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Abstract

The structure of all triangle free graphs G = (V,E) with |E|−6|V |+α(G) = 0 is
determined, yielding an affirmative answer to a question of Stanis law Radziszowsky
and Donald Kreher.
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1 Background.

A graph is edge number critical (under certain conditions), if it has the minimal possible
number of edges for all graphs fulfilling these conditions. In this article, some edge
number critical graphs are determined among the triangle free graphs (graphs without
K3 subgraphs) with a prescribed number of vertices, upper bound for the independence
number, and sometimes also a prescribed minimal valency.

In my opinion, characterising such graphs has some interest in itself. Moreover, often
it is crucial for determining better bounds for Ramsey numbers.

In 1991, in [5], Radziszowski and Kreher proved that

(1) |E| − 6 |V |+ 13 α(G) > 0

for any triangle free simple graph G = (V, E), where α(G) is the independence number of
G. They also described some graphs for which equality in (1) is attained, and suggested
that there might be no other such graphs.

Actually, (1) is one of a series of ‘linear inequalities’, which starts by

|E| > 0,
|E| − |V |+ α(G) > 0,

|E| − 3 |V |+ 5 α(G) > 0, and
|E| − 5 |V |+ 10 α(G) > 0 .
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For each one of these ‘earlier’ inequalities, the graphs for which equality holds are edge
number critical (with respect to triangle freeness and to vertex numbers and independence
number upper bounds), and they have been classified explicitly, mainly by Radziszowski
and Kreher; see e. g. propositions 2.2 and 6.3 in [5].

Some years later, I was able to confirm Radziszowski’s and Kreher’s conjecture, and
included a proof in my book manuscript Contributions to a Ramsey calculus [1]. Thus,
the inequality (1) is strict for all other triangle free graphs. This consequence was quoted
and employed in 2000 by Lesser [3]. However, my still far from finished manuscript, and
thus the proof, have remained unpublished. It has been pointed out to me that this is a
non-optimal state of matter. I therefore decided to present the proof in a ‘stand-alone’
article.

However, just reproducing the proof from my manuscript [1] together with all its
dependencies, would amount to an unproportionally large article. I am trying to make
[1] as self-contained as possible, but on the other hand its proofs do contain numerous
internal references to more general results with multiple applications. On the other hand,
in the present article, shortcuts are possible, largely due to the possibility to refer to [5],
where in fact a considerable part of the necessary ground work is done.

This article thus has a dual character. The concepts, terminology, and notation largely
follow my manuscript, but the proofs as far as reasonably possible are simplified by
recycling the [5] arguments and results. In particular, it in no ways should depend on
unpublished results, except in the broader discussion in section 7 at the end, and in some
of the footnotes in the earlier sections (none of which contains facts used in the proofs
there).

2 Fundamental concepts and notation.

2.1 Basics.

Throughout this article, all considered graphs are undirected, simple, and finite; thus,
formally, a graph is a pair (V, E) of finite sets, such that every element of E is a 2-subset
of V . In other words, we demand that the cardinality |V | < ∞, and that

E ⊆
(

V

2

)
= {V subsets of cardinality 2}.

If G = (V, E) we also let V (G) = V and E(G) = E.
It will be convenient not to disconsider the empty graph, formally the pair (∅, ∅),

but in shorthand represented just by ∅. Similarly, here the natural numbers be N =
{0, 1, 2, 3, . . .} (including zero).

When we consider a fixed graph G = (V, E), the shorthand notation often is extended
to arbitrary subsets of V ; W ⊆ V sometimes also may be used for the induced subgraph
(W, EW ), where EW in its turn is shorthand for E ∩

(
W
2

)
. If W and X are two subsets of
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V , then
EW,X = {{w, x} ∈ E : w ∈ W ∧ x ∈ X} .

Recall that an isomorphism between two graphs (V, E) and (V ′, E ′) is a bijection
between V and V ′ which induces a bijection between E and E ′; let G ' G′ denote
either an isomorphism, or just the fact that G and G′ are isomorphic, depending on the
context. If moreover v1, . . . , vr and w1, . . . , wr are sequences of vertices in G and G′,
respectively, then (G, v1, . . . , vr) ' (G′, w1, . . . , wr) denotes a relative isomorphism, i. e.,
an isomorphism which furthermore maps vi to wi for i = 1, . . . , r, or the existence of such
an isomorphism.

There are numerous classes of graphs, which technically are only defined up to iso-
morphisms. By a slight abuse of terminology, often a graph will be used, where more
correctly an isomorphism class of graphs should be treated. Likewise, = (equal to) may
be used, where technically ' (isomorphic to) would be more correct.

As usual, Ki and Ci denote ‘the’ complete graph (or properly: a complete graph)
and ‘the’ cycle graph on i vertices, respectively. In general, let V (Ki) = {k1, . . . , ki}
and V (Ci) = {c1, . . . , ci}. Pi denotes ‘the’ path graph with i vertices (and thus i − 1
edges). Ki,j is the complete bipartite graph with i and j vertices in the respective parts.
If different copies of these or other graphs defined up to isomorphism are needed in the
same context, they are distinguished by primes; as in C5, C ′

5, C ′′
5 , . . . for different 5-cycles.

In this article the sum of two graphs is their disjoint union; in other words, for G =
(V, E) and G′ = (V ′, E ′) with V ∩ V ′ = ∅, we put G + G′ = (V ∪ V ′, E ∪ E ′); while,
if V ∩ V ′ 6= ∅, G + G′ only is defined up to isomorphism, as the sum G′′ + G′′′ for any
G′′ ' G and G′′′ ' G′, such that V (G′′) ∩ V (G′′′) = ∅. For any m ∈ N and any graph G,
mG is the sum of m copies of G; in particular, 0G = ∅ and 1G = G.

A graph G = (V, E) is edge critical, if the removal of any edge increases the inde-
pendence number, i.e., if α((V, E ′)) > α(G) for every proper subset E ′ of E. If it is
not edge critical, then there is some edge ε ∈ E, which is redundant, i. e., such that
α((V, E \ {ε})) = α(G).

As usual, the distance dist(v, w) between two vertices is the smallest number of edges
in any path connecting them, if there is one, and ∞ else.

The link of a vertex v in a graph G = (V, E) is (the induced subgraph on) the set of
vertices adjacent to v: lk v = lkG(v) = {w ∈ V : {v, w} ∈ E} = {w ∈ V : dist(v, w) = 1}1.
(Here and in the sequel, denoting the graph may be omitted, if it is clear from the context.)
The (first) valency of v is d(v) = dG(v) = |lk v|. The second valency of v is the sum of
all first valencies of its neighbours:

d 2(v) = d2
G(v) = d(lk v) :=

∑
w∈lk v

d(w) .

For v ∈ V and d ∈ N, the d-neighbourhood of v or the ball of radius d and centre v

1Graphs may be considered as (the 1-skeletons of) flag abstract simplicial complexes. From this point
of view, the link of a 0-simplex {v}, in its usual sense, is precisely lk v.
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is B(v; d) = B(G, v; d) = {w ∈ V : dist(v, w) 6 d}. For S = {v1, . . . , vr} ⊆ V ,

B(S; d) = B(G, S; d) = B(v1, . . . , vr; d) = B(G, v1, . . . , vr; d) =
r⋃

j=1

B(vj; d) .

A monovalent (bivalent, trivalent, et cetera) (vertex) is a vertex of valency 1 (2, 3, et
cetera, respectively).

2.2 Invariants.

Recall that a (proper) graph invariant is a number valued function f on the set of all
(finite et cetera) graphs, such that

G ' G′ =⇒ f(G) = f(G′) .

The invariant f is linear, if in addition it ‘respects sums’, i. e., if

f(G + H) = f(G) + f(H), ∀G, H .

In particular, then clearly f(mG) = mf(G), and f(∅) = 0.
A generalised graph invariant is defined similarly, but some of the values may be non-

numbers. (We do not consider any kind of linearity condition for non-proper invariants.)
An example is the girth,

girth(G) := inf{i : N(Ci|G) 6= 0};

thus, by the usual convention for infima of empty sets of natural numbers, girth(G) = ∞
if and only if G is acyclic, i. e., is a forest.

A linear inequality is an inequality f(G) > g(G) involving two linear graph invariants
f and g, and which holds for all graphs of some specified class, which is closed under
addition.

For two graphs H and G, let the number of occurrences of H in G, N(H|G), be the
number of G subgraphs G′ (induced or not), such that G′ ' H. There is also a relative
variant: For u1, . . . , ur ∈ V (H) and v1, . . . , vr ∈ V (G), N(H, u1, . . . , ur|G, v1, . . . , vr)
denotes the number of subgraphs of G which are isomorphic to H relatively the ui mapping
to the vi. If there is no possible ambiguity, the u1, . . . , ur may be omitted. Thus,
N(Ci|G, v) = N(Ci, c1|G, v) or N(Ci, c1, c2|G, v, w) is the number of i-cycles through a
vertex v or an edge {v, w} in G, respectively.

Note, that N(H|G) is a graph invariant (with respect to G), for any fixed H. This
invariant is linear if and only if H is connected. Two such linear invariants are

n(G) = N(K1|G) = |V (G)| and e(G) = N(K2|G) = |E(G)| .

For each natural number d, the number of d-valents is a graph invariant, denoted
#d(G).
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Another important linear graph invariant is the independence number, the maximal
size of an independent subset of vertices:

α(G) = max (|S| : S ⊆ V ∧
(

S

2

)
∩ E = ∅) .

Likewise, the number comp(G) of (connected) components of G is a linear graph invariant.
On the other hand, the clique number ω(G) = max (i : N(Ki|G) > 0) is a graph invariant,
but not linear. In fact, ω(G + H) = max (ω(G), ω(H)). (ω(∅) = 0.)

The graph G is triangle free, if ω(G) 6 2, or, equivalently, if girth(G) > 4. In the later
sections of this article, we only consider triangle free graphs. The triangle free graph G is
square free, if in addition it does not contain any 4-cycle (or “square”), or, equivalently,
if girth(G) > 5.

Directly from the definitions we get

Lemma 2.1. A linear combination of linear graph invariants is itself a linear graph
invariant. �

In this article, the two most important linear invariants formed as linear combinations
are

t(G) := `6(G) = e(G)−6n(G)+13 α(G) and q(G) := `5(G) = e(G)−5n(G)+10 α(G) .

2.3 Independence stability.

A destabilising subset or destabiliser M in a graph G = (V, E) is a subset of V , such that
the induced subgraph on V \M has a lower independence number than α(G). The graph
G is s-stable, if it has no destabiliser of size 6 s, and is strongly s-stable, if in addition
no destabilising subset of size s + 1 is independent. (Often, the induced subgraph on M
also is called M .) Now, if v ∈ V = V (G), and S is an independent subset of V \B(v; 1),
then S ∪ {v} also is independent; whence we directly get

Lemma 2.2. For any vertex v in a graph G, B(G, v; 1) destabilises G. �

If S = {v1, . . . , vr} is an independent subset of G = (V, E), then

Gv1,...,vr = (Vv1,...,vr , Ev1,...,vr)

denotes the induced subgraph on everything but the neighbourhood of S; in other words,
Vv1,...,vr = V \B(G, S; 1) and Ev1,...,vr = E ∩

(
Vv1,...,vr

2

)
. (Whenever we employ the notation

Gv1,...,vr , we indeed assume that the vi are different and form an independent set.) Since
obviously

Gv1,...,vr = (· · · ((Gv1)v2) · · ·)vr ,

and by inductive use of lemma 2.2, we have

Lemma 2.3. α(Gv1,...,vr) 6 α(G)− r. �
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In some interesting situations, we have equality.

Lemma 2.4. If G = (V, E) is edge critical and v ∈ V , then α(Gv) = α(G)− 1.

Proof. This is immediate from the linearity, if d(v) = 0, since then G = {v}+(V \{v}, E).
Else, choose a w ∈ lk v, and let k = α(G) and E ′ = E \ {{v, w}} ⊂ E. By the edge

criticality, there is a (k + 1)-subset S of V , which is independent in (V, E ′). Now, if S
did not contain both v and w, it were independent in G as well, against the assumptions.
Thus, instead, v, w ∈ S, and S \ {v, w} is an independent (k − 1)-subset of Gv.

Thus, α(Gv) > k − 1 = α(G)− 1, whence we indeed have equality by lemma 2.3.

Obviously, n(Gv) = n(G) − d(v) − 1. Moreover, if N(K3, k1|G, v) = 0, then e(Gv) =
e(G) − d 2(v) (since then d 2(v) counts each edge in E \ Ev exactly once). Generalising,
we get

Lemma 2.5. If G = (V, E) is a triangle free graph, and S = {v1, . . . , vr} ⊆ V an
independent set, then

n(G)− n(Gv1,...,vr) = |B(S; 1)| = r +
r∑

i=1

dGv1,...,vi−1
(vi) , and

e(G)− e(Gv1,...,vr) = d(B(S; 1))− |E|B(S;1) =
r∑

i=1

d2
Gv1,...,vi−1

(vi) . �

Lemma 2.6. Let G be an edge critical and connected triangle free graph, and let v ∈ V (G).
(a) If v is bivalent, then comp(Gv) = 1.
(b) If v is trivalent, Gv = G′ + G′′, G′ 6= ∅ 6= G′′, G′ is strongly s′-stable, and G′′ is

strongly s′′-stable, then
d 2(v) > s′ + s′′ + 6 .

Proof. First, note that

α(Gv) = α(G)− 1 > d(v)− 1 > 1 =⇒ Gv 6= ∅,

by lemma 2.4. Thus, in case (a), for a contradiction, we also may assume Gv = G′ + G′′

with both G(ν) non-empty.
In both cases, let lk v = {w1, . . . , wd(v)}, Xi = lk(wi) \ {v} (for i = 1, . . . , d(v)), X =⋃d(v)

i=1 Xi, X(ν) = X ∩ V (G(ν)) = B(v; 2) \B(v; 1) (for ν = 1, 2), and X
(ν)
i = Xi ∩ V (G(ν)).

By connectedness, both Elk(v),X(ν) must be non-empty.
Now, in case (a), if X ′ did not destabilise G′, then the edges in Elk(v),X′ were redundant,

and else so were the edges in Elk(v),X′′ , in either case contradicting the edge criticality.
In case (b), similarly, X(ν) must destabilise G(ν) for both ν. By the assumptions, in

particular,

(2) a(ν) :=
∣∣EX(ν),lk v

∣∣ =
∣∣∣X(ν)

1

∣∣∣ +
∣∣∣X(ν)

2

∣∣∣ +
∣∣∣X(ν)

3

∣∣∣ >
∣∣X(ν)

∣∣ > s(ν) + 1, ν = 1, 2 .
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In particular, clearly d 2(v) = 3 + |EX,lk v| = 3 + a′ + a′′ > s′ + s′′ + 5, and it suffices to
prove that equality would lead to a contradiction.

Indeed, the only way to have equality would be to have equalities in (2), too, whence

on the one hand all the X
(ν)
i were disjoint, while on the other hand X(ν) were a minimal

and non-independent destabiliser of G(ν), for both ν. In particular, for each ν, at least
two of X

(ν)
1 , X

(ν)
2 , and X

(ν)
3 were non-empty; whence, without loss of generality, we could

assume X ′
3 6= ∅ 6= X ′′

3 . However, then the X
(ν)
1 ∪ X

(ν)
2 were proper subsets of the X(ν),

whence neither X
(ν)
1 ∪X

(ν)
2 would destabilise Gv, whence nor would X1 ∪X2. Thus, there

were an independent (k−1)-subset S of V (Gv)\ (X1∪X2); but then S∪{w1, w2} were an
independent (k + 1)-subset of G, against the assumptions; the sought contradiction.

2.4 E-numbers.

An (i, j; n, e) realiser is a graph G with ω(G) < i, α(G) < j, n(G) = n, and e(G) = e.
The e-number e(i, j; n) is the minimal number e, such that there are (i, j; n, e) realisers, or
∞, if no such realisers exist for any e. These numbers are closely related to the (classical
2-colours) Ramsey numbers; in fact, these may be defined by

R(i, j) := min {n ∈ N : e(i, j; n) = ∞} .

There has been some efforts to determine the e-numbers e(3, k + 1; n). In [2] inter alia
all such e-numbers for k + 1 6 10 are listed. The non-negative linear invariants and
constructions of graphs with invariant value 0 provide some infinite families of e-values;
as shown in [4, theorems 1 and 4] and [5, theorem 5.1.1 and corollary 5.3.4],

Proposition 1 (Radziszowski, Kreher). For k > 4 and either 0 6 n 6 3.25k − 1 or
n = 3.25k,

e(3, k + 1; n) = max (0, n− k, 3n− 5k, 5n− 10, 6n− 13k) .

Moreover, for all n and k, e(3, k + 1; n) > 6n− 13k. �

3 Constructing graphs step by step.

From now on, all graphs considered in this article are triangle free, unless explicitly
otherwise denoted.

Graphs ‘close to a limit’ will tend to share more structure than ‘graphs in general’.
Often, they also have subgraphs ‘close to’ that limit. This may make their structure
tractible to recursive treatment.

Radziszowski and Kreher consider d-extensions Gv ⊂ G, where d(v) = d, and where
Gv is demanded to be edge number critical with respect to n(Gv) and α(Gv). Here, we
consider somewhat more general kinds of extensions, called stitches. Indeed, stress is both
on the details for each such stitch (or extension), and on the way the whole graph may be
composed by such steps. I found the analogy with knitting or chrochet rather apt, and
therefore partly follow chochet terminology.
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Formally, quite generally, a stitch is a pair (G, G′) = ((V, E), (V ′, E ′)) of graphs, such
that G′ is the induced subgraph of G on V ′ ⊂ V and M = V \V ′ is a minimal destabiliser
of G. The latter condition precisely means that

α(G′) + 1 = α(G′′) = α(G)

for the induced graph G′′ on any V ′′ with V ′ ⊂ V ′′ ⊆ V . Less formally, this G may be
called ‘a stitch of G′’. The stitch is classified by the corresponding minimal destabiliser
M , and by the way M is ‘fastened’ at G′.

Thus, generalising the concept d-extensions from [5], a d-stitch is a graph G and a
specified vertex v ∈ V (G), such that d(v) = d and α(Gv) = α(G) − 1, but that no edge
in B(v; 1) may be removed without increasing the independence number. Note, that the
last condition certainly is satisfied, if G is edge critical.

The most simple case is the 1-stitch, extending ∅ to P2, the 2-vertices path.
In general, the graphs we are interested of here may be constructed from scratch by a

number of d-stitches, for various d.
If H is a d-stitch of Hv, then call v the apex of the stitch. Moreover, the set X of

vertices of distance exactly 2 from v is called the base of the stitch, which also is said to
be based at X. Note, that X is a subset of V (Hv). If moreover the stitch is a 2-stitch,
then X destabilises Hv, and is bipartite (since the neighbourhoods of the two neighbours
of v must be an independent set).

Conversely, a bipartite minimal destabiliser M of a graph G can be used as base of
a 2-stitch of G. (Note, that the ‘bipartitivity’ is self-evident, if M contains at most four
vertices, since that is too few for a 5-cycle or a larger cycle of odd length.) If G is edge
critical, and v ∈ V , then B(v; 1) is such a destabiliser. In this case, the corresponding
2-stitch also is said to be based at v. In these cases, the 2-stitch (which is uniquely
defined up to isomorphisms) also may be denoted cr2(G; M) or cr2(G; v); the index 2 may
be omitted. The apex of that stitch, say v′, may be used as the base of a new stitch
cr(cr(G; M); v′), also denoted cr2(G; M); et cetera.

We now may form the most fundamental crochet, a (simple) chain, by successively
adding 2-stitches to C5

2. Thus, put Ch2 := C5, and Chk := crk−2(C5; c1) ' cr(Chk−1; p)
for any k > 3 (and any vertex c1 in C5 or bivalent p in Chk−1, respectively).

Ch3, alias C5 .

t
t t t

tB
B
B
�

��Z
ZZ

�
�
�

Its crochet pattern.

r r

Ch5 as a 2-stitch of Ch4 .

t t t t t t
t t t t t�

�
�

Q
Q

Q
QQ

�
�

�
��

@
@

@
d d

d@
@
@

HHH
HHH

Its crochet pattern.

b r r r r
2Actually, C5 ' cr2(P2), and P2 ' cr1(∅), whence instead indeed we might start “from scratch”,

putting Ch1 := P2 and Ch0 := ∅; however, we have no use of this notation in this article.
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The bicycle BC6 .

t
t t

t
tt

t
t t t t

t
t

tttt
t �

�
� T

T
T
�

�
�T

T
T

�
�
�
"

"" b
bb

T
T
T

�
�
�

"
""b

bb
T

T
T

C
C
C
C

�
�

�

XXXX

C
C
C
C

�
�

�

XXXX
�
�
�
�

����
@

@
@

�
�
�
�

����

@
@

@

e1

e2 e3

e4

e5e6d1

d2

d3

d4 d5

d6

d7

d8

d9

d10d11

d12

Its crochet pattern.

r r rrrr"
"bb

""bb

Next, we may consider 3-stitches of chains. The simplest such are the bicycles. The
bicycle BCk (k > 4) consists of an (induced) outer cycle {d1, . . . , d2k} ' C2k and an (in-
duced) inner cycle {e1, . . . , ek} ' Ck, with the connecting edges {d2i−2,ei

} and {d2i+1, ei}
for i = 1, . . . , k (where as usual the outer and inner cycle vertex indices may be calculated
modulo 2k and modulo k, respectively).

Indeed, for any trivalent v in BCk, (BCk)v ' Chk−1.

The bicycles may be considered as crochet loops. They are rather symmetric, and like
the chains well-defined up to isomorphism, by means of the single parameter k = α(BCk).
However, the next class we consider are ‘loop-chains’, where we add a succession of 2-
stitches to a bicycle, to get a pending attached chain; and here we need three parameters:
The length of the loop, the length of the chain, and a description of how the chain is
attached to the loop.3 Here, we only are interested in attachments at destabilisers of
minimal size; i. e., a loop-chain may be written as crk−l(BCl; M), where l > 4, k − l > 1,
and M is a BCl destabiliser of size four. As we shall see in lemma 5.2, there are up to
isomorphism just three possible M , isomorphic to K1,3, P4, or C4, respectively, whence
we may let the third parameter range over just the set {K1,3, P4, C4}.

The loop-chain cr2(BC4; P4).

t tttt t t ttttt�
� @

@

�
�@

@

@
@

@
@

�
�

�
� @

@
@

@

�
�

�
�

t t tt t tHHHH

�
�

@
@@

@

�
���

�
�

Its crochet pattern.

rr r r r r��
@@

@@I
��	

-

The loop-chain cr3(BC4; K1,3).

t tttt t t ttttt�
� @

@

�
�@

@

@
@

@
@

�
�

�
� @

@
@

@

�
�

�
�

t t t t tt t t t@
@

HHH
H

��
��

�
�

Q
Q

Q

�
�

�

@
@�

�

Its crochet pattern.

rr r r r r r��
@@

@@
��	

3In the crochet pattern, the attachment is represented by a trivalent, while the mood of attachment
conveniently may be represented by associating outgoing directions to some of the edges at that trivalent.
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The loop-chain cr(BC6; C4).
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A
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�

�
�

�
�

�
�

Its crochet pattern.

r r rrrr
r

""bb

""bb

6

Finally, we consider one famous “cyclic graph”, the unique triangle free graph on 13
vertices with independence number 4. The graph often is called H13; here, I use the
more descriptive notation W13;1,5, signifying that it has 13 indexed vertices, and that each
vertex is connected to those with a difference 1 or 5 in indices (again calculated modularly,
where appropriate)4. By the definitions and inspection, W13;1,5 is a 4-stitch of Ch3, where
any vertex in W13;1,5 may be chosen as the apex.

4 The main result.

Recall that q(G) = e(G) − 5n(G) + 10 α(G) and t(G) = e(G) − 6n(G) + 13 α(G). The
following is a summary of results by Radziszowski and Kreher, collected from [5]:

Proposition 2 (Radziszowski, Kreher). For any triangle free graph G, q(G) > 0 and
t(G) > 0. Moreover, q(G) = 0 if and only if G is a sum of chains and bicycles. If G
is a sum of bicycles and copies of W13;1,5, then t(G) = 0; and as a partial converse, if
α(G) 6 6 and t(G) = 0, then indeed G is such a sum. Finally, in any case, if t(G) = 0
but G 6= ∅, then 3 6 δ(G), but G is not 3-regular.

The q inequality and extremal graph characterisation is proposition 2.2 (b) and theo-
rem 4.3.1 in [5], respectively. The t inequality is their (main) theorem 5.1.1, the equality
cases is proposition 6.3 (e), and the α(G) 6 6 graphs characterisation is a remark at
the beginning of the proof of lemma 5.1.5, in p. 77. That δ(G) > 3 is contained in
lemma 5.1.5. The last statement, that G cannot be non-empty but 3-regular, is implicitly
noted en passant in the proof of lemma 5.1.6, since such a G would be a “minimum graph
with average degree not exceeding 10/3”, in the terminology of that proof.

4Another, more algebraic way to define W13;1,5 is by taking the Galois field GF (13) as its vertex set,
and putting E(W13;1,5) :=

{
{x, y} ⊂ GF (13) : (x− y)4 = 1

}
.
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They suggest that t(G) = 0 only for sums of bicycles and W13;1,5 copies. This indeed
is true, but for my proof to work, I also had to characterise some triangle free graphs with
t(G) = 1:

Theorem 3. Let G be any triangle free graph.

(a) If t(G) = 0, then each component of G is a bicycle or isomorphic to W13;1,5.

(b) If t(G) = 1 and δ(G) 6 2, then one component of G is a chain or a loop-chain, and
any other components are bicycles and copies of W13;1,5.

Put

Ψ = {G : ω(G) < 3 ∧ t(G) = 0},
Ψ′ = {G : ω(G) < 3 ∧ t(G) = 1 ∧ δ(G) 6 2},
Γ = {G : each component of G is a bicycle or a W13;1,5 copy}, and
Γ′ = ({chains of lengths > 2} ∪ {loop-chains}) + Γ,

with the usual algebraic interpretation of a sum of sets of addable elements. The theorem
now may be reformulated as

(3) Ψ = Γ and Ψ′ = Γ′.

By just calculating t(G) and δ(G) for the connected members of Ψ ∪ Ψ′ and employing
linearity, it is easy to see that indeed Γ ⊆ Ψ (as noted in proposition 2), and that Γ′ ⊆ Ψ′.
Thus, we only have to prove the converse inclusions in (3).

Since t is linear, and is non-negative on triangle free graphs, the class Ψ is closed
under addition; in fact, a graph G belongs to Ψ if and only if every component of G
does. On the other hand, Ψ′ obviously is not closed under addition. Instead, every graph
in Ψ′ has exactly one component C with t(C) = 1, while the other components belong
to Ψ. Moreover, since every one of the latter components has minimal valency > 3 by
proposition 2, but G does not, in fact C ∈ Ψ′. In other words,

(4) Ψ′ = {G ∈ Ψ′ : comp(G) = 1}+ Ψ.

Thus, while Ψ ∪Ψ′ is not closed under addition, it is closed under taking components or
other summands:

(5) G′ + G′′ ∈ Ψ ∪Ψ′ =⇒ G′, G′′ ∈ Ψ ∪Ψ′ .

Thus, in order to prove the theorem, it is sufficient to prove that a connected G in Ψ
(Ψ′) also must belong to Γ (Γ′, respectively), by means of induction with respect to α(G).
This will be done in section 6.

As a direct consequence of the theorem, and since there are realisers for (3, 6; 16, 32),
(3, 7; 19, 37) and (3, 8; 22, 42) and by linearity, we get a slight improvement of proposition 1:

Corollary 4. Let n and k > 5 be integers. If 3.25k−1 < n < 3.25k, then e(3, k + 1; n) =
6n− 13k + 1, and if n > 3.25k, then e(3, k + 1; n) > 6n− 13k + 1. �
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5 Preparatory results.

I’ll start by collecting the further needed results in a few lemmata. As far as possible, I
refer their proofs to corresponding [5] results.

Lemma 5.1. For any k > 2, α(Chk) = k, and Chk is 2-stable and has no destabilising
subset of size 3 other than B(v; 1) for any bivalent v therein.

Proof. This is essentially a reformulation of [5, lemma 4.2.2 (a)].

Lemma 5.2. For any k > 4, α(BCk) = k, and BCk is 3-stable and only has three kinds
of destabilising 4-sets of vertices, namely
(1): A ball B(di; 1), i. e., a trivalent, together with its three neighbours;
(2): an induced path {d2d−1, d2d, d2d+1, d2d+2}; or
(3): an induced 4-cycle {d2d, d2d+l, ed, ed+1}.
(Here, outer and inner wheel indices may be counted modulo 2k and k, respectively.)

Proof. The 3-stability essentially is a reformulation of [5, lemma 4.2.1], and the indepen-
dence number is implicitly determined by [5, lemma 4.2.2 (b)].

For the proof of the rest, let M be a destabiliser of size 4 in BCk. Since BCk is
connected and contains at least eight trivalents, at least one of them, say v, is a neighbour
of M (but not contained in M). Now, BCk is a 3-stitch of Chk−1 with apex v, as depicted
in figure IV, p. 72, in [5]. Moreover, on the one hand, there is some x ∈ M ∩ lk v,
while on the other hand M ′ := M ∩ V (Chk−1) destabilises Chk−1. (Else, there were an
independent (k − 1)-subset S of V (Chk−1) \ M , whence S ∪ {v} were an independent
k-subset of V (BCk) \M ; but M destabilises BCk.)

Thus and by lemma 5.1, M ′ consists of one of the four bivalents in Chk−1, together
with its two neighbours in Chk−1, while x is one of the three neighbours of v. This leaves
just twelve potential M to investigate, and it it easy to see that most of them are not
destabilisers of BCk. The lemma follows.

The next result should be rather well-known.

Lemma 5.3. W13;1,5 is 4-stable.

Proof. If M ⊂ V (W13;1,5) and has at most four vertices, then the induced graph on
V (W13;1,5)\M has at least 9 = R(3, 4) vertices, whence M does not destabiliseW13;1,5.

Lemma 5.4. There is a 4-cycle through each vertex of degree at least three in the BCk

(k > 4), W13;1,5, and the Chk (k > 2) and other graphs in Γ∪Γ′. In particular, any graph
in Γ ∪ Γ′ contains a 4-cycle, except ∅ ∈ Γ and C5 ∈ Γ′.

Proof. Inspection of the enumerated graphs.
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6 The proof of the theorem.

As remarked in section 4, it is sufficient to prove the following for each k, by means of
induction with respect to k:

(6) If comp(G) = 1, α(G) = k, ν ∈ {0, 1}, and G ∈ Ψ(ν), then G ∈ Γ(ν).

Thus, for the whole proof, fix a positive integer k0, and assume that (6) holds for each
k < k0, that G = (V, E) ∈ Ψ ∪ Ψ′, and that k = k0 = α(G). Moreover, let n = n(G),
e = e(G), t = t(G) ∈ {0, 1}, and δ = δ(G) (where δ 6 2 if t = 1), and let v be a vertex
with maximal second valency among the vertices with minimal valency in G. In other
words, we assume that

(7) d(v) = δ ∧ (d(w) = δ =⇒ d 2(w) 6 d 2(v)) .

Finally, let the neighbours of v be w1, . . . , wd(v), where we may assume

(8) d(v) 6 d(w1) 6 . . . 6 d(wd(v)),

and for i = 1, . . . , δ, let Xi = lk(wi) ∩ V (Gv), and let X =
δ⋃

i=1

Xi = B(v; 2) \B(v; 1).

If there were a redundant ε ∈ E, then (t = 0 =⇒ t(V, E \ {ε}) = −1), and
(t = 1∧ δ 6 2 =⇒ t(V, E \{ε}) = 0∧ δ(V, E \ {ε}) 6 δ 6 2), in either case contradicting
proposition 2. Thus, instead,

(9) G is edge critical.

In particular, lemma 2.4 applies, whence

α(Gv) = k0 − 1 .

Thus and by (7), in particular, on the one hand d 2(v) > δ2, while on the other hand

0 6 t(Gv) = (e− d 2(v))− 6(n− δ − 1) + 13(k0 − 1) = t + 6δ − 7− d 2(v) .

Summing up, we have the useful restrictions

(10) δ2 6 d 2(v) 6 t + 6δ − 7 6 6δ − 6 .

We start by considering a G ∈ Ψ′. Note that then δ = 2, since a lower value would
contradict (10). For the same reason,

4 6 d 2(v) 6 6 .

We thus may make a case division with respect to the value of d 2(v). However, first note
that for either value

(11) comp(Gv) = 1
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by (9) and lemma 2.6.

d 2(v) = 2 + 2 = 4: By (10) and (7) both d(wi) = 2 and both d 2(wi) = 4, too. In
other words, each bivalent only has bivalent neighbours, whence the connected graph G
must be 2-regular. Thus, G = Cl for some l > 4. In fact, we must have l = 5, by the
arguments in the proof of [4, lemma 2 (a)] (or by directly calculating the t(Cl) for all l).
Thus, indeed, G ' C5 = Ch2 ∈ Γ′.

d 2(v) = 2 + 3 = 5: By (8), then d(w1) = 2 and d(w2) = 3. Moreover, t(Gv) = 1, too,
whence (6) applies inductively for Gv. In particular, thus δ(Gv) > 2. Hence, if x is the
single neighbour of w1 in Gv , then

d(x) > 1 + dGv(x) > 1 + 2 = 3 ∧ d 2(w1) = d(v) + d(x) > 2 + 3 = 5 .

On the other hand, d 2(w1) 6 d 2(v) = 5 by the assumption (7). We thus must have
equalities.

In particular, x is a bivalent in Gv, which thus belongs to Ψ′, and thus by (6) to Γ′.
Thus and by (11), up to isomorphisms, either Gv = Chk0−1, or

Gv = cri+1(BCk0−2−i; M)

for some i > 0 and a destabilising 4-subset M ⊂ V (BCk−2−i) of one of the three kinds
enumerated in lemma 5.2. In either case, it is sufficient to prove that G is a 2-stitch with
apex v and based at x and its two neighbours in Gv. In other words, we want to show
that

X = B(Gv, x; 1),

or, equivalently, that
X2 = lkGv(x).

Now, X is a destabilising subset of Gv of size 6 3, since the induced graph on V (Gv)\X
is Gw1,w2 and

α(Gw1,w2) 6 k0 − 2 < α(Gv)

by lemma 2.3. Moreover, since G is triangle free, X2 is an independent 2-set in Gv.
Thus, we have a trichotomy: Either |X| = 2, or |X| = 3 ∧ comp(X) > 2, or indeed
X = B(Gv, x; 1); we have to prove that the first two alternatives are impossible.

For Gv = Chk−1, the destabilisers of size 6 3 are characterised in lemma 5.1, and they
indeed must be of size 3 and connected. Thus, assume instead that Gv = cri+1(BCk−2−i; M),
and, for a contradiction, that either X = X2 is an independent 2-set, or |X| = 3 but
|EX | 6 1.

Since α(Gw1,w2) 6 k0 − 2 (and by proposition 2),

0 6 t(Gw1,w2) 6 t(Gv)−
(∑

y∈X dGv(y) − |EX |
)

+ 6 |X| − 13

= 6(|X| − 2) + |EX | −
∑

y∈X dGv(y).

Since moreover δ(Gv) = 2, and Gv (and thus X) contains at most two bivalents, |X| = 2
would yield a glaring contradiction, and |X| = 3 but X disconnected only could be
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possible if in addition |EX | = 1 and X consists of two bivalents and one trivalent in Gv;
and, moreover, then t(Gw1,w2) = 0, whence Gw1,w2 ∈ Γ by (6)..

However, then the single edge in X must be the edge between the two bivalents. Thus,
if y is the trivalent in X, then all its three Gv neighbours (say z1, z2, and z3) belong to
V (Gw1,w2). Thus, either some zi were trivalent in Gv, and therefore of valency less than 3
in Gw1,w2 , contradicting δ(Gw1,w2) > 3 (by proposition 2); or

d2
Gv

(y) =
∑

i

dGv(zi) > 3 · 4 = 12 =⇒ t(Gv,y) 6 0,

but since dGv,y(x) 6 2 < 3, again we would have a contradiction to the proposition.
Thus, indeed we have eliminated all possibilities, with the exception X = B(Gv, x; 1),

whence indeed G = cr(Gv; x) ∈ Γ′.

d 2(v) = 6: Then t(Gv) = 0, but Gv is destabilised by X. By (11), (6), and lemmata 5.3
and 5.2, thus indeed Gv = BCk0−1 and G = cr(BCk0−1; X), with X being of one of the
three kinds given in lemma 5.2. Thus, indeed, then G ∈ Γ′.

Thus, we have proved (6) for G ∈ Ψ′ (and k = k0). In particular, if there is a
counterexample to (6) with a minimal value k = k0 for its independence number, then
G ∈ Ψ \ Γ, whence in particular

k0 > 7

by proposition 2. In the rest of the proof, for a contradiction, we indeed assume that G
is such a minimal counterexample.

Since t = 0, and by proposition 2, and summing up, we may strengthen (10) somewhat:
In the sequel we may assume that

t = 0 ∧ k0 > 7 ∧ 3 6 δ 6 4 ∧ δ2 6 d 2(v) 6 6δ − 7 .

This leaves five cases to consider, with δ = 3 and d 2(v) ∈ {9, 10, 11}, and with δ = 4 and
d 2(v) ∈ {16, 17}. Again, we mainly consider them separately. We start with the δ = 3
cases.

d 2(v) = 9: As in the d 2(v) = δ2 = 4 case, this would force G to be regular; this time,
3-regular, contradicting proposition 2.

Temporarily suspending the case division analysis, note that in the remaining two
δ = 3 cases,

(12) 0 6 t(Gv) = t− d 2(v) + 6(d(v) + 1)− 13 = 11− d 2(v) 6 1 .

Furthermore, if in addition Gv = G′ + G′′ with the G(ν) non-empty, then without loss of
generality we could assume t(G′) = 0 6 t(G′′) 6 11− d 2(v) 6 1.

However, if then moreover d 2(v) = 11, then both G(ν) were contained in Γ by (6), and
thus were strongly 3-stable, by lemmata 5.2 and 5.3 for their components. Thus and by
lemma 2.6 (b), then 11 = d 2(v) > 3 + 3 + 6 = 12, a contradiction.
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Likewise, if then instead moreover d 2(v) = 10, then necessarily δ(G′′) = δ(Gv) 6 2,
as we shall see in a moment (and since δ(G′) > 3 by proposition 2), whence then G′

were strongly 3-stable, and G′′ would belong to Γ′ and thus be strongly 2-stable, by
also employing lemma 5.1 for one G′′ component; this time yielding the contradiction
10 > 3 + 2 + 6 = 11.

Thus, instead, in the remaining δ = 3 cases, we again have

(13) comp(Gv) = 1 .

d 2(v) = 3 + 3 + 4 = 10: By (8) and (7), then d(w1) = d(w2) = 3 d(w3) = 4, and

moreover d 2(w1) 6 10 > d 2(w2), too. Thus, X1 and X2 contain trivalents, whence indeed
δ(Gv) 6 2. Thus and by (12), (13), and inductively by (6), then Gv ∈ Γ′ (and in fact Gv

contains at least two bivalents), and more precisely Gv = Chk0−1, or Gv = cri+1(BCj; M)
where M ∈ {K1,3, P4, C4} were a destabiliser of BCj, and j = k0 − (i + 2) > 5− i.

However, the latter possibility may be discarded: If so, then no trivalent in Gv could
remain a trivalent in G, since then some such remaining trivalent x would have d 2(x) > 10;
but there were at least 2j − 4 + 2i > 6 trivalents in Gv; but X would not contain more
than seven elements, including the two bivalents of Gv, whence some Gv trivalent indeed
would be outside X and thus remain trivalent in G.

Thus, instead, G = Chk0−1. Hence, [5, lemma 4.2.2] yields that G ' BCk ∈ Γ, against
the assumption that it were a minimal counterexample.

d 2(v) = 11: Since t(Gv) = 0 and by (6) and (13), and since k0 > 7 > 5,

Gv ∈ Γ ∧Gv 6' W13;1,5 =⇒ Gv = BCk0−1 .

Next, note that the cardinality of X is at most 8, and that equality holds if and only
if the Xi are disjoint, i.e., if and only if N(C4|G, v) = 0. Moreover, any wi of degree 3 has
d 2(wi) > 3 + 4 + 4 = 11, whence we have equality by (7), and thus then

t(Gwi
) = 0 =⇒ Gwi

∈ Γ =⇒ δ(Gwi
) > 3;

whence there cannot be more than one trivalent wi. Thus and by (8), and analogously,

d(w1) = 3 ∧ d(w2) = d(w3) = 4 ∧ (x ∈ X1 =⇒ d(x) = 4).

Next, the number of trivalents in Gv = BCk0−1 is 2(k0 − 1) > 12. Thus, some of the
Gv trivalents are adjacent to X but not contained therein. Each such trivalent y must
have d 2(y) = 3 + 4 + 4 in G; and they appear in pairs. Reciprocially, for any such y,
Gy ' BCk−1, too, and v ∈ Vy. Thus and by lemma5.4,

N(C4|G, v) > N(C4|Gy, v) > 1;

whence X has at most 7 vertices; whence there are at least k0−4 pairs of trivalents in Gv,
which remain trivalent in G. However, some of these pairs would have to be ‘too close’ in
Gv, yielding a trivalent y with t(Gy) = 0 but δ(Gy) < 3, a contradiction.
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Thus, instead, d(v) = δ = 4, and 16 6 d 2(v) 6 17. We treat the higher value first,
since it can be done briefly.

d 2(v) = 4 + 4 + 4 + 5 = 17: By (8), d(w1) = d(w2) = d(w3) = 4, but d(w4) = 5.

Moreover, since t(Gw4) > 0 by proposition 2, d 2(w4) 6 23. However, then X4 must
contain a tetravalent, say u; and necessarily d 2(u) = 4 + 4 + 4 + 5 = 17, too. This would
make t(Gu) = 0 and v an element of V (Gu), whence by the inductive assumptions and
lemma 5.4, there were a 4-cycle going through v and two of its neighbours of degree 4,
say w1 and w2.

If x were the last vertex of that 4-cycle, we would be in a dilemma, as regards the
degree of x. Either, x were tetravalent, and therefore of degree at most 2 in Gv; or it
were pentavalent, whence d 2(w1) = 17 and t(Gw1) = 0, but w2 were of degree at most 2
in Gw1 . In either case, we would get a contradiction to proposition 2.

d 2(v) = δ2 = 16: In analogy with the other d 2(v) = δ2 cases, G is 4-regular. Moreover,
for each vertex x, t(Gx) = 1, whence and inductively by (6) either δ(Gx) > 2 or Gx ∈
Ψ′ =⇒ Gx ∈ Γ′ =⇒ δ(Gx) = 2. In other words, anyhow,

(14) δ(Gx) > 2, and #3(Gx) + 2#2(Gx) = d 2(x)− d(x) = 12 .

It remains to show that indeed G ' W13;1,5. Now, if in addition there is a 4-cycle in
G, going through v, say, then this is relatively easy to show. As we just saw, then Gv ∈ Ψ′

and δ(Gv) = 2. Moreover, we in addition may assume v to be chosen in such a manner
that the independence number of the induced graph on the set of Gv bivalents is as large
as possible.

Now, since G is connected and 4-regular, Gv has no 4-regular component. However,
for each not 4-regular connected graph H in Γ ∪ Γ′, #3(H) + 2#2(H) > 8. Thus, and
by (14) and linearity,

12 = #3(Gv) + 2#2(Gv) > 8 comp(G) ;

whence Gv must be connected, and in fact, without loss of generality, either Gv = Ch3,
or Gv = cri(BC7−i; {d3, d4, d5, d6}) for some i ∈ {1, 2, 3}.

However, in the latter case, Gd4 would contain an independent 2-set of bivalents,
consisting of e2 and of one of the vertices added to BC7−i in the first stitch of the chain,
but Gv would contain no such independent 2-set, in contradiction to the choice of v.

Thus, instead, in fact Gv ' Ch3, from where it is easy to deduce by inspection that
indeed G ' W13;1,5.

Thus, only the seemingly hardest case remains, that G would be both connected, 4-
regular, and square free. Actually, in [5], the same kinds of potential counterexamples,
but to the statement (1), also gave rise to considerable work; Radziszowsky and Kreher
use nine pages just to eliminate this case5, consisting of their section 5.2, and of section 5.3
to the end of the proof of their main theorem. Happily enough, most of their proof also
works in our situation, with the help of a few observations.

5In [1], the elimination is referred to a slightly more general result, whose proof is even longer.
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To be more precise, Radziszowski and Kreher prove (1) by induction, assuming that
indeed t(H) > 0 for any triangle free H with α(H) < k0, and then consider a potential
counterexample

G ∈ Λ := {G : ω(G) 6 2 ∧ α(G) = k0 ∧ t(G) < 0}.

They reasonably fast prove that then G must be connected and 4-regular, and must have
girth(G) > 5 ([5, lemma 5.1.6 and proposition 5.1.8]). They then eventually prove that
the existence of such a G yields a contradiction. The short story is that the proof of the
latter mutatis mutandis may be applied for our G ∈ Γ. Granting this, the induction step
and thus our main theorem is proved.

The somewhat longer story is that some care should be taken with the “things to be
changed”. I therefore provide a ‘translation’ of their sequence of lemmata to our situation,
with the emphasis on the changes, and omitting all parts of the proofs which indeed are
unchanged. In particular, I introduce a shortcut, simplifying the treatment of 6-cycles.
My intention is that my summary should be intelligible in itself; however, a comprehensive
understanding of the full proof probably is hard without accessing [5] directly.

In fact, while the [5] arguments repeatedly employ that their G has t(G) = −1, this is
mainly used indirectly. They prove, that n(G) must be fairly large ([5, proposition 5.1.7]),
and that thus certain subgraphs of the form Gv1,...,vr both must be non-empty and have
the t(Gv1,...,vr) > t(G) + 1, with δ(Gv1,...,vr) > 3 in case of equality. Moreover, in all the
applications, they a fortiori are able to exclude α(Gv1,...,vr) strictly less than the bound
given by lemma 2.3. We start by proving three statements substituting for this, and then
show how to use them in order to modify the lemma proofs in [5].

Thus, again, let G ∈ Γ be an assumed minimal counterexample to theorem 3, with
α(G) = k0, n(G) = n, and e(G) = e, and recall that then G is 4-regular and connected,
and has N(C4|G) = N(K3|G) = 0, i. e., has girth(()G) > 5. In particular, e−6n+13k0 =
t = t(G) = 0 and e = 2n, whence 4n = 13k0, and k0 is divisible by 4. Since moreover
k0 > 7 by proposition 2, we actually must have k0 > 8, and thus get

(15) n > 26,

which should replace the calls to [5, lemma 5.1.7] in Radzisowski’s and Kreher’s proofs.
For any non-empty independent set S = {v1, . . . , vr} in G, α(Gv1,...,vr) 6 k0 − r < k0

by lemma 2.3, whence the inductive assumptions yield that Gv1,...,vr ∈ Γ if t(Gv1,...,vr) 6 0,
and Gv1,...,vr ∈ Γ′ if t(Gv1,...,vr) = 1 and δ(Gv1,...,vr) 6 2. However, since G contains no
4-cycle, neither does Gv1,...,vr whence (Gv1,...,vr ∈ Γ =⇒ Gv1,...,vr = ∅), and likewise
(Gv1,...,vr ∈ Γ′ =⇒ Gv1,...,vr ' C5). Together with (15), this yields that for such an S

(16) t(Gv1,...,vr) > 1 if |B(S; 1)| < 26,

and

(17) t(Gv1,...,vr) > 2 if |B(S; 1)| < 21 and δ(Gv1,...,vr) 6 2 .
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On the other hand, since t(G) = t = 0 and by lemmata 2.5 and 2.3,

t(Gv1,...,vr) = e(Gv1,...,vr)− e− 6(n(v1,...,vr)− n) + 13(α(Gv1,...,vr)− k0)
6 6 |B(S; 1)| − d(B(S; 1))− 13r +

∣∣EB(S;1)

∣∣ ;

and indeed the main application of (16) and (17) is to provide lower bounds for
∣∣EB(S;1)

∣∣
(which Radziszowsky and Kreher call the number of edges in the support of S). Calls to
(16) and to (17) should replace calls to [5, formula (4)] and to [5, lemma 5.1.5], respectively.

We now list the sequence of properties for G, which leads to a contradiction. In most
of them, Radziszowski and Kreher consider a fixed vertex v, let H = Gv, and let J be the
induced graph on the set of trivalents in H.6 Thus, V (J) = X, and by (14), n(J) = 12.
Most of the properties concern the graph structure of J . Let C be an arbitrary component
of J .

[5, Lemma 5.2.2 (a) and (b)] state that for any path (v, t, u) of length 2 in G,

(18) N(C5, c1, c2, c3|G, v, t, u) > 1 and N(C5, c1, c2|G, v, t) > 3 .

The first claim is proved by noting that
∣∣EB({v,u};1)

∣∣ > 9 by applying [5, formula (4)] to
Gv,u; replace this by applying (16).

[5, Lemma 5.2.3] states

girth(J) > 5, δ(J) > 1, (s ∈ C ∧ dJ(s) = 1 =⇒ C ' P2), C ' P2 ∨ δ(C) > 2 .

The only modification to be made of the proof concerns the reason for the following fact
(which we shall reuse later):

(19) If s ∈ V (J) and dJ(s) = 1, then δ(Hs) = δ(Gv,s) > 3;

apply (17) for S = {v, s}.
[5, Lemma 5.2.4] states

N(C6|J) = 0;

if (a, b, c, d, e, f) were a 6-cycle in J , then apply (16) for S = {v, a, c, e}.
[5, Lemma 5.2.5] is somewhat technical; it states that if t ∈ V (J), x, y ∈ lkJ(t), and

dJ(x) = dJ(y) = 2, whence without loss of generality lkJ(x) = {t, x1, x2} and lkJ(y) =
{t, y1, y2} with x2, y2 ∈ V (H) \ V (J), then

x1y2, y1x2 ∈ E .

The proof goes through without changes, as does the proof of [5, lemma 5.2.6], stating

dJ(x) = 3 =⇒ d2
J(x) = 2 + 2 + 3 = 7 .

6Radziszowski and Kreher in parts of their proofs change meanings of n and e; however, here we retain
n = n(G) and e = e(G) consistently.
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These properties suffice to limit the possible C to P2, C8, C10, C12, S1, and S2 ([5,
proposition 5.2.7]), where

S1 := (V (C12), E(C12) ∪ {c6c12}) and S2 := (V (C12), E(C12) ∪ {c6c12, c3, c9}).

In the next two lemmata, all of these except P2 are discarded. The elimination of C8 and
C10 goes through unmodified; for C = J ∈ {C12, S2}, Radziszowsky and Kreher prove
that n 6 20, which here contradicts (15); and for C = J = S1, (16) should be applied for
S = {v, c1, c3, c5, c7, c9, c11}, yielding far too many edges in B(S; 1).

Thus, we know that (for any v)

(20) J ' 6P2;

and in particular may deduce a sharper variant of (18) ([5, corollary 5.2.10 (a) and (b)]):
With (v, t, u) as before,

(21) N(C5, c1, c2, c3|G, v, t, u) = 1 and N(C5, c1, c2|G, v, t) = 3 ;

and immediately may deduce ([5, corollary 5.2.11 (a)]

(22) two 5-cycles can share at most one edge.

Radziszowsky and Kreher now proceed to investigate 6-cycles in G in some detail.
However, actually, (19) and (20) suffice to eliminate any such 6-cycle immediately: If
instead C6 were a subgraph of G, then choosing v := c1 and s := c3, we would have
s ∈ J , hence dJ(s) = 1 by (20), and hence δ(Gv,s) > 3 by (19); but dGc1,c3

(c5) 6 2, a
contradiction. Thus, indeed we have

(23) N(C6|G) = 0 .

Thus, in order to achieve the final contradiction, it is enough to prove that G also must
contain 6-cycles. Actually, in [5, lemma 5.3.2], Radziszowsky and Kreher proves that there
would be at least six 6-cycles through each edge uv in their G. They start by considering
two 5-cycles (u, v, x1, ·, x3) and (u, v, x2, ·, x4) through uv (existing by (21), and sharing no
vertices outside uv by (22)), and then consider the independent set S = {x1, x2, x3, x4}.
Following their proof, but applying (15) instead of [5, proposition 5.1.7] for S, we find
that also in our situation ∣∣EB(S;1)

∣∣ > 21 > 19,

indeed forcing the existence of 6-cycles, and thus the sought contradiction to (23).

To sum up, we thus have proved, that if the claims of theorem 4 hold for all triangle
free graphs G with α(G) < k0, then they hold for those with α(G) = k0, too; whence
indeed (3), and thus the theorem, follows by induction. �
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7 Graphs G with vertex numbers beyond α(G).

Finally, let us briefly discuss some possible generalisations of [5, theorem 5.1.1] and of
theorem 3. In this survey section, some proofs are omitted or just outlined; among these
those concerning the precise definition of graphs who have crochet patterns with maximal
valency at most three. (However, all the local interpretations of their patterns actually
needed are presented in section 3, although in a somewhat implicit manner.)

For instance, it turns out, that a triangle free, connected, and edge critical graph G
with t(G) = 1 either has δ(G) = 2 (and thus belongs to Γ′), or has a crochet pattern P
with δ(P ) > 2 and cycle space of dimension 2, or is one of the two 4-regular (3, 6; 16, 32)
realisers. (In particular, hence, the last inequality in corollary 4 actually is strict.) On the
other hand, for t(G) = 2, there are graphs (including some (3, 9; 26, 52) realising ones),
which I do not know how to classify.

As we noted in section 1, (1) is just one in a sequence of linear inequalities for triangle
free graphs, and the graphs with equalities in any one of them are edge number critical.
Conversely, in the interval where equality may be attained in one of the inequalities
without violating the others, all edge numbers critical graphs are of this type. Thus, e. g.,
the following statements are equivalent for triangle free graphs G with 2.5 α(G) 6 n(G) 6
3 α(G):

(i) G is edge number critical with respect to α(G) and n(G),
(ii) e(G)− 5n(G) + 10 α(G) = 0,
(iii) G is a sum of chains and bicycles.

(The equivalence between (i) and (ii) yields the 5n− 10k part of proposition 1.)

Radziszowski and Kreher discussed whether there could be an exhaustive set of in-
tervals ai α(G) 6 n(G) 6 ai+1 α(G) and linear inequalities e(G) − bin(G) + ci α(G) > 0,
such that for each interval the edge critical graphs are precise those with equality in the
corresponding inequality, at least for large enough n(G). Now, in this strong formulation,
this certainly is not the case. The ‘correct interval’ for the linear inequality (1) would be
3 α(G) 6 n(G) 6 3.25 α(G), as seen from their own results and from theorem 3. However,
if 3.25k − 1 < n < 3.25k and k > 5, then e(3, k + 1; n) = 6n− 13k + 1; and such integers
n do exist for arbitrarily large k not divisible by 4. Thus, the best we could hope for is
some kind of proportional result.

With fixed k, n, and e = e(3, k + 1; n), we may compare the proportions a = n
k

and
b = e

k
. By linearity, indeed then e(3, mk + 1; mn) 6 me for any positive integer m. (In

fact, if G is (3, k + 1; n, e) realising then clearly mG is (3, mk + 1; mn, me) realising.) By
this and similar considerations, in the limit we may consider b as a function of a, and this
function is convex.

Formally, for any real number a > 0, let

b(a) = lim
k→∞

e(3, k + 1; bakc)
k

(where as usual bakc is the integer part of ak). The enumerated linear inequalities imply
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that b is piecewise linear for 0 6 a 6 3.25, and in fact that there

b(a) = max(0, a− 1, 3a− 5, 5a− 10, 6a− 13) .

What we could hope for, and what Radziszowski and Kreher implicitly suggest, is, that b
continues to be piecewise linear in its whole domain.

To be more precise, they express their suggestions in terms of the independence ratio
k
n

as a function of the average degree 2e
n

, instead of e
k

as a function of n
k
. Thus, in the

limit, they define a decreasing function i∗ = i∗(x). The relations between the ratios are
respected by the limits, whence i∗ may be defined in terms of b, and vice versa. In fact,
for a > 1, if x = 2b(a)

a
, then i∗(x) = 1

a
; and if a = 1

i∗(x)
, then b(a) = x

2i∗(x)
. Thus, close to a

point (a0, b0) and the corresponding point (x0, i
∗
0), we have

i∗ is linear in x
⇐⇒ x is linear in i∗

⇐⇒ x
i∗

is linear in 1
i∗

⇐⇒ b is linear in a.

Thus, indeed the function i∗ is piecewise linear (in its whole domain) if and only if b is.
However, whether or not these functions indeed are piecewise linear seems to be a

hard question. On the other hand, it is not very hard to prove that b is continous, convex,
and non-decreasing, and that it has both left and right derivatives in its whole domain
(except to the left at the origin), and that moreover these derivatives are non-decreasing,
and that for any positive a0 the left derivative for a0 is less than or equal to the right
derivative for a0, but greater than or equal to the right derivative for any a < a0. In fact,
all the other properties are consequences of the convexity and of b being constant in an
interval containing the minimum of its domain.

For the convexity, it is sufficient to note, that for any 0 6 a0 < a < a1 and any ε > 0

b(a) 6
b(a1)− b(a0)

a1 − a0

a +
b(a0)a1 − b(a1)a0

a1 − a0

+ ε,

by considering graphs G0 and G1 with n(Gi)/α(Gi) and e(Gi)/α(Gi) approximating ai

and b(ai) sufficiently well, and a suitable linear combination G = m0G0 + m1G1 with
n(G)/α(G) slightly larger than a.

That the graph of b is convex also may be reformulated thus: For every c ∈ [0,∞[ ,
there is a unique number d ∈ [0,∞[ , such that the line b − ca + d = 0 touches but does
not intersect the graph. In other words,

d = d(c) = max (y : b(a) > ca− y ∀ a) = min (y : ∃ a such that b(a) = ca− y) .

Hence, for each c there is a “best” linear graph invariant `c(G) = e(G) − cn(G) + dαG,
which is non-negative for all triangle free graphs. (In fact, if there were a triangle free G

with `c(G) < 0, then b(a) < ca − d for a = n(G)
α(G)

, against the assumptions.) Correspond-
ingly, with the same c and d,

i∗(x) > c
d
− 1

2d
x
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The function graph for b(a), as far as known:
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is an ‘optimal’ linear lower bound for Radziszowski’s and Kreher’s function i∗.
For each such c, there either is a unique a = ac with b(a) = ca−d, or there are several

such a. In either case, necessarily c is at least the left derivative and at most the right
derivative of b at each such a. Thus, if there are several such a for a fixed c, they indeed
form an interval, and b is differentiable with b′(a) = c in the interior of this interval, and
thus is linear there.

Thus, in order to determine b also for some interval 3.25 6 a 6 A, we may equivalently
determine the left and right derivatives in this interval (excepting the right derivative at
A), or determine the `c for all c less than or equal to the left b derivative at A. The first
question would be the value r, say, of the right derivative of b at a = 3.25. Since this is
at least equal to the left derivative, and since on the other hand e. g. e(3, 7; 21) = 51 =⇒
b(3.5) 6 8.5,

6 6 r 6 8 .

In fact, for 3.25k 6 n 6 3.5k, there are numerous realisers of (3, k + 1; n, 8n − 19.5k);
including all linear combinations of W13;1,5 and crochet graphs with crochet patterns
containing only trivalent vertices. On the other hand, there is in my knowledge no known
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triangle free graph G for which

`(G) := e(G)− 8n(G) + 19.5 α(G)

is negative. Indeed, there is no such graph with α(G) < 10, as can be seen from the exact
values and estimates of e-numbers in [2]. In fact, also employing the e-number tables
in [1], the smallest possible counterexample would be a (3, 11; 35, 84) realiser G; if it did
exist, it would have `(G) = −1. In view of the behaviour for lower independence and
vertex numbers, it would be a bit of a surprise to have such a large simplest example of
a negative value for `.

Thus, I think it is a reasonable guess that r = 8, or, equivalently, that `8 = `, or

b(a)
?
= 8a− 19.5 for 3.25 6 a 6 3.5 .

I have tried to prove this by means of the same kind of strategy as the one used in this
article, but this seems hard. My best result so far is that

r > 6.8, i.e., e(G)− 6.8e(G) + 15.6 α(G) = `6.8(G) > 0

for all triangle free G ([1, proposition 12.5]7 and its first corollary). However, both the
proposition and its proof are fairly complex; I found no simpler way than making a
simultaneous induction over statements for graphs G with over forty distinct upper bounds
on `6.8(G). (Thus, just the formulation of the proposition covers three typeset pages, and
the proof of the induction ten times more, preparatory results uncounted.)

Granted these results, we at least have e. g. that 8.2 6 b(3.5) 6 8.5. Minor improve-
ments of the bounds for r, and for b in the interval [3.25, 3.5] should be possible with
these methods; but for substantial improvements, probably new ideas are needed, or an
improved interaction between theoretical analysis and computer assisted investigation.
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