
Representation Theory

v. 1 Representations of finite and compact
groups.
Representations of simple Lie algebras

Dimitry Leites (Ed.)

Abdus Salam School
of Mathematical Sciences
Lahore, Pakistan



Summary. This volume consists of:
(1) lectures on representation theory of finite and compact groups for beginners

(by A. Kirillov), and Lie theory on relation between Lie groups and Lie algebras
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Editor’s preface

What representation theory is. Representation theory of groups and
Lie algebras and Lie rings is the branch of science that studies symmetries.
Initially designed to study symmetries of (solutions of) algebraic equations
it soon found its application in geology, namely, in crystallography (certain
groups are now said to be crystallographic). Here finite groups were main
characters. A bit later representation theory evolved to describe symmetries
of (solutions of) differential equations wherefrom it came close to all branches
of natural sciences and — via economics — to social sciences: Any equation
describing reality (be it an elementary particle or stock market) must be in-
variant with respect to admissible (in the frameworks of the given model)
changes of coordinates (and, perhaps, some other — hidden — parameters).
The study of all such symmetries is the object of representation theory whose
main characters are continuous (in particular, Lie 1)) groups and their in-
finitesimal approximations — the Lie algebras.

The discovery of quarks (the most elementary of known particles — speak-
ing about theoretical results) and construction of tomograph (what can be
more down-to-earth and practical?!) are among well-known (and most spec-
tacular) applications of representation theory. Rough classification of chemical
elements can be described in terms of irreducible representations of one of the
simplest finite groups (that of rotations of the cube); this is another of spec-
tacular applications.

About this course. In 1997, at the Department of Mathematics of Stock-
holm University, I got a possibility to digress from the usual (somewhat bor-
ing) task of reading the Calculus course to students mainly not interested in
math at all in order to give an introductory course on representation theory to
interested listeners. I used the occasion to translate from the Russian the notes
of A. A. Kirillov’s brilliant lectures on the topic [Ki]. Kirillov 2) lectured in
Moscow to a very wide audience: “From first year students and occasional high
school students from mathematical schools to gifted professors”, in Kirillov’s
terms. The advantage of these lectures as compared with other courses is their
simplicity and clarity. Besides, usual text books, except perhaps, Serre’s one
[Se] (see also [Si, V]), are far too thick for a half year or even a year course.

Serre and Manin taught us the best way to learn a new material: give a
lecture course on the topic: “The first attempt might be not very successful,
but after the second one the lecturer is usually able to learn the subject”.
Keeping this advice in mind, my arrier pencée was to try to learn in the process
how to describe irreducible representations of simple finite supergroups, or, at
least, get close to it. At least, figure out the definitions. Well, at least, in some
cases. This was, and still is, an Open Problem. A more realistic goal (also not

1 http://en.wikipedia.org/wiki/Sophus Lie. All unmarked footnotes in both volumes
are due to me.

2 http://en.wikipedia.org/wiki/Alexandre Kirillov
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even approached) was to try to learn in the process about some interesting
applications of finite groups to coding theory or cryptography. A question: Is
it possible to use simple finite supergroups in a similar way?

Despite possible applications (say, to super Riemann surfaces, hence to
high energy physics), nobody had described irreducible representations of sim-
ple finite supergroups; consider at least one example.

The transcripts of A.A. Kirillov’s lectures I’ve translated did not cover
the whole course: A part was not documented. So I inserted into the lectures
some excerpts (mainly omitted here) from the monographs [OV], [V] and [St],
[Go, G] to bridge the group theory with the Lie algebra theory.

I also could not resist the temptation to show the students how representa-
tions naturally arise in so-called “practical” questions, so I chose a short paper
by V.I. Arnold 3) (Crafoord prize 4) winner, Wolf prize 5) winner, Shaw prize 6)

winner, winner of numerous other prizes and member of most Academies)
[Ar0], a paper with several open problems, a paper in which several disciplines
embrace each other in what the French call “entrefécundation” (=mutual fer-
tilization) to the admiration of the reader.

Kirillov concluded his course with applications. As such, he chose elements
of Hamiltonian mechanics; for more detail, see [Ar]. Observe that it was Ki-
rillov who proved that any Hamiltonian dynamical system can be realized on
one of the orbits of the coadjoint representation of an appropriate Lie algebra,
so any scholar studying dynamical systems has to learn at least some basics
of representation theory. Let me point out here to Dynkin’s short appendix
in [D2] as probably one of the best summaries of Lie algebra theory, see also
[D1]. Though written in slightly obsolete terms, this is still a yet unsurpassed
masterpiece.

For the modern presentation of Lie algebra theory I’ve used (with minor
editing) transcript of extremely transparent lectures by J. Bernstein 7) in a
summer school on representation theory: it squeezes all basics in just several
lectures and contains a shortest known and most lucid proof of one important
theorem. For further reading, I suggest a remarkable book by a remarkable
person F. Adams [Ad], and [FH]; then [Go]. For references, see the universal
at all times [CR], see also [C1, C2]. Notes of P. Etingof’s lectures reflect
interesting aspects of representation theory seldom mentioned in first courses,
see [E].

The “super” version of these lectures forms Volume 2. For further reading
on the theory of certain particular infinite dimensional Lie algebras, highly
resembling simple finite dimensional Lie algebras (everything over C), see
Kac’s book on Kac-Moody Lie algebras [K].

3 http://en.wikipedia.org/wiki/Vladimir Arnold
4 http://en.wikipedia.org/wiki/Crafoord Prize.
5 http://en.wikipedia.org/wiki/Wolf Prize.
6 http://www.shawprize.org/en/index.html
7 http://en.wikipedia.org/wiki/Joseph Bernstein



Editor’s preface 7

Observe that the term “representation theory” is almost always applied in
these lectures to simple (Lie) groups and Lie (super)algebras. More precisely,
these simple objects constitute a natural core and all other objects, sometimes
no less interesting in applications, are somehow derived from the simple ones.
In these lectures I will mainly deal with the simple objects warning at the
same time of the danger of overpricing them.

My task at ASSMS: Formulation. The noble initiative of the Pakistani
government, which the Higher Education Commission tries to implement, is
to educate national researchers to make them competitive at the international
level. Given an incredibly low level of knowledge in mathematics the students
used to get at National Universities so far, it is difficult to offer them reason-
ably interesting research problems, whereas life is too short to spend a good
deal of it solving “purely educational” exercises somebody has solved long
ago. Besides, even if the student is capable to memorize the lecture and get
the highest score at the exam, (s)he is not necessarily capable of doing re-
search, that is solve something that nobody yet did inventing the technique
for the occasion. The only way to teach research I know of is to show examples
performed by masters. This volume consists of such examples.

Some branches of mathematics (like graph theory) seem to be designed
for the purpose: A bright student might find a long-standing problem (even
with a name) that does not require anything but common sense and ability
to solve “Olympiad-type” problems. But this road is usually a dead-end as
far as research is concerned: The student learns almost nothing and, even a
bright one, is seldom able to continue career of a research mathematician.

Most of the other branches of mathematics (like algebraic geometry), man-
ifestly pregnant with important applications to real life, require a lot of time
to master them sufficiently to come within reach of frontiers of research.

The representation theory is a rare field of science where there is room
for everybody from bright first year students (who know almost nothing) to
deep thinkers and broadly educated experts. The problems in representation
theory are usually “with an open end”, meaning that having solved one, the
researcher can usually see how to extend it by generalizing in various ways
(“superize”, consider it over various fields, vary the dimension, vary the sym-
metry in question, and so on).

My task at ASSMS: An example of a solution. In 2004–2006, I read a
course on representation theory of Lie algebras and Lie superalgebras at Max-
Planck-Institute for Mathematics in the Sciences (MPIMiS, Leipzig), and in
2007, another one, at SMS, Lahore. The main purpose of these courses was
to introduce the listeners to the main notions of the representation theory to
enable them — as fast as possible (e.g., the time allocated for Ph.D. study
at MPIMiS was 2 or 3 years from entrance to submission of the thesis) — to
begin working on interesting open research problems.

I’ve decided to split the course into two volumes. Volume 1 contains the
basics of the classical representations theory. (Nevertheless, it also contains
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several open problems.) Volume 2 contains basic information on the very fron-
tiers of modern (2007) research needed to come to grasps with formulation of
open problems.

The soundness of my approach to the choice of the topic and selection of
problems is illustrated by results of my former Ph.D. students, my colleagues,
and mine. About half of the volume contains totally new results obtained
during the past two years. All the results are “with an open end” and in ad-
dition to scattered problems (easy to find from Index) a list of open problems
is formulated explicitly at the end. The reader is encouraged to contact me
(mleites@math.su.se) to avoid nuisance of queueing selecting problems and to
inform if something is solved.

The chapters written by A. Lebedev and E. Poletaeva contain main parts
of their respective Ph.D. theses. I hope these chapters will serve as models for
the readers not yet having a Ph.D. diploma.

Computer-aided scientific research. Most of the open problems offered
as possible topics for Ph.D. research in Volume 2 are easier to solve with
the help of the Mathematica-based package SuperLie for scientific research
designed by Pavel Grozman. Arnold’s problems in this volume are also to be
solved with computers’ aid. This feature of these problems is another asset:
It encourages to master certain basic skills useful in the modern society in
general and for a university professor and researcher in particular.
Acknowledgements. I am thankful:

To my teachers who gave their permissions to use their results that constituted
Volume 1, and, separately, to É. B. Vinberg and A.O. Onishchik.

I edited the transcripts of the first two Chapters very little trying to preserve
the author’s style, and, bar correcting typos, only translated Arnold’s one. (All the
mistakes and typos not edited or inserted are, of course, my responsibility. I will be
thankful for all remarks sent to me (mleites@math.su.se) that will help to improve
the text for the next printing.)

To my students who participated in Volume 2.
To the chairmen of the Department of Mathematics of Stockholm University

(T. Tambour, C. Löfwall, and M. Passare) for the possibility to digress from the
routine to do research.

To J. Jost, the Director of MPIMiS, for inviting me to MPIMiS, where I worked
as Sophus Lie Professor, and to MPIMiS for excellent working conditions during
2004–6.

To TBSS 8), and grants of the Higher Education Commission, Pakistan that
supported parts of this project.

8 Teknikbrostiftelse i Stockholm, the Swedish name of The Foundation Bridging
Technology and Science in Stockholm.



Notation and several commentaries

N, Z+, Z denote, respectively, the sets of positive, non-negative and all
integers; R and C, respectively, the sets of real and complex numbers;

I is the identity operator;
E or I is the unit matrix (En or In of size n× n);
Aij is the (i, j)th entry of the matrix A; and Eij is the (i, j)th matrix unit;
irrep = irreducible representation (slang or blackboard abbreviation);
#(S)= the cardinality of the set S;
A := B a new notation for B.

Most basic preliminaries. Unless otherwise stated, the ground field k is
C but further on we consider other fields.

V.I.Arnold teaches us that the notion of group should be given to stu-
dents as it appears in actual problems, as groups of motions or symmetries
of something. However, to study various properties of the group itself, one
distinguishes its abstract features and thus comes to the following abstract
definition. A group is a set G with a fixed element e ∈ G called the unit (some-
times it is called identity, meaning the identity transformation) and operation
(multiplication) m : G×G −→ G which to every ordered pair f, g ∈ G assigns
their product fg, and the inversion map i : G −→ G which to every g ∈ G
assigns g−1 so that, for any f, g, h ∈ G, we have

f(gh) = (fg)h; ge = eg = g; gg−1 = g−1g = e.

The group G is said to be commutative if the product satisfies fg = gf for
any f, g ∈ G; often the product of commutative groups is denoted by a + and
the unit is denoted by 0 and called the zero.

A ring R is a commutative group with respect to + (called addition, and 0
is its zero) and with another operation (called multiplication) usually denoted,
for brevity, by juxtaposition. The ring is said to be commutative if ab = ba for
any a, b ∈ R. If every nonzero element of R is invertible, R is called a skew field;
the skew field with a commutative multiplication is called field. The identity
with respect to the multiplication is called unit or unity. A ring A which is
at the same time a module over a field and both structures of the module
and the two ring multiplications are naturally compatible (distributive with
respect to each other, and so on) is called an algebra.

A representation of the group G in the vector space V is a group homomor-
phism 9) T : G −→ GLK(V ) of G into the group of invertible linear operators of
a vector space V defined over a field K. This vector space V is called the space
of representation T or a G-module. Two representations T1 : G −→ GL(V1)
and T2 : G −→ GL(V2) are are said to be equivalent and we write T1

∼= T2

if there exists an isomorphism S : V1 −→ V2 such that T2S = ST1. (To save
space and effort of the typist, I avoid commuting diagrams whenever possible.)

9 This means that T (fg) = T (f)T (g) for any f, g ∈ G.
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The following problems naturally arise:
(1) To distinguish and classify “simplest” representations (irreducible, in-

decomposable, “models”, etc). To describe every given representation in terms
of the simplest ones.

(2) To study and classify special functions (a term to be defined), operators
and spaces that arise in the study of representations, e.g., matrix elements,
spherical functions, intertwining operators, and so on.

(3) To study various structures on the space V of the representation r
of G, e.g., topology, ring or algebra structures, unitary property, and so on.

Selected applications of representation theory (just to mention a few):
A rough classification of chemical elements (an approximation to Mendeleev’s
table); a method for solution of various differential equations of mathematical
physics (Maxwell, Einstein, Liouville, Korteveg–de Vries, Toda lattice, and
many, many others). Here is another example, of a more down-to-earth level.

0.0.0.1. Remarks. (1) When a student, I was taught the following physical
interpretation: “An irreducible representation” is approximately the same as
“an elementary particle”. Now I tend to think that this interpretation is pass-
able for particles describable by means of gauge fields with compact gauge
groups because their representations are completely reducible. Otherwise, we
should consider particles of various levels of elementariness; indecomposable
representations correspond to a rough sketch, irreducible ones to the “truly
elementary” particles.

(2) All physical laws are invariant with respect to a certain group and
are usually formulated in terms of invariant operators (intertwining for some
representations).

(3) Unitary property is interpreted as positivity of energy in field theory.

0.0.0.2. A problem (after A.A.Kirillov). Before “perestroika” and collapse of
the USSR, children were often sent to summer Pioneer (scout) camps. Life there was
not easy, but cheap; a porridge of sorts was their staple food. The cook, however,
was often drunk or just did not care, so the portions were highly uneven. Darwin’s
law “The fittest survives” ruled.

Under these conditions consider a round table with kids sitting at it, a bowl
with porridge (some full to the brim, some almost or totally empty) in front of each
kid. When the duty teacher (in charge of the discipline) digresses to take a sip of
home-brewed vodka disguised as tea, all kids use both hands to apply Lenin’s rule of
redistribution (rob the robbers) to their nearest neighbors’ bowls. Assuming that the
on-duty teacher drinks at all times and never ceases, what is the limit distribution
of porridge as time tends to infinity?

In strict mathematical terms, the problem reads like this: If initially the k-th
kid had amount of porridge of x0

k gram, then after the (i+1)-st redistribution (s)he

had xi+1
k =

1

2
(xi

k−1 + xi
k+1), where xi

N+1 = xi
1, the total amount of kids being N .

Determine x∞k := lim
i−→∞

xi
k.

If we replace the round table with a regular polygon or polyhedron, and the

amount of porridge with, say, temperature, we obtain another, no less realistic,

physical model.



Chapter 1

Lectures for beginners on representation
theory: Finite and compact groups
(A. A. Kirillov)

Unless otherwise stated, the ground field K in these lectures is the field C of
complex numbers although in several Main Theorems only algebraic closed-
ness of K is vital (sometimes with the same proof). Several crucial theorems
are only true under certain restrictions on the characteristic of the ground
field. (For example, Maschke’s theorem.)

Lecture 1. Complex representations of Abelian groups

1.1. Exercises. Suppose G is a topological space. Let G be a group as well.
We say that G is a topological group if the multiplication (product) and inver-
sion maps

m : G×G −→ G (m(g, h) = gh) and i : G −→ G (i(g) = g−1)

are continuous in the topology of G.

1.1.1. Prove that the set R with the usual topology is a topological group
with respect to the + operation. (Notation: R+; do not confuse with the set
R× := R \ {0} and the multiplication as the product operation.)

1.1.2. The representation T of the topological group G in a linear space V
is continuous if the action map

a(g, v) = T (g)v for any g ∈ G, v ∈ V

is continuous with respect to topologies in G and V .
Prove that every continuous 1-dimensional (over C) representation (i.e.,

the one with 1-dimensional V ) of R+ is of the form

T (x) = eax for a fixed a ∈ C and any x ∈ R+.

Here we identify the operator in the 1-dimensional space over C with the
factor by which the operator multiplies the basis vector of V ; i.e., for every
nonzero v ∈ V , we have

T (x)v = eax · v.
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1.1.3. The space V and the representation T in V are called decomposable if
V can be represented as the direct sum of two subrepresentations, V1 and V2.
This means that every nonzero x ∈ V can be represented as x = x1 + x2,
where x1 ∈ V , x2 ∈ V2 and T (g)xi ∈ Vi for all g ∈ G.

If V is decomposable, we write V = V1 ⊕ V2 and T = T1 ⊕ T2, where
Ti = T |Vi.

Prove that every representation is the direct sum of indecomposable rep-
resentations.

1.1.4. The representation T : G −→ GL(V ) is reducible if V has a nontrivial
( 6= V, {0}) invariant subspace.

For G = R+, define a representation T in C2 = Span(v1, v2) by setting

T (a)v1 = v1, T (a)v2 = v2 + av1.

Prove that T is reducible but indecomposable.

1.2. Hermitian or sesquilinear forms. The form (·, ·) : V × V −→ C is
said to be pseudo-hermitian or sesquilinear if it is

1) linear in the first argument, i.e., (αx+βy, z) = α(x, z)+β(y, z) for any
α, β ∈ C, x, y, z ∈ V ;

2) (y, x) = (x, y).
If a pseudo-hermitian form is such that

(x, x) ≥ 0 and (x, x) = 0 if and only if x = 0,

then the form is said to be hermitian.

1.2.1. Exercise. In every finite dimensional V with an hermitian form, there
is an orthonormal basis, i.e., a set of vectors e1, . . . , en ∈ V which is a basis
of V and such that (ei, ej) = δij .

Proof: An orthogonalization process. Start with any basis {e′1, . . . , e′n}. Set

e1 = a11e
′
1

e2 = a21e
′
1 + a22e

′
2

. . . . . . . . . . . . . . . . . . . . . . . . .

en = an1e
′
1 + · · ·+ an1e

′
n.

In a fixed basis, the passage “operator 7→ its matrix” will be denoted by
◦ : T (g) 7→ T ◦(g). ut

1.2.2. Exercise. T1
∼= T2 if, in appropriate bases of V1 and V2, we have

T ◦1 (g) = T ◦2 (g) for all g ∈ G.
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1.2.3. Exercise. A given representation T of the group G is decomposable
(resp. reducible) if, in an appropriate basis, T ◦(g) is of the form�

A 0
0 D

�
, resp.

�
A B
0 D

�
,
where matrices A and D are of the same size

for any g ∈ G.

Having selected a basis of V we identify GL(V ) with the group GL(n) of
invertible n × n matrices, where n = dim V . If the field of definition, K, has
to be specified, we write GLK(V ) or GL(n;K).

1.2.4. Unitarity. The element A ∈ GL(n) is said to be unitary if AA∗ = E,
where A∗ = A

t
. A representation T : G −→ GL(V ) in an hermitian space V

is said to be unitary, if

(T (g)x, T (g)y) = (x, y).

Exercise. A representation T : G −→ GL(V ) is unitary if and only if in an
orthonormal basis of V the matrices T ◦(g) are unitary for all g ∈ G.

1.3. The tensor product of representations. Let V1 = Span(x1, . . . , xk)
and V2 = Span(y1, . . . , yl). Then the tensor product of V1 and V2 is defined by
either of the definitions:

(a) V1 ⊗ V2 = Span(xiyj | 1 ≤ i ≤ k, 1 ≤ j ≤ l)
(b) V1 ⊗ V2 = V1 × V2/W , where W is spanned by the pairs

(x1 + x2, y) = (x1, y) + (x2, y),
(x, y1 + y2) = (x, y1) + (x, y2),
(cx, y) = (x, cy) = c(x, y) for any c ∈ C.

The element xiyj from definition (a) and the class of the element (xi, yj)
(mod W ) from definition (b) is denoted by xi ⊗ yj .

Accordingly, the tensor product of representations T1 and T2 acting in V1

and V2, respectively, is defined by one of the following formulas:

(a) ((T1 ⊗ T2)(g)) (xk ⊗ yl) =
∑
i,j

T ◦1 (g)kiT
◦
2 (g)ljxi ⊗ yj .

(b) ((T1 ⊗ T2)(g)) (x⊗ y) = T1(g)x⊗ T2(g)y.

Clearly, we have:

A) Let V1 and V2 be vector spaces of row-vectors of dimension k and
l, respectively. There is an isomorphism ϕ : V1 ⊗ V ∗

2 ' Mat(k × l), where
Mat(k × l) is the space of k × l matrices, given by

(v1 ⊗ v∗2)(w) = ϕ(v1 ⊗ v∗2)wt
2 for any v1 ∈ V1, v2, w ∈ V2 and z ∈ V1 ⊗ V ∗

2 .

B) If T1 ' T ′1 and T2 ' T ′2, then T1 ⊗ T2 ' T ′1 ⊗ T ′2.
C) If at least one of the representations T1 and T2 is reducible (decompos-

able), then T1 ⊗ T2 is reducible (decomposable).
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D) If V1 and V2 are endowed with hermitian products H1 and H2, respec-
tively, then

(x1 ⊗ y2, x
′
1 ⊗ y′2) := H1(x1, x

′
1)H2(y2, y

′
2)

is an hermitian product on V1 ⊗ V2.

1.3.1. Two rings. A) On the set Reps (G) of equivalence classes of rep-
resentations, we have two operations: The addition, +, which is ⊕, and the
product, ⊗. These operators satisfy

T1 ⊗ (T2 ⊕ T3) = (T1 ⊗ T2)⊕ (T1 ⊗ T3),

with T1 ⊕ T2 acting in V1 ⊕ V2 and T1 ⊗ T2 acting in V1 ⊗ V2. Clearly, the
zero representation (for which T (G) = 0) acting in the 0-dimensional space
0 := {0} is the zero with respect to ⊕, but there is no opposite element. The
trivial 1-dimensional module (for which T (G) = 1) is the unit with respect to
tensoring, but there is no inverse element. So Reps (G) is not a ring, actually,
but a semi-ring.

By formally defining −T as an element such that (−T )⊕T = 0 (as we do
in order to define negative numbers and zero being given only positive ones)
we can extend Reps (G) to a module RepsZ(G) over Z by setting:

(nT ) :=





T ⊕ T . . . T ⊕ T︸ ︷︷ ︸
n summands

for any nonnegative n ∈ Z;

−(nT ) for any nonpositive n ∈ Z.

Furthermore, we can make RepsZ(G) into a module RepsK(G) over the ground
field K by setting

K⊗Z RepsZ(G).

Thus, the expressions of the form
∑

ciTi, where Ti are representations of G
and the ci belong to the ground field, constitute the algebra of representations
of G.

Since, as we will see, all modules over finite (and compact) groups G
are completely reducible, it suffices (at least, for such groups) consider only
irreducible representations Ti. One of the first problems in the representation
theory: Express the tensor product of two representations as the sum (perhaps,
with multiplicities) of irreducible representations.

B) The ring K[G] =
{ ∑

gi∈G

cigi | ci ∈ K
}

in which

∑
cigi +

∑
c′igi =

∑
(ci + c′i)gi,∑

cigi ·
∑

c′jgj =
∑
i,j

cic
′
jgigj

is called the group ring of G.
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1.3.1a. Example. Consider Z/2 = {0̄, 1̄} ' {±1}×. For every representation
T : G −→ GL(V ), we see that T (e) = E ∈ GL(V ).

So, to determine T (Z/2), it suffices to determine T (−1). Observe that

T (−1)T (−1) = T (1) = E.

Exercise. If A2 = E, then, in a certain basis, A = diag(ε1, . . . , εn), where
εi = ±1 for each i.

Hint. Observe that V = V+⊕V−, where x+ = 1

2
(x+Ax) and x− = 1

2
(x−Ax)

are components of x ∈ V belonging to V±. Clearly, the V± are the eigenspaces
of A, and A is the reflection with respect to V+.

Corollary. There are two distinct 1-dimensional representations of Z/2; ev-
ery representation is the direct sum of such representations. The presentation
in the form of the direct sum is not unique.

1.3.1b. Example. Consider

Z/n = {0, . . . , n} '
{

1, ε = e
2πi
n , . . . , εn−1 = e

2(n−1)πi
n

}×
'

the group of proper movements of a regular n-gon.

For any representation T of Z/n, consider the following auxiliary opera-
tions:

P0 = 1

n
[T (1) + T (ε) + . . . + T (εn−1)],

P1 = 1

n
[T (1) + εT (ε) + . . . + εn−1T (εn−1)],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pn−1 = 1

n
[T (1) + εn−1T (ε) + . . . + ε(n−1)2T (εn−1)]

i.e.,

Pk = 1

n

n−1∑

i=0

εikT (εi).

Exercise. Prove that

(a) PkPl =

{
Pk = Pl if k ≡ l (mod n),
0 otherwise;

(b)
n−1∑
k=0

Pk = Id.

(c) Every operator P , such that P 2 = P , is the projection onto a subspace
V+ ⊂ V parallel to a transversal subspace V−, i.e., a subspace such that
V+ ⊕ V− = V .

Hint. Observe that V+ = {x1 | x1 = Px}, and V− = {x2 | x2 = x− Px}.
Exercise. Denote by Vk the image of Pk. Since PkPl = 0 for k = l, it follows
that Vk ∩ Vl = 0 for k 6= l; since

∑
Pk = Id, it follows that V = ⊕Vk.
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Lecture 2. Schur’s lemma, Burnside’s theorem

2.1. Summary of Lecture 1. Every Z/n-module V is the direct sum of
irreducible 1-dimensional representations.

There are n distinct 1-dimensional spaces Vk in which representations of
Z/n, denote them Tk, where k = 0, . . . , n − 1, act so that Tk(εl) = eil. The
module V can be uniquely represented as the sum of isotypical components
⊕Ṽk , whereas each Ṽk can be (non-uniquely) represented as the direct sum

of several identical copies Ṽk = Vk ⊕ · · · ⊕ Vk.

Since the Tk are 1-dimensional, so is the tensor product of any two of
them:

(Tk ⊗ Tl)(εi) = Tk(εi)⊗ Tl(εi) = εik · εil = εi(k+l) = Tk+l(εi).

2.1.1. Corollary. The ring of representations of Z/n is isomorphic to
C[Z/n].

2.1.2. Exercise. C[Z/n] ' Cn, as vector spaces.

Hint. For a basis, take Pk = 1

n

∑
l

εlk[εl], where [εl] ∈ Z/n is the element

represented by exp
(

2πil

n

)
.

2.1.3. Corollary (Main Corollary). The description of representations of
any finite commutative group. (Formulate it on your own.)

2.2. Non-commutative groups. The simplest example is S3, the permu-
tation group on 3 elements. Other realizations of S3:

(1) all motions of the equilateral triangle,

(2) conformal group with z 7→ 1

z
and z 7→ 1− z as generators,

(3) SL(2;Z/2),
(4) The group generated by a and b subject to the relations

a3 = e, b2 = e, bab = a2.

2.2.1. Exercise. 1) Prove that definitions (1)–(4) of S3 are equivalent, i.e.,
the groups obtained are isomorphic.

2) Consider the subgroup of S3 generated by a; notation: 〈a〉. Prove that
〈a〉 ' Z/3. Describe this group in the other four incarnations given in subsect.
2.2.

Given a representation T : S3 −→ GL(V ), we obtain a representa-
tion of Z/3, as T |〈a〉 determined by the operators E, T (a), T (a2). Hence,
V = V0 ⊕ V1 ⊕ V2, where Vi is the eigenspace of T (a) corresponding to the
eigenvalue εi. Consider the action of T (b) on each Vi: For any x ∈ V0, set
T (b)x = y. Then
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T (a)y = T (a)T (b)x = T (ab)x = T (b2ab)x = T (b)T (bab)x =

T (b)T (a2)x = T (b)x = y.

Hence, y ∈ V0. For any x ∈ V1, set y = T (b)x. Then

T (a)y = . . . = T (b)T (a2)x = T (b)ε2x.

Hence, T (b)(V1) = V2.
We similarly prove that T (b)(V2) = V1.
If V is irreducible, then either (1) V = V0 or (2) V = V1 ⊕ V2.
In case (1), T (a) = T (a2) = E and we actually have the representation

of S3/〈a〉 ' Z/2. There are two irreducible representations of Z/2: With
T (b) = E and with T (b) = −E.

In case (2), take x ∈ V1 and let y = T (b)x ∈ V2. Then

T (b)y = T 2(b)x = x.

Hence, Span(x, y) is S3-invariant; since it is an irreducible representation, we
see that V1 ⊕ V2 = Span(x, y) and the matrix realization is

T (a) =
�

ε 0
0 ε

�
, T (b) =

�
0 1
1 0

�
.

2.2.2. Exercise∗. Every S3-module is the direct sum of several copies of the
above two distinct irreducible representations and the trivial one.

One of the “most main” theorems in representation theory is the following
one:

2.3. Theorem. Each representation of the finite group G is the direct sum
of its irreducible representations.

Comment: This theorem implies that, for every subrepresentation there is
a direct complement.

Proof of Theorem 2.3 follows from the next Lemmas 2.3.1–2.3.5.

2.3.1. Lemma. Every representation T : G −→ GL(V ) of a given finite group
G is equivalent to a unitary one, i.e., we may assume that V is endowed with
an hermitian product (·, ·).
Proof. By definition, T̃ ' T ⇐⇒ T̃ (g) = Q−1T (g)Q for an invertible Q. If
T̃ is unitary, then

T̃ (g)T̃ ∗ = E

or
Q−1T (g)QQ∗T ∗(g)(Q∗)−1 = E

or
T (g)QQ∗T ∗(g) = QQ∗.
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Set A = QQ∗; we have
TAT ∗ = A. (1.1)

Set S(g) : A 7→ T (g)AT (g).
2.3.2. Exercise. Prove that S(g) : G −→ GL(End(V )) is a representation.
Eq. (1.1) means that A is S-invariant.

2.3.3. How to construct S-invariant matrices?
Exercise. Prove that Å :=

∑
g∈G

S(g)A is S-invariant.

Remark. If A is S-invariant, then Å = |G| · A, and therefore considering Å
for every A ∈ End(V ), we obtain all S-invariant matrices.

So, to prove Lemma 2.3.1, we have to find, among S-invariant matrices A,
a matrix of the form QQ∗ for an invertible Q.
2.3.4. Exercise. We have A = QQ∗ for an invertible Q if and only if

1) A∗ = A,
2) (Ax, x) > 0 for any nonzero x ∈ V . This property of the operator

(matrix) A is denoted A > 0.
Hint. Define a new inner product in V by setting

{x, y} = (Ax, y).

Let e1, . . . , en be the initial orthonormal basis of V and e′1, . . . , e
′
n

an orthonormal basis for {·, ·}. For Q, take the matrix of the passage
{ei}n

i=1 −→ {e′i}n
i=1. It remains to observe that if A > 0, then so are the

matrices S(g)A = T (g)AT ∗(g) for all g ∈ G. Hence, so is Å =
∑

g∈G

S(g)A. So

if we take E for A, then E0 is an invariant matrix of the form QQ∗. ut

2.3.5. Lemma. For unitary representations, indecomposability is equivalent
to irreducibility.

Proof. Irreducibility clearly implies indecomposability.
⇐= Let T be indecomposable and unitary. Suppose it is not irreducible.

Let V1 ⊂ V be an invariant subspace, V2 its orthogonal complement, i.e.,

V2 = V ⊥
1 = {x ∈ V | (x, y) = 0 for any y ∈ V1}.

Then
(T (g)x, y) = (x, T ∗(g)y) = (x, T (g−1)y) = 0

for all x ∈ V2, y ∈ V1. ut
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2.4. The regular representation. This is the name for the representation
of the group G in the space of functions on G. Clearly, the regular representa-
tion is reducible. Remarkably, if G is finite, the regular representation contains
each irreducible representation with multiplicity equal to its dimension.

Theorem (Burnside’s theorem). Let G be a finite group, |G| = N ; let
T1, . . . , Ta be the full set of irreducible representations of G, let dim Vi = ni.
Then

N =
∑

n2
i .

Proof. Let L(G) = GK = Maps(G,K) the space of functions on G; let
dim L(G) = N . For the basis of L(G) take δ-functions

δg(h) =

{
1 if g = h,

0 otherwise.

In L(G), introduce the hermitian product (·, ·) by setting

(f1, f2) =
∑

g∈G

f1(g)f2(g).

2.4.1. Exercise. The functions δg form an orthonormal basis with respect
to (·, ·).
2.4.2. Another basis. Let us construct another basis such that, to every
n-dimensional irreducible representation, there correspond n2 elements of this
other basis.

Let T be an irreducible representation of dimension n. Then T (g) can be
considered as a matrix-valued function on G and each T (g)ij is a numerical
function.
2.4.3. Exercise. Show that the Tij(g) are linearly independent functions.

Remark. For equivalent representations T̃ ∼= T , where T̃ = CTC−1, we
obtain different functions T̃ij , but since

T̃ij(g) =
∑
k,l

Cik(C−1)ljTkl(g),

Tkl(g) =
∑
i,j

(C−1)kiCjlT̃ij(g),

we see that Span(Tij)i,j
∼= Span(T̃ij)i,j .

To complete the proof of Burnside’s theorem, we have to verify that L(G)
is the direct sum of Span(Tij) for various T ’s, that Span(Tij) is orthogonal to
Span(U)k,l for T 6' U and prove Exercise 2.4.3. ut
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2.5. Lemma (I. Schur). Let T1 and T2 be irreducible representations of G in
V1 and V2, respectively, and let a linear map C : V1 −→ V2 be such that

T2C = CT1. (1.2)

Then, over C, either C = 0 or C is an isomorphism (hence, T1 ' T2). 1)

The operators C satisfying condition (1.2) are called intertwining operators
and

I(T1, T2) = dim (the space of intertwining operators)

the intertwining number.

2.5.1. Lemma. Over C, for irreducible representations T1 and T2, the ex-
pression (1.2) is equivalent to the following fact:

I(T1, T2) =

{
0 if T1 6' T2,

1 if T1 ' T2.

Indeed, if T1 ' T2, then T1 = CT2C
−1 i.e., eq. (1.2) holds. If C ′ is another

intertwining operator, then C ′ + λC is also an intertwining operator. But
det(C ′ + λ0C) = 0 for some λ0 ∈ C. By Schur’s lemma C ′ + λ0C is not
invertible, hence, C ′ = −λ0C. ut
2.5.2. Exercise. Consider the representation T : Z/4 −→ GL(2;R) given by

T (0) =
�

1 0
0 1

�
, T (1) =

�
0 −1
1 0

�
, T (2) =

�−1 0
0 −1

�
, T (3) =

�
0 1
−1 0

�
.

(1) Prove that T is irreducible, but I(T, T ) = 2.
(2) Is TC, given by the same formulas over C, irreducible? If not, what are

the irreducible components?

2.5.3. Exercise. Finish the proof of Burnside’s theorem.

2.5.4. Exercise. Let G be a finite group, T1, . . . , Ta the full set of its irre-
ducible representations, Vi = Span((Ti)kl | all possible k, l). Prove that Vi is
invariant with respect to the left and right translations by G.

Lecture 3. The structure of the group ring

Recall that K[G] := {∑ cigi | ci ∈ K, gi ∈ G}. In this section, K = C.

1 Over algebraically non-closed fields, there are more possibilities, see, e.g., [Ad] for
the case K = R.



Ch. 1. Lectures on representation theory 21

3.1. Another interpretation of C[G]. Let
∑

cigi be considered as the
function on G such that

∑
cigi(gj) = cj . How to describe the convolution, ∗,

in C[G] in these terms? Let f1 =
∑

g∈G

f1(g)g, and f2 =
∑

h∈G

f2(h)h. Then

(f1 ∗ f2) =
∑

g,h

f1(g)f2(h)gh;

hence,
(f1 ∗ f2)(t) =

∑

gh=t

f1(g)f2(h).

Therefore,

(f1 ∗ f2)(t) =
∑

g

f1(g)f2(g−1t) =
∑

g

f1(tg−1)f2(g). (1.3)

3.2. Theorem (Maschke’s theorem). Let G be a finite group whose irreducible
representations are of dimensions n1, . . . , nk. Then

C[G] ∼= Mat(n1)⊕ · · · ⊕Mat(nk).

In other words, C[G] 3 f ←→ (C1, . . . , Ck) such that

f + f̃ ←→ (C1 + C̃1, . . . , Ck + C̃k)

f · f̃ ←→ (C1 · C̃1, . . . , Ck · C̃k)
(1.4)

For example, if G is abelian, then n1 = · · · = nk = 1 and C[G] is the “ring”
Ck with component-wise multiplication.

Proof. Let T1, . . . , Tk be the full set of irreducible representations of G.
To every f ∈ C[G] we assign the collection of matrices:

f =
∑

g

f(g)g 7→ (T1(f), . . . , Tk(f)), where Ti(f) =
∑

g∈G

f(g)Ti(g). (1.5)

Clearly, the map (1.5) is linear, so it suffices to verify that f · g goes into
the product of collections for delta-functions.
3.2.1. Exercise. Verify that the map (1.5) preserves multiplicativity.

Let us prove that the map (1.5) is onto. Indeed,

dimC[G] Burnside’s Th.= N =
∑

n2
i .

It remains to prove that the map (1.5) is mono.
3.2.2. Exercise. If Ti(f) = 0 for all irreducible representations Ti, then for
any, not necessarily irreducible, representation T we have

T (f) =
∑

f(g)T (·) ≡ 0.

Hint. Represent T in the form of the direct sum of irreducible representations.
Now, observe that if T is the regular representation, then T (f) = 0 ⇐⇒ f = 0.

ut
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3.3. Another proof of Theorem 3.2. Recall orthogonality relations of
matrix elements (see [Ad]):

Let T1 and T2 be two irreducible representations of G. Replacing them, if
needed, by equivalent ones, we may assume that T1 and T2 are unitary. If C
is an intertwining operator, then

T−1
2 (g)CT1(g) = C

(or, since T1 and T2 are unitary)

T ∗2 (g)CT1(g) = C.

Clearly, if C : V1 −→ V2 is an arbitrary operator, then

C0 =
∑

g∈G

T ∗2 (g)CT1(g)

is also an intertwining operator.
Now suppose T1 6' T2. Then C0 = 0 for any C (by Schur’s lemma).

C0
ij =

∑

g∈G

∑

k,l

(T ∗2 (g))ikCkl(T1(g))lj =
∑

k,l

Ckl(
∑

g∈G

T 2
ki(g)T 1

lj(g)). (1.6)

Hence, ∑

g∈G

T 2
ki(g)T 1

lj(g) = 0 for any i, j, k, l;

which means that T 2
ki ⊥ T 1

lj .
Let now T1 = T2 = T . Clearly, E is an intertwining operator.
By Schur’s lemma, dim I(T, T ) = 1; hence, any intertwining operator is of

the form λE, where λ ∈ C. Hence, for any C, we should have C0 = λ0E. To
determine λ0, let us compute tr C0. We have:

tr C0 =
∑

g∈G

trT−1(g)CT (g) = N · trC.

On the other hand,
trC0 = tr λ0E = λ0 · dim T.

Hence,
λ0 = N · tr C

dim T
.

Finally,

(C0)ij =

{
0 if i 6= j,
N · tr C

dim T
if i = j.

(1.7)

Set C := Ekl. Having inserted Ekl into (1.6) we obtain
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∑
g

Tki(g)Tlj(g) = N

dim T
· δklδij . (1.8)

Let us return to the second proof. Consider f(g) = T
(i)
kj (g). What collection

of matrices corresponds to it? Cl = 0 for all l 6= i and Ci = N

ni
Ekj , where

Ekj ∈ Mat(ni).
NB! The representations T and T are not necessarily equivalent: Consider

G = Z/n, where n > 2.

3.4. The center Z(C[G]) of C[G].

3.4.1. Exercise. Prove that

Z(C[G]) = {(λ1En1 , . . . , λkEnk
) | λi ∈ C}.

What functions correspond to the center?

Answer. As follows from the proof of Theorem 3.2, the functions that con-
stitute Z(C[G]) are exactly the functions

χi(g) =
ni∑

k=1

T i
kk(g) = trTi(g) (1.9)

called the characters of the representations Ti.
Thus, the center of C[G] consists of the characters of G.

Corollary. All the elements from the center of C[G] are constants on the
conjugacy classes of G, i.e.,

χ(ghg−1) = χ(h) for any χ ∈ Z(C[G]). (1.10)

Indeed, tr ABA−1 = tr A−1AB = tr B.

3.4.2. Exercise. Prove the opposite statement:

If χ(ghg−1) = χ(h), then χ ∈ Z(C[G]). (1.11)

Hint. It suffices to check that χδg = δgχ.

Thus,

dim Z(C[G] = #(characters of irreps) Maschke’s Th.= #(conjugacy classes).

3.4.3. Exercise. Prove that if dim Ti = 1 for all irreducible representations
of G, then G is abelian.

Hints. (1) Apply the isomorphism C[G] ∼= k⊕
i=1

Mat(ni).

(2) Prove (with the help of Burnside’s and Maschke’s theorems) that each
conjugacy class has exactly one element. (Recall that Burnside’s theorem is
the statement “N =

∑
n2

i ”.)
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3.5. Theorem. N is divisible by ni for each irreducible representation Ti.

Proof. In Z(C[G]), select two bases:
(1) The characters χ1, . . . , χk of irreducible representations,
(2) The characteristic functions ϕ1, . . . , ϕk of conjugacy classes.
Let U = (Uij) be the transition matrix, i.e.,

χi =
∑

j

Uijϕj .

Let V = U−1, then
ϕj =

∑

i

Vjiχi. (1.12)

Since ϕi ∗ ϕj ∈ Z(C[G]), it follows that

ϕi ∗ ϕj =
∑

l

Al
ijϕl. (1.13)

Observe that Al
ij ∈ Z. Indeed, if g belongs to the l-th conjugacy class, then

the value of the right hand side at g is equal to Al
ij ; while, on the other hand,

the value of the right hand side is equal to

(ϕi ∗ ϕj)(g) =
∑

hk=g

ϕi(h)ϕj(k) ∈ Z.

3.5.1. Exercise. Describe the conjugacy classes and compute the coefficients
Al

ij for S3 (in other words, compose the multiplication table for the func-
tions ϕi).

On the other hand, inserting (1.12) into (1.13) we obtain
(∑

s

Visχs

)
∗

(∑
p

Vjpχp

)
=

∑

l,q

Al
ijVlqχq.

But since χs ∗ χp = δps · N

np
χp, it follows that

N

nq
ViqVjq =

∑

l

Al
ijVlq. (1.14)

ut

3.6. Let us show that
N

nq
Viq is an integer algebraic number, i.e., a root of a poly-

nomial xn + . . . + a1x + a0 with ai ∈ Z. Indeed, set Blj = Al
ij , x = (x1, . . . ), where

xi = Viq. Then (1.14) becomes
Bx = λx.

Hence, λ is root of the characteristic polynomial of B, i.e., an integer algebraic
number.
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A reformulation: Set D = diag(d1, . . . , dk), where di =
N

ni
. Then the elements

of V D are integer algebraic numbers.
Observe that the elements of U are also integer algebraic numbers: Since

χi =
P

Uikϕk, it follows that Uik = χi(g), where g belongs to the kth conjugacy
class. But χi(g) = tr Ti(g) and, since (Ti(g))R = E for some R (explain: Why?), the
eigenvalues of Ti(g) are integer algebraic numbers, moreover, roots of unity. Hence,
χi(g) is equal to the sum of integer algebraic numbers; but the latter ones form
a ring, so χi(g) is an integer algebraic number. But then the elements of UV D = D
are also integer algebraic numbers.

3.6.1. Exercise. Verify that a rational number q is an integer algebraic number if

and only if q ∈ Z. Thus,
N

ni
= di ∈ Z.

Lecture 4. Intertwining operators and intertwining
numbers

4.1. For two representations Ti : G −→ GL(Vi), where i = 1, 2, the operator
C : V1 −→ V2 is said to be an intertwining one if the diagram

V1
//

T1(g)

²²

V2

T2(g)

²²
V1

// V2

commutes for any g ∈ G. Clearly, the collection of intertwining operators can
be naturally endowed with a linear space structure. This space is denoted by
HomG(V1, V2) and let I(T1, T2) := dim HomG(T1, T2). Then

I(T1 ⊕ T2, T3) = I(T1, T3) + I(T2, T3)

I(T4, T5 ⊕ T6) = I(T4, T5) + I(T5, T6),

whereas the equality
I(T1, T2) = I(T2, T1) (1.15)

is false, generally. Indeed:

4.1.1. Exercise. Let

T1 : R+ −→ GLR(2), T1(a) =
�

1

0

a

1

�
T2 : R+ −→ GLR(1), T2(a) = 0.

Then I(T1, T2) = 2, I(T2, T1) = 1.

For finite groups G, the identity (1.15) is, however, true. Indeed:
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4.1.2. Exercise. Let T1, . . . , Tk be the full set of inequivalent irreducible
representations of the finite group G. For any T , set mi(T ) = I(T, Ti) Prove
that

I(T, T ′) =
∑

mi(T )mi(T ′).

4.1.3. Remarks. 1) Therefore, the bilinear form I(·, ·) determines something
like an inner product on the space of representations with irreducible repre-
sentations as an orthonormal basis.

2) For certain types of “geometric” representations, most often encoun-
tered in applications, it is possible to compute I(T, T ′) without any knowledge
of “coordinates” mi(T ),mi(T ′) and thus obtain some information concerning
these coordinates.

4.2. The simplest type of representations. Let X be a finite set on
which G acts, i.e., there is a map a : G×X −→ X such that:

a(g) : x 7→ gx, a(g1g2)x = a(g1)(a(g2)x).

The action a gives rise to the representation a∗ in the space L(X) of functions
on X:

(a∗(g)f)(x) = f(a(g−1)x).

Example (already considered) X = G and a(g) = Rg (or a(g) = Lg) the right
(or left) translations by g.

Let a1 and a2 be actions of G on X and Y ; let a∗1 and a∗2 be the in-
duced representations in L(X) and L(Y ), respectively. Let us try to compute
I(L(X), L(Y )).

Clearly, the δ-functions δx and δy defined in L(X) and L(Y ), respectively,
form bases of these spaces. Then, clearly,

a∗1(g)δx = δgx, a∗2(g)δy = δgy.

For an intertwining operator C : L(X) −→ L(Y ), denote by c(x, y) its matrix
coefficients relative to the bases δx, δy:

Cδx =
∑

y∈Y

c(x, y)δy for any x ∈ X

The condition Ca∗1 = a∗2C takes the form:

Ca∗1δx = a∗2Cδx

or (the tag displayed refers to the boxed formula)

Cδgx = a∗2(g)
∑

c(x, y)δy =
∑

c(x, y)δgy

‖
∑

c(gx, y)δy ⇐⇒ c(gx, gy) = c(x, y) .

(1.16)
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In other words, to find I(a∗1, a
∗
2), it suffices to compute the dimension of the

space Ω of functions c(x, y) on X×Y satisfying (1.16). Since the G-action on
X ×Y splits into separate G-orbits, eq. (1.16) implies that the function c(·, ·)
is constant on each orbit, and the characteristic functions ci(·, ·) of orbits form
a basis of Ω. Thus,

I(a∗1, a
∗
2) = #(G-orbits on X × Y ).

4.3. Example. Let G be the group of cube’s rotations (without inversions).
Set

X1 = {cube’s vertices} =⇒ dim a∗1 = 8,

X2 = {cube’s faces} =⇒ dim a∗2 = 6.

According to the above, dim I(a∗1, a
∗
2) = #( orbits in X1 ×X2) and

(V1, F1) ∼ (V2, F2) if a rotation sends V1 to V2 and F1 to F2.

Consider Ω1 = {(V, F ) | V ∈ F} and Ω2 = {(V, F ) | V 6∈ F}.
4.3.1. Exercise. Prove that Ω1 and Ω2 are the only two orbits in X1 ×X2.

4.3.2. Corollary. I(a∗1, a
∗
2) = 2.

Moreover, in the space of intertwining operators, an explicit basis can be
produced:

C1 : f(V ) 7→ ϕ(F ) =
∑

V ∈F

f(V ),

C2 : f(V ) 7→ ϕ(F ) =
∑

V 6∈F

f(V ).

The following basis is somewhat more convenient:

C ′1 = C1 + C2 : f(V ) 7→ ϕ(F ) =
∑

f(V )

C ′2 = C1 − C2 : f(V ) 7→ ϕ(F ) =
∑

V ∈F

f(V )− ∑
V 6∈F

f(V ).

The image of C ′1 is the space of constants; the image of C ′2 is the space of
functions whose values on the opposite faces are opposite.

4.4. A method for description of irreducible representations of G.
F i n d a s m a n y Xi o n w h i c h G a c t s a s p o s s i b l e a n d c o m -
p u t e I(a∗i , a

∗
j ).

Example. G is the group of rotations of the cube. Consider:

X1 = the cube’s vertices,

X2 = the cube’s faces,

X3 = the big diagonals of the cube,

X4 = the regular tetrahedra inscribed in the cube,

X5 = the center of the cube.
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So, dim Xi = 8, 6, 4, 2, 1, respectively.

4.4.1. Exercise. Prove that I(a∗i , a
∗
j ) are of the form:

a∗1 a∗2 a∗3 a∗4 a∗5
a∗1 4 2 2 2 1
a∗2 2 3 1 1 1
a∗3 2 1 2 1 1
a∗4 2 1 1 2 1
a∗5 1 1 1 1 1

Consider the main diagonal. Recall that

I(T, T ) =
∑

mi(T )2 for the set of all irreducible representations Ti(= a∗i )

Observe that T5 is irreducible, T3 and T4 split into two inequivalent irreducible
representations, T2 is the direct sum of 3 inequivalent irreducible representa-
tions.

For T1, we have an alternative: Either T1 is the direct sum of four pair-wise
inequivalent irreducible representations or the direct sum of two equivalent
irreducible representations. In the second case, I(T1, T ) is even for any T ,
while actually I(T1, T5) = 1; hence, T1 is the direct sum of four inequivalent
irreducible representations.

Further, T5 enters each Ti with multiplicity 1. Let Ti = T ′i ⊕ T5. Then

T ′1 T ′2 T ′3 T ′4
T ′1 3 1 1 1
T ′2 1 2 0 0
T ′3 1 0 1 0
T ′4 1 0 0 1

We see that T ′1 consists of T ′3 ⊕ T ′4 ⊕ T ′2 and T ′′2 is the direct sum of two
irreducible representations distinct from T ′3 and T ′4; call them T ′′2 and T ′′′2 . The
last two lines of the table imply that T ′3 and T ′4 are irreducible representations.
Finally,

T1 = A⊕B ⊕ C ⊕D,

T2 = A⊕B ⊕ E with dim E = 2, dim B = 3,

T3 = A⊕ C with dim C = 3,

T4 = A⊕D with dim D = 1,

T5 = A.

Since 12 + 12 + 22 + 32 + 32 = 24 = #(G), we are done (by Burnside’s
theorem ). (We could have obtained the same with the help of Maschke’s
theorem.)
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4.4.2. Exercise. The group G has 5 conjugacy classes:
e;
the rotations about the vertex;
the rotations about the midpoint of the edge;
the two types of rotations about the center of the face: Through 90◦ and 180◦.

4.4.3. It remains to describe the spaces in which irreducible representations
act.

First, let us indicate them in L(Xi).
Clearly, each L(Xi) has an invariant irreducible representation of con-

stants. In it, the representation A acts.
Further, among the intertwining operators C : Ti −→ Ti, there is the cen-

tral symmetry operator, and hence, each L(Xi) splits into the direct sum of
invariant subspaces of symmetric and anti-symmetric functions. The former
is the direct sum of the space of constants and its orthogonal complement, if
any. For i = 2, 3, 4 (and 5) this suffices.

For i = 1, the space of anti-symmetric functions is reducible. It contains the
1-dimensional subspace generated by the function Sign that takes only values
±1 and such that to neighboring vertices the opposite signs correspond. Thus,

L(X1) = K ⊕ L◦S(X1)⊕ L◦a(X1)⊕ LSign,

L(X2) = K ⊕ L◦S(X2)⊕ La(X2),

L(X3) = K ⊕ L◦S(X2),

L(X4) = K ⊕ La(X4),

L(X5) = K.

Moreover,
A acts in K,

B acts in La(X2) and L◦a(X1),

C acts in LS(X3) and LS(X1),

D acts in LSign and La(X4),

E acts in LS(X2).

Lecture 5. On representations of Sn

Let X = {1, . . . , n}. The following facts are assumed to be known:
1) The derived group of Sn is denoted An = [Sn, Sn]. This is the group

generated by commutators aba−1b−1 for any a, b ∈ Sn. It is a normal subgroup
of Sn. Its index is equal to 2.

2) Each permutation g ∈ Sn can be represented as the product of cycles.
Hence, X can be split into the disjoint union X = X1

∐
X2

∐
. . . with g

acting cyclicly on each Xi.
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3) The elements g, h ∈ Sn are conjugate if and only if, in their factoriza-
tions into products of cycles, these cycles are of equal lengths. Therefore, the
number of classes of conjugate elements is equal to the number of representa-
tions of n as the sum of integers, e.g.,

3 = 1 + 1 + 1 = 2 + 1, 4 = 1 + 1 + 1 + 1 = 3 + 1 = 2 + 2, and so on.

We will classify irreducible representations of Sn by the same method that
we used to describe irreducible representations of the group of rotation of the
cube.

Let α = (n1, . . . , nk), where

n1 ≥ n2 ≥ · · · ≥ nk and n1 + n2 + · · ·+ nk = n. (1.17)

Clearly, the number of α’s satisfying eq. (1.17) is equal to the number of
conjugacy classes in Sn. For each α, consider the set Xα whose elements are
partitions of the set {1, . . . , n} into k groups of cardinality n1, . . . , nk.

Example: n = 3

X(3) = (1, 2, 3), X(2,1) = {(1, 2)(3), (2, 3)(1), (1, 3)(2)},
X(1,1,1) = {(1)(2)(3), (1)(3)(2), (2)(1)(3), (2)(3)(1), (3)(1)(2), (3)(2)(1)}.

5.1. Exercise. Prove that #(Xα), where α = (n1, . . . , nk), is equal to

n!

n1! . . . nk!
.

Hint. Prove that Xα is a homogeneous space of Sn and find the order of the
stationary subgroup of any point of Xα.

Let L(Xα) be the space of functions with the usual Sn-action

(Tα(g)f)(x) = f(g−1x).

Let now Sign be equal to 1-dimensional representation of Sn given by the
formula

Sign(g) =

{
1 if g ∈ An,

−1 if g 6∈ An.

Set t′α = Sign ◦Tα. In other words,

(T ′α(g)f)(x) = Sign(g)f(g−1x).

Our main goal: Find I(Tα, T ′β) for all α, β.
Let us order collections (1.17) lexicographically. Set

α∗ = (n∗1, . . . , n
∗
l ), where n∗i = #(nj | nj ≥ i).
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Fig. 1

5.2. Exercise. 1) α∗ satisfies eq. (1.17).
2) α∗∗ = α.
Hint: see Fig. 1

5.3. Lemma (J. von Neumann–H. Weyl). 1) I(Tα, T ′β) 6= 0 only if α ≤ β∗.
2) I(Tβ∗ , T

′
β) = 1.

Proof. (1) Let C : L(Xα) −→ L(Xβ) be an intertwining operator for Tα and
T ′β . As in Lecture 4, define C by setting

(Cf)(y) =
∑

x∈Xα

c(x, y)f(x) for any y ∈ Xβ .

Since CTα = T ′βC, we have CTαf = T ′βCf or
∑

x∈Xα

c(x, y)f(g−1x) = Sign(g)
∑

x∈Xα

c(x, g−1y)f(x) for any y ∈ Xβ . (1.18)

Since eq. (1.18) holds for any f , it follows that

c(gx, gy) = Sign(g)c(x, y) for any x ∈ Xα, y ∈ Xβ , g ∈ Sn. (1.19)

Now, recall that each x ∈ Xα, where α = (n1, . . . , nk), is a partition of the
set {1, . . . , n} into k groups with n1 numbers in the first group, and so on.

Similarly, for y ∈ Xβ , where β = (m1, . . . , ml).
Suppose there are two numbers, i and j, such that 1 ≤ i, j ≤ n that belong

to one group in the partition x and to one group in the partition y.
5.3.1. Exercise. Does such a pair always exist?

Let g ∈ Sn be the permutation of these two numbers and the identity on
the other numbers. Then (the order of numbers inside the group is inessential)

gx = x and gy = y.
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5.3.2. Exercise. Moreover, Sign(g) = −1.
Therefore, eq. (1.19) becomes

c(x, y) = −c(x, y) ⇐⇒ c(x, y) = 0. (1.20)

Hence, the pairs that belong to one group in the partition x must belong to
different groups in the partition y.

Let us show that this implies α ≤ β∗. Suppose α > β∗. Then one of the
following holds:

1) n1 > m∗
1;

2) n1 = m∗
1, n2 > m∗

2;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
i) n1 = m∗

1, . . . , ni−1 = m∗
i−1, ni > m∗

i .

Recall that m∗
1 is the number of a group in the partition y. Hence, if

n1 > m∗
1, then the first group of the partition x has at least two elements that

belong to one group of the partition y. Hence, case 1) can not take place.
Let n1 = m∗

1. Then the number of elements in the first group of the
partition x = # (groups of the partition y). Hence, each group of the partition
y has exactly 1 element of the 1st group of the partition x.

Recall that m∗
2 is the number of groups in the partition y with > 1 ele-

ment. Since the elements of the 2nd group of the partition x should belong
to different groups of the partition y, we see that mk

2 ≥ n2 contradicting the
statement 2).

Similarly, each of the conditions i) leads to a contradiction. Heading 1) of
Lemma is proved.

(2) Let now β = α∗. Let us show that I(Tα, T ′α∗) = 1. Consider the Young
tableau (YT)
Then

α∗ = (the length of the 1st column, . . . ) = (n∗1, . . . , n
∗
l )

Placing the numbers {1, . . . n} into cells, one number per cell we obtain a one-
to-one correspondence:

Y T ←→ (x, y) ∈ Xα ×Xα∗ .

Clearly, g(Y T ) ←→ (gx, gy).
Hence, all pairs (gx, gy) are distinct for distinct g ∈ Sn. Fix a Young

tableau; let (x0, y0) be the corresponding pair. Define c0(x, y) as follows:

c0(x, y) =

{
Sign(g) if x = gx0, y = gy0;
0 otherwise.

(1.21)

Clearly, the operator c given by (1.21) satisfies eq. (1.18), and therefore
is an intertwining operator. It remains to prove that any other intertwining
operator differs from c0 by a scalar factor. Indeed,
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Fig. 2

c(x, y) 6= 0 only if all numbers from one group in the partition x
lie in different groups of the partition y.

Let us show that, under this condition, the pair (x, y) corresponds to the
Young tableaux Y T . To show this, place the numbers 1, . . . , n as follows: If
the number belongs to the ith group of the partition x and the jth group of
the partition y, let it occupy the (i, j)th slot of the Young tableaux Y T .
5.3.3. Exercise. This way each slot gets exactly one number.

Finally: c(x, y) 6= 0 if and only if (x, y) is obtained from a Young tableaux
Y T , and hence is of the form (gx0, gy0). But then eq. (1.18) implies that

c(x, y) = c(x0, y0) · c0(x, y). ut
Heading 2) of Lemma 5.3 implies that Tα and T ′α∗ have exactly one irre-

ducible representation in common, call it Uα.

5.3.4. Theorem. Irreducible representations Uα exhaust all distinct irre-
ducible representations of Sn.

Proof. First of all, we see that

#{Uα | all α′s} = # (conjugacy classes of Sn).

Hence, it suffices to prove that Uα 6∼= Uβ for different α, β. For definiteness
sake, let α > β. Then

— on the one hand, I(Tα, T ′β∗) ≥ 1, since both representations have
Uα ' Uβ as a subrepresentation.

— on the other hand, heading (1) of Lemma 5.3 states that I(Tα, T ′β) = 0
for α > β. This is a contradiction. ut



34 Ch. 1. Lectures on representation theory

Lecture 6. Invariant integration on compact groups

6.1. Recapitulation. For finite groups, we have established the following
facts:

1) Every representation is equivalent to a unitary one.
2) Every representation is a direct sum of irreducible finite dimensional

representations.
3) The matrix elements of irreducible representations form an orthogonal

basis in the space of all functions on the group.

The proof of these facts was based on the existence of an invariant mean
of every function. More exactly, to every function f on the finite group G, we
can assign its mean

I(f) = 1

N

∑

g∈G

f(g), where N = #(G).

This mean is invariant with respect to the left and right translations by h ∈ G:

I(fr) = I(fl) = I(f), where fr(g) = f(gh), fl(g) = f(hg).

It turns out that if G is compact, the invariant mean of each integrable func-
tion can be defined; hence, the above properties 1)–3) hold for compact groups
as well.

First, consider an example, then a general theory.

6.2. Example. G = S1, where multiplication is the addition of arguments
of complex numbers z = eiϕ. We will try to “approximate” S1 by a sequence
of finite groups on which the invariant mean exists and hope that the limit
exists. Let us see. Consider the groups

µn = {z | zn = 1} =
{

e
2πik

n | k = 0, 1, . . . , n− 1
}

.

Therefore, an “approximate” mean on S is the mean on µn:

In(f) = 1

n

n−1∑

k=0

f(εk), where ε = e
2πi
n .

Clearly, In(f) is a Riemannian sum and for any integrable (e.g., continuous,
or whatever) function f , there exist the limit

I(f) = lim
n−→∞

In(f) = 1

2π

∫ 2π

0

f(eiϕ)dϕ

which is the mean desired. Unfortunately, for some groups, there is no good
approximation by finite groups (or, at least, no known such approximation).
So we have to work out another method.
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What are the properties of the invariant mean that we need?
a) f 7→ I(f) is a linear functional, i.e.,

I(af + bg) = aI(f) + bI(g) for any a, b ∈ K.

b) If f ≥ 0, then I(f) ≥ 0.
c) Set: fr(g) = f(gh), and fl(g) = f(hg). Then

I(fl) = I(fr) = I(f) for any h ∈ G.

d) If f ≡ 1, then I(f) ≡ 1.
Besides, we would like to consider the mean on a sufficiently broad class

of functions (e.g., on a class that contains all continuous functions).
Observe, that b) and a) imply that

sup
g∈G

f(g) ≥ I(f) ≥ inf
g∈G

f(g).

Let us show that properties a)–d) uniquely determine the value of I(f),
at least on continuous functions.

Let S be any finite subset of G. Define the left and right averaging opera-
tors by setting

(LSf)(g) = 1

#(S)

∑

s∈S

f(sg),

(RSf)(g) = 1

#(S)

∑

s∈S

f(gs).

Clearly, for any finite S, we have

I(LS(f)) = I(RS(f)) = I(f).

Suppose that for a given function f , we managed to find a set S ⊂ G such
that LS(f) is almost constant on G: For any given ε > 0, we have

|(LSf)(g)− c| < ε for any g ∈ G.

Since I(f) = I(LS(f)), we can compute I(f) to within ε making use of prop-
erties a)–d) only. Therefore, two means of one function f differ not more than
by 2ε. If ε can be taken arbitrary, then the different means I(f) and I ′(f)
coincide proving the uniqueness of the mean.

Thus, for a given function f , we have to show that there exists a sequence
of subsets Sn ⊂ G such that the functions fn = LSn(f) uniformly converge
to a constant. We split the proof into several steps.
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6.3. Exercises

6.3.1. Exercise. Recall that the oscillation of a real-valued function f is

ω(f) = max
g∈G

f(g)−min
g∈G

f(g).

Prove that if ω(f) > 0 (i.e., f is not a constant), then there exists a finite set
S such that ω(LS(f)) < ω(f).
Hint. Let M = max

g∈G
f(g) and m = min

g∈G
f(g). Consider the compact set

F =
{

g ∈ G | f(g) ≥ M + m

2

}
,

an open set
O =

{
g ∈ G | f(g) <

M + m

2

}

and a finite covering of F by translations of O.

Now, consider the collection C(G) of all continuous functions on G. In
C(G), define the distance by setting

ρ(f1, f2) = max
g∈G

|f1(g)− f2(g)|

6.3.2. Exercise. Let f be a continuous function on a compact group G;
denote:

A = {fh | fh(g) = f(hg) for anyh ∈ G}.
Prove that A is a compact subset in C(G).
Hint. 1st method. Prove that f is uniformly continuous on G, i.e., for any
ε > 0, there exists a neighborhood V of e ∈ G such that if g1g

−1
2 ∈ V , then

|f(g1)− f(g2)| < ε. Now, construct a finite ε-net 2) for A.
2nd method. Prove that the map G −→ C(G) given by the formula h 7→ fh

is continuous for any continuous f . Therefore, A is the image of a compact
under a continuous map, and hence A is a compact.

6.3.3. Exercise. Let f be a continuous function on G, and

Bf = {g ∈ C(G) | g = LS(f) for some S}.

Prove that Bf is a compact subset in C(G).

2 Let P be a probability distribution over some set A. An ε-net for a class H ⊂ 2A

of subsets of A is any subset S ⊂ A such that, for any h ∈ H, we have

p(h) ≥ ε =⇒ h ∩ S 6= ∅.

(Intuitively S approximates a probability distribution.)
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Hint. 1st method. Prove that all functions from Bf are uniformly continuous
and uniformly bounded.

2nd method. Prove that if A is a compact set in a linear metric space, then
its convex envelope is also a compact.

6.3.4. Exercise. Let f be a continuous function on a compact group G. Then

inf
S

ω(LS(f)) = 0.

Hint. Let inf
S

ω(LS(f)) = ω0 > 0. Then there exists a sequence Sn of finite

subsets of G such that lim
n−→∞

ω(LSn(f)) = ω0. Since the set Bf of all functions

of the form LS(f) is compact (Exercise 6.3.4), there exists a subsequence of
the sequence LSn

(f) that uniformly converges to a function f0 ∈ C(G).
Prove then that ω(f0) = ω0. Since ω0 6= 0, it follows that f0 is not a con-

stant and there exists a finite set T ⊂ G such that ω(LT (f0)) < ω0. But then
for sufficiently large n we have ω(LT LSn

(f)) < ω0. This is a contradiction.

Exercises 6.3.1–6.3.4 easily imply the following statement (uniqueness of
the invariant mean).

6.4. Lemma. For any continuous function f on a given compact group G,
there exists a sequence of finite subsets Sn ⊂ G such that the functions LSn

(f)
converge uniformly to a constant C.

Clearly, if an invariant mean of a function f on G exists, it should be equal
to C = lim

n−→∞
LSnf . So the uniqueness is proved.

Observe that in our proof of uniqueness of the invariant mean we only
used half of the property c): Since we only applied to f the left averaging
operators, it suffices to assume the invariance of the mean with respect to left
translations only.

6.5. Proof of existence of the invariant mean. One might think that
for the mean I(f) one can always take the constant C from Lemma 6.4. But
suppose that for the same function f there exist two different sequences such
that

lim
n−→∞

LSn(f) = c, lim
n−→∞

LS′n(f) = c′.

Clearly, in this case there is no invariant mean of f on G.
Let us show that in reality an invariant mean always exists. Here the right

averaging operators become handy. Obviously, Lemma 6.4 holds for the right
translations as well. Therefore, for any (continuous) function f , there exists
a sequence of finite sets Tn ⊂ G such that lim

n−→∞
RTn(f) = C̃.

We will not prove that all left means coincide. Instead, we will prove that
any left mean is equal to any right mean.

6.5.1. Exercise. Prove that if lim
n−→∞

LSn(f) = cl and lim
n−→∞

RTn = cr uni-
formly, then cl = cr.
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Hint. Show that LS and RT commute, i.e., LSRT f = RT LSf and consider
lim

n−→∞
m−→∞

LSm
RTn

(f).

Summary. We have proved the existence of an invariant mean of the (contin-
uous) function on the compact group and that the mean is invariant. Moreover,
the “left mean”, i.e., a quantity Il(f) such that

Il(fl) = Il(f) for any fl(g) = f(hg) and any h ∈ G

is automatically the “right mean”, i.e., it satisfies

Ir(fr) = Ir(f) for any fr(g) = f(gh) and any h ∈ G.

6.5.2. Exercise. Let f ∈ C(G) and f̃(g) = f(g−1). Prove that I(f̂) = I(f).

Hint. Ĩ(f) = I(f̃) is an invariant mean of f , but we have uniqueness.

6.5.3. Exercise. Let G be the group of all isometric transformations of the
circle. Each element of G is either a rotation rϕ through the angle ϕ, where

0 ≤ ϕ ≤ 2π, or a reflection Rψ in the diameter that forms an angle of ψ

2
,

where 0 ≤ ψ ≤ 2π, with a fixed direction. Prove that the invariant mean on G
can be given by the formula

I(f) = 1

4π

(∫ 2π

0

f(rϕ)dϕ +
∫ 2π

0

f(Rψ)dψ

)
.

In what follows we will write
∫

G
f(g)dg instead of I(f).

6.6. Unitary representations of compact groups G. To fully use topol-
ogy of G, e.g., the fact that G is compact, we assume that all G-modules (the
spaces of representations) are endowed with a topology. We will demand that
the assignment g 7→ T (g) ∈ GL(V ) is continuous. This demand is nontrivial,
since the space of linear operators on a given V can be rigged with several
structures of a topological space and we have to select one of them.

We will assume that V is a normed linear space and the assignment
g 7→ T (g) is continuous with respect to the strong operator topology.

Let us construct an invariant (with respect to G) inner product on V . To
this end, suppose, first, that V ∗ contains a countable (infinite) set of linear
functionals ϕk ∈ V ∗, where k ∈ N, sufficient to distinguish any two distinct
elements from V . Clearly, without loss of generality, we may assume that
‖ ϕk ‖= 1 for all k ∈ N. Then

{x, y} =
∑ 1

2k
ϕk(x)ϕk(y)

is an inner product in V (an Hermitian one). To obtain a G-invariant inner
product, apply averaging:
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(x, y) =
∫

G

({T (g)x, T (g)y})dg,

Indeed, we only have to verify positivity of (x, x) for x 6= 0.

6.6.1. Exercise. Prove that if a continuous function f is ≥ 0 on G and 6= 0
at least at one point, then ∫

G

f(g)dg > 0.

Now observe that we have realized our initial space V as a dense subset of
a space Ṽ with an Hermitian inner product. Indeed, Ṽ is the completion of
V with respect to the invariant inner product constructed. This construction
is also applicable in the absence of the sequence of functionals that separate
points of V . But then it leads to a degenerate inner product, i.e., (x, x) = 0
does not imply any more that x = 0. Hence, we thus embed into the Hilbert
space not V , but a quotient space of V (modulo x 6= 0 such that (x, x) = 0).

6.7. The two problems. To what extent can the study of arbitrary repre-
sentations be reduced to the study of irreducible representations? What does
it mean that an infinite dimensional space is irreducible?

To the second question we have an answer:

1) Algebraic irreducibility: V has no non-trivial ( 6= {0}, V ) invariant sub-
spaces.

2) Topological irreducibility: V has no nontrivial CLOSED invariant sub-
spaces.

Clearly, for finite dimensional spaces, when all subspaces are closed, these
notions coincide.

6.7.1. Theorem. Every topologically irreducible representation T of the com-
pact group G in a Hilbert space H is finite dimensional (hence, algebraically
irreducible).

6.7.2. Theorem. Let T be a unitary representation of a given compact group
G in a Hilbert space H. For T to be topologically irreducible, it is necessary
and sufficient that any continuous operator H −→ H commuting with T were
a scalar one.

Lecture 7. Algebraic groups and Lie groups (after

É. Vinberg)

7.1. A subgroup of GL(V ) consisting of linear transformations is called a lin-
ear 3) group. Having selected a basis in V we make GL(V ) into the matrix
group GL(n), where n = dim V , and realize linear groups by matrices.
3 The term indicates the realization currently used: “linear” groups may have non-

linear representations (on coset spaces). “Linear” groups can be realized, for ex-
ample, in terms of vector fields.
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7.1.1. Example. The classical groups are the groups of the following exam-
ples 1)–4) and the real forms of the corresponding complex groups.

1) GL(n;C), GL(n;R), GL(n;Z), GL(n;K), where K = Zp, Z/p, Fq, where
q = pn, . . .

2) SL(n;K), where K is as above;
The following examples are groups over R:

3) OB(n) and SOB(n) = OB(n)∩SL(n;R), the orthogonal groups preserve
the non-degenerate symmetric bilinear form B with matrix reduced to the
canonical form (usually, 1n or Πn = antidiagn(1, . . . , 1), depending on the
problem);

O(p, q), the pseudo-orthogonal group preserves the bilinear form B with
matrix diag(1p,−1q);

4) Sp(2n), the symplectic group preserves the non-degenerate anti-
symmetric bilinear form B with matrix J2n;

5) U(p, q), the pseudo-unitary group preserves the sesquilinear form with
matrix diag(1p,−1q). The the unitary group, U(n), preserves the sesquilinear
form with matrix 1n.

The unitarity condition reads
∑

k

aikajk = δij

Set SU(n) = U(n) ∩ SL(n;C).

6) The group
{�

λ 0
0 λa

�
| λ ∈ R+

}
, where a ∈ R is fixed.

A linear group is said to be algebraic if it is singled out by a system of
polynomial equations. For example:

GL(n;K) = K[xij , T ]/(T det(xij)− 1), where 1 ≤ i, j ≤ n;

SL(n;K) = K[xij ]/(det(xij)− 1);

O(n;K) = K[xij ]/(
∑
k

xikxjk = δij for 1 ≤ i, j ≤ n).

A linear group G ⊂ GL(n;R) is called a d-dimensional Lie group if there is
a neighborhood U ⊂ Mat(n;R) of the unit of G such that G∩U can be given
parametrically as

aij = aij(u1, . . . , ud), where aij(u) ∈ C∞(V )

for V ⊂ Rd and rk
(

∂aij

∂uk

)
= d on V.

(1.22)

7.1.2. Exercise. 1) Any finite group is algebraic.
2) The groups 1)–5) over R,C are algebraic except GL(n;Z).
3) The group of example 6) is not algebraic for any a ∈ R (for different

reasons for a ∈ Q and a 6= Q).
4) Find dim G for G from examples 1)–6).
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Let G be a linear group, G ⊂ GL(n;R). The map

X 7→ AX, where X ∈ Mat(n;R) and A ∈ G is fixed,

sends G into itself, I 7→ A. Therefore, as a set in Mat(n;R), the group G is
“homogeneous”: The m-neighborhoods of all points are all “alike”. So, if G is
a Lie group, then the eq. (1.22) holds not only for a neighborhood U of the
unit e ∈ G but for a neighborhood of any point g ∈ G.

7.1.3. Exercise. The groups 1)–5) are Lie groups. For which a is the group
6) a Lie group?

7.2. Theorem. Any algebraic linear group is a Lie group.

7.3. Topological properties of the groups. Since any linear group G is
a subset in Rn2

= Mat(n;R), it can be endowed with topological properties,
such as compactness.

7.3.1. Example. The groups O(n), SO(n) are compact (try to prove it!);
any finite group is, clearly, compact. The unitary group U(n) is compact, the
pseudo-unitary one, U(p, q) with pq 6= 0, is not.

A linear group is said to be connected if any two of its points may be
connected by a continuous curve completely lying in G. (For a connected
group G, any two points can be connected by a smooth curve lying in G.) The
set

{GA | g ∈ G that can be connected with A ∈ G}
is called the connected component of an element A ∈ G.

7.4. Theorem. The set GE for the unit E ∈ G is a normal subgroup in the
linear group G. Moreover, GA = A ·GE for any A ∈ G.

Proof. Let A,B ∈ GE , let A(t), B(t) ∈ G be continuous curves that connect
E with A and B, respectively, as t varies from 0 to 1. The curve

C(t) =

{
A(t) if 0 ≤ t ≤ 1,

AB(t− 1) if 1 ≤ t ≤ 2

connects E with AB; the curve A(t)−1 connects E with A−1. If P ∈ G,
then the curve PA(t)P−1 connects E with PAP−1. Hence, GE is a normal
subgroup.

The “moreover” part: Since the map X 7→ AX is one-to-one and continu-
ous together with its inverse, it sends GE to GA. ut

7.4.1. Example. O(n) ⊃ SO(n).
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7.4.2. Lemma. In an appropriate basis, any orthogonal transformation
A ∈ O(n;R) is of the form

diag(π(ϕ1), . . . , π(ϕm), 1,−1), (1.23)

where π(ϕ) =
�

cos ϕ − sin ϕ
sin ϕ cos ϕ

�
and any of the last two elements (i.e., 1 and −1)

may be absent. In particular, if detA = 1, then −1 is certainly absent.

In other words, for any A ∈ O(n), there exists C ∈ O(n) such that CAC−1

is of the form (1.23).

Proof. Linear algebra, see, e.g., [P]. ut
If the matrix (1.23) has no −1, consider the continuous curve connecting

the matrix (1.23) with the unit matrix:

diag(π(tϕ1), . . . , π(tϕm), 1), 0 ≤ t ≤ 1.

Hence, SO(n) is a connected group.

7.5. If the connected component of E ∈ G consists of E only, then G is called
totally disconnected.

7.5.1. Examples. GL(n;Q), all discrete groups (like Z, GLn(Z)), and all
finite groups are totally disconnected.

7.5.2. Theorem. Any totally disconnected normal subgroup N of a connected
linear group G belongs to the center of G.

Proof. Let C ∈ N , let A(t) for 0 ≤ t ≤ 1 be a continuous curve in G. Then

A(t)CA(t)−1 ∈ NC = {C},

and hence A(t)C = CA(t). Since G is connected, we see that C commutes
with all elements of G. ut

A connected group G is called simply connected if any closed curve (loop)
can be continuously contracted into a point (in other words, as a topological
space, G has no holes). We will show that SO(n) is NOT simply connected
for n ≥ 2.

7.6. Unitary groups. Consider Cn as R2n : If the vectors e1, . . . , en

span Cn, then the vectors e1, . . . , en, ie1, . . . , ien span R2n. If A ∈ GL(n;C),
then, in the above basis of R2n, the matrix of A considered as an element of
GL(2n;R) is of the form �

Re A − Im A
Im A Re A

�
.

Is it clear that U(n) and SU(n) are compact? If not, prove that it is.
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7.6.1. U(n) and SU(n) are connected.

Lemma. Any unitary transformation of Cn has an orthonormal basis con-
sisting of eigenvectors. The absolute value of any eigenvalue of any unitary
transformation is equal to 1.

Proof. (Linear algebra): For any A = diag(eiϕ1 , . . . , eiϕn), consider the curve

{A(t) = diag(eiϕit, . . . , eiϕnt) | 0 ≤ t ≤ 1},
that connects the unit with A and lies inside U(n). If we select ϕ1, . . . , ϕn so
that ϕ1 + . . . + ϕn = 0 (not just 2πk), then det A(t) = 1 for any t. ut
7.7. Invariants of compact linear groups. Let S = R[x], where x ∈ Rn.
Every invertible linear map A : Rn −→ Rn induces an automorphism of S:

(Af)(x) = f(A−1x), for any x ∈ Rn.

7.7.1. Lemma (On an averaged polynomial). Let G ⊂ GL(n,R) be a com-
pact group. Any nonempty convex subset S+ ⊂ S contains a G-invariant
polynomial if S+ is G-invariant.

Proof. Take any f ∈ S+ and apply to it all transformations from G; let
Gf be the set obtained. Its linear envelope Sl is of finite dimension because
dim fl ≤ dim f for any fl ⊂ Sl. Since G is compact, Gf is bounded in Sl. Let
M ⊂ Sl be the convex envelope of Gf , let f0 be the center of mass of M (we
naturally assume that the mass of the body is proportional to its volume).
Clearly, f0 ∈ M ⊂ S+. The polynomial f0 is G-invariant as the center of mass
of a G-invariant set M . ut
7.7.2. Example. Let

S+ = {positive definite quadratic forms }.
For any compact linear group ⊂ GL(n,R), there exists a positive definite
quadratic form which is G-invariant.

In other words, for a suitable inner product preserved by O(n), any com-
pact linear group G may be considered as a subgroup of O(n).

Over C: Let

S+ = {positive definite Hermitian forms }.
Then any compact linear group ⊂ GL(n;C) is a subgroup of U(n) (for a suit-
able Hermitian product).

7.7.3. Corollary. For any G-invariant subspace V ⊂ Rn (or Cn) of a com-
pact linear group G ⊂ GL(n,R) (or GL(n,C)) there exists an invariant com-
plementary subspace W , i.e., V ⊕W = Rn.

Indeed, take W = V ⊥.

7.8. Theorem (Hilbert). The ring SG is finitely generated.
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Lecture 8. Unitary representations of compact groups
(Proof of Theorem 6.7.1)

The idea of the proof is very simple. Suppose we managed to prove the
orthogonality relations obtained earlier for finite groups:

∫

G

tik(g)tje(g)dg = 1

dim H
δijδkl. (1.24)

Since, for i = j and k = l, the left hand side is a positive number, not 0, it
follows that dimH < ∞.

Although the idea of the proof is easy, to prove eq. (1.24) is not easy, we
need several auxiliary statements.

2) Let T : G −→ GL(H) be a unitary representation, H a Hilbert space.
The representation T is topologically irreducible if and only if every continuous
operator in H that commutes with all T (g) is a scalar one.

N e c e s s i t y. This is quite clear: Indeed, let the representation be re-
ducible, i.e., let there exist a subspace H1 ⊂ H invariant with respect to
T (G). But then H = H1⊕H⊥

1 . Hence, the projection onto H1 parallel to H⊥
1 ,

clearly, commutes with every T (g), where g ∈ G, and is not a scalar operator.
S u f f i c i e n c y 4).

8.1. Exercise. Prove that if an operator A commutes with all T (g), where
g ∈ G, then A = B + iC, where B = B∗ and C = C∗ (self-adjoint operators)
and both B and C commute with all T (g), too.
Hint. Prove that A∗ commutes with all T (g), where g ∈ G. Therefore, in the
proof of sufficiency, we can confine ourselves to self-adjoint operators.

For self-adjoint operators A and B, we will write A ≥ B if

(Ax, x) ≥ (Bx, x) for any x ∈ H.

8.2. Exercise. Let aI ≤ A ≤ bI (here I is the identity operator) and let
P (x) ∈ R[x] be a polynomial such that P (x) ≥ 0 on [a, b]. Then P (x) ≥ 0 on
R as well.
Hint. Represent P (x) in the form

P (x) = (x− a)Q(x) + (b− x)R(x) + S(x),

where Q, R and S are the sums of some polynomials squared.

8.3. Exercise. Let A be a self-adjoint operator and 0 ≤ A ≤ cI. Prove that
‖ A ‖≤ c.
4 If one knows the spectral theory of operators acting in a Hilbert space, all is easy:

Just apply the known theorems. Regrettably, I completely forgot these theorems.
And the reader, probably, did not start to study them yet. So let us solve problems
instead of taking a shortcut. Kirillov had split the task in digestible chunks.
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Hint. Introduce a new inner product [x, y] = (Ax, y) and apply the Cauchy–
Bunyakovsky–Schwarz 5) inequality

[x, y]2 ≤ [x, x] [y, y] for y = Ax.

8.4. Exercise. Let f(x) be any real function on [a, b] and Pn(x) any sequence
of polynomials that converges to f(x) uniformly on [a, b]. Prove that the se-
quence of operators Pn(A) converges uniformly to an operator that does not
depend on the choice of the sequence Pn(x).

The operator determined by Exercise 8.4 will be denoted f(A).

8.5. Exercise. Prove that a monotonic bounded sequence of operators in H
converges in the strong operator topology. In other words, if

A1 ≤ A2 ≤ · · · ≤ An ≤ · · · ≤ B,

then there exists an operator A such that the sequence Anx converges to Ax
for any x ∈ H.
Hint. The numerical sequence (Anx, x) is monotonic and bounded. Hence, it
converges. Demonstrate that the sequence Anx is a fundamental one, i.e., for
all ε > 0, there exists N such that ‖ Anx− Amx ‖< ε for any n,m > N . To
this end, introduce the new inner product

[x, y] = ((An −Am)x, y)

and apply the Cauchy–Bunyakovsky–Schwarz inequality.

8.6. Exercise (The spectral theorem). Prove that, for any self-adjoint oper-
ator A, there exists a family of subspaces Hc ⊂ H labeled by real numbers c
that belong to a subset R ⊂ R and with the properties

1) Hc ⊂ Hd if c < d.
2) ∪

c∈R
Hc = H, and ∩

c∈R
Hc = {0}.

3) For c < d, denote the orthogonal complement to Hc in Hd by Hc,d.
Then

c(x, x) ≤ (Ax, x) ≤ d(x, x) for any x ∈ Hc,d.

4) The spaces Hc are invariant with respect to all operators that commute
with A.

Hint. Let χ be the characteristic function of the set {x ∈ R | x < c}; let fn(x)
be an monotonically growing sequence of continuous nonnegative functions
converging to χc. Then Pn = lim

n−→∞
fn(A) is the projection operator onto Hc.

5 Named, in respective countries, after Augustin Louis Cauchy, Viktor Yakovlevich
Bunyakovsky and Hermann Amandus Schwarz.
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8.7. Exercise. If, for a self-adjoint operator A, all the spaces Hc coincide
with either H or {0}, then A is a scalar operator.

Clearly, the results of Exercises 8.6 and 8.7 prove the sufficiency condition
in Theorem 6.7.1. ut
8.8. Now, let A be an arbitrary bounded operator in a Hilbert space H. Let
also H be the space of a unitary representation T of a compact group G. Set

Å =
∫

G

T (g)AT (g−1)dg.

8.8.1. Exercise. Prove that Å commutes with all T (g), g ∈ G.

Hint. Consider the Banach space V consisting of all bounded operators in H
and the operator S : A 7→ T (g)AT (g−1) in V .

To solve this exercise (and not only for this), we have to integrate over
the group not only the usual numerical functions, but also vector-valued or
operator-valued functions. We will reduce such problems to the usual integral
of the usual functions.

For any function f continuous on a compact group G and with values
in a Banach space V and for any χ ∈ V ∗, construct the numerical function
g 7→ 〈f(g), χ〉, where 〈·, ·〉 is the pairing of V and V ∗. Define

∫
G

f(g)dg as the
vector v ∈ V such that

〈v, χ〉 =
∫

G

〈f(g), χ〉dg for any χ ∈ V ∗. (1.25)

The condition (1.25) uniquely determines v, but it is unclear why such a v
exists. To prove the existence, consider the collection

K = {v ∈ V | v =
n∑

k=1

Ckf(gk), where Ck ≥ 0,
n∑

k=1

Ck = 1 for some n ∈ N},

and let K be the closure of K.

8.8.2. Exercise. Prove that K is a compact.
Hint. Proceed as we did to solve Exercise 8.8.1.

8.8.3. For any χ ∈ V ∗ and any ε > 0, let Kχ,ε be the part of K consisting
of the vectors v that satisfy

∣∣∣∣〈v, χ〉 −
∫

G

〈f(g), χ(g)〉dg

∣∣∣∣ ≤ ε.

8.8.4. Exercise. Prove that the intersection of finitely many sets of the form
Kχ,ε is nonempty.
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Since the sets Kχ,ε are compact (as closed subsets of K), it follows that
their intersection is also nonempty. This intersection, clearly, consists of one
point, the point v ∈ V desired, which satisfies (1.25).

Remark. Observe the following property of the integral constructed that
likens it with the Riemann integral:

The vector v =
∫

G

f(g)dg is the limit of linear combinations

of the form
n∑

k=1

Ckf(gk),

where Ci ≥ 0, and
n∑

i=1

Ci = 1.

8.8.5. Exercise. Prove that, for any continuous operator S : V −→ W , where
W is a normed space, we have

∫

G

Sf(g)dg = S

∫

G

f(g)dg.

Hint. Prove that, for any χ ∈ W ∗, we have
〈∫

G

Sf(g)dg, χ

〉
=

〈
S

∫

G

f(g)dg, χ

〉
.

Now, apply the result of Exercise 8.8.3.

8.9. Orthogonality relations. To deduce these relations, we have to intro-
duce in an infinite dimensional Hilbert space H a particular class of operators,
trace-class operators, for which trace is defined.

First, consider the finite dimensional operators, i.e., operators A with
dim A(H) < ∞.

8.9.1. Exercise. Prove that every finite dimensional operator A in H is of
the form

Av =
n∑

k=1

(v, xk)yk for a finite subset (x, y) = x1, . . . , xn, y1, . . . , yn ∈ H.

(1.26)
Hint. For y1, . . . , yn take a basis of H.

8.9.2. Exercise. Prove that for any representation of A in the form (8.9.1),

the value
n∑

k=1

(yk, xk) does not vary, i.e., it does not depend on the choice of

the vectors x, y.

The invariant quantity determined in Exercise 8.4.2 (in non-invariant
terms) will be called the trace of A and denoted by tr A.
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8.9.3. For any finite dimensional operator A, set

|||A||| = inf
n∑

i=1

‖ xi ‖ · ‖ yi ‖,

where inf is taken over all possible representations (8.9.1).

Exercise. Prove that A 7→ |||A||| is a norm.

8.9.4. Exercise. Prove that |||A||| >‖ A ‖.
Hint. Represent ‖ A ‖ in the form

‖ A ‖= sup
‖ξ‖=1,‖η‖=1

Re(Aξ, η).

8.9.5. Properties of the norm ||| · |||. Consider the collection Of of all
finite dimensional operators with the metric

ρ(A,B) = |||A−B|||.

Clearly, Of is a linear space. It is not manifest but still true that Of is not
complete with respect to the metric ρ(·, ·).

Let {An}∞n=1 be a fundamental sequence in O. This sequence is, clearly,
fundamental with respect to the usual metric

ρn(A,B) =‖ A−B ‖ .

8.10. Statement (See any textbook in Functional Analysis). The space of
all bounded operators is complete with respect to the metric ρn(·, ·).

Therefore, the completion of the space Of of all finite dimensional op-
erators with respect to the metric ρ can be embedded into the space of all
bounded operators. Denote this completion by S.

8.10.1. Exercise. Prove that every operator A from S can be defined by the
formula

Av =
∞∑

k=1

(v, xk)yk, where
∞∑

k=1

‖ xk ‖ · ‖ yk ‖< ∞.

8.10.2. Exercise. Prove that any A ∈ S is of trace class. Namely, for any

orthonormal basis {vi}∞i=1 of H the series
∞∑

i=1

(Avi, vi) converges and the sum

does not depend on the choice of the basis.
Hint. Prove the statement of Exercise 8.10.2 for finite dimensional operators
and apply the inequality | tr A| < |||A|||.
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8.10.3. Exercise. For A ∈ S, set

Å =
∫

g

T (g)A(T (g))∗dg.

Prove that Å ∈ S and tr Å = tr A.
Hint. Apply the statement of Exercise 8.10.2 to the normed space S and the
map A 7→ trA.

8.11. Theorem (The orthogonality relations). Let T : G −→ GL(H) be an
irreducible representation of a compact group G in a Hilbert space H. Let
{vi}∞i=1 be an orthonormal basis of H. Set

tij(g) = (T (g)vi, vj).

Then the functions tij(g) are pairwise orthogonal and their norms in L2(G) 6)

coincide.

Proof. Set
Eijvk = δkjvi, E0

ij =
∫

G

T (g)EijT (g−1)dg.

Clearly, Eij ∈ S and Eij = δij .
But E0

ij commutes with all operators T (g), and so E0
ij = λI by Theorem

6.7.1. But E0
ij ∈ S, and hence tr E0

ij = tr Eij < ∞. But this is only possible if
dim H < ∞.

Let us compute the (k, l)-th matrix element of E0
ij . Since

E0
ij = λ dim H = tr Eij = δij ,

it follows that
(E0

ij)kl = 1

dim H
δklδij .

On the other hand,

(E0
ij)kl = (E0

ijvk, vl) =
∫

G

(T (g)E0
ijT (g)∗vk, vl)dg =

∫

G

tli(g)tkj(g)dg =

(tli, tkj)L2(G).

Thus,
(tli, tkj)L2(G) = 1

dim H
δklδij . ut

Observe that we not only proved the orthogonality relations but proved
Theorem 6.7.1 on the finite dimension of irreducible representations of com-
pact groups.
6 Recall that L2(X) is the space of all square-integrable functions on a given space

X.
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8.12. A refinement of Theorem 6.7.1. Let T be a unitary representation
of the compact Lie group G in a Hilbert space H. Then there exists a nonzero
finite dimensional G-invariant subspace H0 ⊂ H.

In the proof of this refinement, the following fact is crucial.

The spaces Hc,d are finite dimensional for all c, d > 0 if A ∈ S is self-adjoint.

We will split the proof of this fact into several problems.

8.12.1. Exercise. Prove that the operators of class S are completely contin-
uous, i.e., they send any bounded set into a compact one.
Hint. Prove that all finite dimensional operators are completely continuous
and the passage to the limit with respect to the norm ‖ · ‖, and, even more
so, with respect to the norm ||| · ||| preserves this property.

8.12.2. Exercise. Prove that no completely continuous operator in the infi-
nite dimensional space can have a bounded inverse.
Hint. Prove that completely continuous operators form an ideal in the ring
of all bounded operators. Prove that the identity operator is not completely
continuous.

8.12.3. Exercise. Prove that A has a bounded inverse on the spaces Hc,d

for all c, d > 0.
Hint. Prove that the collection of vectors {Ax | x ∈ Hc,d} is dense in Hc,d

and on this collection the following inequality holds:

‖ A−1 ‖≤ max(|c|−1, |d|−1).

The refinement 8.12 of Theorem 6.7.1 may now be proved as follows. Let
A be a positive self-adjoint operator of S acting on H. Then Å is a positive
self-adjoint operator of S commuting with all the T (g), where g ∈ G. Among
the spaces Hc,d for any c, d > 0, at least one space is nonzero (since otherwise
the operator A would not have been positive). By Exercises 8.12.2 and 8.12.3
this nonzero space is of finite dimension, as was required. ut

Lecture 9. The regular representations of the compact
groups

Let X be any set with a G-action for a compact group G. In other words,
there is given a map (called action)

a : G×X −→ X, a(g, x) = gx

continuous with respect to the topologies in G and X and such that

(gh)x = g(hx) for any g, h ∈ G and x ∈ X.
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This gives rise to a representation a∗ of G in the space of functions on X:

(a∗(g)(f)(x) = f(a(g−1)x).

Usually, for infinite sets X, we confine ourselves to a subclass of all functions
(to continuous, smooth, integrable, measurable, and so on, functions).

Among the sets with G-action, there is one, a “most natural” one, namely,
G itself. On it, there are three “most natural” G-actions (right, left and ad-
joint):

Rg : h 7→ hg−1; Lg : h 7→ gh; Adg : h 7→ ghg−1.

Let us investigate L∗g. Consider the space C(G) of continuous functions on G
with the inner product given by the formula

(f, g) =
∫

G

f(g)h(g)dg.

The completion of C(G) with respect to this inner product (or the metric
associated with it) will be denoted by L2(G) (the space of square integrable
functions).

We will briefly denote by T the left regular representation L∗g of G in
L2(G).

9.1. Theorem. Let Tα, where α ∈ A, for some set A, be all irreducible
representations of G (up to equivalence); let nα be the dimension of Tα. Then
L2(G) = ⊕

α∈A
nαTα, and each irreducible representation Tα enters L2(G) with

multiplicity equal to dim Tα.

Proof. Let v1, . . . , vnα be an orthonormal basis in Hα, the space of represen-
tation Tα. Then the matrix elements t

(α)
ij of the operator Tα(g) with respect

to this basis satisfy the orthogonality relations
∫

G

t
(α)
ij t

(α)
kl dg = 1

nα
δikδjl.

Let us show that Hα = Span
(
t
(α)
ij for all i, j

)
is Tα-invariant. Indeed,

Tα(g−1h) = Tα(g−1)Tα(h) ⇐⇒
t
(α)
ij (g−1h) =

∑
k

t
(α)
ik (g−1)t(α)

kl (h) 〈Xv,w〉=〈v,(Xt)−1w〉
⇐⇒

Tα(g)t(α)
ij (h) = t

(α)
ij (g−1h) =

∑
k

t
(α)
ki (g)t(α)

kj (h).

Hence, Hα is Tα-invariant. Moreover, denote by c
(α)
ij the coordinates in Hα

with respect to the basis t
(α)
ij . Then
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Tα(g)(c(α)
ij ) =

nα∑

i=1

t
(α)
ki (g)c(α)

ij = c̃
(α)
ij .

Therefore, Hα = Vα ⊕ · · · ⊕ Vα︸ ︷︷ ︸
nα− many summands

. As for finite groups, we prove that

∫

G

t
(α)
ij (g) =

∑

k

t
(β)
kl (g)dg = 0 for α 6= β.

It remains to prove that the spaces Hα exhaust L2(G). Let H ′ be the orthog-
onal complement to ⊕

α
Hα in L2(G).

9.2. Exercise. Show that H ′ has an invariant finite dimensional subspace V .
Let Ṽ ∗ be an irreducible component of H ′, let Tα the representation in

Ṽ for some α (since Tα exhaust all irreducible representation of G, it follows
that Ṽ must be among one of them). Let us show that Ṽ ⊂ Hα. This implies
a contradiction since Ṽ ⊥ (⊕

α
Hα) and the inner product is non-degenerate.

9.2.1. Remark. For anti-symmetric products, even non-degenerate ones,
V ⊥ V does not imply V = 0.

Let w1, . . . , wnα
be a basis of Ṽ . Then

wi(g−1h)) = (Tα(g)wi)(h) =
∑

k

t
(α)
ij (g−1)w(h).

Setting h = e and replacing g by g−1, we obtain

wi(g) =
∑

k

wk(e)t(α)
ij (g).

But, by assumption, Ṽ ⊥ (⊕
α

Hα). Hence, V = 0. ut

Lecture 10. Lie algebras (after É. Vinberg)

10.1. Linear groups. Their Lie algebras. A linear Lie group G is, by
definition, a submanifold in the manifold Mat(n;R) of n×n-matrices. Denote
the tangent space to G at point g by TgG. This space is spanned by all vectors
tangent to the curves in G passing through g ∈ G.

Since G is a Lie group, there exists a parametric representation of G in

a neighborhood of g such that g = g(0, . . . , 0). The matrices ∂g(u)

∂ui
|u=0 , where

i = 1, . . . , d, form a basis of TgG. Clearly, dim TgG = dim G for any g.
The tangent space TeG at the unit is called the Lie algebra of G and is

denoted (after Bourbaki) by small Gothic letters corresponding to the capital
Latin characters that denote the Lie group, e.g., g = Lie(G). Obviously, the
G-action sends one tangent space into another:
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g · g = TgG.

For any fixed g ∈ G, define the adjoint automorphism Adg of G by setting

Adg(h) = ghg−1.

These adjoint automorphisms of G are called the inner ones. They generate
the group Ad G of inner automorphisms of G.

Since Adg preserves the unit e of G, it follows that Adg induces a transfor-
mation of the tangent space at e; we will denote the induced transformation
also by Adg. Clearly,

Adg(X) = gXg−1 for any X ∈ g.

Further, let g(t) be any curve in G such that

dg(t)

dt

∣∣∣
t=0

= Y ∈ g and g(0) = I.

We have

d

dt
(g(t)Xg(t)−1) |t=0 = d

dt
[(I + tY + o(t))X(I − tY + o(t))] = [Y,X] ∈ g.

That is, for any X, Y ∈ g the matrix [Y,X] is also in g. This means that the
commutator of matrices from g makes g into an algebra. This algebra is called
the Lie algebra and the product (multiplication) in it is called the bracket or
commutator for obvious reasons.

More generally, any subspace g ⊂ Mat(n;R) closed with respect to the
bracket is called a linear Lie algebra. The point is there are also abstract Lie
algebras, or, at least, Lie algebras realized not via matrices but somehow else.
To define them, observe that the commutator satisfies the following identities:

[X, Y ] = −[Y,X] (anti-commutativity),

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X, Z]] (Jacobi identity)

The algebra g whose product satisfies the two above identities is called
a Lie algebra.

10.2. Examples. 1) Lie(GL(n;R)) ∼= gl(n;R), i.e., as a space, the Lie alge-
bra of GL(n;R) is isomorphic to the space Mat(n;R) of all n × n matrices.
But in Mat(n;R) two operations are natural:

(a) just the product (juxtaposition) of matrices with respect to which
Mat(n;R) is an associative algebra;

(b) the bracket which makes an associative algebra Mat(n;R) into a nonas-
sociative (see the Jacobi identity), namely, L i e algebra. To distinguish these
algebras we denote the latter by gl(n;R).

2) For any associative algebra A, let AL be the Lie algebra whose space is
a copy of A and the bracket is the commutator in A.
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3) Lie(SL(n;R)) = sl(n;R) = {X ∈ gl(n;R | tr X = 0}. Indeed, if X
belongs to a small neighborhood of In, i.e., if X is of the form

X = In + tY + o(t),

then
det X = 1 + t trY + o(t)

implying
detX = 1 ⇐⇒ trY = 0.

Therefore Lie(SL(n;R) ⊂ sl(n;R). Then dimension consideration

dim G = dim Lie(G)

completes the proof.
Observe that we could have gotten the same result from a useful formula

known (at least, it should be known) from Algebra courses, namely:

detX = exp tr log X for X from a small neighborhood of In ∈ Mat(n;R).

Hence,
detX = 1 ⇐⇒ tr log X = 0.

4) The Lie algebras of the Lie groups O(n) and SO(n) = O(n)∩SL(n;R)
are identical. Indeed, let

A(t) ∈ O(n) for any |t| < ε; A(0) = In, A′(0) = X.

By differentiating the identity

A(t)At(t) = In (1.27)

at t = 0 we obtain
X + Xt = 0.

The group O(n) is determined by 1

2
n(n + 1) equations

∑

k

AikAjk = δij for any i ≤ j. (1.28)

Moreover, the rank of the Jacobi matrix at In for each of these equations is
also equal to 1

2
n(n + 1) (Exercise: Why?), i.e., the condition for existence of

the inverse function is fulfilled. Therefore,

dim O(n) = n2 − 1

2
n(n + 1) = 1

2
n(n− 1) = dim o(n),

where
o(n) = {X ∈ gl(n) | X + Xt = 0}.

10.2.1. Exercise. O(n) = SO(n)
∐

A · SO(n), where A is any matrix from
O(n) with det A = −1.
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10.3. A main method. O n e o f t h e p r i n c i p a l m e t h o d s i n
t h e s t u d y o f r e p r e s e n t a t i o n s o f L i e g r o u p s i s r e d u c -
t i o n t o t h e s a m e q u e s t i o n i n t h e c o n t e x t o f L i e a l g e -
b r a s .

Let us demonstrate, first of all, that each connected linear Lie group is
uniquely determined by its Lie algebra.

Let A(t) be a smooth curve in a linear Lie group G. By definition of the
tangent space

A′(t) ∈ TA(t)G = A(t)g for any t.

Hence,
A′(t) = A(t) ·X(t) where X(t) ∈ g. (1.29)

We can consider the matrix equation (1.29) for any continuous curve
X(t) ∈ Mat(n;R); clearly, this is a linear system of ordinary differential equa-
tions. Therefore, eq. (1.29) has a solution on the whole domain of definition
of X(t), and if A0(t) is the solution for the initial value A(0) = In, then the
solution corresponding to the initial value A(0) = C is CA0(t).

10.3.1. Lemma. Let X(t) ∈ g be an arbitrary continuous curve, A0(t) the
solution of eq. (1.29) corresponding to the initial value A(0) = In. Then
A(t) = G.

Proof. Let A(u), where u = (u1, . . . , ud), be a parametric representation of
a neighborhood of the unit of G; let A(0) = In. Since A(u)X(t) ∈ TA(u)G, it
follows that

A(u)X(t) =
∑

ϕi(u; t)∂A(u)

∂ui
.

(Indeed, ∂A(u)

∂ui
constitute a basis of TA(u)G.) Consider the system of differ-

ential equations
u′i = ϕi(u; t) for i = 1, . . . , d.

If u = u(t) is a solution of this system for initial values ui = 0, then
Ã(t) = A(u(t)) is a solution of eq. (1.29) for the initial value A(0) = In.
Hence, Ã(t) = A(u(t)) and A(t) ∈ G for sufficiently small values of t.

Let t1 = sup{t | A(t) ∈ G}. Set X1(t) = X(t1 + t) and let A1(t) be the
solution of the initial value problem

A′1(t) = A1(t)X1(t), A1(0) = In.

By the above, A1(t) ∈ G for sufficiently small t. But, on the other hand,

A(t) = A(t1)A1(t− t1) for any t close to t1.

Take t2 = t1 − ε for a sufficiently small ε > 0. We have

A(t1) = A(t2)(A1(−ε))−1 ∈ G.

Therefore, A(t) ∈ G for any t sufficiently close to t1, even for t > t1. This
contradicts the choice of t1 and proves Lemma. ut
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10.3.2. Theorem. (1) Let G,H be linear Lie groups, g = Lie(G) and
h = Lie(H). If G is connected and g ⊂ h, then G ⊂ H.

(2) If G and H are connected and g ∼= h, then G ∼= H.

Proof. If G is connected, then there exists a smooth curve A(t) that connects
A ∈ G with e ∈ G and we may assume that A(0) = I. The matrix-valued
function A(t) satisfies eq. (1.29). If g ⊂ h, then X(t) ∈ h and, by Lemma
10.3.1, A(t) ∈ H. This proves the first statement. The second statement of
Theorem obviously follows from the first one. ut

10.3.3. Theorem. Let G be a connected linear Lie group realized in Rn.
A subspace V ⊂ Rn is G-invariant if and only if V is invariant under
g = Lie(G).

Proof. Let A(t) be a smooth curve in G such that

A(0) = I, A′(0) = X ∈ g. (1.30)

For any a ∈ V , we have

Xa = d

dt
(A(t)a) |t=0 . (1.31)

Therefore, if V is G-invariant, then it is g-invariant.
Now, suppose V is g-invariant. Let v1, . . . , vn be a basis of V . Take

a smooth curve in G such that A(0) = I. Let

X(t)vi =
∑

j

ϕij(t)vj .

Then
d(A(t)vi)

dt
=

∑

j

ϕij(t)A(t)vj . (1.32)

Let λ ∈ (Rn)∗ be a linear form that vanishes on V . Set

λi(t) = λ(A(t)vi).

Clearly, λj(0) = 0. Eq. (1.32) implies that

λ′i(t) =
∑

j

ϕij(t)λj(t).

Hence, λi(t) = 0 for any t, not only at 0. This means that A(t)vj ∈ V . ut

10.3.4. Theorem. Let G be a connected linear Lie group. A vector a from
the representation space of G is G-invariant if and only if

Xa = 0 for all X ∈ g.
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Proof. Let A(t) be a smooth curve in G such that A(0) = I, A′(0) = X ∈ g.
If a is G-invariant, then eq. (1.31) implies that Xa = 0.

Now suppose Xa = 0 for all X ∈ g and let A(t) be a smooth curve in G
satisfying eq. (1.29) with X(t) ∈ g. Then

d(A(t)a)

dt
= A(t)X(t)a = 0.

If A(0) = I, then A(t)a = a for all t. ut
10.4. The adjoint group. To every element g of G ⊂ GL(Rn) assign the
linear transformation Ad of Mat(n;R):

Adg : x 7→ gxg−1

Clearly, Ad : G −→ GL(n2;R) is a linear homomorphism. As follows from
sects. 10.3.1–10.3.3, g ⊂ Mat(n;R) is G-invariant.

To find the differential of Ad, take a curve A(t) ∈ G with A(0) = I and
A′(0) = X ∈ g; and differentiate the equation

AdA(t)(C) = A(t)(C)A(t)−1.

We obtain
adX(C) = [X, C], where ad = d(Ad).

By Theorem 10.3.3 the subspace g ⊂ Mat(n;R) is ad g-invariant. As is easy
to verify directly,

ad[X,Y ] = [adX , adY ],

i.e., ad is a Lie algebra homomorphism. The group AdG is called the adjoint
group of G; this is a group of linear transformations of G.

Let G be a connected linear Lie group. A subspace h ⊂ g is Ad G-invariant
if and only if it is ad g-invariant, i.e., if

[X, Y ] ∈ h for any X ∈ g, Y ∈ h,

in other words, if h is an ideal of g.

10.4.1. Theorem. Let G be a connected linear Lie group, H its Lie subgroup.
If H is normal in G, then h is an ideal in g. Conversely, if h is an ideal in g
and H is connected, then H is normal in G.

Proof. The group H is normal in G if and only if

AdA(H) = AHA−1 = H for any A ∈ G.

The Lie algebra of AdA(H) is (AdA)(h). Hence, if H is normal, then h is
Ad G-invariant.

Conversely, if h is Ad G-invariant and H is connected, then for any A ∈ G
the connected groups AHA−1 and H have the same Lie algebra AdA(h) = h.
Hence, H is a normal subgroup. We observed above that h is Ad G-invariant
if and only if h is an ideal in g. This completes the proof. ut
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10.4.2. Theorem. Let G ⊂ GL(Rn). A matrix C ∈ Mat(n;R) commutes
with all matrices from G if and only if C commutes with all matrices from g.

Proof. The commutativity condition can be expressed as

AdA(C) = C for all A ∈ G.

As follows from Theorem 10.3.4, this is equivalent to the condition

adX(C) = 0 for all X ∈ g.

ut
Corollary. A connected Lie group G is commutative if and only if its Lie
algebra g is commutative, i.e., if [X, Y ] = 0 for any X, Y ∈ g.

10.5. The exponential map. Any solution A(t) of the initial value differ-
ential equation

A′(t) = A(t)X, A(0) = I, (1.33)

where X ∈ Mat(n;R), is a curve lying in GL(n;R). Set

exp(tX) = A(t).

Eq. (1.33) is a particular case of equation (1.29). Therefore, if G is a linear
Lie group and X ∈ g, then exp(X) ∈ G. The map exp is called the exponential
map. If G is a linear Lie group, then this map is the usual exponent of matrices.

Let us prove that

exp(s + t)X = exp sX · exp tX for any X ∈ Mat(n;R).

To this end, fix s and consider two curves in GL(n;R):

B(t) = exp(s + t)X and C(t) = exp sX · exp tX.

We have
B′(t) = B(t)X and C ′(t) = C(t)X.

Moreover,
B(0) = C(0) = exp sX.

Hence, B(t) = C(t) for all t.
Property (1.33) indicates that {exp(tX) | t ∈ R} is a group. This group is

called a one-parameter group generated by X.
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10.6. Lie group homomorphisms. Let G, H be linear Lie group and
A(u), where u ∈ Rd, a parametrization of a neighborhood U of the unit of G.
The map ϕ : U −→ H is called a local homomorphism of Lie groups if

1) ϕ(AB) = ϕ(A)ϕ(B) whenever AB ∈ U ;
2) ϕ(A(u)) is a continuously differentiable function of u.
The differential dϕ of the local homomorphism ϕ : G −→ H at the unit

I ∈ G is a linear map dϕ : g −→ h. Let us show that this linear map is a Lie
algebra homomorphism, i.e., satisfies

dϕ([X,Y ]) = [dϕ(X), dϕ(Y )].

Indeed, let C(t) be a smooth curve in G such that C(0) = I and
C ′(0) = X ∈ g. Then

dϕ(X) = d

dt
ϕ(C(t)) |t=0 .

Let us differentiate the identity

ϕ(AC(t)A−1) = ϕ(A)ϕ(C(t))ϕ(A−1) = ϕ(A)ϕ(C(t))(ϕ(A))−1.

We obtain
dϕ(AdA(X)) = Adϕ(A)(dϕ(X)). (1.34)

Now, let A(t) be a smooth curve in G such that A(0) = I and A′(0) = Y ∈ g.
Substituting A(t) for A in (1.34) and differentiating with respect to t we obtain
the desired.

10.6.1. Theorem. Let ϕ,ψ : G −→ H be local homomorphisms of Lie groups.
If dϕ = dψ, then ϕ = ψ in a neighborhood of the unit of G. If, moreover, G
is connected and ϕ,ψ are global homomorphisms, then ϕ = ψ on the whole
of G.

Proof. Let A(t) ∈ G be a smooth curve given by equation (1.29) with the
initial condition A(0) = I, the unit of G.

Let us prove that, for the differential dϕ|A of dϕ at A ∈ G, we have

dϕ|A(AX) = ϕ(A)dϕ(X) for any X ∈ g. (1.35)

Indeed, if C(t) ∈ G is a curve such that C(0) = I, C ′(0) = X, then AX
is tangent to the curve AC(t) at t = 0. To find dϕ|A(AX), take the vector
tangent at t = 0 to the curve

ϕ(AC(t)) = ϕ(A)ϕ(C(t)).

But this vector is exactly ϕ(A)dϕ(X).
By eq. (1.35)

dϕ(A(t))

dt
= ϕ(A(t))dϕ(X(t)). (1.36)

Since dϕ(X(t)) = dψ(X(t)), it follows that ψ(A(t)) also satisfies eq. (1.36).
Hence,
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ϕ(A(t)) = ψ(A(t)) on the common domain of definition.

This completes the proof. ut

10.6.2. Theorem. Let G, H be linear Lie groups, Φ : g −→ h a Lie algebra
homomorphism. Then there exists a local homomorphism ϕ : G −→ H such
that dϕ = Φ. If G is connected and simply connected, then ϕ can be determined
in large, i.e., on the whole G.

Proof. For a smooth curve A(t) ∈ G satisfying eq. (1.29) with initial value
A(0) = I, define its image B(t) = ϕ(A(t)) ∈ H as the solution of the equation

B′(t) = B(t)Φ(X(t)); B(0) = I.

To prove that this B(t), hence, ϕ, is well-defined in any connected simply
connected domain U ⊂ G, we need the following
Lemma (On the map of a rectangle into a Lie group). Let G be a Lie group,
X(s, t), Y (s, t) ∈ g be continuously differentiable functions on the rectangle

R = {(s, t) | 0 ≤ s ≤ s0, 0 ≤ t ≤ t0}

with values in g. The G-valued function A(s, t) defined on R and satisfying
the initial value problem





∂A

∂s
= A(s, t)X(s, t),

∂A

∂t
= A(s, t)Y (s, t),

A(0, 0) = I (1.37)

exists if and only if the identity

∂X

∂t
− ∂Y

∂s
= [X(s, t), Y (s, t)] for all s, t ∈ R (1.38)

holds.
Observe that eq. (1.38) is the Frobenius integrability condition for the

system (1.37), so Lemma is a tautology.
Let A1(t), A2(t) be two smooth curves in U ⊂ G satisfying the boundary

value problem

A′k(t) = Ak(t)Xk(t), where Xk(t) ∈ g for k = 1, 2;

A1(0) = A2(0) = I, A1(t0) = A2(t0) = A.
(1.39)

Let us construct curves B1(t) and B2(t) — solutions of the equations

B′
k(t) = ABk(t)Xk(t), where Xk(t) ∈ g for k = 1, 2;

B1(0) = B2(0) = I
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and prove that B1(t0) = B2(t0).
There exists a smooth homotopy of the curve A1 into A2 inside U , i.e.,

there exists a smooth function

A : R −→ U such that A(0, t) = A1(t); A(1, t) = A2(t);
A(s, 0) = I; A(s, 1) = A.

The function A(s, t) satisfies eq. (1.37), where X(s, 0) = X(s, t0) = 0.
Therefore, eq. (1.38) hold.

The integrability condition for the system




∂B(s, t)

∂s
= B(s, t)Φ(X(s, t)),

∂B(s, t)

∂t
= B(s, t)Φ(Y (s, t)),

A(0, 0) = I (1.40)

is of the form

∂Φ(X)

∂t
− ∂Φ(Y )

∂s
= [Φ(X(s, t)), Φ(Y (s, t))] for all s, t ∈ R (1.41)

and follows from (1.38) since Φ is a Lie algebra homomorphism (i.e.,
Φ([X,Y ] = [Φ(X), Φ(Y )].) Hence, there exists a solution of (1.40) satisfying
the initial condition B(0, 0) = I. Clearly, B(0, t) = B1(t), B(1, t) = B2(t).
Since X(s, t0) = 0, it follows that B(s, t0) = const, in particular,
B1(t0) = B2(t0). Therefore, ϕ is well-defined.

Let us show that ϕ is a local homomorphism. Let A1, A2, A1A2 ∈ G. Take
smooth curves A1(t), A2(t) ⊂ U that connect I to A1 and A2, respectively;
let

A′k(t) = Ak(t)Xk(t) for k = 1, 2

Then the curve

A(t) =

{
A1(t) for 0 ≤ t ≤ 1,

A1A2(t− 1) for 1 ≤ t ≤ 2

connects I to A1A2 and satisfies eq. (1.29) for

X(t) =

{
X1(t) for 0 ≤ t ≤ 1,

X2(t− 1) for 1 ≤ t ≤ 2.

The image B(t) = ϕ(A(t)) of this curve satisfies, thanks to the definition of
map ϕ, equation (1.29), and therefore

B(t) =

{
B1(t) for 0 ≤ t ≤ 1,

(B1B2)(t− 1) for 1 ≤ t ≤ 2,

where Bk(t) = ϕ(Ak(t)) and Bk(1) = Bk for k = 1, 2. In particular,



62 Ch. 1. Lectures on representation theory

ϕ(A1A2) = ϕ(A(2)) = B(2) = B1B2 = ϕ(A1)ϕ(A2).

The fact that ϕ satisfies condition 2) of the definition of the local Lie
group homomorphism follows from the theorem on smooth dependence of the
solution of the system of differential equations on initial/boundary values.

To complete the proof of Theorem, it only remains to verify that dϕ = Φ.
Let A(t) ∈ G be a smooth curve, A(0) = I, A′(0) = X ∈ g. Let
B(t) = ϕ(A(t)). By the definition of ϕ we have

B′(0) = B(0)Φ(X) = Φ(X).

But B′(0) is exactly dϕ(X). ut
10.7. Two Lie groups G and H are said to be locally isomorphic if there is
a one-to-one map ϕ of a neighborhood of the unit of G on a neighborhood of
the unit of H such that ϕ and ϕ−1 are local homomorphisms.

Theorem. Lie groups G and H are locally isomorphic if and only if their
Lie algebras are isomorphic. The connected simply connected Lie groups are
locally isomorphic if and only if they are isomorphic.

Proof. Let ϕ be a local isomorphism. Set ψ = ϕ−1. The Lie algebra ho-
momorphisms dϕ : g −→ h and dψ : h −→ g are inverse to each other since
dϕdψ = d(ϕψ) = Id and dψdϕ = d(ψϕ) = Id. Hence, g ∼= h.

Conversely, let g ∼= h and let Φ : g −→ h and Ψ : h −→ g be mutually
inverse Lie algebra homomorphisms. By Theorem 10.6.2 there exist local Lie
group homomorphisms ϕ : G −→ H and ψ : H −→ G such that dΨ = ψ and
dΦ = ϕ. Moreover, by Theorem 10.6.2, if G and H are connected and simply
connected, ϕ and ψ can be determined globally. ut

The composition ϕψ : H −→ H is a local homomorphism whose differential
at the unit is equal to ΨΦ. Theorem 10.6.1 implies that ϕψ = id and ψϕ = id.
Hence, ϕ is a local isomorphism; moreover, if G and H are connected and
simply connected, then ϕ is an isomorphism in the large.

10.8. According to Theorem 10.7 in the class of locally isomorphic groups
there is at most one, up to isomorphism, connected simply connected group.
Let G̃ be a connected simply connected group locally isomorphic to G. It
is unclear yet if such a G̃ exists! By Theorem 10.6.2 an isomorphism Φ is
the differential of a homomorphism ϕ defined globally. In a sufficiently small
neighborhood of the unit of G̃ the homomorphism ϕ is a local isomorphism;
hence, its kernel N is discrete.

Theorem. A totally disconnected normal subgroup N of a connected Lie
group G belongs to the center of G.

Proof. If C ∈ N and A(t) is a continuous curve in G, then A(t)CA(t)−1

belongs to NC , the connected component of N connecting C, which is equal
to {C}. Hence, A(t)C = CA(t). Since G is connected, C commutes with all
elements of G. ut
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By this theorem N is contained in the center of G̃. The subgroup ϕ(G̃) of
G contains a neighborhood of the unit of G.

Lemma. Let G be a connected Lie group. If a subgroup H contains a neigh-
borhood of the unit of G, then H = G.

Proof. Take a smooth curve A(t) ∈ G such that A(0) = I. Clearly, A(t) ∈ H
for sufficiently small t. Let u = sup{t | A(t) ∈ H}. Take v = u − ε; for
a sufficiently small ε we have

A(v)−1A(u) ∈ G and A(u) = A(v)
(
A(v)−1A(u)

) ∈ H.

Hence, A(t) ∈ H for all t sufficiently close to u, but this contradicts the
choice of u. ut

The comparison of the above arguments and this Lemma implies

10.9. Theorem. Let G be a connected Lie group, G̃ the locally isomorphic
to G connected simply connected Lie group. There exists a homomorphism
G̃ −→ G whose kernel is a discrete normal subgroup of G̃ lying in the center
of G.

Observe that the existence of G̃ is still to be proved.

10.10. Let ϕ : G −→ H be a homomorphism of linear Lie groups. Let us
show that

ϕ(exp(X)) = exp dϕ(X) for any X ∈ g.

Let ϕ(exp(tX)) = B(t) ∈ H. We have

B′(t) = dϕ
∣∣
exp(tX)(exp(tX)(X)) = B(t)dϕ(X).

Since B(0) = I, it follows that B(t) = exp(tdϕ(X)).

10.10.1. Lemma. A given matrix C ∈ Mat(n;R) commutes with X if and
only if C commutes with exp(tX) for all t.

Proof. The identity
C · exp(tX) = exp(tX) · C (1.42)

implies that CX = XC: differentiate eq. (1.42) with respect to t at t = 0.
Conversely, if CX = XC, set A(t) = exp(tX) · C. Clearly,

A′(t) = A(t)X, A(0) = C.

Hence, A(t) = C exp(tX), as was required. ut

10.10.2. Lemma. If [X,Y ] = 0, then

exp(X + Y ) = exp(X) · exp(Y ).
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Proof. Set A(t) = exp(tX) · exp(tY ). By Lemma 10.10.1, it follows that the
initial value problem

A′(t) = A(t)(X + Y ), A(0) = I

has A(t) = exp t(X + Y ) as a solution. ut

10.10.3. Lemma. For any X ∈ Mat(n;R), we have exp(X) = I +X +o(X).

Proof. By the theorem on smooth dependence of the solution of the system of
differential equation on the parameters, the map exp: Mat(n;R) −→ GL(n;R)
is continuously differentiable. Since exp(0) = I, then by Taylor’s formula

exp(X) = I + L(X) + o(X),

where L : Mat(n;R) −→ GL(n;R) is the differential of exp at 0. For the fixed
X, the definition of exp implies that

exp(tX) = I + tX + o(t),

hence, L(X) = X. ut

10.11. Theorem. Let G be a connected commutative Lie group. The map
exp: g −→ G is a homomorphism of the commutative group g (with respect to
addition) onto G. The kernel of this homomorphism is discrete.

Proof. Lemma 10.10.2 shows that exp is a homomorphism, Lemma 10.10.3
that the Jacobian of exp does not vanish at 0, and hence exp is a one-to-
one map of a neighborhood of the unit (which is the origin 0 for g) of g on
a neighborhood of I ∈ G. This implies that

(1) the kernel of exp is discrete;
(2) exp G contains a neighborhood of I ∈ G.
Since exp G is a subgroup of G, then Lemma 10.10.3 implies that

exp G = G. ut
Recall that any discrete (enumerable but not finite) subgroup of Rd is

a lattice, i.e., the Z-span of a collection of vectors X1, . . . , Xr, where r ≤ d.

10.12. Exercise. If A ∈ SL(2;R) with tr A < −2, then A cannot be repre-
sented as exp(X) for any X ∈ Mat(2;R).

Lecture 11. Selected applications. Hamiltonian
mechanics

The basic notion of the classical mechanics is that of the phase space.
The points of the phase space correspond to the various possible states of the
dynamical system, both positions and momenta, the functions on the phase
space describe various physical characteristics of the system considered.

A mathematical model of the phase space is given by a symplectic manifold
(M,ω), i.e., a manifold M with a non-degenerate closed differential 2-form ω.
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11.1. Theorem (Darboux). 7) Any non-degenerate closed differential 2-form
can be locally reduced to the form

ω =
n∑

i=1

dpi ∧ dqi.

The canonical coordinates that locally exist, thanks to Darboux’s theorem,
on each symplectic manifold describe positions, q, and momenta, p, respec-
tively.

11.2. Examples of symplectic manifolds. 1) If M = T ∗N , then N is
called the configuration space.

2) An example of a symplectic manifold which is not of the form T ∗N for
any N is S2 on which ω is the area element. (Clearly, no compact manifold
can be of the form 1).

The dynamics on the symplectic manifold (M, ω) is given with the help of
a Hamiltonian function H via the formula, where we tacitly assume that all
functions considered depend on t,

ḟ = {f, H}P.B. for any f ∈ F(M), (1.43)

where {·, ·}P.B. is the Poisson bracket to be defined shortly, and the collec-
tion of functions F(M) := C∞(M), or of some other class (sometimes rather
strange), depending on the problem; the dynamical parameter t is interpreted
as Time which means that we tacitly replace the phase space M by M × R
(at least, locally) and we set

ḟ
def= d

dt
f.

For reasons unknown, in practice, only functions quadratic in p usually appear
as Hamiltonians.

The local expression of the Poisson bracket is given by the formula

{f, g}P.B. =
∑ (

∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
. (1.44)

For the symplectic manifolds of the form different from T ∗N , there might
appear another expression for the Poisson bracket that depends on the em-
bedding of the symplectic manifold M into an ambient space. For example,
on M = S2 singled out by the formula

x2 + y2 + z2 = R2 in R3,
7 For a conceptual (algebraic) proof of this seemingly analytic statement, see [LPS,

GL] and volume 2. The obstructions to representability of a given non-degenerate
differential 2-form ω in a canonical form not just at a given point, but in an
infinitesimal neighborhood of this point, is dω. This fact is easy to see using
methods of volume 2 and is absolutely mysterious otherwise. Having understood
this, we make the Darboux theorem a tautology.
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the Poisson bracket can be expressed globally as

{f, g}P.B. = z

R

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
+

y

R

(
∂f

∂z

∂g

∂x
− ∂f

∂x

∂g

∂z

)
+ x

R

(
∂f

∂y

∂g

∂z
− ∂f

∂z

∂g

∂y

)
. (1.45)

The variation of the state of the dynamical system in question is given by
substituting pi and qi for f into (1.43). Accordingly, inserting the coordinate
functions considered to be depending on t into (1.43) with the bracket given
by formula (1.45) instead of (1.44), where H is the Hamiltonian, or energy of
the system, we obtain a description of movements of a solid rod of length R
with a fixed endpoint.

11.3. Classification of elementary mechanical systems. A mechanical
system (M,ω, H) with a symmetry group G is said to be elementary if G acts
transitively on M , i.e., if, for any two points a, b ∈ M , there exists g ∈ G such
that a = gb.

The following 8) construction classifies the elementary mechanical systems
for the case when G is any Lie group.

Let g = Lie(G). Then G naturally acts on g∗ via Ad∗. From the Lie group
theory ([OV]) it is known that each orbit Ω of the G-action on g∗ is a smooth
manifold. Let Ω = Gϕ for some ϕ ∈ g∗ and let Gϕ be the stationary subgroup
of G, i.e., a subgroup that preserves ϕ. Set

gϕ = Lie(Gϕ).

Clearly, g/gϕ ' TϕΩ.
Recall that two dynamical systems (M, ω, H) and (M ′, ω′,H ′) are consid-

ered to be equivalent if there exists a symplectomorphism F : M −→ M ′, i.e.,
a diffeomorphism such that

F (ω) = ω′ and F (H) = H ′; moreover,

F is invertible, F−1(ω′) = ω and F−1(H ′) = H.

11.3.1. Statement ([Ki1]). The kernel of the bilinear form

ω : X, Y 7→ ϕ([X, Y ]) for any X, Y ∈ g and a fixed ϕ ∈ g∗

is equal to gϕ and ω is non-degenerate on g/gϕ. The collection of forms ω
for ϕ running over Ω determines a symplectic structure on Ω. Two orbits Ω
and Ω′ determine equivalent dynamical systems (M,ω, H) and (M ′, ω′,H ′)
for a G-invariant ϕ ∈ g∗.

Let ωΩ be the symplectic form thus defined on the orbit Ω.
8 Due to Kirillov.
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11.3.2. Generalizations. The above construction of elementary systems
can be generalized:

1) Let G1 be a central extension of G with the help of the Lie group Z; in
other words, Z belongs to the center of G1 and G1/Z = G. If Ω is a G1-orbit
in g∗1, then Z trivially acts on Ω, and therefore the actual symmetry group of
Ω is G1/Z = G.

2) If M is a homogeneous space with the G-action (i.e., M = G/H for
a Lie subgroup H ⊂ G) endowed with a symplectic structure, and Γ is
a discrete subgroup of canonical transformations of M (i.e., Γ preserves the
symplectic structure) and the G-action on M commutes with the Γ -action,
then M ′ = M/Γ is also a homogeneous symplectic manifold with symmetry
group G.

3) If M is a non-simply connected symplectic manifold homogeneous with
respect to the Lie group G, then the simply connected cover M̃ of M is
a symplectic manifold homogeneous with respect to G̃, the simply connected
cover of G.

11.3.3. Exercise. The dynamical systems obtained from each other by the
mutually inverse procedures 2) and 3) are equivalent.

11.4. Digression: Lie derivative. Recall that the Lie derivative along the
vector field D on Ω

.(M), the exterior algebra of differential forms, is defined
by the formulas

LD(f) = D(f); LD(df) = d(D(f)) for any f ∈ F(M)

and the Leibniz rule:

LD(ω1 ∧ ω2) = LD(ω1) ∧ ω2 + ω1 ∧ LD(ω2).

The vector fields D ∈ vect(M) satisfying (1.46), i.e., such that LD(ω) = 0, are
called Hamiltonian vector fields.

11.4.1. Exercise. Let ω be the symplectic form on the symplectic manifold
M . Verify that Hamiltonian vector fields on M constitute a Lie algebra h(M),
i.e., if LD1(ω) = 0 and LD2(ω) = 0, then L[D1,D2](ω) = 0.

To describe the Hamiltonian fields, consider them as elements of Ω1(M).
For the definition of the inner derivative, see any textbook on Differential
Geometry.

11.4.2. Digression. Running somewhat ahead, we give the following trans-
parent definition of the inner derivative in terms of supermanifolds; for details,
see [L] and volume 2 of these lectures. In coordinates x = (q, p) and x̂ := dx
on the supermanifold (M,Ω(M)), the inner derivative along the vector field
D ∈ vect(M) is of the form

ιD :=
∑

fi(x)∂x̂i for any D =
∑

fi(x)∂xi .
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Since ω is non-degenerate, the following equation for αD

αD(X) = ω(D,X) for any X ∈ vect(M)

has a unique solution αD ∈ Ω1(M). Explicitly:

αD = ιD(ω), where ιD is the inner derivative by D.

Since d is vect(M)-invariant, i.e., LD(dω) = dLD(ω), it follows that D is
a Hamiltonian vector field if and only if ω is closed, i.e., dω = 0. On every
symplectic manifold, this is true by definition. In particular, to each function
f there corresponds a Hamiltonian vector field Df such that

αDf
= df.

Such a field Df is called (strictly) Hamiltonian one and f is its generating
function. Locally, in Darboux canonical coordinates, (i.e., if ω =

∑
dpi∧dqi),

we have

Df =
∑ (

∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

)
.

Since [Df , Dg] is again a Hamiltonian field, so it has a generating function
that we denote by {f, g}P.B..

11.4.3. Exercise. The explicit formula for the Poisson bracket is given by
formula (1.44) above.

11.4.4. Remark. Generally, the form αDf
is of the form df only locally; the

quotient space of all Hamiltonian functions modulo strictly Hamiltonian ones
is isomorphic to H1(M ;R).

11.5. Theorem. Examples of elementary dynamical systems with the sym-
metry group G are exhausted, up to equivalence, by the orbits introduced in
Lemma.

Proof (A sketch). Let (M, ω) be a symplectic manifold with a transitive
action of a Lie group G. To every X ∈ g there corresponds a Hamiltonian
vector field HX , i.e., a vector field on M such that

LHX
(ω) = 0, (1.46)

where LD is the Lie derivative along the vector field D. ut
11.6. The moment map. The map m : M −→ g∗ given by the formula

m(x)(X) = fHX (x), where HX = DfHX
for any X ∈ g,

is called the moment map. Here fHX is the generating function for the Hamil-
tonian field HX determined by g.
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Lemma. Locally, the moment map is one-to-one; it commutes with the G-
action, sends M into an orbit O of G in g∗ and the form ω on M into the
form ωO constructed in Statement 11.3.1. More exactly, ω = m∗(ωO).

Proof. Since M is a homogeneous G-manifold, it follows that, for every
x ∈ M , there exists a collection of vector fields HXi , that form a basis of
TxM . (This means that we can shift the point x in any direction.) Then the
set of differentials d(fXi) constitutes a basis of T ∗x M . By the inverse function
theorem, the collection of functions fXi can be taken for the local coordinates
on M in a neighborhood of x. Hence, the map m is, locally, one-to-one. ut

Suppose the generating functions satisfy

faX+bY = afX + bfY , f[X,Y ] = {fX , fY }P.B. for any X, Y ∈ g. (1.47)

The comparison of (1.47) with the coadjoint action Ad∗ implies that the
moment map commutes with the G-action.

Since M is a homogeneous manifold and m commutes with the G-action,
we deduce that m(M) is a G-orbit in g∗.

The assertion about the image of ωO under m∗ is subject to a direct
verification. (The reader may take it as an Exercise.)

Thus, Theorem 11.4 is proved provided (1.47) holds. Generally, only a
weaker condition takes place:

HaX+bY = afHX + bfHY , H[X,Y ] = [HX ,HY ] for any X,Y ∈ g. (1.48)

The weaker conditions (1.48) imply that the stronger conditions (1.47) are
only satisfied modulo center of the Poisson algebra. Therefore, the totality
of all generating functions for all fields HX , where X ∈ g, constitutes a Lie
algebra ĝ whose quotient modulo the center spanned by the constants is iso-
morphic to g, i.e., the following sequence is exact:

0 −→ z −→ ĝ −→ g −→ 0.

So, in the general case, replace g with ĝ and G with the group Ĝ corresponding
to ĝ and apply Statement 11.3.1. Theorem 11.5 is proved in full generality. ut
Example. Let G = R2, for Ĝ take the group of matrices of the form0@1 x z

0 1 y
0 0 1

1A = (x, y, z)

with multiplication

(x, y, z)(a, b, c) = (x + a, y + b, z + c + xb)

Clearly, Z =





0@1 0 z
0 1 0
0 0 1

1A

 and Ĝ/Z ' G. In appropriate coordinates p, q, r the

Ĝ-action on ĝ∗ is given by the formula
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Ad∗(x,y,z)(p, q, r) = (p + rx, q + ry, r).

The respective vector fields are

X = r
∂

∂p
, Y = r

∂

∂q
, Z = 0.

The orbits are the planes r = const 6= 0 and the points (p, q, 0). On the planes
r = const 6= 0 the symplectic form is as follows:

ω = 1

r
dp ∧ dq.

What are the discrete transformation groups of R2 commuting with all the
translation? There are several types of such groups:

(a) the trivial one (the identity transformation);
(b) the group generated by translations by a fixed vector v ∈ R2;
(c) the group generated by translations in two linearly independent vectors

v1, v2 ∈ R2;
(d) What is the group of the fourth type?
The corresponding elementary systems are:

(a) R2,
(b) R× S1 (cylinder),
(c) T 2 = S1 × S1,
(d) ∗ (one point).

The systems (a), (b), (d) are of the form T ∗M , where the configuration
space M is a line, a circle and a point, respectively.

2) G = SO(3). It is known (see, e.g., Kostrikin’s books [Ko]) that every
central extension of SO(3) is the direct product of either SO(3) or its two-
sheeted covering SU(2) by the one-dimensional commutative Lie group Z.
Therefore, the passage to Ĝ does not lead to new examples of the dynamical
systems and the G-action in g∗ coincides with the identity G-action id in the
3-dimensional space. (Indeed, the G-actions in g∗ and g coincide thanks to
the Killing form, the G-module g is irreducible and G has only one irreducible
module in every odd dimension, so g ' g∗ ' id.) The orbits O are the origin,
and the spheres with the center in the origin with ω proportional to the
element of area.

There is only one nontrivial transformation of the sphere that commutes
with rotations, namely, the central symmetry. Thus, the elementary systems
for G = SO(3) are

a) S2,
b) RP 2 (the real projective space),
c) ∗ (one point).
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[V] Vinberg È. B., Representations of compact groups, Springer, 1990;
id., Linear representations of groups. Translated from the Russian by
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Chapter 2

Lectures on Lie algebras
(J. Bernstein)

Summary This is a lecture course for beginners on representation theory of
simple finite dimensional complex Lie algebras. It is shown how to use infinite
dimensional representations (Verma modules) to derive the Weyl character
formula. The Harish–Chandra and Kostant’s theorems on the center of the
enveloping algebra are given with lucid (and shortest known) proof. This proof
of the Harish–Chandra theorem was instrumental in A. Sergeev’s version of
the Harish–Chandra theorem for Lie superalgebras.

Introduction

We 1) will consider finite dimensional representations of semi-simple finite
dimensional complex Lie algebras. The facts presented here are well-known
(see [Bu], [Di], [S]) and in a more rigorous setting. But our presentation of

1 These notes, first preprinted in Proceedings of my Seminar on supersymmetries
at the Department of Mathematics, Stockholm University, originate from a draft
of the transcript of J. Bernstein’s lectures in the Summer school in Budapest in
1971. For the lectures addressed to the advanced part of the audience, see Gelfand
I. (ed.), Representations of Lie groups and Lie algebras, Acad. Kiado, Budapest,
1975. The beginners’ part was released a bit later (Kirillov A. (ed.), Representa-
tions of Lie groups and Lie algebras, Acad. Kiado, Budapest, 1985). It contains a
review by Feigin and Zelevinsky which expands and expounds Bernstein’s lectures
but with (almost totally) different emphasis and has practically no intersection
with Bernstein’s lectures.

Meanwhile there appeared several text books and reference books on Lie al-
gebra representations, some of them absolutely marvelous each in its way ([OV],
[FH]). However, even the best ([FH], [OV]) do not approach finite dimensional
representations by means of infinite dimensional ones (but of simpler structure)
— one of the main “punch lines”of these lectures.

Besides, these excellent text books are thick books. Therefore, the demand
in a short and informal guide for the beginners still remains, we were repeatedly
told. So here it is.
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these facts is comparatively new (at least, it was so in 1971) and is based on the
systematic usage of the Verma modules Mχ. In this it cardinally differs from
any other of the modern text book devoted to the study of finite dimensional
representations of Lie algebras, where infinite dimensional representations are
being avoided.

The reader will see how manifest the Weyl character formula is in terms
of (infinite dimensional) Verma modules.

The reader is supposed to be acquainted with the main notions of Linear
Algebra ([W] or a more recent [P] will be just fine). The knowledge of the first
facts and notions of Lie algebra theory will not hurt but is not required.

The presentation is arranged as follows:
§ 2.0 provides without proof with results on the structure of the semi-simple

complex Lie algebras and their universal enveloping algebras.
§ 2.1 introduces the category O and the Verma modules Mχ; several of

their properties are listed.
In § 2.2, the highest (lowest) weight representations of the simplest simple

Lie algebra sl(2) are described.
In § 2.3, for every semi-simple Lie algebra g, a supply of irreducible finite

dimensional representations (g-modules) is given.
In § 2.4, the Harish–Chandra theorem on the center Z(U(g)) of the en-

veloping algebra of g is formulated. For the proof, see § 2.8.
In § 2.5, certain properties of the category O that follow from the Harish–

Chandra theorem are derived.
In § 2.6, we prove that every finite dimensional g-module is decomposable

into the direct sum of modules built in § 2.4.
In § 2.7, Kostant’s formula for the multiplicities of weights of an irreducible

representation is proved and the Weyl formula for the dimension of the irre-
ducible representation is derived from it.

In § 2.8, the Harish–Chandra theorem is proved.

2.0. Preliminaries

For the proof of the statements of this section, see [Bu], [Di], [S], [OV].
All vector spaces considered in what follows are defined over a ground

field K. Unless otherwise stated K = C, but the reader should be aware of
the fact that various “practical”problems often force one to consider other
possibilities: K = R, Q, Fq, and Fq, the algebraic closure of Fq; even the case
of a ring instead of the field: K = Z; some other rings, like K = C[t−1, t] or its
completion, C[t−1][[t]], are often encountered. But not in these lectures; here
by default K = C.

2.0.1. Lie algebras. Let A be an associative algebra, e.g., A = Mat(n; C)
the associative algebra of n × n matrices over a commutative algebra C. By
means of the subscript L we will denote another algebra g = AL whose space
is a copy of A and the product in AL is given by the bracket [x, y] = xy−yx. It
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is subject to a direct (though somewhat boring) verification that the bracket
satisfies the following identities:

[x, x] = 0 for any x ∈ g; (2.1)
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for any x, y, z ∈ g. (2.2)

The identity (2.1) signifies anti-symmetry of the bracket, (2.2) is called the
Jacobi identity. (To understand where the Jacobi identity comes from, we
have to turn to Lie groups and “differentiate” the associativity law of group
multiplication.) The Jacobi identity can be expressed in an equivalent form
easy to remember (adx is a derivation):

[x, [y, z]] = [[x, y], z] + [y, [x, z]] for any x, y, z ∈ g.

This example leads to a notion of Lie algebra which turned out to be
very important. Namely, a Lie algebra is a vector space g with multiplication
g ⊗ g −→ g called bracket and is usually denoted by [x, y] or {x, y}, not xy,
and which satisfies (2.1) and (2.2).

Anti-symmetry and bilinearity of [·, ·] implies

0 = [x + y, x + y] = [x, y] + [y, x],

i.e., [x, y] is indeed anti-symmetric, but equation (2.1) is easier to verify; be-
sides, it holds even if the characteristic of K is equal to 2.

2.0.2. Examples of Lie algebras. After Bourbaki, it is now customary to
denote Lie algebras by Gothic letters. The prime example is the Lie algebra
gl(n; C) = Mat(n; C)L, the general linear algebra of n × n matrices over a
commutative algebra C.

More generally, let End V be the associative algebra of endomorphisms
of a vector space V . The general linear algebra of the vector space V is
gl(V ) = (End V )L. Having selected a basis of the n-dimensional space V ,
we identify gl(V ) with gl(n;C).

Particular cases of the above passage A 7→ AL are especially important
when A is the algebra of differential operators or pseudo-differential operators.

Let g+, g− and h be the subsets of g = gl(n) consisting of all strictly upper
triangular, strictly lower triangular or diagonal matrices, respectively. Clearly,
g+, g− and h are Lie algebras.

The main property of the trace on a given Lie algebra g is that it vanishes
on the commutators,

tr[x, y] = 0 for any x, y ∈ g.

By the main property of traces the subspace of traceless (i.e., with trace 0)
elements forms a Lie subalgebra of g. In particular, the space of n×n matrices
with trace 0 is closed under the bracket, i.e., is a Lie algebra; it is called the
special linear algebra and denoted by sl(n).
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Let B be a bilinear form on a vector space V . It is easy to verify that the
space autB(V ) of all operators that preserve B, i.e.,

autB(V ) := {x ∈ gl(V ) | B(xu, v) + B(u, xv) = 0 for any u, v ∈ V }

is closed under the bracket and so autB(V ) is a Lie algebra. If B is non-
degenerate, we distinguish two important subcases:

B is symmetric, then autB(V ) is called the orthogonal Lie algebra and
denoted by oB(V ).

B is anti-symmetric, then autB(V ) is called the symplectic Lie algebra and
denoted by spB(V ).

It is well-known (see [P]) that, over C, all non-degenerate symmetric forms
on V are equivalent to each other and all non-degenerate anti-symmetric forms
are equivalent to each other. So Lie algebras oB(V ) and spB(V ) depend, actu-
ally, only on dim V , and we will sometimes denote them by o(n) and sp(2m).

The Lie algebras gl(n), o(n) and sp(2m), as well their real forms, are called
classical.

Let g be a (not necessarily finite dimensional) Lie algebra. Having realized
it by operators, we often see that, though the brackets of the operators is
defined within g, their product seldom belongs to g. The desire to have an
algebra, inside of which we could have the product of these operators as well,
leads to the following definition.

To g, we assign the associative algebra with unit, U(g), called the universal
enveloping algebra of the Lie algebra g. To this end, consider the tensor algebra
T (g) of the space g, i.e.,

T
.(g) = ⊕

n≥0
Tn(g),

where T 0(g) = C, T 1(g) = g, Tn(g) = g⊗ · · · ⊗ g︸ ︷︷ ︸
n>1 factors

and the (usually suppressed)

dot in the superscript denotes the sum over possible values of the superscript.
Set

U(g) = T (g)/I,

where I is the two-sided ideal generated by

x⊗ y − y ⊗ x− [x, y] for any x, y ∈ g.

Recall that a module over an algebra A is a vector space M together with a
bilinear map called action

a : A⊗M −→ M, α(a,m) := am

such that for any a, b ∈ A and m ∈ M , we have

(ab)m = a(bm) if A is an associative algebra,

[a, b]m = a(bm)− b(am) if A is a Lie algebra.
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To define the action a : g⊗M −→ M is the same as to define a homomorphism
ρ : g −→ gl(M) called a representation of g in M . Instead of “the g-module
V ” we will often say “the representation (say, ρ) of g in the linear space V ”
and instead of writing ρ(g)v will write just gv for any g ∈ g and v ∈ V .

We will identify the elements of g with their images in U(g). Under this
identification, any g-module may be considered as a (left, unital) U(g)-module
and, conversely, any U(g)-module may be considered as a g-module. We will
not distinguish the g-modules from the corresponding U(g)-modules.

The algebra U(g) is easy to describe if g is commutative: Then U(g) is
just the symmetric algebra S

.(g) of the space g. In the general case, when
U(g) is not commutative, it is not clear what is the “size” of U(g). It is highly
nontrivial that, considered as spaces, not algebras, of course, U(g) and S

.(g)
may be identified. To actually identify them, we introduce a filtration in U(g)
by setting

U(g)n =
(
⊕

i≤n
T i(g)

)
mod I.

The associated graded algebra gr U(g) = ⊕
n≥0

(U(g)n/U(g)n−1) is, clearly,

commutative.

Theorem (Poincaré–Birkhoff–Witt). The natural embedding g −→ gr U(g)
can be extended to an isomorphism i : S

.(g) −→ gr U(g) of graded algebras.

Corollary. 1) U(g) is a noetherian ring without zero divisors.
2) Let symm′ : S

.(g) −→ T
.(g) be the map determined by the formula

symm′ : X1 ◦ · · · ◦Xk 7→ 1

k!

∑

σ∈Sk

Xσ(1) ⊗ · · · ⊗Xσ(k), (2.3)

where ◦ is the symmetric multiplication in S
.(g). Denote by

symm: S
.(g) −→ T

.(g) −→ U(g)

the composition of symm′ and the projection onto U(g). The map symm is an
isomorphism of linear spaces (but not algebras).

3) If X1, . . . , Xk is a basis of g, then Xn1
1 . . . Xnk

k , where the ni run over
the set Z+ of nonnegative integers, is a basis of U(g).

Let ad denote the adjoint representation of the Lie algebra g, i.e.,
adX(Y ) = [X, Y ] for X, Y ∈ g. The Killing form is the bilinear form on g
given by the formula

(X, Y )ad = tr(adX · adY ).

For any irreducible representation ρ of a given Lie algebra g, one can
similarly consider the Killing-like form

(X, Y )ρ = tr(ρ(X)ρ(Y )).
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Theorem. The space of invariant non-degenerate symmetric bilinear forms
on any finite dimensional simple Lie algebra is of dimension 1.

The proportionality coefficient lρ in the relation (X,Y )ρ = lρ(X,Y )ad
is called the Dynkin coefficient in honor of Dynkin who computed it for all
irreducible representation ρ of all finite dimensional simple Lie algebras. The
Killing-like forms for some representations are more convenient for computing
than he Killing form: For example, the identity representations for Lie algebras
of the sl, o and sp series.

Some data on classical Lie algebras. The Lie algebra g is called semi-
simple if its radical is zero. For finite dimensional Lie algebras over C, there
is another characterization, often more convenient:

g is semi-simple if its Killing form is non-degenerate.

The structure of the finite dimensional Lie algebras is as follows: Each
algebra is a semidirect sum of what is called semi-simple Lie algebra and
the radical, more precisely, the quotient modulo the radical is by definition a
semi-simple Lie algebra.

Now, over fields of characteristic 0, every finite dimensional semi-simple
Lie algebra is the direct sum of simple ones.

There exist commutative subalgebras t ⊂ g that diagonally act on g. Such
a subalgebra is called a toral one. A maximal nilpotent subalgebra h coinciding
with its normalizer is called the Cartan subalgebra. For finite dimensional semi-
simple Lie algebras over C, the maximal toral subalgebras are all conjugate
(under the automorphism group) and each of them coincides with a Cartan
subalgebra.

The nonzero weights relative a maximal toral subalgebra (or, which is the
same, relative a Cartan subalgebra) in the adjoint representation are called
roots. The finite subset of roots is usually denoted by R ⊂ h∗ (here h∗ is the
dual space of h). The set R has the following properties:

1) 0 6∈ R;
For each γ ∈ R, there exists an element Eγ ∈ g (called root vector or

coroot) such that
2) [H, Eγ ] = γ(H)Eγ for any H ∈ h and γ ∈ R;

3) g = h⊕
(
⊕

γ∈R
CEγ

)
.

The number r = dim h is called the rank of g.
Since the Killing form is non-degenerate on any simple finite dimensional

Lie algebra g, the restriction of it onto h is also non-degenerate, so we may
use it to identify h with h∗ and to define the bilinear form 〈·, ·〉 on h∗.

For any γ ∈ R, let Hγ ∈ h be such that, for any χ ∈ h∗, we have

χ(Hγ) = 2〈χ, γ〉
〈γ, γ〉 . (2.4)
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The elements Eγ may be chosen so that

1) If γ1 +γ2 ∈ R, then [Eγ1 , Eγ2 ] = Nγ1γ2Eγ1+γ2 , where Nγ1γ2 is a nonzero
integer (for more, sometimes convenient, details, see [St]).

2) If γ1 + γ2 6∈ R and γ1 + γ2 6= 0, then [Eγ1 , Eγ2 ] = 0.
3) [Eγ , E−γ ] = Hγ .

Certain properties of the root system R.
i) If γ ∈ R, then −γ ∈ R and λγ 6∈ R for λ 6= ±1.
ii) Denote by h∗R the real subspace in h∗ generated by elements of R. Then

h∗ = h∗R + ih∗R and the restriction of 〈·, ·〉 onto h∗R is positive definite.
iii) In R, there are subsets R+ ⊃ B = {α1, . . . , αr} such that B is a basis

in h and any γ ∈ R can be represented in the form γ =
∑

α∈B

nαα, where either

nα ≥ 0 or nα ≤ 0 for all α. Such a set B is called a base of R or a system of
simple roots. Set

R− = −R+ = {−α | α ∈ R+}.
Clearly, R+ ∪R− = R and R+ ∩R− = ∅; each root γ ∈ R+ belongs to the

set (positive part of the root lattice)

Q+ =
{

µ ∈ h∗ | µ =
∑

α∈B

nαα, where nα ∈ Z+

}
. (2.5)

If α, β ∈ B and α 6= β, then 〈α, β〉 ≤ 0; if α, β ∈ B, then β − α 6∈ R, hence,
[Eβ , E−α] = 0.

Note that the choice of sets R+ is not unique. When R+ is chosen, B is
uniquely fixed: it consists of roots that can not be represented as the sum of
two other roots from R+. In what follows R+ (hence, B) will be fixed, and we
will write χ1 ≥ χ2 whenever χ1 − χ2 ∈ Q+.

iv) Set

h∗Z =
{

χ ∈ h ∈ h∗ | 2〈χ, γ〉
〈γ, γ〉 ∈ Z for any α ∈ R

}
. (2.6)

Then

a) R ⊂ h∗Z ⊂ h∗R.

b) If χ ∈ h∗ and 2〈χ, γ〉
〈γ, γ〉 ∈ Z for any α ∈ B, then χ ∈ h∗Z.

c) h∗Z is a complete lattice in h∗R.
d) Set

ρ = 1

2

∑

γ∈R+

γ.

Then ρ(Hα) = 1 for any α ∈ B.

From this description of the root system R we derive the decomposition
of g as g = g−⊕ h⊕ g+, where g± is the subspace spanned by Eγ for γ ∈ R±.
Clearly,
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A) g± is the Lie subalgebra of g generated by Eα, where α ∈ ±B.
B) [h, g±] = g±.
C) The Lie algebras g+ and g− are nilpotent. Moreover, if X ∈ g±, then

adX is a nilpotent operator on the whole g.
D) U(g) ' U(g− ⊕ h⊕ g+) ' U(g−)⊗ U(g+)⊗ U(h).

The Weyl group of the Lie algebra g. For any root γ ∈ R, consider the
linear transformation σγ in the space h∗ defined by the formula

σγ(χ) = χ− 2〈γ, χ〉
〈γ, γ〉 γ for any χ ∈ h∗. (2.7)

The transformation σγ is the reflection in the hyperplane defined by the equa-
tion 〈χ, γ〉 = 0.

The group of linear transformations of h∗ generated by σγ , where γ ∈ R,
is said to be the Weyl group of g and denoted by W . We will use the following
properties of the Weyl group.

1) W is a finite group.
2) W is generated by σα, where α ∈ B.
3) W preserves R, h∗Z, h∗R and 〈·, ·〉.
4) det σγ = −1 and σγ(γ) = −γ for any γ ∈ R.
5) If α ∈ B, γ ∈ R+ and γ 6= α, then σα(γ) ∈ R+

6) Set
C = {χ ∈ h∗R | 〈α, χ〉 > 0 for any α ∈ B} (2.8)

and denote by C the closure of C in h∗R. Then C is a fundamental domain for
the W -action on h∗R. More precisely,

a) If χ ∈ h∗R, then wχ ∈ C for a certain w ∈ W .
b) If χ,wχ ∈ C, then χ = wχ. If, moreover, χ ∈ C, then w = e.

If χ1, χ2 ∈ h∗, then we write χ1 ∼ χ2 whenever χ1 and χ2 belong to the
same orbit of the Weyl group, i.e., when χ1 = wχ2 for a certain w ∈ W .

2.1. The Verma modules, alias modules Mχ

The aim of these lectures is the description of finite dimensional g-modules
over simple finite dimensional Lie algebras g. In the 1960’s it was noted that
it is more natural to describe the finite dimensional modules in the framework
of a wider class of g-modules. First, let us give several preparatory definitions.

Let V be a g-module. For any χ ∈ h∗, denote by V (χ) the space of vectors
v ∈ V such that Hv = χ(H)v for any H ∈ h and call it the weight space of
weight χ. If V (χ) 6= 0, then χ is called a weight of the g-module V .

For a subalgebra h ⊂ g, a g-module V is said to be h-diagonalizable if
V = ⊕

χ∈h∗
V (χ).
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2.1.1. Lemma. For any simple finite dimensional Lie algebra g, let V be a
g-module. Then

1) EγV (χ) ⊂ V (χ + γ) for any γ ∈ R, χ ∈ h∗.
2)

∑
χ∈h∗

V (χ) = ⊕
χ∈h∗

V (χ), i.e., the sum is the direct one.

3) ⊕
χ∈h∗

V (χ) is a g-submodule of V .

Proof. 1) Let v ∈ V (χ). Then

HEγv = EγHv + [H, Eγ ]v = χ(H)Eγv + γ(H)Eγv for any H ∈ h.

Hence, Eγv ∈ V (χ + γ).
2) Let χ1, . . . , χk be distinct elements of h∗ and let vi ∈ V (χi) be a nonzero

vector for each i. We must show that v1 + . . .+ vk = 0 is impossible for k > 0.
Assume that on the contrary such an equality is possible and k is the minimal
number when it holds. There is an element H ∈ h such that χ1(H) = 0 and
χ2(H) 6= 0. Then

0 = H(v1 + . . . + vk) = χ2(H)v2 + . . . + χk(H)vk

yielding the contradiction with the fact that k is the least number with the
said property.

3) Follows immediately from 1), 2) and the decomposition

g = h⊕
(
⊕

γ∈R
CEγ

)
. ut

Let a be a Lie subalgebra of g and V a g-module. An element v ∈ V is
called a-finite if dim U(a)v < ∞. The g-module V is called a-finite if all the
elements of V are a-finite.

2.1.2. Lemma. Let a be a subalgebra of g and V a g-module. Set

V a-f := {v ∈ V | v is a-finite}.

The space V a-f is a U(g)-submodule of V .

Proof. Let v1, v2 ∈ V a-f. Then U(a)(v1 + v2) ⊂ U(a)v1 + U(a)v2, and hence
finite dimensional. Therefore, v1 + v2 ∈ V a-f. Let X ∈ U(g) be such that
X ∈ U(g)n and v ∈ V a-f. It suffices to show that dim U(a)U(g)nv < ∞.
Clearly, dim U(g)nU(a)v < ∞, and hence the next lemma implies Lemma
2.1.2. ut

2.1.3. Lemma. U(g)nU(a) ⊂ U(a)U(g)n.

Proof. It suffices to show that AY Z ∈ U(g)nU(a) for any A ∈ a, Z ∈ U(a)
and Y ∈ U(g)n. Indeed, AY Z = (Y AZ + [A, Y ]Z) ∈ U(g)nU(a). ut
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The category O. Let us now introduce a class of g-modules that we will
consider. The objects of the category O are the g-modules M satisfying the
following conditions:

1) M is a finitely generated U(g)-module;
2) M is h-diagonalizable;
3) M is g+-finite.

Clearly, if a g-module M belongs to O, then so does any submodule of M ,
and any quotient module of M . Clearly, if M1,M2 ∈ O, then M1 ⊕M2 ∈ O.
Most important for us objects in the category O are the following modules
Mχ called Verma modules.

Let χ ∈ h∗. In U(g), consider the left ideal Iχ generated by the elements
Eγ , where γ ∈ R+, and by H +(ρ−χ)(H), where H ∈ h. Define the g-module
Mχ by setting

Mχ = U(g)/Iχ.

Denote by mχ the natural generator of Mχ (over g), namely, the image of
1 ∈ U(g) under the map U(g) −→ Mχ.

2.1.4. Lemma. Let χ ∈ h∗. Then
1) Eγ(mχ) = 0 for any γ ∈ R+, and mχ is weight vector of weight χ− ρ.
2) Mχ is a free U(g−)-module with one generator mχ.
3) If M is an arbitrary g-module and m ∈ M is a vector of weight χ − ρ

such that Eγ(m) = 0 for any γ ∈ R+, then there exists the unique g-module
homomorphism i : Mχ −→ M such that i(mχ) = m. If, in addition, Xm 6= 0
for any non-zero X ∈ U(g−), then i is an embedding.

Proof. 1) follows from the definition of Mχ.
2) follows from the decomposition U(g) = U(g−)⊗ U(h)⊗ U(g+).
3) follows immediately from 1) and 2). ut
Observe that since g+ is generated by Eα for α ∈ B, the condition

Eγm = 0 for any γ ∈ R is equivalent to the condition Eαm = 0 for any
α ∈ B. The weight vector m satisfying such a condition will be called the
highest weight vector.

2.1.5. Lemma. Let M ∈ O. Then M contains a highest weight vector.

Proof. Let m be a non-zero weight vector in M . Consider various sequences
S = (α1, . . . , αk), where αi ∈ B and αi may enter S with multiplicities, such
that mS = Eα1 . . . Eαk

m are nonzero. If S and S′ contain different number
of elements, then the weights of mS and mS′ are different. Since the space
U(g+)m is finite dimensional, it intersects with only a finite number of weight
subspaces, and therefore there is a sequence S of maximal length. Then mS

is the highest weight vector to be found. ut
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2.1.6. Characters. The set E. In the study of modules from the category
O, the notion of the character of a g-module M is often useful. For h-diago-
nalizable g-modules M such that dim Mχ < ∞ for any χ ∈ h∗, the character
of the module M is the function πM on h∗ defined by the equation

πM (χ) = dim Mχ.

On h∗, define the Kostant function K (sometimes simply called partition
function) from the equation

K(χ) = the number of representations of the weight χ in the form
χ = − ∑

γ∈R+

nγγ, where nγ ∈ Z+.

For any function u on h∗, set

supp u = {χ ∈ h∗ | u(χ) 6= 0}.
Denote:

E = {functions u on h∗ | supp u is contained in the union of a finite number
of sets of the form ν −Q+, where ν ∈ h∗}.

For example, supp K = −Q+, hence, K ∈ E.

2.1.7. Lemma. 1) πMχ(ψ) = K(ψ − χ + ρ).
2) If M ∈ O, then πM is defined and πM ∈ E.

Proof. 1) Let us enumerate the elements of R+, e.g., γ1, . . . , γs. The elements
En1−γ1

. . . Ens−γs
mχ, where n1, . . . , ns ∈ Z+, form, clearly, a basis in Mχ. Hence,

for ψ = −∑
niγi, we have πMχ(ψ) = K(ψ − χ + ρ).

2) Let m1, . . . ,mn be generators of the g-module M . Clearly, we may
assume that the mi are weight vectors. Since U(g) = U(g−)U(g+)U(h), we
see that

U(g)(m1, . . . ,mn) = U(g−)U(g+)U(h)(m1, . . . , mn) =
U(g−)(U(g+)(m1, . . . , mn)).

Let g1, . . . , gk be a basis of the finite dimensional space U(g+)(m1, . . . , mn)
consisting of weight vectors and χ1, . . . , χk the weights of the vectors
g1, . . . , gk. As in heading 1), we have

dim Mψ ≤
∑

1≤i≤k

K(ψ − χi),

implying the lemma. ut
It is easy to prove the converse statement:

If M is a finitely generated U(g)-module such that
its character πM is defined and πM ∈ E, then M ∈ O.

(2.9)
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2.2. The representations of sl(2)

In this section we will describe representations of the simplest of the simple
Lie algebras, i.e., of the Lie algebra sl(2).

The Lie algebra sl(2) consists of complex matrices X =
�

a b
c d

�
such that

tr X = a + d = 0. In sl(2), we select the following basis

E+ =
�

0 1
0 0

�
, H =

�
1 0
0 −1

�
, E− =

�
0 0
1 0

�
.

The commutation relations between the elements of the basis are:

[H, E+] = 2E+, [E+, E−] = H, [H, E−] = −2E−.

Remark. Let g be any (finite dimensional) simple Lie algebra and γ ∈ R.
Then the elements Eγ , Hγ and E−γ satisfy similar relations

[Hγ , E−γ ] = −2E−γ , [Hγ , Eγ ] = 2Eγ , [Eγ , E−γ ] = Hγ .

Hence, the study of representations of the Lie algebra sl(2) provides us with
lots of information on the representations of any (semi-)simple Lie algebra g.

The above relations between E−, H and E+ and the induction yield the
following relations in U(sl(2)):

[H,Ek
−] = −2kEk

−, [H, Ek
+] = 2kEk

+, [E+, Ek
−] = kEk−1

− (H − (k − 1)).

Besides, it is easy to verify that

4 = 2
(
E−E+ + E+E− + 1

2
H2

)
= 4E−E+ + H2 − 2H

belongs to the center of U(sl(2)). This element is called the (second) Casimir
element. As we will see, it generates the center of U(sl(2)).

2.2.1. Lemma. Set h = CH (this is the Cartan subalgebra of sl(2)). Let V
be an irreducible h-module, i.e., dim V = 1, and Hv = χv for some χ ∈ C
and a nonzero v ∈ V .

Set E+v = 0 and let Mχ = C[E−]V . The two cases possible:
1) χ 6∈ Z+. Then Mχ is irreducible.
2) χ ∈ Z+. Then Mχ contains M−χ−2 and the quotient Lχ := Mχ/M−χ−2

is irreducible.

Proof. Set vk = Ek
−v, where k ∈ Z+. Then

E+vk = E+Ek
−v = Ek

−E+v + [E+, Ek
−]v =

k(χ− k + 1)Ek−1
− v = k(χ− k + 1)vk−1. ut
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Let us now show that all finite dimensional irreducible representations
of sl(2) are of the form Ll = M l/M−l−2 for some l ∈ Z+. From Lemma
it is clear that dim Ll = l + 1 and the elements {a−l, a−l+2, . . . , al−2, al},
where al−2k = Ek

−v, span the space Ll. The sl(2)-action on Ll is given by the
formulas

Hal−2k = (l − 2k)al−2k for k = 0, 1, . . . , l

E−ak = ak−2 for k > −l and E−a−l = 0,

E+ak = k(l + 1− k)ak+2 for k < l and E+al = 0.

It is easy to verify that Ll is indeed an sl(2)-module. (What should one verify?)

2.2.2. Proposition. 1) In any finite dimensional non-zero sl(2)-module V ,
there is a submodule isomorphic to one of Ll.

2) If a ∈ Ll, then 4a = l(l − 2)a.
3) The modules Ll are irreducible, distinct, and exhaust all finite dimen-

sional irreducible sl(2)-modules.

Proof. 1) Let v ∈ V be an eigenvector of H (over C, it exists). Let i ∈ Z+

be the maximal number such that Ei
+v 6= 0 and set v0 = Ei

+v. Such a maxi-
mal number exists because Ei

+v are eigenvectors of H (verify!) with distinct
eigenvalues, hence, linearly independent.

Then Hv0 = χv0, E+v0 = 0 and, by the same argument applied to linearly
independent eigenvectors, Ek

−v0 = 0 for a sufficiently large k. By Lemma 2.1,
χ ∈ Z+ and the space spanned by Er

−v0, where r = 0, 1, . . . , χ, forms a
submodule in V isomorphic to Lχ.

2) It is quite straightforward that 4a0 = l(l − 2)a0. If a ∈ Ll is
a weight vector, then a = Xa0 for a certain X ∈ U(sl(2)). Hence,
4a = 4Xa0 = X4a0 = l(l − 2)a.

3) If Ll contains a non-trivial submodule V , then it contains Lk for some
k < l; this is a contradiction to the fact that 4 = l(l − 2) on Ll and
4 = k(k − 2) on Lk.

Heading 1) implies that Ll, where l ∈ Z+, exhaust all irreducible
sl(2)-modules. ut

2.2.3. Proposition. Any finite dimensional sl(2)-module V is isomorphic to
the direct sum of modules of type Ll for different l’s. In other words, finite
dimensional representations of sl(2) are completely reducible.

Proof. Denote:

V (si) = Ker(4− si)N for N so large that
this space does not grow with N any more.

As is well known from Linear Algebra (see, e.g., [P]), V is the direct sum of
subspaces V (si). Since the operators E−, H and E+ commute with 4, the
spaces V (si) are sl(2)-submodules of V . Hence, it suffices to consider the case
V = V (s). Let
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{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V (2.10)

be submodules such that Vi/Vi−1 is irreducible for every i (since dimV < ∞,
such submodules exist). The operator 4 preserves each Vi, and therefore the
action of 4 on Vi/Vi−1 is defined. Since the quotients Vi/Vi−1 are irreducible,
Proposition 2.2.2 implies that Vi/Vi−1 ' Lli for some li ∈ Z+.

Since the operator (4 − s)N vanishes for large N , it vanishes on all the
Vi/Vi−1. Hence, s = li(li − 2). This means that all modules Vi/Vi−1 are iso-
morphic to one irreducible module Ll for a certain l.

Now, let us prove that V is isomorphic to the direct sum of several copies
of Ll. The proof will be carried out by induction on the number k of submod-
ules in the chain (2.10). Suppose that Vk−1 is isomorphic to the direct sum of
k − 1 copies of Ll. The eigenvalues of H on Ll (hence, on Vk−1) are equal to
−l,−l + 2, . . . , l − 2, l. Hence, H has the same eigenvalues in Vk.

Let V (i) be the subspace of V corresponding to eigenvalue i, where
i = −l,−l + 2, . . . , l − 2, l, of H (i.e., V (i) = Ker(H − i)N for large N).
Clearly,

E−V (i) ⊂ V (i− 2), E+V (i) ⊂ V (i + 2).

There exists a vector v ∈ V (l) such that v 6∈ Vk−1. Indeed, the converse
would mean that V (l) ⊂ Vk−1, and hence the operator H − l in the space
Vk/Vk−1 ' Ll would have been invertible.

Clearly, (H − l)v ∈ Vk−1 ∩ V (l). Let us prove that (H − l)v = 0. Indeed,

E+v ∈ V (l + 2) = {0}, El+1
− v ∈ V (−l − 2) = {0}.

Therefore,

0 = E+El+1
− v − El+1

− E+v = (l + 1)El
−(H − l)v.

Since Vk−1 = ⊕
1≤i≤k−1

(Ll)i, the operator El
− is without kernel on Vk−1∩V (l).

Therefore, (H− l)v = 0. Hence, v is a highest weight vector in V = Vk and the
submodule of V generated by v is isomorphic to Ll. Therefore, Vk = Vk−1⊕Ll.
Proposition is proved. ut
Corollary. 1) If V is a finite dimensional sl(2)-module, then it is H-diagonal-
izable and the operators Ei

− and Ei
+ perform an isomorphism of V (i) ' V (−i).

2) If g is any simple Lie algebra, and V any finite dimensional g-module,
then V ∈ O.

Proof. It suffices to verify that V is h-diagonalizable. Since the operators
Hα, where α ∈ B, generate h and commute, it suffices to verify that V is
Hα-diagonalizable.

This, in turn, follows from Proposition 2.2.3, since V is the finite dimen-
sional sl(2)-module for sl(2) generated by E−α, Hα and Eα. ut
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2.3. The modules Lχ

In this section, we provide with a supply of finite dimensional g-modules.
In what follows, we will show that these modules exhaust all irreducible finite
dimensional g-modules.

2.3.1. Lemma. Suppose χ ∈ h∗ and α ∈ B are such that χ ≥ σα(χ).
Then there exists an embedding Mσα(χ) −→ Mχ that transforms mσα(χ) into

m′ = Ek
−αmχ, where k = 2〈χ, α〉

〈α, α〉 .

Proof. Clearly, the weight of m′ is equal to χ− 2〈χ, α〉
〈α, α〉 α = σα(χ). By Lemma

2.1.4it suffices to show that Eβm′ = 0 for β ∈ B. If β 6= α, then

Eβm′ = EβEk
−αmχ = Ek

−αEβmχ = 0,

because [Eβ , E−α] = 0. Further,

Eαm′ = EαEk
−αmχ = Ek

−αEαmχ + kEk−1
−α (Hα − (k − 1))mχ = 0 + 0 = 0,

since Hαmχ = (χ− ρ)(Hα)mχ = (k − 1)mχ. ut

2.3.2. Lemma. Suppose χ ∈ h∗ and α ∈ B is such that σα(χ) ≤ χ.
Let M be a submodule in Mχ containing Mσα(χ). Let M ′ = Mχ/M . Then
πM ′(ψ) = πM ′(σα(ψ)) for any ψ ∈ h∗.

Proof. Let aα be a Lie subalgebra of g generated by E−α, Hα, Eα (a copy
of sl(2)). By Lemma 2.3.1 the image of mχ in M ′ is aα-finite. Lemma 2.1.2
implies that M ′ is aα-finite. Let ψ ∈ h∗. Let us consider a finite dimensional
aα-submodule V in M ′ spanned by M ′(ψ) and M ′(σα(ψ)). (Recall that M ′(ψ)
is the subspace of M ′ consisting of vectors of weight ψ.)

We may assume that 2〈α, ψ〉
〈α, α〉 = k is an integer, otherwise

M ′(ψ) = M ′(σα(ψ)) = 0.

Permuting, if necessary, ψ and σα(ψ), we may assume that k ≥ 0. Let

V (i) = {v ∈ V | Hα(v) = iv}.

Corollary 2.2.3 implies that Ek
−α : V (k) −→ V (−k) is an isomorphism. This

isomorphism transforms M ′(ψ) into M ′(σα(ψ)), and therefore

dim M ′(ψ) ≤ dim M ′(σα(ψ)).

Similarly, considering the isomorphism Ek
α : V (−k) −→ V (k) we see that

dim M ′(σα(ψ)) ≤ dim M ′(ψ). ut
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Hence, πM ′(ψ) = πM ′(σα(ψ).
Set

D = h∗Z ∩ C. (2.11)

Recall that σα(ϕ + ρ) < ϕ + ρ and, for any ϕ ∈ D, define the g-module

Lϕ := Mϕ+ρ/ ∪
α∈B

Mσα(ϕ+ρ).

2.3.3. Theorem. 1) πLϕ(ϕ) = 1.
2) πLϕ(wψ) = πLϕ(ψ) for any w ∈ W and ψ ∈ h∗.
3) If ψ is a weight of Lϕ, then either |ψ| < |ϕ|, where |ψ|2 = 〈ψ,ψ〉, or

ψ ∼ ϕ.
4) dim Lϕ < ∞.

Proof. 1) The modules Mσα(ϕ+ρ) do not contain vectors of weight ϕ, and
hence these modules belong to

∑
ψ∈h∗\{ϕ}

Mϕ+ρ(ψ). Therefore,

dim Lϕ(ϕ) = dim Mϕ+ρ(ϕ) = 1.

2) If w = σα, where α ∈ B, then heading 2) of Theorem follows from
Lemma 2.3.2. Since W is generated by σα, where α ∈ B, heading 2) holds for
any w ∈ W .

3) It follows from Lemma 2.1.6 that

supp πLϕ = supp πMϕ+ρ = ϕ−Q+.

Let πLϕ(ψ) 6= 0. By replacing ψ by a W -equivalent element ψ′ that belongs
to C, we see that πLϕ(ψ′) = πLϕ(ψ) 6= 0. Hence, ϕ = ψ′ + λ, where λ ∈ Q+.
Further on

|ϕ|2 = |ψ|2 + |λ|2 + 2〈ψ′, λ〉 ≥ |ψ′|2 + |λ|2.
Hence, either |ϕ| > |ψ′| = |ψ| or |λ| = 0 and then ϕ = ψ′ ∼ ψ.

4) Since supp πLϕ is contained in the intersection of the lattice ϕ−Q+ with
the ball {ψ | |ψ| ≤ |ϕ|}, it follows that supp πLϕ is finite. Hence dim Lϕ < ∞.

ut

2.4. The Harish–Chandra theorem

In this section we formulate the Harish–Chandra theorem that describes
the center of U(g). Proof of this theorem is carried out in § 2.8.

Denote by Z(U) the center of U(g). Let S(h) be the ring of polynomial
functions on h∗.

2.4.1. Lemma. Let χ ∈ h∗ and z ∈ Z(U). Then
1) The element z acts on Mχ is the operator of multiplication by a constant

θχ(z), i.e.,
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zm = θχ(z)m for any m ∈ Mχ.

2) The function θχ(z) is polynomial in χ. (Denote by jz the corresponding
element in S(h).)

Proof. Let us arbitrarily enumerate the roots γ ∈ R+; in g, consider the basis

{E−γ1 , . . . , E−γs
,H1, . . . ,Hr, Eγs

, . . . , Eγ1}
where {H1, . . . , Hr} is a basis in h. For any set

N = {n1, . . . , ns,m1, . . . , mr, n
′
s, . . . , n

′
1 | ni, n

′
i,mj ∈ Z+},

consider the element

XN = En1−γ1
. . . Ens−γs

Hm1
1 . . . Hmr

r E
n′s
γs . . . E

n′1
γ1 .

By the PBW theorem the elements XN form a basis in U(g). If H ∈ h, then

[H, XN ] =
(∑

(n′i − ni)γi(H)
)
·XN ,

where
∑

(n′i−ni)γi is the weight of XN . We have [H, z] = 0 for any z ∈ Z(U)
and H ∈ h. Hence, z ≡ µ(z) mod (U(g)g+), where µ(z) is a polynomial in
the Hi.

Let mχ be a generator of the module Mχ. Then z(mχ) = (µ(z)(χ−ρ))mχ,
where µ(z) is considered as the polynomial function on h∗. Since mχ generates
the module Mχ, it follows that

z(m) = µ(z)(χ− ρ)m for any m ∈ Mχ.

Setting
jz(χ) = µ(z)(χ− ρ),

we are done. ut

2.4.2. Lemma. We have jz(χ) = jz(wχ) for any z ∈ Z(U) and w ∈ W .

Proof. It suffices to consider the case where w = σα for α ∈ B. Since jz(χ)
and jz(σα(χ)) are polynomial functions in χ, it suffices to prove the equality
for χ ∈ D, see eq. (2.11). But, in this case, Mσα(χ) ⊂ Mχ, and hence

zm = jz(χ)m = jz(σα(χ))m,

i.e., jz(χ) = jz(σα(χ)) for any m ∈ Mσα(χ). ut
2.4.3. The Harish–Chandra theorem. Define the W -action in S(h) by
the formula

wP (χ) = P (w−1χ) for any w ∈ W , P ∈ S(h), χ ∈ h∗.

Let S(h)W be the subring of W -invariant functions.

Theorem. The correspondence z 7→ jz defines a ring homomorphism
j : Z(U) −→ S(h)W . The map j is an isomorphism.
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2.5. Corollaries of the Harish–Chandra theorem. Central
characters

For any χ ∈ h∗, we have the homomorphism θχ : Z(U) −→ C. These ho-
momorphisms, and sometimes their kernels, are called the central characters.
The following lemma describes the relation between such homomorphisms for
different χ’s.

2.5.1. Lemma. θχ1 = θχ2 if and only if χ1 ∼ χ2.

Proof. If χ1 ∼ χ2, then by Lemma 2.4.2 θχ1 = θχ2 .
Let χ1 6∼ χ2. Let us construct a polynomial T ∈ S(h)W such that

T (χ1) = 0, while T (χ2) 6= 0. For this, take a polynomial T ′ ∈ S(h) such
that T ′(χ1) = 0 and T ′(wχ2) = 1 for any w ∈ W and set

T (χ) =
∑

w∈W

T ′(wχ).

As follows from the Harish–Chandra theorem, there is an element z ∈ Z(U)
such that jz = T . But then

jz(χ1) = θχ1 6= θχ2(z) = jz(χ2). ut

Denote by Θ the set of all homomorphisms θ : Z(U) −→ C. Let M be a
g-module. Let M contain an eigenvector m of all operators z ∈ Z(U). Let
Θ(M) denote the set of all homomorphisms

θ : Z(U) −→ C, zm = θ(z)m.

Remark. One can show that any homomorphism θ : Z(U) −→ C is of the
form θχ for a certain χ ∈ h∗.

2.5.2. Theorem. Let M ∈ O. Then
1) The set Θ(M) is finite.
2) If θ ∈ Θ\Θ(M), then there exists an element z ∈ Ker θ ⊂ Z(U) such

that zm = m for any m ∈ M .
3) Let Θ(M) = {θ1, . . . , θk}. Set Iθi = Ker θi and

Mθi,n = {m ∈ M | (Iθi)
nm = 0}.

For a fixed θi, the modules Mθi,n coincide for n sufficiently large. The module
to which all these coinciding modules are isomorphic will be denoted by Mθi .

4) Θ(Mθi) = {θi}.
5) M = Mθ1 ⊕ . . .⊕Mθk .

Proof. The module M is generated by the finite dimensional space
V = ⊕

χ∈Ξ
M(Ξ), where Ξ is a finite subset in h∗. Since the elements of Z(U)

commute with the elements of h, we have zV ⊂ V for any z ∈ Z(U). Set
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I = Ker (Z(U) −→ End V ); then dim Z(U)/I < ∞. Since V generates M
and IV = 0, it follows that IM = 0, i.e., the finite dimensional commutative
algebra A = Z(U)/I acts on M .

Now, Theorem 2.5.2 is the direct corollary of the following standard propo-
sition (see [W], § 98, Th. 12).
2.5.2.1. Proposition. Let A be a finite dimensional over C commutative
algebra with unit. Then

1) In A, there is a finite number of maximal ideals mi, where i = 1, . . . , k.
2) There are elements ei ∈ A, where i = 1, . . . , k, such that

eiej = 0 for i 6= j and e2
i = ei;

e1 + e2 + . . . + ek = 1;
ei 6∈ mj for i 6= j;
eim

n
i = 0 for n > dim A.

Theorem 2.5.2 is proved. ut
Note that the decomposition M = ⊕

1≤i≤k
Mθi defined in Theorem 2.5.2 is

functorial. This means that if M, M ′ ∈ O and τ : M −→ M ′ is a g-module
homomorphism, then

τ(Mθ) ⊂ M ′θ for any θ ∈ Θ;

if θ 6∈ Θ(M), then we set Mθ = 0.
Moreover, if M1 ⊂ M2 ⊂ M , then Θ(M2/M1) ⊂ Θ(M).

2.5.3. Lemma. Let M ∈ O. Then every element θ ∈ Θ(M) is of the form
θ = θξ, where ξ − ρ is a weight of M .

Proof. We may assume that M = Mθ, where θ ∈ Θ. Let m be a highest
weight vector in Mθ of weight ξ − ρ. Then

zm = θξ(z)m for any z ∈ Z(U),

i.e., θξ ∈ Θ(Mθ) = {θ}. Hence, θ = θξ. ut
2.5.4. Jordan–Hölder series. Recall that the Jordan–Hölder series of the
module M is the sequence of submodules

{0} = M0 ⊂ M1 ⊂ . . . ⊂ Mk = M

such that quotient modules Li = Mi/Mi−1 are irreducible.

Proposition. Let M ∈ O. Then the Jordan–Hölder series of M is finite.

The Jordan–Hölder theorem [W], § 51, claims that the modules Li are
defined by M uniquely up to the order. The collection of the Li will be called
the Jordan–Hölder decomposition of M .
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Proof. Set Θ = {ξ ∈ h∗ | θξ+ρ ∈ Θ(M)} and VM = ⊕
ξ∈Θ

M ξ. Since the set Θ

is finite, dim VM < ∞. By Lemma 2.5.3,VM 6= {0}. Let M ′ be a submodule
in M such that VM ′ = VM ∩M ′ 6= VM and the dimension of VM ′ is maximal.
Let us prove that M ′ is a maximal proper submodule of M , i.e., let us prove
that M/M ′ is irreducible.

Indeed, suppose M ′ ⊂ M ′′ ⊂ M . By the choice of M ′ we have VM ′ = VM ′′ .
But Θ(M ′′/M ′) ⊂ Θ(M). Hence, Lemma 2.5.3 implies that there is a
weight in M ′′/M ′ that belongs to Θ, contradicting the equality VM ′ = VM ′′ .
Thus, M/M ′ is irreducible. Let us construct a sequence of submodules
M ⊃ M1 ⊃ . . . setting M1 = M ′ and Mi = (Mi−1)′. Since dim VM ′

i
de-

creases, it follows that VMi0
= 0 for a certain i0. But then by Lemma 2.5.3,

Mi0 = 0. The sequence

M ⊃ M1 ⊃ . . . ⊃ Mi0 = {0}
is a finite Jordan–Hölder series. ut
2.5.5. A description of the irreducible modules in the category O.

Lemma. 1) Let ξ ∈ h∗ and M be the union of all proper submodules of M ξ.
Then M is the proper submodule of M ξ and the quotient module Lξ = M ξ/M
is irreducible.

2) Any irreducible module L ∈ O is of the form L = Lξ for a certain
ξ ∈ h∗.

3) Let {Li}k
i=1 be the Jordan–Hölder decomposition of M ξ. Then Li = Lξi ,

where ξi ∼ ξ and ξi ≤ ξ. There is only one Lξ among the Li.

Proof. 1) Any proper submodule M ′ of M ξ is contained in ⊕
ϕ 6=ξ−ρ

M ξ(ϕ).

Hence, M is a proper submodule of M ξ. The module Lξ = M ξ/M is irre-
ducible, since M is maximal proper submodule of Mξ.

2) Let L ∈ O be an irreducible module and l ∈ L be the highest weight
vector. Then there is a map τ : M ξ −→ L, where ξ− ρ is the weight of l, such
that τ(mξ) = l. Clearly, τ induces the isomorphism of Lξ and L.

3) Let Li = Lξ. Then θψ = θξ and by Lemma 2.5.1 ψ ∼ ξ. We have
Mψ−ρ(ξ) 6= {0}; hence, ψ ≤ ξ. Since dim M ξ−ρ(ξ) = 1, the module Lξ enters
the Jordan–Hölder decomposition of Mξ only once. ut

Denote by C(O) the free Abelian group generated by expressions [M ],
where M runs the objects of O and by C ′(O) the subgroup of C(O) generated
by the expressions [M1] + [M2]− [M ] for all exact sequences

0 −→ M1 −→ M −→ M2 −→ 0.

The quotient group K(O) = C(O)/C ′(O) is called the Grothendieck group of
the category O.

2.5.6. Lemma. The map π : [M ] −→ πM can be extended to an additive map
K(O) −→ E.
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Proof follows immediately from the fact that πM = πM1 + πM2 for any
exact sequence

0 −→ M1 −→ M −→ M2 −→ 0, where M1,M2,M ∈ O. ut

2.5.7. Lemma. The elements [Mψ], where ψ ∈ h∗, generate the group K(O).
More precisely, if M ∈ O, then [M ] belongs to the subgroup generated by the
finite set

{[Mψ] | ψ ∈ h∗ is such that θψ ∈ Θ(M)}.
Proof. Let

{0} = M0 ⊂ M1 ⊂ . . . ⊂ Mk = M

be the Jordan–Hölder series of M and Li = Mi/Mi−1. Clearly,

[M ] = [L1] + . . . + [Lk] and Θ(Li) ⊂ Θ(M).

Therefore, it suffices to verify the lemma for a given irreducible module
M = Lξ. Let us prove that

[Lξ] = [M ξ] +
∑

ϕ≤ξ, ϕ∼ξ

cϕ[Mϕ], where cϕ ∈ Z. (2.12)

From Lemma 2.5.5 it follows that

[Mψ] = [Lψ] +
∑

ϕ≤ψ, ϕ∼ψ

nϕ[Lϕ],

where nϕ ∈ Z for any ψ ∈ h∗. Therefore, eq. (2.12) for ψ = ξ follows from si-
milar formulas for ψ such that ψ ≤ ξ and ψ ∼ ξ. Proof of Lemma is completed
by the trivial induction on the finite set {wξ | w ∈ W}. ut

2.6. Description of finite dimensional representations

In this section we will describe all finite-dimensional representations of a
semisimple Lie algebra g. As was shown in § 2.2, all the highest weights of
such representations belong to Θ. Recall that in § 2.3 we have constructed a
finite dimensional g-module Lϕ for any ϕ ∈ D.

2.6.1. Theorem. 1) Let M be a finite dimensional g-module. Then M is
isomorphic to the direct sum of modules of the form Lϕ for ϕ ∈ D.

2) All the modules Lϕ, where ϕ ∈ D, are irreducible.

Proof. 1) We may assume that M = Mθ, where θ ∈ Θ. Let m be any highest
weight vector of M and ϕ its weight. Then θ = θϕ+ρ. Besides, since Ek

αm = 0
for k large and for α ∈ B, then Lemma 2.2.1 implies that σα(ϕ + ρ) < ϕ + ρ.
Therefore, ϕ + ρ ∈ h∗Z ∩ C, i.e., ϕ ∈ D.

Thus, ϕ is uniquely recovered from the element θ by conditions
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θρ+ϕ = θ and ϕ + ρ ∈ C.

Let m1, . . . , ml be a basis of M(ϕ). Let us construct the map

τ : ⊕
1≤i≤l

(Mϕ+ρ)i −→ M

so that each generator (mϕ+ρ)i for i = 1, 2, . . . , l is mapped to m. As follows
from Lemma 2.1, for any α ∈ B, we have

Ekα−αmi = 0, where kα = 2〈ϕ + ρ, α〉
〈α, α〉 .

Hence, τ may be considered as the map

τ : ⊕
1≤i≤l

(Lϕ)i −→ M.

Let L1 and L2 be the kernel and cokernel (i.e., L2 = M/ Im τ) of this map.
Then Θ(Li) = {θ}, and hence Li(ϕ) = 0, where i = 1, 2. As was shown above,
L1 = L2 = 0, i.e., M = ⊕

1≤i≤l
(Lϕ)i.

2) Let M be a non-trivial submodule of Lϕ. Then Θ(M) = θϕ+ρ, hence,
M(ϕ) 6= 0, i.e., M contains an element of the form mϕ+ρ. But then M = Lϕ.
Thus, the module Lϕ is irreducible. ut
Corollary. Lϕ = Lϕ+ρ, where ϕ ∈ D.

2.7. The Kostant formula for the multiplicity of the
weight

In E (see subsect. 2.1.6), introduce the convolution by setting

(u ∗ v)(ξ) =
∑

ϕ∈h∗
u(ϕ)v(ξ − ϕ) for any u, v ∈ E. (2.13)

(Observe, that this sum only contains a finite number of non-zero terms.)
Clearly, u ∗ v ∈ E. The convolution endows E with a commutative algebra
structure.

Define the W -action in the space of functions on h∗ by setting

(wu)(ξ) = u(w−1ξ) for any w ∈ W , ξ ∈ h∗, u ∈ S(h).

For any ξ ∈ h∗, define δξ ∈ E by setting

δξ(ϕ) = 0 for any ϕ 6= ξ and δξ(ξ) = 1.

Set

D =
∏

γ∈R+

(δγ/2 − δ−γ/2), where
∏

is the product in E, not convolution.

Clearly, δ0 is the unit of E.
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2.7.1. Lemma. Let K be the Kostant function. Then

K ∗ δ−ρ ∗D = δ0. (2.14)

Proof. For any γ ∈ R+, set aγ = δ0 + δ−γ + . . . + δ−nγ + . . .. The definition
of K implies that

K =
∏

γ∈R+

aγ .

Further, (δ0 − δ−γ)aγ = δ0. Since D can be represented as
∏

γ∈R+

(δ0 − δ−γ)δρ,

we are done. ut
Lemmas 2.7.1 and 2.1.6 imply the following lemma.

2.7.2. Lemma.
D ∗ πMξ = δξ for any ξ ∈ h∗. (2.15)

2.7.3. Lemma. wD = det w ·D for any w ∈ W .

Proof. It suffices to verify that δαD = −D for α ∈ B. Since δα permutes the
elements of the set R+ \ {α} and transforms α into −α, it follows that

δαD(δ−α/2 − δα/2)
∏

γ∈R+\{α}
(δγ/2 − δ−γ/2) = −D. ut

Denoted the ring of Z-valued functions on h∗Z by EZ .

2.7.4. Theorem. The map τ : K(O) −→ EZ defined by the formula
τ([M ]) = D ∗ πM , where M ∈ O, is an isomorphism.

Proof. By Lemmas 2.7.2 and 2.5.6 we have D ∗ πM ∈ EZ. Define the map
η : EZ −→ K(O) by setting

η(u) =
∑

ξ∈h∗Z

u(ξ)[M ξ]. (2.16)

By Lemma 2.5.6 the map η is an epimorphism. Lemma 2.7.2 implies that η is
the identity map. Hence, τ is an isomorphism. ut

2.7.5. Theorem. D ∗ πLϕ =
∑

w∈W

det w · δw(ϕ+ρ).

Proof. Since Lϕ = Lϕ+ρ, it follows that eq. (2.12) implies that

[Lϕ] = [Mϕ+ρ] +
∑

ψ∼ϕ+ρ, ψ<ϕ+ρ

cψ[Mψ], where cψ ∈ Z.

Hence, Lemma 2.7.2 shows that

D ∗ πLϕ = δϕ+ρ +
∑

ψ∼ϕ+ρ, ψ<ϕ+ρ

cψδψ.
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Since wπLϕ = πLϕ and wD = det w ·D for any w ∈ W , we see that

w(D ∗ πLϕ) = det w ·D ∗ πLϕ .

Hence,
D ∗ πLϕ =

∑

w∈W

detw · δw(ϕ+ρ). ut (2.17)

Corollary. 1)

[Lϕ] =
∑

w∈W

(detw)[Mw(ϕ+ρ)] for any ϕ ∈ D. (2.18)

2) (the Kostant formula for the multiplicity of the weight)

πLϕ(ψ) =
∑

w∈W

detw ·K(ψ + ρ− w(ϕ + ρ)) for any ψ ∈ h∗. (2.19)

Proof. Let us multiply both parts of (2.17) by K ∗ δ−ρ and apply Lemma
2.7.1. ut

Denote by S[[h∗]] the ring of formal power series in the elements of h∗ with

complex coefficients. For any ξ ∈ h∗, set eξ =
∑
i≥0

ξi

i!
.

Clearly, eξ ∈ S[[h∗]] and eξ+ψ = eξeψ for any ξ, ψ ∈ h∗. Let M be a finite
dimensional g-module. Define the character chM ∈ S[[h∗]] of M by the formula

chM =
∑

ξ∈h∗Z

πM (ξ)eξ. (2.20)

2.7.6. Theorem. Set
D̃ =

∑

w∈W

(detw)ewρ.

For Lϕ, where ϕ ∈ D, we have

D̃ chLϕ =
∑

w∈W

(detw)ew(ϕ+ρ). (2.21)

Proof. The map j : EZ −→ S[[h∗]] defined by the formula j(u) =
∑

ξ∈h∗Z

u(ξ)eξ

is a ring homomorphism. Inserting ϕ = 0 in (2.17) we obtain
∑

w∈W

detw · δwρ = D ∗ πL0 = D ∗ δ0 = D. (2.22)

Hence, j(D) = D̃. Theorem 2.7.6 now easily follows from Theorem 2.7.5. ut
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Remark. 1) All the power series of Theorem 2.7.6 converge and define ana-
lytic functions on h. Theorem 2.7.6 claims the equality of two such functions.

2) Let G be a complex semisimple Lie group with Lie algebra g and H ⊂ G

the Cartan subgroup corresponding to the Lie subalgebra h. Consider the finite
dimensional representation T of G corresponding to the g-action in Lϕ. Let
h ∈ H. Then h = exp(H), where H ∈ h. It is easy to derive from Theorem 2.7.6
that

tr T (h) =

P
w∈W

det w · ew(ϕ+ρ)(H)P
w∈W

det w · ewρ(H)
. (2.23)

This is the well-known H. Weyl’s formula for characters of irreducible repre-
sentations of semi-simple complex Lie groups.

2.7.7. Theorem. Let ϕ ∈ D. Then

dim Lϕ =
∏

γ∈R+

〈ϕ + ρ, γ〉
〈ρ, γ〉 . (2.24)

Proof. Set
Fξ =

∑

w∈W

det w · ewξ for any ξ ∈ h∗. (2.25)

Clearly, Fρ = D̃ =
∏

γ∈R+

(eγ/2 − e−γ/2). For any ξ ∈ h∗ and H ∈ h, we may

consider Fξ(tH) as the formal power series in one indeterminate t.
Let hρ and hϕ be elements of h corresponding to ρ and ϕ, respectively,

after the identification of h with h∗ by means of the Killing form. Then

dim Lϕ = chLϕ(0) = Fϕ+ρ(thρ)

Fρ(thρ)

∣∣∣
t=0

. (2.26)

Observe that

Fϕ+ρ(thρ) =
∑

w∈W

det w · et〈ϕ+ρ,ρ〉 = Fρ(t(hϕ + hρ)). (2.27)

Hence,

dim Lϕ = D̃(t(hϕ + hρ))

D̃(tρ)

∣∣∣
t=0

=

∏

γ∈R+

(
e

t
2
(γ(hϕ+hρ)) − e

− t
2
(γ(hϕ+hρ))

e
t
2
(γ(hρ)) − e

− t
2
(γ(hρ))

∣∣∣∣
t=0

)
=

∏

γ∈R+

〈γ, ϕ + ρ〉
〈γ, ρ〉 . ut (2.28)
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7.8. Summary. 1) For any weight ϕ ∈ D, there exists a finite dimensional
irreducible g-module Lϕ. All such modules are non-isomorphic. Any finite
dimensional irreducible g-module is isomorphic to one of Lϕ, where ϕ ∈ D.

2) Any finite dimensional g-module M is isomorphic to the direct sum of
the modules Lϕ.

3) The module Lϕ is h-diagonalizable and has a unique (up to a factor)
highest weight vector lϕ. The weight of lϕ is equal to ϕ.

4) (The Harish–Chandra theorem on ideal.) The module Lϕ is generated
as U(g−)-module by the vector lϕ (in particular, all the weights of Lϕ are
≤ ϕ). The ideal of relations I = {X ∈ U(g−) | Xlϕ = 0} is generated by the
elements

Emα+1
−α , and Hα −mα, where mα = 2〈ϕ, α〉

〈α, α〉 = ϕ(Hα) and where α ∈ B.

5) The function πLϕ is W -invariant.
6) If ψ is a weight of Lϕ, then either ϕ ∼ ψ or | ψ |<| ϕ |.
7) For any a ∈ Lϕ and z ∈ Z(U), we have za = θϕ+ρ(z)a. If ϕ1, ϕ2 ∈ D

and ϕ1 6= ϕ2, then the homomorphisms θϕ1+ρ and θϕ2+ρ are distinct.
8) (The Kostant formula.)

πLϕ(µ) =
∑

w∈W

(detw)K(µ + ρ− w(ϕ + ρ)).

9) dim Lϕ =
∏

γ∈R+

〈γ, ϕ + ρ〉
〈γ, ρ〉 .

2.8. Proof of the Harish–Chandra theorem

In this section g is a simple (finite dimensional) Lie algebra, and hence
g ' g∗. Clearly, the map symm: S(g∗)g −→ Z(U), where S(g∗)g is the subring
of g-invariant polynomials, is an isomorphism. Therefore, it suffices to verify
that

τ = j · symm: S(g∗)g −→ S(h)W

is an isomorphism. Consider the embedding i : h∗ −→ g∗ defined by the for-
mulas

i(ξ)(Eγ) = 0 and i(ξ)(H) = ξ(H) for any γ ∈ R nd H ∈ h.

Let τ ′ : S(g) −→ S(h) be the corresponding restriction map

τ ′(H) = H for any H ∈ h and and τ ′(Eγ) = 0 for any γ ∈ R.

We have constructed maps τ : S(g∗)g −→ S(h) and τ ′ : S(g) −→ S(h).
Since

S(g∗)g ⊂ S(g∗) ∼= S(g)
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(due to non-degeneracy of the Killing form), we may consider τ ′ as the map
S(g∗)g −→ S(h).

Let us prove that the values of τ and τ ′ coincide on the leading terms.
More precisely, we will prove that if X ⊂ S(g∗)g is of degree n, then
deg(τ(X) − τ ′(X)) < n. For any n ∈ Z and any (finite dimensional) vec-
tor space V , let Sn(V ) be the subspace in S(V ) consisting of all polynomials
of degree ≤ n.

The following facts are straightforward:

a) symm YN = XN mod U(g)|N |−1, where

|N | = n1 + . . . + ns + m1 + . . . + mr + n′1 + . . . + n′s.

b) Let X =
∑

n≤|N |
CNXN . Then

µ(z) =
∑

N=(0,...,0,m1,...,mr,0,...,0)

CNHm1
1 . . . Hmr

r mod Sn−1(h).

c) If µ(z) ∈ Sn(h), then µ(z)− jz ∈ Sn−1(h).
d) τ ′(YN ) = 0 if at least one of ni, n

′
i is non-zero and

τ ′(YN ) = Hm1
1 . . . Hmr

r if N = (0, . . . , 0,m1, . . . , mr, 0 . . . , 0).

Hence, the values of τ and τ ′ coincide on the leading terms.
Let us prove that τ ′(S(g∗)g) ⊂ S(h)W . Let Y ∈ S(g∗)g. We may as-

sume that Y is a homogeneous polynomial of degree n. Then τ ′(Y ) is also
a homogeneous polynomial of degree n. Since τ(Y ) ∈ S(h)W and homoge-
neous components of degree n of τ(Y ) and τ ′(Y ) coincide, it follows that
τ ′(Y ) ∈ S(h)W .

Thus, we have two linear maps τ, τ ′ : S(g∗)g −→ S(h)W that coincide on
the leading terms. Routine considerations show that if one of these maps is
an isomorphism, then so is the other one. Therefore, to prove the Harish–
Chandra theorem, it only suffices to show that τ ′ : S(g∗)g −→ S(h)W is an
isomorphism.

Let us identify g with g∗ and h with h∗ by means of the Killing form.
Hence, S(g∗) is identified with S(g), and S(h∗) with S(h). With the help of
τ ′, the restriction homomorphism η : S(g∗) −→ S(h∗) and the representation
of g in S(g), we can describe the coadjoint representation of g in S(g∗) as
follows:

a) X(F )(Y ) = F ([X,Y ]) for any F ∈ g∗ ⊂ S(g∗) and X, Y ∈ g. (Here we
use the invariance of the Killing form B, i.e., the identity

B([X,Y ], Z) + B(Y, [X,Z]) = 0

valid for any X, Y, Z ∈ g.)
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b) X(T ) =
∑

1≤i≤k

F1 . . . Fi−1X(Fi)Fi+1 . . . Fk for any monomial

T = F1 . . . Fk ∈ Sk(g∗),

where Fi ∈ g∗ for all i, and any X ∈ g. Clearly, under the identification
g ' g∗ the subring S(g∗)g ⊂ S(g∗) of g-invariant polynomials on g turns into
the subring S(g)g ⊂ S(g) of g-invariant polynomials on g∗. Hence, to prove
that τ ′ : S(g∗)g −→ S(h)W is an isomorphism, it only suffices to prove the
following theorem.

2.8.1. Theorem (The Chevalley theorem). Let S(g∗) and S(h∗) be polyno-
mial rings on g and h, respectively, and η : S(g∗) −→ S(h∗) the restriction
homomorphism. Then S(g∗)g −→ SW (h∗) is isomorphism.

Proof. While proving the Harish–Chandra theorem we have already estab-
lished that η(S(g∗)g) ⊂ SW (h∗). Let us prove that Ker(η|S(g∗)g) = 0.
2.8.1.1. Lemma. Let X,Y ∈ g and T ∈ S(g∗). Let adX be nilpotent. Then

eX(T )(Y ) = T (e− adX (Y )).

(Here eX :=
∑
n≥0

Xn

n!
and the sum is well-defined since it only has a finite

number of non-zero terms.)

Proof. It suffices to consider the case where T = F1 . . . Fk for any Fi ∈ g∗.
Then

(∑ Xn

n!
(T )

)
(Y ) =

∑
m1,...,mk∈Z+

1

m1! . . . mk!
F1[(− adX)m1(Y )] . . .

. . . Fk[(− adX)mk(Y )] =
∏

1≤i≤k

Fi(e− adX (Y )) = T (e− adX (Y )). ut

2.8.1.2. Lemma. Let T ∈ S(g∗). Then T ∈ S(g∗)g if and only if

T (Y ) = T (eadX (Y )) for any X,Y such that adX is nilpotent. (2.29)

Proof. If T ∈ S(g∗)g then eq. (2.29) follows from Lemma 2.8.1.1. Conversely,
let X ∈ g and adX be nilpotent. Then, for any Y ∈ g, we have

T (Y ) = T (eadtX (Y )) = (etXT )(Y ) for any t ∈ C.

Comparing the coefficients of the first degree in t in this equality we see that
X(T ) = 0. Hence, Eγ(T ) = 0 and Hγ(T ) = [E−γ , Eγ ](T ) = 0 for any γ ∈ R.

ut
Let T ∈ S(g∗)g and τ(T ) = 0, i.e., T |h = 0. Let us prove that T = 0.
Consider the map g− ⊕ h ⊕ g+ −→ g defined by the formula

(X, H, Y ) 7→ eadX eadY (H). The polynomial T vanishes identically on the
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image of this map. The value of the Jacobian of this map at the point(
0,

∑
γ∈R+

Hγ , 0
)

is non-zero, and therefore the image of this map is open in g.

Hence, T = 0.
Set S = η(S(g∗)g). We must show that S = SW (h∗).
Let S′ ⊂ S[[h∗]] be the subring in the ring of formal power series on h

consisting of series such that all their homogeneous components belong to S.

2.8.1.3. Lemma. For any ξ ∈ h∗, set eξ =
∑
n≥0

ξn

n!
. Then any W -invariant

finite sum
∑

ξ∈h∗Z

cξe
ξ belongs to S′.

Proof. First, let us show that, for any ϕ ∈ D, the series

chLϕ =
∑

ξ∈h∗Z

πLϕ(ξ)eξ

belongs to S′. Indeed,
∑

ξ∈h∗Z

πLϕ(ξ)eξ =
∑

n≥0

1

n!

∑

ξ∈h∗Z

πLϕ(ξ)ξn.

But
∑
ξ

πLϕ(ξ)ξn is the restriction onto h of the function ξ′ϕ,n(X) = tr ξϕ(X)n,

where X ∈ g and ξϕ is the representation of g in Lϕ. The function ξϕ,n is
g-invariant and by Lemma 8.2 belongs to S(g∗)g. Hence,

∑

ξ∈h∗
πLϕ(ξ)eξ ∈ S′.

Let s =
∑

ξ∈h∗Z

cξe
ξ be a finite W -invariant sum and rs = max

cξ 6=0
|ξ|. The value of

rs may only belong to a discrete set of non-negative numbers. If rs = 0, then
s = c0 ∈ P ′.

Let Lemma 2.8.1.3 be proved for any s′ such that rs′ < rs. Set

s′ = s−
∑

ξ∈h∗Z∩C

cξ chξ .

Since any weight of Lϕ is either equivalent to ϕ or its “height” is less than
that of ϕ (Theorem 2.3.3), we see that rs′ < rs. Therefore, Lemma 2.8.1.3 is
proved for s = s′ −∑

cξ chξ. ut
Now we can complete the proof of the Chevalley theorem. Let T be a homo-

geneous polynomial SW (h∗) of degree n. We may consider T as the polynomial
in αi, where αi ∈ B. Consider the formal power series

T ′ = 1

| W |
∑

w∈W

wT (eαi − 1).
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By Lemma 2.8.1.3, T ′ ∈ S′. But clearly, all homogeneous components of T ′

of degree less than n vanish and the homogeneous term of degree n coincides
with T . Hence, T ∈ S and the Chevalley theorem is proved together with the
Harish–Chandra theorem. ut
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Chapter 3

On evolution of magnetic field under
translation and diffusion
(V. I. Arnold)

3.1. A problem of a stationary magnetic dynamo

The evolution equation of the divergence-free magnetic field H translated
by a divergence-free flow of velocity v and with diffusion coefficient µ is of the
form

Ḣ = {v,H}+ µ∆H, (3.1)

where ∆ = rot rot is the Laplacian and {· , ·} is the Poisson bracket. We
consider this equation with periodic boundary conditions (H does not change
under translations by integer multiples of 2π along any of the three coordinate
axes). The field v is supposed to be fixed and of the same periodicity, namely

v = (cos y + sin z) ∂

∂x
+ (cos z + sin x) ∂

∂y
+ (cos x + sin y) ∂

∂z
. (3.2)

We are interested to find out how does the increment γ = Re λ of the mode of
fastest growth H = eλtH0(x, y, z) depend on the magnetic Reynolds number

R := 1

µ
. For a fixed Reynolds number, the field v is called a dynamo if there

exists a growing mode (γ > 0). The dynamo is said to be strong if the incre-
ment remains bounded below by a positive constant as the magnetic viscosity
decays, i.e., if

lim
µ→0

γ(µ) > 0. (3.3)

Nobody knows if a strong dynamo exists.
No two-dimensional flow can be a strong dynamo since in such a flow the

particles can not scatter exponentially.
The particular form of the flow (3.2) was selected for the following reasons.

At µ = 0, eq. (3.1) expresses the fact that the field H is frozen in the liquid. If
the field v exponentially scatter the particles of the liquid (i.e., if the greatest
characteristic Lyapunov exponent 1) is positive on a set of positive measure),
then the frozen field H grows exponentially (is expanded by the flow).
1 http://en.wikipedia.org/wiki/Lyapunov exponent.



106 Ch. 3. On evolution of magnetic field

From numerical experiments, see [1], we conclude that the field (3.2) is
one of the simplest fields with an exponential scattering of the particles. Con-
jecturally, the scattering of the particles under the influence of the “generic”
field follows approximately the same pattern as for the flow (3.2).

Since the flow scatters the particles inhomogeneously, the growing field H
becomes jagged. The viscosity quickly dampens the higher harmonics. Will
the dynamo work (will it be that γ > 0) depends on which of the processes is
faster: the growth of the frozen field or the viscous damping.

3.2. The results of a numerical experiment

E. I. Korkina studied the dependence of the increment γ on the magnetic
Reynolds number R := 1

µ
be means of Galerkin 2) approximations. She was

looking for an eigenvalue of the operator

AR(H) := R{v, H}+ ∆H (3.4)

with the greatest real part. She expanded the eigenvector H into the Fourier
series and ignored the higher harmonics.

The computations were performed up to R = 19; this required to take into
account the harmonics e(k,r) with k2 ≤ 169. Therefore the size of the matrix
whose eigenvalue was being sought was around 20,000.

Korkina controlled the results of her computations by several methods:
By changing the order of the harmonics taken into account, by preserving
the divergence-free property of the fields under evolution and by keeping the
symmetry conditions I will retell further on.

It turned out that one has to take into account the harmonics with
k2 ≤ 9R.

Korkina started her computations with small Reynolds numbers in order
to use the found eigenvector as a first approximation for computations with
the bigger Reynolds numbers. It turned out, however, that for small Reynolds
numbers R, the eigenvalue λ of AR does not depend on R: It is equal to 0.

The reason for this phenomenon is that for high viscosity, the solution
of eq. (3.1) becomes stationary as t −→ ∞ and is only determined by the
cohomology class of the initial field H (i.e., by the vector of the mean values
of the field). The passage to the stationary regime is discussed in detail in
[2] in a more general setting of the evolution of k-forms on an n-dimensional
manifold.

To get rid of this effect, we confined us to the fields with zero mean. Still,
even in this case, the computations gave the eigenvalue λ = −1 of AR; this
eigenvalue does not depend on R as long as R remains smaller than a critical
value, R1 ≈ 2.3.
2 http://en.wikipedia.org/wiki/Galerkin method.
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The reason for this is that {v, v} = 0, so due to eq. (3.2) we have ∆v = −v,
so v itself is the eigenvector of AR with eigenvalue λ = −1.

As the Reynolds number grows, there appears a pair of complex eigenvalues
with γ > −1. This pair moves to the right and intersects the boundary of
dynamo (i.e., γ = 0) at R2 ≈ 9.0. The largest value of γ on this branch is
attained at R3 ≈ 12.5 and is equal to ≈ 0.096. Then the increment decays
and at R4 ≈ 17.5 it becomes negative again.

Therefore, the field v is a dynamo if R2 < R < R4. The problem if this
field is dynamo as R −→ ∞ remains open. D. Galloway 3) found a dynamo
for 30 < R < 100.

The distribution of energy of the eigenvector found along the harmon-
ics reveals a strange anomaly: For certain “empty” values of k2 we see that∑ |Hk|2 is exactly equal to 0, whereas for certain “wonderful” values of k2

the sum is equal to 0 up to accuracy of computations.
The “empty” values are:

k2 = 7, 15, 23, 28, 31, . . . (3.5)

The “wonderful” values are

k2 = 3, 4, 12, 16, 48, 64, . . . (3.6)

The “empty” values are easy to explain: They are the numbers of the form
4a(8b + 7). As is known, these and only these integers can not be represented
as the sums of three squares.

The “wonderful” values are of the form 7a and 3 · 4a. In what follows we
will explain their appearance from symmetry considerations: They are related
with the decomposition of the representation of the group of rotations of the
cube in the space of vector-valued trigonometric polynomials into irreducibles.

These considerations allow one to hasten computations tenfold and even
hundredfold. For example, we (Korkina and me) were able to find the eigen-
vector of the Galerkin approximation (with k2 ≤ 5 being taken into account)
explicitly, whereas without symmetry considerations we would have had to
consider a 112× 112 matrix. We were even able to find the exact value of the
first harmonic of the true eigenvector of the mode under the study for any
Reynolds numbers:

H1 = (cos y − sin z) ∂

∂x
+ (cos z − sin x) ∂

∂y
+ (cos x− sin y) ∂

∂z
. (3.7)

3 Galloway D.J., Hollerbach R., Proctor M.R.E. Fine structures in fast dynamo
computations, Small scale structures in three-dimensional hydrodynamic and
magnetohydrodynamic turbulence, Small scale structures in three-dimensional
hydrodynamic and magnetohydrodynamic turbulence, Maurice Meneguzzi, An-
nick Pouquet and Pierre-Louis Sulem (eds.), Lecture Notes in Physics 462,
Springer-Verlag, Berlin, (1995), 341–346.

Galloway D.J. Fast dynamos, Advances in nonlinear dynamos, The fluid me-
chanics of astrophysics and geophysics, Taylor & Francis, London, (2003), 37–59.
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The fact that it is this very mode that grows fastest (has the greatest incre-
ment) is, however, obtained only as a result of a computer experiment and
only for R ≤ 19.

3.3. A symmetry of the velocity field

It is clear from eq. (3.2) that the cyclic permutation of coordinates sends
v into itself. It is easy to prove the following

3.3.1. Theorem. The symmetry group of the field v preserving ∆ contains
24 elements and is isomorphic to the group G of rotations of the cube.

Indeed, it is easy to check that the field v turns into itself under the
transformations

g4 : (x, y, z) 7→ (x + 5

2
, z − π

2
,
π

2
− y). (3.8)

The order of g4 is equal to 4, i.e., g4
4 = id. Together with the cyclic permutation

of coordinates
g3 : (x, y, z) 7→ (y, z, x) (3.9)

the transformation g4 generates the group G isomorphic to the group of rota-
tions of the cube.

Note that there is a transformation

h : (x, y, z) 7→ (x + π, y + π, z + π). (3.10)

which preserves ∆ but changes the sign of v.
The group G of rotations of the cube has 5 irreducible representations:

• The trivial 1-dimensional representation; denote it (1);
• The non-trivial 1-dimensional representation; denote it (−1); it is the per-

mutation of the two inscribed tetrahedra;
• The 2-dimensional representation; denote it (2); it is the permutation of

the three coordinate axes;
• The 3-dimensional representation; denote it (3);
• The twisted 3-dimensional representation; denote it (−3); we have

(−3) ' (3)⊗ (−1).

The group G acts also on the space of divergence-free vector fields on the
torus.

The G-action commutes with the action of the operators ∆ and {v, ·}, and
hence with AR. Therefore

1. G acts on the eigenspaces of ∆;
2. The operator AR is the direct sum of the five operators each acting in the

direct sum of several copies of the same irreducible representation of G;
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3. The eigenvector “almost certainly” belongs to one of the five spaces de-
scribed in item 2: The coincidence of eigenvalues of any two of the five
operators described in item 2 is “improbable”;

4. The operators A−R and AR are equivalent, and hence their eigenvalues
coincide, so the characteristic equation does not vary under the change
R −→ −R.

The property 4 follows from the fact that h sends AR to A−R.

3.4. Decomposition of representations into irreducibles

Consider the representation of the group G of rotations of the cube in
the eigenspace of the Laplace operator on the torus, acting in the space of
divergence-free vector fields with mean value 0. The eigenspaces consist of
trigonometric polynomials with vector-valued coefficients, these polynomials
being orthogonal to the wave vectors

∑
Hkei(k,r), (k,Hk) = 0, (3.11)

with a fixed sum of the squares of components of the wave vector (recall that
the eigenvalue of the Laplace operator is −k2). The dimensions of these spaces
are twice the number of the integer points in the respective spheres, e.g.,

d(1) = 12, d(2) = 24, d(3) = 16, d(4) = 12,

d(5) = 48, d(6) = 48, d(7) = 0, d(14) = 96.
(3.12)

The given in subsect. 3.3.1 expressions for the action of the generators g3

and g4 on the space of vector fields on the torus allow one to find characters of
the representations of the group G in each eigenspace of the Laplace operator.

Knowing the characters we can decompose the representation into irre-
ducibles.

The results of (considerably long) calculations are as follows.
We separate the integer points (i.e., the points with integer coordinates)

into orbits of the group PS generated by coordinate permutations and changes
of coordinates’s signs. For each of the seven of such orbits indicated in the first
column of the following table, the next columns give: The dimension of the
corresponding eigenspace of the Laplace operator (i.e., the doubled number of
the cardinality of the orbit), the remaining characters, then the multiplicities
of the respective irreducibles, and lastly, the first three values of k2 for which
such an orbit can be encountered:
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Orbit characters multiplicities the first three

of the irreps values of k2

(2r, 0, 0) 12 0 0 −4 0 0 0 0 2 2 4 16 36

(2r + 1, 0, 0) 12 0 0 4 0 1 1 2 1 1 1 9 25

(a, b, 0) 48 0 0 0 0 2 2 4 6 6 5 10 13

(a, a, 0) 24 0 0 0 −4 0 2 2 4 2 2 8 18

(a, b, c) 96 0 0 0 0 4 4 8 12 12 14 21 26

(a, a, c) 48 0 0 0 0 2 2 4 6 6 6 27 36

(a, a, a) 16 −2 0 0 0 0 0 2 2 2 3 12 27

For an illustration, let us describe the representations in the eigenspaces of
the Laplace operator with small eigenvalues:

k2 = 1 : (1)⊕ 2(2)⊕ (3)⊕ (−3),

k2 = 2 : (2)(−1)⊕ 2(2)⊕ 4(3)⊕ 2(−3),

k2 = 3 : 2(2)⊕ 2(3)⊕ 2(−3),

k2 = 4 : 2(3)⊕ 2(−3),

k2 = 5 : 2(1)⊕ 2(−1)⊕ 4(2)⊕ 6(3)⊕ 6(−3),

(3.13)

The above tables imply the following

3.4.1. Theorem. The decomposition of the G-action in the space of vector
fields on the torus with a given k2 into irreducibles is of the form

A[(1)⊕ (−1)⊕ 2(2)⊕ 3(3)⊕ 3(−3)]
⊕

B[(1)⊕ (−1)⊕ 2(2)⊕ 3(−3)]
⊕

C[(3)⊕ (−3)]
⊕

D[(−1)⊕ (2)⊕ (3)⊕ 2(−3)]
⊕

E[(2)⊕ (3)⊕ (−3)],
(3.14)

where the coefficients are expressed in terms of the number N of integer points
on the sphere as follows:

k2 A B C D E

6= n2, 2n2, 3n2 N

12
0 0 0 0

(2r + 1)2 N − 6

12
1 0 0 0

4r2 N − 6

12
0 2 0 0

2n2 N − 12

12
0 0 2 0

3n2 N − 8

12
0 0 0 2

(3.15)
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3.4.1.1. Remark. A. B. Givental pointed out that this theorem can be
obtained in a simpler way with the help of the Frobenius reciprocity applied
to the pair (G, the stationary subgroup of the wave vector). For us only the
above decomposition table are essential, so we will not dwell on this.

3.5. Symmetries of the growing mode

Let us compare the “wonderful” values of k2 from § 3.2, property 3 of
G from § 3.3, and the decomposition table (3.14). The following corollary is
obvious.

3.5.1. Theorem. The amplitudes of the harmonics of the mode to be found
with a prescribed k2 are zero if the representation to which the mode belongs
does not enter in the decomposition of the space of vector fields with given k2

into irreducibles.

The “wonderful” values of k2 are therefore certain analogs of fingerprints
that allow one to find if not the mode itself then, at least, its symmetry.

The tables of §4 yield that for

k2 = 3, 4, 12, 16, 48, 64, . . . (3.16)

only the non-trivial 1-dimensional representation (and only this representa-
tion) does not enter the decomposition. Therefore, the mode belongs to the
space of this representation. The fields of this space satisfy the condition

g3H = H, g4H = −H. (3.17)

This space decomposes into the direct sum of its intersections with the
eigenspaces of the Laplace operator. The dimensions of these representations
are, according to §4, as follows:

k2 1 2 3 4 5 6 8 9 10 11 12 13 14 16

dim 1 2 0 0 2 2 2 3 2 2 0 2 4 0
(3.18)

For the “wonderful” values of k2 of the form 4a and 3 ·4a, the dimension of
the intersection is equal to 0. For the remaining values of k2, the dimension is
positive as follows from the following statements of the Number theory known
already to Gauss (the author is thankful to J.-P. Serre for this information):

1. The square of each prime can be non-trivially represented as the sum of
three perfect squares.

2. Three times square of each prime can be represented as the sum of distinct
squares.
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3.6. The algebra of even and odd fields

To find the fields that transform along the representation (−1), it is con-
venient to proceed as follows. We say that a given field H is

{
even if g3H = H = g4H;
odd if g3H = H = −g4H.

(3.19)

The sums of even and odd fields are invariant with respect to the operators
g3 and g2

4 ; they form a Lie algebra.
Our initial field

v = (cos y + sin z) ∂

∂x
+ . . . , (3.20)

hereafter . . . stands for the cyclic permutation of the written terms relative
the coordinates, is even. It is not difficult to verify that the field

H1 = (cos y − sin z) ∂

∂x
+ . . . (3.21)

is odd. The repeated Poisson bracket of even and odd fields is even (odd)
depending on the parity of the odd fields involved; in other words, the Lie
algebra of the sums of even and odd fields is Z/2-graded. In particular, all the
fields

{v, H1}, {v, {v,H1}}, . . . (3.22)

are odd.
If the field is even (odd), then its projection onto each eigenspace of the

Laplace operator is also even (odd). Let (H)k2 denote the projection of the
field H onto the subspace with the eigenvalue −k2, i.e., the sum of harmonics
of H with the wave vector whose squared length is equal to k2.

The linear combinations of the Poisson brackets and projections allow one
to obtain from v and H1

4) plenty of odd fields (perhaps, all of them?).
The Lie algebra obtained is rather involved. Its beginning segment is as

follows:

3.6.1. Theorem. We have

{v, H1} = −2H2, {v, H2} = H5, ({v, H5})2 = −1

2
H2 + H ′

2,

{v, H ′
2} = 1

2
H1 + 1

2
H ′

5, ({v, H ′
5})2 = −H ′

2,
(3.23)

where the explicit forms of the basis fields are
4 Do not confuse with (H)1!
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H2 = (cos x cos z + sin x sin y) ∂

∂x
+ . . . ,

H ′
2 = sin y cos z

∂

∂x
+ . . . ,

H5 = (cos x sin 2y − sin x sin 2z − 1

2
cos 2x cos y − 1

2
cos 2x sin z−

1

2
cos 2y sin z − 1

2
cos y sin 2z) ∂

∂x
+ . . . ,

H ′
5 = (cos y cos 2z + cos 2y sin z) ∂

∂x
+ . . . .

(3.24)

3.7. The representation of the quiver generated by
bracketing with v

A vector field on the torus will be said to be polynomial if its components
are trigonometric polynomials. A polynomial field is said to be homogeneous
if it is an eigenvector of the Laplace operator, i.e., if for all its harmonics
Hei(k,r) the value of k2 is the same. We call this common value k2 the degree
of the homogeneous vector field.

The spaces of the even and odd polynomial fields are the direct sums
of their homogeneous components. The operator {v, ·} of Poisson bracketing
with the field (3.2) intermixes the components in a certain not arbitrary way.
Namely, we call the harmonics ei(k,r) and ei(k′,r) neighboring if the integer
vectors k and k′ differ only by 1 in one of the three components. (Thus, each
harmonic has 6 neighbors.)

Now, let us form a graph whose nodes are the degrees of neighboring odd
fields. We join the nodes k2 and k′2 by a segment if the nodes are the degrees
of the neighboring harmonics.

Since deg v = 1, the components of the Poisson bracket of v with a homo-
geneous field of degree k2 can be non-zero only in the degrees neighboring to
k2 in the above described graph.

The beginning segment of the graph is, according to § 3.4, of the form

1 2 5

10

8

6

17. . .

11. . .

9. . .

3. . .

1 2 5

10

8

6

17

11

9

3

Fig. 1
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3.7.1. Theorem. Every even node is joined only with odd ones, and every
odd node is joined only with even ones. No other segments, except those drawn,
go out of the nodes 1, 2, 5, 6, 8, 10.

In certain situations more convenient is the graph with a larger number of
nodes that correspond not to the degrees k2 but the orbits of the group PS
of permutations of the coordinates of the wave vector and their sign changes.

The restriction Ai of the operator {v, ·} onto the space Fi of homoge-
neous odd fields of degree i is represented as the finite sum of homogeneous
summands

Ai =
⊕

Ai,j , where Ai,j : Fi −→ Fj is the homogeneous component of Ai

(3.25)
and where j runs over all neighbors of i in the graph constructed.

If we replace each edge of our graph by a pair of arrows directed in opposite
directions to each other, we get an (infinite) quiver. Above we have constructed
a representation of this quiver: To the node i the space Fi corresponds and to
each arrow there corresponds a linear operator Ai,j : Fi −→ Fj .

3.7.2. Theorem. The dimensions of the first three spaces F1, F2 and F5

are equal to 1, 2 and 2, respectively, with the bases H1, H2 and H ′
2, H5 and

H ′
5, see § 3.6.
In these bases, the matrices of the operators Ai,j are as follows:

(A1,2) =
�−2

0

�
, (A2,1) =

(
0,

1

2

)
, (A2,5) =

 
1 0

0
1

2

!
, (A5,2) =

 
− 1

2
0

1 −1

!
,

(3.26)

This is a reformulation of Theorem 3.6.1.

3.8. Galerkin 5-mode system

Ignoring in the Fourier series

H = (H)1 + (H)2 + (H)5 + . . . (3.27)

the terms of degree higher than 5 we get a Galerkin system of 5 linear equations
for the components of the odd eigenvector

(H)1 = a1H1, (H)2 = a2H2 + a′2H
′
2, (H)5 = a5H5 + a′5H

′
5 (3.28)

of the operator A
(5)
R = p(5)[R{v, ·} + ∆], where p(5) is the projection onto

F1 ⊕ F2 ⊕ F3. Observe that, on the level of F1 and F2, the relations are the
same as for the total (not Galerkin) system, i.e., the nodes 1 and 2 in the
graph are only joined with the node 5.
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3.8.1. Theorem. The explicit form of the Galerkin system of the five odd
modes is as follows:

(
R

2

)
a′2 = (λ + 1)a1, −R

(
2a1 + a5

2

)
= (λ + 2)a2,

R(a5 − a′5) = (λ + 2)a′2, Ra2 = (λ + 5)a5,
(

R

2

)
a′2 = (λ + 5)a′5.

(3.29)

Proof of the formulas of § 3.7. Solving the system (3.29) we easily find the
characteristic equation:

4(λ+1)(λ+2)2(λ+5)2 +4(λ+1)(λ+2)(λ+5)R2 +(5λ+21)R4 = 0, (3.30)

wherefrom we have

R2 =
−2(λ + 2)(λ + 5)[(λ + 1)± 2

p
−(λ + 1)(λ + 5)]

5λ + 21
. (3.31)

The graph if this function is depicted on the following Figure 5):

λ

R2

R2

0

R2

1

A

B

−5 −21/5 −1−2

Fig. 2

If the viscosity is sufficiently high, we can ignore the higher harmonics.
Therefore, for small values of the Reynolds number R we may use this graph
to make predictions on the behavior of the increment of the odd mode of
fastest growth (more precisely, of slowest decay). Comparison with numerical
experiments for large Reynolds numbers shows a good agreement of the 5-
mode Galerkin approximation under our study with the exact solution for
R2 ¿ 10.

For R = 0, the spectrum is real (λ = −1, −2, −2, −5, −5). ut
3.8.2. Theorem. In the 5-mode Galerkin system, as R grows the two eigen-
value (λ = −1 and λ = −2) begin to move towards each other. At the critical
value R0 ≈ 0.9324 the two real values coincide (λ ≈ −1.356) and descend in
the complex domain (point A on Fig. 2). Then the real part γ of the newborn
pair of complex eigenvalues grows together with R (curve AB on Fig. 2).

5 Here the dotted line x = −21

5
is a vertical asymptote (to which the part of the

graph under the λ-axis approaches rather slowly).
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Around point R1 ≈ 2.032 (point B) the value of γ reaches −1 and the odd
mode outruns the even mode of v for which γ = −1 for all Reynolds numbers.

Starting from this place the mode under study becomes the leading one
(has the least damping). As R grows further, γ also grows (asymptotically as
R
p

1 +
√

5

2
≈ 0.9R) passing through 0 at R ≈ 4.32.

Although it is clear that for so big values of R it is inappropriate to ignore
harmonics of degree greater than 5, the behavior of γ(R) for R < 5 is sat-
isfactory described by the 5-mode approximation; this approximation reveals
the origin of the growing complex mode from the two colliding pair of real
decaying modes of degrees 1 and 2 (in the exact system we have R0 ≈ 0.96,
λ0 ≈ −1.32, R1 ≈ 2.286).

3.9. The diagram technique

Our calculation give, actually, more than Galerkin approximations: We
also get the exact expressions for the Taylor (or Puiseux 6)) series expansions

of the eigenvalues of the total (no Galerkin) system (3.1) in powers of R = 1

ε
.

The answer is given in terms of the above constructed representation of
the quiver: The terms of degree n in the Taylor series of the root born of −k2

correspond to the loops of length n and the source at the node k2.
For simplicity, we begin with a simple (of multiplicity 1) root α0 = −1.

3.9.1. Theorem ([3]). The first (apart from α0 = −1) non-zero coefficient
of Rn in the Taylor series expansion of the eigenvalue

λ = α0 + α1R + α2R
2 + . . . (3.32)

of the Laplace operator ∆ + R{v, ·} is given by the sum

αn =
∑ Ain−1,i0 . . . Ai1,i2Ai0,i1

(α0 − λin−1) . . . (α0 − λi2)(α0 − λi1)
, (3.33)

which runs over all loops i0 −→ i1 −→ . . . −→ in−1 −→ i0 of length n and
with the source and target in the node i0.

In our case, i0 = 1, the operators Ai,j are introduced in § 3.7.
Proof of relation (3.33) is not difficult; we will only show how to use it.

1. Eq. (3.33) implies that αn with any odd subscript vanish since the length
of any loop on our quiver is even.

2. The only loop of length 2 with source at node 1 is 1 −→ 2 −→ 1 Since,
due to formulas of § 3.7 we have A2,1A1,2 = 0, it follows that α2 = 0.

6 http://en.wikipedia.org/wiki/Puiseux expansion.
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3. The only loop of length 4 with source at node 1 is 1 −→ 2 −→ 5 −→ 2 −→ 1.
We get

α4 =

�
0,

1

2

� − 1

2
0

1 −1

! 
1 0

1 − 1

2

!�−2
0

�
1 · 4 · 1 = −1

4
. (3.34)

Therefore, for the total infinite dimensional system, we have

λ = −1− R4

4
+ o(R4),

the same as for the Galerkin approximation in § 3.8.
4. We also conclude that only a bounded part of the quiver affects αn and

can estimate which part.

In the general case where the root α0 is a multiple one, the relation (3.33)
determines not a number but a linear operator αn : Fi0 .

In the calculation of the perturbation of the multiple eigenvalue one can
replace the infinite dimensional space of fields by a finite dimensional space
Fi0 and the total operator by the matrix

α0E + Rα1 + R2α2 + . . . (3.35)

For example, exactly two loops of length 2 begin in node 2, namely
2 −→ 1 −→ 2 and 2 −→ 5 −→ 2. The corresponding summands are�−2

0

��
0,

1

2

�
−1

=
�

0 1
0 0

�
and

 
− 1

2
0

1 −1

! 
1 0

0
1

2

!
3

=

 
− 1

6
0

1

3
− 1

6

!
. (3.36)

Thus,

α0E + R2α2 =

0B@−2− R2

6
R2

R2

3
−2− R2

6

1CA (3.37)

and, to find λ with accuracy O(R2), we have to know α4 as well. For the
Galerkin system, we have

α4 = 0 and λ = −2 + R2
(
− 1

6
∓

√
1

3

)
+ O(R4) (3.38)

in good agreement with formulas of § 3.8.
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(M, ω), symplectic manifold, 65

A > 0, 18

AL, for any associative algebra A, 53

Df , Hamiltonian vector field, 68

L2(G), the space of square integrable
functions, 51

L2(X), the space of square-integrable
functions on X., 49

Lg, 51

Mθi , 92

Rg, 51

Ad G, the adjoint group, 57

Adg, 51

ad, representation, adjoint of the Lie
algebra, 79

E, 85

O, category of g-modules, 84

Of , the completion of all finite
dimensional operators, 48

S, the completion of the space Of , 48

chM , character of a module, 98

δ-function, 19

autB(V ), Lie algebra that preserves the
bilinear form B, 78

g+, 77

g−, 77

gl(n), 77

h, 77

o(n), 78

sl(n), special linear algebra, 77

sp(2m), 78

ρ, 81

Reps (G), the ring of representations,
14

tr A, trace, of an operator, 47
ε-net, 36
{·, ·}P.B., Poisson bracket, 65
{f, g}P.B., Poisson bracket, 65
jz, see the Harish–Chandra theorem, 91

Action, 50
Action, of an algebra, 78
Algebra, universal enveloping, 78
Automorphism, adjoint, 53
Automorphism, inner, 53

Bracket, 53
Burnside’s theorem, 19

Cauchy–Bunyakovsky–Schwarz
inequality, 45

Character, 85
Character of a module, 98
Character, central, 92
Character, of the representation, 23
Chevalley’s theorem, 102
Coefficient, Dynkin, 80
Component, connected, 41
Coroot, 80

Darboux’s theorem, 65
Decomposition, Jordan–Hölder, 93
Domain, fundamental, 82

Element, Casimir, 86
Exponential map, 58
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Form, hermitian, 12
Form, Killing, 79
Form, Killing-like, 79
Form, pseudo-hermitian, 12
Form, sesquilinear, 12
Formula, Kostant, 100
Formula, Kostant, for the multiplicity

of the weight, 98
Function, Hamiltonian, 65
Function, Kostant, 85
Function, partition, 85

Group ring, 14
Group, classical, 40
Group, Grothendieck, 94
Group, linear, algebraic, 40
Group, linear, connected, 41
Group, one-parameter, 58
Group, orthogonal, 40
Group, pseudo-orthogonal, 40
Group, pseudo-unitary, 40
Group, symplectic, 40
Group, totally disconnected, 42
Group, unitary, 40
Groups, locally isomorphic, 62

Harish–Chandra theorem, 91
Hilbert’s theorem, 43
Homomorphism, local, 59

Jacobi identity, 53

Lemma, on an averaged polynomial, 43
Lemma, on the map of a rectangle into

a Lie group, 60
Lemma, Schur, 20
Lie algebra, 52
Lie algebra, abstract, 53
Lie algebra, classical, 78
Lie algebra, linear, 53
Lie algebra, orthogonal, 78
Lie algebra, semi-simple, 80
Lie algebra, symplectic, 78
Lie derivative, 67
Lie group, linear, 52

Manifold, symplectic, 64
Maschke’s theorem, 21
Mechanical system, elementary, 66

Module, a-finite, 83
Module, h-diagonalizable, 82
Module, over an algebra, 78
Module, Verma, 84
Moment map, 68
Momentum, 65

Number, intertwining, 20

Operator, bounded, 48
Operator, finite dimensional, 47
Operator, intertwining, 20, 25
Operator, trace-class, 47
Operator, unitary, 13
Oscillation, of a function, 36

Poincaré–Birkhoff–Witt theorem, 79
Position, 65
Problem, 5, 105, 107

Radical, 80
Rank, 80
Representation, adjoint of the Lie

algebra, 79
Representation, decomposable, 12
Representation, irreducible, 12
Representation, of an algebra, 79
Representation, reducible, 12
Representation, regular, 19
Representation, unitary, 13
Root, 80

Schur’s lemma, 20
Series, Jordan–Hölder, 93
Simple root, system of, 81
Space, configuration, 65
Space, phase, 64
Space, simply connected, 42
Special linear algebra, 77
Subalgebra, Cartan, 80
Subalgebra, toral, 80
Subgroup, stationary, 66
Symplectomorphism, 66

Tensor product, 13
Theorem, Burnside, 19
Theorem, Chevalley, 102
Theorem, Harish–Chandra, 91
Theorem, Harish–Chandra, on ideal,

100
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Theorem, Hilbert, 43
Theorem, Maschke, 21
Theorem, on orthogonality relations, 49
Theorem, spectral, 45
Trace, 77
Trace, of an operator, 47
Transformation, canonical, 67

Vector field, Hamiltonian, 67
Vector, of highest or lowest weight, 84
von Neumann–H. Weyl theorem, 31

Weight, 82
Weyl group, 82
Weyl’s character formula, 99


