko’s “Theorem” V formulates an answer:

Let A be an algebra with multiplication denoted by juxtaposition. Define
the Jordan elements a ◦ b := ab+ ba and Jacobi elements

J(a, b, c) := a(bc) + c(ab) + b(ca) for any a, b, c ∈ A. (11.7)

Theorem (I. Volichenko, 1987). Suppose that
(a) A is Lie admissible, i.e., A is a Lie algebra with respect to the new

product defined by the bracket (not superbracket) [a, b] = ab− ba;
(b) the subalgebra A(JJ) generated by all Jordan and Jacobi elements be-

longs to the anticenter of A, in other words

ax+ xa = 0 for any a ∈ A(JJ), x ∈ A; (11.8)

(c) a(xy) = (ax)y + x(ay) for any a ∈ A(JJ), x, y ∈ A.
Then
(1) Any (not necessarily homogeneous) subalgebra h of a Lie superalgebra

g satisfies the above conditions (a) — (c).
(2) If A satisfies (a) — (c), then there exists a Lie superalgebra SLie (A)

and A is a subsuperalgebra (closed with respect to the superbracket) of
SLie (A).

Heading (1) is subject to a direct verification.
Clearly, the parts of conditions (b) and (c) which involve Jordan (resp.

Jacobi) elements replace the superanti-commutativity (resp. Jacobi identity).
Condition (a) ensures that A is closed in SLie(A) with respect to the bracket
in the ambient.

Discussion. If true, Volichenko’s “Theorem” V would have disproved a pes-
simistic conjecture of V. Markov cited in [DL2]: the minimal set of polynomial
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identities that single out inhomogeneous subalgebras of Lie superalgebras is
infinite. Volichenko’s scrap papers were destroyed after his death and no hint
of his ideas remains.

Since the intrinsic definition of Volichenko algebras was not needed in our
quest for s i m p l e Volichenko algebras we did not worry about Volichenko’s
theorem V. Several researchers tried to refute it.

A. Baranov showed [Ba] that Volichenko’s “Theorem” V is wrong as stated
(and that is why it is in quotation marks): one should add at least one more
relation of degree 5. First, following Volichenko, Baranov introduced, instead
of J(a, b, c), more convenient linear combinations of the Jacobi elements

j(a, b, c) = [a, b ◦ c] + [b, c ◦ a] + [c, a ◦ b] for any a, b, c ∈ A. (11.9)

Then Baranov rewrote identities (a)–(c) in the following equivalent but more
transparent form (i)–(v):

(i) [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0;
(ii) a ◦ b ◦ c = 0;
(iii) j(a, b, c) ◦ d = 0;
(iv) [a ◦ b, c ◦ d] = [a ◦ b, c] ◦ d+ [a ◦ b, d] ◦ c;
(v) [j(a, b, c), c ◦ d] = [j(a, b, c), c] ◦ d+ [j(a, b, c), d] ◦ c.
Baranov’s new degree 5 identity independent of (i) – (v) is somewhat

implicit; it involves 49 monomials and no lucid expression for it is found yet.
Therefore, to describe Volichenko algebras in inner terms remains, for more

than 30 years now, an open problem. I wonder if there exists a generating
function F of an infinite number of identities satisfied by the algebras of the
PI variety Markov spoke about, and in terms of F it will be more convenient
to study these identities.

I. Volichenko did not investigate under which conditions a finite dimen-
sional Volichenko algebra A can be embedded into a finite dimensional Lie
superalgebra g, to find this out is another open problem.

11.2.4. On simplicity of Volichenko algebras. As we will see, the no-
tion of Volichenko algebra is a totally new type of deformation of the usual
Lie algebra. It also generalizes the notion of a Lie superalgebra in a sence
that the Lie superalgebras are Z/2-graded algebras (i.e., they are of the form
g = ⊕

i=0̄,1̄
gi such that [gi, gj ] ⊂ gi+j) whereas Volichenko algebras are only

2-step filtered ones (i.e., they are of the form h = ⊕
i=0̂,1̂

hi as spaces and h0̂ is

a subalgebra. There are, however, several series of examples when Volichenko
algebras are Z/2-graded (as vglµ(p|q)).

Hereafter g is a Lie superalgebra over C. Let h ⊂ g be a Volichenko algebra,
i.e., a subspace which is not a subsuperspace and closed with respect to the
bracket in g.

A Volichenko algebra is said to be simple if it has no two-sided ideals and
its dimension is 6= 1.
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Remark. In 1989, when we knew even less about Volichenko algebras than
now, P. Deligne argued that for algebras such as Volichenko ones, modules
over which have no natural two-sided structure, the above definition seem
to be too restricted: one should define simplicity by requiring the absence of
one-sided ideals. As it turns out, neither of the simple Volichenko algebras we
list in what follow has one-sided ideals either, so we will stick to the above
(and at first glance preliminary) definition: it is easier to work with.

Hypothesis. For any simple Volichenko algebra h defined as a subalgebra h

of a Lie superalgebra H, there exists a simple (modulo center) Lie subsuper-
algebra g ⊂ H such that h can be embedded into g.

Comment. I can not recover the proof of this statement, initially formulated
as a Lemma. Therefore, to prove it is an open problem.

So, we can (and will) assume that the ambient g of a simple Volichenko
algebra is simple. In what follows we will see that for a simple Volichenko
algebra h its simple ambient Lie superalgebra g is unique.

11.2.5. The “epimorphy” condition. Denote by pi : g −→ gi the pro-
jections to homogeneous components. A Volichenko algebra h ⊂ g will be
called epimorphic if p0(h) = g0̄. Not every Volichenko subalgebra is epimor-
phic: for example, the two extremes, Volichenko algebras with the zero bracket
and free Volichenko algebras, are not epimorphic, generally. All simple finite
dimensional Volichenko algebras that we know are, however, epimorphic.

Hypothesis. Every simple Volichenko algebra is epimorphic.

A case study of various simple Lie superalgebras of low dimensions reveals
that they do not contain non-epimorphic simple Volichenko algebra. Still, we
can not prove this hypothesis but will adopt it for it looks very natural at the
moment.

Lemma. Let h ⊂ g be an epimorphic Volichenko algebra and f : g0̄ −→ g1̄
the linear map that determines h, i.e., such that h = hf , where

hf := {a+ f(a) | a ∈ g0̄}. (11.10)

Then
1) f is a 1-cocycle from C1(g0̄; g1̄);
2) f can be uniquely extended to a derivation of g (also denoted by f) such

that f(f(g0̄)) = 0.

Example. Recall, that an odd element such that [x, x] = 0 is called a homo-
logic one. Let x ∈ g1̄ be such that

[x, x] ∈ C(g), (11.11)

where C(g) is the center of g. Clearly, the map f = adx satisfies Lemma 11.2.5
if x satisfies (11.11), i.e., is homologic modulo center.
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A homologic modulo center element x will be said to ensure non-triviality

(of the algebra hadx = {a+ [a, x] | a ∈ g0̄}) (11.12)

if
[[g0̄, x], [g0̄, x]] 6= 0, (11.13)

i.e., if there exist elements a, b ∈ g0̄ such that

[[a, x], [b, x]] 6= 0. (11.14)

The meaning of this notion is as follows. Let a, b ∈ h, let a = a0 + a1 and
b = b0 + b1, where a1 = [a0, x], b1 = [b0, x] for some x ∈ g1̄. Notice that, for
any x satisfying (11.11) we have

[[a1, b1], x] = 0. (11.15)

If (11.14) holds, we have

[a, b] = [a0, b0] + [a1, b1] + [a0, b1] + [a1, b0] =

([a0, b0] + [a1, b1]) + [[a0, b0], x].
(11.16)

It follows from (11.15) and (11.16) that if x is homologic modulo center, then
h is closed under the bracket of g; if this x does not ensure non-triviality, i.e.,
if [a1, b1] = 0 for all a, b ∈ h, then hadx is just isomorphic to g0̄.

In other words, an epimorphic Volichenko algebra is a deformation of the
Lie algebra g0̄ in a totally new sense: not in the class of Lie algebras, nor in
in the class of Lie superalgebras but in the class of Volichenko algebras whose
intrinsic description is to be given. (To see that an epimorphic Volichenko
algebra h is a result of a deformation of sorts, multiply the element x that
determines h by an even parameter, t. If t were odd, we would have obtained
a deformation of g0̄ in the class of Lie superalgebras.)

Exercise. Show why it is impossible to consider any other (inconsistent with
parity) Z/2-grading (call it deg) of g and deform in a similar way the Lie
subsuperalgebra of elements of degree 0 with respect to deg. (Hint. Use eq.
(11.16).)

Any epimorphic Volichenko algebra hadx is naturally 2-step filtered: the
Lie algebra

(hadx)0̂ := Ann (x) = {a ∈ g0̄ | [x, a] = 0} (11.17)

is a subalgebra.

Problems. 1) We have a sandwich: between Hopf (super)algebras,
U((hadx)0̂) and U(g), a non-Hopf algebra, U(hadx) (the subalgebra of U(g)
generated by h), is squeezed. How to measure its “non-Hopfness”? It seems
to be an interesting invariant.

2) It is primarily real algebras and their representations that arise in ap-
plications. So what are these notions for Volichenko algebras?
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11.2.6. For a vector field D =
∑
fr∂r from vect(m|n) = derC[x, θ], consider

the nonstandard (if m 6= 0) grading induced by the grading of C[x, θ] for
which

deg xi = 0 and deg θj = 1 for all i and j. (11.18)

Define the inverse order inv.ord(fr) of fr ∈ C[x, θ] with respect to (11.18) as
the least of the degrees of monomials in the power series expansion of fr.

Define the inverse order of D ∈ vect(m|n) as the least of inv.ord(fr).

Lemma. 1) Let h ⊂ g be a simple vectorial Volichenko subalgebra, i.e.,
a subalgebra of a simple vectorial Lie superalgebra. Then in the representa-
tion h = {a + f(a) | a ∈ g0̄} we have f = adx, where x is homologic and
inv.ord(x) = −1.

2) Table 11.2.9 contains all, up to (Aut G0)-action, homologic elements
of the minimal inverse order in the vectorial Lie superalgebras. (In particular,

for s̃vect(2n) there are none.)

11.2.7. Theorem (Main Theorem). A simple epimorphic finite dimensional
Volichenko algebra h ⊂ g, where g 6= psq(n), can be only one of the form hadx ,
where:

1) x is an element from Table 11.2.9 or an element from Table 11.2.8
satisfying the condition ensuring non-triviality};

2) or a simple Volichenko subalgebra of g = psq(n), there is one additional
possibility beside the ones listed in case 1): namely, x = antidiag (X,X),
where

X = diag (a1p, b1n−p) with ap+ b(n− p) = 0. (11.19)

11.2.8. Table. Homologic elements x and the condition when x en-
sures non-triviality of hadx

for Lie superalgebras g.

g x
when x ensures
non-triviality

sl(m|n), m ≤ n xp
q :=

(
0 1(m,n,p)

1(m,n,q) 0

)
p, q > 0,
p+ q ≤ m

psl(n|n) same as for sl(n|n) and also antidiag(1n, 1n) as above

osp(2m|2n) the image of the above
xp
p ∈ sl(m|n) ⊂ osp(2m|2n),

p > 0,
2p ≤ min(m,n)

osp(2m+ 1|2n) the image of the above xp
p under the embedding

osp(2m|2n) ⊂ osp(2m+ 1|2n) as above

spe(n) ypq = antidiag(1(n,n,p), J(n,2q))
p, q > 0,
p+ 2q ≤ n

psq(n)
xk = antidiag(X,X),

where X = diag(J2(0), . . . , J2(0), 0, . . . , 0)
with k-many copies ofJ2(0) := antidiag (1, 0)

k > 0,
2k ≤ n

ag(2), ab(3),
osp(4|2;α)

the root vector corresponding to
any isotropic (odd) simple root

never
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In the following Table we have listed not only homologic elements — that is
to say Volichenko subalgebras— of finite dimensional simple Lie superalgebras
of vector fields but also simple Volichenko subalgebras of all non-exceptional
simple Lie superalgebras of vector fields, see the list in [Le3], [?].

11.2.9. Table. Homologic elements x of minimal inverse order in simple
vectorial Lie superalgebras g.

g x

vect(m|n), where mn 6= 0, n > 1 or m = 0, n > 2;
svect(m|n) for m,n 6= 1;

svect′(1|n), svect(0|2n), le(n), sle′(n) for n > 1

∂

∂θ1

k(2m+ 1|n), where n > 1 Kθ1

h(2m|n), where mn 6= 0, n > 1,
and h′(n) for n > 3

∂

∂θ1
= Hθ1 and (i =

√
−1)

∂

∂θ1
+ i

∂

∂θ2
= Hθ1+iθ2

m(n) for n > 1; bλ(n) for λ 6= 0, n > 1
M1 and

(only for bλ(2k)) M1+θ1...θ2k

b(n), n > 1 Leq1

svect(0|2n + 1), n > 1

∂

∂θ1
and

(1 + tθ2 . . . θ2n+1)
∂

∂θ1
,

where t ∈ C

Now, the final touch:

11.2.10. Proposition. Simple epimorphic Volichenko algebras from Tables
11.2.8 and 11.2.9 have no one-sided ideals.

Exercise. Prove this.

11.3. An explicit description of some simple Volichenko
algebras (U. Iyer)

Here we explicitly describe most of the above epimorphic simple Volichenko
algebras h together with

(a) its simple ambient Lie superalgebra g and an element x ∈ g1̄ that
determines it,

(b) the filtration h0̂ = Ann (x) ⊂ h,
(c) the quotient h1̂ = h/h0̂ and the multiplication in h.
The most interesting cases are the ones where h is Z/2-graded. We start

with them; the most complicated descriptions are left (so far) to the reader.

The Z/2-graded cases.
vglµ(p|q), the general linear Volichenko algebra, is described intrinsically

in Introduction and as a subalgebra in a Lie superalgebra in sec. 11.4.9
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vqµ(n), the queer Volichenko algebra; its description follows from those of

vglµ(p|q).
vpsl(n|n), the projective special linear Volichenko algebra. The ambient is

g = psl(n|n); for x = Π2n, we have

h0̂ =

{(
A 0
0 A

)}
; h1̂ =

{(
B 2B

−2B −B

)}
. (11.20)

As is easy to see, h1̂ is the adjoint h0̂-module and the bracket h1̂×h1̂ −→ h0̂
is given by the formula
[(

A 2A

−2A −A

)
,

(
B 2B

−2B −B

)]
=

(
[A,B]− 4[A,B]+ 0

0 [A,B]− 4[A,B]+

)
. (11.21)

There are two Hamiltonian Volichenko algebras:
vh(2n|m), the main Hamiltonian Volichenko algebra for which x = Hθ1 .

Since, {f, θ1}P.b. = − ∂f

∂θ1
, we see that

vh(2n|m) = {f0 + {f0, θ1}P.b. | f0 ∈ C[p, q, θ]0̄}.

If we let θ = {θ1, θ̄}, then we can nicely express the “even” and “odd” elements
of the Volichenko algebra as follows:

(vh(2n|m))0̂ = C[p, q, θ̄]0̄,

and
(vh(2n|m))1̂ = {f1θ1 + f1 | f1 ∈ C[p, q, θ̄]1̄}.

Explicit calculation of {·, ·}P.b. : v1̂ ⊗ v0̂ → v1̂:

{f1θ1 + f1, g0}P.b. = {f1, g0}P.b.θ1 + {f1, g0}P.b.
Explicit calculation of {·, ·}P.b. : v1̂ ⊗ v1̂ → v0̂:

{f1θ1 + f1, g1θ1 + g1}P.b. = −f1g1 + {f1, g1}P.b..

vm(n), the pericontact Volichenko algebra. For it, x =M1 and

{f, 1}m.b. = −2∂f∂τ .

Hence,

vm(n) = {Mg ∈ m(n) | g = f − 2
∂f

∂τ
, where p(f) = 1̄}.

The filtration on vm(n) is given by

(vm(n))0̂ = {Mg | g ∈ C[q, θ]1̄},

(vm(n))1̂ = {Mg | g = f − 2
∂f

∂τ
, where f ∈ C[q, θ]0̄τ}.
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To calculate {·, ·}m.b., we introduce several notations. Let

f = f1 + f0τ, g = g1 + g0τ ∈ v1̂, where p(fi) = p(gi) = 1̄,

∂fi
∂τ

=
∂gi
∂τ

= 0̄.
(11.22)

Explicit calculation of {·, ·}m.b. : v1̂ ⊗ v0̂ → v1̂:

{f1 + f0τ − 2f0, g1}M.b =

− {f1, g1}B.b. − f0(2 − E)(g1)− {f0, g1}B.b.τ + 2{f0, g1}B.b.

Explicit calculation of {·, ·}m.b. : v1̂ ⊗ v1̂ → v:

{f1+f0τ − 2f0, g1 + g0τ − 2g0}m.b. =
(−{f1, g1}B.b. − 4{f0, g0}B.b.+
2(f1g0 − f0g1)− (E(f1)g0 + f0E(g1)))+

(−{f1, g0}B.b. − {f0, g1}B.b. − (E(f0)g0 − f0E(g0))) τ+

2 ({f1, g0}B.b. + {f0, g1}B.b. + (E(f0)g0 − f0E(g0))) .

The Z/2-filtered cases.
vhi(2n|m), the other Hamiltonian Volichenko algebra. For it, x = Hθ1+iθ2 .

For f ∈ C[p, q, θ]0, we have

{f, x}P.b. = −
(
∂f

∂θ1
+ i

∂f

∂θ2

)
.

Let D =
∂

∂θ1
+ i

∂

∂θ2
. Then

(vhi(2n|m))0̂ = {f ∈ C[p, q, ξ]0̄ | D(f) = 0},
(vhi(2n|m))1̂ = {f −D(f) | f ∈ C[p, q, ξ]0̄, D(f) 6= 0}.

Explicit calculation of {·, ·}P.b. : v1̂ ⊗ v0̂ → v:

{f −D(f), g}P.b. = {f, g}P.b. −D({f, g}P.b.).

Explicit calculation of {·, ·}P.b. : v1̂ ⊗ v1̂ → v:

{f −D(f), g −D(g)}P.b. = {f, g}P.b. −D({f, g}P.b.) + {D(f), D(g)}P.b.

vk(2n+ 1|m), the contact Volichenko algebra. For it, x = Kθ1 and for
f ∈ C[t, p, q, θ]0̄, we have

{f, θ1}K.b. = −∂f∂t θ1 +
∂f

∂θ1
.

Let θ = {θ1, θ̄}. Then
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(vk(2m+ 1|n))0̂ = {Kf | f ∈ C[p, q, θ̄]0},

Let A = C[p, q, θ̄]. Then

(vk(2m + 1|n))1̂ = {Kf | f + {f, θ1}K.b., f ∈ A0̄ ⊗ C[t]n≥1 ⊕A1̄ ⊗ C[t]θ1}.

Explicit calculation of {·, ·}K.b. : v1̂ ⊗ v0̂ → v.

{f − ∂f

∂t
θ1 +

∂f

∂θ1
, g}K.b. = {f, g}K.b. − {∂f∂t θ1, g}K.b. + {

∂f

∂θ1
, g}K.b.

=
(
−∂f
∂t

(2− E)(g)− {f, g}P.b.
)
− ∂

∂t

(
−∂f
∂t

(2− E)(g)− {f, g}P.b.
)
θ1+

∂

∂θ1

(
−∂f
∂t

(2− E)(g)− {f, g}P.b.
)
.

(11.23)
Explicit calculation of {·, ·}K.b. : v1̂ × v1̂ → v:

{f − ∂f

∂t
θ1 +

∂f

∂θ1
, g − ∂g

∂t
θ1 +

∂g

∂θ1
}K.b. = F − ∂F

∂t
θ1 +

∂F

∂θ1
, (11.24)

where

F = {f, g}K.b. − ∂f

∂t

∂g

∂t
=

(2 − E)
(
∂f

∂θ1

)
∂2g

∂t∂θ1
− (2− E)

(
∂f

∂θ1

)
∂2g

∂ t∂θ1
− { ∂f

∂θ1
,
∂g

∂θ1
}P.b.

+

(
−E

(
∂f

∂t

)
∂2g

∂t∂θ1
− ∂2f

∂t∂θ1
E
(
∂g

∂t

))
θ1

−
(
∂2f

∂t2
(2− E)

(
∂g

∂θ1

)
+ (2− E)

(
∂f

∂θ1

)
∂2g

∂t2

)
θ1

+
(
{ ∂f
∂θ1

,
∂g

∂t
}P.b. − {∂f∂t ,

∂g

∂θ1
}P.b.

)
θ1.

(11.25)

vb(n), the Buttin Volichenko algebra. For it, x =Mq1 and

vb(n) = {f + {f, q1}m.b. | f ∈ C[q, θ]1̄}.

Set θ = {θ1, θ̄}. Since {f, q1}m.b. = ∂f

∂θ1
, it follows that

(vb(n))0̂ = {f | f ∈ C[q, θ̄]1̄}

We then have

(vb(n))1̂ = {f +
∂f

∂θ1
| f ∈ C[q, θ̄]0̄θ1}

= {f0θ1 + f0 | f0 ∈ C[q, θ̄]0̄}.

Explicit calculation of {·, ·}m.b. : v1̂ ⊗ v0̂ → v:

{f0θ1 + f0, g1}m.b. = −{f0, g1}B.b.θ1 + f0
∂g1
∂q1
− {f0, g1}B.b..
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Explicit calculation of {·, ·}m.b. : v1̂ ⊗ v1̂ → v:

{f0θ1 + f0, g0θ1 + g0}m.b.
=

(
f0
∂g0
∂q1
− ∂f0
∂q1

g0

)
θ1 +

(
f0
∂g0
∂q1
− ∂f0
∂q1

g0

)
− {f0, g0}B.b.. (11.26)

Exercise. Describe vle, the quotient of vb.

vvect(m|n), the general vectorial Volichenko algebra. For it, x =
∂

∂θ1
. Since

vect(m|n) = der(C[x, θ]), so every element of vect(m|n) can be expressed as

F =
∑
i fi

∂

∂xi
+
∑

j gj
∂

∂θj
, where fi, gj ∈ C[x, θ], it follows that

{F, ∂

∂θ1
} = −


∑

i

∂fi
∂θ1

∂

∂xi
+
∑

j

∂gj
∂θ1

∂

∂θj




for p(F ) = 0. This shows that

(vvect(m|n))0̂ = {F | fi ∈ C[x, θ̄]0̄, gj ∈ C[x, θ̄]1̄}

where θ = {θ1, θ̄}. To see further brackets in vvect, we use the following
formulas:

{fa ∂

∂xi
, gb

∂

∂xj
} =fa

(
∂gb
∂xi

)
∂

∂xj
− (−1)p(fa)p(gb)gb

(
∂fa
∂xj

)
∂

∂xi
,

{fa ∂

∂xi
, gb

∂

∂θj
} =fa

(
∂gb
∂xi

)
∂

∂θj
− (−1)p(fa)(p(gb)+1)gb

(
∂fa
∂θj

)
∂

∂xi
,

{fa ∂

∂θi
, gb

∂

∂θj
} =fa

(
∂gb
∂θi

)
∂

∂θj
− (−1)(p(fa)+1)(p(gb)+1)gb

(
∂fa
∂θj

)
∂

∂θi
.

vsl(m|n|pq), the special linear Volichenko algebra. The ambient is g=sl(m|n).
Convention. Hereafter the empty blocks are supposed to be filled in with

zeros; for convenience of some calculations we bar the elements that occupy
odd entries.

h0̂ =








a b c
e f
k
a
δ ε
ξ η k



,

where tr e = tr ε,
a ∈ gl(p), k ∈ gl(q)

e ∈ gl(m− p− q), ε ∈ gl(n− p− q)





; (11.27)

h1̂ =








α 2α −β −γ
d d
g h κ g

γ −α β γ

ψ ψ

−g −h −2κ −κ



, where tr α+ tr κ = 0





. (11.28)
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Exercise. 1) Describe the orthosymplectic Volichenko algebra vosp(m|n|p)
corresponding to the elements xpp of Table 11.2.8.

2) Describe all queer Volichenko algebra vq(n|k) of q(n) corresponding to
the element xk of Table 11.2.8.

3) Describe all periplectic Volichenko algebra vspe(n|p, q) of spe(n) corre-
sponding to the element ypq of Table 11.2.8.

11.4. Proofs

In what follows ∂i is an abbreviation for
∂

∂ξi
.

11.4.1. Lemma. For any epimorphic Volichenko algebra h ⊂ g we have:
1) p0(h) is a Lie subalgebra of g0̄;
2) [p1(h), p1(h)] ⊆ h;
3) h1̄ = h ∩ g1̄ is a p0(h)-module.

Proof. 1) straightforward.
2) Let a ∈ h; a = a0+a1 its decomposition into homogeneous components.

Then
[a, a] = [a0 + a1, a0 + a1] = [a1, a1] (11.29)

which implies the statement thanks to the symmetry of the bracket on g1̄ by
appealing to polarization.

3) For h ∈ h1̄ and a ∈ h we have

[a, h]− [h, a] = [a0, h] ∈ h1̄. ut (11.30)

11.4.2. Proof of Lemma 11.2.5. 1) Let a, b ∈ h, a = a0+a1, b = b0+b1,
a1 = f(a0), b1 = f(b0). Then

[a, b] = [a0, b0] + [a1, b1] + [a0, a1] = [b0, a1]. (11.31)

Since [a1, a1] ∈ h, then by polarizing we get the cocycle condition

f([a0, b0]) = [a0, f(b0)]− [b0, f(a0)]. (11.32)

2) Follows from f([p1(h), p1(h)]) = 0. ut
11.4.3. Lemma. Let g be a simple finite-dimensional Lie superalgebra. Then

H1(g0̄; g1̄) =

{
0 if g 6= h′(2n+ 1)
Span(c) if g = h′(2n+ 1),

where

c(HF ) = H ∂4(ξ1...ξ2n+1)

∂ξi∂ξj∂ξk∂ξl

if and only if F = ξiξjξkξl. (11.33)
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(Recall that in the realization of h′ by generating functions degLieHf =
deg f − 2.)

Proof. If g0̄ is reductive, then H1(g0̄; g1̄) = 0 since g1̄ has no g0̄-invariants.
If g is vectorial, the above argument implies that c|g0 = 0 for any

c ∈ H1(g0̄; g1̄) and the standard Z-grading of g. Therefore, c|g2 is a g-module
morphism. If c|g2 = 0, then c = 0 since g0 and g2 generate g0̄. The only
possibility for c|g2 6= 0 is realized for h′(2n+ 1), when g2 ∼= gn−6, as g0-mod-
ules. ut
11.4.4. Lemma. Let g be a simple vectorial Lie superalgebra, x ∈ g1̄,
inv.ord (x) = −1 and let x satisfy condition 2) of Lemma 11.2.5. Then x
is homologic.

Proof. g = vect(ξ1, . . . , ξn). Since inv.ord x = −1, then by (Aut g)-action we
can reduce x to the form

x = ∂1 + z, where inv.ord z ≥ 1. (11.34)

Let
[x, x] = v = vi + . . . , (11.35)

where deg vi = i with respect to the standard grading deg ξi = 1. Since
[x, v] = 0 by hypothesis and [∂1, v0] is a homogenous summand of the minimal
degree in the expression (11.35), then [∂1, v0] = 0, hence,

v0 =
∑

1≤i≤n

fi(ξ2, . . . , ξn)∂i. (11.36)

Condition ensuring non-triviality implies that for any g ∈ g0̄ (in the stan-
dard Z-grading of g) we have

[x, [x, g], [x, g]] = [[v, g], [x, g]] = 0, (11.37)

and therefore
[[v0, g], [∂1, g]] = 0 . (11.38)

Let g = ξ1∂j−ξj∂1. Then [v0, g] =
∑

1≤i≤n

ξ1
∂fi
∂ξj

∂i+f1∂j−fj∂1 and [x, g] = ∂j ,

so

[[v0, g], [∂1, g]] =
∂f1
∂ξj

∂j − ∂fj
∂ξj

∂1 = 0, i.e.,

∂f1
∂ξj

=
∂fj
∂ξj

= 0 for j = 2, . . . , n.
(11.39)

Thus, f1 = 0 and
∂fj
∂ξj

= 0 for j = 2, . . . , n.

Let g′ = g + g1, where g1 ∈ vect(ξ2, . . . , ξn) ∩ g0. Then

[[v0, g + g1], [∂1, g + g1]] = [[v0, g1], ∂j ] = 0 (11.40)
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for any j = 2, . . . , n and g1 ∈ vect(ξ2, . . . , ξn) ∩ g0.
Since v0 ∈ vect(ξ2, . . . , ξn) ∩ g, it follows from [[v0, g1], ∂j ] = 0 that

[v0, g1] = 0 for any g1 ∈ vect(ξ2, . . . , ξn) ∩ g0. (11.41)

If g = vect(ξ1, . . . , ξn), then v0 = λ
∑

2≤i≤n

ξi∂i and conditions
∂fi
∂ξj

= 0 for

j = 2, . . . , n imply v0 = 0.
g = svect(ξ1, . . . , ξn) or s̃vect(ξ1, . . . , ξn). Then v0 = 0.

g = h′(ξ1, . . . , ξn). Then v0 is a vector field with generating function

λξ2 . . . ξn. Since Hλξ2...ξn = [Hξ1 , D] implies D = Hλξ1...ξn but Hξ1...ξn 6∈ h′,
we deduce that λ = 0. Hence, v0 = 0.

Thus, in all the cases v0 = 0 implies that v = 0. ut
11.4.5. Proof of Lemma 11.2.6. g = vect(0|n), x a homologic field. Since
x must ensure non-triviality, x is a nondegenerate field. Now, apply Shander’s
rectifyability of the vector field theorem ([ShV]).

g = svect(0|n), x as above. We may assume that x = ∂1 +
∑
fi∂i,

where
∑
fi∂i is homogenous with respect to the standard grading and

deg fi = p ≥ 1. Since [x, x] = 0, then
∂fi
∂ξ1

= 0 and since div x = 0, then

∑ ∂fi
∂ξi

= 0.

Let v = x − v1, where v1 ∈ vect(0|n − 1) only depends on ξ2, . . . , ξn and
div v1 = f1. If p < n − 1, then such a vector field v always exists. The
automorphism exp(ad−v) reduces x to the form

x = ∂1 +
∑

gi∂i, where deg gi > p. (11.42)

By induction on p we bring any x to the form

xa = ∂1 + aξ2 · · · ξn∂1. (11.43)

If n is even, a = 0 since p(x) = 1̄.
If n is odd, the fields xa are not conjugate to each other for different a.

Indeed, suppose xa is conjugate to xb. Then a linear transformation which
preservs ∂1 and has determinant 1 should send xa to xb or the other way
round. But, as is not difficult to show, this is impossible.

g = h′(n). As for svect(0|n), let us represent x in the form x = Hξ1+f+...,
where deg f = p and the dots represent higher terms. Since [x, x] = 0, then
∂f

∂ξ1
= 0. The automorphism exp(ad−Hξ1f ) sends x into x′ = Hξ1+g, where

deg g > p. By induction on p we kill the summand g.
g = s̃vect(2n). Then x can be reduced to the form (∆ = ξ1 . . . ξ2n):

x = (1 +∆)∂1 + v + g, where deg v = p , deg g > p. (11.44)

Then the formula
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[x, x] = ξ2 . . . ξ2n∂1 + 2[v, ∂1] + [v, v] + . . . = 0 (11.45)

implies that [v, ∂1] = 0 and as in case svect(0|n) applying the automorphism
exp(adξ1v+v1), where v1 is defined in the discussion of the svect case, we get
rid of v, provided p ≤ 2n− 2. Since p is odd, this is always the case; hence, x
reduces to the form

x = (1 +∆)∂1. (11.46)

But this x is not homologic, hence, the statement. ut
11.4.6. Lemma. Let g = h′(2n+ 1), let ϕ be a cocycle g0̄ =⇒ g1̄ such that
ϕ(g0̄) ∧ g−1 6= 0 and

ϕ([ϕ(g1), ϕ(g2)]) = 0 for any g1, g2 ∈ g0̄. (11.47)

If n ≥ 3, then ϕ = dx for same x ∈ g0̄. If n = 2, then either ϕ = dx or
ϕ = λc, where c is defined by formula (11.33).

Proof. By Lemma 11.2.5 ϕ is of the form

ϕ(g) = [g, x] + λc(g) (11.48)

and if n ≥ 3, then x = Hξ1+g, where deg(g) > 1. Take

g1 = Hξ1...ξn , g2 = Hξ1ξ2ξ5ξ6 .

Then
ϕ([ϕ(g1), ϕ(g2)]) 6= 0 (11.49)

since c[ϕ(g1), ϕ(g2)] = c(Hξ3ξ4ξ5ξ6) = Hξ1ξ2ξ7...ξ2n+1 .
For n = 2 by automorphisms of the form exp(adg) for g ∈ g2 we may

reduce ϕ to one of the forms: either λc + dx, with deg x = 1 and λ 6= 0, or
ϕ = dx.

Consider the first option. Let x 6= 0. Then there exists g ∈ g0 such that

ϕ(x) = [x, g] = y 6= 0. (11.50)

Select ξi so that [y, ξi] 6= 0 and set z = H ∂ξ1...ξ5
∂ξ1

. Then

ϕ(z) = ξi , ϕ([y,Hξi ]) = c([y,Hξi ] 6= 0 . (11.51)

Hence, x = 0. ut
Remark. The cocycle ϕ = λc does not lead to a Volichenko algebra because

[c(x), c(y)] = 0 for any x, y ∈ g0̄ . (11.52)

11.4.7. Lemma. Let g be a simple Lie superalgebra with a reductive g0̄ and
g 6= psq. If x ensures non-triviality, then x is homologic.
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Proof. Let y = [x, x]. Select a maximal torus t ⊂ g so that y 6∈ t. (Since x
ensures non-triviality, this is possible since y can not belong to the center of
g0̄). Let R be the set of roots of g. Select h ∈ t so that

α(h) = β(h) =⇒ α = β for any α, β ∈ R (11.53)

and decompose x and y in sums of root vectors:

x = gα1 + . . .+ gαk , y = gβ1 + . . .+ gβl (11.54)

where
α1(h) < . . . < αk(h) , β1(h) < . . . < βl(h) (11.55)

Clearly, h can always be chosen so that β1(h) 6= 0. If gγ1 , gγ2 are two even
root vectors, then the condition

[x, [[x, gγ1 ], [x, gγ2 ]] = [[y, gγ1 ], [x, gγ2 ]] + [[y, gγ2], [x, gγ1 ]] = 0 (11.56)

implies
[[gβ1, gγ1 ], [gα1 , gα2 ]] + [[gβ1, gγ2 ], [gα1 , gγ1 ]] = 0 . (11.57)

If α1 is a root of type sl(2), then β1 = 2α1. Let gγ1 = gγ2 = g−β1 . Then
(11.57) fails:

2[[gβ1 , g−β1], [gα1 , g−β1]] = 2g−α1 6= 0 . (11.58)

If α1 is a root of type sl(1|1), then β1 6= kα1 and there exists h0 ∈ t

such that α1(h0) = 1, β1(h0) = 0. Let there exist γ ∈ R0̄ such that
[[gβ1 , gγ ], gα1 ] 6= 0.

Set gγ1 = h0, gγ2 = gγ . Then (11.57) takes the form

[[gβ1 , gα], [gα1 , h0]]− [[gβ1 , h0], [gα1 , gγ ]] = (11.59)

= [[gβ1 , gγ ], gα1 ] = 0, (11.60)

which is impossible.
Let us show that there always exists γ ∈ R0̄ such that

[[gβ1 , gγ ], gα1 ] 6= 0 . (11.61)

Indeed, since [x, y] = 0, then [gβ1, gα1 ] = 0. Let Hβ1 = [gβ1, g−β1 ]. If
α1(hβ1) 6= 0, then take γ = −β1. If α1(hβ1) = 0, then select γ0 so that
α1(hγ0) < 0, β1(hγ0) 6= 0. Now, set

γ =

{
γ0 if β1(hγ0) < 0

rβ1(γ0) otherwise.
(11.62)

(Here rβ1 is the reflection with respect to β1.) ut
11.4.8. Lemma. Let g = psq(n) and let x ∈ g1̄ ensure non-triviality.
Then either x is homologic or x = (0 XX 0), where X = diag(a1p, b1n−p) with
ap+ b(n− p) = 0.
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Proof. The case of a homologic x had been partly dealt with already; see
also sec. 3.10. Suppose that [x, x] 6= 0.

Reduce X to the Jordan form with Jordan blocks j1, . . . , jk:

X = diag(j1, . . . , jk) with size(j1) ≥ . . . ≥ size(jk) . (11.63)

Suppose size(j1) = r > 2. Then set Z = (Zkr), where Zi+1,i = 1 for
1 ≤ i ≤ r − 1 other entries being 0. Set g = diag (Z,Z); we should have

[x, [[x, g], [x, g]]] = antidiag([[X,Z]2, X ], [[X,Z]2, X ]) = 0 . (11.64)

Since [X,Z] = (δ1,n) + (δr,r), then [[X,Z]2, X ] 6= 0 for r > 2. Therefore,
r = 1 or 2.

Suppose r = 2. Take g1 = diag(Z1, Z1), g2 = diag(Z2, Z2), where
Z1 = (δ1,i) and Z2 = (δi,1) are n × n matrices with nonzero entries as in-
dicated. We have

[[x, g1], [x, g2]] = diag(T, T ), where

T = (x11 − xii)2((δ11) + (δii)) + T+
(11.65)

with an upper triangular matrix T+. The condition 2 of Lemma 11.2.5, i.e.,

[x, [[x, g1], [x, g2]]] = 0, (11.66)

implies [T,X ] = 0. Let Z = [T,X ], then Z12 = (x11 − xii)
2 = 0; hence,

x11 = . . . = xnn = 0, and therefore [x, x] = 0.
Suppose r = 1, then x = diag(λ1, . . . , λn). Take

g =

(
δij + δjk 0

0 δij + δjk

)
. (11.67)

Then for y = [x, x] we have

[x, [[x, g], [x, g]]] = 2[[y, g], [x, g]] = 0 . (11.68)

Explicitely, we have

[(λ2i − λ2j )δij + (λ2j − λ2k)δjk , (λi − λj)δij + (λj − λk)δjk] = (11.69)

= (λi − λj)(λj − λk)(λi − λk) · δik = 0 (11.70)

and, therefore, there are no more than two distinct eigenvalues; hence, there
are exactly two of them and, since X ∈ psq(n)1̄, X is as in formulation of
Lemma. ut
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11.4.9. The Volichenko algebra vglµ(p|q). Set q = n−p. It is convenient
to pass from psq(n) to q(n) and take

x′ = antidiag (X ′, X ′), where X ′ = X + λ1n = diag (µ1p,−µ1q)
with λ = −a+ b

2
, µ =

a− b
2

.
(11.71)

Then [x, g] = [x′, g] for any g ∈ q(n)0̄ and, therefore, condition 2 of Lemma
11.2.5 holds for x if and only if it holds for x′. But [x′, x′] belongs to the center
of q(n)0̄, hence

2[x′, [[x′, g1], [x
′, g2]]] =

[[[x′, x′], g1], [x
′, g2]] + [[x′, g1], [[x

′, x′], g2]] = 0.
(11.72)

11.4.10. Proof of Main Theorem.

Part A.

g = sl(m|n), x =

(
0m X
Y 0n

)
. Since the automorphism − st : A 7→ −Ast

interchanges (and transposes) X and Y , we may assume that p ≤ q. Next,
there exist invertible matrices A and B of sizes m×m and n×n, respectively,
such that

AXB = 1(m,n,p). (11.73)

Hence, we may assume that X = 1(m,n,p). Since [x, x] = 0, it follows that
XY = Y X = 0; thus,

Y =

(
0p 0
0 Z

)
(11.74)

with the help of automorphisms of the form Add(A,B), whereA = diag(1p, A
′),

B = diag(1p, B
′), we reduce Y to the form 1(m,n,q) and preserve X .

g = osp(m|2n). Let V be the identity o(m)-module with inner product
(·, ·), W the identity sp(2n)-module with inner product < ·, · >. Any x ∈ g1̄
is representable in the form

∑
i≤s

vi ⊗ wi, where v1, . . . , vs ∈ V are linearly

independent, and w1, . . . , ws ∈W are also linearly independent. By definition

[x, x] =
∑

i,j≤s

(vi, vj)wi ◦ wj + vi ∧ vj < wi, wj > . (11.75)

The linear independence of the vi and wi implies that

[x, x] = 0⇐⇒ (vi, vj) = 0, < wi, wj >= 0 for all i, j. (11.76)

Let V0 and W0 be maximal isotropic subspaces in V and W relative to (·, ·)
and < ·, · >, respectively. Then vi ∈ V0, w ∈W0 for all i.

The group GL(V0) × GL(W0) is naturally embedded into Aut g. Let
e1, . . . , e[m

2
] be a basis of V0 and f1, . . . , fn a basis of W0. Obviously, x can be

reduced to the form
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x = e1 ⊗ f1 + · · ·+ ep ⊗ fp, where p ≤ min([
m

2
], n). (11.77)

Thus x ∈ gl([
m

2
]|n) ⊂ osp(m|2n) and we are in the situation of the above

case.
g = psq(n), x = (0 XX 0). Since [x, x] = 0, then X2 = 0. Now, reduce X to

the Jordan form. Since X2 = 0, the size of each block is ≤ 2.
g = spe(n), x = (0 XY 0 ). By automorphisms of g0̄ we reduce X to the form

diag(1p, 0). Hence, Y = diag(0p, Z) with a skewsymmetric Z. The automor-
phisms of the form

Add (1p, A, 1p(A
t)−1) (11.78)

reduce Z to the form diag(0, J2q) and do not affect X .
g = ospα(4|2). Since g is a deformation of osp(4|2), there is a linear map

ϕ : g −→ osp(4|2) which is an isomorphism of linear superspaces (but not of
Lie superalgebras). However,

[x, x] = 0⇐⇒ [ϕ(x), ϕ(x)] = 0. (11.79)

Indeed, look at the formula for multiplication S2(g1̄) −→ g0̄ in g.
Recall that g1̄ ∼= V ⊗ V ⊗ V , where V is the identity sl(2)-module. Then,

in osp(4|2),

[x, x] = 0⇐⇒ the map S2(V ⊗ V ⊗ V ) −→ sl(2)i ⊂ g0̄ is zero. (11.80)

In g, these maps are multiplied by α (or −1 − α or
1

α
) but the result is still

zero.
g = ag(2), x ∈ g1̄ = V ⊗W , where V is the standard sl(2)-module,W = O◦

is the g(2)-module corresponding to the first fundamental representation. Let
x = v1 ⊗w1 + v2 ⊗w2, where v1, v2 is a basis of V . Then one of the following
cases may occur:

1) w1 = w2 = w. Then x = v ⊗ w and < w,w >= 0, where < ·, · > is
the inner product in W preserved by g2. Since the highest weight vector of
the identity o(7)-module is isotropic, and the G2-orbit of the highest vector
coincides with the O(7)-orbit, we may assume that v, w are highest weight
vectors with respect to sl(2) and g(2), respectively. Hence, x is conjugate to
a simple root of type sl(1|1).

2) w1 and w2 are linearly independent. Then the condition [x, x] = 0 turns
into (here ρ is multiplication in g)

< v1, v2 > ρ(w1 ∧ w2)+ < w1, w1 > ρ(v21)+

< w1, w2 > ρ(v1 · v2)+ < w2, w2 > ρ(v22) = 0.
(11.81)

Since, due to linear independence, each summand vanishes, we derive that

ρ(w1 ∧w2) = 0, < w1, w1 >=< w1, w2 >=< w2, w2 >= 0. (11.82)
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As in case 1) we may assume that w1 is a highest weight vector with respect
to g(2).

Recall ([OV]), that, as g(2) modules, Λ2W = Ad⊗W1 for an irreducible
W1, hence, ρ(w1 ∧ w1) = 0 implies that w1 ∧ w2 ∈W1. Therefore, having ap-
plied several times elements from the maximal nilpotent (positive) subalgebra
n of g, we get the highest vector from W1. On the other hand, we thus get an
element of the form w1 ∧ w for some w ∈ W (since nw1 = 0), which can only
be highest in Ad. Thus, this case is impossible.

g = ab(3). Proof is completely analogous to that of ag(2)-case where g(2)
is replaced by o(7) and W by spin7.

Part B. In what follows g ⊂ vect(m|n), m,n > 0, where vect(m|n) is consid-
ered in a nonstandard grading deg xi = 0, deg ξj = 1 for all i, j.

Observe that vect(m|n)0̄ = vect(m) ⊕ I, where I is the ideal spanned by
vector fields of the form

∑

1≤i,j≤n

fij(x)ξi∂j + g, where deg g > 0 . (11.83)

If a homologic element d ∈ der g ⊂ vect(m|n) (recall, that all derivations of any
vectorial Lie superalgebra g are contained in vect, see [K2]) determines a simple
Volichenko algebra h(d) ⊂ g, i.e., h(d) = {α+ [a, d] | a ∈ g0̄}, then there is an
element x ∈ g0̄ such that [[x, d], [x, d]] 6∈ I (otherwise Id = {a+ [a, d] | a ∈ I}
is an ideal). This means that inv.ord(d) = −1. (Lemma 11.2.5 states this for
m = 0.)

Thus, we have to classify elements

d = d−1 + d1 + d3 + . . . ∈ (der g)1̄ , d−1 6= 0, deg di = i (11.84)

such that d2 = 0 up to (Aut g)-action. Recall that Aut g is a subgroup in the
group of coordinate transformations.

g = vect(m|n).
a) Let d−1 =

∑
fi(x)

∂

∂ξi
. The shift xj 7→ xj + cj , cj ∈ C, can assure that

fi(0) 6= 0 for at least one i. Let

d−1 =
∑

1≤i≤n

λi
∂

∂ξi
+
∑

1≤j≤n

gj
∂

∂ξj
, where λi ∈ C for all i

and gj(0) = 0 for all j.

(11.85)

The transformation ξ1 7→
∑
λiξi reduces d−1 to the form

d−1 =
∂

∂ξ1
+
∑

1≤j≤n

g̃j
∂

∂ξj
, where g̃j(0) = 0 for all j . (11.86)

b) The transformation ξ1 7→ ξ1 +
∑
g̃jξj sends d−1 to

∂

∂ξ1
. Thus, we may

assume that d−1 =
∂

∂ξ1
.
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c) The condition [d, d] = 0 implies [
∂

∂ξ1
, d1] = 0. Hence the automorphism

exp(ad−ξ1d1) sends d to
∂

∂ξ1
+d1s+ . . . . Apply the automorphism exp(ad−ξ1d13)

to this field, etc. Since our nonstandard grading is of finite length, we will

eventually reduce d to the form
∂

∂ξ1
.

The rest of the proof copies the above steps a)–c) for various subalgebras
g ⊂ vect(m|n); we only have to check that our transformations of indetermi-
nates preserve the structure preserved by g.

g = svect′(m|n) (or svect(1|n); since der svect′(1|n) = der svect(1|n), proof
is the same).

a) Completely copies the vect case: the changes of variables multiply the
volume form by a constant.

b) Same, since this transformation ξ1 −→ ξ1+
∑
g̃jξj (and id on the other

ξi) is volume-preserving.

c) If for some q we have div ξ1dq 6= 0, we are in trouble. Notice that since
div d = 0, then div dq = 0. Since explicitly we have

dq =
∑

ai
∂

∂xi
+
∑

bj
∂

∂ξj
, (11.87)

it follows that div ξ1dq = b1.
Set c1=

∫
b1dx1 and instead of exp(ad−ξ1dq ) take exp(ad−ξ1dq+c1 ∂

∂x1

). Since

[
∂

∂ξi
, c1

∂

∂x1
] = 0, the result of this replacement is the same while new change

is volume-preserving, as required.
g = h(m|n).
a)–b) Consider the orthosymplectic form ω =

∑
dpjdqj +

∑
(ξi)

2. Let
d−1 = H∑

i≤n fi(p,q)ξi
. Since [d, d] = 0, we see that

∑
f2
i = const.

11.4.10.1. Lemma. Let A(t, p, q) = (aij) be an n × n-matrix such that
A−1A = λ · 1n. Then there exists an ω-preserving coordinate transformation
which multiplies the form

α = dt−
∑

(pjdqj − qjdpj)−
∑

ξidξi (11.88)

by a function and acts on the indeterminates as follows:

ξi 7→
∑

j

aijξj + ai, t 7→ t+ c, pj 7→ pj + bj , qj 7→ qj + dj , (11.89)

where ai, bj, dj and c are of deg > 1.

Proof. Consider the two possible cases.
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i)
∑
f2
i 6= 0. Select the matrix (aij) so that a1j = fj and (aij)

−1(aij) = λ·1n.
(From the standard courses of linear algebra we know that this is possible to
perform.) Then we can transform d−1 to the form Hξ1 .

ii)
∑
f2
i = 0. With the help of shifts along p, q and linear changes of

coordinates we can ascertain that f1(0) = 1, f2(0) =
√
−1, fj(0) = 0 for

j > 2. Then in a neighborhood of 0 we can solve the following equation in
formal power series

∑
fiai = 1,

∑
a2j = 0,

a1(0) = 1, a2(0) = −
√
−1 , aj(0) = 0 for j > 2.

(11.90)

Now, take the matrix aij such that

a1i = fi + ai, a2i = (fi − ai)/
√
−1 (11.91)

and satisfying Lemma 11.4.10.1. Then we can reduce d−1 to the form Hξ1+iξ2 .
ut

c) In case i) just repeat the arguments for g = vect, in case ii) in these
arguments replace ξ1 by ξ1 − iξ2.

g = k(m|n). This case reduces to the subcase ii) of the above case since
d−1 = K∑

fiξi and [d−1, d−1] = K∑
f2
i
+ L, where L ∈ g0.

g = le(n). In our grading, d−1 = Lf , where f ∈ C[[q]]/C · 1.
11.4.10.2. Lemma. a) Any invertible change of variables qi 7→ fi(q)
extends to an automorphism of the algebra C[[q, ξ]] which preserves the
form ω1 =

∑
dqidξi. This automorphism sends ξi to

∑
j

aij(q)ξj , where

(aij) = (bij)
−1 and bij =

∂fi
∂qj

.

b) If the change q 7→ f(q) preserves the volume form vol(q), then the
extended change of variables preserves the form vol(q, ξ).

c) The extended transformation sends Lef(q) into Lef(f1(q),...,fn(q))

Proof. Steps a), b). It immediately follows from Lemma 11.4.10.1 that with-
out loss of generality we may assume d−1 = Leq1 .

Step c). Let d = Leq1 +dr+ dr+2+ . . .. Then [Leq1 , d2] = 0 since [d, d] = 0.

If dr = Lef , then
∂f

∂ξ1
= 0.

A simple calculation shows that the automorphism exp(ad(−Leξ1f )) sends
d into Leq1 +d

1, where deg d1 > r. The proof is completed by induction on r.
ut

g = sle′(n). In this case d ∈ sle(n).

Steps a), b). It follows from Lemma 11.2.5 that d = d−1 + d1 + d3 + . . . ,
where d−1 = Leq1 .

It is important here that n > 1 since for n = 1 the automorphisms that
send q to f(q1) do not preserve the volume form. Besides, if n = 1, then

Ch. 11. Simple Volichenko algebras 313

h(d) = (sle(n))0̄, due to triviality of the bracket in this case, which is of no
interest.

Step c). Here we may repeat the same arguments as in the case of le(n)
provided we ensure that div Leξ1f = 0. Let div Leξ1f 6= 0. Since div d = 0,
then div Lef = 0 and, therefore,

div Leξ1f = 2
∑ ∂2ξ1f

∂ξi∂qi
= 2

∂f

∂q1
. ut (11.92)

11.4.10.3. Lemma. Let A = C[[q1, . . . , qn, ξ2, . . . , ξn]], a ∈ A and
∑
i≥2

∂2a

∂qi∂ξi
= 0. If deg a < n− 1, then there exists b ∈ A such that

∑

i≥2

∂2b

∂qi∂ξi
= a . (11.93)

Proof. First, suppose that deg f < n − 1. Set a =
∂f

∂q1
and apply Lemma

11.4.10.2. Then
[Leξ1f+b,Leq1 ] = [Leξ1f ,Leq1 ] , (11.94)

and
div Leξ1f+ψ = 0. (11.95)

Therefore, we can replace the generator Leξ1f of the automorphism of le′ by
Leξ1f+b. Then exp(ad(Leξ1f+b)) preserves sle

′.
If n is even, then deg f < n − 1 since f is even. Hence, d can always be

reduced to the form Leq1 .
Let n be odd. Then d reduces to the form Leq1+ξ2...ξnf(q1). Indeed, f only

depends on q1 since

div Leq1+ξ2···ξnf =
∑

i≥2

(
±ξ2 · · · ξ̂i · · · ξn ∂f∂qi

)
= 0 (11.96)

With the help of exp(adλLeξ1···ξn
) for an appropriate λ we can turn d into

Leq1+ξ2···ξnf(q1), where f(0) = 0.
By changes of indeterminates of the form ξ2 7→ λξ2, q2 7→ λ−1q2 we can

reduce d to the form
dg = Leq1(1+ξ2...ξng(q1)), (11.97)

where g(q1)) = qm1 + . . . .
Let us show that if g1 6= g2, then dg1 and dg2 belong to different equivalence

classes modulo Aut g-action. Indeed, if there is a change of indeterminates
sending dg1 to dg2 , it is of the form

qi 7→ ai, ξi 7→
∑

ξjbij (see Lemma 11.4.10.2), (11.98)
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where

(bij) =

(
∂aj
∂qi

)−1

. (11.99)

This transformation maps the field dg1 to

Lea1(1 + det((bij)
n
i,j=2) · ξ2 · · · ξng1(a1)). (11.100)

If dg1 is mapped to dg2 , then a1 = q1 and det((bij)
n
i,j=2) = g2/g1. Since the

map (11.98) is volume-preserving, then

det

(
∂ai
∂qj

)
/ det(bij) = 1 (11.101)

which, taking (11.99) into account yields (det(bij))
2 = 1. Since

∂a1
∂qj

= δ1j ,

then bi1 = δ1i and det(bij) = det(bij)
n
i,j=2 = ±1, and therefore g2/g1 = ±1.

Since g1(q1) = qm1
1 + . . . and g2(q1) = qm2

1 + . . ., only the case g2/g1 = 1 is
possible. This is a contradiction.

g = m(n).
Steps a), b). Let d = d−1+ . . . , where d−1 =Mf(q) and f ∈ C[[q1, . . . , qn]].

With the help of the change of indeterminates of the form

qi 7→ qi + q′i, τ 7→ τ +
∑

q′iξi (11.102)

we can guarantee that f(0) 6= 0.

11.4.10.4. Lemma. For any f ∈ C[[q1, . . . , qn]] such that f(0) 6= 0, there
exists an automorphism of the algebra C[[q1, . . . , qn, ξ1, . . . , ξn, τ ]] such that
τ 7→ f(q)τ , volume is preserved, and the contact form α0 is multiplied by
a function. This change sends Mf(q) to M1 + S, where deg S > 0.

Proof is similar to that of Lemma 3.10.3. ut
By Lemma 3.10.4 we can reduce d to the form

α =M1 + d1 + . . . . (11.103)

c) Let d = M1 + dr + dr+2 + . . .. Since [d, d] = 0, then [M1, dr] = 0.

Therefore dr =Mf and
∂f

∂τ
= 0. Consider the automorphism exp(adMτf/2

). It

sends d to M1+dr+2+ . . . . We kill the rest of the dk, k ≥ r+2, by induction.
g = sm(n). Steps a), b). Similarly to m(n) we reduce d to the form

d =M1 + dr + dr+2 + . . . . (11.104)

c) By the same arguments as for g = m(n) we can kill the term dr if
r < n − 1 with the help of the automorphism generated by Mτf/2+g, where

g ∈ C[[q1, . . . , qn, ξ1, . . . , ξn]] is such that
∑

i

∂2g

∂qi∂ξi
= −f (such g exists

thanks to Lemma 11.4.10.3). Then div Mτf/2+g = 0.

Ch. 11. Simple Volichenko algebras 315

There remains the case r = n− 1 which is only possible for n even. In this
case we can reduce d to the form M1+ξ1···ξnf(q1,...,qn). Since div d = 0, then
f = const. The automorphism

ξ1 7→ λξ1, q1 7→ λ−1q1 for λ 6= 0 (11.105)

sends M1+λξ1...ξn to M1+ξ1...ξn . Thus we arrive at the two cases of Theorem.
ut

11.4.11. Proof of Proposition 11.2.9. g = vect(m|n). Let

h = {a+ [a, x] | a ∈ g0̄},

let i ⊂ h be a right ideal which is not a two-sided ideal. Set i0 = pr0̄i. Then
for any z ∈ i0 and a ∈ g0̄, we have

[a+ [x, a], z + [x, z]] = [a, z] + [[x, a], [x, z]] + [x, [a, z]] ∈ i0, (11.106)

hence, [a, z] + [[x, a], [x, z]] ∈ i0. Take a = E1̄ =
∑
ξi

∂

∂ξi
. Then [a, x] = λ(a)x

for λ(a) ∈ Z implying [a, z] ∈ i0.
Thus, i0 is a Z-graded subspace of g0̄ (with respect to the nonstandard

grading deg xi = 0, deg ξj = 1 for all i, j). Take a homogenous g ∈ i0 such
that [a, g] 6∈ i0 for some homogenous (with respect to the Z-grading) a ∈ h.

But since deg[a, g] 6= deg[[x, a], [x, g]], we see that [a, g] + [x, a], [x, g]] 6∈ i0.
Now, there are no two-sided ideals in h since if i is such an ideal, then i0 is an
ideal in g0̄ and [[g0, x], [i0, x]] ∈ i0 which, as we have seen, is impossible.

Similar arguments apply to other vectorial Volichenko algebras had ∂
∂ξ1

. We

only have to consider not just one E1̄ but the whole maximal torus t ⊂ g0.
Since [h, x] = λ(h)x for any h ∈ t, then by (11.106) we have [h, z] ∈ i for any
z ∈ i0, h ∈ t.

Let g be not of hamiltonian series. Then g0̄ = ⊕
α∈t∗

gα, where each root

space belongs to a homogenous (with respect to the nonstandard grading)
component gk for some k ∈ Z. This implies that if g =

∑
a∈A

ga ∈ i0, then

ga ∈ i0 for all a.

Proof (a sketch of). Induction on the cardinality |A| of the set of indices.
Take h ∈ t so that a(h) 6= b(h) for all nonequal a, b ∈ A. Then

a(h)g − [h, g] =
∑

b∈A\{a}

abgb ∈ i0. (11.107)

Having repeated the procedure for all a ∈ A such that a 6= a0, we get ga0 ∈ i0.
In particular, i0 ⊂ g0̄ is a homogenous (with respect to the nonstandard
grading) subspace. The rest of the proof is similar to that for vect.

Problem. Consider the remaining case: h(2m|n).



Part II

Modular Lie algebras and Lie superalgebras:

Background and examples (A. Lebedev)



Chapter 12

Background: The modular case

12.1. Generalities

12.1.1. Definition of Lie superalgebras for p = 2. Define a Lie super-
algebra for p = 2 as a superspace g = g0̄ ⊕ g1̄ such that

g0̄ is a Lie algebra;
g1̄ is a g0̄-module (made into the two-sided one by symmetry; more exactly,

by anti-symmetry, but if p = 2 it is the same);
on g1̄ a squaring (roughly speaking, the halved bracket) is defined

x 7→ x2 such that (ax)2 = a2x2 for any x ∈ g1̄ and a ∈ K, and
(x+ y)2 − x2 − y2 is a bilinear form on g1̄ with values in g0̄.

(12.1)

(We use a minus sign, so the definition also works for p 6= 2.) The origin of
squaring is as follows: For any Lie superalgebra g, for p 6= 2 and for any odd

element x ∈ g1̄, there is an even element x2 :=
1

2
[x, x] ∈ g0̄. It is desirable to

keep this operation even if p = 2, but, since it can not be defined in the same
way, we define it separately and define the bracket of odd elements to be (this
equation is valid for p 6= 2 as well):

[x, y] := (x+ y)2 − x2 − y2. (12.2)

We also assume, as usual, that

if x, y ∈ g0̄, then [x, y] is the bracket on the Lie algebra;
if x ∈ g0̄ and y ∈ g1̄, then [x, y] := lx(y) = −[y, x] = −rx(y), where l and

r are the left and right g0̄-actions on g1̄, respectively.

The Jacobi identity for one even and two odd elements has now the fol-
lowing form:

[x2, y] = [x, [x, y]] for any x ∈ g1̄, y ∈ g0̄. (12.3)

The Jacobi identity for three odd elements now becomes
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[x2, y] = [x, [x, y]] for any x, y ∈ g1̄. (12.4)

If K 6= Z/2Z, we can replace the last condition by a simpler one:

[x, x2] = 0 for any x ∈ g1̄. (12.5)

Because of the squaring, several definitions involving brackets should be
modified:

1) For any two subspaces A and B of a given Lie superalgebra g, set

[A,B] := Span([a, b] | a ∈ A, b ∈ B);

[A,B] := [A,B] + Span(x2 | x ∈ [A,B]1̄).
(12.6)

2) For any Lie superalgebra g, set (g(0) := g)

g(1) := [g, g] + Span{g2 | g ∈ g1̄},
g(i+1) := [g(i), g(i)] + Span{g2 | g ∈ g

(i)

1̄
}. (12.7)

12.1.2. The p-structure. Let g be a Lie algebra, p > 0. For every x ∈ g,
the operator (adx)

p is a derivation of g.
The Lie algebra g is said to be restricted if there is given a map [p] : g→ g

(called p-structure) such that

(ax)[p] = apx[p] for all a ∈ K, x ∈ g; (12.8)

(x+ y)[p] = x[p] + y[p] +

p−1∑

i=1

si(x, y) for all x, y ∈ g (12.9)

where isi(x, y) is the coefficient of λi−1 in (adλx+y)
p−1(x), and also

[x[p], y] = (adx)
p(y) for all x, y ∈ g. (12.10)

12.1.2.1. Remarks. 1) Note that the condition (12.10) means that, for
every x ∈ g, the derivation (adx)

p is an inner one. If the algebra g does not
have a center, then the conditions (12.8) and (12.9) follow from (12.10).

2) The following condition is sufficient for a Lie algebra g to possess a

p-structure: For a basis {gi} of g, there are elements g
[p]
i such that

[g
[p]
i , y] = (adgi)

p(y) for all y ∈ g

(i.e., for every i the derivation (adgi)
p is an inner one).

For a given Lie superalgebra g of characteristic p > 0, let the Lie algebra
g0̄ be restricted and let

[x[p], y] = (adx)
p(y) for all x ∈ g0̄, y ∈ g, (12.11)

This gives rise to the map
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[2p] : g1̄ → g0̄ : x 7→ (x2)[p] (12.12)

satisfying the condition

[x[2p], y] = (adx)
2p(y) for all x ∈ g1̄, y ∈ g. (12.13)

The pair of maps [p] and [2p], satisfying the condition (12.13), is called a
p-structure (or, sometimes, a p|2p-structure) on g and g is said to be restricted.

12.1.2.2. 2|2-structure on Lie superalgebras. Let p = 2 and g a re-
stricted Lie superalgebra; let Lie(g) be the Lie algebra one gets from g by
forgetting the superstructure and considering [x, x] = 2x2 = 0 for x odd.
Then Lie(g) possesses a 2-structure given by

the “2” part of 2|4-structure on g0̄;
the squaring on g1̄;
the rule (x+y)[2] = x[2]+y[2]+[x, y] on the former inhomogeneous elements

of g.
So one can say that if p = 2, then the restricted Lie superalgebra (i.e., the

one with a 2|4-structure) also possesses a 2|2-structure which is defined even
on inhomogeneous elements (unlike p|2p-structures).
12.1.2.3. Remark. Note that the p-structure on g0̄ does not have to gen-
erate a p|2p-structure on g. This happens if (12.11) is not satisfied. In other
words, even if the actions of (adx)

p and adx[p] coincide on g0̄, they do not
have to coincide on the whole of g. For example, let us consider p = 2 and

g = oo
(1)
IΠ(1|2) (for the definition, see §13.7) with basis {X2

−, X−, H,X+, X
2
+},

and relations
[H,X±] = X±; [X+, X−] = H.

We can define a 2-structure on g0̄ = Span(X2
−, H,X

2
+) ' sl(2) by setting

(X2
−)

[2] = H ; H [2] = H ; (X2
+)

[2] = 0,

and extending it to the whole g0̄ by properties (12.8) and (12.9). This 2-
structure on g0̄ can not be extended to a 2|4-structure on g, since, for example,

[X2
−, [X

2
−, X−]] = 0 6= [(X2

−)
[2], X−] = X−.

12.1.3. Analogs of functions and vector fields for p > 0. Let us
consider the supercommutative superalgebra C[x] of polynomials in a inde-
terminates x = (x1, ..., xa), for convenience ordered in a “standard format”,
i.e., so that the first m indeterminates are even and the rest n ones are odd
(m + n = a). Among the integer bases of C[x] (i.e., the bases, in which the
structure constants are integers), There are two canonical ones, — the usual,
monomial, one and the basis of divided powers, which is constructed in the
following way.

For any multi-index r = (r1, . . . , ra), where r1, . . . , rm are non-negative
integers, and rm+1, . . . , rn are 0 or 1, we set
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u
(ri)
i :=

xri
i

ri!
and u(r) :=

a∏

i=1

u
(ri)
i .

These u(r) form an integer basis of C[x]. Clearly, their multiplication relations
are

u(r) · u(s) =
n∏

i=m+1

min(1, 2− ri − si) · (−1)
∑

m<i<j≤a

rjsi

·
(
r + s

r

)
u(r+s),

where
(
r + s

r

)
:=

m∏
i=1

(
ri + si
ri

)
.

(12.14)
In what follows, for clarity, we will sometimes write exponents of divided
powers in parentheses, as above, especially if the usual exponents might be
encountered as well.

Now, for an arbitrary field K of characteristic p > 0, we may consider the
supercommutative superalgebra K[u] spanned by elements u(r) with multi-
plication relations (12.14). For any m-tuple N = (N1, ..., Nm), where Ni are
either positive integers or infinity, denote

O(m;N) := K[u;N ] := SpanK

(
u(r) | ri

{
< pNi for i ≤ m
= 0 or 1 for i > m

)
(12.15)

(we assume that p∞ =∞). As is clear from (12.14), K[u;N ] is a subalgebra of
K[u]. The algebra K[u] and its subalgebras K[u;N ] are called the algebras of
divided powers; they can be considered as analogs of the polynomial algebra.

12.1.4. Miscellanies. 1) The algebra of divided powers O(n;N) (the analog
of the polynomial algebra for p > 0), and hence all CTS-prolongs acquire one
more — shearing — parameter: N .

2) Only one of these numerous algebras of divided powers are indeed gener-
ated by the indeterminates declared: If Ni = 1 for all i. Otherwise, in addition

to the ui, we have to add up
ki

i for all i ≤ m and all ki such that 1 < ki < Ni to
the list of generators. Since any derivation D of a given algebra is determined
by the values of D on the generators, we see that der(O[m;N ]) has more than
m functional parameters (coefficients of the analogs of partial derivatives) if
Ni 6= 1 for at least one i. Define special partial derivatives by setting

∂i(u
k
j ) = δiju

k−1
j for all k < pNj .

The simple vectorial Lie algebras over C have only one parameter: the
number of indeterminates. If char K = p > 0, the vectorial Lie algebras
acquire one more parameter: N . For Lie superalgebras, N only concerns the
even indeterminates.

3) The Lie (super)algebra of all derivations der(O[m;N ]) turns out to be
not so interesting as its Lie subsuperalgebra of special derivations: Let
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vect(m;N |n) a.k.a W (m;N |n) a.k.a

sder K[u;N ] = SpanK

(
ur∂k | 1 ≤ k ≤ n, ri

{
< pNi for i ≤ m
= 0 or 1 for i > m

)

(12.16)
be the general vectorial Lie algebra of special derivations.

4) For the sake of generality, observe that in the super version of Block’s
description (1.1) of semi-simple modular Lie algebras, F(nj) we should take

the supercommutative superalgebra of divided powers in n0̄
j even and n1̄

j odd
indeterminates, and set

s = ⊕
j
(sj ⊗ F(nj)) . (12.17)

12.1.5. CTS-prolongations in the modular case. A necessary condition
for a Z-graded Lie algebra g of finite depth to be simple is [g−1, g1] = g0; so
being interested in simple algebras, we note, that if [g−1, g1] 6= g0 in (g−1, g0)∗,
we can replace g0 by [g−1, g1], and the resulting space is still a Lie algebra.

Obviously, for p > 0, there is a series of Cartan prolongations labeled by
the shearing parameter N : Let the (i, N)-th prolong be

gi,N = {X ∈ vect(m;N) | degX = i, [X, ∂] ∈ gi−1,N for any ∂ ∈ g−1}.

12.1.5.1. Superizations of the Cartan prolongs and its Tanaka–
Shchepochkina generalization. These superizations are straightforward
bar one nuance:

If p = 2, then we can not, in general, replace in (g−1, g0)∗ the Lie su-
peralgebra g0 by [g1, g−1], since [g1, g−1] may be not closed under squaring.
So, if we want to replace g0 by the minimal possible space containing [g1, g−1]
and closed relative to the bracket and squaring, we should take

[g1, g−1] := [g1, g−1] + Span{g2 | g ∈ [g1, g−1]1̄}. (12.18)

12.1.6. Symmetric forms and exterior differential forms. Recall that,
as is customary in supergeometry, we use the antisymmetric wedge product for
the analogs of the exterior forms, and the symmetric ◦ product for the analogs
of the metrics. Since the differentials of odd indeterminates commute, we can,
in the super setting, consider the divided power versions of the exterior forms
(as well as the divided power versions of the algebra in the dxi relative the
◦ product). Usually we suppress the ∧ or ◦ signs, since all is clear from the
context, unless both multiplications are needed simultaneously.

Considering differential forms, we may also use divided powers dx
(∧k)
i with

multiplication relations (12.14), where the indeterminates are now the dxi of
parity p(xi) + 1̄, and the Lie derivative along the vector field X given by the
formula

LX(dx
(∧k)
i ) = (LXdxi) ∧ dx(∧k−1)

i .

Note that if we consider divided power differential forms in characteristic 2,

then for xi odd we have dxi ∧ dxi = 2(dx
(∧2)
i ) = 0.
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We can also use divided powers for chains and cochains of Lie superalge-
bras. This will affect the formula for the differential. For cochains of a given
Lie superalgebra g, this only means that a divided power of an odd element
must be differentiated as a whole:

d(ϕ(∧k)) = dϕ ∧ ϕ(∧(k−1)) for any ϕ ∈ (g∗)1̄.

For chains, the modification is a little more involved: Let g1, . . . , gn be a basis
of g. Then for chains of g with coefficients in a right module A, and a ∈ A,
we have

d

(
a⊗

n∧
i=1

g
(∧ri)
i

)
=

∑
p(gk)=1̄, rk≥2

a⊗ ∧
i<k

g
(∧ri)
i ∧ g2k ∧ g(∧(rk−2))

k ∧ ∧
i>k

g
(∧ri)
i +

∑
1≤k<l≤n, rk,rl≥1

(−1)
∑

k<m<l
rmp(gm)

a⊗ ∧
i<k

g
(∧ri)
i ∧ [gk, gl] ∧ g(∧(rk−1))

k ∧
∧

k<i<l

g
(∧ri)
i ∧ g(∧(rl−1))

l ∧ ∧
i>l

g
(∧ri)
i +

∑
rk≥1

(−1)
p(gk)

∑
m<k

rmp(gm)

(agk)⊗
∧
i<k

g
(∧ri)
i ∧ g(∧(rk−1))

k ∧ ∧
i>k

g
(∧ri)
i .

The divided powers of (co)chains naturally appear in the study of Lie su-
peralgebras for any p, even for p = 0, but at the moment their interpretation
is unknown. We suggest to denote the corresponding spaces of (co)homology
by

DPH(n,N)(g;M) and DPH(n,N)(g;M).

Note that if g is a Lie superalgebra in characteristic p = 2, and we want
to interpret its non-trivial infinitesimal deformations and its generating rela-
tions in terms of (co)homology, as we are used to, then we need elements of
DPH(2,N)(g; g) for deformations and those ofDPH(2,N)(g) := DPH(2,N)(g;K)
for relations. We can not do without divided power (co)homology (with N such
that Ni ≥ 2 for all i): Otherwise we won’t be able to take into account the
deformations changing values of squares of odd elements or relations of the
form x2 = 0.

12.2. p|2p-structures on vectorial Lie superalgebras

12.2.1. Theorem. The algebra vect(m;N |n) is restricted if and only if
N = (1, . . . , 1).

The corresponding p|2p-structure can be described as follows: Consider the
standard monomial (perhaps, consisting of divided power monomials) basis of
vect(m;N |n), consisting of elements of the form x(r)∂j . Then

(x(r)∂j)
[p] = 0 if x(r) 6= xj ;

(xj∂j)
[p] = xj∂j for all j = 1, . . . ,m+ n.

(12.19)
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It is easy to see that if N 6= (1, . . . , 1), then the algebra vect(m;N |n) has no
p|2p-structure: Let Ni > 1 for some i. Then the algebra contains the element

x
(p)
i ∂i, and we have

(ad∂i)
px

(p)
i ∂i = ∂i 6= 0.

Thus, (∂i)
[p] has to be a non-zero element of degree−p in the standard grading,

while the minimal degree of the elements of vect(m;N |n) is −1.
12.2.2. Conjecture. Simple finite dimensional modular vectorial Lie (su-
per)algebras are restricted if and only if the shearing parameter is equal to
(1, . . . , 1). Their p- or p|2p-structures are restrictions of the corresponding p-
or p|2p-structure on their ambient vect.

12.2.2.1. Problem. Prove this Conjecture.

12.3. What g(A) is

For simplicity, speaking about modular Lie (super)algebras we will assume
them of finite dimension (except for the algebra g̃(A, I) (see below) which is
practically always infinite-dimensional).

12.3.1. Warning: Which sl and psl have no Cartan matrix and which
of their relatives have them. For the most reasonable definition of Lie
algebra with Cartan matrix over C, see [K]. The same definition applies, prac-
tically literally, to Lie superalgebras and to modular Lie algebras and to mod-
ular Lie superalgebras. However, the usual sloppy practice is to attribute Car-
tan matrices to (usually simple) Lie (super)algebras none of which, strictly
speaking, has a Cartan matrix!

Although it may look strange for those with non-super experience over
C, neither the simple modular Lie algebra psl(pk), nor the simple modular
Lie superalgebra psl(a|pk + a), nor — in characteristic 0 — the simple Lie
superalgebra psl(a|a) possesses a Cartan matrix. Their central extensions —
sl(pk), the modular Lie superalgebra sl(a|pk + a), and — in characteristic 0
— the Lie superalgebra sl(a|a) — do not have Cartan matrix, either.

Their relatives possessing a Cartan matrix are, respectively, gl(pk),
gl(a|pk + a), and gl(a|a), and for the grading operator we take E1,1.

Since often all the Lie (super)algebras involved (the simple one, its central
extension, the derivation algebras thereof) are needed (and only representa-
tives of one of the latter types of Lie (super)algebras are of the form g(A)),
it is important to have (preferably short and easy to remember) notation for
each of them. For example, in addition to psl, sl, pgl and gl, we have:

for p = 3: e(6) is of dimension 78, let us designate its CM version of di-
mension 79 by ê(6), whereas the “simple core” is e(6)/c of dimension 77;

g(2) is not simple, its “simple core” is isomorphic to psl(3);
for p = 2: e(7) is of dimension 133, let us designate its CM version of

dimension 134 by ê(7), whereas the “simple core” is e(7)/c of dimension 132;
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g(2) is not simple, its “simple core” is isomorphic to psl(4);
the orthogonal Lie algebras and their super analogs are considered in de-

tail later.
In what follows, the notationD/d|B means that sdim g(A) = D|B whereas

sdim g(A)(1)/c = d|B. The general formula is

d = D − 2(size(A) − rk(A)). (12.20)

12.3.2. Generalities. Let us start with the construction of a Cartan matrix
Lie (super)algebra (in what follows: CM Lie (super)algebra or even CMLA or
CMLSA for short). Let A = (Aij) be an n × n-matrix. Let rkA = n − l. It
means that there exists an l × n-matrix T = (Tij) such that

a) the rows of T are linearly independent;
b) TA = 0 (or, more precisely, “zero l× n-matrix”).

(12.21)

Indeed, if rkAT = rkA = n− l, then there exist l linearly independent vectors
xi such that ATxi = 0; set

Tij = (xi)j .

Let the elements e±i , hi (where i = 1, . . . , n) generate a Lie superalgebra
denoted g̃(A,Par), where Par = (p1, . . . pn) ∈ (Z/2)n is a collection of parities
(p(e±i ) = pi), free except for the relations

[e+i , e
−
j ] = δijhi; [h, e±j ] = ±αj(h)e±j for any h ∈ h and any i, j;

[h, h] = 0.
(12.22)

We often write I instead of Par, for brevity. The simple (and “relatives” of
simple) Lie (super)algebras with Cartan matrix that we denote by g(A, I)
are quotients of g̃(A, I) modulo the ideal we describe in general terms below
(relations (20.14)) and precisely in [BGL1, BGL2, LCh].

Set

ci =
n∑

j=1

Tijhj, where i = 1, . . . , l. (12.23)

Then, from the properties of the matrix T , we deduce that

a) the elements ci are linearly independent;
b) the elements ci are central, because

[ci, e
±
j ] = ±

(
n∑
k=1

TikAkj

)
e±j = ±(TA)ije±j .

(12.24)

The existence of central elements means that the linear span of all the
roots is only (n− l)-dimensional. (This can be explained even without central
elements: The weights can be considered as column-vectors with i-th element
being the corresponding eigenvalue of adhi . The weight of ei is the i-th column
of A. Since rkA = n− l, the linear span of all columns of A is (n− l)-dimen-
sional (just by definition of the rank). Since any root is an (integral) linear
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combination of the weights of the ei, the linear span of all roots is (n− l)-di-
mensional.) This means that some elements which we would like to see having
different (even opposite if p = 2) weights have, actually, identical weights. To
fix this, we do the following: Let B be an arbitrary l × n-matrix such that

the (n+ l)× n-matrix

(
A
B

)
has rank n. (12.25)

Let us add to the algebra the grading elements di, where i = 1, . . . , l, subject
to the following relations:

[di, e
±
j ] = ±Bijej ; [di, dj ] = 0; [di, hj ] = 0 (12.26)

(the last two relations mean that the di lie in the Cartan subalgebra, and even
in the maximal torus).

Note that these di are outer derivations of g, i.e., they can not be obtained
as linear combinations of brackets of elements of the algebra (i.e., they do not
lie in g(1)).

12.3.3. g̃(A, I). First, recall, how to construct a Lie superalgebra from a
Cartan matrix ([GL1]). Let A = (Aij) be an arbitrary n× n matrix of rank l
with entries in K, such that

if Aij = 0, then Aji = 0 for all 1 ≤ i, j ≤ n. (12.27)

Fix a (purely even) vector space h of dimension 2n− l and its dual h∗, select
a set 1) of n linearly independent vectors hi ∈ h and n linearly independent
vectors αj ∈ h∗ so that αi(hj) = Aij .

Let I = {i1, . . . , in} ∈ (Z/2Z)n; consider the free Lie superalgebra
g̃(A, I) generated by e±1 , . . . , e

±
n , where p(e

±
j ) = ij, and h, and defining re-

lations(hereafter in similar occasions either all superscripts ± are + or all
are −)
[e+i , e

−
j ] = δijhi; [h, e±j ] = ±αj(h)e±j for any h ∈ h and any i, j; [h, h] = 0.

(12.28)

12.3.3.1. Remark. Observe that in (12.28) one may not replace an arbi-
trary h by the hi (and then αj(hi) by Aji), as in the case of non-degenerate
Cartan matrix, since the hi do not span h.

Clearly, the algebra g̃(A, I) possesses a Zn-grading such that

deg h = (0, . . . , 0);
deg e±i = (0, . . . , 0,±1, 0, . . . , 0) where ±1 stands in the i-th slot.

(12.29)

The following statements over C is well known for the Lie algebras [K]; for
Lie superalgebras over C, it is due to Serganova and van de Leur [Se1, vdL];
for Lie superalgebras over p 6= 2, see [CE2].

1 For any two such systems of vectors {hi, αj | i, j = 1, . . . , n} and
{h′

i, α
′
j | i, j = 1, . . . , n}, there exists a linear map L ∈ GL(h) such that Lhi = h′

i

and L∗αj = α′
j for all i, j. In this sense, such a system is unique.
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12.3.3.2. Statement. a) Let g̃+ and g̃− be the superalgebras in g̃(A, I) gen-
erated by e±1 ,. . . , e

±
n ; then g̃(A, I) ∼= g̃+ ⊕ h⊕ g̃−, as vector superspaces.

b) Assume that p 6= 2 or if ij = 1̄ for some 1 ≤ j ≤ n, then Ajk 6= 0 for
some k = 1, . . . , n. Then there exists a maximal ideal r among the ideals of
g̃(A, I) whose intersection with h is zero.

c) The ideal r can be represented as a direct sum of spaces homogenous
w.r.t. grading (12.29).

Remark. The ideal r is the direct sum of the ideals r
⋂

g̃+ and r
⋂
g̃−.

Set g(A, I) = g̃(A, I)/r. Both g(A, I) and g(1)(A, I) may contain a center.
As proved in [Se1, vdL], the centers c of g(A, I) and c′ of g(1)(A, I) consist of
all h ∈ h such that αi(h) = 0 for all i = 1, . . . , n; this is also true for p > 0.

12.3.3.3. Remark. In the case of p > 0, it may happen that h is not a
Cartan subalgebra of g(A, I); see Remark 12.3.6.1.

Clearly, in relations (12.28),

the rescaling e±i 7→
√
λie

±
i , sends A to A′ := diag(λ1, . . . , λn) ·A. (12.30)

12.3.3.4. Cartan matrices. Given a Lie superalgebra g(A, I), the matrix
A (more precisely, the pair (A, I)) is said to be a Cartan matrix of g(A, I).
Two pairs (A, I) and (A′, I ′) are said to be equivalent if (A′, I ′) is obtained
from (A, I) by a composition of a permutation of indices and a rescaling

A′ = diag(λ1, . . . , λn) ·A, where λ1 . . . λn 6= 0. (12.31)

Clearly, equivalent pairs determine isomorphic Lie superalgebras. We will call
a matrixA symmetrizable if it can be made symmetric by the operation (12.31)
for some value of λi.

12.3.3.5. Roots. The elements of h∗ are called weights. For a given weight
α, its weight subspace of a representation V of g is defined as

Vα := {x ∈ g | exists N ∈ Z+ such that (α(h) − adh)
Nx = 0 for all h ∈ h}.

For Lie (super)algebras of the form g(A), we may assume N = 1. Further in
this section g denotes g(A, I).

Any non-zero element x ∈ Vα is said to be of weight α. Over C, it is cus-
tomary to call the weights of the adjoint representation roots. In the modular
case another definition seems to be more appropriate, we will give it shortly.

12.3.3.6. Statement ([K]). The space of the Lie superalgebra g can be rep-
resented as a direct sum of subspaces

g = h⊕
⊕

α∈h∗

gα.
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This statement is well-known over C; note that h 6= g0 for p = 2. We also
have

g(1) = Span(h1, . . . , hn)⊕
⊕

α∈h∗

gα.

By construction, the elements 2) e±i with the same superscript (either +
or −) have linearly independent weights αi, and any α such that gα 6= 0 lies
in the Z-span of {α1, . . . , αn}.

According to the part c) of Statement 12.3.3.2, the algebra g has also
a Zn-grading (12.29); in what follows we will consider it as Rn-grading for
simplicity of formulations. If p = 0, this grading is equivalent to the weight
grading of g. If p > 0, this may be not true: in particular, if p = 2, then the
elements e+i and e−i have the same weight. (That is why in what follows we
consider roots as elements of Rn, not as weights.)

Any non-zero element α ∈ Rn is called a root if the corresponding space
of grade α(which we denote gα by abuse of notation) is non-zero. The set R
of all roots is called the root system of g.

Clearly, the subspaces gα are purely even or purely odd, and the corre-
sponding roots are said to be even or odd. Moreover, we have the following

12.3.3.7. Statement. Let g = g(A). For any α ∈ R, the space gα is one-di-
mensional.

Proof. This is true for Lie algebras for p = 0, see [K3]. Since all finite-dimen-
sional Lie (super)algebras of the form g(A, I) for p > 3 (except osp(4|2;α))
can be represented in the form g0⊗ZK, where g0 is a Lie (super)algebra with
CM over Z (see sect. 12.4.0.4), it is also true for them. It remains to check
the cases of p = 2 and exceptions for p = 5, 3 and 2 (for the classification
of Lie algebras, see [WK], for that of Lie superalgebras, see [BGL7]). This is
performed case-by-case. ut

For such definition of roots, there is no pairing (γ, h) for a root γ and
element h ∈ h anymore; we should replace it by a function

ev : R× h→ K, ev(γ, h) = the eigenvalue of adh on gγ .

Clearly, this function ev is linear in the second argument in the usual sense,
and it is Z-linear in the first argument in the sense that

ev(
k∑

i=1

ciγi, h) =
k∑

i=1

ciev(γi, h)

for any integers ci (which are considered as elements of Z or R in the left-hand
side and as elements of K in the right-hand side) and any roots γi such that

2 We denote the images of e±i and hi in g(A, I) and g(1)(A, I) also by e±i and hi by
abuse of notation.
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∑
ciγi is a root. And the other way round, if a function f : R → K is such

that

f(

k∑

i=1

ciγi) =

k∑

i=1

cif(γi) (12.32)

for any integers ci and any roots αi such that
∑
ciγi is a root, then there is

an element h ∈ h such that ev(γ, h) = f(γ) for any root γ (it is enough to
choose h so that the condition ev(γ, h) = f(γ) was satisfied for all roots γ
corresponding to e+i (such h exists because the elements αj ∈ h∗ are linearly
independent); then, since any root can be represented as an integral linear
combination of these roots and due to (12.32), this condition is satisfied for
any root). Note that this may be not true for the Lie superalgebra g(1)(A, I).

12.3.4. p|2p-structure on g; restricted Lie superalgebras.

12.3.4.1. Proposition. 1) If p > 2 (or p = 2 but Aii 6= 1̄ for all i) and
g(A) is finite-dimensional, then g(A) has a p|2p-structure such that

(xα)
[p] = 0 for any even α ∈ R and xα ∈ gα,

h[p] ⊂ h.
(12.33)

2) If all the entries of A are elements of Z/pZ, then we can set h
[p]
i = hi for

all i = 1, . . . , n. In this case the algebra g(1)(A) also possesses a p|2p-structure.
If A has entries not from Z/pZ, then g(1) may have no p|2p-structure even if
g(A) has one.

3) The quotient modulo center of g(A) or g(1)(A) always inherits the p-
structure of g(A) or g(1)(A) (if any) whereas g(1)(A) does not necessarily
inherit the p-structure of g(A).

12.3.4.2. Remark. 1) Note that for any integers c1, . . . , ck and any roots

γ1, . . . , γk such that γ =
k∑
i=1

ciγi is a root, the eigenvalue of (adh)
p on gγ is

equal to

ev

(
k∑
i=1

ciγi, h

)p
=

(
k∑
i=1

ciev(γi, h)

)p
=

k∑
i=1

(ciev(γi, h))
p =

k∑
i=1

ci(ev(γi, h))
p,

(since cp = c for any c ∈ Z/pZ). I.e., the function of eigenvalue of (adh)
p on

gγ satisfies the condition (12.32). Thus, there really exists an element h[p] ∈ h

such that adh[p] = (adh)
p.

2) There are known examples of Lie superalgebras without Cartan matrix
but with a 2-structure, e.g., psl, oI(n).

12.3.4.3. Example. 1) Observe that the center c of wk(3; a) is spanned by
ah1 + h3. The 2-structure on wk(3; a) is given by the conditions (e±α )

[2] = 0
for all root vectors and the following ones:

a) For the matrix B = (0, 0, 1) in (12.25) for the grading operator d, set:

Ch. 12. Background: The modular case 331

(adh1)
[2] = (1 + at)h1 + th3 ≡ h1 (mod c),

(adh2)
[2] = ath1 + h2 + th3 + a(1 + a)d ≡ h2 + a(1 + a)d (mod c),

(adh3)
[2] = (at+ a2)h1 + th3 ≡ a2h1 (mod c),

(add)
[2] = ath1 + th3 + d ≡ d (mod c),

(12.34)
where t is a parameter.

b) Taking B = (1, 0, 0) in (12.25) we get a more symmetric answer:

(adh1)
[2] = (1 + at)h1 + th3 ≡ h1 (mod c),

(adh2)
[2] = ath1 + ah2 + th3 + (1 + a)d ≡ ah2 + (1 + a)d (mod c),

(adh3)
[2] = (at+ a2)h1 + th3 ≡ a2h1 (mod c),

(add)
[2] = ath1 + th3 + d ≡ d (mod c),

(12.35)
(The expressions are somewhat different since we have chosen a different basis
but on this simple Lie algebra the 2-structure is unique.)

2) The 2-structure on wk(4; a) is given by the conditions (e±α )
[2] = 0 for

all root vectors and
(adh1)

[2] = ah1 + (1 + a)h4,

(adh2)
[2] = ah2,

(adh3)
[2] = h3,

(adh4)
[2] = h4.

(12.36)

12.3.4.4. (2, 4)- and (2,−)-structures on Lie algebras. If p = 2, we
encounter a new phenomenon: a 2, 4-structure on Lie algebras. 3) Namely, let
g = g+⊕ g− be a Z/2Z-grading of a Lie algebra (not superalgebra) g. We say
that g has a (2,−)-structure, if there is a map [2] : g+ → g+ such that (we
consider the case of centerless g for simplicity)

[x[2], y] = [x, [x, y]] for all x ∈ g+, y ∈ g,

but there is no 2-structure on g. It sometimes happens that this (2,−)-
structure can be extended to (2, 4)-structure, i.e., there is a map [4] : g− → g+
such that

[x[4], y] = [x, [x, [x, [x, y]]]] for all x ∈ g−, y ∈ g.

Here is an example of such occurrence: if indecomposable symmetrizable
matrix A of size n > 1 is such that

Ann = 1̄; Aii = 0̄ for i < n,

and the Lie algebra g(A) is finite-dimensional, then g(A) has no 2-structure
but has a (2, 4)-structure with the Z/2Z-grading given by:

deg(h) = 0̄; deg(e±n ) = 0̄; deg(e±i ) = 0̄ for i < n.

In particular, the Lie algebra g = o(1)(2n+ 1) with Cartan matrix

3 Observe a slightly different notation: (2, 4), not 2|4.
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. . .
. . .

. . .
...

. . . 0̄ 1 0

. . . 1 0̄ 1
· · · 0 1 1̄




can be considered as the algebra of matrices of the form


A X B
Y T 0 XT

C Y AT


 , where

A ∈ gl(n); B,C ∈ ZD(n);
X,Y are column n-vectors.

Then g+ consists of matrices with X = Y = 0, and the map [2] is given by
the squaring of matrices, g− consists of matrices with A = B = C = 0, and
the map [4] is given by the fourth power of matrices.

12.3.4.5. (2, 4)|2-structure on Lie superalgebras. Similarly, the Lie

superalgebra oo
(1)
IΠ(2k0̄ + 1|2k1̄) has a (2, 4)|2-structure (i.e., the squaring on

the odd part and a (2, 4)-structure on the even part such that the conditions

(adx[2])y = (adx)
2y for all x ∈ (oo

(1)
IΠ(2k0̄ + 1|2k1̄)0̄)+ and

(adx[4])y = (adx)
4y for all x ∈ (oo

(1)
IΠ(2k0̄ + 1|2k1̄)0̄)−

(12.37)

are satisfied for any y ∈ oo
(1)
IΠ(2k0̄+1|2k1̄), not only for y ∈ oo

(1)
IΠ(2k0̄+1|2k1̄)0̄.

12.3.4.5a. Remark. Recently Dzhumadildaev investigated a phenomenon
resembling p-structure: For the general and divergence-free Lie algebras of
polynomial vector fields in n indeterminates over C, he investigated for which
N = N(n) the anti-symmetrization of the map D 7−→ DN (i.e., the expression∑
σ∈SN

sign(σ)Xσ(1) . . . Xσ(N)) yields a vector field. For the answer in some

cases, see [Dz]. Amazingly, in order to describe his new operations, he used
certain hidden supersymmetry of the seemingly non-super problem.

Problem. Generalize Dzhumadildaev’s result to other dimensions, to Lie
superalgebras, to simple Lie (super)algebras of vector fields other than vect or
svect, and to modular Lie (super)algebras.

12.3.5. Systems of simple and positive roots. Let R be the root system
of g = g(A, I).

For any subset B = {σ1, . . . , σm} ⊂ R, we set:

R±
B = {α ∈ R | α = ±

∑
niσi, where ni ∈ Z+}.

The set B is called a system of simple roots of R (or g) if σ1, . . . , σm are
linearly independent and R = R+

B∪R−
B. Note that R contains basic coordinate

vectors and, therefore, spans Rn; thus, any system of simple roots contains
exactly n elements.
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A subset R+ ⊂ R is called a system of positive roots of R (or g) if there
exists x ∈ Rn such that

(α, x) ∈ R\{0} for all α ∈ R,
R+ = {α ∈ R | (α, x) > 0}.

(Here (·, ·) is the standard Euclidean inner product in Rn).
By construction, any system B of simple roots is contained in exactly one

system of positive roots, which is precisely R+
B .

12.3.5.1. Statement. Any system R+ of positive roots of g contains exactly
one system of simple roots. This system consists of all the positive roots (i.e.,
elements of R+) that can not be represented as a sum of two positive roots.

Let B = {σ1, . . . , σn} be a system of simple roots. Choose non-zero ele-
ments ẽ±i ∈ g±σi ; set h̃i = [ẽ+i , ẽ

−
i ] , AB = (Aij), where Aij = σi(h̃j) and

IB = {p(ẽ1), · · · , p(ẽn)}. (The pair (AB , IB) constructed here is not uniquely
defined by B, but all the pairs (AB , IB) are equivalent to each other, and
for any such pair (AB, IB), we have g(AB , IB) ' g(A, I).) Still, it may be
impossible to construct the initial Cartan matrix (A, I) from a given system
of simple roots B in such a way.

12.3.5.2. Equivalent systems of simple roots. Two systems of simple
roots B1 and B2 are said to be equivalent if the pairs (AB1 , IB1) and (AB2 , IB2)
are equivalent.

12.3.5.3. Convention. To be able to distinguish the case of the even simple
root from the odd one where Aii = 0, we write Aii = 0̄ and Aii = 1̄ instead
of 0 and 1, respectively, if p(σi) = 0̄.

12.3.6. Statement. Let B be a system of simple roots of g, ẽ±i for i = 1,. . . ,
n the corresponding set of generators and AB = (Aij) the Cartan matrix. Fix
an i, and let fi be the Lie subsuperalgebra generated by the e±i . Then:

a) If p(σi) = 0̄ and Aii 6= 0̄, then 2σi 6∈ R and fi is isomorphic to sl(2).
b) If p(σi) = 0̄ and Aii = 0̄, then 2σi 6∈ R and fi is isomorphic to

hei(2; p)⊂+Kd, where hei(2; p) is the modular Heisenberg Lie algebra on two
generators (one creation and one annihilation) (we will simply write hei(2n|m)
instead of hei(2n|m; p) if the characteristic p is known). Its natural (irreducible
non-trivial) representation is realized in the Fock space of functions O(1; 1).

c) If p(σi) = 1̄ and Aii = 0, then 2σi 6∈ R and fi is isomorphic to gl(1|1).
d) If p(σi) = 1̄ and Aii 6= 0, then 3σi 6∈ R and fi is isomorphic to osp(1|2)

(or to oo
(1)
IΠ(1|2) if p = 2).

Proof is subject to a direct verification.

12.3.6.1. Remark. In the case (d), the algebra fi (and, thus, g) contains
elements (e±i )

2. If p = 2, then these elements have zero weights, and h acts
on them nilpotently (in the cases I know of — just by 0). Thus, in this case,
h is not a Cartan subalgebra in the usual sense (i.e., a maximal nilpotent
subalgebra that coincides with its normalizer).
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12.3.7. Normalization conventions. Analogs of the Dynkin dia-
grams. As it is said above, to a given system of simple roots correspond
different (equivalent) pairs (AB , IB). It would be nice to find a convenient
way to fix some distinguished pair (AB , IB) in the equivalence class. It is
hardly possible to choose some “best” (first among equals) order of indices;
usually we try to find such order, though, in order to minimize the value

max
i,j∈{1,...,n} such that (AB)ij 6=0

|i− j| (12.38)

(i.e., gather the non-zero entries of A as close to the main diagonal as possible).
Though not always: for the standard numerations of roots for Lie algebras e(n)

(for example,
1 2 3 4 5 6 7

8
for e(8)) this value is equal to 3; one could make

it equal to 2 by choosing the numeration
1 2 3 4 5 7 8

6
for e(8) and similar

numerations
1 2 3 5 6

4
for e(6) and

1 2 3 4 6 7
5

for e(7).

The rescaling affects only the matrix AB , not the set of indices IB . In the
case of finite dimensional (and for certain types of infinite dimensional) Lie
algebras over C, the Cartan matrices are rescaled so that Aii = 2 for all i. In
the case of Lie superalgebras over fields of arbitrary characteristic, there is no
universally accepted way of rescaling Cartan matrices. Still it is convenient to
rescale AB so that

(AB)ii =





2 if p 6= 2 and p(σi) = 0̄ and Aii 6= 0,

1̄ if p = 2 and p(σi) = 0̄ and Aii 6= 0̄,

1 if p(σi) = 1̄ and Aii 6= 0 or 0̄.

(12.39)

We call a Cartan matrix satisfying conditions (12.39) normalized. If the
Lie superalgebra g(AB , IB) corresponding to a normalized Cartan matrix is
finite-dimensional, then the rows of the matrix with non-zero diagonal en-
tries contain only integer entries. It means, in particular, that families of fi-
nite-dimensional CM Lie superalgebras generated by Cartan matrices with a
parameter can not have this parameter in rows with non-zero diagonal entries.

The row with a 0 on the main diagonal can be multiplied by any nonzero
factor; we usually multiply it so that AB be symmetric, if possible. (A sym-
metrized but not normalized Cartan matrix is also useful: it gives the values
of the inner product of simple roots (i.e., bilinear form on h∗ dual to the re-
striction of an invariant non-degenerate form on g onto h), see [LSoS], and is
needed to pass from one system of simple roots to another.)

For p > 0, for each simple finite dimensional Lie (super)algebra ([WK,
BGL5]) of the form g(A, I), the Cartan matrix A is symmetrizable.

We often denote the set of generators corresponding to a normalized ma-
trix by X±

1 , . . . , X
±
n instead of e±1 , . . . , e

±
n ; and call them, together with the

elements hi := [X+
i , X

−
i ] for all i, the Chevalley generators.
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12.3.8. Dynkin diagrams. A usual way to represent simple Lie algebras
over C with integer Cartan matrices is via graphs called, in the finite di-
mensional case, Dynkin diagrams. The Cartan matrices of certain interesting
infinite dimensional simple Lie superalgebras g (even over C) can be non-
symmetrizable or (for any p in the super case and for p > 0 in the non-super
case) have entries belonging to the ground field K. Still, it is always possible
to assign an analog of the Dynkin diagram to both Lie superalgebras of poly-
nomial growth, and to finite dimensional modular Lie algebras (if these Lie
(super)algebras possess Cartan matrices). Perhaps, the edges and nodes of the
graph should be rigged with an extra information. Although these analogs of
the Dynkin graphs are not uniquely recovered from the Cartan matrix (and
the other way round), they are helpful in graphic presentation of the Cartan
matrices.

Namely, the Dynkin–Kac diagram of the matrix (A, I) is a set of n nodes
connected by multiple edges, perhaps endowed with an arrow, according to
the usual rules ([K]) or their modification, most naturally formulated by
Serganova: compare [Se1, FLS] with [FSS]. In what follows, we recall these
rules.

12.3.8.1. Nodes. The nodes of the diagram correspond to simple roots; the
form of a node depends on the corresponding root as follows:





a node ⊗ if p(αi) = 1̄ and Aii = 0,

a node • if p(αi) = 1̄ and Aii = 1;

a node ∗ if p(αi) = 0̄ and Aii = 1̄

a node ◦ if p(αi) = 0̄ and Aii = 2;

a node � if p(αi) = 0̄ and Aii = 0̄.

(12.40)

12.3.8.2. Remarks. 1) The Lie algebra with Cartan matrix (0̄) and the
Lie superalgebra with Cartan matrix (0) are solvable of dim 4 and sdim 2|2,
respectively. Their derived algebras — Heisenberg algebras — are denoted
hei(2) ' hei(2|0) and hei(0|2) ' sl(1|1), respectively; their (super)dimensions
are 3 and 1|2, respectively).

2) A posteriori (from the classification of simple Lie superalgebras with
Cartan matrix and of polynomial growth for p = 0) we find out that the
roots � can only occur if g(A, I) grows faster than polynomially. Thanks to
classification again, if dim g <∞, the roots � can not occur if p > 3; whereas
for p = 3, the Brown Lie algebras are examples of g(A) with a simple root of
type �, see [BGL5].

12.3.9. Edges. If i-th and j-th nodes are not connected, then Aij = Aji = 0.
If i-th and j-th nodes are connected by a single edge rigged by a number

a, then Aij = Aji = a. If there is no number a, then Aij = Aji = −1.
If i-th and j-th nodes are connected by k > 0 edges with an arrow pointing

from i-th to j-th node, then Aij = −k, Aji = −1.
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This all should be modified by the following condition: if both i-th and
j-th nodes correspond to odd roots, and the i-th node is located to the left
from the j-th node, then Aji must be multiplied by −1.

More complicated cases are possible, but we don’t use them in this thesis.

12.3.10. Reflections and Chevalley generators. Let R+ be a sys-
tem of positive roots of Lie superalgebra g, and let B = {σ1, . . . , σn}
be the corresponding system of simple roots with some corresponding
pair (A = AB , I = IB). Then for any k ∈ {1, . . . , n}, the set
(R+\({aσk | a > 0} ∩R))∐({−aσk | a > 0} ∩R), equal to

{
(R+\{σk})

∐{−σk} if 2σk 6∈ R;
(R+\{σk, 2σk})

∐{−σk,−2σk} if 2σk ∈ R,

is a system of positive roots. This operation is called the reflection in σk; it
changes the system of simple roots by the formulas

rσk (σj) =

{
−σj if k = j,

σj +Bkjσk if k 6= j,
(12.41)

where

Bkj =





−2Akj

Akk
if ik = 0̄, Akk 6= 0, and − 2Akj

Akk
∈ Z/pZ,

p− 1 if ik = 0̄, Akk 6= 0 and − 2Akj

Akk
6∈ Z/pZ,

−Akj

Akk
if ik = 1̄, Akk 6= 0, and − Akj

Akk
∈ Z/pZ,

p− 1 if ik = 1̄, Akk 6= 0, and − Akj

Akk
6∈ Z/pZ,

1 if ik = 1̄, Akk = 0, Akj 6= 0,

0 if ik = 1̄, Akk = Akj = 0,

p− 1 if ik = 0̄, Akk = 0̄, Akj 6= 0,

0 if ik = 0̄, Akk = 0̄, Akj = 0.

(12.42)

12.3.10.1. Remarks. 1) Here we consider Z/pZ as the subfield of K gen-
erated by 1.

2) In the second, fourth and penultimate cases, the bij can, in principle,
be equal to (kp − 1) for any k ∈ N, and in the last case any element of K
may occur. We may only hope at this stage that, at least for dim g <∞ such
occurrences do not happen.

The values −2Akj

Akk

and −Akj

Akk

are elements of K, while the roots are ele-

ments of a vector space over R. Thus, these expressions here should be un-

derstood as “the minimal non-negative integer congruent to −2Akj

Akk
or −Akj

Akk
,

correspondingly”. (If dim g < ∞, these expressions are always congruent to
integers.)
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There is known just one exception: if p = 2, Akk, Ajk 6= 0, then −2Akj

Akk

should be understood as 2, not 0.
The name “reflection” is used because in the case of (semi)simple finite-di-

mensional Lie algebras over C this action extended on the whole R by linearity
is a map from R to R, and it does not depend on R+, only on σk. This map
is usually denoted by rσk or just rk. The map rσi extended to the R-span of
R is reflection in the hyperplane orthogonal to σi relative the bilinear form
dual to the Killing form.

The reflections in the even (odd) roots are referred to as even (odd) reflec-
tions. A simple root is called isotropic, if the corresponding row of the Cartan
matrix has zero on the diagonal, and non-isotropic otherwise. The reflections
that correspond to isotropic or non-isotropic roots will be referred to accord-

ingly. Reflection in a non-isotropic even root σk such that
2Aki

Akk

∈ Z/pZ for

all i maps a system of simple roots to an equivalent one (in the sense of def-
inition 12.3.5.2); moreover, the corresponding Cartan matrix stays the same.

Reflection in a non-isotropic even root σk such that
2Aki

Akk

6∈ Z/pZ for some i

maps a system of simple roots to a non-equivalent one. In particular, let us
consider the case of Brown algebra br(2, a) (where p 6= 0,−1) in characteristic
3 with Cartan matrix (

2 −1
a 2

)
. (12.43)

The reflection of a system of simple roots corresponding to this matrix in
the second simple root maps this system to a system with Cartan matrix
equivalent to (

2 −1
−(a+ 1) 2

)

(and not equivalent to (12.43) unless a = 1).
For Lie superalgebras over C, one can extend the action of reflections by

linearity to the root lattice but this extension preserves the root system only
for sl(m|n) and osp(2m+ 1|2n), cf. [Se1].

In the general case (of Lie superalgebras and p > 0), the action of isotropic
or odd reflections can not be extended to a linear map R −→ R. These
reflections just connect pair of “neighboring”’ systems of simple roots and
there is no reason to expect that we can multiply two distinct such reflections.

The reflection in the root σk sends one set of Chevalley generators into
the new one as follows (up to scalars)

X̃±
k = X∓

k ; X̃±
j = (adX±

k
)BkjX±

j for j 6= k. (12.44)

12.3.10.2. An analog of Serganova’s lemma.

Lemma. For any two systems of simple roots B1 and B2 of any finite dimen-
sional Lie superalgebra with indecomposable Cartan matrix, there is always a
chain of reflections connecting B1 with B2.
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Proof. The analogous statement for the systems of positive roots is clear,
and the one-to-one correspondence between the systems of simple and positive
roots gives us this statement. It allows one to find all Cartan matrices of a
given algebra. ut

12.4. The Kostrikin–Shafarevich conjecture and its
generalizations

12.4.0.3. The KSh-conjecture. For p > 5, each of simple finite dimen-
sional restricted Lie algebras is obtained by one of the following methods:

1) For each simple Lie algebra of the form g(A) over C with Cartan matrix
A normalized so that Aii = 2 for each i, select a (unique up to signs) Chevalley
Z-form gZ; take gK := gZ ⊗Z K.

2) For each simple infinite dimensional vectorial Lie algebra g over C (pre-
serving, perhaps, a tensor (volume, symplectic or contact form)), take for gK
the analog consisting of special derivations of O(n; (1, . . . , 1)) (preserving the
modular analog of the same tensor).

These Lie algebras gK are simple (in some cases, up to the center and up
to taking the first or second derived algebra).

12.4.0.4. The generalized KSh-conjecture. Together with deforma-
tions 4) of these examples we get in this way all simple finite dimensional
Lie algebras over algebraically closed fields if p > 5. If p = 5, we should add
Melikyan’s examples (described in what follows) to the above list.

Having built upon ca 30 years of work of several teams of researchers, and
having added new ideas and lots of effort, Block, Wilson, Premet and Strade
proved the generalized KSh-conjecture for p > 3, see [S]. For p ≤ 5, the above
KSh-procedure does not produce all simple finite dimensional Lie algebras;
some other examples appear and old ones disappear. In [GL3], Grozman and
Leites returned to É. Cartan’s description of Z-graded Lie algebras as CTS
prolongs, i.e., as subalgebras of vectorial Lie algebras preserving certain non-
integrable distributions; we thus interpreted the “mysterious” at that moment
exceptional examples of simple Lie algebras for p = 3 (the Brown, Frank, Er-
molaev and Skryabin algebras), further elucidated Kuznetsov’s interpretation
[Ku1] of Melikyan’s algebras (as prolongs of the nonpositive part of the Lie
algebra g(2) in one of its Z-gradings) and discovered three new series of simple
Lie algebras. In [BjL], the same approach yielded bj, a simple super version
of g(2), and Bj(1;N |7), a simple super version of the Melikyan algebra. Both
bj and Bj(1;N |7) are indigenous to the case p = 3, the case where g(2) is not
simple.

4 Although in [LL] there are given reasons why the conventional definition of the
enveloping algebra should be modified, and therefore that of (co)homology, it
seems that for restricted Lie superalgebras of the form g(A) (and their “relatives”)
for p 6= 2 the infinitesimal deformations can be described in old terms of H2(g; g),
see [BGL4] and [Vi].
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In [Le1], analogs of the KSh-conjecture for p > 2 (embracing Lie superalge-
bras) and for p = 2 are given and in [BGL5, BGL6] there are given arguments
in its favor. Let us recall these analogs.

12.4.1. Classification of simple modular Lie superalgebras: Conjec-
tures and results. In addition to the two types of algebras (of the form g(A)
and “vectorial” ones), in the super case there is one more type of “symmetric”
Lie algebras, the queer type.

12.4.1.1. New examples of simple Lie superalgebras of the form
g(A) and related to them. 1) Elduque superalgebras Elduque sug-
gested a new approach to the Freudenthal Magic Square — Elduque’s Super-
magic Square — a way to interpret the exceptional simple Lie algebras over
C; the modular version of his method leads to a discovery of 10 new simple
(exceptional) Lie superalgebras for p = 3. For a description of the Elduque
superalgebras, see [CE, El1, CE2, El2]; for their description in terms of Car-
tan matrices and analogs of Chevalley generators and Serre (and non-Serre)
relations and notations we use in what follows, see [BGL1, BGL2].

2) Bouarroudj-Grozman-Leites (BGL) superalgebras Recent clas-
sification [BGL5] of finite dimensional Lie superalgebras with indecomposable
Cartan matrices A, and related simple subquotients of such superalgebras
brought about 12 new simple Lie superalgebras in characteristics 5, 3 and 2.
In particular, for p = 2, the new examples are e(6, 1), e(6, 6), e(7, 1), e(7, 6),
e(7, 7), e(8, 1), e(8, 8); bgl(4;α) and osp(4|2;α); their detailed description
(in terms of Cartan matrices will be given later on, and, for each g, we will
identify g0̄ and g1̄ as g0̄-module).

12.4.2. The super analog of the KSh-conjecture. We use standard
notations of [FH, S]; for a precise definition (algorithm) of generalized Cartan–
Tanaka–Shchepochkina (CTS) complete and partial prolongations, see [Shch].
Let ng denote the incarnation of the Lie (super)algebra g with the nth Cartan
matrix taken from the lists of [GL3, BGL1, BGL2]. A Z-grading deg e±i = ±ri
for the Chevalley generators e±i of g(A) is said to be simplest if all but one
coordinates of r = (r1, . . . , rrk g) are equal to 0 and only one — selected — is
equal to 1. For the definition of restricted Lie algebras and superalgebras, see
Subsection 12.1.2.

In [Le1], the following analog of the KSh-conjecture, embracing Lie super-
algebras, is formulated. It is based on an idea entirely different from that of
KSh-conjecture. In it, same as in [GL3, BjL, BGL6], the CTS-prolongs play
the main role.

12.4.2.1. Conjecture. For every simple finite dimensional Lie (super)-
algebra of the form g(A) or psq, take its non-positive part with respect
to a certain “simplest” Z-grading, consider its complete and partial CTS-
prolongs and take their simple subquotients obtained by passage to derived
algebras and factorization modulo center. In this way, and by means of the
KSh-procedure, all restricted simple Lie (super)algebras should be obtained.
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Together with deformations of these Lie (super)algebras we get all simple
finite dimensional modular Lie (super)algebras for p > 2.

For p = 2, there are known several more ways to obtain new algebras from
the ones obtained by the ways (12.4.2.1): To obtain

Lie algebras, take





(a) Z-forms of complex Lie superalgebras or

Volichenko algebras (forgetting squaring),

taking structure constants modulo 2;

(b) Shen’s “variations” [Shen1],

(c) Jurman’s construction [Ju],

Lie superalgebras, take (d) queerification (17.1.1).
(12.45)

In addition to these, there is one more method, most difficult to formulate
precisely:

(e) construct Lie algebras and Lie superalgebras “by analogy”.

(And again, some of the algebras obtained by the above methods might be
not simple; one has to select a simple subquotient.)

Whenever we can, we consider the results of all these methods: These
results might be distinct. Sometimes, it is not clear how to apply the method
(e): For example, for Lie (super)algebras preserving a non-degenerate bilinear
form it is more or less clear what to do (although not immediately, cf. [Le1]),
but what is an analog of the exceptional Lie algebra g(2) if p = 2?

12.4.2.2. Conjecture. Together with deformations of the examples ob-
tained by means of (a)–(e), we obtain all simple finite dimensional Lie su-
peralgebras over algebraically closed field for p = 2.

Chapter 13

Non-degenerate bilinear forms
in characteristic 2,

related contact forms,
simple Lie algebras and Lie superalgebras

13.1. Introduction

13.1.1. Motivations. Recall that to any bilinear form B on a given space
V one can assign its Gram matrix by abuse of notations also denoted by
B = (Bij): in a fixed basis x1, . . . , xn of V we set

Bij = B(xi, xj). (13.1)

In what follows, we fix a basis of V and identify every bilinear form with
its matrix.

Two bilinear forms B and C on V are said to be equivalent if there exists
an invertible linear operator A ∈ GL(V ) such that

B(x, y) = C(Ax,Ay) for all x, y ∈ V ;

in this case,
B = ACAT (13.2)

for the matrices of B,C and A in the same basis.
A bilinear form B on V is said to be symmetric if B(v, w) = B(w, v) for

any v, w ∈ V ; it is anti-symmetric if B(v, v) = 0 for any v ∈ V .
Given a bilinear form B, let

L(B) = {F ∈ End V | B(Fx, y) +B(x, Fy) = 0}.

be the Lie algebra that preserves B. If p 6= 2, some of the Lie algebras L(B)
are simple, for example, the orthogonal Lie algebras oB(n) that preserve non-
degenerate symmetric forms and symplectic Lie algebras spB(n) that preserve
non-degenerate anti-symmetric forms.

If p = 2, either the derived algebras of L(B) for non-degenerate forms B
or their quotient modulo center are simple, so the canonical expressions of
the forms B are needed as a step in classification of simple Lie algebras in
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characteristic 2 which is an open problem, and as a step in a version of this
problem for Lie superalgebras, even more open.

The problem of describing preserved bilinear forms has two levels: we
can consider linear transformations (Linear Algebra) and arbitrary coordinate
changes (Differential Geometry). In the literature, both levels are completely
investigated, except for the case where p = 2.

More precisely, for p = 2, there are obtained rather esoteric results such
as classifications of quadratic forms over skew fields [ET], and of analogs
of hermitian forms in infinite dimensional spaces [Gro], whereas (strangely
enough for such a classically formulated problem) the non-degenerate bilinear
forms over fields were never classified, except for symmetric forms. Moreover,
the fact that the non-split and split forms of the Lie algebras that preserve the
symmetric forms are not always isomorphic was never mentioned (although
known on the Chevalley group level), cf. the latest papers with reviews of
earlier results ([Sh, GG]).

Hamelink [H] considered simple Lie algebras over K but under too re-
strictive conditions (he considered only Lie algebras with a non-degenerate
invariant form) and so missed many simple Lie algebras; besides, it seems he
has missed several series of Lie algebras even satisfying his assumptions (such
as h′).

The bilinear forms over fields of characteristic 2 also naturally appear in
topological problems of the theory of real manifolds, for example, in singularity
theory: As related to “symplectic analogs of Weyl groups” and related bilinear
forms over Z/2, cf. [I].

We also consider superspaces. The Lie superalgebras over Z/2 were of huge
interest in the 1930s–60s in relation with other applications in topology, see,
e.g., [Ha, May]; lately, the interest comes back [Vo].

Let us review the known results and compare them with the new ones
(§§3–8).
13.1.2. Known facts: The case p 6= 2. Having fixed a basis of the space
on which bilinear or quadratic form is considered, we identify the form with
its Gram matrix; this is understood throughout. Let me recall certain facts
(both well known and not so well known).

Linear Algebra ([Pra], [Lang]). Any bilinear form B on a finite dimensional
space V can be represented as the sum B = S + K of a symmetric and a
anti-symmetric form. Classics investigated B = S + K by considering it as
a member of the pencil B(λ, µ) = λS + µK, where λ, µ ∈ K, and studying
invariants of B(λ, µ), cf. [Ga].

Besides, for p 6= 2, the space of bilinear forms is a direct sum of subspaces
of symmetric and anti-symmetric forms.

If p = 2, we have an invariant subspace of symmetric forms and the quo-
tient space of non-symmetric forms.

Over C, there is only one class of symmetric forms and only one class of
anti-symmetric forms ([Pra]). For a canonical form of the matrix of the form
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B, one usually takes J2n for the anti-symmetric forms and 1n, Πn or Sn for
symmetric forms.

In order to have Cartan subalgebra of the orthogonal Lie algebra on the
main diagonal (to have a split form of oB(n)), one should take B of the shape
Πn or Sn, not 1n. Over R, the Lie algebra might have no split form; for
purposes of representation theory, it is convenient therefore to take its form
most close to the split one, see [FH].

Over R, as well as over any ordered field, Sylvester’s theorem states that
the signature of the form is the only invariant ([Pra]).

Over an algebraically closed field K of characteristic p 6= 2, Ermolaev con-
sidered nondegenerate bilinear forms B : V ×V −→ K, and gave the following
description of the Lie algebras L(B) (for details, see [Er]):

13.1.3. Statement ([Er]). The Lie algebra L(B) can not be represented as
a direct sum of ideals (of type L(B)) if and only if all elementary divisors of
the matrix B belong to the same point of the variety

P = (K∗/{1,−1})∪ {0} ∪ {∞},

where K∗ is the multiplicative group of K. To each of the three different types
of points in P (elementary divisors corresponding to 0, to ∞ or to a point
of K∗/{1,−1}), a series of Lie algebras L(B) corresponds, and each of these
algebras depends on a finite system of integer parameters.

Differential Geometry. Let the form B = B(x) depend on a parameter x
running over a (super)manifold M , and let this form be on the space T ∗

xM ,
cotangent to this manifold. Locally, there are obstructions to reducing non-
degenerate 2-form B(x) on a (super)manifold to the canonical expression.
These obstructions are the Riemann tensor if B(x) is symmetric (metric)
and dB if B(x) is a anti-symmetric (differential) 2-form over C or R; for
these obstructions expressed in cohomological terms, see [LPS]. Elsewhere we
intend to classify analogous obstructions to local reducibility of bilinear forms
to canonical expressions found here.

13.1.4. Known facts: The case p = 2. 1) With any symmetric bilinear
form B a quadratic form Q(x) := B(x, x) is associated. The other way round,
given a quadratic form Q, we define a symmetric bilinear form, called the
polar form of Q, by setting

BQ(x, y) = Q(x+ y)−Q(x)−Q(y).

As we will see, the correspondence Q ←→ BQ is one-to-one if and only if
p 6= 2; moreover, if p = 2 it does not embrace non-symmetric forms.

Arf [Arf] has discovered the Arf invariant — an important invariant of non-
degenerate quadratic forms in characteristic 2; for an exposition, see [Dye].
Two such forms are equivalent if and only if their Arf invariants are equal.

The Arf invariant, however, can not be used for classification of symmetric
bilinear forms because one symmetric bilinear form can serve as the polar form
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for two non-equivalent (and having different Arf invariants) quadratic forms.
Moreover, not every symmetric bilinear form can be represented as a polar
form.

2) Albert [A] classified symmetric bilinear forms over a field of character-
istic 2 and proved that

(1) two anti-symmetric symmetric forms (he calls a form B on V alternate
if B(x, x) = 0 for every x ∈ V ) of equal ranks are equivalent;

(2) every non-anti-symmetric form has a matrix which is equivalent to a
diagonal matrix;

(3) if K is perfect (i.e., such that every element of K has a square root),
then every two non-anti-symmetric forms of equal ranks are equivalent.

13.1.4.1. Remark. Let p = 2. Since a2 − b2 = (a − b)2, it follows that no
element can have two distinct square roots.

3) Albert also gave some results on the classification of quadratic forms
over a field K of characteristic 2 (considered as elements of the quotient space
of all bilinear forms by the space of anti-symmetric forms). In particular, he
showed that ifK is algebraically closed, then every quadratic form is equivalent
to exactly one of the forms

x1xr+1 + · · ·+ xrx2r or x1xr+1 + · · ·+ xrx2r + x22r+1, (13.3)

where 2r is the rank of the form.
4) Albert also considered semi-definite bilinear forms, i.e., symmetric

forms, which are equivalent to forms whose matrix is of the shape

(
1k 0
0 0

)
.

For p = 2, semi-definite forms constitute a linear space. In order not to
have every non-anti-symmetric form semi-definite, the ground field should not
be perfect. For this, K must be neither algebraically closed nor finite.

5) Skryabin [Sk] considered the case of the space V with a flag

F : 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vq = V,

and the equivalence of bilinear forms w.r.t. operators which, in addition to
(13.2), preserves F. He showed that under such equivalence the class of a (pos-
sibly, degenerate) anti-symmetric bilinear form is determined by parameters

nqr = dim(Vq ∩ V ⊥
r−1)/(Vq ∩ V ⊥

r + Vq−1 ∩ V ⊥
r−1)

for q, r ≥ 1, where orthogonality is taken with respect to the form. This is
true for any characteristic, but if p = 2, the anti-symmetric forms do not differ
from zero-diagonal symmetric ones.

Ch. 13. Bilinear forms for p = 2 345

13.1.5. Lie (super)algebras in finite characteristic. There are different
ways to generalize Lie (super)algebras defined over C or R to the case of finite
characteristic. Here are the main ones:

1) By the meaning (structures they preserve). This way is used in this
chapter for orthogonal algebras: the orthogonal algebra oB(n) is the algebra of
linear transformations preserving the given non-degenerate symmetric bilinear
form B.

2) By the multiplication table. Let B = {gi}i∈I be an integer basis of Lie
algebra g over a field of characteristic 0, i.e., all the structure constants of the
algebra in this basis are integer. Let gB,Z be the Z-span of B in this basis.
Then for any field K, we see that

(gB,Z)K = gB,Z ⊗Z K

is a Lie algebra over K. The structure of this algebra essentially depends on
the choice of the basis B (for example, if one multiplies all the elements of
some integer basis by p, then the algebra constructed by the resulting basis
over a field of characteristic p is commutative).

3) By generators and defining relations (all the coefficients in the relations
must be integer). One should be careful in this case — for example, the Lie
algebra in characteristic 2 constructed by the Serre relations for sl(n) is infinite
dimensional for n ≥ 4, see Chapter on Presentations.

4) Lie algebras with Cartan matrix can be recovered from this matrix by
more-or-less explicit rules.

In characteristic 2, anti-symmetric bilinear forms are symmetric, actually,
so the definition of a symplectic Lie algebra “by the meaning” does not give
anything new. Note that if we define the Lie algebra sp(2n) consisting of linear
transformations preserving the anti-symmetric bilinear form J2k in character-
istic 2 by the multiplication table, choosing the basis of matrix units, the
resulting algebra is oΠ(2n).

13.1.6. The structure of the Chapter. In §2 we reproduce Albert’s re-
sults on classification of symmetric bilinear forms with respect to the classical
equivalence (13.2).

In §3 we consider other approaches to the classification of non-symmetric
bilinear forms, select the most interesting and adequate one (the “sociological”
one) and describe the corresponding equivalence classes.

In §4 we classify bilinear forms on superspaces with respect to the classical
and sociological equivalences.

In §5 we describe some relations between equivalences of bilinear forms
and 1-forms.

In §6 we explicitly describe canonical forms of symmetric bilinear forms,
related simple Lie algebras, and their Cartan subalgebras.

In §7 and §8, we give a super versions of §6 and §3, respectively.
13.1.7. Remarks. 1) In the study of simple Lie algebras over a field of
characteristic p > 0, one usually takes an algebraically closed or sometimes



346 Ch. 13. Bilinear forms for p = 2

finite ground field. Accordingly, these are the cases where bilinear or quadratic
forms are to be considered first.

2) For quadratic forms in characteristic 2, we can also use Bourbaki’s
definition: q is quadratic if q(ax) = a2q(x) and B(x, y) = q(x+y)−q(x)−q(y)
is a bilinear form.

3) For some computations, connected with Lie algebras of linear trans-
formations, preserving a given bilinear form (e.g., computations of Cartan
prolongs), it is convenient to choose the form so that the corresponding Lie
algebra has a Cartan subalgebra as close to the algebra of diagonal matrices
as possible. It is shown in §6 that in the case of bilinear forms, equivalent to
1n, over a space of even dimension, we need to take the form in one of the
following shapes equivalent to 1n:

(
12 0
0 Sn−2

)
∼
(
12 0
0 Πn−2

)
.

The corresponding Cartan subalgebras consist of matrices of the following
shape, respectively:




0 a0 0
a0 0 0

0 0 diagn(a1, . . . , ak−1, ak−1, . . . , a1)




or 


0 a0 0
a0 0 0

0 0 diagn(a1, . . . , ak−1, a1, . . . , ak−1)


.

13.2. Symmetric bilinear forms (Linear Algebra)

13.2.1. Theorem. Let K be a perfect field of characteristic 2. Let V be a
n-dimensional space over K.

1) For n odd, there is only one equivalence class of non-degenerate sym-
metric bilinear forms on V .

2) For n even, there are two equivalence classes of non-degenerate sym-
metric bilinear forms, one contains 1n and the other one contains Sn.

Later we show that, if n is even, a non-degenerate symmetric bilinear form
is equivalent to Sn if and only if its matrix is zero-diagonal.

Observe that the fact that the bilinear forms are not equivalent does not
imply that the Lie (super)algebras that preserve them are not isomorphic;
therefore the next Lemma is non-trivial.

13.2.1.1. Lemma. 1) The Lie algebras oI(2k) and oS(2k) are not isomor-
phic; the same applies to their derived algebras:

2) o
(1)
I (2k) 6' o

(1)
S (2k);

3) o
(2)
I (2k) 6' o

(2)
S (2k).
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13.2.2. Proof of Theorem 13.2.1. In what follows let Eij , where
1 ≤ i, j ≤ n, be a matrix unit, i.e., (Ei,j)kl := δikδjl, and

Ti,j := I + Ei,i + Ej,j + Ei,j + Ej,i.

Note that the Ti,j are invertible, and Ti,j = Tj,i = (Ti,j)
T .

Note also, that any bilinear form B is equivalent to aB for any a ∈ K if
a 6= 0. Indeed, since every element of K has a square root, aB = (b1n)B(b1n),
where b ∈ K is such that b2 = a.

Now, let us first prove the following

13.2.3. Lemma. Let B be a symmetric n × n matrix, and B be n′ × n′

matrix in the upper left corner of B, n′ < n. Then, if B is invertible, B is
equivalent to a matrix of the form

(
B 0

0 B̂

)
.

Proof. Let C be (n− n′)× n′ matrix in the lower left corner of B, and

M =

(
1n′ 0

CB
−1

1n−n′

)
.

The matrix M is invertible because it is lower-triangular and has no zeros
on the diagonal. Direct calculations show that the matrix MBMT has the
needed form. ut
13.2.4. Lemma. If B and C are n× n matrices, and

B =

(
B1 0
0 B2

)
, and C =

(
C1 0
0 C2

)
,

where B1 and C1 are equivalent n′×n′ matrices, and B2 and C2 are equivalent
(n− n′)× (n− n′) matrices, then B and C are equivalent.

Proof. IfM1B1M
T
1 = C1 andM2B2M

T
2 = C2, andM = diag(M1,M2), then

MBMT = C. ut
Let us fix terminology. A bilinear form B is said to be anti-symmetric (Al-

bert called them alternate) if the corresponding quadratic formQ(x) = B(x, x)
is identically equal to 0.

13.2.5. Lemma. A bilinear form is anti-symmetric if and only if its matrix
is zero-diagonal.

Proof. Let e1, . . . , en be the basis in which matrix is taken. If B is anti-
symmetric, the Bii = B(ei, ei) = 0. On the other hand, if the matrix of B is
zero-diagonal, and e =

∑
i ciei, then

B(e, e) =
∑

i,j

Bijcicj = 2
∑

i<j

Bijcicj = 0. ut
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Since an anti-symmetric form can be equivalent only to an anti-symmetric
form, we have

13.2.6. Corollary. If matrices A and B are symmetric and equivalent, and
A is zero-diagonal, then B is zero-diagonal.

Now, let us prove the following part of Theorem 13.2.1:

If n = 2k, any non-degenerate symmetric zero-diagonal matrix B ∈ GL(n)
is equivalent to the matrix Z2k.

We will prove a more general statement that will be needed later:

13.2.7. Lemma. If B is a zero-diagonal n×n matrix (possibly, degenerate),
then r = rank B is even, and B is equivalent to the matrix

Z̃n,r =

(
Zr 0
0 0

)
.

Proof. We will induct on n. In the cases n = 1, 2, the statement is evident.
If B = 0, the statement follows immediately. Otherwise, there exist i, j

such that Bij 6= 0, and B is equivalent to

C = (Bi,j)
−1T2,jT1,iBT1,iT2,j ,

and C12 = C21 = 1, C11 = C22 = 0.
Then, by Lemma 13.2.3, C is equivalent to a matrix D of the form




0 1 0
1 0 0

0 0 D1


,

where D1 is a (n − 2) × (n − 2) matrix. Since D is, by Corollary 13.2.6,
symmetric and zero-diagonal, D1 is also symmetric and zero-diagonal, and
rank D1 = r − 2. Then, by the induction hypothesis, r − 2 is even, and D1

is equivalent to Z̃n−2,r−2, and, by Lemma 13.2.4, D is equivalent to Z̃n,r.

Therefore, B is equivalent to Z̃n,r. ut
Now let us prove the following:

For n odd, any non-degenerate symmetric n × n matrix is equivalent to
1n;

for n even, any non-degenerate symmetric n×n matrix which is not zero-
diagonal is also equivalent to 1n.

We will prove this by induction on n (simultaneously for n odd and even).
For n = 1, the statement is evident.

Now, let n be even. If B is an invertible symmetric n× n matrix, Bii 6= 0,
then B is equivalent to C = (Bii)

−1T1,iBT1,i, and C11 = 1. Then, by Lemma
13.2.3, C is equivalent to matrix D of the form
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(
1 0

0 D1

)
, where D1 ∈ gl(n− 1). (13.4)

Since B is symmetric and non-degenerate, D1 is also symmetric and non-
degenerate. Then, by induction hypothesis, D1 is equivalent to 1n−1, and, by
Lemma 13.2.4, D is equivalent to 1n, and B is also equivalent to 1n.

If B is an invertible symmetric n×n matrix, and n is odd, then by Lemma
13.2.7, B has at least one non-zero element on the diagonal, and, similarly,
we can show that B is equivalent to a matrix D of the form (13.4). Since B
is symmetric and non-degenerate, D1 is also symmetric and non-degenerate.
Then, by induction hypothesis, D1 is equivalent to either 1n−1 or Zn−1, and,
by Lemma 13.2.4, B is equivalent to either 1n or

Ẑn =

(
1 0

0 Zn−1

)
.

Let M be a n× n matrix such that

Mij =





1 if i = 1 or j = 1,

or if j = i,

or if j = i+ 1, i is odd,

or if j > i+ 1;

0 if j = i+ 1, i is even,

or if 1 < j < i.

Direct calculation shows, that MMT = Ẑn, so Ẑn is equivalent to 1n, and
B is equivalent to 1n.

Now, to finish the proof of the theorem, we need to show that, for n even,
1n and Zn are not equivalent, which follows from Corollary 13.2.6. Theorem
13.2.1 is proved. ut
13.2.8. Proof of Lemma 13.2.1.1. Direct computations show that (for
details, see §6):

a) oI(n) is spanned by symmetric matrices;

b) o
(1)
I (n) is spanned by zero-diagonal symmetric matrices;

c) oS(n) is spanned by matrices symmetric relative the side diagonal.
Indeed, let C(g) be the center of the Lie algebra g. We see that

1n ∈ C(oI(n)), and dimC(oI(n)) = 1, because if A ∈ oI(n), and Aii 6= Ajj ,
then [A,Ei,j + Ej,i]ij = Aii + Ajj 6= 0, and if Aij 6= 0 for i 6= j, then
[A,Ei,i]ij = Aij 6= 0. Since matrices from oI(n)

(1) are zero-diagonal ones,
dim(C(oI(n)) ∩ oI(n)

(1)) = 0. At the same time,

1n,
k∑

i=1

E2i−1,2i,
k∑

i=1

E2i,2i−1 ∈ oS(n); and 1n ∈ C(oS(n)),

but [
∑k

i=1E2i−1,2i,
∑k
i=1 E2i,2i−1] = 1n, so dim(C(oS(n)) ∩ oS(n)

(1)) 6= 0,
which shows that oI(n) and oS(n) are not isomorphic. Lemma is proved. ut
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13.3. Non-symmetric bilinear forms (Linear algebra)

13.3.1. Non-symmetric bilinear forms: Discussion. If p = 2, there is
no canonical way to separate symmetric part of a given bilinear form from its
non-symmetric part. In this subsection I list several more-or-less traditional
equivalences before suggesting (in the next subsection) the one that looks the
best.

1) The standard definition (13.2). This equivalence is too delicate: there
are too many inequivalent forms: the classification problem looks wild.

2) The idea of classics (see, e.g., [Ga]) was to consider the following equiva-
lence of non-degenerate bilinear forms regardless of their symmetry properties.
Observe that any bilinear form B on V can be considered as an operator

B̃ : V −→ V ∗ x 7−→ B(x, ·). (13.5)

If B is non-degenerate, then B̃ is invertible. Two forms B and C are said
to be roughly equivalent, if the operators B̃−1B̃∗ and C̃−1C̃∗ in V , where ∗
denotes the passage to the adjoint operator, are equivalent. This equivalence
is, on the contrary, too rough: it does not distinguish between symmetric
forms with non-zero entries on the diagonal and anti-symmetric forms, so all
symmetric non-degenerate bilinear forms are roughly equivalent, for both odd-
and even-dimensional V .

3) Leites suggested to call two bilinear forms B1 and B2 Lie-equivalent (we
write B1 'L B2) if the Lie algebras that preserve them are isomorphic. This
does reduce the number of non-equivalent forms but only slightly as compared
with (13.2) and no general pattern is visible, see the following Examples for
n = 2, 3, 4. So this equivalence is also, as (13.2), too delicate.

13.3.1.1. Examples. n = 2, K = Z/2. In this case, there exist only two non-
symmetric non-degenerate matrices:

(
1 1
0 1

)
and

(
1 0
1 1

)
,

and they are equivalent.
n = 2, K infinite. In this case, there exist infinitely many equivalence

classes of non-symmetric non-degenerate forms. For example,

antidiag2(1, a) ∼ antidiag2(1, b) only if either a = b or ab = 1.

But all these classes are Lie-equivalent: any non-symmetric non-degenerate
2× 2 matrix is only preserved by scalar matrices.

n = 3, K = Z/2. In this case, there exist 3 equivalence classes with the
following representatives:



1 1 0
0 1 0
0 0 1


,



1 1 0
0 1 1
0 0 1


,



0 0 1
0 1 0
1 1 0


.
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Note that the last two matrices are equivalent as forms over an extension of
Z/2 with 4 elements. All these matrices are Lie-equivalent — the correspond-
ing Lie algebras are 2-dimensional and, since they contain 13, commutative.

n = 3, K infinite. In this case, again, there exist infinitely many equiva-
lence classes.

13.3.1.2. Conjecture. All non-symmetric non-degenerate 3 × 3 matrices
are Lie-equivalent and the corresponding Lie algebras are 2-dimensional and
commutative.

n = 4, K = Z/2. In this case, there exist 8 equivalence classes with the
following representatives:

B1 =




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


; B2 =




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


; B3 =




1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1


; B4 =




1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1


;

B5 =




0 0 0 1
0 0 1 0
0 1 0 0
1 1 0 0


; B6 =




0 0 0 1
0 0 1 0
0 1 1 0
1 0 1 1


; B7 =




0 0 0 1
0 0 1 0
1 0 0 0
1 1 0 1


; B8 =




0 0 0 1
0 1 0 0
0 1 1 0
1 0 0 0


;

The matrices in the pairs (B1, B4), (B3, B7), (B5, B6) are Lie-equivalent,
so there are 5 Lie-equivalence classes.

n = 4, K infinite. Again, there exist infinitely many equivalence classes.
There exist also at least 5 Lie-equivalence classes, described in the previous
case.

13.3.1.3. Remark. The statements in these examples were obtained by
computer calculations

13.3.2. A sociological approach to bilinear forms. Instead of consid-
ering non-symmetric forms individually, we can consider the quotient space
NB(n) of the space of all forms modulo the space of symmetric forms. We
will denote the element of this quotient space with representative B, by {B}.
We say that {B} and {C} are equivalent (and denote it {B} ∼ {C}), if there
exists an invertible matrix M such that

{MBMT} = {C}, i.e., if MBMT − C is symmetric.

13.3.2.1. Exercise. This definition does not depend on the choice of rep-
resentatives B and C.

Any {B} has both degenerate and non-degenerate representatives: the
representative with non-zero elements only above the diagonal is degenerate,
and if we add the unit matrix to it, we get a non-degenerate representative of
{B}; both such representative are unique and characterize {B}.

Note that {B} can be also characterized by the symmetric zero-diagonal
matrix B+BT . The rank of B+BT is said to be the rank of {B}. According
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to Lemma 13.2.7, it is always even. One can show that it is equal to doubled
minimal rank of representatives of {B}.
13.3.3. Theorem. The classes {B} and {C} are equivalent if and only of
they have equal ranks.

Proof. Let rank{B} = rank{C}, i.e., rank (B+BT ) = rank (C+CT ). Since
B +BT and C +CT are zero-diagonal, they are, according to Lemma 13.2.7,
equivalent, i.e., there exists non-degenerate matrix M such that

M(B +BT )MT = C + CT .

Then
MBMT + C = (MBMT + C)T

is symmetric, and {B} ∼ {C}. These arguments are reversible. ut
So, we see that NB(n) has [n/2] + 1 equivalence classes consisting of

elements with ranks 0, 2, . . . , 2[n/2]. As the representatives of these classes we
can take {S̃n,m}, where m = 0, . . . , [n/2] and where S̃n,m is n×n matrix such
that

S̃n,m =
n−m m

m
n−m

(
0 Sm
0 0

)

The following definition of the linear transformations preserving an ele-
ment of NB(n) seems to be the most natural:

X preserves {B} if XB +BXT is symmetric. (13.6)

Since

XB +BXT + (XB +BXT )T = X(B +BT ) + (B +BT )XT ,

X preserves {B} if and only if X preserves B+BT . Hence the transformations
preserving {B} do form a Lie algebra. One can check that they also form a
Lie algebra if p 6= 2, and this algebra is the Lie algebra of transformations
preserving the non-symmetric representative of {B}.

The Lie algebra oS̃n,m consists of the matrices of the form



A D B

0 E 0

C F SkASk


,

where A ∈ gl(k); B,C ∈ gl(k) are
such that B = SkBSk and C = SkCSk;
D and F are (n−2k)×k matrices; E ∈ gl(n−2k).

This Lie algebra is isomorphic to the semi-direct sum (the ideal on the right)

(oS(2m)⊕ gl(n− 2m))⊃+(Ro ⊗R∗
gl),

where Ro and Rgl are the spaces of the identity representations of oS(2m)
and gl(n− 2m), respectively.
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If rank{B} < n, then the Lie algebra of linear transformations preserving
{B} is isomorphic to the Lie algebra of linear transformations preserving
symmetric degenerate matrix B + BT . So, it seems natural to call {B} non-
degenerate if and only if rank{B} = n.

By Theorem 13.3.3, all non-degenerate elements of NB(n) (they only exist
if n is even) are equivalent. The Lie algebra of linear transformations preserv-
ing any of these forms is isomorphic to oS(2k).

13.4. Bilinear forms on superspaces (Linear algebra)

13.4.1. Canonical expressions of symmetric bilinear forms on su-
perspaces and the Lie superalgebras that preserve them. For gen-
eral background related to Linear Algebra in superspaces and proofs of the
statements of this subsection, see [LSoS].

Speaking of superspaces we denote parity by Π , and superdimension by
sdim. The operators and bilinear forms are represented by supermatrices which
we will only consider here in the standard format. Recall only that to any
bilinear form B on a given space V one can assign its Gram matrix also
denoted B = (Bij) : in a fixed basis x1, . . . , xn of V , we set (compare with
(13.1); for p = 2, the sign disappears)

Bij = (−1)Π(B)Π(xi)B(xi, xj). (13.7)

In what follows, we fix a basis of V and identify a bilinear form with its matrix.
Two bilinear forms B and C on V are said to be equivalent if there exists

an invertible even linear operator A ∈ GL(V ) such that B(x, y) = C(Ax,Ay)
for all x, y ∈ V ; in this case, B = ACAT for the matrices of B,C and A in
the same basis.

Generally, the symmetry of the bilinear forms involves signs which leads
to the notion of supertransposition of the corresponding Gram supermatrices,
but for p = 2 the supertransposition turns into transposition.

Recall also that, over superspaces, the parity change sends symmetric
forms to anti-symmetric and the other way round, so if p 6= 2, it suffices
to consider only symmetric forms.

In super setting, over C, there is only one class of non-degenerate even
symmetric (ortho-symplectic) forms and not more than one class of non-
degenerate odd symmetric (periplectic) forms in each superdimension. Over R,
the invariants of even symmetric forms are pairs of invariants of the restriction
of the form onto the even and odd subspaces and not more than one class of
odd symmetric (periplectic) forms.

In order to have Cartan subalgebra of the ortho-symplectic Lie superalge-
bra on the main diagonal (to have a split form of osp(n|2m)), one should take
for the canonical form of B the expression, for example,

(
Πn 0
0 J2m

)
.
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A given symmetric even form on a superspace can be represented as a
direct sum of two forms on the even subspace and the odd subspace. For each
of these forms, Theorem 13.2.1 is applicable. Lemma 13.2.4 is also applicable
in this case, so every even symmetric non-degenerate form on a superspace
of dimension (n0̄|n1̄) over a perfect field of characteristic 2 is equivalent to a
form of the shape (here: i = 0̄ or 1̄)

B =

(
B0̄ 0
0 B1̄

)
, where Bi =

{
1ni if ni is odd;

1ni or Zni if ni is even.

The Lie superalgebra preserving B — by analogy with the ortho-
symplectic Lie superalgebras osp in characteristic 0 we call it ortho-orthogonal
and denote ooB(n0̄|n1̄) — is spanned by the supermatrices which in the stan-
dard format are of the form

(
A0̄ B0̄C

TB−1
1̄

C A1̄

)
,
where A0̄ ∈ oB0̄

, A1̄ ∈ oB1̄
, and

C is arbitrary n1̄ × n0̄ matrix.

For an odd symmetric form B on a superspace of dimension (n0̄|n1̄) over
a field of characteristic 2 to be non-degenerate, we need n0̄ = n1̄ = k, so the
matrix of B is of the shape (

0 B

B
T

0

)
,

where B is a square invertible matrix. Let us take

M =

(
1k 0

0 B
−1

)

(here k = n0̄ = n1̄), then B is equivalent to

MBMT = Πk|k.

This form is preserved by linear transformations with supermatrices in the
standard format of the shape

(
A C

D AT

)
, where A ∈ gl(k), C and D are symmetric k × k matrices.

(13.8)
As over C or R, the Lie superalgebra pe(n) of supermatrices (20.4) (recall

that p = 2) will be referred to as periplectic.

13.4.2. Non-symmetric forms on superspaces. If a non-symmetric
form on a superspace is even, it can be again represented as a direct sum
of two bilinear forms: one on the even subspace, and the other one on the odd
subspace. These two forms can be independently transformed to canonical
forms, see 13.3.
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The situation with odd non-symmetric forms is more interesting. Such a
form can be non-degenerate only on a space of superdimension (k|k). In the
standard format, the supermatrix of such a form has the shape

B =

(
0 A
C 0

)
,

where A and C are invertible matrices. Let M be an invertible matrix such
that L =MC(AT )−1M−1 is the Jordan normal form of C(AT )−1. Then B is
equivalent to

(
(MT )−1A−1 0

0 M

)(
0 A
C 0

)(
((MT )−1A−1)T 0

0 MT

)
=

(
0 1k
L 0

)
.

This expression (with L in the Jordan normal form) can be considered as
a canonical form of a non-degenerate odd bilinear form.

13.4.3. Statement. Two non-degenerate forms are equivalent if and only
if they have equal canonical forms.

13.5. Relation with 1-forms (Differential geometry)

13.5.1. Matrices and 1-forms. Recall that the 1-form α on a superdomain
M is said to be contact if it singles out a non-integrable distribution in the
tangent bundle TM and dα is non-degenerate on the fibers of this distribution;
see [GL3] and [LPS].

Let B and B′ be the matrices of bilinear forms on an n-dimensional space
V over a field K of characteristic 2. Let x0, x1, . . . , xn be independent inde-
terminates; set

deg x0 = 2, deg x1 = · · · = deg xn = 1.

We say that B and B′ are 1-form-equivalent if there exists a degree pre-
serving transformation, i.e., a set of independent variables x′0, x

′
1, . . . , x

′
n such

that
deg x′0 = 2, deg x′1 = · · · = deg x′n = 1, (13.9)

which are polynomials in x0, x1, . . . , xn in divided powers with shearing pa-
rameter

N = (N0, . . . , Nn) such that Ni > 1 for every i from 1 to n, (13.10)

and such that

dx0 +

n∑

i,j=1

Bijxidxj = dx′0 +

n∑

i,j=1

B′
ijx

′
idx

′
j . (13.11)

13.5.2. Lemma. B and B′ are 1-form-equivalent if and only if {B} ∼ {B′}.
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Proof. By (13.9), we have

x′0 = cx0 +
n∑

i=1

Aiix
(2)
i +

∑

1≤i<j≤n

Aijxixj ; x′i =
n∑

j=1

Mijxj , (13.12)

where c 6= 0 and M is an invertible matrix. Thanks to (13.11), comparing
coefficients of dx0 in the left- and right-hand sides, we get c = 1. Let A be a
symmetric n× n matrix with elements Aij for i ≤ j as in (13.12). Then

dx′0 +

n∑

i,j=1

B′
ijx

′
idx

′
j = dx0 +

n∑

i,j=1

Aijxidxj +

n∑

i,j,k,l=1

MkiB
′
klMljxidxj ,

i.e., B = MTB′M + A, so {B} ∼ {B′}. Since our arguments are invertible,
the theorem is proved. ut
13.5.3. The case of odd indeterminates. Let us modify the definition
of 1-form-equivalence to adjust it to the super case where x1, . . . , xn are all
odd. In this case, we can only use divided powers with N = (N0, 1, . . . , 1).

We say that B and B′ are 1-superform-equivalent if there exists a set of
indeterminates x′0, x

′
1, . . . , x

′
n, which are polynomials in x0, x1, . . . , xn, such

that
Π(x′0) = 0̄, Π(x′1) = · · · = Π(x′n) = 1̄,
deg x′0 = 2, deg x′1 = · · · = deg x′n = 1

(13.13)

and

dx0 +

n∑

i,j=1

Bijxidxj = dx′0 +

n∑

i,j=1

B′
ijx

′
idx

′
j . (13.14)

13.5.4. Lemma. The matrices B and B′ are 1-superform-equivalent if and
only if exist an invertible matrix M and a symmetric zero-diagonal matrix A
such that

B =MB′MT +A. (13.15)

Proof. It is analogous to the proof of Lemma 13.5.2. ut
Albert [A] considered the equivalence (13.15) as an equivalence of (matrices

of) quadratic forms. In particular, he proved the following

13.5.5. Statement. If K is algebraically closed, every matrix B is equivalent
in the sense (13.15) to exactly one of the matrices

Y (n, r) =



0r 1r 0
0r 0r 0
0 0 0n−2r


 or Ỹ (n, r) =




0r 1r 0 0
0r 0r 0 0
0 0 1 0
0 0 0 0n−2r−1


,

where 2r = rank(B+BT ). The corresponding quadratic form is non-degenerate
if and only if either a) n = 2r, or b) n = 2r + 1 and the matrix is equivalent

to Ỹ (n, r).
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If, in 1-form-equivalence, we consider divided powers with shearing param-
eter N = (N0, 1, . . . , 1), it is the same as to consider 1-superform-equivalence.

13.5.5.1. Remark. Albert worked long before supersymmetry was defined.
Serendipity of serious researchers is often amazing: how could one come to
such a definition as equivalence (13.15)?!

13.5.6. Lemma. Let x0, . . . , xn be indeterminates,

Π(x0) = 0̄, Π(x1) = · · · = Π(xn) = Π.

Then the 1-form on the (n+1|0)-dimensional (if Π = 0̄) or (1|n)-dimensional
(if Π = 1̄) superspace

α = dx0 +

n∑

i,j=1

Bijxidxj (13.16)

is contact if and only if one of the following conditions holds:
1) Π = 0̄, and {B} is non-degenerate, i.e., n = rank(B + BT ) (this rank

is always even);
2) Π = 1̄, and the quadratic form corresponding to B is non-degenerate,

i.e., either a) n = rank(B + BT ) or b) B is not zero-diagonal and
n = rank(B +BT ) + 1.

Proof. From Theorem 13.3.3, Statement 13.5.5 ([A]), and Lemmas 13.5.2
and 13.5.4 we know that, if Π = 0̄, every symmetric bilinear form is 1-form-
equivalent to one of the forms S̃(n, r), n ≥ 2r, and, if Π = 1̄, every symmetric
bilinear form is 1-superform-equivalent to one of the forms Y (n, r), where

n ≥ 2r, or Ỹ (n, r), where n ≥ 2r + 1. Direct calculations show that if Π = 0̄,

the 1-form (13.16) corresponding to S̃(n, r) is contact if and only if n = 2r; if
Π = 1̄, then the 1-form (13.16) corresponding to Y (n, r) is contact if and only

if n = 2r and the 1-form, corresponding to Ỹ (n, r) is contact if and only if
n = 2r+1. Since, by definition, two 1-forms that correspond to 1-(super)form-
equivalent bilinear forms can be transformed into each other by a change of
coordinates, we are done. ut

From this, we get the following

13.5.6.1. Theorem. The following are the canonical expressions of the odd
contact forms if the indeterminates x1, . . . xn are of the same parity (for the
general case, see Theorem 13.5.8):

α=dx0+

k∑

i=1

xidxk+i

{
for n=2k and x1, . . . ,xn all even or all odd;

+xndxn for n=2k+1 and x1, . . .xn odd.

(13.17)
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13.5.6.2. Remarks. 1) If n > 1 and x1, . . . xn are odd, the 1-form

α = dx0 +
n∑
i=1

xidxi is not contact since (recall that p = 2)

α = d

(
x0 +

∑

i<j

xixj

)
+

( n∑

i=1

xi

)
d

( n∑

i=1

xi

)
.

2) Let p = 2. Since there are two types of orthogonal Lie algebras if n is
even, and orthogonal algebras coincide, in a sense, with symplectic ones, it
seems natural to expect that there are also two types of the Lie algebras of
hamiltonian vector fields (preserving I and S, respectively). This is indeed so,
see [L2, ILL].

Are there two types of contact Lie algebras corresponding to these cases?
The (somewhat unexpected) answer is NO:

The classes of 1-(super)form-equivalence of bilinear forms which corre-
spond to contact forms have nothing to do with classes of classical equiva-
lence of symmetric bilinear forms. The 1-forms, corresponding to symmetric
bilinear forms are exact if x1, . . . xn are even, and are of rank ≤ 2 if x1, . . . xn
are odd.

Recall the contact Lie superalgebra consists of the vector fields D that
preserve the contact structure (non-integrable distribution given by a contact
form α hereafter in the form (13.17)). Such fields satisfy

LD(α) = FDα for some FD ∈ C[t, p, q, θ].

For any f ∈ C[t, p, q, θ], we set (the signs here are important only for p 6= 2):

Kf = (1− E)(f)
∂

∂t
−Hf +

∂f

∂t
E, (13.18)

where E =
∑
i

yi
∂

∂yi
(here the yi are all the coordinates except t) is the Euler

operator, and Hf is the hamiltonian field with Hamiltonian f that preserves
dα:

Hf =
∑

i≤n

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

)
− (−1)p(f)

(∑

j≤m

∂f

∂θj

∂

∂θj

)
. (13.19)

If one tries to build a contact algebra g by means of a non-degenerate
symmetric bilinear form B on the space V by setting (like it is done in char-
acteristic 0) g to be the generalized Cartan prolongation (g−, g0)∗ (for the
precise definition, see [Shch]), where the non-positive terms of g are (here Kf

is the contact vector field with the generating function f ; for an exact formula,
see, e.g., [GLS2]):

gi =





0 if i ≤ −3;
K ·K1 if i = −2
V if i = −1
oB(V )⊕KKt if i = 0
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and where the multiplication is given by the formulas

[X,Y ] = B(X,Y )K1 for any X,Y ∈ g−1;

oB(V ) acts on V via the standard action;

[g0, g−2] = 0;

Kt acts as id on g−1,

[Kt, oB(V )] = 0,

then the form B must be zero-diagonal one (because 0 = [X,X ] = B(X,X)K1

for X ∈ g−1).
One can also try to construct a Lie superalgebra in a similar way by setting

Π(g−1) = 1̄ and

X2 = B(X,X)K1 for any X ∈ g−1. (13.20)

Let us realize this Lie superalgebra by vector fields on a superspace of
superdimension (1|n) with basis x0, . . . , xn such that

Π(x0) = 0̄; Π(xi) = 1̄ for 1 ≤ i ≤ n.

If e1, . . . , en is a basis of V and we set
(
here ∂i =

∂

∂xi
for i = 0, . . . , n

)
:

K1 = ∂0; ei = ∂i +

n∑

j=1

Aijxj∂0 for i = 1, . . . , n,

then, to satisfy relations (13.20), we need the following (here the Gram matrix
B is taken in the basis e1, . . . , en):

Aii = Bii for 1 ≤ i ≤ n;
Aij +Aji = Bij + Bji for 1 ≤ i < j ≤ n

i.e., A ∈ {B}, where the equivalence class is taken with respect to zero-
diagonal symmetric matrices.

These vector fields preserve the 1-form

α = dx0 +
n∑

i,j=1

Aijxidxj .

So, to get a contact Lie superalgebra in this way, one needs B to be
non-symmetric with non-degenerate class {B}.

3) Lin [Lin1] considered an n-parameter family of simple Lie algebras for
p = 2 preserving in dimension 2n + 1 the distribution given by the contact
form
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α = dt+
n∑

i=1

((1 − ai)pidqi + aiqidpi) , where ai ∈ K.

Obviously, the linear change

t′ = t+
∑

aipiqi and identical on other indeterminates (13.21)

reduces α to the canonical form dt +
n∑
i=1

pidqi. So the parameters ai can be

eliminated. Although Lin mentioned the change (13.21) on p. 21 of [Lin1], its
consequence was not formulated and, seven years after, Brown [Br] reproduced
Lin’s misleading n-parameter description of k(2n+ 1).

13.5.7. The case of indeterminates of different parities.

13.5.7.1. The case of an odd 1-form. Let

Π(x0) = Π(x1) = · · · = Π(xn0̄
) = 0̄, Π(xn0̄+1) = · · · = Π(xn) = 1̄.

This corresponds to the following equivalence (we call it 1-superform-
equivalence again) of even bilinear forms on a superspace V of superdimen-
sion (n0̄|n1̄), where n1̄ = n − n0̄: Two such forms B and B′ are said to
be 1-superform-equivalent if, for their supermatrices, we have (13.15), where
M ∈ GL(n0̄|n1̄) and A is a symmetric even supermatrix such that the re-
striction of the bilinear form corresponding to it onto the odd subspace V1̄ is
anti-symmetric. This means that, in the standard format of supermatrices,

B =

(
B0̄ 0
0 B1̄

)
and B′ =

(
B′

0̄ 0
0 B′

1̄

)

are 1-superform-equivalent if and only if
(1) B0̄ and B′

0̄ are 1-form-equivalent, and
(2) B1̄ and B′

1̄ are 1-superform-equivalent. Then, from (13.17) we get the
following

13.5.8. Theorem. The following are the canonical expressions for an odd
contact form on a superspace:

dt+

k∑

i=1

pidqi +

l∑

j=1

ξidηi

{
for n0̄ = 2k and n1̄ = 2l,

+θdθ for n0̄ = 2k and n1̄ = 2l+ 1,

where t = x0; pi = xi, qi = xk+i for 1 ≤ i ≤ k; ξi = xn0̄+i, ηi = xn0̄+l+i for
1 ≤ i ≤ l; θ = xn for n1̄ = 2l+ 1.

(This also follows from the fact that the 1-form

dx0 +

n0̄∑

i,j=1

Aijxidxj +

n1̄∑

i,j=1

Bijxn0̄+idxn0̄+j
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is contact if and only if the forms

dx0 +

n0̄∑

i,j=1

Aijxidxj and dx0 +

n1̄∑

i,j=1

Bijxn0̄+idxn0̄+j

are contact on the superspaces of superdimension (n0̄ + 1|0) and (1|n1̄), re-
spectively.)

13.5.8.1. The case of an even 1-form. Let Π(x0) = 1̄. This corresponds
to the following equivalence of odd bilinear forms on a superspace V of su-
perdimension (n0̄|n1̄): two such forms B and B′ are said to be 1-superform-
equivalent if for their (super)matrices we have (13.15), where M ∈ GL(n0̄|n1̄)
and A is a symmetric odd supermatrix. Then, since

(
1n0̄

0

0 M

)(
B +

(
0 C

CT 0

))(
1n0̄

0

0 MT

)
=

(
0 0

X(D + CT ) 0

)

for B =

(
0 C

D 0

)
,

any such B is equivalent to a form with a supermatrix of the shape (the indices
above and to the left of the supermatrix are the sizes of the blocks)

r n0̄ − r n1̄

n0̄

r

n1̄ − r




0 0 0
1r 0 0
0 0 0


 ,

where r = rank(D + CT ). The corresponding form is contact if and only if
r = n0̄ = n1̄. Hence, we get the following somewhat unexpected result:

13.5.9. Theorem. The following expressions for the canonical form of an
even contact (pericontact) 1-form on a superspace of dimension (k|k+ 1) are
equivalent:

dτ +

k∑

i=1

ξidqi, or dτ +

k∑

i=1

qidξi, or dτ +

l∑

i=1

ξidqi +

k∑

i=l+1

qidξi,

where τ = x0, ξi = xk+i, qi = xi for 1 ≤ i ≤ k.

13.6. Canonical expressions of symmetric bilinear forms.
Related simple Lie algebras

If we want to have a canonical expression of a non-degenerate bilinear form

B such that the intersection of the Cartan subalgebra of o
(1)
B (n) or o

(2)
B (n) with

the space of diagonal matrices were of maximal possible dimension, we should
take the following canonical forms of B. Each of the following subsections
13.6.1, 13.6.2, 13.6.3 contains two most convenient expressions of an equiva-
lence class of bilinear forms.



362 Ch. 13. Bilinear forms for p = 2

13.6.1. n = 2k + 1.

13.6.1.1. If B = S2k+1, then oB(n) consists of the matrices, symmetric with
respect to the side diagonal; it is convenient to express them in the block form




A X C

Y TSk z XTSk

D Y SkA
TSk


,

where A ∈ gl(k), C and D are symmetric with
respect to the side diagonal, X,Y ∈ Kk are
column-vectors, z ∈ K.

The Lie algebra o
(1)
B (n) consists of the elements of oB(n), which have only zeros

on the side diagonal; the Cartan subalgebra of o
(1)
B (n) of maximal dimension

consists of the matrices

diagn(a1, . . . , ak, 0, ak, . . . , a1).

13.6.1.2. If B = Π2k+1, then oB(n) consists of the matrices




A X C

Y T z XT

D Y AT



, where A ∈ gl(k), C and D are symmetric,
X,Y ∈ Kk are column-vectors, z ∈ K.

The Lie algebra o
(1)
B (n) consists of the elements of oB such that C and D are

zero-diagonal, z = 0; the Cartan subalgebra of o
(1)
B (n) of maximal dimension

consists of the matrices

diagn(a1, . . . , ak, 0, a1, . . . , ak).

13.6.2. n = 2k and B equivalent to S2k.

13.6.2.1. If B = S2k, then oB(n) consists of the matrices, symmetric with
respect to the side diagonal; it is convenient to express them in the block form

(
A C

D SkA
TSk

)
,

where A ∈ gl(k), C and D are symmetric
with respect to the side diagonal.

The Cartan subalgebra of the related simple Lie algebra (it is described later)
consists of the matrices

diagn(a1, . . . , ak, ak, . . . , a1) such that a1 + · · ·+ ak = 0.

13.6.2.2. If B = Π2k, then oB(n) is spanned by the matrices
(
A C

D AT

)
, where A ∈ gl(k), C and D are symmetric. (13.22)

Observe that these matrices can be represented as Π(2k)U or V Π(2k),
where U and V are symmetric.

The Cartan subalgebra of the related simple Lie algebra (it is described
later) consists of the matrices

diagn(a1, . . . , ak, a1, . . . , ak) such that a1 + · · ·+ ak = 0.
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13.6.3. n = 2k and B equivalent to 1n. We get the greatest dimension of
the intersection of the Cartan subalgebra with the space of diagonal matrices
if the matrix of B is of any of the following shapes:

13.6.3.1. If B =

(
12 0
0 Sn−2

)
, then oB consists of the matrices

(
A C

Sn−2B
T D

)
where A ∈ gl(2) is symmetric, C is any 2× (n− 2) matrix,
D ∈ gl(n− 2) is symmetric with respect to the side diagonal.

The Lie algebra o
(1)
B (n) consists of the elements of oB(n) such that A is zero-

diagonal, D has only zeros on the side diagonal; the Cartan subalgebra of

o
(1)
B (n) of greatest dimension consists of the matrices




0 a0 0
a0 0 0

0 0 diagn(a1, . . . , ak−1, ak−1, . . . , a1)


.

13.6.3.2. If B =



12 0 0
0 0 1k−1

0 1k−1 0


, then oB(n) is spanned by the matrices




X Y Z

ZT A C

Y T D AT



 where X ∈ gl(2) is symmetric, Y and Z are of size 2× (k− 1),
A ∈ gl(k − 1), C,D ∈ gl(k − 1) are symmetric.

The Lie algebra o
(1)
B (n) consists of the elements of oB(n) such that X , C

and D are zero-diagonal; the Cartan subalgebra of o
(1)
B (n) greatest dimension

consists of the matrices



0 a0 0
a0 0 0

0 0 diagn(a1, . . . , ak−1, a1, . . . , ak−1)


.

13.6.4. The derived Lie algebras of oI(n). Direct calculation shows
that

o
(1)
I (n) =

{
0 if n = 1

{λS2 | λ ∈ K} if n = 2;
o
(2)
I (n) = 0 if n ≤ 2.

13.6.4.1. Lemma. If n > 2, then

i) o
(1)
I (n) = ZD(n);

ii) o
(2)
I (n) = o

(1)
I (n).

Proof. First, let us show that o
(1)
I (n) ⊂ ZD(n). Indeed, if A,A′ ∈ oI(n),

then
[A,A′]ii =

∑

j

AijA
′
ji −A′

ijAji = 0
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since A,A′ are symmetric. So, matrices from o
(1)
I (n) are zero-diagonal.

Let F ij = Eij + Eji, where 1 ≤ i, j ≤ n, i 6= j. These matrices are

symmetric, so they are all in ZD(n). Let us show that they also are in o
(1)
I (n).

Since, for 1 ≤ i < j ≤ n, the matrices F ij form a basis of ZD(n), it follows

that ZD(n) ⊂ o
(1)
I (n), and it proves (i).

Direct calculation shows that if 1 ≤ k ≤ n, k 6= i, j, then

[F ik, F kj ] = F ij , (13.23)

so F ij ∈ o
(1)
I (n).

Moreover, once we have shown that F ij ∈ o
(1)
I (n), this computation also

proves that F ij ∈ o
(2)
I (n). Since o

(2)
I (n) ⊂ o

(1)
I (n) = ZD(n), it also proves

(ii). ut
13.6.4.2. Lemma. If n > 2, then o

(1)
I (n) is simple.

Proof. Let I ⊂ o
(1)
I (n) be an ideal, and x ∈ I an element, such that its

decomposition with respect to {F ij} contains F ab with non-zero coefficient
for some a, b. Let us note that

[F ij , [F ij , F kl]] =

{
F kl if card({i, j} ∩ {k, l}) = 1

0 otherwise.
(13.24)

Let us define an operator PFab : o
(1)
I (n)→ o

(1)
I (n) as follows:

PFab =




(ad F bc)2(ad F ac)2 for c 6= a, b, 1 ≤ c ≤ 3 if n = 3;∏
1≤c≤n, c 6=a,b

(ad F ac)2 if n > 3. (13.25)

Then, from (13.24),

PFabF
cd =

{
F cd if F cd = F ab;

0 otherwise.
(13.26)

So, PFabx is proportional (with non-zero coefficient) to F ab, and
F ab ∈ I. Then, from (13.23), F ib, F ij ∈ I for all i, j, 1 ≤ i, j ≤ n, i 6= j, and

I = o
(1)
I (n). ut

13.6.5. The derived Lie algebras of oΠ(2n). Direct computations show
that:

o
(1)
Π (2) = {λ · 12 | λ ∈ K};
o
(2)
Π (2) = 0;

o
(1)
Π (4) = {matrices of the shape (13.22) such that B,C ∈ ZD(2)};
o
(2)
Π (4) = {matrices of o

(1)
Π (4) such that trA = 0};

o
(3)
Π (4) = {λ · 14 | λ ∈ K};
o
(4)
Π (4) = 0.
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13.6.5.1. Lemma. If n ≥ 3, then

i) o
(1)
Π (2n) = {matrices of the shape (13.22) such that B,C ∈ ZD(n)};

ii) o
(2)
Π (2n) = {matrices of the shape (13.22) such thatB,C ∈ ZD(n), and

tr A = 0};
iii) o

(3)
Π (2n) = o

(2)
Π (2n).

Proof. Let M1 and M2 denote conjectural o
(1)
Π (2n) and o

(2)
Π (2n), respec-

tively, as described in Lemma. First, let us prove that o
(1)
Π (2n) ⊂ M1 and

o
(2)
Π (2n) ⊂M2. Let

L =

(
A B

C AT

)
, L′ =

(
A′ B′

C′ A′T

)
∈ o(2n), and L′′ = [L,L′] =

(
A′′ B′′

C′′ A′′T

)
.

Then, for any i ∈ 1, n, we have

B′′
ii =

n∑

j=1

(AijB
′
ji +BijA

′
ij −A′

ijBji −B′
ijAij) = 0

since B,B′ are symmetric. Analogically, C′′
ii = 0, so L′′ ∈ M1. Hence,

o
(1)
Π (2n) ⊂M1.

Now, if L,L′ ∈ o
(1)
Π (2n), then

trA′′ =

n∑

i=1

A′′
ii =

n∑

i,j=1

(AijA
′
ji +BijC

′
ji −A′

ijAji −B′
ijCji) = 0

since B,B′, C, C′ are symmetric and zero-diagonal. So, since

L′′ ∈ o
(2)
Π (2n) ⊂ o

(1)
Π (2n) ⊂M1,

it follows that L′′ ∈M2, and o
(2)
Π (2n) ⊂M2.

Let us introduce the following notations for matrices from oΠ(2n):

F ij1 , where 1 ≤ i, j ≤ n, i 6= j, such that A = C = 0, B = Eij + Eji;

F ij2 , where 1 ≤ i, j ≤ n, i 6= j, such that A = B = 0, C = Eij + Eji;
Gij , where 1 ≤ i, j ≤ n, i 6= j, such that B = C = 0, A = Eij ;
Hij , where 1 ≤ i, j ≤ n, i 6= j, such that B = C = 0, A = Eii + Ejj ;
K0 such that B = C = 0, A = E11;
K1 such that A = C = 0, B = E11;
K2 such that A = B = 0, C = E11;

Observe that F ij1 , F ij2 , Gij , and Hij span M2; whereas M2 and K0 span M1.
Direct computations give the following relations:

if k 6= i, j, then [Hik, F ij1 ] = F ij1 , [Hik, F ij2 ] = F ij2 , [Hik, Gij ] = Gij ;

[F ij1 , F
ij
2 ] = Hij ;

[K1,K2] = K0.
(13.27)
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Since F ij1 , F
ij
2 , G

ij , Hij ,K1,K2 ∈ oΠ(2n), it follows that F ij1 , F ij2 , Gij , Hij ,

K0 ∈ o
(1)
Π (2n). Hence, M1 ⊂ o

(1)
Π (2n), and o

(1)
Π (2n) = M1. Relations

(13.27) imply that M2 ⊂ [M2,M2], so M2 ⊂ [M1,M1] = o
(2)
Π (2n), and

o
(2)
Π (2n) = M2. Also, M2 ⊂ [M2,M2] = o

(3)
Π (2n), so o

(3)
Π (2n) = M2. The

lemma is proven. ut
13.6.5.2. Lemma. If n ≥ 3, then

i) if n is odd, then o
(2)
Π (2n) is simple;

ii) if n is even, then the only non-trivial ideal of o
(2)
Π (2n) is the center

Z = {λ · 12n | λ ∈ K} (thus, o(2)Π (2n)/Z is simple).

Proof. We use the notations of the previous Lemma. It follows from the
relations

[F ij1 , F
ij
2 ] = Hij ;

[Hij , Xkl] =

{
Xkl if card({i, j} ∩ {k, l}) = 1

0 otherwise
for Xkl = F kl1 , F

kl
2 , G

kl;

that if an ideal I of o
(2)
Π (2n) contains any of the elements F ij1 , F

ij
2 , then

I = o
(2)
Π (2n).

Let 1 ≤ i, j, k ≤ n, i 6= j 6= k 6= i. Direct computation shows that the
operators

PF ij1
= adF jk1

adF ij1
adF ij2

adF jk2
; PF ij2

= adF jk2
adF ij2

adF ij1
adF jk1

on o
(2)
Π (2n) act as follows: for X equal to one of the elements F lm1 , F lm2 ,

H lm, Glm,

PF ij1
X =

{
X if X = F ij1
0 otherwise

; PF ij2
X =

{
X if X = F ij2
0 otherwise

.

It follows from these two facts that any element of a non-trivial ideal I of

o
(2)
Π (2n) must not contain F ij1 , F

ij
2 in its decomposition with respect to the

basis of F ij1 , F
ij
2 , H

ij , Gij — i.e., it must have the shape

(
A 0

0 AT

)
.

Then, for I to be an ideal, A must satisfy the following condition:

AB +BAT = 0 for all B ∈ ZD(n).

If A contains a non-zero non-diagonal entry Aij , then

(A(Ejk + Ekj) + (Ejk + Ekj)A
T )ik = Aij 6= 0

for k 6= i, j; if A contains two non-equal diagonal entries Aii and Ajj , then
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(A(Eij + Eji) + (Eij + Eji)A
T )ij = Aii −Ajj 6= 0

So, A must be proportional to 1n, and 12n ∈ o
(2)
Π (2n) if and only if n is

even. ut

13.7. Canonical expressions of symmetric bilinear
superforms. Related Lie superalgebras.

In this section we consider Lie superalgebras of linear transformations pre-
serving bilinear forms on a superspace of superdimension (n0̄|n1̄) and their
derived superalgebras. Since in the case where n0̄ = 0 or n1̄ = 0 these superal-
gebras are entirely even and do not differ from the corresponding Lie algebras,
we do not consider this case.

As it was said in sec. 13.4.1, every even symmetric non-degenerate form
on a superspace of superdimension (n0̄|n1̄) over a field of characteristic 2 is
equivalent to a form of the shape (here: i = 0̄ or 1̄)

B =

(
B0̄ 0
0 B1̄

)
, where Bi =

{
1ni if ni is odd;

1ni or Πni if ni is even.
(13.28)

We denote the ortho-orthogonal Lie superalgebras preserving this canonical
bilinear forms by ooII(n0̄|n1̄), ooIΠ(n0̄|n1̄), ooΠΠ(n0̄|n1̄), respectively (note
that ooΠI(n0̄|n1̄) ' ooIΠ(n1̄|n0̄)). The Lie superalgebra ooB(n0̄|n1̄) preserv-
ing B consists of the supermatrices which in the standard format are of the
shape

(
A0̄ B0̄C

TB−1
1̄

C A1̄

)
,
where A0̄ ∈ oB0̄

(n0̄), A1̄ ∈ oB1̄
(n1̄), and

C is arbitrary n1̄ × n0̄ matrix.
(13.29)

In what follows we use the fact that matrices and supermatrices of the same
size behave identically with respect to multiplication and Lie (super)bracket
— i.e., the entries of the product or Lie (super)bracket of two square super-
matrices do not depend on their format (they must be of the same format for
the product (bracket) be defined).

13.7.1. The derived Lie superalgebras of ooII(n0̄|n1̄). Let B be of the
shape (13.28) such that Bi = 1ni . We will denote Lie superalgebra preserving
this form as ooII(n0̄|n1̄); this superalgebra consists of symmetric supermatri-
ces.

Direct calculation shows that

oo
(i)
II (1|1) =





{(
a

b

b

a

)
| a, b ∈ K

}
if i = 1,

{a · 11|1 | a ∈ K} if i = 2,

0 if i ≥ 3.
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13.7.1.1. Lemma. If n = n0̄ + n1̄ ≥ 3, then

i) oo
(1)
II (n0̄|n1̄) consists of symmetric supermatrices of (super)trace 0;

ii) oo
(2)
II (n0̄|n1̄) = oo

(1)
II (n0̄|n1̄).

Proof. It was shown in the proof of Lemma 13.6.4.1 that a (super)bracket of
any two symmetric matrices is zero-diagonal, so to prove that supermatrices

from oo
(1)
II (n0̄|n1̄) have trace 0, we only need to prove this for the squares of

odd symmetric supermatrices. If L is an odd matrix of the shape (13.29), then

trL2 =

n0̄∑

i=1

( n1̄∑

j=1

Cij

)2
+

n1̄∑

j=1

( n0̄∑

i=1

Cij

)2
= 2

n0̄∑

i=1

n1̄∑

j=1

C2
ij = 0.

Now let us introduce the following notations for matrices from ooII(n0̄|n1̄):

F ij = Eij + Eji for 1 ≤ i, j ≤ n, i 6= j;

Hij = Eii + Ejj for 1 ≤ i ≤ n0̄, 1 ≤ j ≤ n1̄.

These matrices span the space of symmetric matrices with trace 0. As it
was shown in the proof of Lemma 13.6.4.1, if n ≥ 3, then the matrices F ij

generate themselves. Now, if 1 ≤ i ≤ n0̄, 1 ≤ j ≤ n1̄ (so that F ij is odd), then

(F ij)2 = Hij . So all the F ij , Hij lie in oo
(k)
II (n0̄|n1̄) for any k. ut

13.7.1.2. Lemma. If n = n0̄ + n1̄ ≥ 3, then

i) if n is odd, then oo
(1)
II (n0̄|n1̄) is simple;

ii) if n is even, then the only non-trivial ideal of oo
(1)
II (n0̄|n1̄) is the center

C = {λ · 1n | λ ∈ K} (thus, oo(1)II (n0̄|n1̄)/C is simple).

Proof. Let us define operators PFab as in (13.25). Then, due to (13.26) and
the fact that

PFabH
kl = 0,

we can show in the same way as in the proof of Lemma 13.6.4.2 that if an

ideal of oo
(1)
II (n0̄|n1̄) contains a non-diagonal matrix, it contains all the F ij .

Since all the Hij are squares of odd F ij , such an ideal is trivial.

So, any non-trivial ideal of oo
(1)
II (n0̄|n1̄) is diagonal. For a diagonal ma-

trix X ,
[X,F ij ] = (Xjj −Xii)F

ij ,

so all the elements of a non-trivial ideal must be proportional to 1n, and

1n ∈ oo
(1)
II (n0̄|n1̄) if and only if n is even. ut

13.7.2. The derived Lie superalgebras of ooIΠ(n0̄|n1̄). Now let us
consider the case where n1̄ is even and B is of the shape (13.28) such that
B0̄ = 1n0̄

, B1̄ = Πn1̄
. (The case where n0̄ is even, B0̄ = Πn0̄

, B1̄ = 1n1̄

is analogous to this one, so we will not consider it.) We will denote Lie su-
peralgebra preserving this form by ooIΠ(n0̄|n1̄); this superalgebra consists of
supermatrices of the following shape:
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(
A0̄ C

TΠn1̄

C Πn1̄
A1̄

)
,

where A0̄, A1̄ are symmetric,
C is an arbitrary n1̄ × n0̄ matrix.

(13.30)

13.7.2.1. Lemma. i) oo
(1)
IΠ(n0̄|n1̄) consists of the matrices of the shape

(13.30) such that A0̄ is zero-diagonal;

ii) oo
(2)
IΠ(n0̄|n1̄) = oo

(1)
IΠ(n0̄|n1̄).

Proof. Set k1̄ = n1̄/2; let M be the conjectural space of oo
(1)
IΠ(n0̄|n1̄) as it is

described in the Lemma. First, let us prove that oo
(1)
IΠ(n0̄|n1̄) ⊂M . If

L =

(
A0̄ C

TΠn1̄

C A1̄

)
, L′ =

(
A′

0̄ C
′TΠn1̄

C′ A′
1̄

)
∈ ooIΠ(n0̄|n1̄), and

L′′ = [L,L′] =

(
A′′

0̄ C′′TΠn1̄

C′′ A′′
1̄

)
,

then

(A′′
0̄ )ii = ([A0̄, A

′
0̄] + CTΠn1̄

C′ − C′TΠn1̄
C)ii =

n0̄∑

j=1

((A0̄)ij(A
′
0̄)ji − (A′

0̄)ij(A0̄)ji)+

k1̄∑

j=1

(CjiC
′
j+k1̄,i

+ Cj+k1̄,iC
′
ji − C′

jiCj+k1̄,i + C′
j+k1̄,i

Cji) = 0

since A0̄, A
′
0̄ are symmetric. Now, if L is odd (i.e., A0̄ = 0, A1̄ = 0), then

L2 =

(
CTΠn1̄

C 0

0 CCTΠn1̄

)
,

and

(CTΠn1̄
C)ii =

k1̄∑

j=1

(CjiCj+k1̄,i + Cj+k1̄,iCji) = 0.

Let us introduce the following notations for matrices from ooIΠ(n0̄|n1̄):

F ij , where 1 ≤ i, j ≤ n0̄ and i 6= j, such that C = 0, A1̄ = 0,
A0̄ = Eij + Eji;

Gij , where 1 ≤ i ≤ n1̄, 1 ≤ j ≤ n0̄, such that A0̄ = 0, A1̄ = 0, C = Eij ;
Hi, where 1 ≤ i ≤ n1̄, such that

A0̄ = 0, C = 0, A1̄ =

{
Ei,i+k1̄ if 1 ≤ i ≤ k1̄;
Ei,i−k1̄ if k1̄ + 1 ≤ i ≤ n1̄;

I1̄, such that A0̄ = 0, C = 0, A1̄ = 1n1̄
.

Direct calculations give the following relations:
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[Gi1, Gk1̄+1,j ] = F ij ;

[I1̄, G
ij ] = Gij ;

(Gi1)2 = Hi,

so we see that F ij , Gij , Hi ∈ oo
(1)
IΠ(n0̄|n1̄).

Let us also denote byK the subalgebra of ooIΠ(n0̄|n1̄), consisting of all ma-
trices of the form (13.30), such that A0̄ = 0, C = 0. Since K ⊂ ooIΠ(n0̄|n1̄),

it follows that K(1) ⊂ oo
(1)
IΠ(n0̄|n1̄). We also have K ' oΠ(n1̄), so, as it

was shown in subsect. 13.6.5, K(1) consists of matrices from K, such that
A1̄ has the shape (13.22) (even if n1̄ < 6). Hence, K(1), F ij , Gij , Hi

span M , so M ⊂ oo
(1)
IΠ(n0̄|n1̄), and M = oo

(1)
IΠ(n0̄|n1̄). Since F

ij , Gij , Hij ,

I1̄ ∈ oo
(1)
IΠ(n0̄|n1̄), and K ⊂ oo

(1)
IΠ(n0̄|n1̄) (because K

(1) and Hi span K), we

also see that M ⊂ oo
(2)
IΠ(n0̄|n1̄), and M = oo

(2)
IΠ(n0̄|n1̄). ut

13.7.3. The derived Lie superalgebras of ooΠΠ(n0̄|n1̄). Now we con-
sider the case where n0̄, n1̄ are even and B is of the shape (13.28) such that

Bi = Πni . We set k0̄ =
1

2
n0̄, k1̄ =

1

2
n1̄. We will denote the Lie superalgebra

preserving this form B by ooΠΠ(n0̄|n1̄); it consists of supermatrices of the
following shape:

(
Πn0̄

A0̄ Πn0̄
CTΠn1̄

C Πn1̄
A1̄

)
,

where A0̄, A1̄ are symmetric,
C is an arbitrary n1̄ × n0̄ matrix.

(13.31)

Direct computation shows that

oo
(i)
ΠΠ(2|2) =





{matrices of the shape (13.31) such that

A0̄, A1̄ ∈ ZD(2)}, if i = 1,

{matrices of the shape (13.31) such that

Π2A0̄ = Π2A1̄ = λ · 12}, if i = 2,

{λ · 12|2 | λ ∈ K}, if i = 3,

0, if i ≥ 4.

13.7.3.1. Lemma. If n0̄ + n1̄ ≥ 6, then

i) oo
(1)
ΠΠ(n0̄|n1̄) consists of the matrices of the shape (13.31) such that

A0̄, A1̄ are zero-diagonal;

ii) oo
(2)
ΠΠ(n0̄|n1̄) consists of matrices from oo

(1)
ΠΠ(n0̄|n1̄) such that

n0̄/2∑

i=1

(Πn0̄
A0̄)ii +

n1̄/2∑

i=1

(Πn1̄
A1̄)ii = 0,

i.e., the “half-supertrace” of the matrix vanishes;

iii) oo
(3)
ΠΠ(n0̄|n1̄) = oo

(2)
ΠΠ(n0̄|n1̄).
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Proof. Let B̃ = diag2(Πn0̄
, Πn1̄

) be a (non-super) bilinear form on a space
of dimension n0̄ + n1̄. Denote:

Mk = {L ∈ gl(n0̄|n1̄) | exists L′ ∈ o
(k)

B̃
(n0̄ + n1̄) such that

Lij = L′
ij for all i, j ∈ 1, n0̄ + n1̄};

N = Span{L2 | L ∈ ooΠΠ(n0̄|n1̄), L is odd }.

As it was noticed before, matrices and supermatrices behave identically
with respect to multiplication and Lie (super)bracket. So we get the following
inclusion:

M i ⊂ oo
(i)
ΠΠ(n0̄|n1̄) ⊂M i +N.

Since B̃ is equivalent to Πn0̄+n1̄
, it follows from Lemma 13.6.5.1 that

M1,M2,M3 coincide with conjectural spaces oo
(1)
ΠΠ(n0̄|n1̄), oo

(2)
ΠΠ(n0̄|n1̄),

oo
(3)
ΠΠ(n0̄|n1̄) as they are described in the lemma. So, to prove the lemma,

it suffices to show that N ⊂M2. If

L =

(
0 Πn0̄

CTΠn1̄

C 0

)

is an odd matrix from ooΠΠ(n0̄|n1̄), then

L2 =

(
Πn0̄

CTΠn1̄
C 0

0 CΠn0̄
CTΠn1̄

)
,

and

(CTΠn1̄
C)ii =

k1̄∑

j=1

CjiCj+k1̄,i +

n1̄∑

j=k1̄+1

CjiCj−k1̄,i = 0;

similarly, Πn1̄
CΠn0̄

CTΠn1̄
is zero-diagonal, so N ⊂M1. Now,

k0̄∑

i=1

(Πn0̄
CTΠn1̄

C)ii +

k1̄∑

l=1

(CΠn0̄
CTΠn1̄

)ll =

k0̄∑

i=1

( k1̄∑

j=1

CjiCj+k1̄,i +

n1̄∑

j=k1̄+1

CjiCj−k1̄,i

)
+

k1̄∑

l=1

( k0̄∑

m=1

ClmCl,m+k0̄ +

n0̄∑

m=k0̄+1

ClmCl,m−k0̄

)
= 0,

so N ⊂M2. ut
13.7.3.2. Lemma. If n0̄ + n1̄ ≥ 6, then

i) if k = (n0̄ + n1̄)/2 is odd, then oo
(2)
ΠΠ(n0̄|n1̄) is simple;

ii) if k is even, then the only non-trivial ideal of oo
(2)
ΠΠ(n0̄|n1̄) is

Z = {λ · 1n0̄|n1̄
| λ ∈ K}, its center, and hence oo

(2)
ΠΠ(n0̄|n1̄)/Z is simple.
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Proof. Let ι : gl(n0̄|n1̄)→ gl(n0̄+n1̄) be a forgetful map that sends a super-
matrix into the matrix with the same entries and superstructure forgotten.
Since for p = 2 matrices and supermatrices behave identically with respect to

the Lie (super)bracket, ι(oo
(2)
ΠΠ(n0̄|n1̄)) is a Lie algebra, and ι(I) is an ideal

in ι(oo
(2)
ΠΠ(n0̄|n1̄)) for any ideal I ⊂ oo

(2)
ΠΠ(n0̄|n1̄).

Set

M =




1k0̄
0 0 0

0 0 1k0̄
0

0 1k1̄
0 0

0 0 0 1k1̄


.

Then, according to Lemma 13.6.5.1 and 13.7.3.1, the map X 7→MXM−1

gives us an isomorphism between ι(oo
(2)
ΠΠ(n0̄|n1̄)) and oΠ(n0̄ + n1̄). So, ac-

cording to Lemma 13.6.5.2, if k is odd, then ι(oo
(2)
ΠΠ(n0̄|n1̄) is simple; if k is

even, then the only non-trivial ideal of ι(oo
(2)
ΠΠ(n0̄|n1̄)) is

{λ ·M−11n0̄+n1̄
M = λ · 1n0̄+n1̄

| λ ∈ K} = ι(Z).

Thus, since ι is invertible, oo
(2)
ΠΠ(n0̄|n1̄) can have a non-trivial ideal only

if k is even, and this ideal must be equal to Z; direct computation shows that
Z is indeed an ideal. ut
13.7.4. The derived Lie superalgebras of pe(k). As it was shown in
subsect. 13.4.1, any non-degenerate odd symmetric bilinear form on a su-
perspace of dimension (k|k) (if dimensions of the even and odd parts of the
space are not equal, there are no non-degenerate odd bilinear forms on it) is
equivalent to the form with the matrix Πk|k.

The Lie superalgebra pe(k) preserving this form consists of the superma-
trices of the shape

(
A C

D AT

)
, where A ∈ gl(k), C and D are symmetric k × k matrices.

(13.32)
Direct computations show that:

pe(1)(1) = {λ · 11|1 | λ ∈ K};
pe(2)(1) = 0;
pe(1)(2) = {matrices of the shape (20.7) such that

C and D are zero-diagonal};
pe(2)(2) = {matrices of pe(1)(2) such that trA = 0};
pe(3)(2) = {λ · 12|2 | λ ∈ K};
pe(4)(2) = 0.

13.7.4.1. Lemma. If k ≥ 3, then

i)
•20

•

pe(1)(k) = {matrices of the shape (20.7) such that
C and D are zero-diagonal};zdes’ i nizhe

neverno
ii) pe(2)(k) = {matrices of pe(1)(k) such that trA = 0};
iii) pe(3)(k) = pe(2)(k).
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Proof. As it was noticed before, matrices and supermatrices behave identi-
cally with respect to multiplication and Lie (super)bracket. So, if we denote

M i= {L ∈ gl(k|k) | exists L′ ∈ oΠ(2k) such that Lij = L′
ij for all i, j ∈ 1, 2k};

N i = Span{L2 | L ∈ pe(i−1)(k), L is odd }, where pe(0)(k) = pe(k),

then we get the following inclusion:

M i ⊂ pe(i)(k) ⊂M i +N i.

Now recall from the proof of Lemma 13.6.5.1 that M1,M2,M3 coincide
with conjectural spaces pe(1)(k), pe(2)(k), pe(3)(k) as they are described in the
lemma. Notice also that N1 ⊂M1 (since N1 is an even subspace of pe(k)), so
pe(1)(k) =M1. If

L =

(
0 C
D 0

)

is an odd matrix from pe(1)(k) (so C and D are symmetric and zero-diagonal),
then

L2 =

(
CD 0
0 DC

)
,

and

trCD =
k∑

i,j=1

CijDji = 2
∑

1≤i<j≤n

CijDij = 0,

so N2 ⊂ M2, and pe(2)(k) = M2. Also, N3 ⊂ N2 ⊂ M2 = M3, and
pe(3)(k) =M3. ut

13.8. Canonical expressions of non-symmetric bilinear
superforms. Related Lie superalgebras.

As it was shown in sec. 13.4.2, any even non-symmetric bilinear form B
on a superspace in the standard format has the shape

(
B0̄ 0
0 B1̄

)
.

This form is preserved by the matrices of the shape

(
A0̄ C
D A1̄

)
, where





A0̄ preserves the form B0̄,

A1̄ preserves the form B1̄,

CB1̄ +B0̄D
T = 0,

DB0̄ +B1̄C
T = 0.

Any odd non-degenerate non-symmetric bilinear form B on a superspace
of dimension (k|k) (non-degenerate odd form can exist only on a superspace
with equal even and odd dimensions) is equivalent to a form of the shape
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(
0 1k
J 0

)
, where J is the Jordan normal form.

Such a form is preserved by the matrices of the shape

(
A C

D AT

)
, where





AJT + JTA = 0,

CJ + CT = 0,

D + JDT = 0.

13.8.1. Problem. The (first or second) derived Lie superalgebra of peB(k|k)
is simple (perhaps, modulo center) only if J consists of 1 × 1 blocks. What
is an explicit structure in other cases? Compare with Ermolaev’s description
[Er].

Chapter 14

g(A): Examples in characteristic 2

14.1. Ortho-orthogonal Lie superalgebras

In what follows we assume that p = 2 and K is perfect. We also assume
that n0̄, n1̄ > 0.

14.1.1. Non-degenerate bilinear forms and the Lie superalgebras
that preserve them. For p = 2, there are up to four classes of equivalence
of non-equivalent non-degenerate even supersymmetric bilinear forms on a
given superspace. For discussion of various equivalences, see Section 13.3 of
Chapter 13; here we just recall that we say that two bilinear forms B and
B′ on a superspace V are equivalent if there is an even non-degenerate linear
map M : V → V such that

B′(x, y) = B(Mx,My) for any x, y ∈ V.

We fix some basis in V and identify a bilinear form with its Gram matrix
in this basis; then two such matrices are equivalent if there is an even non-
degenerate matrix M such that

B′ =MBMT .

The classes of equivalence of forms are as follows. Any such form B on a
superspace V of superdimension n0̄|n1̄ can be decomposed as follows:

B = B0̄ ⊕B1̄,

where B0̄, B1̄ are symmetric non-degenerate forms on V0̄ and V1̄, respectively.
For i = 0̄, 1̄, the form Bi is equivalent to 1ni if ni is odd, and equivalent to
1ni or Πni if ni is even (we identify a bilinear form with its Gram matrix).
So every non-degenerate even symmetric bilinear form is equivalent to one of
the following forms (some of them are defined not for all dimensions):

BII = 1n0̄
⊕ 1n1̄

; BIΠ = 1n0̄
⊕Πn1̄

if n1̄ is even;
BΠI = Πn0̄

⊕ 1n1̄
if n0̄ is even; BΠΠ = Πn0̄

⊕Πn1̄
if n0̄, n1̄ are even.
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For obvious reasons, the Lie superalgebras that preserve the respective
forms are called ortho-orthogonal.

We denote them by ooII(n0̄|n1̄), ooIΠ(n0̄|n1̄), ooΠI(n0̄|n1̄), ooΠΠ(n0̄|n1̄),
respectively.

Now we describe these algebras.

14.1.1.1. ooII(n0̄|n1̄). If n ≥ 3, then the Lie superalgebra oo
(1)
II (n0̄|n1̄) is

simple. This Lie superalgebra has a 2-structure; it has no Cartan matrix.

14.1.1.2. ooIΠ(n0̄|n1̄) (n1̄ = 2k1̄). The Lie algebra oo
(1)
IΠ(n0̄|n1̄) is sim-

ple.

The Lie algebra oo
(1)
IΠ(n0̄|n1̄) has a 2-structure if and only if n0̄ = 1; it has

a Cartan matrix if and only if n0̄ is odd; this matrix has the following form
(up to format; the possible formats are described in the Table 20.10 below):




. . .
. . .

. . .
...

. . . ∗ 1 0

. . . 1 ∗ 1
· · · 0 1 1




Since ooΠI(n0̄|n1̄) ' ooIΠ(n1̄|n0̄), we do not have to consider the algebra
ooΠI(n0̄|n1̄) separately unless we consider CTS prolongations: Although the
algebras are isomorphic, their prolongations from identity representations are
non-isomorphic.

14.1.1.3. ooΠΠ(n0̄|n1̄) (n0̄ = 2k0̄, n1̄ = 2k1̄). If n = n0̄+n1̄ ≥ 6, then

if k0̄ + k1̄ is odd, then the Lie superalgebra oo
(2)
ΠΠ(n0̄|n1̄) is simple;

if k0̄ + k1̄ is even, then oo
(2)
ΠΠ(n0̄|n1̄)/ Span(1n0̄|n1̄

) is simple.
(14.1)

Each of these simple Lie superalgebras has a 2|4-structure; they are also
close to Lie superalgebras with Cartan matrix. To describe these CM super-
algebras in most simple terms, we will choose a slightly different realization
of ooΠΠ(2k0̄|2k1̄): Let us consider it as the algebra of linear transformations
that preserve the bilinear form Π(2k0̄ + 2k1̄) in format k0̄|k1̄|k0̄|k1̄. Then the

algebra oo
(i)
ΠΠ(2k0̄|2k1̄) (we assume that g(0) = g) is spanned by supermatrices

of format k0̄|k1̄|k0̄|k1̄ and the form

(
A C
D AT

)
where

A ∈
{
gl(k0̄|k1̄) if i ≤ 1,

sl(k0̄|k1̄) if i ≥ 2,

C,D are

{
symmetric matrices if i = 0;

symmetric zero-diagonal matrices if i ≥ 1.

(14.2)
If i ≥ 1, these derived algebras have a non-trivial central extension given by
the following cocycle:
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F

((
A C
D AT

)
,

(
A′ C′

D′ A′T

))
=

∑

1≤i<j≤k0̄+k1̄

(CijD
′
ij + C′

ijDij) (14.3)

(note that this expression resembles
1

2
tr(CD′ + C′D)). We will denote this

central extension of oo
(i)
ΠΠ(2k0̄|2k1̄) by ooc(i, 2k0̄|2k1̄).

Let I0 := diag(1k0̄|k1̄ , 0k0̄|k1̄). Then the corresponding CM Lie superalgebra
is

ooc(2, 2k0̄|2k1̄)⊂+KI0 if k0̄ + k1̄ is odd;

ooc(1, 2k0̄|2k1̄)⊂+KI0 if k0̄ + k1̄ is even.
(14.4)

The corresponding Cartan matrix has the form (up to format; the possible
formats are described in the Table 20.10 below):




. . .
. . .

. . .
...
...

. . . 0 1 0 0

. . . 1 0 1 1
· · · 0 1 0 0
· · · 0 1 0 0




(14.5)

14.2. Periplectic Lie superalgebras

If n0̄ = n1̄, then one can also consider non-degenerate supersymmetric odd
bilinear forms. All such forms are equivalent to Πm|m, where m = n0̄ = n1̄.
We call the Lie superalgebra preserving a given non-degenerate symmetric odd
bilinear form B periplectic, as A. Weil suggested, and denote it by peB(m).

If m ≥ 3, then

if m is odd, then the Lie superalgebra pe
(2)
B (m) is simple;

if m is even, then pe
(2)
B (m)/ Span(1m|m) is simple.

(14.6)

If we choose the form B to be Πm|m, then the algebras pe
(i)
B (m) consist

of matrices of the form (14.2); the only difference from oo
(i)
ΠΠ is the format

which in this case is m|m.
Each of these simple Lie superalgebras has a 2|4-structure. Note that if

p 6= 2, then the Lie superalgebra peB(m) and its derived algebras are not close
to CM Lie (super)algebras (because, for example, their root system is not
symmetric). If p = 2 and m ≥ 3, then they are close to CM Lie superalgebras
as we will see shortly.

The algebras pe
(i)
B (m), where i > 0, have non-trivial central extensions

with cocycles (14.3); we denote these central extensions by pec(i,m). Let us
introduce another matrix I0 = diag(1m, 0m). Then the CM Lie superalgebras
are
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pec(2,m)⊂+KI0 if m is odd;

pec(1,m)⊂+KI0 if m is even.
(14.7)

The corresponding Cartan matrix has the form (14.5); the only condition
on its format is that the last two simple roots must have distinct parities.
The corresponding Dynkin diagram is shown in the Table 20.10; all its nodes,
except for the “horns“, may be both ⊗ or �.
14.2.1. Dynkin diagrams. The following Dynkin diagrams correspond to
CM Lie superalgebras close to ortho-orthogonal and periplectic Lie super-
algebras. Each thin black dot may be ⊗ or �; the last five columns show
conditions on the diagrams; what concerns the last four columns, it suffices
to satisfy conditions in any one row. Horizontal lines in the last four columns
separate the cases corresponding to different Dynkin diagrams. The notations
are:

v is the total number of nodes in the diagram;
ng is the number of ⊗ among the thin black dots; png is the parity of this

number;
ev and od are the number of thin black dots such that the number of ⊗ to

the left from them is even and odd, respectively.

14.2.2. Superdimensions. The following are the superdimensions of the
relatives of the ortho-orthogonal and periplectic Lie superalgebras that pos-
sess Cartan matrices. To get the superdimensions of the simple relatives, one
should replace +2 and +1 by −2 and −1, respectively, in the two first lines
and the four last ones.

dim oc(1; 2k)⊂+KI0 = 2k2 − k + 2 if k is even;
dim oc(2; 2k)⊂+KI0 = 2k2 − k + 1 if k is odd;

dim o(1)(2k + 1) = 2k2 + k

sdim oo(1)(2k0̄ + 1|2k1̄) = 2k20̄ + k0̄ + 2k21̄ + k1̄ | 2k1̄(2k0̄ + 1)
sdim ooc(1; 2k0̄|2k1̄)⊂+KI0 = 2k20̄ − k0̄ + 2k21̄ − k1̄ + 2 | 4k0̄k1̄ if k0̄ + k1̄ is even;
sdim ooc(2; 2k0̄|2k1̄)⊂+KI0 = 2k20̄ − k0̄ + 2k21̄ − k1̄ + 1 | 4k0̄k1̄ if k0̄ + k1̄ is odd;
sdim pec(1;m)⊂+KI0 = m2 + 2 | m2 −m if m is even;
sdim pec(2;m)⊂+KI0 = m2 + 1 | m2 −m if m is odd

(14.8)
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14.3. The e-type superalgebras

Some of the results of this section are cited from [BGL5].
In characteristic 2 there exist super-analogs of Lie algebras e(6), e(7) and

e(8). These Lie superalgebras have Dynkin diagrams of e(n) with some of the
nodes changed to ⊗. We call them e-type superalgebras and denote them by
their simplest Dynkin diagrams: e(n, i) denotes the Lie superalgebra whose
diagram is of the same shape as that of the Lie algebra e(n) but with the only
— i-th — node ⊗.
14.3.1. Certain notation. We enumerate the nodes of the Dynkin diagram
of e(n) as in [Bou, OV]: We first enumerate the nodes in the row corresponding
to sl(n) (from the end-point of the “longest” twig towards the branch point
and further on along the second long twig), and the nth node is the end-point
of the shortest “twig”. Recall that for e(6) and e(7), the adjoint module is
R(π6); for e(8), the adjoint module is R(π1).

14.3.1.1. Remark. In what follows (and in Elduque’s super constructions)
the spinor representation appears. For o(1)(2k + 1), the spinor representation
should be defined to be the kth fundamental representation; for ooc(2k), the
spinor representations are the kth and the (k − 1)st fundamental representa-
tions.

14.3.2. e(6, 1) ' e(6, 5), sdim46|32. We have g0̄ ' ooc(2; 10)⊕ KZ and
g1̄ is a reducible module of the form spin10⊕ spin10 with two highest weight
vectors

x36 = [[[x4, x5], [x6, [x2, x3]]], [[x3, [x1, x2]], [x6, [x3, x4]]]]

and y5. Denote the basis elements of the Cartan subalgebra by Z, h1, h2,
h3, h4, h6. The weights of x36 and y5 are respectively, (0, 0, 0, 0, 0, 1) and
(0, 0, 0, 0, 1, 0). The module generated by x36 gives all odd positive roots and
the module generated by y5 gives all odd negative roots.

14.3.3. e(6, 6), sdim38|40. We have g0̄ ' (hei(2)⊕ psl(6))⊂+KZ (in fact,
this Z is just h6 from the Cartan subalgebra corresponding to the first Cartan
matrix). The module g1̄ is irreducible with highest weight vector

x35 = [[[x3, x6], [x4, [x2, x3]]], [[x4, x5], [x3, [x1, x2]]]]

of weight (1, 0, 0, 1, 0, 1) with respect to the Cartan subalgebra corresponding
to the direct sum of Cartan subalgebra of hei(2) spanned by h1 + h3 +h5 and
the Cartan subalgebra of psl(6) spanned by h1, h2, h3, h4.

14.3.4. e(7, 1), sdim = 80|54. Since the Cartan matrix above is of rank 6,
a grading operator d1 should be added. Now if we take d1 = (1, 0, 0, 0, 0, 0, 0),
then g0̄ ' e(6) ⊕ Kz ⊕ KI0. The Cartan subalgebra is generated by
h1 + h3 + h7, h2, h3, h4, h5, h6, h7 and d1. So g1̄ has the two highest weight
vectors:
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x63=[[[[x2,x3],[x4,x7]],[[x3,x4],[x5,x6]]],[[[x4,x7],[x5,x6]],[[x4,x5],[x3,[x1,x2]]]]]

and y1. Their respective weights (if we take d1 = (1, 0, 0, 0, 0, 0, 0)) are
(0, 0, 0, 0, 0, 1, 0, 1) and (0, 1, 0, 0, 0, 0, 0, 0). The module generated by x63 gives
all odd positive roots and the module generated by y1 gives all odd negative
roots.

14.3.5. e(7, 6), sdim = 69|64. We have

g0̄ ' (hei(2)⊕ oc(1; 12)/center)⊂+(Kz ⊕KI0).

The module g1̄ is irreducible with the highest weight vector

x62 = [[[x7, [x5, [x3, x4]]], [[x1, x2], [x3, x4]]], [[[x2, x3], [x4, x5]], [[x4, x7], [x5, x6]]]].

The Cartan subalgebra is spanned by h1 + h3 + h5, h1, h2, h3, h4, h7 and also
h6 and d1. The weight of x62 is (1, 0, 0, 0, 0, 0, 1, 0).

14.3.6. e(7, 7), sdim = 64|70. This Cartan matrix is also of rank 6, so a
grading operator should be added and is added. Then g0̄ ' (sl(7)⊕K)⊂+KI0.
The module g1̄ has the two highest weight vectors:

x58 = [[[x3, [x1, x2]], [x6, [x4, x5]]], [[x7, [x3, x4]], [[x2, x3], [x4, x5]]]]

and y7. The Cartan subalgebra is spanned by h1, h2, h3, h4, h5, h6 and also
h1+h3+h7 and d1. The weight of x58 is (0, 0, 1, 0, 0, 0, 0, 1) and the weight of
y7 is (0, 0, 0, 1, 0, 0, 0, 1). The module generated by x58 gives all odd positive
roots and the module generated by y7 gives all odd negative roots.

14.3.7. e(8, 1), sdim = 136|112. We have g0̄ ' (hei(2)⊕e(7)/center)⊂+Kz).
The Cartan subalgebra is spanned by h2 + h4 + h8 and h2, h3, h4, h5, h6, h7
and also h1. The g0̄-module g1̄ is irreducible with one highest weight vector:

x119 = [[[[x4, [x2,x3]], [[x5,x8], [x6,x7]]], [[x8, [x4,x5]], [[x3,x4], [x5,x6]]]] ,
[[[x7, [x5, x6]], [[x1,x2], [x3, x4]]], [[x8, [x5,x6]], [[x2,x3], [x4,x5]]]]]

of weight (1, 1, 0, 0, 0, 0, 0, 1) and one lowest weight vector y119 whose expres-
sion is as above the x’s changed by the y’s, of the same weight as that of
x119.

14.3.8. e(8, 8), sdim = 120|128. We have g0̄ ' o1Π(16) and g1̄ ' R(π7).
In the Z-grading with the 1st CM with deg e±8 = ±1 and deg e±i = 0 for
i 6= 8, we have g0 = gl(8) = gl(V ) and (as g0-modules) g±i = ∧(4−i)(V ) for
i = 1, 2, 3.

14.4. Systems of simple roots of the e-type Lie
superalgebras

•21

•
[ Ol: zdes’ index{e(a, b)} ] 21
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14.4.1. e(6, 1) ' e(6, 5), sdim46|32. All inequivalent Cartan matrices
are as follows (symmetric ones are not excluded):

1) 000010 2) 010001 3) 100110 4) 000011
5) 010100 6) 101001 7) 000101 8) 011000
9) 101100 10) 000110 11) 011001 12) 110000
13) 000111 14) 011010 15) 110001 16) 001011
17) 011110 18) 110010 19) 001100 20) 100000
21) 110110 22) 001101 23) 100001 24) 111001
25) 001111 26) 100010 27) 111100

(14.9)

14.4.2. e(6, 6), sdim38|40. All inequivalent Cartan matrices are as fol-
lows:

1) 000001 2) 011011 3) 101110 4) 000100
5) 011100 6) 101111 7) 001000 8) 011101
9) 110011 10) 001001 11) 011111 12) 110100
13) 001010 14) 100011 15) 110101 16) 001110
17) 100100 18) 110111 19) 010000 20) 100101
21) 111000 22) 010010 23) 100111 24) 111010
25) 010011 26) 101000 27) 111011 28) 010101
29) 101010 30) 111101 31) 010110 32) 101011
33) 111110 34) 010111 35) 101101 36) 111111

(14.10)

14.4.3. e(7, 1), sdim = 80|54. All inequivalent Cartan matrices are as
follows:

1) 1000000 2) 1000010 3) 1000110 4) 1001100
5) 1010001 6) 1011001 7) 1100000 8) 1100010
9) 1100110 10) 1101100 11) 1110001 12) 1111001
13) 0000011 14) 0000101 15) 0000111 16) 0001011
17) 0001101 18) 0001111 19) 0010100 20) 0011000
21) 0011010 22) 0011110 23) 0100001 24) 0101001
25) 0110000 26) 0110010 27) 0110110 28) 0111100

(14.11)

14.4.4. e(7, 6), sdim = 69|64. All inequivalent Cartan matrices are as
follows:
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1) 0000010 2) 0000100 3) 0000110 4) 0001000
5) 0001010 6) 0001100 7) 0001110 8) 0010001
9) 0010011 10) 0010101 11) 0010111 12) 0011001
13) 0011011 14) 0011101 15) 0011111 16) 0100000
17) 0100010 18) 0100100 19) 0100110 20) 0101000
21) 0101010 22) 0101100 23) 0101110 24) 0110001
25) 0110011 26) 0110101 27) 0110111 28) 0111001
29) 0111011 30) 0111101 31) 0111111 32) 1000001
33) 1000011 34) 1000101 35) 1000111 36) 1001001
37) 1001011 38) 1001101 39) 1001111 40) 1010000
41) 1010010 42) 1010100 43) 1010110 44) 1011000
45) 1011010 46) 1011100 47) 1011110 48) 1100001
49) 1100011 50) 1100101 51) 1100111 52) 1101001
53) 1101011 54) 1101101 55) 1101111 56) 1110000
57) 1110010 58) 1110100 59) 1110110 60 1111000
61) 1111010 62) 1111100 63) 1111110

(14.12)

14.4.5. e(7, 7), sdim = 64|70. All inequivalent Cartan matrices are as
follows:

1) 0000001 2) 0001001 3) 0010000
4) 0010010 5) 0010110 6) 0011100
7) 0100011 8) 0100101 9) 0100111
10) 0101011 11) 0101101 12) 0101111
13) 0110100 14) 0111000 15) 0111010
16) 0111110 17) 1000100 18) 1001000
19) 1001010 20) 1001110 21) 1010011
22) 1010101 23) 1010111 24) 1011011
25) 1011101 26) 1011111 27) 1100100
28) 1101000 29) 1101010 30) 1101110
31) 1110011 32) 1110101 33) 1110111
34) 1111011 35) 1111101 36) 1111111

(14.13)
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14.4.6. e(8, 8), sdim = 120|128. All inequivalent Cartan matrices are as
follows:

1) 00000001 2) 00000010 3) 00000110 4) 00001001
5) 00001100 6) 00010000 7) 00010001 8) 00010010
9) 00010110 10) 00011001 11) 00011100 12) 00100000
13) 00100010 14) 00100011 15) 00100101 16) 00100110
17) 00100111 18) 00101011 19) 00101100 20) 00101101
21) 00101111 22) 00110001 23) 00110100 24) 00111000
25) 00111001 26) 00111010 27) 00111110 28) 01000011
29) 01000100 30) 01000101 31) 01000111 32) 01001000
33) 01001010 34) 01001011 35) 01001101 36) 01001110
37) 01001111 38) 01010011 39) 01010100 40) 01010101
41) 01010111 42) 01011000 43) 01011010 44) 01011011
45) 01011101 46) 01011110 47) 01011111 48) 01100001
49) 01100100 50) 01101000 51) 01101001 52) 01101010
53) 01101110 54) 01110000 55) 01110010 56) 01110011
57) 01110101 58) 01110110 59) 01110111 60) 01111011
61) 01111100 62) 01111101 63) 01111111 64) 10000001
65) 10000100 66) 10001000 67) 10001001 68) 10001010
69) 10001110 70) 10010000 71) 10010010 72) 10010011
73) 10010101 74) 10010110 75) 10010111 76) 10011011
77) 10011100 78) 10011101 79) 10011111 80) 10100011
81) 10100100 82) 10100101 83) 10100111 84) 10101000
85) 10101010 86) 10101011 87) 10101101 88) 10101110
89) 10101111 90) 10110011 91) 10110100 92) 10110101
93) 10110111 94) 10111000 95) 10111010 96) 10111011
97) 10111101 98) 10111110 99) 10111111 100) 11000001
101) 11000100 102) 11001000 103) 11001001 104) 11001010
105) 11001110 106) 11010000 107) 11010010 108) 11010011
109) 11010101 110) 11010110 111) 11010111 112) 11011011
113) 11011100 114) 11011101 115) 11011111 116) 11100011
117) 11100100 118) 11100101 119) 11100111 120) 11101000
121) 11101010 122) 11101011 123) 11101101 124) 11101110
125) 11101111 126) 11110011 127) 11110100 128) 11110101
129) 11110111 130) 11111000 131) 11111010 132) 11111011
133) 11111101 134) 11111110 135) 11111111

(14.14)
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14.4.7. e(8, 1), sdim = 136|112. All inequivalent Cartan matrices are as
follows:

1) 10000000 2) 10000010 3) 10000011 4) 10000101
5) 10000110 6) 10000111 7) 10001011 8) 10001100
9) 10001101 10) 10001111 11) 10010001 12) 10010100
13) 10011000 14) 10011001 15) 10011010 16) 10011110
17) 10100000 18) 10100001 19) 10100010 20) 10100110
21) 10101001 22) 10101100 23) 10110000 24) 10110001
25) 10110010 26) 10110110 27 10111001 28) 10111100
29) 11000000 30) 11000010 31) 11000011 32) 11000101
33) 11000110 34) 11000111 35) 11001011 36) 11001100
37) 11001101 38) 11001111 39) 11010001 40) 11010100
41) 11011000 42) 11011001 43) 11011010 44) 11011110
45) 11100000 46) 11100001 47) 11100010 48) 11100110
49) 11101001 50) 11101100 51) 11110000 52) 11110001
53) 11110010 54) 11110110 55) 11111001 56) 11111100
57) 00000011 58) 00000100 59) 00000101 60) 00000111
61) 00001000 62) 00001010 63) 00001011 64) 00001101
65) 00001110 66) 00001111 67) 00010011 68) 00010100
69) 00010101 70) 00010111 71) 00011000 72) 00011010
73) 00011011 74) 00011101 75) 00011110 76) 00011111
77) 00100001 78) 00100100 79) 00101000 80) 00101001
81) 00101010 82) 00101110 83) 00110000 84) 00110010
85) 00110011 86) 00110101 87) 00110110 88) 00110111
89) 00111011 90) 00111100 91) 00111101 92) 00111111
93) 01000000 94) 01000001 95) 01000010 96) 01000110
97) 01001001 98) 01001100 99) 01010000 100) 01010001
101) 01010010 102) 01010110 103) 01011001 104) 01011100
105) 01100000 106) 01100010 107) 01100011 108) 01100101
109) 01100110 110) 01100111 111) 01101011 112) 01101100
113) 01101101 114) 01101111 115) 01110001 116) 01110100
117) 01111000 118) 01111001 119) 01111010 120) 01111110

(14.15)



Chapter 15

Presentations of finite dimensional symmetric
classical modular Lie algebras and

superalgebras

15.1. Introduction

All spaces considered are finite dimensional over an algebraically closed
field K of characteristic p.

15.1.1. Motivations. Recently we observe a rise of interest in presentations
(by means of generators and defining relations) of simple (and close to simple)
Lie (super)algebras occasioned by various applications of this technical result,
see [GL1, LSe, Sa] and references therein.

This chapter can be considered as a first step towards solution of the
problem of description of “Chevalley supergroups”; for their first examples
and a way to apply them to a description of the moduli superspaces of “super
Riemannian surfaces”, see [FG].

Representations of quantum groups — the deforms Uq(g) of the enveloping
algebras — at q equal to a root of unity resemble, even over C, representations
of Lie algebras in positive characteristic and this is one more application
that brought the modular Lie (super)algebras and their presentations to the
limelight.

15.1.2. Disclaimer. Although presentation — description in terms of gen-
erators and relations — is one of the accepted ways to represent a given alge-
bra, it seems that an explicit form of the presentation is worth the trouble to
obtain only if this presentation is often in need, or (which is usually the same)
is sufficiently neat. The Chevalley generators of simple finite dimensional Lie
algebras over C satisfy simple and neat relations (“Serre relations”) and are
often needed for various calculations and theoretical discussions. Relations
between their analogs in super case, although not so neat, are still tolerable,
at least, for certain Cartan matrices (both Serre and “non-Serre relations”).

Leites was the first (in 1975) to conjecture that simple infinite dimensional
vectorial Lie algebras are finitely presented; he suggest analogs of the Cheval-
ley generators for them and (roughly) described their defining relations; for
details obtained later, see [LP]. These relations are too complicated to be
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used by humans and were of academic interest until lately Grozman’s pack-
age SuperLie made the task of finding the explicit expression of the defining
relations for many types of Lie algebras and superalgebras a routine exercise
for anybody capable to use Mathematica.

Therefore I do not bother with vectorial type Lie (super)algebras, espe-
cially, in view of the shearing parameter N , which makes the task undescrib-
able in the general case.

Speaking about the general case, SuperLie, although great, can not prove
by induction, and can only help to get presentations for a given algebra.
Therefore, in this paper, I confine myself to the modular analogs of the simple
finite dimensional Lie algebras over C only. It is still quite a job, hopefully
worth the trouble.

15.1.3. Main results. Whereas Grozman, and even his package SuperLie
[Gr], knew how to construct g(Ap) for a decade (although not for p = 3 and 2),
it is shown here for the first time how to construct a modular Lie superalgebra
if it has no Cartan matrix, like oI(n).

Here, for p > 0, I describe the defining relations for the “symmetric” (for
p 6= 2, these algebras can be described as having, together with any root α,
a root −α of the same multiplicity) simple Lie (super)algebras obtained from
the simple finite dimensional complex Lie algebras by means of the Kostrikin-
Shafarevich procedure. I also consider certain “relatives” of simple Lie (su-
per)algebras (e.g., their nontrivial central extensions); such relatives are often
more interesting in applications than the simple algebras they originate from.

Having described in [L1] the orthogonal Lie algebras o(n) (there are two
non-isomorphic types for n even) and ortho-orthogonal Lie superalgebras for
p = 2, I describe here presentations of them and of their simple subquotients.

15.1.4. Defining relations for Lie superalgebras g = g(A). The sim-
ple Lie superalgebras of the form g = g(A) and their relatives have several
quite distinct sets of relations (cf. [Sa] and refs therein) but usually they are
given by their Chevalley generators X±

i of degree ±1 to which the elements
Hi = [X+

i , X
−
i ] are added for convenience. (Note that if A is degenerate, then

the elements X±
i generate not the whole g(A, I) but only g(1)(A). To generate

g(A, I), we need to add size(A) − rk(A) generators from h. These generators
do not give new type of relations, so in what follows we consider generating
relations for g(1)(A). (This remark is rather important: It allows us to con-
sider sl(n) for any n, and not only the Lie algebras with Cartan matrices,
like sl(2n+1) or gl(2n), and also e(7).) These generators satisfy the following
relations

[X+
i , X

−
j ] = δijHi, [Hi, Hj] = 0, [Hi, X

±
j ] = ±AijX±

j , (15.1)

and additional relations Ri = 0 whose left sides are implicitly described, for
a general Cartan matrix with entries in K, as ([K3])

“the Ri that generate the ideal r of g̃(A) (see §12.3 of Chapter 12)” (15.2)
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Serre has proved that for p = 0 and normalized Cartan matrices of simple
finite dimensional Lie algebras this additional relations have the form

(adX±
i
)1−AijX±

j = 0. (15.3)

If we consider normalized Cartan matrices of simple finite dimensional Lie
superalgebras for p = 0, then we should add relations of the form

[X±
j , X

±
j ] = 0 for 1 ≤ j ≤ n such that ij = 1̄, Ajj = 0. (15.4)

Grozman and Leites ([GL1]) has shown that for p = 0 and finite-dimen-
sional Lie superalgebras with Cartan matrix the powers 1 − Aij in relations
(15.3) must be replaced with 1+ bij, where bij are as in (12.42); no additional
relations appear. The same is true for the same types of Lie algebras and
superalgebras if p > 3.

If p = 3, then one should also add the relations

[X±
j , [X

±
i , X

±
i ]] = 0 for 1 ≤ i ≤ n such that ij = 1̄, Ajj 6= 0

(if p = 3, then this does not follow from the Jacobi identity).
Here we consider the case of p = 2. Clearly, in this case the relations (15.4)

have the form

(X±
j )2 = 0 for 1 ≤ j ≤ n such that ij = 1̄, Ajj = 0

(of course, this form works for p 6= 2 as well). Still it turns out that in this
case the above relations are not enough, and there appear relations of a new
type (non-Serre relations). Here we describe them: for Lie algebras in Section
15.2 and for Lie superalgebras in Section 15.3. Note that we have proven them
only for (super)algebras of sl type and their relatives. Relations for the rest of
the (super)algebras are results of computations with SuperLie. So for series
of algebras (like o, oo, osp) they are conjectural.

15.2. Results: Lie algebras

Here we consider the classical Lie algebras and superalgebras as preserv-
ing the volume element or a non-degenerate bilinear form. We interpret the
exceptional Lie (super)algebras as preserving a non-integrable distribution,
cf. [Shch]. For each Lie (super)algebra there are several such interpretations,
we consider the simplest ones: the most easy to describe. We hope to con-
sider their other interpretations (as preserving a non-integrable distribution)
elsewhere.

15.2.1. g = sl(n + 1). This is the algebra of traceless (n + 1) × (n + 1)-
matrices. Then xi = Ei,i+1, yi = Ei+1,i, hi = Ei,i − Ei+1,i+1; the subalgebra
n consists of upper-triangular matrices.
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15.2.2. Theorem. In characteristic > 2, the Serre relations (15.3) define
n; in characteristic 2, the following additional relations are required:

[[xi−1, xi], [xi, xi+1]] = 0 for 1 < i < n. (15.5)

15.2.2.1. Remark. In characteristic p > 0, the Lie algebra sl(pk) is not
simple, since it contains the center c = {λ · 1pk | λ ∈ K}. The corresponding
simple Lie algebra sl(pk)/c is denoted by psl(pk). Since the reduction from
sl(pk) to psl(pk) does not affect the structure of n, the non-Serre relations
stay the same.

15.2.3. g = e(n). Direct computer calculations prove the following theo-
rem. Let the nodes of the Dynkin diagram of e(8) be numbered as usual:

1 2 3 4 5 6 7
8

15.2.4. Theorem. In characteristic 2, in the case of g = e(8), the following
list of relations must be added to the Serre relations:

[[x1, x2], [x2, x3]] = 0;

[[x2, x3], [x3, x4]] = 0;

[[x3, x4], [x4, x5]] = 0;

[[x4, x5], [x5, x6]] = 0;

[[x5, x6], [x6, x7]] = 0;

[[x4, x5], [x5, x8]] = 0;

[[x5, x6], [x5, x8]] = 0;

[[x4, [x5, x6]], [x4, [x5, x8]]] = 0;

[[x4, [x5, x6]], [x8, [x5, x6]]] = 0;

[[x4, [x5, x8]], [x8, [x5, x6]]] = 0;

[[x3, [x4, [x5, x6]]], [x3, [x4, [x5, x8]]]] = 0;

[[x4, [x5, [x6, x7]]], [x8, [x5, [x6, x7]]]] = 0;

[[x2, [x3, [x4, [x5, x6]]]], [x2, [x3, [x4, [x5, x8]]]]] = 0;

[[x1, [x2, [x3, [x4, [x5, x6]]]]], [x1, [x2, [x3, [x4, [x5, x8]]]]]] = 0.

(15.6)

To obtain the corresponding lists of relations for e(6) or e(7), one should
delete the relations containing the “extra” xi and renumber the rest of the xi,
i.e:

1) delete the relations containing x1 for e(7), x1 and x2 for e(6);
2) decrease all indices of the xi by 1 for e(7), by 2 for e(6).

15.2.4.1. Remark. The non-Serre generating relations for Lie superalge-
bras e(n, i) (see Section 20.9.2) are the same as for the corresponding Lie
algebras e(n).
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15.2.4.2. Remark. Here is a shorter way to describe these relations. Let a
chain of nodes for a Dynkin diagram with n nodes be a sequence i1, . . . , ik,
where k ≥ 2 and

1) ij ∈ 1, n for all j = 1, . . . , k;
2) ij 6= ij′ for j 6= j′;
3) nodes with numbers ij and ij+1 are connected for all j = 1, . . . , k − 1.
The above non-Serre relations (both for sl(n + 1) and e(n) can be repre-

sented in the form

[ [xi1 , [. . . , [xik−1
, xik ] . . . ]], [xi1 , [. . . , [xik−1

, xi′k ] . . . ]] ] = 0,

where i1, . . . , ik−1, ik and i1, . . . , ik−1, i
′
k are two chains of nodes

that differ only in the last element.
(15.7)

All the relations that can be represented in the form (15.7) are necessary.

15.2.5. g = oB(2n). The orthogonal algebra is, by definition, the Lie
algebra of linear transformations preserving a given non-degenerate symmetric
bilinear form B. The bilinear form is usually taken with the Gram matrix 12n
or Π2n. In characteristic > 2, these two forms are equivalent over any perfect
field. The corresponding Lie algebra has the same defining relations as in
characteristic 0, so in this subsection we only consider p = 2.

It turns out ([L1]) that these two forms are not equivalent over any ground
field K of characteristic 2. If K is perfect, then any non-degenerate symmetric
bilinear form is equivalent to one of these two forms: It is equivalent to Πn,
if it is zero-diagonal; otherwise, it is equivalent to 1n.

The orthogonal Lie algebras corresponding to these two forms (we denote
them oI(n) and oΠ(n), respectively) are not isomorphic and have different
properties. In particular, only oΠ(2n) for n ≥ 3 is close to an algebra
with a Cartan matrix (same as in characteristic 0). The corresponding

algebra g(1)(A) is oc(2; 2n) (i.e., the central extension of o
(2)
Π (2n), given by

the formula 14.3).

15.2.5.1. oc(2; 2n). The algebra o
(2)
Π (2n) (whose central extension is

oc(2; 2n)) consists of matrices of the following form:

(
A B
C AT

)
,

where A ∈ sl(n);
B,C ∈ ZD(n).

The Chevalley generators of oc(2; 2n) are:

xi = Ei,i+1 + En+i+1,n+i for 1 ≤ i ≤ n− 1;
xn = En−1,2n + En,2n−1;
yi = xTi for 1 ≤ i ≤ n;
hi = Ei,i + Ei+1,i+1 + En+i,n+i + En+i+1,n+i+1 for 1 ≤ i ≤ n− 1;
hn = hn−1 + z,

where z is central element.
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15.2.6. Theorem. In characteristic 2, for oc(2; 2n), where n ≥ 4, the defin-
ing relations for n are Serre relations plus the following ones:

[[xi−1, xi], [xi, xi+1]] = 0 for 2 ≤ i ≤ n− 2;

[[xn−3, xn−2], [xn−2, xn]] = 0;

[[xn−2, xn−1], [xn−2, xn]] = 0;

[[xn−3, [xn−2, xn−1]], [xn, [xn−1, xn−2]] = 0;

[[xn−3, [xn−2, xn]], [xn, [xn−1, xn−2]] = 0;

and, for 1 ≤ i ≤ n− 3,

[[xn−1, [xi, [xi+1, . . . , [xn−3,xn−2] . . . ]]], [xn, [xi, [xi+1, . . . , [xn−3,xn−2] . . . ]]]] = 0.

(We don’t consider the case of n = 3 in the theorem because oc(2; 6) is
isomorphic to sl(4).)

15.2.6.1. g = o
(1)
I (2n). As shown in Lemma 13.6.4.1, if n ≥ 2, then

oI(2n) 6= o
(1)
I (2n) = o

(2)
I (2n) (and if n = 1, then the algebra oI(2n) is nilpo-

tent). So any set of generators of oI(2n) contains “extra” (as compared with

generators of o
(1)
I (2n)) generators a1, . . . , a2n. The relations containing these

generators say nothing new about the structure of the simple (and, thus, more

interesting) algebra o
(1)
I (2n). Because of this and because we want to make the

set of generators we use as small as possible, we consider the algebra o
(1)
I (2n).

It consists of symmetric zero-diagonal 2n × 2n-matrices. We can choose the
following generators (for the whole algebra since in this case there is no n):

Xi = Ei,i+1 + Ei+1,i for 1 ≤ i ≤ 2n− 1.

15.2.7. Theorem. The following are the defining relations for o
(1)
I (2n),

n ≥ 2:

[Xi, Xj ] = 0 for 1 ≤ i, j ≤ 2n− 1, |i− j| ≥ 2;
[Xi, [Xi, Xi+1]] = xi+1;
[Xi+1, [Xi, Xi+1]] = xi

for 1 ≤ i ≤ 2n− 2;

[[Xi−1, Xi], [Xi, Xi+1]] = 0 for 2 ≤ i ≤ 2n− 2.

Proof. (Sketch of.) The algebra o
(1)
I (2n) is filtered:

0 = L0 ⊂ ... ⊂ L2n−1,

where Lk consists of all symmetric zero-diagonal matrices M such that
Mij = 0 for all i, j such that |i− j| > k. The associated graded algebra is iso-
morphic to the algebra of upper-triangular matrices, i.e., a maximal nilpotent
subalgebra of sl(2n). So we can use Theorem 15.2.2. ut

15.2.7.1. Remark. The similar result is true for the algebra o
(1)
I (2n + 1),

n ≥ 1.
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15.2.8. g = oB(2n+ 1). For this algebra, again, the case of characteristic
> 2 does not differ from the case of characteristic 0, so we only consider
the case of characteristic 2. Then, if the ground field is perfect, all the non-
degenerate symmetric bilinear form over a linear space of dimension 2n + 1
are equivalent. We choose the form Π2n+1.

15.2.8.1. g = oΠ(2n+1). It is easy to see that oΠ(2n+1) 6' o
(1)
Π (2n+1)

and o
(1)
Π (2n + 1) = o

(2)
Π (2n+ 1) for n ≥ 1. So, as for oI(2n), we consider the

first derived algebra o
(1)
Π (2n+1). The algebra o

(1)
Π (2n+1) consists of matrices

of the following form:



A X B
Y T 0 XT

C Y AT


 ,

where A ∈ gl(n);B,C ∈ ZD(n);
X,Y are n-vectors.

This algebra has a Cartan matrix. This affects the Serre relations. The
Chevalley generators are:

xi = Ei,i+1 + En+i+2,n+i+1 for 1 ≤ i ≤ n− 1;
xn = En,n+2 + En+1,2n+1;
yi = xTi for 1 ≤ i ≤ n;
hi = Ei,i + Ei+1,i+1 + En+i+1,n+i+1 + En+i+2,n+i+2 for 1 ≤ i ≤ n− 1;
hn = En,n + E2n+1,2n+1.

15.2.9. Theorem. In characteristic 2, for g = o
(1)
Π (2n + 1), the defining

relations for n are the Serre relations plus the following ones:

[[xi−1, xi], [xi, xi+1]] = 0 for 2 ≤ i ≤ n− 2.

15.2.10. g(2). Selecting the Chevalley basis in the Lie algebra g(2) (for its
explicit description, see [FH], pp. 346) we find out that, although the Cartan
matrix of g(2) reduced modulo 2 coincides with Cartan matrix of sl(3), the
Lie algebra g(2)K is still simple. This algebra, though, is isomorphic to psl(4).

15.2.11. f(4). There is no Z-form of f(4) such that the algebra f(4)K is still
simple.

15.2.12. wk(1)(3; a), dim = 17. According to [WK, BGL5] the Lie alge-
bra wk(3; a) has the following Cartan matrices

1)



0̄ 1 0
a 0̄ 1
0 1 0̄


 2)



0̄ 1 a
1 0̄ a+ 1
a a+ 1 0̄




The corresponding defining relations for n are, in addition to the Serre rela-
tions:

For the first matrix: For the second matrix:
[[x1, x2], [x3, [x1, x2]]] = 0 [x2, [x1, x3]] = a[x3, [x1, x2]]
[[x2, x3], [x3, [x1, x2]]] = 0
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wk(4; a), dim = 34 According to [WK] this Lie algebra has the following
Cartan matrices:

1)




0̄ 1 0 0
a 0̄ 1 0
0 1 0̄ 1
0 0 1 0̄


 2)




0̄ 1 a+ 1 0
1 0̄ a 0

a+ 1 a 0̄ a
0 0 a 0̄


 3)




0̄ a 0 0
a 0̄ a+ 1 0
0 a+ 1 0̄ 1
0 0 1 0̄




The non-Serre relations:

For the first matrix

[[x2, x3], [x3, x4]] = 0

[[x1, x2], [x3, [x1, x2]]] = 0

[[x2, x3], [x3, [x1, x2]]] = 0

[[x4, [x2, x3]], [[x1, x2], [x3, x4]]] = 0

[[[x1, x2], [x2, x3]], [[x1, x2], [x4, [x2, x3]]]] = 0

For the second matrix

[x2, [x1, x3]] = (1 + a)[x3, [x1, x2]]

[[x2, x3], [x3, x4]] = 0

[[x1, x3], [x4, [x1, x3]]] = 0

[[x3, x4], [x4, [x1, x3]]] = 0

For the third matrix

[[x1, x2], [x3, [x1, x2]]] = 0

[[x2, x3], [x3, [x1, x2]]] = 0

[[x2, x3], [x4, [x2, x3]]] = 0

[[x3, x4], [x4, [x2, x3]]] = 0

[[x3, [x1, x2]], [x4, [x2, x3]]] = (1 + a)[[x3, x4], [[x1, x2], [x2, x3]]]

15.3. Results: Lie superalgebras

15.3.1. g = sl(n|m), p = 2, n 6= m. Here the relations are the same as
in the non-super case (apart from Serre ones for the odd generators):

[[xi, xi+1], [xi+1, xi+2]] = 0 for all i = 1, . . . ,m+ n− 3.

15.3.2. g = psl(n|m), p = 2, m + n even. If we set xi to be the image
of Ei,i+1, the non-Serre relations are the same:

[[xi, xi+1], [xi+1, xi+2]] = 0 for all i = 1, . . . , 2n− 3.
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15.3.3. g = oo(n|m), p = 2. Here we consider CM Lie superalgebras
close to some of the ortho-orthogonal algebras. There are two kinds of such
CMs.

1) Cartan matrix 


. . .
. . .

. . .
...

. . . 0 1 0

. . . 1 0 1

. . . 0 1 1




generates oo
(1)
IΠ(2k0̄|2k1̄+1), k0̄+k1̄ = n (parities of the rows of the matrix may

be different; the connection between these parities and k0̄, k1̄ is described in
Table 20.10). The corresponding non-Serre relations are as in Theorem 15.2.9.

2) Cartan matrix 


. . .
. . .

. . .
...
...

. . . 0̄ 1 0 0

. . . 1 0̄ 1 1
· · · 0 1 0̄ 0
· · · 0 1 0 0




generates an algebra close to ooΠΠ(2k0̄|2k1̄), k0̄ + k1̄ = n (parities of the
rows of the matrix may be different; the connection between these parities
and k0̄, k1̄ is described in Table 20.10; the exact description of the CM Lie
superalgebra is in subsection 14.1.1.3 ). The corresponding non-Serre relations
are as in Theorem 15.2.6.

15.3.4. g = ag(2), p = 2. The Cartan matrices for p = 0 are

1)




0 1 0
−1 2 −3
0 −1 2


 2)




0 1 0
−1 0 3
0 −1 2


 3)




0 −3 1
−3 0 2
−1 −2 2


 4)




2 −1 0
−3 0 2
0 −1 1




If p = 2, these Cartan matrices do not produce anything “resembling”
ag(2) since they contain −3 ≡ −1 (mod 2) . (In particular, the Lie superal-
gebra that corresponds to the matrices 1) and 2) is isomorphic to sl(1|3).)

I do not know an integer basis of ag(2) in which the corresponding Lie
superalgebra in characteristics p = 2 or 3 is simple. Elduque suggested its
p = 3 analog, see [CE].

15.3.5. g = ab(3), p = 2. The Cartan matrices for p = 0 are

1)




2 −1 0 0
−3 0 1 0
0 −1 2 −2
0 0 −1 2


 2)




0 −3 1 0
−3 0 2 0
1 2 0 −2
0 0 −1 2


 3)




2 −1 0 0
−1 2 −1 0
0 −2 0 3
0 0 −1 2
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4)




2 −1 0 0
−2 0 2 −1
0 2 0 −1
0 −1 −1 2


 5)




0 1 0 0
−1 0 2 0
0 −1 2 −1
0 0 −1 2


 6)




2 −1 0 0
−1 2 −1 0
0 −2 2 −1
0 0 −1 0




This algebra can not be constructed in p = 2 as a CM Lie superalgebra.
I do not know any integer basis of ab(2) such that the corresponding Lie
superalgebra in characteristics p = 2 or 3 is simple. Elduque suggested its
p = 3 analog, see [CE].

15.3.6. g = osp(4|2;α), p = 2. The non-equivalent Cartan matrices for
p = 0 are

1)




2 −1 0
−α 0 −1
0 −1 2


 2)



0 −1 −α
1 0 −1− α
α −1− α 0




Observe that, up to parities,the Cartan matrices are the same as those of
wk(3, a). No wonder the relations are identical (except for the squares of odd
root vectors): The defining relations for n are, in addition to the Serre rela-
tions:

For the first matrix: For the second matrix:
[[x1, x2], [x3, [x1, x2]]] = 0 [x2, [x1, x3]] = a[x3, [x1, x2]]
[[x2, x3], [x3, [x1, x2]]] = 0

Looking at the description of osp(4|2;α) due to Kaplansky, A. Kirillov
observed that the permutation group S3 acts on the complex line of values
of the parameter α; for the description of the fundamental domains of this
action, see [LSoS].

15.4. Proofs: Lie algebras

15.4.1. g = sl(n+1), p = 2. The elements Eij , where 1 ≤ i < j ≤ n+1,
form a basis of the algebra n. In particular, xi = Ei,i+1. Clearly, we have

[Eij , Ekl] = δjkE
il + δilE

kj .

Let h be the algebra of diagonal matrices. The elements Eii, where
1 ≤ i ≤ n+ 1, form a basis of h. Let the ωi be the dual basis elements.

We consider the weights of n with respect to h. The weight of Eij is equal
to ωi + ωj .

Recall several facts about homology.

15.4.1.1. Lemma. Let c = Ei1j1 ∧ . . . ∧ Eimjm be a basic chain. Set
Mc = {Ei1j1 , . . . , Eimjm}. If for any Eij ∈Mc and any k such that i < k < j,
at least one of the elements Eik and Ekj lies in Mc, then c can not appear
with non-zero coefficient in decomposition of a boundary with respect to basic
chains.
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Proof. Clearly, it suffices to show that c can not appear with non-zero co-
efficient in the decomposition of the differential of a basic chain w.r.t. basic
chains. It follows from the formula for the differential d that any basic chains
that appears with non-zero coefficient in decomposition of the differential of
a basic chain F w.r.t. basic chains, can be obtained from F by replacing Eik

and Ekj by Eij for some i, j, k. If c satisfies the hypothesis of the Lemma,
then c can not be obtained in such a way from any F . ut

The elements of C2(n;C) have weights of two types: ωi + ωj and
ωi + ωj + ωk + ωl. We consider them.

I. A weight α = ωi + ωj , where 1 ≤ i < j ≤ n+ 1. The following chains

form a basis of C2(n;C)α:

Eik ∧ Ekj , i < k < j; d(Eik ∧Ekj) = Eij ;
Eki ∧ Ekj , 1 ≤ k < i; d(Eki ∧Ekj) = 0;
Eik ∧ Ejk, j < k ≤ n+ 1; d(Eik ∧Ejk) = 0.

Thus, the following cycles form a basis of C2(n;C)α:

Eik ∧ Ekj + Ei,k+1 ∧ Ek+1,j , i < k < j − 1;
Eik ∧ Ejk, j < k ≤ n+ 1.

We consider them:
1) Eik ∧ Ekj + Ei,k+1 ∧ Ek+1,j = d(Eik ∧ Ek,k+1 ∧ Ek+1,j), so this is a

boundary.
2) Eki ∧ Ekj , where 1 ≤ k < i; in this case, we consider three subcases:
a) j − i > 1: In this case, Eki ∧ Ekj = d(Eki ∧ Ek,j−1 ∧Ej−1,j).
b) i− k > 1: In this case, Eki ∧ Ekj = d(Ek,i−1 ∧ Ei−1,i ∧ Ekj).
c) i − k = j − i = 1, i.e., i = k + 1; j = k + 2. In this case, according

to Lemma 15.4.1.1, the basic chain Eki ∧ Ekj can not appear with non-zero
coefficient in decomposition of a boundary with respect to basic chains; so
this is a non-trivial cycle. It gives us the relation

[Ek,k+1, Ek,k+2] = 0, i.e., [xk, [xk, xk+1]] = 0.

Here k ∈ 1, n− 1.
3) This case is completely analogous to the previous one; it gives us the

relation
[xk, [xk−1, xk]] = 0,

where k ∈ 2, n.
II. A weight α = ωi + ωj + ωi + ωj , where 1 ≤ i < j < k < l ≤ n+ 1.

Clearly, C2(n;C)α has the following basis:

cα,1 = Eij ∧ Ekl, cα,2 = Eik ∧ Ejl, cα,3 = Eil ∧ Ejk.

All this three chains are cycles, i.e., Z2(n;C)α = C2(n;C)α. Here we have
three subcases:
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1) j − i > 1. Then

cα,1 = d(Ei,i+1 ∧Ei+1,j ∧ Ekl);
cα,2 = d(Ei,i+1 ∧Ei+1,k ∧ Ejl);
cα,3 = d(Ei,i+1 ∧Ei+1,l ∧ Ejk).

2) l − k > 1. Then, similarly to the previous case,

cα,1 = d(Eij ∧ Ek,l−1 ∧El−1,l);
cα,2 = d(Eik ∧ Ej,l−1 ∧ El−1,l);
cα,3 = d(Ejk ∧Ei,l−1 ∧El−1,l).

3) j − i = l− k = 1, i.e., j = i+ 1; l = k+ 1. Then, from Lemma 15.4.1.1,
cα,1 is a non-trivial cycle. It gives the relation

[Ei,i+1, Ek,k+1] = 0, i.e., [xi, xk] = 0.

Here i, k ∈ 1, n, and k − i ≥ 2.
For the other cycles, we need to consider the two subcases:
a) k − j > 1. Then

cα,2 = d(Ei,k−1 ∧ Ek−1,k ∧Ejl); cα,3 = d(Eil ∧ Ej,k−1 ∧ Ek−1,k).

b) k − j = 1, i.e., i = j − 1; k = j + 1; l = i + 2. It is easy to see (like in
the proof of Lemma 15.4.1.1) that the only two chains such that cα,2 or cα,3
appear with non-zero coefficients in the decomposition of their differentials
w.r.t. basic chains are

Ej−1,j ∧ Ej,j+1 ∧Ej,j+2 and Ej−1,j+1 ∧ Ej,j+1 ∧ Ej+1,j+2.

The differentials of both these chains are equal to cα,2 + cα,3. So we can
consider one of the chains cα,2 or cα,3 as a non-trivial cycle. The cycle cα,2
gives the relation

[Ej−1,j+1, Ej,j+2] = 0, i.e., [[xj−1, xj ], [xj , xj+1]] = 0,

and cα,2 gives an equivalent (taking other relations into account) relation

[Ej−1,j+2, Ej,j+1] = 0 i.e., [[xj−1, [xj , xj+1]], xj ] = 0.

Here j ∈ 2, n− 1.

Chapter 16

Analogs of the Hamiltonian, Poisson, and
contact Lie superalgebras in characteristic 2

16.1. Introduction

16.1.1. Main results. I describe the analogs of the Poisson bracket, Buttin
bracket (a.k.a. anti-bracket) and contact brackets, cf. [LSh]. The quotients of
the Poisson and Buttin Lie (super)algebras modulo center — analogs of Lie
algebras of Hamiltonian vector fields — are also described.

Observe that the usual, valid for p 6= 2, interpretation of the Hamiltonian
Lie superalgebra as the one preserving a non-degenerate closed differential
2-form is not applicable to all four analogs we introduce.

The particular case of Hamiltonian Lie algebras was partly investigated
in [Lin2]; the particular case of Hamiltonian Lie superalgebras on purely odd
space was (also partly) considered in [KL].

16.2. The Hamiltonian Lie superalgebras

Let B = (Bij) be an even symmetric non-degenerate bilinear form on a
superspace V of dimension n0̄|n1̄ with a basis {x1, . . . , xn}, where n = n0̄+n1̄,
such that P (x1) = · · · = P (xn0̄

) = 0̄, P (xn0̄+1) = · · · = P (xn) = 1̄. Then the
Cartan prolong of the Lie superalgebra ooB is analogous to the Hamiltonian
Lie superalgebra. However, it can be represented as a Lie superalgebra of
vector fields preserving a given 2-form only if B is equivalent to BΠΠ ; the
corresponding 2-form is equal to

ωB =
∑

1≤i<j≤n

Bijdxi ∧ dxj . (16.1)

If we consider divided power differential forms, then the above Cartan pro-
long of ooB can be represented as a Lie superalgebra of vector fields preserving
a given 2-form if B is equivalent to BΠΠ or BΠI ; the corresponding 2-form is

ωB =
∑

1≤i<j≤n

Bijdxi ∧ dxj +
n∑

i=n0̄+1

Biidx
(∧2)
i (16.2)
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(if B is equivalent to BΠΠ , this 2-form coincides with (16.1)).
As a linear space, the above Cartan prolong can be represented as

RegB ⊕ Irreg1B ⊕ Irreg2B (16.3)

where

RegB =





n∑

i,j=1

(B−1)ij
∂f

∂xi

∂

∂xj
| f ∈ K[x1, . . . , xn]



 ,

Irreg1B = Span




n∑

j=1

(B−1)ijxi
∂

∂xj
| n0̄ < i ≤ n




Irreg2B = Span




n∑

j=1

(B−1)ijx
(2Ni−1)
i

∂

∂xj
| i ∈ 1, n0̄ such that N i <∞


 .

(16.4)
Note that sdim Irreg1B = n1̄|0, and this space is spanned by elements “gen-

erated” by nonexisting “Hamiltonians” x
(2)
i , where n0̄ < i ≤ n; the space

Irreg2B is spanned by elements “generated” by nonexisting “Hamiltonians”

x
(2Ni )
i , where 1 ≤ i ≤ n0̄.
This description implies, in particular, that the superdimensions of the

prolongs do not depend on the type of the superalgebra (i.e., is it ooII , ooIΠ ,
ooΠI or ooΠΠ) — they only depend on the superdimension n0̄|n1̄, the number
of the prolong and the shearing parameter N .

The general formula for the superdimensions seems to be complicated;
for N1 = · · · = Nn0̄

= ∞, the dimension of the k-th prolong is equal to a
coefficient of the supercharacter of K[x1, . . . , xn0̄

, ξ1, . . . , ξn1̄
], i.e.,

n1̄∑
i=0

(
n0̄

k + 2− i

)(
n1̄

i

)
= the coefficient of xk+2 in the Taylor series expansion of

(1 + x)n1̄

(1− x)n0̄
at x = 0.

For N1 = · · · = Nn0̄
= 1, the dimension of the k-th prolong is equal to(

n

k + 2

)
, and the dimension of the complete prolong is equal to 2n + n− 1.

16.3. The Poisson Lie superalgebras

Let

pi = xi, qi = xk0̄+i for n0̄ = 2k0̄ and 1 ≤ i ≤ k0̄;
θi = xn0̄+i for 1 ≤ i ≤ n1̄;

ξi = xn0̄+i, ηi = xn0̄+k1̄+i for n1̄ = 2k1̄ and 1 ≤ i ≤ k1̄.
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As it was said above, the space RegB consists of vector fields of the form

HB,f =

n∑

i,j=1

(B−1)ij
∂f

∂xi

∂

∂xj
, where f ∈ K[x1, . . . , xn].

Here are the exact forms of these fields for the above bilinear forms:

HII,f :=

n0̄∑

i=1

∂f

∂xi

∂

∂xi
+

n1̄∑

i=1

∂f

∂θi

∂

∂θi

HIΠ,f :=

n0̄∑

i=1

∂f

∂xi

∂

∂xi
+

k1̄∑

i=1

(
∂f

∂ξi

∂

∂ηi
+

∂f

∂ηi

∂

∂ξi

)

HΠI,f :=

k0̄∑

i=1

(
∂f

∂pi

∂

∂qi
+
∂f

∂qi

∂

∂pi

)
+

n1̄∑

i=1

∂f

∂θi

∂

∂θi

HΠΠ,f :=

k0̄∑

i=1

(
∂f

∂pi

∂

∂qi
+
∂f

∂qi

∂

∂pi

)
+

k1̄∑

i=1

(
∂f

∂ξi

∂

∂ηi
+

∂f

∂ηi

∂

∂ξi

)
.

(16.5)

The space RegB is closed under the Lie bracket (but may be not closed
under squaring). The corresponding Poisson bracket of the nonexisting “gen-
erating functions” is of the form

[f, g]B =

n∑

i,j=1

(B−1)ij
∂f

∂xi

∂g

∂xj
. (16.6)

In particular, the Poisson brackets corresponding to the above bilinear
forms B are of the form

{f, g}II :=
n0̄∑

i=1

∂f

∂xi

∂g

∂xi
+

n1̄∑

i=1

∂f

∂θi

∂g

∂θi

{f, g}IΠ :=

n0̄∑

i=1

∂f

∂xi

∂g

∂xi
+

k1̄∑

i=1

(
∂f

∂ξi

∂g

∂ηi
+

∂f

∂ηi

∂g

∂ξi

)

{f, g}ΠI :=
k0̄∑

i=1

(
∂f

∂pi

∂g

∂qi
+
∂f

∂qi

∂g

∂pi

)
+

n1̄∑

i=1

∂f

∂θi

∂g

∂θi

{f, g}ΠΠ :=

k0̄∑

i=1

(
∂f

∂pi

∂g

∂qi
+
∂f

∂qi

∂g

∂pi

)
+

k1̄∑

i=1

(
∂f

∂ξi

∂g

∂ηi
+

∂f

∂ηi

∂g

∂ξi

)
.

(16.7)

In the cases ΠI and ΠΠ , if N is such that Ni ≥ 2 for all i, then the
space RegB is closed under squaring (i.e., it is a Lie superalgebra), and so
(Hf )

2 = Hf [2] , where the respective expressions of f [2] are

f [2] :=





k0̄∑
i=1

∂f

∂pi

∂f

∂qi
+

n1̄∑

i=1

(
∂f

∂θi

)(2)
for ΠI

k0̄∑
i=1

∂f

∂pi

∂f

∂qi
+

k1̄∑

i=1

∂f

∂ξi

∂f

∂ηi
for ΠΠ.
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16.3.1. Remark. In these formulas we use divided square for arbitrary poly-
nomials, not only for the indeterminates xi, where i ≤ n0̄. We mean that
X(2) = 0 for any monomial X not proportional to xi, i ≤ n0̄, and that the
following relation holds:

(a+ λb)(2) = a(2) + λ2b(2) + λab for any a, b ∈ K[x1, . . . , xn], λ ∈ K.

16.3.1.1. Superdimensions. If n0̄, n1̄ > 0, then the Cartan prolong of

o
(1)
II (n0̄|n1̄) can be represented as

Reg′II ⊕ Irreg′1II ,

where

Reg′II =



HII,f | f ∈ K[x1, . . . , xn],

n0̄∑

j=1

∂2f

∂x2
i

= 0



 ,

Irreg′1II = Span

(
xi−1

∂

∂xi−1
+ xi

∂

∂xi
| n0̄ < i ≤ n

)
.

If n0̄ > 1 and N1 = · · · = Nn0̄
= ∞, then the dimension of the (k,N)-

th prolong of o
(1)
II (n0̄|n1̄) is equal to the dimension of the k-th prolong of

oII(n0̄ − 1|n1̄ + 1).
Let n0̄ = 1 and N1 = ∞. Then the dimension of the (k,N)-th prolong of

o
(1)
II (n0̄|n1̄) is equal to

(
n1̄ + 1

k + 2

)
.

If n0̄, n1̄ > 0, and n1̄ = 2k1̄, then the Cartan prolong of o
(1)
IΠ(n0̄|n1̄) can

be represented as
Reg′IΠ ⊕ Irreg1IΠ ,

where

Reg′IΠ = {HIΠ,f | f ∈ K[x1, . . . , xn], deg f ≤ 1 w.r.t. any xi, 1 ≤ i ≤ n} .

So, independently of N , the dimension of the k-th prolong of o
(1)
IΠ(n0̄|n1̄)

is equal to
(

n

k + 2

)
.

If n0̄, n1̄ > 0, and n0̄ = 2k0̄, then the Cartan prolong of o
(1)
ΠI(n0̄|n1̄) is

equal to
RegΠI ⊕ Irreg2ΠI .

Thus, the superdimension of the k-th prolong of o
(1)
ΠI(n0̄|n1̄) is equal to the

superdimension of the k-th prolong of oΠI(n0̄|n1̄).
If n0̄, n1̄ > 0, and n0̄ = 2k0̄, n1̄ = 2k1̄, then the Cartan prolong of

o
(1)
ΠΠ(n0̄|n1̄) is equal to

{HΠΠ,f | f ∈ K[x1, . . . , xn], f has degree ≤ 1 w.r.t. any xi, 1 ≤ i ≤ n} .

So, independently of N , the dimension of the k-th prolong of o
(1)
ΠΠ(n0̄|n1̄)

is equal to
(

n

k + 2

)
.

Ch. 16. Brackets in characteristic 2 403

The Cartan prolong of o
(2)
ΠΠ(n0̄|n1̄) consists of elements of the Cartan

prolong of o
(1)
ΠΠ , generated by functions f such that

k0̄∑

i=0

∂2f

∂pi∂qi
+

k1̄∑

i=0

∂2f

∂ξi∂ηi
= 0.

Observe that for the purposes of representation theory, it is desirable to
have the Cartan subalgebra lying on the main diagonal. So it may be preferable
to replace 1ni in the above bilinear forms by an equivalent form

diag(12, Π2k−2) if ni = 2k,

diag(1, Π2k) or Π2k+1 if ni = 2k + 1.
(16.8)

16.4. The antibracket and the Buttin Lie superalgebras

The Cartan prolong of Lie superalgebra peB also allows the description
(16.3)-(16.4), so the dimensions of the prolongs are the same as of the prolongs
of ortho-orthogonal superalgebras. The space RegB is closed under the Lie
(super)bracket and under squaring. In particular, if B = Πm|m, then RegB
consists of vector fields of the form

Hpe,f :=

m∑

i=1

(
∂f

∂xi

∂

∂θi
+

∂f

∂θi

∂

∂xi

)
.

The corresponding antibracket and squaring of the generating functions are,
respectively:

{f, g}pe :=
m∑

i=1

(
∂f

∂xi

∂g

∂θi
+

∂f

∂θi

∂g

∂xi

)
; f [2] :=

m∑

i=1

∂f

∂xi

∂f

∂θi
.

The Cartan prolong of pe
(1)
Π (m) is equal to

{Hpe,f | f ∈ K[x1, . . . , x2m], f has degree ≤ 1 w.r.t. any xi, 1 ≤ i ≤ 2m} .

So, independently of N , the dimension of the k-th prolong of pe
(1)
Π (m) is

equal to
(

2m

k + 2

)
.

The Cartan prolong of pe
(2)
Π (m) consists of elements of the Cartan prolong

of pe
(1)
Π (m), generated by functions f such that

m∑

i=0

∂2f

∂xi∂θi
= 0.
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16.5. The contact brackets. Contact Lie superalgebras as
CTS-prolongs

All the minuses in what follows are used in order to make expressions look
like their analogs in characteristic p 6= 2 (if this analogs exist).

16.5.1. The odd (contact) form.

16.5.1.1. Notation. The superdimension of the superspace on which the
contact structure is considered is equal to either 2k0̄+1|2k1̄ or 2k0̄+1|2k1̄+1.
Set k = k0̄ + k1̄.

The indeterminates are denoted by t, pi, qi, θ, where i = 1, . . . , k and θ is
present only if the superdimension is equal to 2k0̄ +1|2k1̄ +1. The parities of
the indeterminates are:

p(t) = 0̄; p(θ) = 1̄; p(pi) = p(qi) =

{
0̄ if i ≤ k0̄;
1̄ if i > k0̄.

The contact form is of the form

α = dt+
∑

i

pidqi (+θdθ).

16.5.2. Basis. The basis elements of the zeroth part g0 of the contact Lie
superalgebra g in its standard Z-grading are as follows:

Element Conditions
1 t∂t +

∑
pi∂pi sdim = 2k0̄ + 1|2k1̄

2 pi∂qj − pj∂qi 1 ≤ i, j ≤ k
3 pipj∂t − pi∂qj − pj∂qi 1 ≤ i 6= j ≤ k
4 qiqj∂t − qi∂pj − qj∂pi 1 ≤ i 6= j ≤ k
5 p

(2)
i ∂t − pi∂qi 1 ≤ i ≤ k0̄

6 q
(2)
i ∂t − qi∂pi 1 ≤ i ≤ k0̄

7 piθ∂t − pi∂θ sdim = 2k0̄ + 1|2k1̄ + 1, 1 ≤ i ≤ k
8 qiθ∂t − qi∂θ sdim = 2k0̄ + 1|2k1̄ + 1, 1 ≤ i ≤ k
9 θ∂θ sdim = 2k0̄ + 1|2k1̄ + 1

16.5.3. Realization of g0 in terms of ortho-orthogonal Lie superal-
gebras.

If sdim = 2k0̄ + 1|2k1̄, then this algebra is the subalgebra of ooΠΠ(2k0̄|2k1̄)
spanned by the grading operator I0 = diag(1k0̄|k1̄ , 0k0̄|k1̄) and the supermatri-
ces of format k0̄|k1̄|k0̄|k1̄ and having the form

(
A C
D AT

) where A ∈ gl(k0̄|k1̄),
C,D are symmetric,
Cii = Dii = 0 for all k0̄ < i ≤ k.

If sdim = 2k0̄ + 1|2k1̄ + 1, then g0 is NOT a subalgebra of ooΠΠ(2k0̄|2k1̄+1).
It is a subalgebra of the algebra of supermatrices preserving the form
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antidiag(1k0̄|k1̄ , 0, 1k0̄|k1̄),

it is spanned by supermatrices of format k0̄|k1̄ + 1|k0̄|k1̄ and having the form



A X C
0 z 0
D Y AT




where A ∈ gl(k0̄|k1̄),
C,D are symmetric,
Cii = Dii = 0 for all k0̄ < i ≤ k,
X, Y are arbitrary k0̄|k1̄-vectors,
z ∈ K.

16.5.4. The even (pericontact) form.

16.5.4.1. Notation. In this case the superdimension of the superspace is
equal to 2k + 1|2k, the coordinates are t, pi, ξi, where

p(t) = p(pi) = 0̄; p(ξi) = 1̄.

Let the pericontact form be of the form

α = dt+
∑

pidξi.

16.5.5. Basis. The basis elements of the zeroth part g0 of the pericontact
Lie superalgebra g in its standard Z-grading are as follows:

Element Conditions
1 t∂t +

∑
pi∂pi —

2 pi∂ξj − pj∂ξi 1 ≤ i, j ≤ k
3 pipj∂t − pi∂ξj − pj∂ξi 1 ≤ i 6= j ≤ k
4 ξiξj∂t − ξi∂pj − ξj∂pi 1 ≤ i 6= j ≤ k
5 p

(2)
i ∂t − pi∂ξi 1 ≤ i ≤ k

16.5.6. Realization of g0 in terms of pe(k). The Lie superalgebra g0 is
the subalgebra of pe(k) consisting of supermatrices of format k|k and of the
form (

A C
D AT

) where A ∈ gl(k),
C is symmetric,
D ∈ ZD(k).



Chapter 17

Queerification

17.1.1. Queerification for p > 2. Let A be an associative (even) algebra.
Then we can construct Lie superalgebra q(A) which we call the queerification
of A. As a linear space, q(A) is equal to A⊕Π(A) with relations

[x, y] = xy−yx; [x,Π(y)] = Π(xy−yx); (Π(x))2 = x2 for all x, y ∈ A.
The name is taken after the “queer” algebra q(n), which is equal to

q(Mat(n)).
If A is an associative superalgebra, then we can similarly construct q(A),

but it coincides with the queerification of the algebra we get from A by for-
getting the superstructure (because we don’t use commutations relations of
A).

17.1.2. Queerification for p = 2. If p = 2, and g is a restricted Lie algebra
(for the definition of restricted Lie (super)algebras, p- and p|2p-structures, see
sect.12.1.2 of Chapter 12), then we can construct the queerification of g even
if g is not the “Liefication” of any Lie-admissible (e.g., associative) algebra
(for example, for g = sl(n)). We set q(g)0̄ = g, q(g)1̄ = Π(g), and define the
bracket as follows:

[x,Π(y)] = Π([x, y]); (Π(x))2 = x[2] for all x, y ∈ g. (17.1)

Clearly, if I ⊂ q(g) is an ideal, then I0̄ and Π(I1̄) are ideals in g. So, if g is
simple, then q(g) is a simple Lie superalgebra. (Note that g has to be simple
as a Lie algebra, not as a restricted Lie algebra.)

This construction brings up many new simple Lie superalgebras that have
no analogs for p 6= 2.

17.1.2.1. Example: sq(n) if p = 2. If p = 2, then on sq(n), there is a
new trace, an even one:

qtr :

(
A

B

B

A

)
7→ trA (17.2)

Note that q(n) does not have this trace! So we can construct Lie superalgebra
sesq(n) consisting of elements of sq(n) with zero (even) trace. If n = 2k + 1,
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then sesq(n) = psq(n); if n = 2k, then sesq(n) contains an ideal consisting of
supermatrices of the form (

a1n b1n
b1n a1n

)
;

factorizing sesq(n) by this ideal, we get Lie superalgebra psepsq(2k) which
is simple for k > 1. (Note that sesq(2k) also contains a smaller ideal —
the center consisting of scalar matrices; factorizing by the center, we get Lie
superalgebra

•22

•
[ DL: oboznachit’ po drugomu! sejcas dve raznyh algebry22

oboznacheny odinakovo ]psesq(2k).)
We know that q(n) = q(gl(n)); we also see that

sesq(n) = q(sl(n)); psepsq(2k) = q(psl(2k)).

17.1.3. Queerification of the exceptional Lie algebras. For p = 2,
the Lie algebras e(n) for n = 6, 7, 8, as well as wk(3; a) and wk(4; a), possess
2-structure described in Proposition 12.3.4.1 of Chapter 12.

The following theorem lists several simple Lie superalgebras in character-
istic 2 obtained through queerification:

The algebra q(g) has a natural 2|4-structure given by the 2-structure on g.
Note that if g is a Lie superalgebra with a 2|4-structure, then we can similarly
construct q(g), but it coincides with the queerification of the Lie algebra we
get from g by forgetting the superstructure.

No known new simple Lie superalgebras are obtained by queerification if
p 6= 2.

17.1.4. Queerification of orthogonal Lie algebras q(oB(n)). The Lie
algebras oB(n) considered as algebras of matrices (or linear operators) have
a natural 2-structure: if XB +BXT = 0, then

X2B +B(X2)T = X(XB +BXT ) + (XB +BXT )XT = 0,

thus, if X ∈ oB(n), then X2 ∈ oB(n). So we can consider queerifications
q(oB(n)) of these algebras. We will find simple subquotients of these queeri-
fications for n large enough; more specifically, n ≥ 3 for q(oI(n)), and n ≥ 6
for q(oΠ(n)). We will first consider

q(oB(n))
(∞) :=

∞⋂

i=1

q(oB(n))
(i).

Clearly, q(oB(n))
(∞)

0̄
and Π(q(oB(n))

(∞)

1̄
) are subalgebras of oB(n).

Then we will need to find non-trivial ideals of q(oB(n))
(∞). Clearly, for

any ideal I ⊂ q(oB(n))
(∞), we have

I0̄ is an ideal of q(oB(n))
(∞)

0̄
;

Π(I1̄) is an ideal of Π(q(oB(n))
(∞)

1̄
).
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17.1.4.1. q(oI(n)). As I have shown before, oI(n) is the algebra of all
symmetric matrices, and oI(n)

(∞) = oI(n)
(1) = ZD(n).

Computations similar to the computations of oI(n) and oo
(i)
II (m|n) show

that
q(oI(n))

(1) = oI(n)⊕Π(ZD(n));

q(oI(n))
(i) = (oI(n) ∩ sl(n))⊕Π(ZD(n))

As I have shown before, ZD(n) is a simple Lie algebra, so any non-
trivial ideal of q(oI(n))

(∞) has zero odd part. Also (similarly to ooII(m|n))
oI(n) ∩ sl(n) considered as a restricted algebra has a non-trivial ideal if and
only if n is even, and this ideal is equal to Span(1n). Thus, the simple part
of q(oI(n)) is equal to

{
(oI(n) ∩ sl(n))⊕Π(ZD(n)) if n is odd,

((oI(n) ∩ sl(n))⊕Π(ZD(n)))/K1n if n is even.

17.1.4.2. q(oΠ(2k)). As I have shown before, the Lie algebra oΠ(2k) con-
sists of matrices of the following form:

(
A C
D AT

)
where A ∈ gl(k),

C and D are symmetric k × k-matrices.

So the elements of q(oΠ(2k)) are of the form

(
A C
D AT

)
⊕Π

((
A′ C′

D′ A′T

))
where A,A′ ∈ gl(k),

C, C′, D,D′ are symmetric k × k-matrices.

Computations show that elements of q(oΠ(2k))
(i) have the following condi-

tions on them for different i:

i = 1 : A,A′ ∈ gl(k), C, C′, D,D′ ∈ ZD(k);
i = 2 : A ∈ gl(k), A′ ∈ sl(k), C, C′, D,D′ ∈ ZD(k);
i ≥ 3 : A,A′ ∈ sl(k), C, C′, D,D′ ∈ ZD(k).

Thus,

q(oΠ(2k))
(∞)

0̄
' Π(q(oΠ(2k))

(∞)

1̄
) = Π(oΠ(2k)(2)) = Π(oΠ(2k)

(∞)).

As I have shown before, oΠ(2k)(2) has a non-trivial ideal if and only if k is even,
and this ideal is equal to Span(12k). Thus, the simple part of q(oΠ(2k)) is
equal to

{
oΠ(2k)(2) ⊕Π(oΠ(2k)(2)) if k is odd,

(oΠ(2k)(2) ⊕Π(oΠ(2k)
(2)))/(K12k ⊕KΠ(12k)) if k is even.
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17.1.5. Queerification of vectorial Lie superalgebras.
•23

•
[ DL: AL! 23

Insert five series here; we (BJ&DL) have to check if q(vect(0|n)) is a
CTS-prolong (actually, just C-) of q; our initial attempt to investi-
gate this says NO, but at the moment I doubt it. ]

17.1.6. Theorem. The following Lie superalgebras are simple:
psq(2n+ 1) = q(sl(2n+ 1)), n ≥ 1;
pspsq(2n) = q(psl(2n)), n ≥ 2;
q(e(6)), q(e(8)); q(e(1)(7)/center);
q(1)(wk(3; a)/center); q(wk(4; a));
q(oI(2n+ 1))(1), n ≥ 1;
q(oI(2n))

(1)/center, n ≥ 2;

q(o
(2)
Π (4n+ 2)), n ≥ 1;

q(o
(2)
Π (4n)/center), n ≥ 2.

Proof. For the description and the proof of simplicity of the last 4 types of
Lie superalgebras see §17.1.4 of Chapter 13.

The simplicity of Lie superalgebras q(sl(2n+1)), q(psl(2n)), q(e(6)), q(e(8))
follows from the simplicity of Lie algebras sl(2n + 1), psl(2n), e(6), e(8). Lie
algebra e(7) (considered as the Lie algebra constructed by the correspond-
ing Cartan matrix, see §12.3 of Chapter 12) in characteristic 2 is not simple
since its Cartan matrix is degenerate. The simple subquotient of the algebra
is e(1)(7)/fcenter; so, thanks to Remark 12.3.4.2 the queerification of this
subquotient is a simple Lie superalgebra.

Sincewk(3; a)/fcenter inherits the 2-structure ofwk(3; a), we may queerify
this quotient. Select the grading operator d so that B = (1, 0, 0) (for the
definition of the matrix B, see 12.25); then although the operator of outer
derivation d can not be obtained by bracketing it can be obtained thanks to
the presence of the 2-structure: d[2] = d. Therefore q(wk(3; a)/center) contains
an ideal of codimension ε, i.e., the “simple core” is (as space:

wk(3; a)/center⊕Π(wk(1)(3; a)/center).

ut
17.1.7. Dynkin diagrams for the queer series. As indicated in [LSa1],
in certain problems it is advisable to assign an analog of the Dynkin diagram
to q(n). Since the queer series is really queer to such extent that even its
simple roots over C are of multiplicity 1|1, Leites and Serganova denoted the
nodes of the diagram by “square circles”, each corresponding to q(2). Having
done this, we see that the Dynkin diagram for q(n), does not differ in shape
from that for sl(n).

Part III

Modular Lie algebras and Lie superalgebras:

Background (B. Clarke)



Chapter 18

Decompositions of the tensor products of
irreducible sl(2)-modules in characteristic 3

(B. Clarke)

18.1. Introduction

Texts devoted to representations of Lie algebras in characteristic p > 0 are
often prefaced by the disclaimer that the spaces considered are of dimension
less than p. To the best of the author’s knowledge, this restriction is always
imposed on tensor products of irreducible modules when studying the analog
of Klebsch-Gordon decompositions. That is, if V and W are two irreducible
modules over a simple Lie algebra g and one wishes to decompose V ⊗W into
indecomposable submodules, dimV ⊗W is always restricted to be less than p.
In this paper, I remove this restriction and present a complete investigation
of the decomposition of V ⊗ W for the case g = sl(2) and p = 3 for any
irreducible sl(2)-modules V and W . 1)

In sl(2), we consider the natural basis

X− =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
, X+ =

(
0 1
0 0

)
.
(
1

2

)

Hence, the structure constants are derived from the relations

[X+, X−] = H, [H,X±] = ±2X±.

Let k be an algebraically closed field of characteristic 3. Irreducible
sl(2)-modules in characteristic p > 2 were completely described by Rudakov

1 Anton Cox wrote a letter to the author informing about the paper by Steve Doty
and Anne Henke “Decomposition of tensor products of modular irreducibles for
SL2”. Quarterly J. Math. vol. 56, (2005), 189–207. This result has little relation
to ours since over fields of positive characteristic p there is no one-to-one corre-
spondence between either Lie algebras and the “corresponding” Chevalley groups
or between their representations; the smaller p, the more ephemeral this relation
is. For example, if p = 2, then the Chevalley group SL2(Fq) is simple, whereas
Lie algebra sl(2;Fq) is solvable.

In arXiv the reader can find description of irreducibles over several Chevalley
groups. —D.L.
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and Shafarevich in [RSh]. These modules are all of dimension D ≤ p, and in
the cases D < p, there is no difference from the case of characteristic zero
(cf. [FH]). For p = 3 and D < 3, these are only the modules denoted by 1,

0 V0
X+

oo X− // 0, (18.1)

and 2,

0 V1
X+

oo
X− // V−1
X+

oo
X− // 0. (18.2)

In these diagrams, Vρ denotes the 1-dimensional weight space of eigenvectors
of H with eigenvalue ρ. The arrows indicate the action of the operators in the
sub- or superscript.

18.1.1. Remark. More generally, over a field of prime characteristic p, we
always have the irreducible sl(2) modules N for N ∈ {1, . . . , p}, given dia-
grammatically by

0 VN−1
X+

oo
X− // VN−3
X+

oo
X− // · · ·
X+

oo
X− // V−N+3
X+

oo
X− // V−N+1
X+

oo
X− // 0.

(18.3)

Let us return to our case of characteristic p = 3. For D = 3, i.e., 3-dimen-
sional irreducible representations, we have more than in the case of charac-
teristic 0, where there is only the module 3,

0 V−1
X+

oo
X− // V0
X+

oo
X− // V1
X+

oo
X− // 0. (18.4)

There is in fact an entire family of irreducible representations, parametrized by
a 3-dimensional variety, of which 3 is a special case. Writing the images of the
generators of sl(2) as matrices acting on a 3-dimensional vector space, these
representations are given as follows. First, we have the irreducible modules
that we denote by T (b, c, d):

X− =



0 0 c
1 0 0
0 1 0


 H =



d− 1 0 0
0 d 0
0 0 d+ 1


 X+ =



0 a1 0
0 0 a2
b 0 0


, (18.5)

where
a1 = bc+ d− 1,

a2 = a1 + d = bc− d− 1.
(18.6)

We also have the family of “opposite” irreducible modules, where the forms
of X+ and X− are exchanged, which we denote by T̃ (b, c, d):

X− =




0 0 b
a1 0 0
0 a2 0


 H =



d− 1 0 0
0 d 0
0 0 d+ 1


 X+ =



0 1 0
0 0 1
c 0 0


. (18.7)
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In both of these cases, b, c, and d are arbitrary elements of the ground field
k, however we don’t allow the cases

T (0, 0, 1) or T (0, 0,−1), (18.8)

since in these cases the representation is not irreducible. Once the other pa-
rameters are chosen, a1 and a2 are necessarily given in terms of b, c, and d
by (18.6) if the matrices (18.5) and (18.7) are to be representations of sl(2).
(To see this, one can explicitly solve, for example, the equation [X+, X−] = H
for a1 and a2 using the above matrix representations, then check that the
relations [H,X±] = ±2X± are satisfied).

In addition to these two kinds of irreducible modules, we have each of their
duals, which we will denote by T ∗(b, c, d) and T̃ ∗(b, c, d).

18.1.2. Remark. Note that 3 ' T (0, 0, 0) as sl(2)-modules.

All of these irreducible modules can be glued into the following indecom-
posables.

We letM +⊃ M̃ denote the semidirect sum of the subspaces M and M̃ . By
this, we mean that M̃ is a submodule.

A diagram of subspaces (e.g. M → M̃) indicates something similar, but
gives more information. A subspace that is the source of no arrows (in our

example, M̃) is a submodule. A subspace that is the source of some arrows
becomes a submodule upon taking the quotient modulo the targets of those
arrows (in our example, M/M̃). Note that a subspace that is the source of
some arrows cannot be selected uniquely, since it is a quotient space. Instead,
we should think of it as the span of a collection of vectors, the representatives
of which form a basis for the quotient space.

The direction of an arrow in a diagram also carries information. An arrow
pointing to the right indicates that we get an element of the target by acting
on an element of the source with X−. An arrow pointing to the left indicates
the same for X+. Note that the “direction” of the arrow refers only to the
left/right direction. That is, an arrow that points up/down and right is still
thought of as an “arrow pointing to the right”, and similarly for up/down and
left. We also say, taking the example from the previous paragraph, that “M
is glued in to M̃ via X−”.

For later, we let M1 denote the submodule (cf. [?]):

2

����
��

��

��=
==

==
=

M1 : 1

��<
<<

<<
<

1 .

����
��

��

2

To make the statements of the last two paragraphs concrete, we dissect this
particular case. The symbol 2 at the bottom indicates an irreducible submod-
ule. The symbol 1 on the left is represented by the span of a single vector v



416 Ch. 18. Tensor products of irreducible sl(2)-modules

with X+v = 0 and X−v a vector of the irreducible submodule 2 at the bot-
tom. Similarly, the symbol 1 on the left is represented by the span of a single
vector w with X−w = 0 and X+w a vector of the irreducible submodule 2
at the bottom. Finally, the symbol 2 at the top stands for the span of two
vectors, v′ and w′, with

X−v
′ = w′, X−w

′ = µw,

X+v
′ = λv, X+w

′ = v′,
(18.9)

for some λ, µ ∈ k, i.e. X+v
′ is contained in the left “1” and X−w

′ is contained
in the right “1”.

The main result of the paper is the following theorem.

18.1.3. Theorem. The decompositions (into indecomposable submodules) of

tensor products of all irreducible sl(2)-modules (1, 2, T (b, c, d), T̃ (b, c, d), and
their duals) are completely described by

1) 1⊗ V ' V for any sl(2)-module V ,
2) 2⊗ 2 = 1⊕ 3,

3) 2⊗ T̃
(
b,

1

b
, 0
)
= T̃

(
b,

1

b
, 0
)
⊕ T (1

b
, 0, 0),

together with Tables 18.3–18.7, found at the end of the paper.

18.1.4. Remark. Statement 1) of the theorem is obvious.

18.1.5. Remark. In § 18.2, we will explain how we arrived at the list of mod-
ules examined in Tables 18.3–18.7, as well as why we are allowed to seemingly
ignore certain modules.

The paper is organized as follows. In § 18.2 we will closely examine the
families of modules and reduce the number of different cases we must consider
separately by demonstrating certain correspondences. Then, we will study the
structure of the modules we are concerned with and, in particular, semidirect
sums. In § 18.3, we will briefly present the notation we use for the calculations.
Finally, in § 18.4, we break down the various tensor products we can form case
by case and compute their decompositions.

All computations for this paper were made with the assistance of SuperLie
([Gr], [?]).

18.2. Preliminaries

Before we get into the meat of the paper, let us carefully describe the
sl(2)-modules in characteristic 3, first the irreducible ones, then certain inde-
composables (to describe all indecomposables is an open problem).

We begin by proving a couple of lemmas which will help us to reduce the
amount of work we have to do. In particular, we can show (via a change of
basis) that some seemingly different modules are actually isomorphic. In the
end, we will only have to consider the cases given in the following lemma (in
addition, of course, to 2):
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18.2.1. Lemma. We can represent every 3-dimensional irreducible sl(2)-mod-
ule by a member of one of the following two families:

1) T (b, c, d), where b, c, d ∈ k are arbitrary subject to (18.8);

2) T̃
(
b,

1

b
, 0
)
.

The proof of Lemma 18.2.1 is immediately implied by Lemmas 18.2.2,
18.2.3, and 18.2.4 below.

18.2.2. Lemma. For the dual modules of T (b, c, d) and T̃ (b, c, d), given any
b, c, d ∈ k, we have:

1) T ∗(b, c, d) ' T (b′, c′, d′) for some b′, c′, d′ ∈ k,
2) T̃ ∗(b, c, d) ' T̃ (b′, c′, d′) for some b′, c′, d′ ∈ k.

Proof. 1) Recall that, given a matrix representation X of the action of an
element of a Lie algebra on a module, the action of X on the dual module is
given by −Xt, i.e., the negative transpose of the original matrix. So here, the
action of sl(2) on the dual module T ∗(b, c, d) is as follows:

X− =




0 −1 0
0 0 −1
−c 0 0



, H =




−d+ 1 0 0

0 −d 0
0 0 −d− 1



, X+ =




0 0 −b
−a1 0 0
0 −a2 0



.

(18.10)
We apply a similarity transformation given by the matrix

S =



0 0 1
0 −1 0
1 0 0


. (18.11)

We then rename the resulting matrices to X ′
± := SX±S

−1 and H ′ := SHS−1:

X ′
− =



0 0 c′

1 0 0
0 1 0


, H ′ =



d′ − 1 0 0

0 d′ 0
0 0 d′ + 1


, X ′

+ =




0 a′1 0
0 0 a′2
b′ 0 0


. (18.12)

Here one easily checks that a′1 = a2, a
′
2 = a1, b

′ = −b, c′ = −c, and
d′ = −d. We have transformed our original representation T ∗(b, c, d) into one
of the form T (b′, c′, d′).

2) The action on the dual module T̃ ∗(b, c, d) is given by:

X− =




0 −a1 0
0 0 −a2
−b 0 0


, H =



−d+ 1 0 0

0 −d 0
0 0 −d− 1


, X+ =




0 0 −c
−1 0 0
0 −1 0


.

(18.13)
Since this is in complete analogy with the previous case, we skip the detailed
calculation. (We do note that one can, in fact, even use the same similarity
tranformation as in (18.11) above.) ut
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18.2.3. Lemma. For an appropriate choice of b′, c′, d′ ∈ k we have

T̃ (b, c, d) ' T (b′, c′, d′), (18.14)

if and only if at most one of a1, a2, and b are equal 0.

Proof. First, we note that if two of a1, a2, and b are zero, then we will clearly
get no isomorphism, since for modules of the form T (b, c, d), the matrix of X−

can have at most one eigenvector with eigenvalue 0.
The proof of the converse statement is broken up into different cases.
1) a1, a2 6= 0. We apply the similarity transformation with the matrix

S =




1

a1
0 0

0 1 0

0 0
1

a1a2


. (18.15)

This yields matrices H ′, X ′
± of the same form as in (18.12) above. In this

case, using the same notation as above, we have a′1 = a1, a
′
2 = a2, b

′ =
c

a1a2
,

c′ = a1a2b, and d
′ = d.

2) a1 = 0, a2, b 6= 0. We apply the similarity transformation with the
matrix

S =




0 1 0

0 0
1

a2
1

ba2
0 0


. (18.16)

We get matrices as in the form of (18.12), where this time a′1 = a2, a
′
2 = bc,

b′ =
1

ba2
, c′ = 0, and d′ = d+ 1.

3) a2 = 0, a1, b 6= 0. We apply the similarity transformation with the
matrix

S =




0 0 1
1

b
0 0

0
1

ba1
0


. (18.17)

We again get matrices in the form of (18.12), where a′1 = bc, a′2 = a1, b
′ =

1

ba1
,

c′ = 0, and d′ = d− 1. ut
The following lemma will tell us more about T̃ (b, c, d) when two of a1, a2,

and b are zero.

18.2.4. Lemma. If two of a1, a2, and b are zero, then T̃ (b, c, d) ' T̃
(
b,

1

b
, 0
)
.

Proof. There are three possibilities: a1, a2 = 0, a1, b = 0, and a2, b = 0. Let
us examine each one in turn.

1) a1, a2 = 0. In this case, we have
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bc+ d− 1 = 0,

bc− d− 1 = 0.
(18.18)

Subtracting the second equation from the first implies d = 0, which we can

plug back into the first equation to get bc−1 = 0, or c =
1

b
. Hence, the module

must be of the form T̃
(
b,

1

b
, 0
)
.

2) a1, b = 0. Here we have 0 = a1 = bc + d − 1 = d − 1. Hence, d = 1.
Furthermore, by Lemma 18.2.5 below, we can transform T (0, c, 1) into a rep-
resentation with d = 0 provided that c 6= 0. Since X− will still have two
eigenvectors with eigenvalue 0, the transformed representation will necessar-
ily be as in case 1). (When a2 = 0 and b = 0, d is necessarily −1; see case 3)

below.) Therefore, the only truly new case is T̃ (0, 0, 1). However, T̃ (0, 0, 1) is
not irreducible (see the Introduction) and, since we assumed our module to
be irreducible, is disallowed. So we have now completely reduced to case 1).

3) a2, b = 0. In this case, we get 0 = a2 = bc− d− 1 = −d− 1, or d = −1.
As above, we can reduce this to case 1) if and only if c 6= 0. Therefore, the

only new case is T̃ (0, 0,−1). However, from the Introduction we know that

T̃ (0, 0,−1) is not irreducible, and as in case 2) we have now completely reduced
to case 1). ut

We also want to examine the cases where d = 0 or ±1 in more detail, since
they will turn out to be special once we start tensoring. It turns out that all
three of these cases correspond to a module where d = 0 unless c = 0:

18.2.5. Lemma. Let d = ±1 and c 6= 0. Then

T (b, c, d) ' T (b′, c′, 0) (18.19)

for an appropriate choice of b′ and c′.
The statement remains true if we replace T by T̃ everywhere above.

Proof. We will prove the statement for T (b, c, 1) (i.e. for d = 1). The other
cases are completely analogous.

In this case, our representation is given by the following matrices:

X− =



0 0 c
1 0 0
0 1 0


, H =



0 0 0
0 1 0
0 0 −1


, X+ =



0 a1 0
0 0 a2
b 0 0


. (18.20)

We apply the similarity transformation with matrix

S =




0 0 1
1

c
0 0

0
1

c
0


, (18.21)

renaming the resulting matrices to X ′
± := SX±S

−1 and H ′ := SHS−1 to get



420 Ch. 18. Tensor products of irreducible sl(2)-modules

X ′
− =



0 0 c′

1 0 0
0 1 0


 H ′ =



−1 0 0
0 0 0
0 0 1


 X ′

+ =




0 a′1 0
0 0 a′2
b′ 0 0


. (18.22)

Explicitly, we have a′1 = bc, a′2 = a1, b
′ =

a2
c
, and c′ = c. So the change of

basis gives us a representation of the form T (b′, c′, 0). ut
Now that we have proved Lemma 18.2.1, we move on to studying semidirect

sums and the structure of our sl(2)-modules. Let S and T be two 3-dimensional
irreducible sl(2)-modules, and let us consider the tensor product V = S⊗T as
an sl(2)-module. This is a 9-dimensional space, but we may divide it into three
distinguished 3-dimensional subspaces, the weight spaces, i.e., the eigenspaces
of H . (It is simple to check that H has three distinct eigenvalues for any such
S and T .)

18.2.6. Remark. For the remainder of this section, all vectors are assumed
to be weight vectors, i.e., eigenvectors of H .

Thus, instead of considering the full 9-dimensional space V , we restrict
attention to one of the 3-dimensional weight spaces. We denote them by

Vρ = {v ∈ V | Hv = ρv} . (18.23)

The element X+X− ∈ U(sl(2)) acts on each weight space, since if Hv = ρv
for some ρ ∈ k, then

H(X+X−v) = X+HX−v + [H,X+]X−v

= X+X−Hv +X+[H,X−]v + 2X+X−v

= ρX+X−v.

(18.24)

Therefore, we may considerX+X− as a linear transformation of one such space
and look for its eigenvalues and eigenvectors. We relate this to semidirect sums
in the following lemma:

18.2.7. Lemma. Let X+X− have two distinct eigenvalues, λ1 and λ2, on the
subspace Vρ for some eigenvalue ρ of H. Suppose that V contains a semidirect

sum M +⊃ M̃ . Further, let M̃ ∩ Vρ = span(v1, v2), where X+X−vi = λivi.

Consider the action of sl(2) on the quotient space and a vector m ∈ M/M̃
with Hm = ρm. Then X+X−m = λim for some i.

Proof. Suppose, on the contrary, that X+X−m = µm (equality being in the
quotient space) for some µ 6= λi for all i. We will show that there is a vector
v ∈ V with Hv = ρv and X+X−v = µv, a contradiction.

For the remainder of the proof, the action of sl(2) will be on the full
space V , not the quotient space.

We know that X+X−m = µm+ m̃ for some m̃ ∈ M̃ . By the assumptions
of the lemma, we can write m̃ = m̃1 + m̃2, where X+X−m̃i = λim̃i. We set
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v = m+
1

µ− λ1
m̃1 +

1

µ− λ2
m̃2. (18.25)

Since µ 6= λ1 or λ2, v is well-defined, and it is easily seen that X+X−v = µv.
ut

We can consider other eigenvalue equations on the weight spaces of a tensor
product, in particular for X3

+ and X3
−. The proof of the following lemma is

straightforward and is left to the reader.

18.2.8. Lemma. The action of X3
+ and X3

− on any weight vector v in the

module V = S ⊗ T , where S and T are of the form T̃
(
b,

1

b
, 0
)
or T (b, c, d), is

given by:

1) T̃
(
b,

1

b
, 0
)
⊗ T̃ (β, 1

β
, 0): X3

+v =
b+ β

bβ
, X3

−v = 0;

2) T̃
(
b,

1

b
, 0
)
⊗ T (β, γ, δ): X3

+v = (
1

b
+ βα1α2)v, X

3
−v = γv;

3) T (b, c, d)⊗ T (β, γ, δ): X3
+v = (ba1a1 + βα1α2)v, X

3
−v = (c+ γ)v.

Furthermore, assuming v is some weight vector, V contains highest weight vec-
tors if and only if X3

+v = 0, and lowest weight vectors if and only if X3
−v = 0.

Combining Lemmas 18.2.7 and 18.2.8, we get:

18.2.9. Lemma. Given a module T (b, c, d) with no lowest weight vectors

(i.e. c 6= 0), or a module T̃
(
b,

1

b
, 0
)
, we can determine b, as well as c and d

(where applicable), from the actions of X+X− and X3
− on the weight spaces.

If c = 0 in T (b, c, d), we may still determine b from the action of X3
+ if we

know d.

Proof. Let us fix a basis {v1, v2, v3} such that the sl(2)-action is given by the
matrices of (18.5) or (18.7).

For T̃
(
b,

1

b
, 0
)
we must simply note that X3

+v1 =
1

b
v1.

For T (b, c, d), where c 6= 0 we note that the equations

X+X−v1 = (bc− 1 + d)v1,

X+X−v3 = bcv3,

X3
−v1 = cv1

(18.26)

allow us to determine b, c, and d, since c 6= 0.
In the case of T (b, 0, d) where d is known, we note that

X3
+v1 = ba1a2v1 = b(1− d2)v1, (18.27)

allowing us to determine b. ut
The number of linearly independent eigenvectors of X+X− will be impor-

tant to us when determining the structure of a decomposition, as the following
lemma shows.
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18.2.10. Lemma. Let there be either no highest or no lowest weight vectors
in V .

1) If X+X− has three linearly independent eigenvectors v1, v2, and v3 in Vρ
for an eigenvalue ρ of H, then there are 3-dimensional irreducible submodules
M,M ′,M ′′ ⊂ V such that V =M ⊕M ′ ⊕M ′′.

2) If X+X− has only two linearly independent eigenvectors v1 and v2
in Vρ, then there are 3-dimensional submodules M,M ′,M ′′ ⊂ V such that
V =M +⊃ (M ′ ⊕M ′′). In this case, M ′ and M ′′ are irreducible.

18.2.11. Remark. In the cases we consider,X+X− will always have at least
two distinct eigenvectors on any Vρ.

Proof. We will prove this for the case where X+v 6= 0 for all v ∈ V . The
other case is analogous.

Clearly, in an irreducible submodule of sl(2), for any weight vector v, we
have X+X−v = λv for some λ ∈ k. Further, a one-dimensional subspace
belongs to at most one irreducible submodule. So we can have at most as
many irreducible submodules as we have eigenvectors of X+X− in some Vρ.

Furthermore, if X+X−v = λv for some λ ∈ k and v a weight vector, then
v, X+v, and X

2
+v form an irreducible submodule. From Lemma 18.2.8, it is

clear that X3
+v is a nonzero multiple of v. From the relations of sl(2), it is

easy to check that X−X
n
+v is a multiple of Xn−1

+ v for any nonnegative integer
n. So these three vectors do form a submodule, and it is irreducible because
Xn

+ sends any subspace to any other for some n.
This completes the proof of heading 1), since in that case we can build three

3-dimensional irreducible submodules by the procedure in the last paragraph.
For heading 2), we can only build two such irreducible submodules M ′ and
M ′′ this way. To complete the proof, we consider M = V/(M ′⊕M ′′) and the
action of sl(2) on this quotient. We take any nonzero weight vectorm ∈M and
note again that m, X+m, and X2

+m form a basis of this quotient module, and
that it is irreducible. They are nonzero because X3

+m is a nonzero multiple of
m. They are linearly independent because they are of different weights, and
they form an irreducible submodule because there is no invariant subspace
(Xn

+ sends any subspace to any other for some n). ut

18.3. Notation

For the sake of convenience, we fix the notation for our modules for the
rest of the paper. We denote vectors in our modules according to the following
scheme:

qi ∈ 2 for i = 1, 2;

ti ∈ T̃
(
b,

1

b
, 0
)
, ui ∈ T̃ (β, 1β , 0) for i = 1, 2, 3;

vi ∈ T (b, c, d), wi ∈ T (β, γ, δ) for i = 1, 2, 3.

(18.28)
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The index in the subscript refers to the weight of the vector. For 2, the vector
q1 is of weight 1 and q2 is of weight −1. For ti, ui, vi, and wi, we refer to the
matrix representations (18.5) and (18.7) and set ti = ei, ui = ei, etc., where
{ei | i = 1, 2, 3} is the usual basis of k3.

In addition, since we will need them so often and the notation becomes
awkward, we will omit the “⊗” when writing tensor products of vectors. For
example, q1 ⊗ v2 ∈ 2⊗ T (b, c, d) will be expressed simply as q1v2.

18.4. Case-by-case calculations

All calculations were done with the assistance of the Mathematica-based
package SuperLie ([Gr], [?]).

Due to space considerations, and for the flow of arguments, calculations
will not be repeated here in detail. Instead, we refer to the Mathematica

notebooks, which have been made available online at
http://www.mis.mpg.de/∼clarke/tensor.
We have focused on producing explicit decompositions where possible.

Many decompositions could have also been deduced using more general argu-
ments based on the lemmas of §18.2, as was done in 18.4.5.10 or 18.4.6.19.

18.4.1. The case V = 2 ⊗ 2. This is the simplest case of all; in fact,
there is no difference from the decomposition in characteristic 0. We start
from the two highest weight vectors, r1r1 and r2r1− r1r2. Applying X− gives
an irreducible submodule of the form 3 from the first, and 1 from the second.
Hence, we have a direct sum of two irreducible modules,

2⊗ 2 = 3⊕ 1. (18.29)

This could have been deduced from more general considerations as well.
Working over fields of characteristic p, if we have two modules of the form
N and M , where N,M ∈ {1, . . . , p} (defined in (18.3)), they have highest
weights N − 1 and M − 1, respectively. Taking their tensor product N ⊗M
will give us vectors with weights at most N +M − 2. If N + M − 2 < p,
then we will see behavior that is no different from the case of characteristic 0.
Things start getting interesting when N +M − 2 ≥ p, which we will have in
all following cases.

18.4.2. The case V = 2⊗ T̃
(
b,

1

b
,0
)
. In this case, we find two high-

est weight vectors, q2t1, and q2t2. Applying X− to these, we construct two
3-dimensional irreducible submodules that supply a complete decomposition.

From q2t1, we get the module T (
1

b
, 0, 0), and from q2t2, we get the module

T̃
(
b,

1

b
, 0
)
. So

2⊗ T̃
(
b,

1

b
, 0
)
= T

(
1

b
, 0, 0

)
⊕ T̃

(
b,

1

b
, 0
)
. (18.30)
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18.4.3. The case V = 2 ⊗ T (b, c, d). In this case, we have the lowest
weight vectors q2v3 and q1v3 − q2v2 if and only if c = 0. We have highest
weight vectors if and only if we are in one of the following situations:

1. q1v1 and q1v2 + (1 − d)q2v1 ⇐⇒ b = 0,
2. q1v3 and q1v1 − bq2v3 ⇐⇒ 1− bc+ d = 0,
3. q1v2 and q1v3 + (1 − bc+ d)q2v2 ⇐⇒ 1− bc− d = 0.

The “only if” part of these statements is provided by Lemma 18.2.8.
Furthermore, the eigenvalues of H are d and d±1. Hence, whenever d = 0,

1, or 2, we will have different behavior—e.g., the appearance of submodules
like 3 and 1→ 2.

Therefore, we divide our computations into subcases. For the precise break-
down of these subcases, we note that for c = 0, whether we have the highest
weight vectors described in (2) and (3) above depends only on d—we have (2)
if and only if d = −1 and (3) if and only if d = 1. Furthermore, if c 6= 0, then
we need not consider d = ±1 separately from d = 0, since in both of these
cases T (b, c, d) is isomorphic to a module with T (b′, c′, 0) for some b′ and c′

by Lemma 18.2.5.

18.4.3.1. The subcase c=0; d=0; b=0. In this case, by acting on the
two lowest and highest weight vectors listed above, we compute a submodule
of the form 1 → 2 ← 1. We quickly verify that this contains all highest and
lowest weight vectors.

The full module has dimension six, so we do not yet have a complete
decomposition. Since any weight vectors not contained in 1 → 2 ← 1 have
weights 1 and −1, we know that they will form a module of the form 2 after
quotienting by 1 → 2 ← 1 (to form two modules 1, they would have to
have weight 0). A direct computation shows that all together, the module
decomposes as M1.

18.4.3.2. The subcase c=0; d=0; b 6=0. Here, we only have low-
est weight vectors to work with. Acting on them by X+ gives rise to one

irreducible submodule, M := T̃ (
1

b
, b, 0), which contains both lowest weight

vectors.
Since there are no more highest or lowest weight vectors, there are now two

possibilities. Either the remainder of the full module forms a submodule of the
form T (b′, c′, d′) with no highest or lowest weight vectors, or the remainder
forms irreducible submodules only upon taking some quotients.

The first possibility can hold if and only if X+X− has a basis of eigenvec-
tors for each weight space. A quick check shows that the minimal polynomial
of X+X− is (λ− 1)2 when acting on the space of weight 1 vectors. Hence, the
module contains no more irreducible submodules.

A direct computation shows us now that the quotient module V/M is

again of the form T̃ (
1

b
, b, 0), so we get the complete decomposition

T̃
(
1

b
, b, 0

)
+⊃ T̃

(
1

b
, b, 0

)
. (18.31)
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18.4.3.3. The subcase ec=0; d=1; b=0. We begin by acting on the
lowest weight vectors by X+, which gives us two irreducible submodules, 3
and 1. This exhausts the lowest weight vectors, yet V is not yet completely
decomposed—we are missing a 2-dimensional subspace.

Since 1− bc− d = 1− d = 0, there is one remaining highest weight vector.
Acting on it by X− gives us the final submodule 2, which is glued into 1
via X−. Hence, we get

3⊕ (2→ 1). (18.32)

18.4.3.4. The subcase c=0; d=1; b 6=0. As in the last case, we imme-
diately get two irreducible submodules, 3 and 1. Here, there are no remaining
highest weight vectors, but we note that X+X− has a basis of eigenvectors
for the space of weight 1 vectors. We use this to compute that the remaining
2-dimensional submodule is irreducible after quotienting by 1, so we get

3⊕ (2 +⊃ 1). (18.33)

18.4.3.5. The subcase c=0; d=2; b=0. This case proceeds exactly
analogously to Section 18.4.3.3. However, since we have different highest
weight vectors (here 1 − bc + d = 1 + d = 0), we get the slightly different
decomposition

3⊕ (1→ 2). (18.34)

18.4.3.6. The subcase c=0; d=1; b 6=0. As above, this is completely
analogous to Section 18.4.3.4, but we get the decomposition

3⊕ (1 +⊃ 2). (18.35)

18.4.3.7. The subcase c=0; d 6=0,1,2. In this case, we may have highest
weight vectors if b = 0, but it turns out that in either case, acting on the lowest
weight vectors by X+ immediately gives us a complete decomposition,

T
(
b(d− 1)

d
, 0, d− 1

)
⊕ T

(
b(d+ 1)

d
, 0, d+ 1

)
. (18.36)

18.4.3.8. The subcase c 6=0; d=0; b=0. By acting on the highest
weight vectors with X−, we get a module of the form M := T (0, c, 1), which
exhausts the highest weight vectors. Since there are no more highest or lowest
weight vectors, we have the same situation as in Section 18.4.3.2. As there,
we can check that X+X− does not have a basis of eigenvectors for the space
of weight 1 vectors. We then directly compute that V/M is again of the form
T (0, c, 1). In all, we get

T (0, c, 1) +⊃ T (0, c, 1) (18.37)

18.4.3.9. The subcase c 6=0; d=0; b=
1

c
. In this case there are three

highest weight vectors, since 1 − bc+ d = 1− bc− d = 0. By acting on these
with X−, we get a complete decomposition,

T (0, c, 1)⊕ T (0, c, 1). (18.38)
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18.4.3.10. The subcase c 6=0; d=0; b 6=0 or
1

c
. Here there are no

highest or lowest weight vectors. However, the minimal polynomial for X+X−

acting on the space of weight 0 vectors is λ2 + bcλ + bc(bc − 1), which has
the two distinct roots bc±

√
bc. Hence, X+X− has a basis of eigenvectors for

this space. Explicitly solving for these eigenvectors and acting on them by X±

gives the decomposition

T
(
b +

√
b

c
, c, 1

)
⊕ T

(
b−

√
b

c
, c, 1

)
. (18.39)

18.4.3.11. The subcase c 6=0; d 6=0,1 or 2; b=0. In this case, acting
by X− on the two highest weight vectors gives us a complete decomposition,

T (0, c, d+ 1)⊕ T (0, c, d− 1). (18.40)

18.4.3.12. The subcase c 6=0; d 6=0,1 or 2; b=
1

c
. Here again, acting

by X− on the two highest weight vectors gives us a complete decomposition,

T (0, c, d)⊕ T (0, c, d+ 1). (18.41)

18.4.3.13. The subcase c 6=0; d 6=0,1 or 2; b=
1

c
. Here again, acting

by X− on the two highest weight vectors gives us a complete decomposition,

T (0, c, d− 1)⊕ T (0, c, d). (18.42)

18.4.3.14. The subcase c 6=0; d 6=0,1 or 2; b 6=0 or
1

c
. As in Section

18.4.3.10, there are no highest or lowest weight vectors. Investigating the ac-
tion of X+X− on the space of weight d vectors shows that it has eigenvalues
bc− d±

√
bc+ d2, and that X+X− has a basis of eigenvectors for this space

if and only if the eigenvalues are distinct, i.e., if bc+ d2 6= 0.
If bc+ d2 6= 0, we solve for these eigenvectors and act on them by X± to

get a complete decomposition,

T
(
b+

d+
√
bc+ d2

c
, c, d+ 1

)
⊕ T

(
b+

d−
√
bc+ d2

c
, c, d+ 1

)
. (18.43)

If bc + d2 = 0, the two eigenvectors from above degenerate to one, and

acting on it we get a submoduleM := T (b+
d

c
, c, d+1). We can then explicitly

compute that V/M = T (b+
d

c
, c, d+ 1) as well. So in this case, the complete

decomposition is

T
(
b+

d+
√
bc+ d2

c
, c, d+ 1

)
+⊃ T

(
b+

d−
√
bc+ d2

c
, c, d+ 1

)
. (18.44)
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18.4.4. The case V = T̃
(
b,

1

b
, 0
)
⊗ T̃

(
β,

1

β
, 0
)
. In this case, by Lemma

18.2.8, there are always lowest weight vectors, namely t1u1, t1u2, t2u1,
t1u3+ t3u1, and t2u2. We have the highest weight vectors bt1u1+ t2u3− t3u2,
bt1u2 − bt2u1 − t3u3, and t1u3 − t2u2 + t3u1 if and only if

b+ β

bβ
= 0, or

equivalently β = −b. Therefore, we need to split this case into two subcases.

18.4.4.1. The subcase β=−b. Here, we start by acting on the highest
weight vectors by X−. This immediately generates three irreducible modules,
3, 1, and 2. This exhausts all of the highest weight vectors.

Since the full module has two lowest weight vectors not contained in the
above submodules, there are two possibilities. Either these lowest weight vec-

tors make up a module of the form T̃ (b′,
1

b′
, 0), or they form irreducible mod-

ules only upon quotienting. The first possibility is ruled out since X3
+ of any

weight vector is zero, which is not the case for any T̃ (b′,
1

b′
, 0). Hence, we have

the second possibility.
By acting on the remaining lowest weight vectors by X+, we obtain a

module 2 glued into the module 1 via X+, and a module 1 glued into the
module 2 via X+. Hence the full decomposition is

3⊕ (2← 1)⊕ (1← 2). (18.45)

18.4.4.2. The subcase β 6=−b. In this case, acting on the lowest weight
vectors by X+ immediately gives us a complete decomposition,

T
(
b+ β

bβ
, 0, 0

)
⊕ T̃

(
bβ

b+ β
,
b+ β

bβ
, 0
)
⊕ T̃

(
bβ

b+ β
,
b+ β

bβ
, 0
)
. (18.46)

18.4.5. The case V = T̃
(
b,

1

b
,0
)
⊗T (β,γ,δ). Again referring to Lemma

18.2.8, we determine that V contains the lowest weight vectors t2w3,
bt1w2 − t3w3, and t1w3 if and only if γ = 0. Furthermore, V contains the
highest weight vectors

t1w1 − βt2w3 − β(1− βγ + δ)t3w2,

t1w2 + (1− γ − δ)t2w1 − β(1 − βγ − δ)t3w3,

t1w3 + (1− βγ + δ)t2w1 + (1 − βγ + δ)(1 − βγ − δ)t3w1

(18.47)

if and only if
1 + bβ(1− βγ + δ)(1− βγ − δ) = 0. (18.48)

Furthermore, similarly to the case of 2⊗ T (b, c, d), the eigenvalues of H are δ
and δ ± 1.

Based on this, we split this case into subcases. Note that when we have
both that γ = 0 and δ = ±1, it is impossible to have highest weight vectors.
In addition, if γ 6= 0, then we need not consider the cases δ = ±1 separately
from δ = 0, since by Lemma 18.2.5, T (β, γ,±1) is isomorphic to a module
T (β′, γ′, 0) for some β′, γ′.
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18.4.5.1. The subcase γ=0; δ=0; β=−
1

b
. In this case, we begin by

acting on the three available lowest weight vectors by X+, followed by acting
on the highest weight vectors by X−. This immediately allows us to compute
two indecomposable submodules of the forms 3 and 1→ 2← 1.

The above submodules have dimension seven, while V has dimension nine.
The weight vectors linearly independent from the above submodules have
weights 1 and −1. Since there are no more highest or lowest weight vectors,
these vectors form an irreducible module of the form 2 only after passage
to the quotient. A quick check of the minimal equation of X+X− acting on
the space of vectors of weight 1 shows that X+X− has only two eigenvectors
on this space. So we start with an arbitrary vector that is linearly indepen-
dent from the submodules of the last paragraph and find that the complete
decomposition is of the form

3⊕ (2 +⊃ (1→ 2← 1)). (18.49)

18.4.5.2. The subcase γ=0; δ=0; β 6=−
1

b
. Here, we have three lowest

weight vectors and no highest weight vectors. Acting on the lowest weight

vectors yields two submodules, T̃ (
b

1 + bβ
,
1 + bβ

b
, 0) and T (

1 + bβ

b
, 0, 0), which

contain al of the lowest weight vectors.
One quickly checks that X+X− does not have a basis of eigenvectors for

the space of weight 1 vectors. Therefore, the subspace of remaining vectors will
be irreducible only upon quotienting. A direct computation shows that the

quotient is of the form T̃ (
b

1 + bβ
,
1 + bβ

b
, 0), giving the complete decomposition

T̃
(

b

1 + bβ
,
1 + bβ

b
, 0
)

+⊃
(
T̃
(

b

1 + bβ
,
1 + bβ

b
, 0
)
⊕ T

(
1 + bβ

b
, 0, 0

))
. (18.50)

18.4.5.3. The subcase γ=0; δ=1. In this case there are three low-
est weight vectors but, as noted above, no highest weight vectors. By acting
on the lowest weight vectors with X+, we immediately get two submodules,

T̃
(
b,

1

b
, 0
)
and T (

1

b
, 0, 0).

The above submodules contain all of the highest and lowest weight vectors,
and we can check that X+X− does not have a basis of eigenvectors for any
weight space (actually, checking one particular weight space suffices). Hence,
starting with an arbitrary weight vector that is linearly independent from the
two submodules above, we compute the final submodule, which is irreducible
upon quotienting and gives the decomposition

T̃
(
b,

1

b
, 0
)

+⊃
(
T̃
(
b,

1

b
, 0
)
⊕ T

(
1

b
, 0, 0

))
. (18.51)

18.4.5.4. The subcase γ=0; δ=2. This case is completely analogous
to that of Section 18.4.5.3. The end result is also identical.
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18.4.5.5. The subcase

γ = 0; δ 6= 0, 1 or 2; bβ(1 − δ2) = −1.

For this case, please refer to Section 18.4.5.9 below. The calculation there is
also completely valid for the case γ = 0.

18.4.5.6. The subcase

γ = 0; δ 6= 0, 1 or 2; bβ(1 − δ2) 6= −1.

Here, there are no highest weight vectors, but acting on the three lowest weight
vectors by X+ gives the entire decomposition,

T (1+ bβ(1− δ2), 0, δ− 1)⊕T (1+ bβ(1− δ2), 0, δ)⊕T (1+ bβ(1− δ2), 0, δ+1).
(18.52)

18.4.5.7. The subcase γ 6=0; δ=0; bβ(1−βγ)2=−1. Here there are
no lowest weight vectors, but three highest weight vectors. Acting on these by
X− yields two 3-dimensional submodules, T (0, γ, 0) and T (0, γ,−1).

A quick check then shows that X+X− does not have a basis of eigenvectors
for any weight space. However, by selecting a weight vector linearly indepen-
dent from the two submodules above and applying X− to it, we find that the
quotient of V by the two submodules above is of the form T (0, γ,−1). In all,
we get

T (0, γ,−1) +⊃ (T (0, γ, 0)⊗ T (0, γ,−1)) (18.53)

18.4.5.8. The subcase γ 6=0; δ=0; bβ(1−βγ)2 6=−1. This case is
covered by the calculation of Section 18.4.5.10 below. Note that in the cur-
rent case, the condition (18.58) cannot hold. The assumption δ = 0 implies
(δ(δ + 1)(δ − 1))2 = 0 and we have assumed that

1 + bβ(1− βγ + δ)(1− βγ − δ) 6= 0. (18.54)

18.4.5.9. The subcase

γ 6= 0; δ 6= 0, 1 or 2; bβ(1 − βγ + δ)(1 − βγ − δ) = −1.

In this case, there are no lowest weight vectors, but three highest weight
ones. Acting on them by X− yields a full decomposition,

T (0, γ, δ − 1)⊕ T (0, γ, δ)⊕ T (0, γ, δ+ 1). (18.55)

18.4.5.10. The subcase

γ 6= 0; δ 6= 0, 1 or 2; bβ(1 − βγ + δ)(1 − βγ − δ) 6= −1.
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Here, we have neither highest nor lowest weight vectors to exploit. Hence,
we must rely on Lemmas 18.2.8 and 18.2.10 and examine the eigenspaces of
X+X−.

We begin with the space Vδ+1. A straightforward computation shows that
the characteristic polynomial of X+X− acting on Vδ+1 is

λ3 + (1− δ2)λ2 + λ− γ

b
(1 + bβ(1− βγ + δ)(1− βγ − δ)). (18.56)

To apply Lemma 18.2.10, we must know how many linearly independent
eigenvectors X+X− has in Vδ+1; that is, we must know what the minimal
polynomial of X+X− is.

Noting that, in a field of characteristic 3, (λ − µ)3 = λ3 − µ3, it is easily
seen that (18.56) cannot be written as a perfect cube. So it must have at least
two solutions.

We then note that

(λ− µ)2(λ − ρ) = λ3 + (µ− ρ)λ2 + (µ2 − µρ)λ− µ2ρ. (18.57)

By equating coefficients of λ, we deduce that (18.56) and (18.57) can be equal
if and only if µ = 1−δ2 and ρ = −δ2, as well as the following relation between

the parameters of T̃
(
b,

1

b
, 0
)
and T (β, γ, δ) is satisfied:

γ

b
(1 + bβ(1− βγ + δ)(1− βγ − δ) = µ2ρ = −δ2(1 − δ)2(1 + δ)2. (18.58)

Of course, even if the characteristic polynomial has a root of multiplicity two,
X+X− may still have a basis of eigenvectors if its minimal polynomial factors
into distinct linear factors, that is if X+X− satisfies the equation

(X+X− − (1− δ2I))(X+X− + δ2I) = 0, (18.59)

where I is the identity operator on Vδ+1. However, a direct computation shows
that this is never the case.

This argumentation shows that we have a direct sum decomposition,

T (b1, c1, d1)⊕ T (b2, c2, d2)⊕ T (b3, c3, d3), (18.60)

if (18.58) does not hold. If (18.58) holds, we have a decomposition involving
a semidirect sum,

T (b3, c3, d3) +⊃ (T (b1, c1, d1)⊕ T (b2, c2, d2)). (18.61)

Now we are interested in determining the possible values of the parameters
bi, ci, di. Let ρ1, ρ2, and ρ3 be the (not necessarily distinct) roots of the
polynomial (18.56), and assume that at least ρ1 6= ρ2. Now, let v3,i be the
distinct eigenvectors ofX+X− in Vδ+1, so that i ranges from one to the number
of distinct eigenvectors. Finally, set v2,i = X+v3,i and v1,i = X2

+v3,i. We take
{v1,i, v2,i, v3,i} as our basis for T (bi, ci, di) in the matrix representation (18.5).
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With this notation, and recalling Lemma 18.2.9, we can determine the
parameters. We already know that X3

−vj,i = γvj,i for all i and j, so ci = γ
for all i. Now, on the one hand, X+X−v3,i = biciv3,i, and the other hand,

we know that X+X−v3,i = ρiv3,i. Therefore, bi =
ρi
γ
. Finally, since each v3,i

belongs to Vδ+1, we know from the algebra equations for sl(2) that v2,i is of
weight (δ+1)+ 2 = δ. So di = δ. This determines the parameters completely
for the case that X+X− has a basis of eigenvectors for Vδ+1.

If X+X− has only two distinct eigenvectors for Vδ+1, b3 is yet to be de-
termined. To do this, we note the following general fact. Let A : W → W be
a linear endomorphism of a finite-dimensional vector space W , and let U be
an A-invariant subspace of W . Furthermore, let the minimal polynomial of
A : W → W be m, that of A : U → U be m1, and that of the induced map
A : W/U →W/U be m2. Then m = m1 ·m2.

With this in mind, assume we have nondistinct eigenvalues ρ1 = ρ3 = 1−δ2
and ρ2 = −δ2. Then the minimal polynomial of X+X− on Vδ+1 is

m = (λ− (1− δ2))2(λ + δ2). (18.62)

Using the notation of the previous paragraph with A = X+X−, W = Vδ+1,
and U = span(v3,1, v3,2), we then have

m1 = (λ− (1 − δ2))(λ + δ2), (18.63)

implying m2 = (λ − (1 − δ2)). Hence, letting v3,3 be a representa-
tive for a nonzero vector in the quotient space W/U , we get X+X− is
X+X−v3,3 = (1− δ2)v3,3. Therefore,

b3 =
1− δ2
c

. (18.64)

Thus, we have determined all parameters for the decomposition.

18.4.6. The case T (b, c, d)⊗T (β, γ, δ). By Lemma 18.2.8, we have lowest
weight vectors if and only if c+ γ = 0, and highest weight vectors if and only
if ba1a2 + βα1α2 = 0, where

a1 = bc+ d− 1, α1 = βγ + δ − 1,

a2 = bc− d− 1, α2 = βγ − δ − 1.
(18.65)

The lowest weight vectors are then

cv1w1 + v2w3 − v3w2,

cv1w2 − cv2w1 − v3w3,

v1w3 − v2w2 + v3w1,

(18.66)

and the highest weight vectors are



432 Ch. 18. Tensor products of irreducible sl(2)-modules

a1a2v1w1 − βa2v2w3 + βα2v3w2,

a1a2v1w2 − a2α1v2w1 + βα1v3w3,

a1a2v1w3 − a2α2v2w2 + α1α2v3w1.

(18.67)

The highest weight vectors were computed using the following method
(here, as an example, for the weight space span(v1w1, v2w3, v3w2)). We have,
for the action of X+ on this weight space,

X+(v1w1) = βv1w3 + bv3w1,

X+(v2w3) = a1v1w3 + α2v2w2,

X+(v3w2) = a2v2w2 + α1v3w1.

(18.68)

We first try to cancel the factors of v1w3, noting that

X+(a1v1w1 − βv1w3) = −βα2v2w2 + ba1v3w1. (18.69)

From here, we cancel the factors of v2w2:

X+(a2(a1v1w1 − βv2w3) + βα2v3w2) = (ba1a2 + βα1α2)v3w1 (18.70)

Since we have assumed that ba1a2 + βα1α2 = 0, this tells us that
a1a2v1w1 − βa2v2w3 + βα2v3w2 is a highest weight vector.

The problem with this method of computing the highest weight vector is
that the vector we end up with might be the zero vector. We can try to rectify
this by changing the order of the factors that we cancel. Doing so gives us two
additional “representations” (by an abuse of language) for the highest weight
vectors:

a1α1v1w1 − βα1v2w3 − ba1v3w2,

βα2v1w2 + ba2v2w1 − bβv3w3,

βα1v1w3 + ba2v2w2 + bα1v3w1

(18.71)

and

α1α2v1w1 + ba2v2w3 − bα2v3w2,

a1α2v1w2 − α1α2v2w1 − ba1v3w3,

βa1v1w3 − βα2v2w2 + ba1v3w1.

(18.72)

We then hope that one of these “representations” is nonzero. However, for
certain choices of the parameters, all three “representations” of some highest
weight vector are zero. A lengthy but straightforward analysis shows that the
only such choices are given by Table 18.1.

We do not have to consider all of these cases separately, however. Note that

in all of these cases, c 6= 0. Whenever b =
1

c
, it is assumed, and whenever b = 0,

we have d = ±1, and so we must have c 6= 0 if T (b, c, d) is to be irreducible
(see the Introduction). Likewise, γ 6= 0 in all of these cases. Therefore, we
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Table 18.1 Parameter values for which all “representations” of some highest weight
vector are zero

b 0 0 0 0 0 0
1

c

1

c

1

c
d 1 −1 1 −1 1 −1 0 0 0

β 0 0
1

γ
0 0

1

γ
0 0

1

γ

δ 1 −1 0 1 −1 0 1 −1 0

may use Lemma 18.2.5 (and the explicit calculations of its proof) to see that

T (0, c,±1) ' T (1
c
, c, 0) and T (0, γ,±1) ' T ( 1

γ
, γ, 0). Hence, all nine cases are

equivalent to the case where b =
1

c
, d = 0, β =

1

γ
, and δ = 0. So this means

we must consider that particular case separately from the other cases where
highest weight vectors are present.

One may ask the related question of whether there is only one highest
weight vector in each weight space. For the lowest weight vectors this is clear
by inspection, but in the case of highest weight vectors, it is not so easily seen
directly whether this is true. We may, however, consider the characteristic
polynomials of X+X− on the weight spaces. These are

λ3 + λ2 + ((d + δ)2 − 1)λ+ (c+ γ)(ba1a2βα1α2) on Vd+δ+1, (18.73)

λ3 + λ2 + (d+ δ)((d + δ)− 1)λ+ (c+ γ)(ba1a2βα1α2) on Vd+δ−1, (18.74)

λ3 + λ2 + (d+ δ)((d + δ) + 1)λ+ (c+ γ)(ba1a2βα1α2) on Vd+δ. (18.75)

From this, we clearly see that X+X− can have at most two eigenvectors
with eigenvalue 0, since the geometric multiplicity of an eigenvalue is at most
its algebraic multiplicity in the characteristic equation. Furthermore, we note
that if c+γ = 0, one of these zero eigenvectors will come from a vector v with
X−v = 0. Therefore, we focus on the case where c+ γ 6= 0. Another lengthy
but straightforward calculation shows us that the only cases where X+X−

has two eigenvectors with eigenvalue 0 in some weight space are again exactly
given by Table 18.1. Hence, we have no extra cases here to consider specially.

For the action of H , we note that the possible weights for vectors in V

are d + δ and d + δ ± 1. As in the case of T̃
(
b,

1

b
, 0
)
⊗ T (β, γ, δ), we will be

concerned with when these weights can be 0, 1, or −1, since in these cases
we will see phenomena that are not possible otherwise. Hence, we consider
d+ δ = 0 or ±1 separately.

However, for γ 6= −c (i.e., when there are no lowest weight vectors), we
may use Lemma 18.2.5 to reduce the cases d+ δ = ±1 to the case d+ δ = 0.
This is because we can assume that either c or γ is nonzero. Without loss of
generality, we assume c 6= 0. We can then use the isomorphisms
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T (b, c, 0) ' T (b′, c′, 1) ' T (b′′, c′′,−1) (18.76)

(for appropriate b′, b′′, c′ and c′′) to modify the value of d+ δ.
If γ = −c, on the other hand, we could have γ = 0 = c, in which case

Lemma 18.2.5 is inapplicable.
Finally, we note the following factorizations for K = ba1a2 + βα1α2 for

special values of d+ δ when γ = −c:

d+ δ = 0 =⇒ K = (b + β)(1 + bc+ b2c2 − d2 − cβ − bc2β + c2β),

d+ δ = 1 =⇒ K = (1 + d)((1 − d)b− dβ),
d+ δ = −1 =⇒ K = (1− d)((1 + d)b + dβ).

(18.77)

With all of this in mind, we are now ready to break down the necessary
subcases. Except in the two subcases where we explicitly state this to be the

case, we assume that we do not have all of the conditions b =
1

c
, d = 0, β =

1

γ
,

and δ = 0. (The same assumption goes for Tables 18.6 and 18.7.)

18.4.6.1. The subcase γ=−c; b=
1

c
; d=0; β=

1

γ
; δ=0. This

computation is implied by that in 18.4.6.16 below. We note that T (0, 0, 0) ' 3,
T (0, 0, 1) ' 1→ 2, and T (0, 0,−1) ' 2→ 1.

18.4.6.2. The subcase

γ=−c; d+δ=0; β=−b; 1+bc+b2c2−d2−cβ− bc2β+c2β2=0.

In this case, we have three lowest weight vectors. Acting on them by X+,
we obtain three submodules, of the forms 1, 2, and 3. This exhausts both the
highest and lowest weight vectors.

Examining the action of X+X− on V1, we notice by calculating the char-
acteristic and minimal polynomials that X+X− has two eigenvectors with
eigenvalue 1. We have only exploited one of these; acting on the other by X+

and X− gives a module that is of the form 2 after quotienting with the 1 from
the last paragraph. Together, these submodules have dimension eight, while
V has dimension nine, so we deduce the complete decomposition

1 +⊃ ((2 +⊃ 1)⊕ 2⊕ 3). (18.78)

18.4.6.3. The subcase

γ=−c; d+δ=0; β=−b; 1+bc+b2c2−d2−cβ−bc2β+c2β2 6=0.

As in the last case, we begin with acting by X+ on the lowest weight vec-
tors, which gives two submodules of the forms 3 and 1← 2. These submodules
contain all but one highest weight vector, which has weight 1. Acting on it
by X− gives a submodule of the form 2. Since there are no more highest or
lowest weight vectors, the complete decomposition is of the form

1 +⊃ (2 +⊃ (3 ⊕ (1← 2))). (18.79)
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18.4.6.4. The subcase

γ=−c; d+δ=0; β 6=−b; 1+bc+b2c2−d2−cβ−bc2β+c2β2=0.

This case proceeds completely analogously to above, only after exploiting
the lowest weight vectors, we have two submodules of the forms 3 and 2← 1.
The one remaining highest weight vector is of weight 0. Acting on it by X−

yields a vector in 3 ⊕ (2 ← 1). With no remaining highest or lowest weight
vectors, the decomposition is of the form

2 +⊃ (1 +⊃ (3 ⊕ (2← 1))). (18.80)

18.4.6.5. The subcase

γ=−c; d+δ=0; β 6=−b; 1+bc+b2c2−d2−cβ− bc2β+c2β2 6=0.

In this case there are no highest weight vectors. Acting on the lowest weight

vectors by X+ gives two irreducible submodules, T (K, 0, 0) and T̃ (
1

K
,K, 0).

This exhausts all of the lowest weight vectors. By Lemma 18.2.8 there can
be no module of the form T (b, c, d) without highest or lowest weight vectors.
Therefore, the remainder of the module can be irreducible only upon quoti-

enting. Selecting an arbitrary vector from V/(T (K, 0, 0) ⊕ T̃ (
1

K
,K, 0)) and

acting on it by X+ shows that the quotient is of the form T̃ (
1

K
,K, 0). In all,

we get

T̃
(

1

K
,K, 0

)
+⊃
(
T (K, 0, 0)⊕ T̃

(
1

K
,K, 0

))
(18.81)

18.4.6.6. The subcase

γ = −c; d + δ = 1; d = −1; (1 − d)b = dβ.

This case is done completely analogously to Section 18.4.6.2 and gives the
same result.

18.4.6.7. The subcase

γ = −c; d + δ = 1; d = −1; (1 − d)b 6= dβ.

This case proceeds as in Section 18.4.6.3. However, here the equations are
a bit simpler, and we can achieve the somewhat sharper decomposition

1 +⊃ (3⊕ (2→ 1← 2)). (18.82)

18.4.6.8. The subcase 18.4.6.3

γ = −c; d + δ = 1; d 6= −1; (1 − d)b = dβ.

This case proceeds as in Section 18.4.6.4. As in the previous case, we can
achieve a somewhat sharper decomposition,

2 +⊃ (3⊕ (1→ 2← 1)). (18.83)



436 Ch. 18. Tensor products of irreducible sl(2)-modules

18.4.6.9. The subcase

γ = −c; d + δ = 1; d 6= −1; (1 − d)b 6= dβ.

This case is completely analogous to that of Section 18.4.6.5, and gives an
identical result.

18.4.6.10. The subcase

γ = −c; d + δ = 2; d = 1; (1 + d)b = −dβ.

This case is handled just like Section 18.4.6.6 and gives the same result.

18.4.6.11. The subcase

γ = −c; d + δ = 2; d = 1; (1 + d)b 6= −dβ.

Here, we proceed as in Section 18.4.6.7 and get the same result.

18.4.6.12. The subcase

γ = −c; d + δ = 2; d 6= 1; (1 + d)b = −dβ.

This case is analogous to Section 18.4.6.8 and again gives the same result.

18.4.6.13. The subcase

γ = −c; d + δ = 2; d 6= 1; (1 + d)b 6= −dβ.

Here, we compute the same result as in Section 18.4.6.9 in exactly the
same manner.

18.4.6.14. The subcase

γ = −c; d+ δ 6= 0, 1 or 2; ba1a2 = −βα1α2.

The decomposition for this case is implied by that in Section 18.4.6.15
simply by substituting K = 0. The computations are all still valid.

18.4.6.15. The subcase

γ = −c; d+ δ 6= 0, 1 or 2; ba1a2 6= −βα1α2.

Here, we have no highest weight vectors, but there are three lowest weight
vectors. Acting on them by X+ immediately gives us the complete decompo-
sition,

T (K, 0, d+ δ − 1)⊕ T (K, 0, d+ δ)⊕ T (K, 0, d+ δ + 1). (18.84)
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18.4.6.16. The subcase

γ 6= −c; b =
1

c
; d = 0; β =

1

γ
; δ = 0.

In this case, there are no lowest weight vectors, but we have five highest
weight vectors to exploit. Acting on them by X− gives the complete decom-
position

T
(
0,
b+ β

bβ
,−1

)
⊕ T

(
0,
b+ β

bβ
, 0
)
⊕ T

(
0,
b+ β

bβ
, 1
)
. (18.85)

18.4.6.17. The subcase

γ 6= −c; ba1a2 = −βα1α2; d + δ = 0.

In this case, there are three highest weight vectors. Acting on them by X−,
we obtain two submodules, T (0, c+ γ,−1) and T (0, c + γ, 0). This exhausts
all highest weight vectors.

The two remaining possibilities are that we have some module of the form
T (b′, c′, d′) without highest or lowest weight vectors, or that the remainder
of the module forms an irreducible module only after quotienting. Lemma
18.2.8 rules out the first possibility, so we must have the second. Furthermore,
again by Lemma 18.2.8, we know that the quotient module must have the
form T (b′, c′, d′) after quotienting, since it can have no lowest weight vectors.
Furthermore, it must have c′ = c+ γ.

Let us examine the action of X+X− on V0, and argue analogously to
Section 18.4.5.10. The minimal polynomial ofX+X− on this space is λ2(λ+1).
There is one eigenvector of eigenvalue 0 and one of eigenvalue−1. The quotient
of V0 by the span of these eigenvectors is a 1-dimensional space, and the
minimal polynomial of X+X− on this space is λ. Therefore, choosing a basis
vector v′3 for the quotient, we haveX+X−v

′
3 = 0 for the action on the quotient.

Setting v′2 = X+v
′
3 and v′1 = X2

+v
′
3 and taking {v′1, v′2, v′3} as a basis for the

quotient space, we determine that b′ = 0 and d′ = 0 + 2 = −1.
18.4.6.18. The subcase

γ 6= −c; ba1a2 = −βα1α2; d+ δ 6= 0, 1, 2.

Here, we have three highest weight vectors. Acting on them by X− yields,
after a lengthy but straightforward calculation, three irreducible submodules
which form a complete decomposition,

T (0, c+ γ, d+ δ − 1)⊕ T (0, c+ γ, d+ δ)⊕ T (0, c+ γ, d+ δ + 1). (18.86)

18.4.6.19. The subcase γ 6=−c; ba1a2 6=−βα1α2. Here, there are no
highest or lowest weight vectors. Therefore, we want to proceed upon the lines
of 18.4.5.10, trying to apply Lemma 18.2.10 to determine the structure of the
decomposition.
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The characteristic polynomial of X+X− acting on Vd+δ+1 is given by

λ3 + λ2 + (1− (d+ δ)2)λ− (c+ γ)(ba1a2 + βα1α2). (18.87)

We are now interested in using this to determine how many linearly indepen-
dent eigenvectors X+X− has on Vd+δ+1.

We note, as in 18.4.5.10, that (18.87) must have at least two distinct roots,
since (λ − µ)3 = λ3 − µ3 in characteristic 3.

It is, however, possible that (18.87) has only two distinct roots. Equat-
ing coefficients of (18.87) and (18.57) gives that (18.87) is of the form
(λ−µ)2(λ−ρ) if and only if µ = −(d+δ)(1+d+δ) and ρ = −1−(d+δ)(1+d+δ),
as well as the following condition on the parameters b, c, d, etc. is satisfied:

(d+ δ)2(1− (d+ δ)2)2 = −(c+ γ)(ba1a2 + βα1α2). (18.88)

We will still have a direct sum decomposition even if (18.88) is satisfied,
provided the minimal polynomial of X+X− on Vd+δ+1 factors into distinct
linear factors, i.e.,

(X+X− − µI)(X+X− − ρI) = 0, (18.89)

This matrix equation can be viewed as a system of nine equations. Taking
sums and differences of these equations, and using a good deal of brute force,
we can reduce these nine equations to the following three conditions:

bd(c+ γ) = (d+ δ)(1 − (d+ δ)2),

βδ = bd,

γ(d− d3) = c(δ − δ3).
(18.90)

Therefore, we have the decomposition

T (b3, c3, d3) +⊃ (T (b1, c1, d1)⊕ T (b2, c2, d2)). (18.91)

if and only if (18.88) is satisfied but (18.90) is not. Otherwise, we have the
direct sum decomposition

T (b1, c1, d1)⊕ T (b2, c2, d2)⊕ T (b3, c3, d3) (18.92)

To determine the bi, ci, and di, let us repeat our considerations from
Section 18.4.5.10 in this case. Let µ1, µ2, and µ3 be the (not necessarily
distinct) roots of the polynomial (18.87), and assume that at least µ1 6= µ2.
As before, let v3,i be the distinct eigenvectors of X+X− in Vd+δ+1, so that i
ranges from one to the number of distinct eigenvectors. Then set v2,i = X+v3,i
and v1,i = X2

+v3,i. We take {v1,i, v2,i, v3,i} as our basis for T (bi, ci, di) in the
matrix representation (18.5).

Since X3
−vj,i = (c+ γ)vj,i for all i and j, it follows that ci = c+ γ for all i.

We then have the two equations X+X−v3,i = biciv3,i and X+X−v3,i = µiv3,i.
These imply that
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bi =
µi

c+ γ
. (18.93)

To determine di, remember that each v3,i belongs to Vd+δ+1, so v2,i is of
weight (d+ δ + 1) + 2 = d+ δ. Hence, di = d+ δ.

As in Section 18.4.5.10, we must finally determine b3 in the case that
there are only two distinct eigenvectors, that is, when the minimal polynomial
does not factor into linear factors with multiplicity one. In this case we have
µ1 = µ3 = −(d + δ)(1 + d + δ) and µ2 = −1 − (d + δ)(1 + d + δ). Here also,
The minimal polynomial of X+X− on Vd+δ+1 is

(λ+ (d+ δ)(1 + d+ δ))2(λ+ (1 + (d+ δ)(1 + d+ δ))). (18.94)

By the same arguments as in Section 18.4.5.10, we deduce that

b3 =
−(d+ δ)(1 + d+ δ)

c+ γ
. (18.95)

This completes our determination of the parameters for this decomposi-
tion, and thus our computations for Theorem 18.1.3.
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Table 18.3 2⊗ T (b, c, d)

Relations Decomposition

c = 0 d = 0 b = 0 M1

b 6= 0 T̃ (
1

b
, b, 0) +⊃ T̃ (

1

b
, b, 0)

d = 1 b = 0 3⊕ (2→ 1)

b 6= 0 3⊕ (2 +⊃ 1)

d = 2 b = 0 3⊕ (1→ 2)

b 6= 0 3⊕ (1 +⊃ 2)

d 6= 0, 1, 2 T (
b(d− 1)

d
, 0, d− 1) ⊕ T ( b(d+ 1)

d
, 0, d+ 1)

c 6= 0 d = 0 b = 0 T (0, c, 1) +⊃ T (0, c, 1)
b =

1

c
T (0, c, 1) ⊕ T (0, c, 1)

b 6= 0,
1

c
T (b+

√
b

c
, c, 1)⊕ T (b−

√
b

c
, c, 1)

d 6= 0, 1, 2 b = 0 T (0, c, d+ 1)⊕ T (0, c, d− 1)

1− bc+ d = 0 T (0, c, d)⊕ T (0, c, d+ 1)

1− bc− d = 0 T (0, c, d− 1)⊕ T (0, c, d)

b 6= 0, bc+ d2 = 0 T (b+
d

c
, c, d+ 1) +⊃ T (b+ d

c
, c, d+ 1)

1− bc± d 6= 0 bc+ d2 6= 0 T (b+
d+
√
bc+ d2

c
, c, d+ 1) ⊕ T (b+ d−

√
bc+ d2

c
, c, d+ 1)



Table 18.4 T̃
(
b,

1

b
, 0
)
⊗ T̃ (β, 1

β
, 0)

Relations Decomposition

b = −β 3⊕ (2← 1)⊕ (1← 2)

b 6= −β T (
b+ β

bβ
, 0, 0) ⊕ T̃ ( bβ

b+ β
,
b+ β

bβ
, 0)⊕ T̃ ( bβ

b+ β
,
b+ β

bβ
, 0)

Table 18.5 T̃
(
b,

1

b
, 0
)
⊗ T (β, γ, δ)

Relations Decomposition

γ = 0 δ = 0 β = −1

b
3⊕ (2 +⊃ (1→ 2← 1))

β 6= −1

b
T̃ (

b

1 + bβ
,
1 + bβ

b
, 0) +⊃ (T̃ (

b

1 + bβ
,
1 + bβ

b
, 0)⊕ T (1 + bβ

b
, 0, 0))

δ = 1 T̃
(
b,

1

b
, 0
)

+⊃ (T̃
(
b,

1

b
, 0
)
⊕ T (1

b
, 0, 0))

δ = 2 T̃
(
b,

1

b
, 0
)

+⊃ (T̃
(
b,

1

b
, 0
)
⊕ T (1

b
, 0, 0))

δ 6= 0, 1, 2 bβ(1− δ2) = −1 T (0, 0, δ − 1)⊕ T (0, 0, δ)⊕ T (0, 0, δ + 1)

bβ(1− δ2) 6= −1 T (J, 0, δ − 1)⊕ T (J, 0, δ)⊕ T (J, 0, δ + 1)

γ 6= 0 δ = 0 bβ(1− βγ)2 = −1 T (0, γ,−1) +⊃ (T (0, γ, 0)⊕ T (0, γ,−1))
bβ(1− βγ)2 6= −1 T (ρ1, c, 0)⊕ T (ρ2, c, 0)⊕ T (ρ3, c, 0)

δ 6= 0, 1, 2 J = 0 T (0, γ, δ − 1)⊕ T (0, γ, δ)⊕ T (0, γ, δ + 1)

J 6= 0 −γ
b
J 6= (δ(δ + 1)(δ − 1))2 T (ρ1, c, δ)⊕ T (ρ2, c, δ)⊕ T (ρ3, c, δ)

−γ
b
J = (δ(δ + 1)(δ − 1))2 T (

1− δ2
c

, c, δ) +⊃ (T (
1− δ2
c

, c, δ)⊕ T (− δ
2

c
, c, δ))
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Table 18.6 T (b, c, d)⊗ T (β, γ, δ) (γ = −c)

Relations Decomposition

d+ δ = 0 b =
1

c
, d = 0, β =

1

γ
, δ = 0 3⊕ (1→ 2)⊕ (2→ 1)

β = −b 1 + bc+ b2c2 − d2 − cβ − bc2β + c2β2 = 0 1 +⊃ ((2 +⊃ 1)⊕ 2⊕ 3)

1 + bc+ b2c2 − d2 − cβ − bc2β + c2β2 6= 0 1 +⊃ (2 +⊃ (3⊕ (1← 2)))

β 6= −b 1 + bc+ b2c2 − d2 − cβ − bc2β + c2β2 = 0 2 +⊃ (1 +⊃ (3⊕ (2← 1)))

1 + bc+ b2c2 − d2 − cβ − bc2β + c2β2 6= 0 T̃ (
1

K
,K, 0) +⊃ (T (K, 0, 0)⊕ T̃ ( 1

K
,K, 0))

d+ δ = 1 d = −1 β = b 1 +⊃ ((2 +⊃ 1)⊕ 2⊕ 3)

β 6= b 1 +⊃ (3⊕ (2→ 1← 2))

d 6= −1 (1− d)b = dβ 2 +⊃ (3⊕ (1→ 2← 1))

(1− d)b 6= dβ T̃ (
1

K
,K, 0) +⊃ (T (K, 0, 0)⊕ T̃ ( 1

K
,K, 0))

d+ δ = 2 d = 1 β = b 3⊕ (2 +⊃ 1)⊕ (1 +⊃ 2)

β 6= b 1 +⊃ (3⊕ (2→ 1← 2))

d 6= 1 (1 + d)b = −dβ 2 +⊃ (1 +⊃ ((1← 2)⊕ 3))

(1 + d)b 6= −dβ T̃ (
1

K
,K, 0) +⊃ (T (K, 0, 0)⊕ T̃ ( 1

K
,K, 0))

d+ δ 6= 0, 1, 2 b(1− bc+ d)(1− bc− d) = −β(1 + cβ + δ)(1 + cβ − δ) T (0, 0, d+ δ − 1) ⊕ T (0, 0, d+ δ)⊕ T (0, 0, d+ δ + 1)

b(1− bc+ d)(1− bc− d) 6= −β(1 + cβ + δ)(1 + cβ − δ) T (K, 0, d+ δ − 1)⊕ T (K, 0, d+ δ)⊕ T (K, 0, d+ δ + 1)

Note: Except where explicitly state this to be the case, we assume that we do not have all of the conditions

b =
1

c
, d = 0, β =

1

γ
, and δ = 0.
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Table 18.7 T (b, c, d)⊗ T (β, γ, δ) (γ 6= c)

Relations Decomposition

b =
1

c
, d = 0, β =

1

γ
, δ = 0 T (0,

b+ β

bβ
,−1)⊕ T (0, b+ β

bβ
, 0) ⊕ T (0, b+ β

bβ
, 1)

K = 0 d+ δ = 0 T (0, c+ γ,−1) +⊃ (T (0, c+ γ, 0) ⊕ T (0, c+ γ,−1))
d+ δ 6= 0, 1, 2 T (0, c+ γ, d+ δ − 1) ⊕ T (0, c+ γ, d+ δ)⊕ T (0, c+ γ, d+ δ + 1)

K 6= 0 D = −K(c+ γ) bd(c+ γ) =
√
D, T (

µ1

c+ γ
, c+ γ, d+ δ)⊕ T ( µ2

c+ γ
, c+ γ, d+ δ)⊕ T ( µ3

c+ γ
, c+ γ, d+ δ)

βδ = bd,

γ(d− d3) = c(δ − δ3)

otherwise T (− ∆

c+ γ
, c+ γ, d+ δ) +⊃ (T (− ∆

c+ γ
, c+ γ, d+ δ)⊕ T (−1−∆

c+ γ
, c+ γ, d+ δ))

D 6= −K(c+ γ) T (
µ1

c+ γ
, c+ γ, d+ δ)⊕ T ( µ2

c+ γ
, c+ γ, d+ δ)⊕ T ( µ3

c+ γ
, c+ γ, d+ δ)

Note: Except where explicitly state this to be the case, we assume that we do not have all of the conditions

b =
1

c
, d = 0, β =

1

γ
, and δ = 0.
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Chapter 19

Towards classification of simple finite
dimensional modular Lie superalgebras

(D. Leites)

Characteristic p is for the time when we retire.

Sasha Beilinson, when we all were young.

19.1. Introduction

The purpose of this transcript of the talk presented in March 2007 at
the 3rd International Conference on 21st Century Mathematics 2007, School
of Mathematical Sciences (SMS), Lahore, is to state problems, digestible
to Ph.D. students (in particularly, the students at SMS) and worth (Ph.D.
diplomas) to be studied (without waiting till retirement time), together even
with ideas of their solution. In the process of formulating the problems, I’ll
overview the classical and latest results. To be able to squeeze the material
into the prescribed 10 pages, all background is supplied by accessible refer-
ences: We use standard notations of [FH, S]; for a precise definition of the
Cartan prolongation and its generalizations (Cartan-Tanaka-Shchepochkina
or CTS-prolongations), see [Shch]; see also [BGL3]–[BGL5], [L1, ?]. Hereafter
K is an algebraically closed (unless finite) field, CharK = p.

The works of S. Lie, Killing and Cartan, now classical, completed classifi-
cation over C of simple Lie algebras

of finite dimension and certain infinite dimensional
(of polynomial vector fields, or “vectorial” Lie algebras).

(19.1)

In addition to the above two types, there are several more interesting types
of simple Lie algebras but they do not contribute to the solution of our
problem: classification of simple finite dimensional modular Lie (su-
per)algebras, except one: the queer type described below (and, perhaps,
examples, for p = 2, of the types described in [Ju, Shen1] and their general-
izations, if any). Observe that all finite dimensional simple Lie algebras are
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of the form g(A); for their definition embracing the modular case and the
classification, see [BGL5].

Lie algebras and Lie superalgebras over fields in characteristic p > 0, a.k.a.
modular Lie (super)algebras, were distinguished in topology in the 1930s. The
simple Lie algebras drew attention (over finite fields K) as a byproduct of
classification of simple finite groups, cf. [St]. Lie superalgebras, even simple
ones, did not draw much attention of mathematicians until their (outstanding)
usefulness was observed by physicists in the 1970s. Researchers discovered
more and more of new examples of simple modular Lie algebras for decades
until Kostrikin and Shafarevich ([KSh]) formulated a conjecture embracing
all previously found examples for p > 7. The generalized KSh–conjecture
states (for a detailed formulation, convenient to work with, see [?]):

Select a Z-form gZ of every g of type 1) (19.1), take gK := gZ ⊗Z K and its
simple subquotient si(gK) (for the Lie algebras of vector fields, there are sev-
eral, depending on N). Together with deforms (the results of deformations 2))
of these examples we get in this way all simple finite dimensional Lie algebras
over algebraically closed fields if p > 5. If p = 5, Melikyan’s examples 3) should
be added to the examples obtained by the above method.

After 30 years of work of several teams of researchers, Block, Wilson,
Premet and Strade proved the generalized KSh conjecture for p > 3, see [S].

Even before the KSh conjecture was proved, its analog was offered in [KL]
for p = 2. Although the KL conjecture was, as is clear now, a bit overoptimistic
(in plain terms: wrong, as stated), it suggested a way to get such an abundance
of examples (to verify which of them are really simple is one of the tasks still
open) that Strade [S] cited [KL] as an indication that the case p = 2 is too far
out of reach by modern means 4). Still, [KL] made two interesting observations:
It pointed at a striking similarity (especially for p = 2) between modular
Lie algebras and Lie superalgebras (even over C), and it introduced totally
new characters — Volichenko algebras (inhomogeneous with respect to parity

1 Notice that the modular analog of the polynomial algebra—the algebra of divided
powers—and all prolongs (vectorial Lie algebras) acquire for p > 0 one more
(shearing) parameter N .

2 It is not clear, actually, if the conventional description of infinitesimal deforma-
tions in terms of H2(g; g) can always be applied if p > 0. This concerns both Lie
algebras and Lie superalgebras (for the arguments, see [LL]); to give the correct
(better say, universal) notion is an open problem, but we let it pass for the mo-
ment, besides, for p 6= 2 and g with Cartan matrix, the conventional interpretation
is applicable, see [BGL4].

3 For their description as prolongs, and newly discovered super versions, see [GL3,
BGL3].

4 Contrarywise, the “punch line” of this talk is: Cartan did not have the
modern root technique, but got the complete list of simple Lie algebras;
let’s use his “old-fashioned” methods: they work! Conjecture 2 expresses
our hope in precise terms. How to prove the completeness of the list of examples
we will have unearthed is another story.
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subalgebras of Lie superalgebras); for the classification of simple Volichenko
algebras (finite dimensional and infinite dimensional vectorial) over C, see
[LSa2] (where one of the most interesting examples is missed, the version of
the proof with repair will be put in arXiv soon).

Recently Strade had published a monograph [S] summarizing the descrip-
tion of newly classified simple finite dimensional Lie algebras over the alge-
braically closed fields K of characteristic p > 3, and also gave an overview of
the “mysterious” examples (due to Brown, Frank, Ermolaev and Skryabin)
of simple finite dimensional Lie algebras for p = 3 with no counterparts for
p > 3. Several researchers started afresh to work on the cases where p = 2 and
3, and new examples of simple Lie algebras with no counterparts for p 6= 2, 3
started to appear ([Ju, GL3, L1], observe that the examples of [GG, Lin1] are
erroneous as observed in MathRevies and [?], respectively). The “mysterious”
examples of simple Lie algebras for p = 3 were interpreted as vectorial Lie
algebras preserving certain distributions ([GL3]).

While writing [GL3] we realized, with considerable dismay, that there are
reasons to put to doubt the universal applicability of the conventional defini-
tions of the enveloping algebra U(g) (and its restricted version) of a given Lie
algebra g, and hence doubt in applicability of the conventional definitions of
Lie algebra representations and (co)homology to the modular case, cf. [LL].
But even accepting conventional definitions, there are plenty of problems to
be solved before one will be able to start writing the proof of classification of
simple modular Lie algebras, to wit: describe irreducible representations (as
for vectorial Lie superalgebras, see [GLS2]), decompose the tensor product of
irreducible representations into indecomposables, cf. [Cla], and many more;
for a review, see [GL].

Classification of simple Lie superalgebras for p > 0 and the study of their
representations are of independent interest. A conjectural list of simple finite
dimensional Lie superalgebras over an algebraically closed fields K for p > 5,
known for some time, was recently cited in [BjL]:

Conjecture (Super KSh, p > 5). Apply the steps of the KSh conjecture to
the simple complex Lie superalgebras g of types (19.1). The examples thus
obtained exhaust all simple finite dimensional Lie superalgebras over alge-
braically closed fields if p > 5.

The examples obtained by this procedure will be referred to as KSh-type
Lie superalgebras. The first step towards obtaining the list of KSh-type Lie
superalgebras is classification of simple Lie superalgebras of types (19.1) over
C. This is done by I.Shchepochkina and me; for summaries with somewhat
different emphases, and proof, see [K2, Ka1, ?].

For a classification of finite dimensional simple modular Lie algebras with
Cartan matrix, see [WK, KWK]. For a classification of finite dimensional
simple modular Lie superalgebras with Cartan matrix, see [BGL5]. Not all
finite dimensional Lie superalgebras over C are of the form g(A); in addition
to them, there are also queer types described below, and even simple vectorial.
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I am sure that the same ideas of Block and Wilson that proved classifi-
cation of simple restricted Lie algebras for p > 5 will work, if p > 5, mutatis
mutandis, for Lie superalgebras and ideas of Premet and Strade will embrace
the non-restricted superalgebras as well; although the definition of restricted-
ness and even of the Lie superalgebra itself acquire more features, especially
for p = 2.

Here I will describe the cases p ≤ 5 where the situation is different and
suggest another, different from KSh, way to get simple examples.

19.2. How to construct simple Lie algebras and
superalgebras

19.2.1. How to construct simple Lie algebras if p = 0. Let us recall
how Cartan used to construct simple Z-graded Lie algebras over C of polyno-
mial growth [C] and finite depth. Now that they are classified (for examples
of infinite depth, see [K3]), we know that, all of them can be endowed with a
Z-grading g = ⊕

−d≤i
gi of depth d = 1 or 2 so that g0 is a simple Lie algebra

s or its trivial central extension cs = s⊕ c, where c is a 1-dimensional center.
Moreover, simplicity of g requires g−1 to be an irreducible g0-module that
generates g− := ⊕

i<0
gi and [g−1, g1] = g0.

Yamaguchi’s theorem [Y], reproduced in [GL3, BjL], states that for al-
most all simple finite dimensional Lie algebras g over C and their Z-gradings
g = ⊕

−d≤i
gi, the generalized Cartan prolong of g≤ = ⊕

−d≤i≤0
gi is isomorphic

to g, the rare exceptions being two of the four series of simple vectorial alge-
bras; the other two series being partial prolongs (perhaps, after factorization
modulo center).

For illustration, we construct simple Lie algebras of type (19.1) over C by
induction:

Depth d = 1. Here we use either usual or partial Cartan prolongations.
1) we start with 1-dimensional c, so dim g−1 = 1 due to irreducibility. The

complete prolong is isomorphic to vect(1), the partial one to sl(2).
2) Take g0 = csl(2) = gl(2) and its irreducible module g−1. The component

g1 of the Cartan prolong is nontrivial only if g−1 is R(ϕ1) or R(2ϕ1), where ϕi is
the ith fundamental weight of the simple Lie algebra g and R(w) is the irreducible
representation with highest weight w.

2a) If g−1 is R(ϕ1), the component g1 consists of two irreducible submodules,
say g′1 or g′′1 . We can take any one of them or both; together with g−1 ⊕ g0 this
generates sl(3) or svect(2)⊂+ d, where d is spanned by an outer derivation, or vect(2),
respectively.

2b) If gl(2) ' co(3) ' csp(2)-module g−1 is R(2ϕ1), then (g−1, g0)∗ ' o(5) ' sp(4).
3) Induction: Take g0 = csl(n) = gl(n) and its irreducible module g−1. The

component g1 of the Cartan prolong is nontrivial only if g−1 is R(ϕ1) or R(2ϕ1) or
R(ϕ2).
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3a) If g−1 = R(ϕ1), then g1 consists of two irreducible submodules, g′1 or g
′′
1 . Take

any of them or both; together with g−1⊕ g0 this generates sl(n+1) or svect(n)⊂+ d,
where d is spanned by an outer derivation, or vect(n), respectively.

3b) If g−1 = R(2ϕ1), then (g−1, g0)∗ ' sp(2n).
3c) If g−1 = R(ϕ2), then (g−1, g0)∗ ' o(2n).
4) The induction with g0 = co(2n−1)-moduleR(ϕ1) returns (g−1, g0)∗ ' o(2n+1).

Observe that sl(4) ' o(6). The induction with g0 = co(2n)-module R(ϕ1) returns
(g−1, g0)∗ ' o(2n+2). (We have obtained o(2n) twice; analogously, there many ways
to obtain other simple Lie algebras as prolongs.)

5) The g0 = sp(2n)-module g−1 = R(ϕ1) yields the Lie algebra h(2n) of Hamil-
tonian vector fields.

e(6), e(7). The g0 = co(10)-module g−1 = R(ϕ1) yields e(6); the g0 = ce(6)-mod-
ule g−1 = R(ϕ1) yields e(7).

Depth d = 2. Here we need generalized prolongations, see [Shch]. Again there
are just a few algebras g0 and g0-modules g−1 for which g1 6= 0 and g = ⊕gi is
simple:

g(2); f(4); e(8). These Lie algebras correspond to the prolongations of their non-
positive part (with g0 being isomorphic to gl(2); o(6) or sp(6); e(7) or o(14), respec-
tively) in the following Z-gradings. Let the nodes of the Dynkin graph of g be rigged
out with the coefficients of linear dependence of the maximal root with respect to
simple ones. If any end node is rigged out with a 2, mark it (mark only one node even
if several are rigged out with 2’s) and set the degrees of the Chevalley generators to
be:

degX±
i =

{
±1 if the ith node is marked

0 otherwise.
(19.2)

k(2n+ 1). The cases where (g−, g0)∗ is simple and of infinite dimension corre-

spond to the prolongations of the non-positive part of sp(2n + 2) in the Z-grading

(19.2) with the last node marked. Then g0 = csp(2n), g−1 = R(ϕ1) and g−1 is the

trivial g0-module. In these cases, (g−, g0)∗ = k(2n+ 1).

19.2.2. Superization.

19.2.2.1. Queerification. This is the functor Q : A −→ Q(A) := A[ε],
where

p(ε) = 1̄, ε2 = −1 and εa = (−1)p(a)aε for any a ∈ A.
We set q(n) = Q(gl(n)).

19.2.2.2. Definition of Lie superalgebras for p = 2. A Lie superalgebra for
p = 2 as a superspace g = g0̄ ⊕ g1̄ such that g0̄ is a Lie algebra, g1̄ is an g0̄-module
(made into the two-sided one by symmetry; more exactly, by anti-symmetry, but if
p = 2, it is the same) and on g1̄ a squaring (roughly speaking, the halved bracket)
is defined

x 7→ x2 such that (ax)2 = a2x2 for any x ∈ g1̄ and a ∈ K, and
(x+ y)2 − x2 − y2 is a bilinear form on g1̄ with values in g0̄.

(19.3)

For any x, y ∈ g1̄, we set

[x, y] := (x+ y)2 − x2 − y2. (19.4)

We also assume, as usual, that
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if x, y ∈ g0̄, then [x, y] is the bracket on the Lie algebra;
if x ∈ g0̄ and y ∈ g1̄, then [x, y] := lx(y) = −[y, x] = −rx(y), where l and r are

the left and right g0̄-actions on g1̄, respectively.

The Jacobi identity involving odd element has now the following form:

[x2, y] = [x, [x, y]] for any x ∈ g1̄, y ∈ g. (19.5)

Conjecture (Amended KL = Super KSh, p > 0). For p > 0, to get all
Z-graded simple finite dimensional examples of Lie algebras and Lie super-
algebras:

(a) apply the KSh procedure to every simple Lie algebra of type (1) over C
(if p = 2, apply the KSh procedure also to every simple Lie superalgebra of of
type (1) over C and their simple Volichenko subalgebras described in [LSa2]),

(b) if p = 2, apply queerification (as in [?]) to the results of (a);
(c) if p = 2, take Jurman’s examples [Ju] (and generalizations of the same

construction, if any: It looks like a specific p = 2 non-super version of the
queerification);

(d) take the non-positive part of every simple (up to center) finite dimen-
sional Z-graded algebra obtained at steps (a)–(c) and (for p = 5, 3 and 2) the
exceptional ones of the form g(A) listed in [BGL5], consider its complete and
partial 5) prolongs and distinguish their simple subquotients.

To get non-graded examples, we have to take as a possible g0 deforms of
the simple algebras obtained at steps (a)–(d) and Shen’s “variations” [Shen1]
(unless they can be interpreted as deforms of the algebras obtained at earlier
steps).

For preliminary results, see [GL3, BjL], [BGL3]–[BGL5], [ILL, ?]. (For
p = 3 and Lie algebras, this is how Grozman and me got an interpreta-
tion of all the “mysterious” exceptional simple vectorial Lie algebras known
before [GL3] was published; we also found two (if not three) series of new
simple algebras.) Having obtained a supply of such examples, we can sit
down to c o m p u t e c e r t a i n c o h o m o l o g y i n o r d e r t o d e -
s c r i b e t h e i r d e f o r m a t i o n s (provided we will be able to under-
stand what we are computing, cf. footnote 2); for the already performed, see
[KKCh, KuCh, Che, BGL4].

19.3. Further details

19.3.1. How to construct finite dimensional simple Lie algebras if
p ≥ 5. Observe that although in the modular case there is a wider variety of
pairs (g−1, g0) yielding nontrivial prolongs than for p = 0 (for the role of g0 we
can now take vectorial Lie algebras or their central extensions), a posteriori
we know that we can always confine ourselves to the same pairs (g−1, g0) as

5 This term is too imprecise at the moment: it embraces Frank and Ermolaev Lie
algebras, various exceptional Lie superalgebras ([BGL8, BGL7]).
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for p = 0. Melikyan’s example looked as a deviation from the pattern, but
Kuznetsov’s observation [Ku1] elaborated in [GL3] shows that for p ≥ 5 all is
the same. Not so if p ≤ 3:

19.3.2. New simple finite dimensional Lie algebras for p = 3. In [S],
Strade listed known to him at that time examples of simple finite dimensional
Lie algebras for p = 3. The construction of such algebras is usually subdivided
into the following types and deforms of these types:

(1) algebras with Cartan matrix CM (sometimes encodable by Dynkin
graphs, cf. [S, BGL5]),

(2) algebras of vectorial type (meaning that they have more roots of one
sign than of the other with respect to a partition into positive and negative
roots).

Case (1) was solved in [WK, KWK].
Conjecture 2 suggests to consider certain Z-graded prolongs g. For Lie

algebras and p = 3, Kuznetsov described various restrictions on the 0-th
component of g and the g0-module g−1 (for partial summary, see [GK, Ku1,
Ku2], [BKK] and a correction in [GL3]). What are these restrictions for
Lie algebras for p = 2? What are they for Lie superalgebras for any
p > 0?

19.3.3. Exceptional simple finite dimensional Lie superalgebras for
p ≤ 5. Elduque investigated which spinor modules over orthogonal alge-
bras can serve as the odd part of a simple Lie superalgebra and discovered
an exceptional simple Lie superalgebra for p = 5. Elduque also superized the
Freudenthal Magic Square and expressed it in a new way, and his approach
yielded nine new simple (exceptional as we know now thanks to the classifica-
tion [BGL5]) finite dimensional Lie superalgebras for p = 3, cf. [CE, El1, CE2].
These Lie superalgebras possess Cartan matrices (CM’s) and we described all
CMs and presentations of these algebras in terms of Chevalley generators,
see [BGL5] and references in it. In [BGL5] 12 more examples of exceptional
simple Lie superalgebras are discovered; in [BGL3], we considered some of
their “most promising” (in terms of prolongations) Z-gradings and discovered
several new series of simple vectorial Lie superalgebras.

19.3.4. New simple finite dimensional Lie algebras and Lie superal-
gebras for p = 2. Lebedev [L1, ?] offered a new series of examples of simple
orthogonal Lie algebras without CM. Together with Iyer, we constructed their
prolongations, missed in [Lin2], see [ILL]; queerifications of these orthogonal
algebras (and of several more serial and exceptional Lie algebras, provided
they are restricted) are totally new types of examples of simple Lie superal-
gebras. CTS prolongs of some 6) of these superalgebras and examples found
in [BGL5] are considered in [BGL7].

6 We are unable to CTS the superalgebras of dimension > 40 on computers available
to us, whereas we need to be able to consider at least 250.
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19.3.5. Conclusion. Passing to Lie superalgebras we see that even their
definition, as well as that of their prolongations, are not quite straightfor-
ward for p = 2, but, having defined them ([LL, ?]), it remains to apply the
above-described procedures to get at least a supply of examples. To prove the
completeness of the stock of examples for any p is a much more difficult task
that requires serious preliminary study of the representations of the examples
known and to be obtained — more topics for Ph.D. theses.

Chapter 20

Classification of simple finite dimensional
modular Lie superalgebras with Cartan matrix

(S. Bouarroudj, P. Grozman, D. Leites)

20.1. Introduction

The ground field K is algebraically closed of characteristic p > 0. (Alge-
braic closedness of K is only needed in the quest for parametric families.)

20.1.1. Main results. First of all, we clarify several key notions (of Lie
superalgebra in characteristic 2, of Lie superalgebra with Cartan matrix, of
weights and roots, and of restricted Lie (super)algebra). These clarifications
are obtained by/with A. Lebedev.

Then we give an algorithm that, under certain, conjecturally immaterial,
hypotheses, produces the complete list of all finite dimensional Lie algebras
and Lie superalgebras possessing symmetrizable indecomposable Cartan ma-
trices A, i.e., of the form g(A). Our proof follows the lines of the proof of
Weisfeiler and Kac, sketched for Lie algebras in [WK].

Observe that if a given indecomposable Cartan matrix A is invertible,
the Lie (super)algebra g(A) is simple, otherwise g(1)(A)/c — the quotient
of its derived algebra modulo center — is simple if rkA > 1; except for
p = 0 and Lie algebras, this subtlety is never mentioned causing confusion:
The conventional sloppy practice is to refer to the simple Lie (super)algebra
g(1)(A)/c as “possessing a Cartan matrix” although it does not possess one.

The results for p > 5, p = 5, 3 and 2 are summarized in §§20.6, 20.7, 20.8
and 20.9, respectively.

For the new Lie superalgebras g we have discovered (e(6, 1), e(6, 6), e(7, 1),
e(7, 6), e(7, 7), e(8, 1), e(8, 8)); bgl(4;α) and bgl(3;α) for p = 2; el(5; 3) for
p = 3; and brj(2; 5) for p = 5), and for brj(2; 3) discovered in [El1], we list all
Cartan matrices; for all the new Lie superalgebras of the form g(A) (and the
“old” brj(2; 3)), we describe their structure: We identify g0̄, and g1̄ as g0̄-mod-
ule. A posteriori we see that for each finite dimensional Lie superalgebra g(A)
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with indecomposable Cartan matrix, the module g1̄ is a completely reducible
g0̄-module. 1)

Elduque interpreted most of the exceptional (when their exceptional na-
ture was only conjectured; now it is proved) simple Lie superalgebras in char-
acteristic 3 [CE2] in terms of super analogs of division algebras and collected
them into a Supermagic Square (an analog of Freudenthal’s Magic Square);
the rest of the exceptional examples for p = 3 and p = 5, not entering the
Elduque Supermagic Square (the ones described here for the first time) are,
nevertheless, somehow affiliated to the Elduque Supermagic Square [El3].

Very interesting, we think, is the situation in characteristic 2. A posteriori
we see that the list of Lie superalgebras in characteristic 2 of the form g(A)
with an indecomposable matrix A is as follows: Take the classification of finite
dimensional Lie algebras in characteristic 2 of the form g(A) with indecom-
posable and symmetrizable Cartan matrices ([WK, Br3, KWK]) and declare
some of its Chevalley generators odd (the corresponding diagonal elements
of A should be changed accordingly 0̄ to 0 and 1̄ to 1). Do this for any of
its inequivalent Cartan matrices and any distribution of parities. Construct
Lie superalgebras g(A) from these generators by the rules (20.14) explicitly
described in [?, BGL1, BGL2]. In this way we obtain all finite dimensional
Lie superalgebras with symmetrizable indecomposable Cartan matrices (they
are simple if the Cartan matrix is invertible, otherwise the simple subquotient
g(1)(A)/c is simple). In this way a given orthogonal Lie algebra may turn into
ortho-orthogonal or periplectic Lie superalgebra and the three exceptional Lie
algebras of e type turn into seven non-isomorphic Lie superalgebras of e type,
whereas the wk type algebras turn into bgl type superalgebras.

We also classify here all inequivalent Cartan matrices A for each given
Lie (super)algebra g(A). Although the number of inequivalent Cartan ma-
trices grows with the size of A, it is easy to list all possibilities for serial
Lie (super)algebras. Certain exceptional Lie superalgebras have dozens of in-
equivalent Cartan matrices; nevertheless, there are at least two reasons to list
them:

1) To classify all Z-gradings of a given g(A) (in particular, inequivalent
Cartan matrices) is a very natural problem. Besides, sometimes the knowledge
of the best, for the occasion, Z-grading is important, cf. [RU] (all simple roots
non-isotropic), [LSS] (all simple roots odd); for computations “by hand” the
cases where only one simple root is odd are useful. In particular, the defining
relations between the natural (Chevalley) generators of g(A) are of completely
different form for inequivalent Z-gradings and this is used in [RU].

2) Distinct Z-gradings yield distinct Cartan-Tanaka-Shchepochkina (CTS)
prolongs (vectorial Lie (super)algebras). So to classify them is vital, for ex-
ample, in the quest for simple vectorial Lie (super)algebras.

1 For simple subquotient g = g(1)(A)/c of g(A), complete reducibility of the g0̄-mod-
ule g1̄ is sometimes violated.
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Finally, we list the Lie superalgebras of fixed points of automorphisms
corresponding to the symmetries of Dynkin diagrams and describe their simple
subquotients. In characteristic 0 this is the way all Lie algebras whose Dynkin
diagrams has multiple bonds (roots of different lengths) are obtained. Since,
for p = 2, there are no multiple bonds or roots of different length (at least,
this notion is not invariant), it is clear that this is the way to obtain something
new, although, perhaps, not simple. Lemma 2.2 in [FrG] implicitly describes
the ideal in the Lie algebra of fixed points of an automorphism of a Lie algebra,
but one still has to describe the Lie algebra of fixed points explicitly. This
explicit answer is given in the last section. No new simple Lie (super)algebras
are obtained.

20.1.2. Related results. 1) For explicit presentations in terms of (the
analogs of) Chevalley generators of the Lie algebras and superalgebras listed
here, see [?] for p = 2 and [BGL1, BGL2] for p = 3, and 5. In addition to
Serre-type relations there are always more complicated relations.

2) For deformations of the Lie (super)algebras of the form g(A) with in-
decomposable and symmetrizable Cartan matrix A (and their simple subquo-
tients g(1)(A)/c), see [BGL4]. Observe that whereas if p > 3, then the Lie
(super)algebras with Cartan matrices of the same types that exist over C are
either rigid or have deforms which also possess Cartan matrices, this is not
the case with the simple modular Lie (super)algebras if p = 3 or 2.

3) For generalized CTS prolongs of the simple Lie (super)algebras of the
form g(A), and the simple subquotients of such prolongs, see [BGL3, BGL7].

4) With restricted Lie algebras one can associate algebraic groups; anal-
ogously, with restricted Lie superalgebras one can associate algebraic super-
groups. For this and other results of Lebedev’s Ph.D. thesis pertaining to the
classification of simple modular Lie superalgebras, see [LCh].

20.2. On Lie superalgebra in characteristic 2

20.2.1. Examples: Lie superalgebras preserving non-degenerate
forms. Lebedev investigated various types of equivalence of bilinear forms
for p = 2; we just recall the verdict and say that two bilinear forms B and
B′ on a superspace V are equivalent if there is an even non-degenerate linear
map M : V → V such that

B′(x, y) = B(Mx,My) for all x, y ∈ V. (20.1)

We fix some basis in V and identify a bilinear form with its Gram matrix in
this basis; let us also identify any linear operator on V with its matrix. Then
two bilinear forms (rather supermatrices) are equivalent if there is an even
invertible matrix M such that

B′ =MBMT , where T is for transposition. (20.2)

We often use the following matrices
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J2n =

(
0 1n
−1n 0

)
, Πn =





(
0 1k

1k 0

)
if n = 2k,




0 0 1k

0 1 0

1k 0 0


 if n = 2k + 1,

(20.3)

Let Jn|n and Πn|n be the same as J2n and Π2n but considered as superma-
trices.

Lebedev proved that, with respect to the above natural equivalence of
forms (20.2), every even symmetric non-degenerate form on a superspace of
dimension n0̄|n1̄ over a perfect field of characteristic 2 is equivalent to a form
of the shape (here: i = 0̄ or 1̄ and each ni may equal to 0)

B =

(
B0̄ 0
0 B1̄

)
, where Bi =

{
1ni if ni is odd;

either 1ni or Πni if ni is even.

In other words, the bilinear forms with matrices 1n and Πn are equivalent if n
is odd and non-equivalent if n is even. The Lie superalgebra preserving B —
by analogy with the orthosymplectic Lie superalgebras osp in characteristic
0 we call it ortho-orthogonal and denote ooB(n0̄|n1̄) — is spanned by the
supermatrices which in the standard format are of the form

(
A0̄ B0̄C

TB−1
1̄

C A1̄

)
,
where A0̄ ∈ oB0̄

(n0̄), A1̄ ∈ oB1̄
(n1̄), and

C is arbitrary n1̄ × n0̄ matrix.

Since, as is easy to see,

ooΠI(n0̄|n1̄) ' ooIΠ(n1̄|n0̄),

we do not have to consider the Lie superalgebra ooΠI(n0̄|n1̄) separately un-
less we study Cartan prolongations where the difference between these two
incarnations of one algebra is vital.

For an odd symmetric form B on a superspace of dimension (n0̄|n1̄) over
a field of characteristic 2 to be non-degenerate, we need n0̄ = n1̄, and every
such form B is equivalent to Πk|k, where k = n0̄ = n1̄. This form is preserved
by linear transformations with supermatrices in the standard format of the
shape

(
A C

D AT

)
, where A ∈ gl(k), C and D are symmetric k × k matrices1.

(20.4)
As over C or R, the Lie superalgebra pe(k) of supermatrices (20.4) (recall that
p = 2) will be referred to as periplectic, as A. Weil suggested, and denote it
by peB(k) or just pe(k).

The fact that two bilinear forms are inequivalent does not, generally imply
that the Lie (super)algebras that preserve them are not isomorphic. Lebedev
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proved that for the non-degenerate symmetric forms this is, however, so, and
therefore we have the following types of non-isomorphic Lie (super) algebras:

without CM with CM

oI(2n); ooII(2n+ 1|2m + 1) oΠ(2n), oI(2n+ 1);

ooII(2n|2m), ooIΠ(2n|2m), ooII(2n+ 1|2m) ooΠΠ(2n|2m), ooIΠ(2n+ 1|2m).

(20.5)

20.3. A careful study of an example

Let p = 2 and consider the Lie superalgebra pe(k) (the situation with
oΠ(2k) and ooΠΠ(2k0̄|2k1̄) is the same). For the Cartan matrix we take (see
Table §12)

A =




. . .
. . .

. . .
. . .

· · · ∗ 1 1
· · · 1 ∗ 0
· · · 1 0 0̄


 (20.6)

The Lie superalgebra pe(i)(k) consists of supermatrices of the form
(
B C
D BT

)
,

where

for i = 0, we have B ∈ gl(k), C,D are symmetric;
for i = 1, we have B ∈ gl(k), C,D are symmetric zero-diagonal;
for i = 2, we have B ∈ sl(k), C,D are symmetric zero-diagonal.

(20.7)

We expect (by analogy with the orthogonal Lie algebras in characteristic
6= 2) that

e+i = Ei,i+1 + Ek+i+1,k+i; e−i = Ei+1,i + Ek+i,k+i+1 for i = 1, . . . , k − 1;
e+k = Ek−1,2k + Ek,2k−1; e−k = E2k−1,k + E2k,k−1.

(20.8)
Let us first consider the (simpler) case of k odd. Then rkA = k − 1 since

the sum of the last two rows is zero. Let us start with the simple algebra
pe(2)(k). The Cartan subalgebra (i.e., the subalgebra of diagonal matrices) is
(k−1)-dimensional because the elements [e+1 , e

−
1 ], . . . , [e

+
k−1, e

−
k−1] are linearly

independent, whereas [e+k , e
−
k ] = [e+k−1, e

−
k−1]. Thus, we should first find a

non-trivial central extension satisfying the condition

[e+k , e
−
k ] + [e+k−1, e

−
k−1] = z. (20.9)

Elucidation: The values of e±i in (20.8) are what we expect them to be from
their p = 0 analogs. But from the definition of CMLSA we see that the
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algebra must have a center z equal to the above expression (20.12). Thus, the
CMLSA is not pe(2)(k) but is spanned by the central extension of pe(2)(k) plus
the grading operator defined from (12.24). The extension pec(2, k) described
in (2.76) satisfies this condition.

Now let us choose B to be (0, . . . , 0, 1). Then we need to add to the algebra
a grading operator d such that

[d, e±i ] = 0 for all i = 1, . . . , k − 1;
[d, e±k ] = e±k ;
d commutes with all diagonal matrices.

(20.10)

The matrix I0 = diag(1k, 0k) satisfies all these conditions. Thus, the corre-
sponding CMLSA is

pec(2, k)⊂+KI0. (20.11)

Remark. Recall that sometimes ideals of CM Lie (super)algebras that do not
contain the outer grading operator(s) are needed, cf. subsect. 12.3.1. These
ideals, such as pec(2, k) or sl(n|n), do not have Cartan matrix.

Now let us consider the case of k even. Then the simple algebra is
pe(2)(k)/(K12k). The Cartan matrix is of rank k − 2:

(a) the sum of the last two rows is zero;
(b) the sum of all the rows with odd numbers is zero.

(20.12)

The condition (20.12a) gives us the same central extension and the same
grading operator an in the previous case.

To satisfy condition (20.12b), we should find a non-trivial central extension
such that

z =
∑

i is odd

[e+i , e
−
i ].

(This formula follows from (12.23) and the 2nd equality in (20.12).) But we
can see that, in pe(2)(k), we have

∑

i is odd

[e+i , e
−
i ] =

∑

i is odd

(Ei,i + Ei+1,i+1 + Ek+i,k+i + Ek+i+1,k+i+1) = 12k.

It means that the corresponding central extension of pe(2)(k)/(K12k) is just
pe(2)(k).

Now, concerning the grading operator: Let the second row of B be
(1, 0, . . . , 0) (the first row is, as in the previous case, (0, . . . , 0, 1)). Then we
need a grading operator d2 such that

[d2, e
±
1 ] = e±1 ;

[d2, e
±
i ] = 0 for all i > 1;

d2 commutes with all diagonal matrices.
(20.13)

The matrix d2 := E1,1 + Ek+1,k+1 satisfies these conditions. But
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pe(2)(k)⊂+K(E1,1 + Ek+1,k+1) ' pe(1)(k).

So, the resulting CMLSA is

pec(1, k)⊂+KI0.

20.4. Presentations of g(A)

Particular cases of the following statement are well known: For Lie algebras
over C, see [K3]; for Lie superalgebras over C, it is due to Serganova and van
de Leur, see [Se, vdL]; in the modular case, it is due to Lebedev [LCh].

20.4.1. Statement. a) Let g̃(A)± be the superalgebras in g̃(A) generated by
e±1 ,. . . , e

±
n ; then g̃(A) ∼= g̃(A)+ ⊕ h⊕ g̃(A)−, as vector superspaces.

b) Assume that p 6= 2 or if ij = 1̄ for some 1 ≤ j ≤ n, then Ajk 6= 0 for
some k = 1, . . . , n. Then there exists a maximal ideal r among the ideals of
g̃(A, I) whose intersection with h is 0.

c) r = ⊕(r ∩ g̃α), where g̃α is the homogeneous component with respect to
the Zn-grading by roots.

20.4.2. Disclaimer. Although presentation — description in terms of gen-
erators and relations — is one of the accepted ways to represent a given alge-
bra, it seems that an explicit form of the presentation is worth the trouble to
obtain only if this presentation is often in need, or (which is usually the same)
is sufficiently neat. The Chevalley generators of simple finite dimensional Lie
algebras over C satisfy simple and neat relations (“Serre relations”) and are
often needed for various calculations and theoretical discussions. Relations
between their analogs in super case, although not so neat, are still tolerable,
at least, for certain Cartan matrices (both Serre and “non-Serre relations”).

The simple Lie superalgebras of the form g = g(A) have several quite
distinct sets of generators (cf. [Sa, GL2] and refs. therein) but usually they
are given in terms of their Chevalley generators. These generators satisfy the
relations (12.22) and additional relations Ri = 0 whose left sides are implicitly
described, for the general Cartan matrix with entries in K, as follows ([K3]):

“the Ri that generate the maximal ideal r (defined in Statement 20.4.1).
(20.14)

To describe complicated presentations (like non-Serre relations) for all sys-
tems of simple roots is possible when there are a few inequivalent such systems
for each Lie (super)algebra (see [GL1]), but unrealistic (and hardly needed) if
there are dozens or even hundreds of systems of simple roots per algebra (as
in the cases we have discovered). Nowadays the package SuperLie made the
task of finding the explicit expression of the defining relations for many types
of Lie algebras and superalgebras a routine exercise for anybody capable to
use Mathematica. Therefore we mainly consider (in [BGL1, BGL2]) the sim-
plest Cartan matrices — the ones with the only odd simple root (or if there
are only a few inequivalent systems of simple roots).
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In the rest of the section we recall how the division of the algebra into
the sum of three nilpotent subalgebras (g̃(A) ∼= g̃(A)+ ⊕ h⊕ g̃(A)−) makes it
possible to use cohomology in order to describe the relations. For simplicity, in
this description, p = 0 and cohomology are defined as derived functors using
the usual definition of U(g), not divided powers in the differentials of odd
elements needed to describe relations and deformations for p > 0, cf. [LL].

20.4.2.1. Serre relations, see [GL1]. Let A be an n× n matrix. We find
the defining relations by induction on n with the help of the Hochschild–Serre
spectral sequence (for its description for Lie superalgebras, which has certain
subtleties, see [Po]). For the basis of induction consider the following cases:

◦ or • no relations, i.e., g± are free Lie superalgebras if p 6= 3;

• ad2X±(X±) = 0 if p = 3;
⊗ [X±, X±] = 0.

(20.15)

Set degX±
i = 0 for 1 ≤ i ≤ n − 1 and degX±

n = ±1. Let g± = ⊕g±i
and g = ⊕gi be the corresponding Z-gradings. Set g± = g±/g±0 . From the
Hochschild–Serre spectral sequence for the pair g±0 ⊂ g± we get:

H2(g±) ⊂ H2(g
±
0 )⊕H1(g

±
0 ;H1(g±))⊕H0(g

±
0 ;H2(g±)). (20.16)

It is clear that
H1(g±) = g±1 , H2(g±) = ∧2(g±1 )/g±2 . (20.17)

So, the second summand in (20.16) provides us with relations of the form:

(adX±
n
)kni(X±

i ) = 0 if the n-th root is not ⊗
[Xn, Xn] = 0 if the n-th root is ⊗. (20.18)

while the third summand in (20.16) is spanned by the g±0 -lowest vectors in

∧2(g±1 )/(g±2 + g± ∧2 (g±1 )). (20.19)

Let the matrix B = (Bij) be as in formula (12.42). The following proposi-
tion, whose proof is straightforward, illustrates the usefulness of our normal-
ization of Cartan matrices as compared with other options:

20.4.2.2. Proposition. The numbers kin and kni in (20.18) are expressed
in terms of (Bij) as follows:

(adX±
i
)1+Bij (X±

j ) = 0 for i 6= j

[X±
i , X

±
i ] = 0 if Aii = 0.

(20.20)

The relations (12.22) and (20.20) will be called Serre relations for Lie
superalgebra g(A). If p = 3, then the relation

[X±
i , [X

±
i , X

±
i ]] = 0 for X±

i odd and Aii = 1 (20.21)

is not a consequence of the Jacobi identity; for simplicity, however, we will
include it in the set of Serre relations.
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20.4.2.3. Non-Serre relations. These are relations that correspond to the
third summand in (20.16). Let us consider the simplest case: sl(m|n) in the
realization with the system of simple roots

© . . . © ⊗ © . . . © (20.22)

Then H2(g±) from the third summand in (20.16) is just ∧2(g±). For sim-
plicity, we confine ourselves to the positive roots. Let X1, . . . , Xm−1 and
Y1, . . . , Yn−1 be the root vectors corresponding to even roots separated by
the root vector Z corresponding to the root ⊗.

If n = 1 or m = 1, then ∧2(g) is an irreducible g0̄-module and there are no
non-Serre relations. If n 6= 1 and m 6= 1, then ∧2(g) splits into 2 irreducible
g0̄-modules. The lowest component of one of them corresponds to the relation
[Z,Z] = 0, the other one corresponds to the non-Serre-type relation

[[Xm−1, Z], [Y1, Z]] = 0. (20.23)

If, instead of sl(m|n), we would have considered the Lie algebra sl(m+n),
the same argument would have led us to the two relations, both of Serre type:

ad2Z(Xm−1) = 0, ad2Z(Y1) = 0.

For explicit description of the defining relations in terms of the Chevalley
generators of the algebras we consider, see [BGL1, BGL2, ?].

20.5. Main steps of our classification

In this section we are dealing with Lie (super)algebras of the form g(A) or
their simple subquotients g(1)(A)/c.

20.5.1. Step 1: An overview of known results. Lie algebras. There are
known the two methods:

1) Over C, Cartan [C] did not use any roots, instead he used what is nowa-
days called in his honor Cartan prolongations and a generalization (which he
never formulated explicitly) of this procedure which we call CTS-ing (Cartan-
Tanaka-Shchepochkina prolonging).

2) Nowadays, to get the shortest classification of the simple finite dimen-
sional Lie algebras, everybody (e.g. [Bou, OV]) uses root technique and the
non-degenerate invariant symmetric bilinear form (the Killing form).

In the modular case, as well as in the super case, and in the mixture
of these cases we consider here, the Killing form might be identically zero.
However, if the Cartan matrix A is symmetrizable (and indecomposable),
on the Lie (super)algebra g(A) if g(A) is simple (or on g(1)(A)/c if g(A)
is not simple), there is a non-degenerate replacement of the Killing form.
(Astonishingly, this replacement might sometimes be not coming from any
representation, see [Ser]. Earlier, in his preprint [Kapp], Kaplansky observed a
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similar phenomenon (in the modular case) and associated the non-degenerate
bilinear form with a projective representation.)

In the modular case, and in the super case for p = 0, this approach — to
use a non-degenerate even invariant symmetric form in order to classify the
simple algebras— was pursued by Kaplansky [Kapp].

For p > 0, Weisfeiler and Kac [WK] gave a classification, but although the
idea of their proof is OK, the paper has several gaps and vague notions (the
Brown algebra br(3) was missed [Br3, KWK]; the notion of the Lie algebra
with Cartan matrix nicely formulated in [K3] was not properly developed
at the time [WK] was written; the Dynkin diagrams mentioned there were
not defined at all in the modular case; the algebras g(A) and g(A)(1)/c are
sometimes identified). Therefore, the case p > 3 being completely investigated
by Block, Wilson, Premet and Strade [S], we double-checked the cases where
p < 5. The answer of [WK]∪[KWK] is correct.

Lie superalgebras.
Over C, for any Lie algebra g0̄, Kac [K2] listed all

g0̄-modules g1̄ such that the Lie superalgebra g = g0̄ ⊕ g1̄ is simple.
(20.24)

Kaplansky [Kapp, Kap], Djoković and Hochschild [Dj], and also Scheunert,
Nahm and Rittenberg [SNR] had their own approaches to the problem (20.24)
and solved it without gaps for various particular cases, but they did not inves-
tigate which of the simple finite dimensional Lie superalgebras possess Cartan
matrix.

Kac observed that (1) some of the simple Lie superalgebras (20.24) possess
analogs of Cartan matrix, (2) one Lie superalgebra may have several inequiv-
alent Cartan matrices and tried to list all of them. His first list of inequivalent
Cartan matrices (in other words, distinct Z-gradings) for finite dimensional
Lie superalgebras g(A) in [K2] was with gaps; Serganova [Se] and (by a dif-
ferent method and only for symmetrizable matrices) van de Leur [vdL] fixed
the gaps and even classified Lie superalgebras of polynomial growth (for the
proof in the non-symmetrizable case, announced 20 years ago, see [HS]). Kac
also suggested analogs of Dynkin diagrams to graphically encode the Cartan
matrices.

Kaplansky was the first (see his newsletters in [Kapp]) to discover the
exceptional algebras ag(2) and ab(3) (he dubbed them Γ2 and Γ3, respectively)
and a parametric family osp(4|2;α) (he dubbed it Γ (A,B,C))); our notations
reflect the fact that ag(2)0̄ = sl(2)⊕g(2) and ab(3)0̄ = sl(2)⊕ o(7) (o(7) is B3

in Cartan’s nomenclature). Kaplansky’s description (irrelevant to us at the
moment except for the fact that A, B and C are on equal footing) of what we
now identify as osp(4|2;α), a parametric family of deforms of osp(4|2), made
an S3-symmetry of the parameter manifest (to A. A. Kirillov, and he informed
us, in 1976). Indeed, since A+B + C = 0, and α ∈ C ∪∞ is the ratio of the
two remaining parameters, we get an S3-action on the plane A+ B + C = 0
which in terms of α is generated by the transformations:
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α 7−→ −1− α, α 7−→ 1

α
. (20.25)

This symmetry should have immediately sprang to mind since osp(4|2;α)
is strikingly similar to wk(3; a) found 5 years earlier, cf. (20.28), and since
S3 ' SL(2;Z/2).

The following figure depicts the fundamental domains of the S3-action.
The other transformations generated by (20.25) are

α 7−→ −1 + α

α
, − 1

α+ 1
, − α

α+ 1
.

Im α = 0

R
e
α

=
0

R
e
α

=
−

1
/2

20.5.1.1. Notation: On matrices with a “–” sign and other notations
in the lists of inequivalent Cartan matrices. The rectangular matrix
at the beginning of each list of inequivalent Cartan matrices for each Lie
superalgebra shows the result of odd reflections (the number of the row is the
number of the Cartan matrix in the list below, the number of the column is
the number of the root (given by small boxed number) in which the reflection
is made; the cells contain the results of reflections (the number of the Cartan
matrix obtained) or a “–” if the reflection is not appropriate because Aii 6= 0.
Some of the Cartan matrices thus obtained are equivalent, as indicated.

The number of the matrix A such that g(A) has only one odd simple root is

boxed , that with all simple roots odd is underlined. The nodes are numbered
by small boxed numbers; the curly lines with arrows depict odd reflections.

Recall that ag(2) of sdim = 17|14 has the following Cartan matrices
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2 − −
1 3 −
− 2 4
− − 3




123 1 2 3

1

2

3

1 2 3

1) 2)

3)

4)

1)

(
0 −1 0
−1 2 −3
0 −1 2

)
2)

(
0 −1 0
−1 0 3
0 −1 2

)
3)

(
0 −3 1
−3 0 2
−1 −2 2

)
4)

(
2 −1 0
−3 0 2
0 −1 1

)

(20.26)
Recall that ab(3) of sdim = 24|16 has the following Cartan matrices




− 2 − −
3 1 4 −
2 − − −
− − 2 5
− 6 − 4
− 5 − −




1 2 3 4

1

2

34 1 2 3 4

1 2 3

4

1234

1 2 3 4

1)

2)

3)

4)

5)

6)

1)




2 −1 0 0
−3 0 1 0
0 −1 2 −2
0 0 −1 2


 2)




0 −3 1 0
−3 0 2 0
1 2 0 −2
0 0 −1 2


 3)




2 −1 0 0
−1 2 −1 0
0 −2 0 3
0 0 −1 2




4)




2 −1 0 0
−2 0 2 −1
0 2 0 −1
0 −1 −1 2


 5)




0 1 0 0
−1 0 2 0
0 −1 2 −1
0 0 −1 2


 6)




2 −1 0 0
−1 2 −1 0
0 −2 2 −1
0 0 −1 0




(20.27)
Modular Lie algebras and Lie superalgebras.
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p = 2, Lie algebras. Weisfeiler and Kac [WK] discovered two new paramet-
ric families that we denotewk(3; a) andwk(4; a) (Weisfeiler and Kac algebras).

wk(3; a), where a 6= 0,−1, of dim 18 is a non-super version of osp(4|2; a)
(although no osp exists for p = 2); the dimension of its simple subquotient
wk(3; a)(1)/c is equal to 16; the inequivalent Cartan matrices are:

1)

(
0̄ a 0
a 0 1
0 1 0

)
, 2)

(
0̄ 1 + a a

1 + a 0 1
a 1 0

)

wk(4; a), where a 6= 0,−1, of dim = 34; the inequivalent Cartan matrices
are:

1)



0̄ a 0 0
a 0 1 0
0 1 0 1
0 0 1 0


 , 2)




0̄ 1 1 + a 0
1 0 a 0

a+ 1 a 0 a
0 0 a 0


 , 3)



0̄ a 0 0
a 0 a+ 1 0
0 a+ 1 0 1
0 0 1 0




Weisfeiler and Kac investigated also which of these algebras are isomorphic
and the answer is as follows:

wk(3; a) ' wk(3; a′)⇐⇒ a′ =
αa+ β

γa+ δ
, where

(
α

γ

β

δ

)
∈ SL(2;Z/2)

wk(4; a) ' wk(4; a′)⇐⇒ a′ =
1

a
.

(20.28)

20.5.1.2. 2-structures on wk algebras. 1) Observe that the center c of
wk(3; a) is spanned by ah1 + h3. The 2-structure on wk(3; a) is given by the
conditions (e±α )

[2] = 0 for all root vectors and the following ones:
a) For the matrix B = (0, 0, 1) in (12.25) for the grading operator d, set:

(adh1)
[2] = (1 + at)h1 + th3 ≡ h1 (mod c),

(adh2)
[2] = ath1 + h2 + th3 + a(1 + a)d ≡ h2 + a(1 + a)d (mod c),

(adh3)
[2] = (at+ a2)h1 + th3 ≡ a2h1 (mod c),

(add)
[2] = ath1 + th3 + d ≡ d (mod c),

(20.29)
where t is a parameter.

b) Taking B = (1, 0, 0) in (12.25) we get a more symmetric answer:

(adh1)
[2] = (1 + at)h1 + th3 ≡ h1 (mod c),

(adh2)
[2] = ath1 + ah2 + th3 + (1 + a)d ≡ ah2 + (1 + a)d (mod c),

(adh3)
[2] = (at+ a2)h1 + th3 ≡ a2h1 (mod c),

(add)
[2] = ath1 + th3 + d ≡ d (mod c),

(20.30)
(The expressions are somewhat different since we have chosen a different basis
but on this simple Lie algebra the 2-structure is unique.)

2) The 2-structure on wk(4; a) is given by the conditions (e±α )
[2] = 0 for

all root vectors and
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(adh1)
[2] = ah1 + (1 + a)h4,

(adh2)
[2] = ah2,

(adh3)
[2] = h3,

(adh4)
[2] = h4.

(20.31)

p = 3, Lie algebras. Brown algebras:

br(2, a) with CM

(
2 −1
a 2

)
and br(2) = lim

− 2
a
−→0

br(2, a) with CM

(
2 −1
−1 0

)

(20.32)
The reflections change the value of the parameter, so

br(2, a) ' br(2, a′)⇐⇒ a′ = −(1 + a). (20.33)

1br(3) with CM

(
2 −1 0
−1 2 −1
0 −1 0̄

)
and 2br(3) with CM

(
2 −1 0
−2 2 −1
0 −1 0̄

)
(20.34)

p = 3, Lie superalgebras.
Brown superalgebra brj(2; 3) of sdim = 10|8 recently discovered in [El1]

(Theorem 3.2(i); its Cartan matrices are first listed in [BGL3]) has the fol-
lowing Cartan matrices

1)

(
0 −1
−2 1

)
, 2)

(
0 −1
−1 0̄

)
, 3)

(
1 −1
−1 0̄

)
.

The Lie superalgebra brj(2; 3) is a super analog of the Brown alge-
bra br(2) = brj(2; 3)0̄, its even part; brj(2; 3)1̄ = R(2π1) is irreducible
brj(2; 3)0̄-module.

Elduque [El1, El2, CE, CE2] considered a particular case of the problem
(20.24). He arranged the Lie (super)algebras he obtained in the Elduque Su-
permagic Square — an analog of the Freudenthal Magic Square.

All these examples turned out to be of the form g(A). These Elduque and
Cunha superalgebras are, indeed, exceptional ones. For the complete list of
their inequivalent Cartan matrices, reproduced here, see [BGL1], where their
presentation are also given; we also reproduce the description of the even
and odd parts of these Lie superalgebras (all but one discovered by Elduque
and whose description in terms of symmetric composition algebras is due to
Elduque and Cunha), see subsect. 20.8.1.

p = 5, Lie superalgebras. Brown superalgebra brj(2; 5) of sdim = 10|12, re-
cently discovered in [BGL3], such that brj(2; 5)0̄ = sp(4) and brj(2; 5)1̄ = R(π1+π2)
is an irreducible brj(2; 5)0̄-module. 2) The Lie superalgebra brj(2; 5) has the

2 To the incredulous reader: The Cartan subalgebra of sp(4) is
generated by h2 and 2h1 + h2. The highest weight vector is
x10 = [[x2, [x2, [x1, x2]]], [[x1, x2], [x1, x2]]] and its weight is not a
multiple of a fundamental weight, but (1, 1). We encounter several more
instances of non-fundamental weights in descriptions of exceptions for p = 2.
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following Cartan matrices:
(
2 −
1 −

)
1)

(
0 −1
−2 1

)
, 2)

(
0 −1
−3 2

)
.

Elduque superalgebra el(5; 5) of sdim = 55|32, where el(5; 5)0̄ = o(11) and
el(5; 5)1̄ = spin11. Its inequivalent Cartan matrices, first described in [BGL2],
are as follows:

Instead of joining nodes by four segments in the cases where

Aij = Aji = 1 ≡ −4 mod 5

we use one dotted segment.

12 3

4

5

1

234 5

1 23

4

5

12 3

4

5

1

2

3

45

1

2

34 5

12 3

4

5

1)

2)

3)

4)

5)

6)

7)

1)




2 0 −1 0 0
0 2 0 0 −1
−1 0 0 −4 −4
0 0 −4 0 −2
0 −1 −4 −2 0




2)




0 0 −4 0 0
0 2 0 0 −1
−4 0 0 −1 −1
0 0 −1 2 0
0 −1 −1 0 2




3)




2 0 −1 0 0
0 2 0 0 −1
−1 0 2 −1 0
0 0 −1 0 2
0 −2 0 −1 2




4)




2 0 −1 0 0
0 0 0 2 −4
−1 0 2 0 −1
0 −1 0 2 −1
0 −4 −1 2 0




5)




0 0 −1 0 0
0 2 0 0 −1
−1 0 2 −1 −1
0 0 −1 2 0
0 −1 −1 0 2




6)




2 0 −1 0 0
0 0 0 −2 −1
−1 0 2 0 −1
0 −2 0 0 0
0 −1 −1 0 2




7)




2 0 −1 0 0
0 2 0 −1 −2
−1 0 2 0 −1
0 2 0 0 0
0 −1 −1 0 2




8)




− − 2 3 4
5 − 1 − −
− − − 1 −
− 6 − − 1
2 − − − −
− 4 − 7 −
− − − 6 −
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20.5.2. Step 2: Studying 2×2 and 3× 3 Cartan matrices. 1) We ask
Mathematica to construct all possible matrices of a specific size. The matrices
are not normalized and they must not be symmetrizable: we can not eliminate
non-symmetrizable matrices at this stage. Fortunately, all 2× 2 matrices are
symmetrizable.

2) We ask Mathematica to eliminate the matrices with the following prop-
erties:

a) Matrices A for whose submatrix B we know that dim g(B) =∞;
b) decomposable matrices.

(20.35)
3) Matrices with a row in each that differ from each other by a nonzero

factor are counted once, e.g.,

(
1 1
3 2

)
∼=
(
2 2
3 2

)
∼=
(
6 6
6 4

)
.

4) Equivalent matrices are counted once, where equivalence means that
one matrix can be obtained from the other one by simultaneous transposition
of rows and columns with the same numbers and the same parity. For example,




0 α 0 0
α 0 0 1
0 0 0 1
0 1 1 0


 ∼




0 α 1 0
α 0 0 0
1 0 0 1
0 0 1 0


 ∼



0 0 0 1
0 0 α 1
0 α 0 0
1 1 0 0




A t t h e s u b s t e p s 1 . 1 ) – 1 . 4 ) w e t h u s g e t a s t o r e o f C a r -
t a n m a t r i c e s t o b e t e s t e d f u r t h e r .

5) Now, we ask SuperLie to construct the Lie superalgebras g(A) up to
certain dimension (say, 256). Having stored the Lie superalgebras g(A) of
dimension < 256 we increase the range again if there are any algebras left
(say, to 1024 or 2048). At this step, we conjecture that the dimension of any
finite dimensional simple Lie (super)algebra of the form g(A), where A is of
size n× n, does not grow too rapidly with n. Say, at least, not as fast as n10.

If the dimension of g(A) increases accordingly, then we conjecture that
g(A) is infinite dimensional and this Lie superalgebra is put away for a while
(but not completely eliminated as decomposable matrices that correspond to
non-simple algebras: The progress of science might require soon to investigate
how fast the dimension grows with n: polynomially or faster).

6) For the stored Cartan matrices A, we have dim g(A) <∞. Once we get
the full list all of such Cartan matrices of a given size, we have to check if
g(A) is simple, one by one.

7) The vectors of parities of the generators Pty = (p1, . . . , pn) are only
considered of the form (1̄, . . . , 1̄, 0̄, . . . , 0̄).
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20.5.2.1. The case of 2 × 2 Cartan matrices. On the diagonal we may
have 2, 1̄ or 0̄, if the corresponding root is even; 0 or 1 if the root is odd. To be
on the safe side, we redid the purely even case. We have the following options
to consider:

Pty = (0̄, 0̄) a1

(
2 2a
2b 2

)
'
(
2 2a
b 1̄

)
'
(

1̄ a
2b 2

)
'
(
1̄ a
b 1̄

)
'
(
b ab
ab a

)

a2

(
1̄ 2a
−1 0̄

)
a3

(
0̄ −1
−1 0̄

)

(20.36)

Pty = (1̄, 0̄) a4

(
0 −1
2a 2

)
'
(
0 −1
a 1

)

a5

(
0̄ −1
−1 0

)
a6

(
1 a
−1 0̄

)

a7

(
1 a
2b 2

)
'
(
1 a
b 1

)
(20.37)

Pty = (1̄, 1̄) a8

(
1 a
b 1

)
'
(
b ab
ab a

)

a9

(
0 −1
−1 0

)
a10

(
0 −1
b 1

) (20.38)

Obviously, some of these CMs had appeared in the study of (twisted) loops
and the corresponding Kac-Moody Lie (super)algebras. One could expect that
the reduction of the entries of A modulo p might yield a finite dimensional
algebra, but this does not happen.

20.5.2.2. Conjecture. If A is non-symmetrizable, then dim g(A) =∞.

This is true a posteriori for p = 0. We prove this by inspection for 3 × 3
matrices, but, regrettably, the general case does not follow by reduction and
induction: For example, for p = 2 and the non-symmetrizable matrix



1 1 1 0
1 1 0 1
1 0 1 1
0 1 a 1


 ,

where a 6= 0, 1, or analogous n × n matrix whose Dynkin diagram is a loop,
any 3× 3 submatrix is symmetrizable.

20.5.3. Step 3: Studying n × n Cartan matrices for n > 3. Putting
our faith into Conjecture 20.5.2.2, we will assume that A is symmetric. The
idea is to use induction and the information found at each step.

Since we are sure that each Lie superalgebra of the form g(A) possesses a
“simplest” Dynkin diagram — the one with only one odd node, we are going
to use one more hypothesis:
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20.5.3.1. Hypothesis. Passing from n×n Cartan matrices to (n+1)×(n+1)
Cartan matrices it suffices to consider just two types of n×n Cartan matrices:
Purely even ones and the “simplest” ones — with only one odd node on their
Dynkin diagrams. To the latter ones only even node should be added.

20.5.3.2. Further simplification of the algorithm. Enlarging Cartan
matrices by adding new row and column, we let, for n > 4, its only non-zero
elements occupy at most two slots (apart from the diagonal). Justification:
Lemmas from §3 in [WK].

Even this simplification still leaves lots of cases: To the 5 cases to be
enlarged for Cartan matrices of size ≤ 8 that we encounter for p = 0, we have
to add ≤ 16 super cases, each producing tens of possibilities in each of the
major cases p = 2, 3 and 5. To save several pages per each n for each p, we
have omitted the results of enlargements of each Cartan matrix and give only
the final summary.

20.5.4. On a quest for parametric families. Even for 2 × 2 Cartan
matrices we could have proceeded by “enlarging” but to be on the safe side
we performed the selection independently. We considered only one or two
parameters using the function called ParamSolve (of SuperLie). It shows
all cases where the division by an expression possibly equal to zero occurred.
Every time SuperLie shows such a possibility we check it by hand; these
possibility are algebraic equations of the form β = f(α), where α and β
are the parameters of the CM. We saw that whenever α and β are generic
dim g(A) grows too fast as compared with the height of the element (i.e., the
number of brackets in expressions like [a, [b, [c, d], ], ]) that SuperLie should
not exceed constructing a Lie (super)algebra. We did not investigate if the
growth is polynomial or exponential, but definitely dim g(A) = ∞. For each
pair of singular values of parameters β = f(α), we repeat the computations
again. In most cases, the algebra is infinite-dimensional, the exceptions being
β = α + 1 that nicely correspond to some of CMs we already know, like wk

algebras.
For three parameters, we have equations of the form γ = f(α, β). For

generic α and β. the Lie superalgebra g(A) is infinite-dimensional. For the
singular cases given by SuperLie, the constraints are of the form β = g(α).
Now we face two possibilities: If γ is a constant, then we just use the result of
the previous step, when we dealt with two parameters. In the rare cases where
γ is not a constant and depends on the parameter α, we have to recompute
again and again the dim g(A) is infinite in these cases.

We find Cartan matrices of size 4×4 and larger by “enlarging”. For p = 2,
we see that 3×3 CMs with parameters can be extended to 4×4 CMs. However,
4× 4 CMs cannot be extended to 5× 5 CMs whose Lie (super)algebras are of
finite dimension. For p > 2, even 3× 3 CMs cannot be extended.

20.5.5. Super and modular cases: Summary of new features (as com-
pared with simple Lie algebras over C). The super case, p = 0.

1) There are three types of nodes (•, ⊗ and ◦),

Ch. 20. Simple modular Lie superalgebras 473

2) there may occur a loop but only of length 3;
3) there is at most 1 parameter, but 1 parameter may occur;
4) to one algebra several inequivalent Cartan matrices can correspond.
The modular case. For Lie algebras, new features are same as in the p = 0

super case; additionally there appear new types of nodes (� and ∗).

20.6. The answer: The case where p > 5

This case is the simplest one since it does not differ much from the p = 0
case, where the answer is known.

Simple Lie algebras:
1) Lie algebras obtained from their p = 0 analogs by reducing modulo p.

We thus get
the CM versions of sl, namely: either simple sl(n) or gl(pn) whose “simple

core” is psl(pn);
the orthogonal algebras o(2n+ 1) and o(2n);
the symplectic algebras sp(2n);
the exceptional algebras are g(2), f(4), e(6), e(7), e(8).
Simple Lie superalgebras
Lie superalgebras obtained from their p = 0 analogs by reducing modulo

p. We thus get
1) the CM versions of sl, namely: either simple sl(m|n) or gl(a|pk + a)

whose “simple core” is psl(a|pk + a) and psl(a|pk + a)(1) if a = kn;
2) the ortho-symplectic algebras osp(m|2n);
3) a parametric family osp(4|2; a);
4) the exceptional algebras are ag(2) and ab(3).

20.7. The answer: The case where p = 5

Simple Lie algebras:
1) same as in §20.6 for p = 5.
Simple Lie superalgebras
1) same as in §20.6 for p = 5 and several new exceptions:
2) The Brown superalgebras [BGL3]: brj(2; 5) such that brj(2; 5)0̄ = sp(4)

and the brj(2; 5)0̄-module brj(2; 5)1̄ = R(π1+π2) is irreducible with the highest
weight vector

x10 = [[x2, [x2, [x1, x2]]], [[x1, x2], [x1, x2]]]

(for the CM 2): with the two Cartan matrices
(
2 −
1 −

)
1)

(
0 −1
−2 1

)
, 2)

(
0 −1
−3 2

)

3) The Elduque superalgebra el(5; 5). Having found out one Cartan matrix
of el(5; 5), we have listed them all, see 20.5.1.2.
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20.8. The answer: The case where p = 3

Simple Lie algebras:
1) same as in §20.6 for p = 3, except g(2) which is not simple but contains

a unique minimal ideal isomorphic to psl(3), and the following additional
exceptions:

2) the Brown algebras br(2; a) and br(2) as well as br(3), see subsect.
20.5.1.

Simple Lie superalgebras
1) same as in §20.6 for p = 3 and e(6) (with CM) which is not simple but

has a “simple core” e(6)/c;
2) the Brown superalgebras, see subsect. 20.5.1;
3) the Elduque and Cunha superalgebras, see [CE2, BGL1]. They are re-

spective “enlargements” of the following Lie algebras (but can be also obtained
by enlarging certain Lie superalgebras):

g(2, 3) (gl(3) yields 2g(1, 6) and 1g(2, 3)) (with CM) has a simple core
bj := g(2, 3))/c;

g(3, 6) (sl(4) yields 7g(3, 6));
g(3, 3) (sp(6) yields 1g(3, 3) and 10g(3, 3));
g(4, 3) (o(7) yields 1g(4, 3));
g(8, 3) (f(4) yields 1g(8, 3));
g(2, 6) (sl(5) yields 3g(2, 6)) (with CM) has a simple core g(2, 6))/c;
g(4, 6) (gl(6) yields 3g(4, 6) and o(10) yields 7g(4, 6));
g(6, 6) (o(11) yields 21g(6, 6));
g(8, 6) (sl(7) yields 8g(8, 6) and e(6) yields 3g(8, 6));
4) the Lie superalgebra el(5; 3) we have discovered is a p = 3 version of

the Elduque superalgebra el(5; 5): Their Cartan matrices (whose elements are
represented by non-positive integers) 7) for el(5; 5) and 1) for el(5; 3) are iden-
tical after a permutation of indices that is why we baptized el(5; 3) so. It can
be obtained as an “enlargement” of any of the following Lie (super)algebras:
sp(8), sl(1|4), sl(2|3), osp(4|4), osp(6|2), g(3, 3).
20.8.1. Elduque and Cunha superalgebras: Systems of simple roots.
For details of description of Elduque and Cunha superalgebras in terms of
symmetric composition algebras, see [El1, CE, CE2]. Here we consider the
simple Elduque and Cunha superalgebras with Cartan matrix for p = 3. In
what follows, we list them using somewhat shorter notations as compared
with the original ones: Hereafter g(A,B) denotes the superalgebra occupying
(A,B)th slot in the Elduque Supermagic Square; the first Cartan matrix is
usually the one given in [CE], where only one Cartan matrix is given; the other
matrices are obtained from the first one by means of reflections. Accordingly,
ig(A,B) is the shorthand for the realization of g(A,B) by means of the ith
Cartan matrix.

There are no instances of isotropic even reflections. On notation in the
following tables, see subsect. 20.5.1.1.
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20.8.1.1. g(1, 6) of sdim = 21|14. We have g(1, 6)0̄ = sp(6) and
g(1, 6)1̄ = R(π3).

(
− − 2
− − 1

)
1

1)
2 3

1

2)
2 3

1)

(
2 −1 0
−1 1 −1
0 −1 0

)
2)

(
2 −1 0
−1 2 −2
0 −2 0

)

20.8.1.2. g(2, 3) of sdim = 12/10|14. We have g(2, 3)0̄ = gl(3) ⊕ sl(2)
and g(2, 3)1̄ = psl(3)⊗ id.




− − 2
3 4 1
2 5 −
5 2 −
4 3 −




1

1)
2

3

1

2)
3

2

1

3)
3 2 1 3

4)
2

2

5)
3 1

1)

(
2 −1 −1
−1 2 −1
−1 −1 0

)
2)

(
0 0 −1
0 0 −1
−1 −1 0

)
3)

(
0 0 −1
0 0 −2
−1 −2 2

)

4)

(
0 0 −2
0 0 −1
−2 −1 2

)
5)

(
0 0 −1
0 0 −1
−1 −1 1

)

20.8.1.3. g(3, 6) of sdim = 36|40. We have g(3, 6)0̄ = sp(8) and
g(3, 6)1̄ = R(π3).




2 − − 3
1 4 − 5
5 − − 1
− 2 − 6
3 6 − 2
− 5 7 4
− − 6 −


 1)

(
0 −1 0 0
−1 2 −1 0
0 −1 1 −1
0 0 −1 0

)
2)

(
0 −1 0 0
−1 0 −1 0
0 −1 1 −1
0 0 −1 0

)
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1

1)
2 3 4

1

2)
2 3 4

4

3 2

3)
1

4

3 2

5)
11

4)
2 3

4

4

6)
3

2

1

7)
2

3

4

1

3)

(
0 −1 0 0
−1 2 −1 0
0 −1 2 −2
0 0 −1 0

)
4)

(
2 −1 0 0
−1 0 −2 0
0 −2 2 −1
0 0 −1 0

)
5)

(
0 −1 0 0
−2 0 −1 0
0 −1 2 −2
0 0 −1 0

)

6)

(
2 −1 0 0
−1 0 −2 0
0 −2 0 −2
0 0 −1 0

)
7)

(
2 −1 0 0
−1 2 −1 −1
0 −1 0 −1
0 −1 −1 2

)

20.8.1.4. g(3, 3) of sdim = 23/21|16. We have g(3, 3)0̄ = (o(7)⊕Kz)⊕Kd
and g(3, 3)1̄ = (spin7)+ ⊕ (spin7)−; the action of d separates the summands
— identical o(7)-modules spin7, acting on one as the scalar multiplication by
1, on the other one by −1.




− − − 2
− − 3 1
− 4 2 −
5 3 − 6
4 − − 7
7 − − 4
6 8 − 5
− 7 9 −
10 − 8 −
9 − − −




1)

(
2 −1 0 0
−1 2 −1 0
0 −2 2 −1
0 0 −1 0

)
2)

(
2 −1 0 0
−1 2 −1 0
0 −1 0 −1
0 0 −1 0

)

3)

(
2 −1 0 0
−1 0 −2 −2
0 −2 0 −2
0 −1 −1 2

)
4)

(
0 −1 0 0
−2 0 −1 −1
0 −1 2 0
0 −1 0 0

)

5)

(
0 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 0

)
6)

(
0 −1 0 0
−1 2 −2 −1
0 −1 2 0
0 −1 0 0

)
7)

(
0 −1 0 0
−1 0 −1 −2
0 −1 2 0
0 −1 0 0

)

8)

(
2 −1 −1 0
−2 0 −2 −1
−1 −1 0 0
0 −1 0 2

)
9)

(
0 0 −1 0
0 2 −1 −1
−1 −1 0 0
0 −1 0 2

)
10)

(
0 0 −1 0
0 2 −1 −1
−1 −2 2 0
0 −1 0 2

)

20.8.1.5. g(4, 3) of sdim = 24|26. We have g(4, 3)0̄ = o(7) ⊕ sl(2) and
g(4, 3)1̄ = R(π2)⊗ id.
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1

1)
2 3 4 4 3 2

2)
1

3

4

21

3)

1 2

5)
3

4
2 1

3

4)

4

4

6)
2

3

1 1 2

7)
4

3

3

2
1

8)
42

3

4

9)
1

1
2

3

10)
4




− − − 2
− 3 − 1
4 2 5 −
3 − 6 −
6 − 3 7
5 8 4 9
9 − − 5
− 6 − 10
7 10 − 6
− 9 − 8




1)

(
2 −1 0 0
−1 2 −2 −1
0 −1 2 0
0 −1 0 0

)
2)

(
2 −1 0 0
−1 0 −2 −2
0 −1 2 0
0 −1 0 0

)

3)

(
0 −1 0 0
−2 0 −1 −1
0 −1 0 −1
0 −1 −1 2

)
4)

(
0 −1 0 0
−1 2 −1 −1
0 −1 0 −1
0 −1 −1 2

)

5)

(
0 −1 0 0
−1 2 −1 0
0 −1 0 −1
0 0 −1 0

)
6)

(
0 −1 0 0
−1 0 −2 0
0 −1 0 −1
0 0 −1 0

)
7)

(
0 −1 0 0
−1 2 −1 0
0 −2 2 −1
0 0 −1 0

)

8)

(
2 −1 0 0
−2 0 −1 0
0 −1 2 −2
0 0 −1 0

)
9)

(
0 −1 0 0
−1 0 −2 0
0 −2 2 −1
0 0 −1 0

)
10)

(
2 −1 0 0
−2 0 −1 0
0 −1 1 −1
0 0 −1 0

)

20.8.1.6. g(2, 6) of sdim = 36/34|20. We have g(2, 6)0̄ = gl(6) and
g(2, 6)1̄ = R(π3).




− − 2 − 3
− 4 1 5 −
− − − − 1
6 2 − − −
− − − 2 −
4 − − − −


 1)




2 −1 0 0 0
−1 2 −1 0 0
0 −1 0 −1 −2
0 0 −1 2 0
0 0 −1 0 0


 2)




2 −1 0 0 0
−1 0 −2 −2 0
0 −2 0 −2 −1
0 −1 −1 0 0
0 0 −1 0 2
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2

4

1

1)
3

4

2

2)
1

3

2 1

4

4)

3

1

2

3)
4

3

1 2

3

5)
4

4

9)
3

2

1

1

8)
2

3 4

4

6)
3

2 1

4 3 2

10)
1

1 2 3

7)
4

3

5

1

1)
2

4 4

3

5

2

3)

1

5

2)
3

2 1

4
1 2 3

4)
5

4

1

2 3

6)
5

4

1

5)

2 4 3 5

3)




2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 −1
0 0 −1 2 0
0 0 −1 0 0


 ∼ 6)




0 −1 0 0 0
−1 2 −1 −1 0
0 −1 2 0 −1
0 −1 0 2 0
0 0 −1 0 2




4)




0 −1 0 0 0
−2 0 −1 −1 0
0 −1 2 0 −1
0 −1 0 2 0
0 0 −1 0 2


 5)




2 −1 0 0 0
−1 2 0 −1 0
0 0 2 −1 −1
0 −1 −1 0 0
0 0 −1 0 2
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20.8.1.7. g(8, 3) of sdim = 55|50. We have g(8, 3)0̄ = f(4) ⊕ sl(2) and
g(8, 3)1̄ = R(π4)⊗ id.




− − − − 2
− − − 3 1
− − 4 2 −
− 5 3 − −
6 4 − 7 −
5 − − 8 −
8 − − 5 9
7 10 − 6 11
11 − − − 7
− 8 12 − 13
9 13 − − 8
14 − 10 − 15
− 11 15 16 10
12 − − − 17
17 − 13 18 12
− − 18 13 −
15 − − 19 14
19 20 16 15 −
18 21 − 17 −
21 18 − − −
20 19 − − −




1)




2 −1 0 0 0
−1 2 −1 0 0
0 −2 2 −1 0
0 0 −1 2 −1
0 0 0 1 0




2)




2 −1 0 0 0
−1 2 −1 0 0
0 −2 2 −1 0
0 0 −2 0 −1
0 0 0 −1 0




3)




2 −1 0 0 0
−1 2 −1 0 0
0 −1 0 −1 0
0 0 −1 0 −2
0 0 0 −1 2




4)




2 −1 0 0 0
−1 0 −2 −2 0
0 −1 0 −1 0
0 −1 −1 2 −1
0 0 0 −1 2




5)




0 −1 0 0 0
−2 0 −1 −1 0
0 −1 2 0 0
0 −1 0 0 −2
0 0 0 −1 2




6)




0 −1 0 0 0
−1 2 −1 −1 0
0 −1 2 0 0
0 −1 0 0 −2
0 0 0 −1 2




7)




0 −1 0 0 0
−1 2 −2 −1 0
0 −1 2 0 0
0 −2 0 0 −1
0 0 0 −1 0




8)




0 −1 0 0 0
−1 0 −1 −2 0
0 −1 2 0 0
0 −2 0 0 −1
0 0 0 −1 0
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12345

1234

5

12345
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3
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3

4 5

1
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3

45

1

2

3
4

5

1

2

3
4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

12 345

1

2

3

4

5

1

2 345

1 23 4 5

1

2

3

4

5

1

23 4 5

1 2

3

4 512 3

4

5

1

2

3 4 51

2

345

1)

2)

3)

4)

5)6)

7)8)

9)

10)

11)

12)

13)

14)

15)

16)17)

18)19)

20)21)
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9)




0 −1 0 0 0
−1 2 −2 −1 0
0 −1 2 0 0
0 −1 0 2 −1
0 0 0 −1 0


 10)




2 −1 −1 0 0
1 0 1 2 0
1 1 0 0 0
0 −1 0 2 −1
0 0 0 −1 0


 11)




0 −1 0 0 0
−1 0 −1 −2 0
0 −1 2 0 0
0 −1 0 2 −1
0 0 0 −1 0




12)




0 0 −1 0 0
0 2 −1 −1 0
−1 −1 0 0 0
0 −1 0 2 −1
0 0 0 −1 0


 13)




2 −1 −1 0 0
−1 0 −1 −2 0
−1 −1 0 0 0
0 −2 0 0 −1
0 0 0 −1 0


 14)




0 0 −1 0 0
0 2 −1 −1 0
−1 −2 2 0 0
0 −1 0 2 −1
0 0 0 −1 0




15)




0 0 −1 0 0
0 2 −1 −1 0
−1 −1 0 0 0
0 −2 0 0 −1
0 0 0 −1 0


 16)




2 −1 −1 0 0
−1 2 −1 −1 0
−1 −1 0 0 0
0 −1 0 0 −2
0 0 0 −1 2


 17)




0 0 −1 0 0
0 2 −1 −1 0
−1 −2 2 0 0
0 −2 0 0 −1
0 0 0 −1 0




18)




0 0 −1 0 0
0 0 −2 −1 0
−1 −1 0 0 0
0 −1 0 0 −2
0 0 0 −1 2


 19)




0 0 −1 0 0
0 0 −2 −1 0
−1 −2 2 0 0
0 −1 0 0 −2
0 0 0 −1 2




20)




0 0 −1 0 0
0 0 −1 −2 0
−2 −1 2 0 0
0 −1 0 2 −1
0 0 0 −1 2


 21)




0 0 −1 0 0
0 0 −1 −2 0
−1 −1 1 0 0
0 −1 0 2 −1
0 0 0 −1 2




20.8.1.8. g(4, 6) of sdim = 66|32. We have g(4, 6)0̄ = o(12) and
g(4, 6)1̄ = R(π5).




− − − 2 − 3
− − 4 1 5 −
− − − − − 1
− 6 2 − − −
− − − − 2 −
7 4 − − − −
6 − − − − −


 1)




2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −2 0 −2 −1
0 0 0 −1 2 0
0 0 0 −1 0 0




2)




2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −2 0 −1 −1 0
0 0 −1 0 −1 −2
0 0 −1 −1 0 0
0 0 0 −1 0 2


 3)




2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 −1
0 0 0 −1 2 0
0 0 0 −1 0 0


 4)




2 −1 0 0 0 0
−2 0 −1 0 0 0
0 −1 0 −2 −2 0
0 0 −1 2 0 −1
0 0 −1 0 2 0
0 0 0 −1 0 2




5)




2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 0 −1 0
0 0 0 2 −1 −1
0 0 −1 −1 0 0
0 0 0 −1 0 2


 6)




0 −1 0 0 0 0
−1 0 −2 0 0 0
0 −1 2 −1 −1 0
0 0 −1 2 0 −1
0 0 −1 0 2 0
0 0 0 −1 0 2


 7)




0 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 −1 0
0 0 −1 2 0 −1
0 0 −1 0 2 0
0 0 0 −1 0 2




20.8.1.9. g(6, 6) of sdim = 78|64. We have g(6, 6)0̄ = o(13) and
g(6, 6)1̄ = spin13.
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2 3 − 4 − 5
1 − − 6 − 7
− 1 8 9 − 10
6 9 11 1 12 −
7 10 − − − 1
4 − 13 2 14 −
5 − − − − 2
− − 3 − − 15
− 4 − 3 16 −
− 5 15 − − 3
13 − 4 − − −
14 16 − − 4 −
11 17 6 − − −
12 − − − 6 −
− − 10 18 − 8
− 12 19 − 9 −
− 13 − − − −
− − − 15 20 −
− − 16 − − −
− − − − 18 21
− − − − − 20




1)




0 −1 0 0 0 0
−1 0 −2 0 0 0
0 −1 2 −1 0 0
0 0 −2 0 −2 −1
0 0 0 −1 2 0
0 0 0 −1 0 0




2)




0 −2 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −2 0 −2 −1
0 0 0 −1 2 0
0 0 0 −1 0 0




3)




2 −1 0 0 0 0
−2 0 −1 0 0 0
0 −1 0 −2 0 0
0 0 −2 0 −2 −1
0 0 0 −1 2 0
0 0 0 −1 0 0
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4)




0 −1 0 0 0 0
−1 0 −2 0 0 0
0 −2 0 −1 −1 0
0 0 −1 0 −1 −2
0 0 −1 −1 0 0
0 0 0 −1 0 2


 5)




0 −1 0 0 0 0
−1 0 −2 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 −1
0 0 0 −1 2 0
0 0 0 −1 0 0


 6)




0 −1 0 0 0 0
−1 2 −1 0 0 0
0 −2 0 −1 −1 0
0 0 −1 0 −1 −2
0 0 −1 −1 0 0
0 0 0 −1 0 2




7)




0 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 −1
0 0 0 −1 2 0
0 0 0 −1 0 0


 8)




2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −2 0 −1 0 0
0 0 −1 2 −2 −1
0 0 0 −1 2 0
0 0 0 −1 0 0


 9)




2 −1 0 0 0 0
−2 0 −1 0 0 0
0 −1 2 −1 −1 0
0 0 −1 0 −1 −2
0 0 −1 −1 0 0
0 0 0 −1 0 2




10)




2 −1 0 0 0 0
−2 0 −1 0 0 0
0 −1 0 −2 0 0
0 0 −1 2 −1 −1
0 0 0 −1 2 0
0 0 0 −1 0 0


 11)




0 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 0 −2 −2 0
0 0 −1 2 0 −1
0 0 −1 0 2 0
0 0 0 −1 0 2


 12)




0 −1 0 0 0 0
−1 0 −2 0 0 0
0 −1 2 0 −1 0
0 0 0 2 −1 −1
0 0 −1 −1 0 0
0 0 0 −1 0 2




13)




0 −1 0 0 0 0
−2 0 −1 0 0 0
0 −1 0 −2 −2 0
0 0 −1 2 0 −1
0 0 −1 0 2 0
0 0 0 −1 0 2


 14)




0 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 0 −1 0
0 0 0 2 −1 −1
0 0 −1 −1 0 0
0 0 0 −1 0 2


 15)




2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −2 0 −1 0 0
0 0 −1 0 −2 −2
0 0 0 −1 2 0
0 0 0 −1 0 0




16)




2 −1 0 0 0 0
−2 0 −1 0 0 0
0 −1 0 0 −2 0
0 0 0 2 −1 −1
0 0 −1 −1 0 0
0 0 0 −1 0 2


 17)




2 −1 0 0 0 0
−1 0 −2 0 0 0
0 −1 2 −1 −1 0
0 0 −1 2 0 −1
0 0 −1 0 2 0
0 0 0 −1 0 2


 18)




2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −2 0 −1 −1
0 0 0 −1 0 −1
0 0 0 −1 −1 2




19)




2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −2 0 0 −1 0
0 0 0 2 −1 −1
0 0 −1 −2 2 0
0 0 0 −1 0 2


 20)




2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 0 −1
0 0 0 0 −1 0


 21)




2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −2 2 −1
0 0 0 0 −1 0
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20.8.1.10. g(8, 6) of sdim = 133|56. We have g(8, 6)0̄ = e(7) and
g(8, 6)1̄ = R(π1).
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− − − − − 2 3
− − − − 4 1 −
− − − − − − 1
− − − 5 2 − −
− 6 7 4 − − −
− 5 − − − − −
8 − 5 − − − −
7 − − − − − −




1)




2 0 −1 0 0 0 0
0 2 0 −1 0 0 0
−1 0 2 −1 0 0 0
0 −1 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −2 0 −1
0 0 0 0 0 −1 0


 2)




2 0 −1 0 0 0 0
0 2 0 −1 0 0 0
−1 0 2 −1 0 0 0
0 −1 −1 2 −1 0 0
0 0 0 −2 0 −1 0
0 0 0 0 −1 0 −2
0 0 0 0 0 −1 2




3)




2 0 −1 0 0 0 0
0 2 0 −1 0 0 0
−1 0 2 −1 0 0 0
0 −1 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 0


 4)




2 0 −1 0 0 0 0
0 2 0 −1 0 0 0
−1 0 2 −1 0 0 0
0 −2 −2 0 −1 0 0
0 0 0 −1 0 −2 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2




5)




2 0 −1 0 0 0 0
0 0 −1 −1 0 0 0
−2 −1 0 −1 0 0 0
0 −1 −1 0 −2 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2


 6)




2 0 −1 0 0 0 0
0 0 −2 −2 0 0 0
−1 −1 2 0 0 0 0
0 −1 0 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2




7)




0 0 −1 0 0 0 0
0 2 −1 0 0 0 0
−1 −2 0 −2 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2


 8)




0 0 −1 0 0 0 0
0 2 −1 0 0 0 0
−1 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2






486 Ch. 20. Simple modular Lie superalgebras

1

2

3

4

5
6

7

1

2

3

4

5

6

7

1

2

3

4

5
6

7

1

2

3

4
5

6
7

1

2

3

4

5
6

7
1

2
3

4
5

6
7

1

2

3

4
5

6
7

1

2
3

4
5

6
7

1) 2)

3)

4)

5)
6)7)8)

Ch. 20. Simple modular Lie superalgebras 487

20.8.2. The Elduque superalgebra el(5; 3): Systems of simple roots.
Its superdimension is 39|32; the even part is el(5; 3)0̄ = sp(8) ⊕ sl(2) and its
odd part is irreducible: el(5; 3)1̄ = R(π4)⊗ id.

The following are all its Cartan matrices (on the rectangular matrix, see
subsect. 20.5.1.1):




2 3 − − −
1 − − − −
− 1 − 4 −
5 − 6 3 −
4 − 7 − −
7 − 4 − 8
6 − 5 9 10
10 − − − 6
− 11 − 7 12
8 − − 12 7
− 9 13 − 14
− 14 15 10 9
− − 11 − −
− 12 − − 11
− − 12 − −




1)




0 −1 0 0 0
−1 0 0 −1 0
0 0 2 −1 −1
0 −1 −1 2 0
0 0 −1 0 2


 2)




0 −2 0 0 0
−1 2 0 −2 0
0 0 2 −1 −1
0 −1 −1 2 0
0 0 −1 0 2




3)




2 −1 0 −1 0
−2 0 0 −2 0
0 0 2 −1 −1
−2 −2 −1 0 0
0 0 −1 0 2


 4)




0 0 0 −1 0
0 2 0 −1 0
0 0 0 −2 −1
−1 −1 −2 0 0
0 0 −1 0 2




5)




0 0 0 −2 0
0 2 0 −1 0
0 0 0 −2 −1
−1 −2 −1 2 0
0 0 −1 0 2


 6)




0 0 0 −1 0
0 2 0 −1 0
0 0 0 −1 −2
−1 −1 −1 2 0
0 0 −2 0 0




7)




0 0 0 −2 0
0 2 0 −1 0
0 0 0 −1 −2
−2 −1 −1 0 0
0 0 −2 0 0


 8)




0 0 0 −1 0
0 2 0 −1 0
0 0 2 −1 −1
−1 −1 −1 2 0
0 0 −1 0 0


 9)




2 0 0 −1 0
0 0 −2 −2 0
0 −1 2 −1 −1
−1 −2 −2 0 0
0 0 −2 0 0




10)




0 0 0 −2 0
0 2 0 −1 0
0 0 2 −1 −1
−2 −1 −1 0 0
0 0 −1 0 0


 11)




2 0 0 −1 0
0 0 −1 −1 0
0 −1 0 0 −2
−1 −1 0 2 0
0 0 −2 0 0


 12)




2 0 0 −1 0
0 0 −2 −2 0
0 −2 0 −2 −1
−1 −2 −2 0 0
0 0 −1 0 0




13)




2 0 0 −1 0
0 2 −1 −2 0
0 −2 0 0 −1
−1 −1 0 2 0
0 0 −1 0 2


 14)




2 0 0 −1 0
0 0 −1 −1 0
0 −1 2 0 −1
−1 −1 0 2 0
0 0 −1 0 0


 15)




2 0 0 −1 0
0 2 −1 0 0
0 −1 0 −1 −2
−1 0 −1 2 0
0 0 −1 0 2




20.9. The answer: The case where p = 2

Simple Lie algebras:
1) The Lie algebras obtained from their Cartan matrices by reducing mod-

ulo 2 (for o(2n+ 1) one has, first of all, to divide the last row by 2 in order
to adequately normalize CM). We thus get:

the CM versions of sl, namely: sl(2n+1), and gl(2n) whose “simple core” is
psl(2n); in the “second” integer basis of g(2) given in [FH], p. 346, all structure
constants are integer and g(2) becomes, after reduction modulo 2, a simple
Lie algebra psl(4) (without Cartan matrix, as we know);

the “simple cores” of the orthogonal algebras, namely, of o(1)(2n+ 1) and
oc(2n);

e(6), e(7)/c, e(8);
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2) the Weisfeiler and Kac algebras wk(3; a)(1)/c and wk(4; a).
Simple Lie superalgebras
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In the list below the term “super version” of a Lie algebra g(A) stands
for a Lie superalgebra with the “same” root system as that of g(A) but with
some of the simple roots considered odd.

1) The Lie superalgebras obtained from their p = 0 analogs that have
no −2 in off-diagonal slots of the Cartan matrix by reducing the structure
constants modulo 2 (for osp(2n+1|2m) one has, first of all, to divide the last
row by 2 in order to normalize CM), we thus get

the CM versions of sl, namely: either simple sl(a|a+2k+1) or gl(a|2k+a)
whose “simple core” is psl(a|a+ 2k) and psl(a|a+ 2k)(1) if a = 2n;

2) the ortho-orthogonal algebras, namely: oo(1) and ooc;
3) bgl(3; a)(1)/c which is an analog of wk(3; a)(1)/c with “same” Cartan

matrices but different root systems;
4) the CM versions of periplectic algebras, namely: pec; these are at the

same time super versions of oc;
5) a super version of wk(4; a), namely: bgl(4; a);
6) the super versions of e(6), namely: e(6, 1), e(6, 6);
7) the super versions of e(7), namely: e(7, 1), e(7, 6), e(7, 7) whose “simple

cores” are described in the next subsection;
8) the super versions of e(8), namely: e(8, 1), e(8, 8).

20.9.1. On the structure of bgl(3;α), bgl(4;α), and e(a, b). In this
section we describe the even parts g0̄ of the new Lie superalgebras g = g(A)
and their odd parts g1̄ as g0̄-modules. SuperLie enumerates the elements of
the Chevalley basis the xi (positive), starting with the generators, then their
brackets, etc., and the yi are negative root vectors opposite to the xi. Since
the irreducible representations of the Lie algebras may have neither highest
nor lowest weight, observe that the g0̄-modules g1̄ always have both highest
and lowest weights.

20.9.1.1. Notation A ⊕c B needed to describe bgl(4;α), e(6, 6),
e(7, 6), and e(8, 1). This notation describes the case where A and B are
nontrivial central extensions of the Lie algebras a and b, respectively, and
A ⊕c B — a nontrivial central extension of a ⊕ b (or, perhaps, a more com-
plicated a⊂+ b) with 1-dimensional center spanned by c — is such that the re-
striction of the extension of a⊕b to a gives A and that to b gives B. (In other
words, the situation resembles the (nontrivial) central extension of the Lie al-
gebra of derivations of the loop algebra, namely, g⊗C[t−1, t]⊂+ der(C[t−1, t]),
where one central element serves both central extensions: Those of g⊗C[t−1, t]
and of der(C[t−1, t]).)

In these four cases, the even part of g(A) is of the form

g(B)⊕c hei(2) ' g(B)⊕ Span(X+, X−),

where the matrix B is degenerate (so g(B) has a grading element d and a
central element c), and where X+, X− and c span the Heisenberg Lie algebra
hei(2). The brackets are:
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[g(1)(B), X±] = 0;
[d,X±] = X±; ([d,X±] = αX± for bgl(4;α))
[X+, X−] = c.

(20.39)

The odd part of g(A) (at least in two of the four cases) consists of two
copies of the same g(B)-module N , the operators adX± permute these copies,
and ad2X± = 0, so each of the operators maps one of the copies to the other,
and this other copy to zero.

20.9.1.2. bgl(3;α), where α 6= 0, 1. This Lie superalgebra is of
sdim = 10|8, so sdim of the simple subquotient bgl(3;α)(1)/c is equal to 8|8.
We consider the following Cartan matrix and the corresponding positive root
vectors (odd | even)

(
0 1 0
1 0̄ α
0 α 0̄

)
x1 | x2, x3,
x4 = [x1, x2] | x5 = [x2, x3], x6 = [x3, [x1, x2]], |
x7 = [[x1, x2], [x2,x3]] |

Then g0̄ ' gl(3)⊕KZ. The g0̄-module g1̄ is reducible, with the two highest
weight vectors, x7 and y1. The Cartan subalgebra of gl(3) ⊕ KZ is spanned
by αh1+h3, h2, h3 and Z. In this basis, the weight of x7 is (0, 1+α, 0, 1). The
weight of y1 is (0, 1, 0, 1), if for the grading operator we take (1, 0, 0) ∈ gl(3).

The lowest weight vectors of these modules are x1 and y7 and their weights
are (0, 1, 0, 1) and (0, 1 + α, 0, 1).

The module generated by x7 is Span {x1, x4, x6, x7}. The module generated
by y1 is Span {y1, y4, y6, y7}.

All inequivalent Cartan matrices are
(
d1 α 1
α d2 0
1 0 d3

)
,

(
d1 α 1 + α
α d2 1

1 + α 1 d3

)
,

where (d1, d2, d3) is any distribution of 0’s and 0̄’s, except (0̄, 0̄, 0̄).

20.9.1.3. bgl(4;α), where α 6= 0, 1, of sdim = 18|16. We consider the
following Cartan matrix and the corresponding positive root vectors (odd |
even)




0 α 1 0
α 0̄ 0 0
1 0 0̄ 1
0 0 1 0̄




x1 | x2, x3, x4,
x5 = [x1, x2], x6 = [x1,x3] | x7 = [x3, x4],
x8 = [x3, [x1,x2]], x9 = [x4, [x1, x3]] |
x11 = [[x1, x2], [x3, x4]] | x10 = [[x1,x2], [x1, x3]]
| x12 = [[x1, x2], [x4, [x1, x3]]],
| x13 = [[x3, [x1, x2]], [x4, [x1, x3]]],
x14 = [[x4, [x1,x3]], [[x1, x2], [x1,x3]]] |
x15 = [[[x1, x2], [x1, x3]], [[x1, x2], [x3,x4]]] |

In this case g0̄ ' gl(4) ⊕c hei(2) see (20.9.1.1) with commutation relations
(20.39). The g0̄-module g1̄ is irreducible: g1̄ ' N⊗ id, where id is the standard
2-dimensional hei(2)-module and N is an 8-dimensional gl(4)-module.
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The highest weight vector x15 has weight (α, 0, 0, 0, α) with respect to

c = h2, d = h1, H1 = h3, H2 = h3, H3 = h2 + h3,

where the hi’s are the Chevalley generators of the Cartan subalgebra of
bgl(4;α). The lowest weight vector is y15 of the same weight as x15.

All inequivalent Cartan matrices of bgl(4;α) are



d1 α 0 0
α d2 1 0
0 1 d3 1
0 0 1 d4


 ,




d1 1 1 + α 0
1 d2 α 0

α+ 1 α d3 α
0 0 α d4


 ,



d1 α 0 0
α d2 α+ 1 0
0 α+ 1 d3 1
0 0 1 d4


 ,

where {d1, d2, d3, d4} is any distribution of 0’s and 0̄’s, except {0̄, 0̄, 0̄, 0̄}.
20.9.1.4. Proposition (Cf. (20.28) and (20.25)). 1) We have

bgl(3; a) ' bgl(3; a′)⇐⇒ a′ =
αa+ β

γa+ δ
,where

(
α β

γ δ

)
∈ SL(2;Z/2)

bgl(4; a) ' bgl(4; a′)⇐⇒ a′ =
1

a
.

(20.40)

2) The 2|4-structures on bgl(3; a) and bgl(4; a) are given by the same for-
mulas (20.5.1.2) as for wk(3; a) and wk(4; a) with the amendment: (e±α )

[2] = 0
for all even root vectors and (e±α )

[4] = ((e±α )
2)[2] for all odd root vectors.

20.9.1.5. The e-type superalgebras. Notation: The e-type superalge-
bras will be denoted by their simplest Dynkin diagrams: e(n, i) denotes the
Lie superalgebra whose diagram is of the same shape as that of the Lie algebra
e(n) but with the only — ith — node ⊗. This, and other “simplest”, Cartan
matrices are boxed. We enumerate the nodes of the Dynkin diagram of e(n)
as in [Bou, OV]: We first enumerate the nodes in the row corresponding to
sl(n) (from the end-point of the “longest” twig towards the branch point and
further on along the second long twig), and the nth node is the end-point of
the shortest “twig”.

20.9.1.5a. e(6, 1) ' e(6, 5) of sdim = 46|32. We have g0̄ ' oc(2; 10)⊕KZ
and g1̄ is a reducible module of the form R(π4)⊕R(π5) with the two highest
weight vectors

x36 = [[[x4, x5], [x6, [x2, x3]]], [[x3, [x1, x2]], [x6, [x3, x4]]]]

and y5. Let Z, h1, h2, h3, h4, h6 be basis elements of the Cartan subalgebra.
The weights of x36 and y5 are respectively, (0, 0, 0, 0, 0, 1) and (0, 0, 0, 0, 1, 0).
The module generated by x36 gives all odd positive roots and the module
generated by y5 gives all odd negative roots.
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20.9.1.5b. e(6, 6) of sdim = 38|40. In this case, g(B) ' gl(6), see
(20.9.1.1). The module g1̄ is irreducible with the highest weight vector

x35 = [[[x3, x6], [x4, [x2, x3]]], [[x4, x5], [x3, [x1, x2]]]]

In this case, the highest weight with respect to h1, . . . , h6 (which correspond
to E11 −E22, . . . , E55 −E66, E11 +E22 +E33 in gl(6); well, actually, we can
express h6 as E

11+E22+E33+ac for any a ∈ K, where c is the central element
of g(B)) is (0, 0, 1, 0, 0, 1). If we set h6 = E11 + E22 + E33, then M =

∧3
(id)

as a gl(6)-module (note that it is not enough to write M = R(π3) since this
only describes M as an sl(6)-module).

20.9.1.5c. e(7, 1) of sdim = 80/78|54. Since the Cartan matrix of this
Lie superalgebra is of rank 6, a grading operator d1 should be (and is) added.
Now if we take d1 = (1, 0, 0, 0, 0, 0, 0), then g0̄ ' (e(6)⊕Kz)⊕KI0. The Cartan
subalgebra is spanned by h1+h3+h7, h2, h3, h4, h5, h6, h7 and d1. We see that
g1̄ has the two highest weight vectors:

x63 = [[[[x2, x3], [x4, x7]], [[x3, x4], [x5, x6]]],

[[[x4, x7], [x5, x6]], [[x4, x5], [x3, [x1, x2]]]]]

and y1. Their respective weights (if we take d1 = (1, 0, 0, 0, 0, 0, 0)) are
(0, 0, 0, 0, 0, 1, 0, 1) and (0, 1, 0, 0, 0, 0, 0, 0). The module generated by x63 gives
all odd positive roots and the module generated by y1 gives all odd negative
roots.

20.9.1.5d. e(7, 6) of sdim = 70/68|64. We are in the same situation as
before (sect. 20.9.1.1). We have

g(B) ' oc(1; 12)⊂+KI0.

Note that in this case size(B) − rk(B) = 2, so the center of g(B) is 2-dimen-
sional, and dim g(B) − dim g(1)(B) = 2. So we should be a bit more specific
than in (20.39); namely, we have

[oc(1; 12), X±] = 0;
[I0, X

±] = X±;
[X+, X−] = h1 + h3 + h5 (which corresponds to 112 in oc(1; 12)).

The module g1̄ is irreducible with the highest weight vector

x62 = [[[x7, [x5, [x3, x4]]], [[x1, x2], [x3, x4]]], [[[x2, x3], [x4, x5]], [[x4, x7], [x5, x6]]]].

The Cartan subalgebra is spanned by h1 + h3 + h5, h1, h2, h3, h4, h7 and also
h6 and d1. The weight of x62 is (1, 0, 0, 0, 0, 0, 1, 0). The highest weight vector
of g1̄ is the highest weight vector of one of the copies of the g(B)-module N ,
see 20.9.1.1, so the highest weight of N is the same as the highest weight of
g1̄. (Of course, this is true for the other two similar cases as well; in the case
of e(6, 6), we used Lebedev’s choice — another basis of h — and expressed
the weight with respect to it.)
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20.9.1.5e. e(7, 7) of sdim = 64/62|70. Since the Cartan matrix of this
Lie superalgebra is of rank 6, a grading operator d1 should be (and is) added.
Then g0̄ ' gl(8). The module g1̄ has the two highest weight vectors:

x58 = [[[x3, [x1, x2]], [x6, [x4, x5]]], [[x7, [x3, x4]], [[x2, x3], [x4, x5]]]]

and y7. The Cartan subalgebra is spanned by h1, h2, h3, h4, h5, h6 and also
h1+h3+h7 and d1. The weight of x58 with respect to these elements of the Car-
tan subalgebra is (0, 0, 1, 0, 0, 0, 0, 1) and the weight of y7 is (0, 0, 0, 1, 0, 0, 0, 1).
The module generated by x58 gives all odd positive roots and the module gen-
erated by y7 gives all odd negative roots.

20.9.1.5f. e(8, 1) of sdim = 136|112.We have (cf. sect. 20.9.1.1)
g(B) ' ê(7). (Recall that, in our notation, e(7) has a center but not the
grading operator, see section “Warning” 12.3.1.) The Cartan subalgebra is
spanned by h2 + h4 + h8 and h1, h2, h3, h4, h5, h6, h7. The g0̄-module g1̄ is
irreducible with the highest weight vector:

x119 = [[[[x4, [x2, x3]], [[x5, x8], [x6, x7]]], [[x8, [x4, x5]], [[x3, x4], [x5, x6]]]] ,
[[[x7, [x5, x6]], [[x1, x2], [x3, x4]]], [[x8, [x5, x6]], [[x2, x3], [x4, x5]]]]]

of weight (1, 1, 0, 0, 0, 0, 0, 1) and one lowest weight vector y119 whose expres-
sion is as above the x’s changed by the y’s, of the same weight as that of x119.
(Again, the highest weight of the g(B)-module N , see 20.9.1.1, is the same as
the highest weight of g1̄.)

20.9.1.5g. e(8, 8) of sdim = 120|128. In the Z-grading with the 1st CM
with deg e±8 = ±1 and deg e±i = 0 for i 6= 8, we have g0 = gl(8) = gl(V ).
There are different isomorphisms between g0 and gl(8); using the one where
hi = Ei,i + Ei+1,i+1 for all i = 1, . . . , 7, and h8 = E6,6 + E7,7 + E8,8, we see
that, as modules over gl(V ),

g1 =
∧5

V ∗; g2 =
∧6

V ; g3 = V ;

g−1 =
∧5

V ; g−2 =
∧6

V ∗; g−3 = V ∗.

We could also set, e.g., h8 = E1,1 + E2,2 + E3,3 + E4,4 + E5,5. Then we
would get

g1 =
∧3

V ; g2 =
∧6

V ; g3 =
∧7

V ∗;

g−1 =
∧3

V ∗; g−2 =
∧6

V ∗; g−3 =
∧7

V.

The algebra g0̄ is isomorphic to o
(2)
Π (16)⊂+Kd, where d = E6,6+· · ·+E13,13,

and g1̄ is an irreducible g0̄-module with the highest weight the highest weight
element x120 of weight (1, 0, . . . , 0) (with respect to h1, . . . , h8); g1̄ also pos-
sesses a lowest weight vector.

20.9.2. Systems of simple roots of the e-type Lie superalgebras.

20.9.2.1. Remark. Observe that if p = 2 and the Cartan matrix has no
parameters, the reflections do not change the shape of the diagram. Therefore,
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for the e-superalgebras, it suffices to list distributions of parities of the nodes
in order to describe the diagrams. Since there are tens and even hundreds of
diagrams in these cases, this possibility saves a lot of space, see the lists of all
inequivalent Cartan matrices of the e-type Lie superalgebras.

20.9.2.2. e(6, 1) ' e(6, 5) of sdim46|32. All inequivalent Cartan matri-
ces are as follows (none of the matrices corresponding to the symmetric pairs
of Dynkin diagrams is excluded but are placed one under the other for clarity,
followed by symmetric diagrams):

1) 000010 2) 010001 3) 100110 4) 000011 17) 000110 19) 000111

5) 100000 6) 000101 7) 110010 8) 100001 21) 110000 23) 110001

9) 111001 10) 101001 11) 011000 12) 101100 18) 011001 20) 011110
13) 001111 14) 001011 15) 001100 16) 011010 22) 001101 24) 111100
25) 010100 26) 100010 27) 110110

20.9.2.3. e(6, 6) of sdim = 38|40. All inequivalent Cartan matrices are
as follows:

1) 000001 4) 000100 7) 001000 19) 010000 2) 011011 3) 101110 33) 111110

5) 011100 6) 101111 8) 011101 29) 101010 30) 111101 31) 010110 32) 101011
9) 110011 10) 001001 11) 011111 12) 110100 25) 010011 26) 101000 27) 111011
13) 001010 14) 100011 15) 110101 16) 001110 21) 111000 22) 010010 23) 100111
17) 100100 18) 110111 20) 100101 24) 111010 28) 010101 34) 010111 35) 101101
36) 111111

20.9.2.4. e(7, 1) of sdim = 80/78|54. All inequivalent Cartan matrices
are as follows:

1) 1000000 2) 1000010 3) 1000110 4) 1001100 25) 0110000 26) 0110010 27) 0110110

5) 1010001 6) 1011001 7) 1100000 8) 1100010 21) 0011010 22) 0011110 23) 0100001
9) 1100110 10) 1101100 11) 1110001 12) 1111001 17) 0001101 18) 0001111 19) 0010100
13) 0000011 14) 0000101 15) 0000111 16) 0001011 28) 0111100 24) 0101001 20) 0011000

20.9.2.5. e(7, 6) of sdim = 70/68|64. All inequivalent Cartan matrices
are as follows:

1) 0000010 2) 0000100 3) 0000110 4) 0001000 62) 1111100 63) 1111110

5) 0001010 6) 0001100 7) 0001110 8) 0010001 60 1111000 61) 1111010
9) 0010011 10) 0010101 11) 0010111 12) 0011001 58) 1110100 59) 1110110

13) 0011011 14) 0011101 15) 0011111 16) 0100000 56) 1110000 57) 1110010

17) 0100010 18) 0100100 19) 0100110 20) 0101000 54) 1101101 55) 1101111
21) 0101010 22) 0101100 23) 0101110 24) 0110001 52) 1101001 53) 1101011
25) 0110011 26) 0110101 27) 0110111 28) 0111001 50) 1100101 51) 1100111
29) 0111011 30) 0111101 31) 0111111 32) 1000001 48) 1100001 49) 1100011
33) 1000011 34) 1000101 35) 1000111 36) 1001001 46) 1011100 47) 1011110
37) 1001011 38) 1001101 39) 1001111 40) 1010000 44) 1011000 45) 1011010
41) 1010010 42) 1010100 43) 1010110

20.9.2.6. e(7, 7) of sdim = 64/62|70. All inequivalent Cartan matrices
are as follows:

1) 0000001 2) 0001001 3) 0010000 4) 0010010 34) 1111011 35) 1111101

5) 0010110 6) 0011100 7) 0100011 8) 0100101 32) 1110101 33) 1110111
9) 0100111 10) 0101011 11) 0101101 12) 0101111 30) 1101110 31) 1110011
13) 0110100 14) 0111000 15) 0111010 16) 0111110 28) 1101000 29) 1101010
17) 1000100 18) 1001000 19) 1001010 20) 1001110 26) 1011111 27) 1100100
21) 1010011 22) 1010101 23) 1010111 24) 1011011 25) 1011101
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20.9.2.7. e(8, 1) of sdim = 136|112. All inequivalent Cartan matrices
are as follows:

1) 10000000 2) 10000010 3) 10000011 4) 10000101 120) 01111110

5) 10000110 6) 10000111 7) 10001011 8) 10001100 119) 01111010
9) 10001101 10) 10001111 11) 10010001 12) 10010100 118) 01111001
13) 10011000 14) 10011001 15) 10011010 16) 10011110 117) 01111000
17) 10100000 18) 10100001 19) 10100010 20) 10100110 116) 01110100
21) 10101001 22) 10101100 23) 10110000 24) 10110001 115) 01110001
25) 10110010 26) 10110110 27 10111001 28) 10111100 114) 01101111
29) 11000000 30) 11000010 31) 11000011 32) 11000101 113) 01101101
33) 11000110 34) 11000111 35) 11001011 36) 11001100 112) 01101100
37) 11001101 38) 11001111 39) 11010001 40) 11010100 111) 01101011
41) 11011000 42) 11011001 43) 11011010 44) 11011110 110) 01100111
45) 11100000 46) 11100001 47) 11100010 48) 11100110 109) 01100110
49) 11101001 50) 11101100 51) 11110000 52) 11110001 108) 01100101
53) 11110010 54) 11110110 55) 11111001 56) 11111100 107) 01100011

57) 00000011 58) 00000100 59) 00000101 60) 00000111 106) 01100010

61) 00001000 62) 00001010 63) 00001011 64) 00001101 105) 01100000

65) 00001110 66) 00001111 67) 00010011 68) 00010100 104) 01011100
69) 00010101 70) 00010111 71) 00011000 72) 00011010 103) 01011001
73) 00011011 74) 00011101 75) 00011110 76) 00011111 102) 01010110
77) 00100001 78) 00100100 79) 00101000 80) 00101001 101) 01010010
81) 00101010 82) 00101110 83) 00110000 84) 00110010 100) 01010001
85) 00110011 86) 00110101 87) 00110110 88) 00110111 99) 01010000
89) 00111011 90) 00111100 91) 00111101 92) 00111111 98) 01001100

93) 01000000 94) 01000001 95) 01000010 96) 01000110 97) 01001001

20.9.2.8. e(8, 8) of sdim = 120|128. All inequivalent Cartan matrices
are as follows:

1) ) 00000001 2) 00000010 12) 00100000 6) 00010000 109) 11010101

5) 00001100 4) 00001001 7) 00010001 8) 00010010 110) 11010110
9) 00010110 10) 00011001 11) 00011100 3) 00000110 111) 11010111
13) 00100010 14) 00100011 15) 00100101 16) 00100110 112) 11011011
17) 00100111 18) 00101011 19) 00101100 20) 00101101 113) 11011100
21) 00101111 22) 00110001 23) 00110100 24) 00111000 114) 11011101
25) 00111001 26) 00111010 27) 00111110 28) 01000011 115) 11011111
29) 01000100 30) 01000101 31) 01000111 32) 01001000 116) 11100011
33) 01001010 34) 01001011 35) 01001101 36) 01001110 117) 11100100
37) 01001111 38) 01010011 39) 01010100 40) 01010101 118) 11100101
41) 01010111 42) 01011000 43) 01011010 44) 01011011 119) 11100111
45) 01011101 46) 01011110 47) 01011111 48) 01100001 120) 11101000
49) 01100100 50) 01101000 51) 01101001 52) 01101010 121) 11101010
53) 01101110 54) 01110000 55) 01110010 56) 01110011 122) 11101011
57) 01110101 58) 01110110 59) 01110111 60) 01111011 123) 11101101
61) 01111100 62) 01111101 63) 01111111 64) 10000001 124) 11101110
65) 10000100 66) 10001000 67) 10001001 68) 10001010 125) 11101111
69) 10001110 70) 10010000 71) 10010010 72) 10010011 126) 11110011
73) 10010101 74) 10010110 75) 10010111 76) 10011011 127) 11110100
77) 10011100 78) 10011101 79) 10011111 80) 10100011 128) 11110101
81) 10100100 82) 10100101 83) 10100111 84) 10101000 129) 11110111
85) 10101010 86) 10101011 87) 10101101 88) 10101110 130) 11111000
89) 10101111 90) 10110011 91) 10110100 92) 10110101 131) 11111010
93) 10110111 94) 10111000 95) 10111010 96) 10111011 132) 11111011
97) 10111101 98) 10111110 99) 10111111 100) 11000001 133) 11111101
101) 11000100 102) 11001000 103) 11001001 104) 11001010 134) 11111110
105) 11001110 106) 11010000 107) 11010010 108) 11010011 135) 11111111
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20.10.1. Notation. The Dynkin diagrams in Table correspond to CM Lie
superalgebras close to ortho-orthogonal and periplectic Lie superalgebras.
Each thin black dot may be ⊗ or �; the last five columns show conditions
on the diagrams; what concerns the last four columns, it suffices to satisfy
conditions in any one row. Horizontal lines in the last four columns separate
the cases corresponding to different Dynkin diagrams. The notations are:
v is the total number of nodes in the diagram;
ng is the number of “grey” nodes ⊗’s among the thin black dots; png is the
parity of this number;
ev and od are the number of thin black dots such that the number of ⊗’s to
the left from them is even and odd, respectively.

20.11. Fixed points of symmetries of the Dynkin
diagrams

20.11.1. Recapitulation. For p = 0, it is well known that the Lie algebras
of series B and C and the exceptions F and G are obtained as the sets of
fixed points of the outer automorphism of an appropriate Lie algebra of ADE
series. All these automorphisms correspond to the symmetries of the respective
Dynkin diagram. Not all simple finite dimensional Lie superalgebras can be
obtained as the sets of fixed points of the symmetry of an appropriate Dynkin
diagram, but many of them can, see [FSS].

Recall Serganova’s result [Se] on outer automorphisms (i.e., modulo the
connected component of the unity of the automorphism group) of simple finite
dimensional Lie superalgebras for p = 0. The symmetry of the Dynkin diagram
of sl(n) corresponds to the transposition with respect to the side diagonal,
conjugate in the group of automorphisms of sl(n) to the “minus transposition”
X 7→ −Xt. In the super case, this automorphism becomesX 7−→ −Xst, where

(
A B
C D

)st
=

(
At −Ct

Bt Dt

)

This automorphism, seemingly of order 4, is actually of order 2 modulo the
connected component of the unity of the automorphism group, and is of order
4 only for sl(2n+ 1|2m+ 1).

The queer Lie superalgebra q(n) is obtained as the set of fixed points of
the automorphism

Π :

(
A B
C D

)
7−→

(
D C
B A

)

of gl(n|n) corresponding to the symmetry of the Dynkin diagram

11◦ − · · · − 1n◦ −⊗− 21◦ − · · ·− 2n◦ 7−→ 21◦ − · · ·− 2n◦ −⊗− 11◦ − · · ·− 1n◦
which interchanges the identical maximal parts ◦− · · · −◦ p r e s e r v i n g
the order of nodes; whereas pe(n) is the set of fixed points of the composition
automorphism Π ◦ (−st).
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20.11.2. New result. The modular version of the above statements is given
in the next Theorem in which, speaking about ortho-orthogonal and periplec-
tic superalgebras, we distinguish the cases where the fork node is grey or white
(gg(A) and wg(A), respectively); to squeeze the data in the table, we write ĝ

instead of g⊂+KI0. We also need the following decomposable Cartan matrices
(p = 2):

N :=



0̄ 1 0 0
1 0̄ 0 0
0 1 0̄ 1
0 0 1 0̄


 , M :=



0̄ 1 0 0
1 0 0 0
0 1 0̄ 1
0 0 1 0̄




20.11.2.0a. The Lie algebra g(N). It is of dim 34 and not simple; it con-
tains a simple ideal of dim = 26 which is o(1; 8)(1)/c and the quotient is
isomorphic to sl(3).

20.11.2.0b. The Lie superalgebra g(M). It is of sdim 18|16 and not sim-
ple. Its even part is hei(2)⊕c g(C), where hei(2) = Span{X±, c} and c is the
center of the Lie algebra g(C), where

C :=

(
0̄ 0 0
0 0̄ 1
0 1 0̄

)

The brackets are as follows:

[X±, g(C)(1)] = 0; [X±, d] = X±; [X+, X−] = c,

where d is the grading operator of the Lie algebra g(C).
Now the Cartan subalgebra of g(M) is generated by h3, h6, h1+h5, h2+h4

and the highest weight vector of the module g(M)1̄ is x32 + x33, where

x32 = [[[x1, x2], [x3, x4]], [[x3, x6], [x4, x5]]],

x33 = [[[x1, x2], [x3, x6]], [[x2, x3], [x4, x5]]]

Its weight is (0, 0, 1, 0) (according to the ordering of the generators of the
Cartan subalgebra as above).

The restriction of the module to hei(2) consists of 8 copies of the 2-dimen-
sional irreducible Fock module; the restriction to g(C) consists of 2 copies of
an irreducible 8-dimensional module.

The lowest weight vector is y32 + y33 with weight (0, 0, 1, 0).
The Lie superalgebra g(M) has a simple ideal, of sdim = 10|16 which is

oo(1; 4|4)(1)/c (to be described separately below) and the quotient is isomor-
phic to sl(3).

20.11.2.0c. Theorem. If the Dynkin diagram of ig(A) is symmetric, it
gives rise to an outer automorphism σ whose fixed points constitute the Lie su-
peralgebra (ig(A))σ which occupies the slot under ig(A) in the following tables
(20.41), (20.42), (20.43).
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1) The order 2 automorphisms of the sl series corresponding to the sym-
metries of Dynkin diagrams give the following fixed points:

sl(2n+ 1) gl(2n)

{
sl(2k + 1|2m+ 1) for k +m odd;

gl(2k + 1|2m + 1) for k +m even.
sl(2k + 1|2m)

o(2n+ 1) o(2n) oo(2k + 1|2m + 1) oo(2k + 1|2m)

gl(n|n), Π gl(n|n), Π ◦ (t) gl(2k|2m)

q(n) pe(n) oo(2k|2m)

(20.41)
2) The order 2 automorphisms of the orthogonal and ortho-orthogonal se-

ries give the following fixed points:

̂ooc(2; 2k0̄|2k1̄) for k0̄ + k1̄ odd;

̂ooc(1; 2k0̄|2k1̄) for k0̄ + k1̄ even.

̂oc(2; 2k) for k odd;

̂oc(1; 2k) for k even. (20.42)

3) The following are the fixed points of order 2 automorphisms of the ex-
ceptional Lie (super)algebras and periplectic superalgebras, and of order 3 au-
tomorphisms of the orthogonal algebra and ortho-orthogonal superalgebras.

1g(2, 3) 2g(2, 3) 5g(2, 3) 5g(2, 6) 2g(2, 6) ̂oc(1; 8)

psl(2|2) sl(1|2) osp(3|2) g(1, 6) g(1, 6) gl(4)

g ̂ooc(1; 4|4) w ̂ooc(1; 4|4) g ̂pec(1; 4) w ̂pec(1; 4) g ̂ooc(2; 6|2) w ̂ooc(2; 6|2)
gl(2|2) gl(2|2) gl(1|3) gl(1|3) gl(2|2) gl(2|2)

(20.43)

Besides, e(6)σ = g(N), whereas

25e(6,1)σ ' 26e(6,1)σ' 27e(6,1)σ'
1e(6,6)σ ' 7e(6,6)σ ' 5e(6,6)σ ' 33e(6,6)σ' 8e(6,6)σ ' 29e(6,6)σ'
32e(6,6)σ ' 10e(6,6)σ' 14e(6,6)σ' 18e(6,6)σ' 28e(6,6)σ ' 36e(6,6)σ' g(M).

20.11.3. The structure of the deforms at the exceptional values
of parameter. The result (it is not new for p = 0 for osp(4|2; a) and is
given for comparison) obtained by tending the parameter to the limit (de-
noted lim

a−→a0
g(A(a))) differs, sometimes, from the one obtained by construct-

ing g(A(a0)) at the exceptional value of parameter (even their dimensions
differ):

Statement.
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wk(3; 0) ' gl(2)⊕ sl(3) wk(3; 1) ' gl(4)

lim
a−→0

wk(3; a) ' lim
a−→1

wk(3; a) '
bgl(3; 0) ' gl(1|1)⊕ sl(3) bgl(3; 1) ' gl(2|2)
lim
a−→0

bgl(3; a) ' lim
a−→1

bgl(3; a) '
osp(4|2; 0) ' sl(2)⊃+ psl(2|2) osp(4|2;−1) ' psl(2|2)⊃+ sl(2)

wk(4; 0) ' gl(2)⊕ gl(4) wk(4; 1) ' sl(5)

lim
a−→0

wk(4; a) ' lim
a−→1

wk(4; a) '
bgl(4; 0) ' gl(1|1)⊕ gl(4) bgl(4; 1) ' sl(1|4)
lim
a−→0

bgl(4; a) ' lim
a−→1

bgl(3; a) '

(20.44)

20.11.4. A realization of g = oo(4|4)(1)/c. This simple Lie superal-
gebra g admits an unexpected realization in which g0̄ ' hei(8)⊂+KE, where
hei(8) = Span(p, q, c) with p = (p1, . . . , p4), q = (q1, . . . , q4) and c being the
center of hei and g1̄ being a copy of the Fock space considered purely odd,
i.e., as Π(K[p]/(p21, . . . , p

2
4)), and E :=

∑
(pi∂pi + qi∂qi).

Indeed, consider the following isomorphism

ϕ : Π(K[p]/(p21, . . . , p
2
4)) −→ Span(ϕ0, . . . , ϕ1234)

ϕ0 := Π(1), ϕi := Π(pi), ϕij := Π(pipj), . . . , ϕ1234 := Π(p1p2p3p4).

(20.45)
Now the multiplication is given by the following two tables, where D := c+E
to save space:

c E p1 p2 p3 p4 q1 q2 q3 q4
ϕ0 ϕ0 ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 0 0 0 0

ϕ1 ϕ1 0 0 ϕ12 ϕ13 ϕ14 ϕ0 0 0 0

ϕ2 ϕ2 0 ϕ12 0 ϕ23 ϕ24 0 ϕ0 0 0

ϕ3 ϕ3 0 ϕ13 ϕ23 0 ϕ34 0 0 ϕ0 0

ϕ4 ϕ4 0 ϕ14 ϕ24 ϕ34 0 0 0 0 ϕ0

ϕ12 ϕ12 ϕ12 0 0 ϕ123 ϕ124 ϕ2 ϕ1 0 0

ϕ13 ϕ13 ϕ13 0 ϕ123 0 ϕ134 ϕ3 0 ϕ1 0

ϕ14 ϕ14 ϕ14 0 ϕ124 ϕ134 0 ϕ4 0 0 ϕ1

ϕ23 ϕ23 ϕ23 ϕ123 0 0 ϕ234 0 ϕ3 ϕ2 0

ϕ24 ϕ24 ϕ24 ϕ124 0 ϕ234 0 0 ϕ4 0 ϕ2

ϕ34 ϕ34 ϕ34 ϕ134 ϕ234 0 0 0 0 ϕ4 ϕ3

ϕ123 ϕ123 0 0 0 0 ϕ1234 ϕ23 ϕ13 ϕ12 0

ϕ124 ϕ124 0 0 0 ϕ1234 0 ϕ24 ϕ14 0 ϕ12

ϕ134 ϕ134 0 0 ϕ1234 0 0 ϕ34 0 ϕ14 ϕ13

ϕ234 ϕ234 0 ϕ1234 0 0 0 0 ϕ34 ϕ24 ϕ23

ϕ1234 ϕ1234 ϕ1234 0 0 0 0 ϕ234 ϕ134 ϕ124 ϕ123
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ϕ1234 ϕ234 ϕ134 ϕ124 ϕ123 ϕ34 ϕ24 ϕ23 ϕ14 ϕ13 ϕ12 ϕ4 ϕ3 ϕ2 ϕ1 ϕ0

ϕ1234 0 0 0 0 0 0 0 0 0 0 0 p4 p3 p2 p1 D

ϕ234 0 0 0 0 0 0 0 0 p4 p3 p2 0 0 0 E q1

ϕ134 0 0 0 0 0 0 p4 p3 0 0 p1 0 0 E 0 q2

ϕ124 0 0 0 0 0 p4 0 p2 0 p1 0 0 E 0 0 q3

ϕ123 0 0 0 0 0 p3 p2 0 p1 0 0 E 0 0 0 q4

ϕ34 0 0 0 p4 p3 0 0 0 0 0 D 0 0 q1 q2 0

ϕ24 0 0 p4 0 p2 0 0 0 0 D 0 0 q1 0 q3 0

ϕ23 0 0 p3 p2 0 0 0 0 D 0 0 q1 0 0 q4 0

ϕ14 0 p4 0 0 p1 0 0 D 0 0 0 0 q2 q3 0 0

ϕ13 0 p3 0 p1 0 0 D 0 0 0 0 q2 0 q4 0 0

ϕ12 0 p2 p1 0 0 D 0 0 0 0 0 q3 q4 0 0 0

ϕ4 p4 0 0 0 E 0 0 q1 0 q2 q3 0 0 0 0 0

ϕ3 p3 0 0 E 0 0 q1 0 q2 0 q4 0 0 0 0 0

ϕ2 p2 0 E 0 0 q1 0 0 q3 q4 0 0 0 0 0 0

ϕ1 p1 E 0 0 0 q2 q3 q4 0 0 0 0 0 0 0 0

ϕ0 D q1 q2 q3 q4 0 0 0 0 0 0 0 0 0 0 0

20.11.4.1. Remark. If p = 0, every irreducible module over a solvable Lie
algebra is 1-dimensional. A theorem, based on this fact, states that any Lie
superalgebra g is solvable if and only if g0̄ is solvable. The example above
shows that if p > 0, life is much more interesting.

We are unable to answer: Are there (hopefully, simple) Lie superalgebras
g with g0̄ ' hei(2n)⊂+KE and g1̄ ' Π(Fock module over hei(2n)) for n 6= 4?



Chapter 21

Selected problems (D. Leites)

21.1. Representations

A serious problem:What is universal enveloping algebra in the mod-
ular case?. I do not understand why the conventional theory only accepts
the “usual” U(g) and restricted u(g) notions of the universal enveloping al-
gebras. Let us explain how definition of U(g) affects both the definition of
(co)homology and the notion of (co)induced representations. The scientific
definition of the Lie (super)algebra cohomology and homology are

Hi(g;M) := ExtiU(g)(K;M), Hi(g;M) := Tor
U(g)
i (K;M). (21.1)

So it is clear, actually, how to approach the problem, at least for the modular
Lie algebras obtained by means of the Kostrikin-Shafarevich approach (and
its super analog), i.e., the ones that have analogs over C with a basis in which
all structure constants are integer: Speaking about non-super cases, take any
book (e.g., [St]) in which a convenient Z-form UZ(g) of U(g) is described for
any simple complex g, and introduce N (similar to the N in the definition of
the algebra of divided powers O(n;N)) by setting something like

U(g;N) := subalgebra of UZ(g) constructed
“similarly to the algebra of divided powers” O(n;N);

Hi
N (g;M) := ExtiU(g;N)(K;M).

(21.2)

How to perform this “similar construction” of “something like” is the whole
point.

Absolutely correct — in terms of the conventional definition (21.1) —
Dzhumadildaev’s computations (elucidated in [Vi]) imply that

vect(n;N) := der(O(n;N)),

where only “special derivatives” are considered, is not rigid. I find this result
“ideologically wrong” and believe that the cause is buried in the definitions
used. Recall the arguments in favor of rigidity of vect, see [LL]:
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Let h be a subalgebra of g. For any h-module V , we define a series of
coinduced g-modules:

Coindgh(V ;N) := HomU(h;N)(U(g;N), V ); (21.3)

Then, in terms of the conjectural definition (21.2), we should have the follow-
ing analog of the well-known isomorphism:

Hi
N (g; Coindgh(V ;N)) ' Hi(h;V ). (21.4)

This isomorphism implies that, for g = vect(n;N), we should have
H2
N (g; g) ' H2(gl(V );V ) = 0, where dimV = n, at least, if n is not divisible

by p.
The situation is opposite in a sense to that with the Kac-Moody groups

that “did not exist” until a correct definition of cohomology was used; or with
Dirac’s δ-function which is not a function in the conventional sense.

Dzhumadildaev [Dz2] (also Farnsteiner and Strade [FS]) showed that for
p > 0 the conventional analog of the statement (21.4), a.k.a. Shapiro’s lemma,
should be formulated differently because Hi(g; Coindgh(V )) strictly contains

Hi(h;V ). I hope that one can get rid of these extra cocycles in an appropriate
theory.

The Lie (super)algebra (co)homology can also be defined “naively”, as a
generalization (and dualization) of the de Rham complex. In this approach
the enveloping algebra does not appear explicitly and the divided powers we
tried to introduce above seem to disappear.

All of the following problems are formulated as if the above prob-
lem does not exist, i.e., we use the conventional definition of repre-
sentations.

21.1.1. Problem. 1) Describe the irreducible representations of infinite di-
mensional solvable Lie superalgebras over C, thus having superized the results
of [D] and generalized Chapter 6.

2) Describe the irreducible representations of finite dimensional solvable
Lie superalgebras over fields of positive characteristic.

21.1.2. Problem. Following [RSh], describe the irreducible representations
of the simplest of simple Lie superalgebras for p > 0: that of osp(1|2) for p > 2
and of oo(1|2) for p = 2 (cf. also [Do] who did not bother to refer to [RSh]
whose technique he repeats literally).

Since [RSh] was published when the journal Matematicheskie Zametki was
not cover-to-cover translated, and the translation (of [Do]) is not easily avail-
able either, let me give a gist of the relevant ideas and results.

21.1.3. Problem. The realization of the spinor representations by means
of quantization of the Poisson (super)algebra can be defined, but only for
the restricted version of the Poisson superalgebra. Even this can only be per-
formed for p > 2. To describe all deformations of the Poisson superalgebras
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poB(n0̄|n1̄;N) — in particular, to quantize it (here: realize by differential
operators in the space of “functions” of sorts — for arbitrary values of N .

The same problem for p = 2 is hardly more difficult but the answer is
distinct from that for p > 2: Indeed, we already know that o(3) has no 2-
dimensional representations.

21.1.4. Problem. Consider the same problem as that solved by B. Clarke
but for p > 3. For example, for p = 5. If the answer will reveal a pattern, one
could make a conjecture concerning the structure of the answer for any p > 3.
The number of cases to consider grows with p.

I expect the answer is somewhat different for p = 2. It could be easier to
get than for p = 5 since one has fewer cases to consider.

21.1.5. Problem. A) Over C:
1) Describe (unary and binary) differential operators invariant with respect

to non-standard regradings of the (simple) vectorial Lie superalgebras.
2) Describe at least, the primitive forms in these cases, and for the excep-

tional simple vectorial Lie superalgebras.
B) Same problem for p > 0. Something is already done by S. Krylyuk.

•24

•
24

21.2. Lie (super)algebras. Their structure

21.2.1. Problem. One of the roughest invariants of a given (super)algebra
is its (super)dimension. Hence, this problem: Give a precise formula for the

superdimension of the k-th prolong of o
(2)
ΠΠ(n0̄|n1̄). Lebedev showed that this

dimension depends only on n = n0̄ + n1̄ and k — not on n0̄ and n1̄ but was
unable to derive a precise formula in the general case.

The following table shows the known dimensions for small n and k:

n \ k 1 2 3 4 5
4 0 0 0 0 0
6 14 1 0 0 0
8 48 43 8 1 0

21.3. Quest for simple Volichenko algebras

21.3.1. Problem. A) Over C:
1) Describe simple Volichenko subalgebras of the exceptional simple vec-

torial Lie superalgebras.
2) Describe simple Volichenko subalgebras of the simple stringy Lie super-

algebras.
3) Describe simple Volichenko subalgebras of the loop Lie superalgebras.
B) Same problem for p > 0.
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21.4. Miscellanies

21.4.1. Problem. Generalize Dzhumadildaev’s result ([Dz]) to other dimen-
sions, or to Lie superalgebras, or to simple Lie (super)algebras of vector fields
other than vect or svect, or to the modular Lie (super)algebras.
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by D. Leites. Mathematical Physics and Applied Mathematics, 9.
D. Reidel Publishing Co., Dordrecht, 1987. xii+424 pp.

[B1] Berezin F.A. Automorphisms of the Grassmann algebra. Mat. Za-
metki 1, 1967, 269–276 (in Russian)

[BLS] Berezin F.A., Leites D.A. Supermanifolds. Sov. Math. Doklady 16
(1975), 1976, 1218–1222

[BWV] Bergshoeff E., de Wit B., Vasiliev M., The structure of the super-
W∞(λ) algebra. Nucl. Phys B366, 1991, 315–346

[Be] Bergvelt, M. J., A note on super Fock space. J. Math. Phys. 30
(1989), no. 4, 812–815.

[Ber] Bernstein J., The Lie superalgebra osp(1|2), connections over sym-
plectic manifolds and representations of Poisson algebras. In: [LSoS],
9/1987–13.

[BGG] Bernstein I. N., Gelfand I. M., Gelfand S. I. Differential operators on
the base affine space and a study of g-modules. In: Kirillov A. (ed.)
Lie groups and their representations (Proc. Summer School, Bolyai
János Math. Soc., Budapest, 1971). Halsted, New York, 1975, 21–64

[BL] Bernstein, J.N., Leites, D.A., How to integrate differential forms on
supermanifolds. (Russian) Funkcional. Anal. i Priložen. 11 (1977),
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Institure for computer research, Moscow-Izhevsk, 2002, 320 pp (in
Russian) ??net li in English?

•45

•
[ DL: ]

[KKCh] Kirillov, S. A.; Kuznetsov, M. I.; Chebochko, N. G. Deformations
of a Lie algebra of type G2 of characteristic three. (Russian) Izv.
Vyssh. Uchebn. Zaved. Mat. 2000, no. 3, 33–38; [English translation:
Russian Math. (Iz. VUZ) 44 (2000), no. 3, 31–36]

[KSh] Kostrikin, A. I., Shafarevich, I.R., Graded Lie algebras of finite char-
acteristic, Izv. Akad. Nauk. SSSR Ser. Mat. 33 (1969) 251–322 (in
Russian); [English translation: Math. USSR Izv. 3 (1969) 237–304]

[Kur] Kuranishi, M., On everywhere dense imbedding of free groups in Lie
groups. Nagoya Math. J. 2 (1951) 63–71.

[KLR] Kushner A., Lychagin V., Rubtsov V., Contact Geometry and Non-
linear Differential Equations (Encyclopedia of Mathematics and its
Applications), Cambridge University Press, 518 pp.

[KuCh] Kuznetsov, M. I.; Chebochko, N. G. Deformations of classical Lie al-
gebras. (Russian) Mat. Sb. 191 (2000), no. 8, 69–88; [English trans-
lation: Sb. Math. 191 (2000), no. 7–8, 1171–1190]

[Ku1] Kuznetsov, M. I. The Melikyan algebras as Lie algebras of the type
G2. Comm. Algebra, 19 (1991), no. 4, 1281–1312.

[Ku2] Kuznetsov, M. I. Graded Lie algebras with the almost simple com-
ponent L0. Pontryagin Conference, 8, Algebra (Moscow, 1998). J.
Math. Sci. (New York) 106 (2001), no. 4, 3187–3211.

[Lang] Lang, S., Algebra. Revised third edition. Graduate Texts in Mathe-
matics, 211. Springer-Verlag, New York, 2002. xvi+914 pp.

[La] Larsson T., Structures Preserved by Consistently Graded Lie Super-
algebras, arXiv:math-ph/0106004

[L1] Lebedev A., Non-degenerate bilinear forms in characteristic 2, re-
lated contact forms, simple Lie algebras and superalgebras; arXiv:
math.AC/0601536

[L2] Lebedev A., Analogs of the orthogonal, Hamiltonian, Poisson, and
contact Lie superalgebras in characteristic 2. Theor. Math. Phys.,
(2009) (in press)

•46

•
[ DL: ] 46

[L4] Lebedev A., On the Bott-Borel-Weil and Tolpygo theorems. Mat.
Zametki, t. 81, no. 3, 2007, 474–477; MPIMiS preprint 84/2006
(http://www.mis.mpg.de)

[LL] Lebedev A., Leites D. (with an appendix by Deligne P.) On re-
alizations of the Steenrod algebras J. Prime Research in Mathe-
matics, v. 2 no. 1 (2006), 1–13; MPIMiS preprint 131/2006
(http://www.mis.mpg.de)

[LLS] Lebedev, A.; Leites, D.; Shereshevskii, I. Lie superalgebra structures
in C

.
(n; n) and H

.
(n; n). In Vinberg É. (ed.). Lie groups and invari-

ant theory, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc.,
Providence, RI, 2005, 157–172; arXiv: math/0404139



522 Ch. 21. Selected problems (D. Leites)

[Le0] Leites D., Spectra of graded-commutative rings. Uspehi Matem
Nauk, 1974, v. 29, no. 3, 209–210 (in Russian)

[Le2] Leites D., New Lie superalgebras and mechanics. Soviet Math. Dok-
lady, v. 18, n. 5, 1977, 1277–1280

[DL2] Leites D., Introduction to supermanifold theory. Russian Math. Sur-
veys. 35, 1980, 1, 1–57.
Leites D., Supermanifold theory, Karelia Branch of the USSR Acad.
Sci., Petrozavodsk, 1983, 200 pp. (in Russian) Expanded in: [LSoS],
30/1988-13 and 31/1988-14

[LSoS] Leites D. (ed.) Seminar on Supermanifolds, Reports of the Depart-
ment of Mathematics of Stockholm University, nn. 1–34, 1986–1990,
2100 pp.

•47

•
[ DL: ]47

[Le3] Leites D., Lie superalgebras. In: Modern Problems of Mathematics.
Recent developments, v. 25, VINITI, Moscow, 1984, 3–49 (Russian)
[English translation: J. Soviet Math., v. 30 (6), 1985, 2481–2512]

[Le4] Leites D., Selected problems of supermanifold theory, Duke Math.
J., v. 54, no. 2, 649–656

[DL1] Leites D., Quantization and supermanifolds. In: F. Berezin, M. Shu-
bin Schrödinger equation, Kluwer, Dordrieht, 1991

[LInd] Leites D., Indecomposable representations of Lie superalgebras, In:
Memorial volume dedicated to Misha Saveliev and Igor Luzenko,
ed. Sissakian A. N. (JINR, Dubna, 2000) 126–131 arXiv:

math.RT/0202184.
[LInt] Leites D., On unconventional integrations on supermanifolds and

cross ratio on classical superspaces, In: Supersymmetries and quan-
tum symmetries, eds. Krivonos S. et. al. (SQS’01, Karpacz, 22–26
September, 2001), ??

[Le5] Leites D., The Riemann tensor for nonholonomic manifolds. Homol-
ogy, Homotopy and Applications, vol 4 (2), 2002, 397–407; arXiv:
math.RT/0202213

[Le1] Leites D., Towards classification of simple finite dimensional modular
Lie superalgebras, J. Prime Research in Mathematics, v. 3, 2007,
101–110; arXiv: 0710.5638

[LCh] Leites D. (ed.) Chevalley supergroups and simple modular Lie su-
peralgebras(S. Bouarroudj, B. Clarke, P. Grozman, A. Lebedev,
D. Leites, I. Shchepochkina), ca 350 pp. IN PREPARATION

•48

•
[ DL:48

]
[LJ] Leites D. (ed.) Jost–Leites seminar on super Riemann surfaces (with

contributions by B. Feigin, P. Grozman, S. Krivonos, A. Lebedev,
V. Ovsienko, Ch. Sachse, I. Shchepochkina); ca 400 pp. IN PREPA-
RATION

•49

•
[ DL: ]49

[LKV] Leites D., Kochetkov Yu. and Vaintrob A., New invariant differential
operators on supermanifolds and pseudo-(co)homology, In: General
topology and its applications, eds. Andima S. et al (Lect. Notes in

Ch. 21. Selected problems (D. Leites) 523

pure and applied math, Marcel Decker, NY, 1991) Vol. 134, pp. 217–
238.

[LP0] Leites D., Poletaeva E., Supergravities and contact type structures
on supermanifolds. Second International Conference on Algebra
(Barnaul, 1991), Contemp. Math., 184, Amer. Math. Soc., Provi-
dence, RI, 1995, 267–274

[LP] Leites, D., Poletaeva E., Defining relations for classical Lie algebras
of polynomial vector fields, Math. Scand., 81 (1997), no. 1, 5–19;
arXiv: math.RT/0510019

Grozman P., Leites, D., Poletaeva E., Defining relations for classical
Lie superalgebras without Cartan matrices, Homology, Homotopy
and Applications, vol 4 (2), 2002, 259–275

[LPS] Leites D., Poletaeva E., Serganova V., On Einstein equations on
manifolds and supermanifolds, J. Nonlinear Math. Physics, v. 9,
2002, no. 4, 394–425; arXiv: math.DG/0306209

[LSS] Leites D., Saveliev M., Serganova V., Embeddings of osp(n|2) and the
associated nonlinear supersymmetric equations. In: Markov, M.A.,
Man’ko, V.I., and Dodonov, V.V. (eds.) Group Theoretical Methods
in Physics (Yurmala 1985), VNU Science Press, Utreht, v.1, 1986,
255–297

[LST] Leites D. , Semenov-Tian-Shansky M., Integrable systems and Lie
superalgebras. In: L. D. Faddeev (ed.) Differential geometry, Lie
groups and mechanics, V. Zap. Nauchn. Sem. Leningrad. Otdel. Mat.
Inst. Steklov. (LOMI), Nauka, Leningrad, v. 123, 1983, 92–97;
Kirillova, R. Yu. Explicit solutions of superized Toda lattices. ibid.,
123 ,1983, 98–111

[LSa1] Leites D., Serganova V., Defining relations for classical Lie superalge-
bras. I. Superalgebras with Cartan matrix or Dynkin-type diagram.
Topological and geometrical methods in field theory (Turku, 1991),
World Sci. Publishing, River Edge, NJ, 1992, 194–201

[LSa2] Leites D., Serganova V., Metasymmetry and Volichenko algebras,
Phys. Lett. B, 252, 1990, no. 1, 91–96
id., Symmetries wider than supersymmetries. In: S. Duplij and
J. Wess (eds.) Noncommutative structures in mathematics and
physics, Proc. NATO Advanced Research Workshop, Kiev, 2000.
Kluwer, 13–30

[LSV] Leites D., Serganova V., Vinel G., Classical superspaces and related
structures. In: Bruzzo U. e.a. (eds.) Proc. Intnl. Conf. Diff. Geom.
Methods in Physics DGM-IXI, 1990, Springer LN in Phys., 1991,
286–297

[LSe] Leites D., Sergeev A., Orthogonal polynomials of discrete vari-
able and Lie algebras of complex size matrices. In: Proceedings of
M. Saveliev memorial conference, MPI, Bonn, February, 1999; Teor.
and Mat. Phys., v. 123, no. 2, 205–236 (Russian) [English transla-
tion: Theoret. and Math. Phys. 123 (2000), no. 2, 582–608];



524 Ch. 21. Selected problems (D. Leites)

preprint MPI-1999-36, 49--70 (www.mpim-bonn.mpg.de)

[LSh] Leites D., Shchepochkina I., Toward classification of simple vectorial
Lie superalgebras. In: [LSoS], 31/1988-14, 235–278;
Leites D., Toward classification of classical Lie superalgebras. In:
Nahm W., Chau L. (eds.) Differential geometric methods in theoret-
ical physics (Davis, CA, 1988), NATO Adv. Sci. Inst. Ser. B Phys.,
245, Plenum, New York, 1990, 633–651;
Leites D., Shchepochkina I., The classification of simple
Lie superalgebras of vector fields, preprint MPIM-2003-28

(www.mpim-bonn.mpg.de)

[LSH1] Leites D., Shchepochkina I., Howe’s duality and Lie superalgebras,
In: S. Duplij and J. Wess (eds.) Noncommutative structures in math-
ematics and physics, (Proc. NATO Advanced Research Workshop,
Kiev, Kluwer, 2000) pp. 93–112.

[LSh3] Leites D., Shchepochkina I., How should the antibracket be quan-
tized? (Russian) Teoret. Mat. Fiz. 126 (2001), no. 3, 339–369; [En-
glish translation: Theoret. and Math. Phys. 126 (2001), no. 3, 281–
306]; arXiv: math-ph/0510048

[Lin1] Lin, L., Lie algebras K(F, µi) of Cartan type of characteristic p = 2
and their subalgebras (Chinese. English summary), J. East China
Norm. Univ. Natur. Sci. Ed. 1 (1988), 16–23
[MR0966993 (89k:17033): In this paper, the author constructs Lie
algebras K(F, µi) of Cartan type K over a field F of characteristic
p = 2, where F is a flag, µi ∈ F . The author proves if the coeffi-
cients {µi} satisfy some conditions, the K(F, µi) or their derivation
algebras are simple. Two classes of simple subalgebras G and L of
K(F, µi) are given. The result of this paper is new. 4) Reviewed by
Yong Zheng Zhang]

[Lin2] Lin, L., Nonalternating hamiltonian algebra P (n,m) of characteris-
tic two, Comm. Algebra 21 (2) (1993) 399–411.

[LR] Lunts V.A., Rosenberg A.L., Differential operators on noncommuta-
tive rings, Selecta Math.(N.S) 3, 335–359 (1997).

[Ly] Lychagin V.V., Contact geometry and second-order nonlinear differ-
ential equations, Uspekhi Mat. Nauk, 34, no. 1(205), 137–165 (1979),
(Russian) [English translation: Russian Math. Surveys, 34, no. 1,
149–180 (1979)].

[LRC] Lychagin V., Rubtsov V. and Chekalov I., A classification of Monge-
Ampére equations, Ann. Sci. École Norm. Sup. (4) 26, no. 3, 281–
308 (1993).

[Mj] Majid S. Quasitriangular Hopf algebras and Yang-Baxter equations,
Int. J. Mod. Phys. A5, 1990, 1–91

[Mn1] Manin Yu. Quantum groups and non-commutative geometry, CRM,
Montreal, 1988

4 But, unfortunately, the two classes of subalgebras G and L are not simple. D.L.

Ch. 21. Selected problems (D. Leites) 525

[Mn2] Manin Yu. Topics in non-commutative geometry, Rice Univ., 1989
[MaG] Manin Yu.Gauge field theory and complex geometry. Translated from

the 1984 Russian original by N. Koblitz and J. R. King. Second edi-
tion. With an appendix by Sergei Merkulov. Grundlehren der Mathe-
matischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], 289. Springer-Verlag, Berlin, 1997. xii+346 pp.

[MaAG] Manin Yu. Introduction into theory of schemes. Translated from the
Russian and edited by D. Leites. ASSMS, in preparation. 181 pp.

[MR] Manin Yu., Radul A., A supersymmetric extension of the
Kadomtsev–Petviashvili hierarchy. Comm. Math. Phys. 98 (1985),
no. 1, 65–77

[M] Mathieu O., Class of simple graded Lie algebras of finite growth,
Inv. Math., 108, 1992, 455–519

[May] May, J. P., Stable algebraic topology, 1945–1966. In: James I. (ed.)
History of topology, North-Holland, Amsterdam, 1999, 665–723

[Mi] Milnor J., The Steenrod algebra and its dual, Ann. of Math. (2) 67,
1958, 150–171

[Mol] Molev A., Factorial supersymmetric Schur functions and super
Capelli identities. Kirillov’s seminar on representation theory, Amer.
Math. Soc. Transl. Ser. 2, 181, Amer. Math. Soc., Providence, RI,
1998, 109–137;
Molev A., Nazarov M., Capelli identities for classical Lie algebras,
Math. Ann. 313 (1999), no. 2, 315–357

[VM] Molotkov V., Explicit realization of induced and coinduced mod-
ules over Lie superalgebras by differential operators, arXiv:

math.RT/0509105

[M1] Montgomery S., Constructing simple Lie superalgebras from asso-
ciative graded algebras, J. Algebra 195 (1997), no. 2, 558–579

[M2] Montgomery R., Engel deformations and contact structures. North-
ern California Symplectic Geometry Seminar, 103–117, Amer. Math.
Soc. Transl. Ser. 2, 196, Amer. Math. Soc., Providence, RI, 1999

[SNR] Nahm,W.; Rittenberg, V.; Scheunert, M. The classification of graded
Lie algebras. Phys. Lett. B 61 (1976), no. 4, 383–384;
Scheunert, M.; Nahm, W.; Rittenberg, V. Classification of all simple
graded Lie algebras whose Lie algebra is reductive. I. J. Mathemat-
ical Phys. 17 (1976), no. 9, 1626–1639;
Scheunert, M.; Nahm, W.; Rittenberg, V. Classification of all simple
graded Lie algebras whose Lie algebra is reductive. II. Construction
of the exceptional algebras. J. Mathematical Phys. 17 (1976), no. 9,
1640–1644.

[NSch] Nahm, W.; Scheunert, M. On the structure of simple pseudo Lie
algebras and their invariant bilinear forms. J. Mathematical Phys.
17 (1976), no. 6, 868–879

[NH] Nishiyama K., Oscillator representations of orthosymplectic alge-
bras, J. Alg., 129, 1990, 231–262;



526 Ch. 21. Selected problems (D. Leites)

Hayashi, T., Q-analogue of Clifford and Weyl algebras–Spinor and
oscillator representations of quantum envelopping algebras, Comm.
Math. Phys. 127, 129–144 (1990)

[O] Ochiai, T., Classification of the finite nonlinear primitive Lie alge-
bras. Trans. Amer. Math. Soc. 124, 1966, 313–322

[OV] Onishchik A., Vinberg E., Lie groups and algebraic groups. Trans-
lated from the Russian and with a preface by D. Leites. Springer
Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990. xx+328
pp.

[OT] Ovsienko V., Tabachnikov S., Projective differential geometry, old
and new: from Schwarzian derivative to the cohomology of diffeo-
morphism groups, Cambridge University Press, Cambridge, 2005
(http://www.math.psu.edu/tabachni/prints/preprints.html)

[Pe] Penkov I., Borel-Weil-Bott theory for classical Lie supergroups. Itogi
Nauki i Tekhniki, Current problems in mathematics. Newest results,
Vol. 32, 71–124, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn.
Inform., Moscow, 1988. (Russian) Translated in J. Soviet Math. 51
(1990), no. 1, 2108–2140.

[PS1] Penkov I., Serganova V., Cohomology of G/P for classical complex
Lie supergroups G and characters of some atypical G-modules. Ann.
Inst. Fourier (Grenoble) 39 (1989), no. 4, 845–873.

[PS] Penkov I., Serganova V., Generic irreducible representations of fi-
nite-dimensional Lie superalgebras, Internat. J. Math. 5, no. 3
(1994), 389–419

[Pen] Penrose R., Nonlinear gravitons and curved twistor theory, Gen.
Relativity and Gravitation, 7 (1976), 31–52.
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