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1 Introduction

Infectious diseases impose a critical challenge to human, animal and plant health. Emerging
and re-emerging pathogens – like SARS, influenza, hemorrhagic fever among humans, or foot
and mouth disease and classical swine fever among animals – hit the news coverage with
regular certainty. Zoonoses and host transmitted diseases underline how tight the connection
is between human and animal diseases. While plant epidemics receive less immediate atten-
tion, they can severely impact crop yield or wipe out entire species. Unifying for the above
epidemics is that they all represent realization of temporal processes. Why does the spatial
dimension then matter for the modelling of epidemics? It depends very much on the aims of
the analysis: Many relevant questions can be adequately answered by models considering the
population as being homogeneous. However, in other situations heterogeneity is important,
e.g., induced by age or spatial structure of the population. Spatially varying demographic
and environmental factors could influence the disease transmission. Furthermore, having a
spatial resolution allows the model to express spatial heterogeneity in the manifestation of the
disease over time. This becomes particularly important when investigating the probability of
fade-out or short-term predicting the location of new cases. This kind of analysis represents
an important mathematical contribution aimed at understanding the dynamics of disease
transmission and predicting the course of epidemics in order to, for example, assess control
measures or determine the source of an epidemic. This chapter is about the spatio-temporal
analysis of epidemic processes.

2 The Role of Space in Infectious Disease Epidemiology

The focus in this chapter will be on communicable microparasite infections (typically viral
or bacterial diseases) among humans – though the application of mathematical modelling is
equally immediate in animal (Dohoo et al., 2010) and plant epidemics (Madden et al., 2007).

Following Giesecke (2002), epidemiology is about ’the study of diseases and their determi-
nants in populations’. The concepts of incidence and prevalence, known from chronic disease
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2 The Role of Space in Infectious Disease Epidemiology

epidemiology, also apply to infectious disease epidemiology. However, contrary to chronic
disease modelling it is important to realize that in infectious disease epidemiology each case
is also a risk factor and that not everyone is necessarily susceptible to a disease (e.g. immu-
nity due to previous infections or vaccination). As a consequence, the study of infectious
diseases is very much concerned with the study of interacting populations. Still, as treated in
for example Becker (1989) or Hens et al. (2012), the principal of regression by linear models
(LMs), generalized linear models (GLMs) or survival models applies to a variety of problems
in infectious disease epidemiology. Hence, spatial extensions of such regression models, e.g.
structured additive regression models (Fahrmeir and Kneib, 2011), also immediately apply
to the context of infectious disease epidemiology. Examples are the use of spatially enhanced
ecological Poisson regression models with CAR random effects to investigate the influence of
socio-economic factors on the incidence of specific infectious diseases (Wilking et al., 2012)
or the assessment of mumps outbreak risk based on serological data by using generalized
additive models (GAMs) with 2D splines adjusting for location of individuals (Abrams et al.,
2014). Another application of classical methods from spatial epidemiology is the use of spatial
point process models for investigating putative sources for a foodborne outbreak (Diggle and
Rowlingson, 1994).

In this chapter we will, however, restrict the focus to the use of spatio-temporal trans-
mission models, that is dynamic models for the person-to-person spread of a disease in a
well defined population. The use of such models has become increasingly popular in the
epidemiological literature in order to assess risk of emerging pathogens or evaluate control
measures. Even spatial aspects of such evaluations are now feasible due to the fact that data
become spatially more refined and computer power allows for more complex models to be
investigated. The modelling of measles and influenza are two examples where the impact of
space has been especially thoroughly investigated (Grenfell et al., 1995, 2001; Viboud et al.,
2006; Eggo et al., 2011; Gog et al., 2014). As an illustration, we will look in detail at the
spatio-temporal modelling of biweekly measles counts in 60 towns and cities in England and
the UK, 1944-1966. Figure 1 shows the locations of the 60 cities, including both very large
and very small cities, and forming a subset of the data for 954 communities used in Xia et al.
(2004). An illustration of the the time series for the three largest and three smallest cities in
the data set can be found as part of Fig. 5. The aim of such an analysis is to quantify the
effect of demographics and seasonality on the dynamics, but also to investigate the role of
spatial spread on extinction and re-introduction.

In spatial analyses of this kind the movement of populations plays an important role. From
a historic perspective especially mobility has undergone dramatic changes within the last 200
years – for instance Cliff and Haggett (2004) talk about this as the ’collapse of geographical
space’: The time for travelling long distances has reduced immensely, which has resulted
in populations mixing at increasingly higher rates. Whilst there has been an abundance
of papers and animations illustrating global spread of emerging diseases, e.g. due to airline
travelling, the core transmission of many ’neglected’ diseases still occurs at short-range: in
the household, in the kindergarten, at work. The role of space in transmission models is
to be studied within this dissonance between long-distance and short-distance spread. A
number of chapters and articles have already surveyed this field, e.g. Isham (2004), Deardon
et al. (2015), Riley et al. (2014) and Held and Paul (2013). The emphasis in the present
chapter is on metapopulation models and their likelihood based inference. It is structured
as follows: Section 3 consists of a primer on continuous-time and discrete time epidemic
modelling – first for a homogeneous population and then for spatially coupled populations.
Section 4 then illustrates the application of discrete-time versions of such models to the 60
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Figure 1: Location of the 60 cities in England and Wales (OSGB36 reference system) used
in the measles modelling. The area of each circle is proportional to the city’s population and
the connecting lines indicate immediate neighbourhood (distance ≤50 km).

cities measles data. A discussion in Section 5 ends the chapter.

3 Epidemic Modelling

Mathematical modeling of infectious diseases has become a key tool in order to understand,
predict and control the spread of infections. The fundamental difference to chronic disease
epidemiology is that the temporal aspect is paramount. The aim of epidemic modelling is
thus to model the spread of a disease in a population made up of a (possibly large) integer
number of individuals. To simplify the description of this population, it is common to use
a compartmental approach to modelling – for instance in its simplest form the population is
divided into classes of susceptible, infective and recovered individuals. Disease dynamics can
then be characterized by a mathematical description of each individual’s transitions between
compartments, subject to the state of the remaining individuals.

3.1 Continuous time modelling

A number of books, e.g. Anderson and May (1991), Diekmann and Heesterbeek (2000),
Keeling and Rohani (2008), give an introduction to epidemic modelling using primarily de-
terministic models based on ordinary differential equations (ODEs) in the setting of the
susceptible-infective-recovered (SIR) model and its extensions. Let S(t), I(t) and R(t) de-
note the number at time t of susceptible, infective and recovered individuals, respectively.
Then the dynamics in the basic deterministic SIR model in a population of fixed size can be
expressed as in the seminal work by Kermack and McKendrick (1927):

dS(t)

dt
= − β

N
S(t)I(t),

dI(t)

dt
=

β

N
S(t)I(t)− γI(t),

dR(t)

dt
= γI(t),

where the parameter β > 0 is the transmission rate and γ > 0 describes the removal rate.
The initial condition is given by S(0), I(0), which are known integers, and R(0) = 0. In
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3 Epidemic Modelling

a population of fixed size N = S(0) + I(0) the expression for dR(t)/dt in the above ODE
system is redundant because R(t) is implicitly given as N − S(t)− I(t).

ODE modelling implies an approximation of the integer sized population using continuous
numbers and that the stochastic behaviour of an epidemic is sacrificed by looking at a deter-
ministic average behavior. If the population under study is large enough, such approximations
are reasonably valid to obtain a biological understanding. In small populations, however,
stochasticity plays an important role for extinction, which cannot be ignored. Stochastic epi-
demic modelling is described e.g. in Bailey (1975), Becker (1989), Daley and Gani (1999) and
Andersson and Britton (2000), who all rely heavily on the theory of stochastic processes. In
its simplest form, the basic discrete-state stochastic SIR model can be described as a general
birth and death process, where the event rates for infection and removal are given as follows:

Event Rate

(S(t), I(t))→ (S(t)− 1, I(t) + 1) β
N S(t)I(t)

(S(t), I(t))→ (S(t), I(t)− 1) γI(t)

Again, the development of R(t) is implicitly given, because a fixed population of size S(0) +
I(0) is assumed. Notice also how the integer size of the population is now taken into account:
Once I(t) = 0, the epidemic ceases. From a point process viewpoint the above specification
corresponds to an assumption of piecewise constant conditional intensities for the process
of infection, while the length of the infective period is given by independent and identically
distributed exponential random variables. An important point is that the deterministic SIR
model is not just modelling the expectation of the stochastic SIR model. As an illustration,
Renshaw (1991, Chapter 10) shows, based on calculations in Bailey (1950), how the expected
number of susceptibles µ(t) = E(S(t)) in the stochastic SI model differs from the solution of
S(t) in the deterministic SI model. Figure 2 shows the result for a population with S(0) = 10,
I(0) = 1, β = 11 and γ = 0. One notices the differences between the deterministic and
stochastic model.

Finding an analytic expression for µ(t) or – even better – the probability mass function
(PMF) of S(t) at a specific time point t is less easy already for the SIR model and intractable
for most models. Instead, a numerical approach is to formulate a first order differential-
difference equation describing the time evolution of P ((S(t), I(t)) = (x, y)) for each possible
(x, y). Such an approach is known as a master equation approach and corresponds to a discrete
state continuous time Markov jump process with the solution of the master equation obeying
the Chapman-Kolmogorov equation. These ODE equations are then solved numerically. For
large populations the problem can, however, become intractable to solve even numerically.
For further details on such stochastic population modelling see, e.g., Renshaw (1991). An
alternative to the above is to resort to Monte Carlo simulation of the stochastic epidemic
process – a method which has become increasingly popular even for inferential purposes. For
the basic SIR model one needs to simulate a discrete-state continuous-time stochastic process
with piecewise constant conditional intensity functions (CIFs). Several algorithms exist for
doing this, see e.g. Wilkinson (2006) for an overview, of which the algorithm by Gillespie
(1977) is the best known. As an example, Fig. 2 shows 10 realizations of the previous
SI model and the resulting empirical probability distribution of S(t) computed from 1000
simulations. Besides simplicity Monte Carlo simulations have the additional advantage of
being very flexible. For example, it is easy to use the samples to compute pointwise 95%
prediction intervals for S(t) or to compute the final number of infected.

A further important difference between deterministic and stochastic modelling is the in-
terpretation of the basic reproduction number R0, which describes the reproductive potential
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3.2 A Spatial Extension: The Metapopulation Model
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Figure 2: (left) S(t) for 10 realizations of the SI model with parameters as described in the
text. Also shown is E(S(t)) in the stochastic model and the solution S(t) in the determin-
istic model. (right) Histograms of the S(t) distribution based on 1000 realizations. The 23
histograms are computed for a grid between time 0.0 and 1.1 with a step size of 0.05. Also
shown are the analytic mean µ(t) together with the 23 empirical means.

of an infectious disease and which is defined as the average number of secondary cases directly
caused by an infectious case in an entirely susceptible population. In deterministic models
a major outbreak can only occur if R0 > 1. In stochastic models, if R0 > 1, then an major
outbreak will occur with a certain probability determined by the model parameters. See, e.g.,
Andersson and Britton (2000) or Britton (2010) for further details.

Other variations of the basic SI and SIR model could be, for example, the SI-Susceptible,
SIR-Susceptible or S-Exposed-IR model. Further extensions consist of reflecting the protec-
tion due to maternal antibodies or vaccination by respective compartments in the models.
Finally, the rates can be additionally modified to, e.g., reflect the import of infected from out-
side the population or demographics such as birth and death of individuals. See, e.g. Keeling
and Rohani (2008, Chapter 2) for additional details.

3.2 A Spatial Extension: The Metapopulation Model

If interest is in enhancing the homogeneous SIR model with heterogeneity due to spatial
aspects, one common modelling approach is to divide the overall population into a number of
subpopulations – a so called metapopulation model (Keeling et al., 2004, Chapter 17). Here,
one assumes that within each subpopulation the mixing is homogeneous whereas coupling
between the subpopulations occurs by letting the force of infection contain contributions of
the infectious from the other populations as well. Considering a total of K subpopulations
the deterministic metapopulation SIR model looks as follows (Keeling and Rohani, 2008,
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3 Epidemic Modelling

Chapter 7.2):

dSk(t)

dt
= − βk

Nk
Sk(t)

(
K∑
l=1

wklIl(t)

)
, k = 1, . . . ,K,

dIk(t)

dt
=

βk
Nk

Sk(t)

(
K∑
l=1

wklIl(t)

)
− γIk(t),

where the weights wkl quantify the impact of one infectious from population l on population
k. Typically, these weights are scaled such that wkk = 1, k = 1, . . . ,K. Consequently, for
a susceptible in k, wkl represents the influence of an infectious in unit l relative to one in
the same unit as the susceptible. The appropriate choice of weights depends on the modelled
disease, its mode of transmission and the questions to be answered. They can even be subject
to parametric modelling: For plant or animal diseases dispersal could for example be due to
airborne spread which makes distance kernels such as exponential wkl ∝ exp(−ρdistkl) or
power law wkl ∝ dist−ρkl convenient choices. Here, distkl denotes the geographic distance
between the population k and l. When restricting attention to directly transmitted human
diseases the focus is instead on the movement of infectious individuals from population l to
population k – not necessarily due to a permanent relocation of individuals, but more due
to temporarily movement. This could, for instance in the case of seasonal influenza, be the
commuting of individuals or in the case of emerging epidemics (e.g. SARS, swine influenza)
due to long-distance airplane travelling. If commuter or airline data are available these can be
used to determine the weights. Movement exhibits a strong age-dependence, though, which
can make it difficult to extract the relevant information from such sources for childhood
diseases. As a consequence, one might use distance based kernels as a proxy for mobility
– possibly augmented by population sizes as in the gravity model (Erlander and Stewart,
1990; Xia et al., 2004). If interest is in short-term prediction of an emerging pathogen, long-
distance travelling is an important concept to capture. However, the main bulk of infections
for an established disease typically happens at a much smaller geographical scale as shown,
for example, in recent re-analyses of the 1918 pandemic influenza (Eggo et al., 2011) and the
2009 swine influenza outbreak (Gog et al., 2014).

In analogy to the above deterministic metapopulation model, the system of rates of the
continuous time stochastic SIR model can be modified accordingly to obtain a stochastic
metapopulation model with unit specific (conditional) intensity function for infection events

λk(t) =
βk
Nk

Sk(t)

(
K∑
l=1

wklIl(t)

)
, (1)

while the unit specific intensity function for recovery events is now γIk(t) (assuming expo-
nentially distributed infectious periods). One important insight is that the difference between
deterministic and stochastic metapopulation models is increased as subpopulations become
smaller. Studying the extinction and re-introduction of disease in such metapopulations is
hence preferably conducted using stochastic metapopulation models, see e.g. Bjørnstad and
Grenfell (2008). Two variants of the stochastic metapopulation model are of additional inter-
est: The first variant is the so called Levins-type metapopulation model (Keeling and Rohani,
2008, Section 7.2.4), where one for each k is only interested in the probability of Ik(t) > 0
as a function of time. Such models have been used to study the arrival of the first disease
cases in a city during a pandemic (Eggo et al., 2011; Gog et al., 2014). The second variant
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3.3 Fitting SIR Models to Data

is the individual model, i.e. when the number of considered subpopulations is equal to the
population size K = N .

Both cases are instances of multivariate counting processes which can be consistently han-
dled in the SIR-S framework using a so called two-component SIRS model, which additionally
allows for immigration of disease case from external sources. This is particularly useful if the
data contains multiple outbreaks. Following Höhle (2009) let Nk(t), k = 1, . . . ,K, denote the
counting process, which for unit k counts the number of changes from state susceptible to
state infectious. The conditional intensity function given the history of all K processes up
to, but not including, t is then given as:

λk(t) = exp
(
h0(t) + zk(t)

Tβ
)

+
∑
j∈I(t)

{
w(distkj) + vkj(t)

Tαe

}
(2)

= Yk(t) ·
[
exp(h0(t)) exp

(
zk(t)

Tβ
)

+ xk(t)
Tα
]
,

where Yk(t) is an indicator if unit k is susceptible, i.e. Yk(t) = 1k∈S(t)), while S(t) and I(t)
now denotes the index set of all susceptibles and infectious, respectively. Furthermore, w(·)
denotes a distance weighting kernel parametrised as a spline function while zk(t) and vkj(t)
denote possibly time varying covariates affecting the introduction of new cases in the endemic
and epidemic components, respectively, and xk(t) denotes the combination of linear spline
terms and epidemic covariates. Finally, h0(t) is the base-line rate of the endemic component.
If import of new cases from external sources is not relevant the first component in the above
can be left out (i.e. set to zero).

3.3 Fitting SIR Models to Data

From a statistician’s point of view, parameter inference in epidemic models appears to re-
ceive only marginal attention in the medical literature. One reason might be that little or
no data are available and hence parameters are ’guesstimated’ from literature studies or ex-
pert knowledge. Another reason is that inference often boils down to extracting information
about parameter values from a single realization of the stochastic epidemic process. For
deterministic models, estimation might also appear less of a statistical issue. Finally, esti-
mation is complicated by the epidemic process only being partially observable: The number
of susceptibles to begin with as well as the time point of infection of each case with might
be unknown. As a consequence, parameter estimation in ODE based SIR models has, typ-
ically, been done using least square type estimation based on observable quantities. Only
recently, the models have been extended to non-Gaussian observational components enabling
count-data likelihood based statistical inference, see e.g. Pitzer et al. (2009),

E(Yt,k) =

∫ t+1

t

{
−dSk(u;θ)

dt

}
du.

where Yt,k is the observed number of new infections within time interval t, which is assumed
to follow a count data PMF f such as the Poisson or negative binomial distribution with ex-
pectation E(Yt,k). This setup allows the estimation of the model parameters ψ in a likelihood

framework by the loglikelihood function l(ψ) =
∑T

t=1

∑K
k=1 log f(yt,k;ψ), when assuming

observations are independent given the model. However, a residual analysis often shows re-
maining auto-correlation, which means any quantification of estimation uncertainty based
on asymptotic theory using the Hessian of the loglikelihood tends to be overly optimistic.
As a consequence, the confidence intervals might be too narrow. A novel two-step approach
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3 Epidemic Modelling

to improve on this shortcoming within the above framework is treated in Weidemann et al.
(2014).

An advantage of stochastic continuous-time SIR modelling is that it allows for a quan-
tification of the uncertainty of the estimates, even though the estimate is based on a single
process realization. The work of Becker (1989) and the second part of Andersson and Britton
(2000) are some of the few books dedicated to this task. If the epidemic process (S(t), I(t))′

is completely observed over the interval (0, T ], where T is the entire duration of the epidemic,
the resulting data of the epidemic are given as {(ti, yi, ki), i = 1, . . . , n}, where n is the num-
ber of infections in the population during the epidemic, ti denotes the time of infection of
individual i, yi is the length of the individuals’ infectious period and ki ∈ {1, . . . ,K} is the
unit it belongs to. Further assuming that the PDF of the infectious period is exponential
fI→R(y) = γ exp(−γy) we obtain the loglikelihood for the parameter vector ψ = (β, γ)′ as

l(ψ) =

n∑
i=1

log fI→R(yi) +

n∑
i=1

log λki(ti)−
∫ T

0

K∑
k=1

λk(u)du, (3)

where λk(ti) is defined as in (1) and evaluated at the time just prior to ti. Note that in (3) the
CIFs have to be integrated over time, however, for the simple SIR model the CIF is a piecewise
constant function between events and hence integration is tractable. Höhle (2009) develops
these likelihood equations further using counting process notation for the two-component
SIR model (2), whereas Lawson and Leimich (2000), Diggle (2006) and Scheel et al. (2007)
contain accounts and examples of a partial-likelihood approach for spatial SIR type model
inference including covariates.

In applications the times of infection ti of infected individuals would typically be unknown.
One way to make inference tractable is to assume that the duration of the infectious period
is a constant, say, µI→R (known or to be estimated). Furthermore, the initial number of
susceptibles might also be unknown and might require estimation. See Becker (1989) for
details, which also covers a discrete-time approximation covered in the next section. More
recently, Gibson and Renshaw (1998), O’Neill and Roberts (1999), O’Neill and Becker (2001),
Neal and Roberts (2004) and Höhle et al. (2005) use a Bayesian data augmentation approach
using Markov Chain Monte Carlo to impute the missing infection times while simultaneously
performing Bayesian parameter inference for the S(E)IR and metapopulation S(E)IR model.
Model diagnostics can in the likelihood context be performed using a graphical assessment
of residuals and forward simulation (Höhle, 2009); for the Bayesian models one can use
additional posterior predictive checks and latent residuals (Lau et al., 2014).

3.4 Discrete time models

Up to now, focus has been on continuous time epidemic modeling. However, data are usually
only available at much coarser time scales: weekly or daily reporting is usual in public health
surveillance. If individual data is available, this observational situation can be handled by
considering the observed event times as being for the event times interval censored. However,
when looking at large populations or routinely collected data, data is typically provided
in aggregated form without access to the individual data. It is thus necessary to consider
alternative ways of casting the continuous time stochastic SIR approach into a discrete time
framework. Time series analysis is one such approach, providing a synthesis between complex
stochastic modeling and available data.

In order to derive such a model, we consider a sufficiently small time interval [t, t + δt).
We could then – as an approximation – assume constant conditional intensity functions of our
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3.5 Time Series SIR model

SIR model in [t, t+δt). By definition, let these intensities be equal to the intensities at the left
time point of the interval, i.e. at time t. This implies that all individuals are independent for
the duration of the interval. Looking at one susceptible individual, its probability of escaping
infection during [t, t+ δt) is then equal to exp(−βI(t) · δt). Denoting by C[t,t+δt) the number
of newly infected and by D[t,t+δt) the number of recoveries in the interval [t, t+ δt), we obtain

C[t,t+δt) ∼ Bin
(
S(t), 1− exp(−βI(t) · δt)

)
, (4)

D[t,t+δt) ∼ Bin
(
I(t), 1− exp(−γ · δt)

)
. (5)

The state at time t+δt is then given by S(t+δt) = S(t)−C[t,t+δt), I(t+δt) = I(t)+C[t,t+δt)−
D[t,t+δt). Now changing notation to discrete time with discrete time subscript t denoting the
time t+ δt and subscript t− 1 the time t we write:

St = St−1 − Ct, It = It−1 + Ct −Dt, (6)

for t = 1, 2, . . . and with S0 = S(0), I0 = I(0). Consequently, the discrete quantities Ct,
Dt, etc. now replace the continuous ones in (4) and (5). Such models are known as chain
binomial models (Becker, 1989), if one assumes that Dt = It, i.e. the time scale is chosen
such that all infective individuals recover after one time step. In such models one time step
can be seen as one generation time (Daley and Gani, 1999, Chapter 4). For large St and It
the binomial distributions can be further approximated by Poisson distributions: by a first
order Taylor expansion of the 1− exp(−x) terms one obtains

Ct ∼ Po
(
βSt−1It−1 · δt

)
, (7)

Dt ∼ Po
(
γIt−1 · δt

)
. (8)

Note that these approximations no longer ensure that Ct ≤ St−1 and Dt ≤ It−1. If this
is a practical concern, one can instead use right truncated Poisson distributions fulfilling
the conditions. Altogether, we have transformed the continuous time stochastic model into a
discrete time model. If (St, It)

′ is known at each point in time t = 1, . . . , T , estimates for β and
γ can be found using maximum likelihood approaches based on (7)-(8). For example, Becker
(1989) shows how the above equations can be used to fit a homogeneous SIR model to data
using generalized linear model (GLM) software: (8) can be represented as a log-link Poisson
GLM with offset log(St−1It−1δt) and intercept log(β) or an identity link GLM with covariate
St−1It−1δt and no intercept. For the stochastic metapopulation SIR model with known
weights the idea can similarly be extended by jointly modelling Ct,k and Dt,k, 1 ≤ t ≤ T ,
1 ≤ k ≤ K by an appropriate Poisson GLM with either log-link or identity link with offset,
intercept and potential covariates derived from (1). Furthermore, Klinkenberg et al. (2002)
uses the above equations to fit a spatial grid SIR model using numerical maximization of the
binomial likelihood.

3.5 Time Series SIR model

The model given by (7)-(8) corresponds to a simple version of the time series SIR model (TSIR
model) initially proposed in Finkenstädt and Grenfell (2000) and since extended (Finkenstädt
et al., 2002; Bjørnstad et al., 2002). For the TSIR model it is assumed that Dt = It, i.e. as in
a chain binomial model, and δt = 1. As an example, one time unit corresponds to a biweekly
scale when modelling measles. In addition, the TSIR model contains additional flexibility

9



PR
EP
RI
NT

3 Epidemic Modelling

beyond the simple SIR model, e.g. by taking population demographics into account, where
births provide new susceptibles and immigration provides an influx of infectives allowing
the re-introduction of cases into a population where the disease was already extinct. Further
extensions are a time-varying transmission rate, e.g. due to school closings, and a modification
of the multiplication term I(t) in the transmission rate to I(t)α, which allows for spatial
substructures and other forms of heterogeneity in the population (Liu et al., 1987). Xia et al.
(2004) extends the model to a multivariate (and hence spatial) time series model, where the
transmission between populations is based on a gravity model.

Below we present a slightly modified version of this multivariate TSIR model (mTSIR)
given in Xia et al. (2004). Let It,k and St,k be the number of infectious and susceptibles in
region k at time t, where 1 ≤ k ≤ K and 1 ≤ t ≤ T . For t = 2, . . . , T the model is now
defined by

It,k|λt,k, ιt,k ∼ NB(λt,k, It−1,k), where (9)

λt,k|ιt,k =
1

Nt−1,k
β(t) St−1,k (It−1,k + ιt,k)

α,

ιt,k ∼ Ga(mt,k, 1), and

mt,k = θ N τ1
t−1,k

∑
j 6=k

d−ρj,k I
τ2
t−1,j .

Here, NB(µ, c) denotes the negative binomial distribution with expectation µ and clumping
parameter c, i.e. the variance is µ + µ2/c. For example, Bailey (1964, Chapter 8) shows
that the number of offspring generated by a pure birth process with an according rate and
starting with a population of c individuals has exactly this distribution. Note, however, that
the model in (9) is a double-stochastic model, because the rate itself is a random variable due
to the random influx of new infectives which is gamma distributed. This implies that there is
a small twist in case It−1,k = 0, because (9) would then imply that It,k|(It−1,k = 0) ≡ 0, which
is not as intended. The reason is that the birth process motivation is not directly applicable
this situation – instead we will assume that It,k|It−1,k = 0 is just Po(λt) distributed. Another
approach is to assume that the clumping parameter in (9) is equal to It−1,k+ιt,k (Morton and
Finkenstädt, 2005; Bjørnstad and Grenfell, 2008). In practice, if It−1,k is large the negative
binomial effectively reduces to the Poisson distribution. The additional complexity given by
the negative binomial is thus somewhat artificial – it might be worthwhile to let the clumping
parameter vary more freely instead.

. Finally, β(t) ≥ 0 is a periodic function with period one year and parametrized by the
parameter vector β. For biweekly measles data this could for example be a 26-parameter
function or a harmonic seasonal forcing function, i.e.

β(t) = βtmod 26+1 or β(t) = β1(1 + β2 cos(2πt/26)).

The number of susceptibles in the TSIR model is given by the recursion

St,k = St−1,k − It,k +Bt,k for t = 2, . . . , T, (10)

where Bt,k denotes the birth rate in region k at time t. One challenge when using the TSIR
model is, however, that St,k is only partially observable. Untangling the recursion yields that

St,k = S1,k −
t∑

u=2

Iu,k +
t∑

u=2

Bu,k, t = 2, . . . , T,

10
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where S1,k is usually unknown but needs to be such that 0 < St,k ≤ Nt,k − It,k for all
t = 2, . . . , T . As a consequence, either all unknown S1,k’s need to enter the analysis as K
additional parameters or one has just a single extra parameter κ together with the coarse
assumption that S1,k = κN1,k. An alternative is to use a pre-processing step to determine it:
Conditional on S1,k and the observed It,k one can compute the resulting St,k’s. Inspired by
the univariate procedure in Finkenstädt et al. (2002) one then considers ιt,k within the unit
to be a time series varying around its mean and uses a Taylor expansions up to order three
to derive

log It,k = log βt + α log(It−1,k) + c1I
−1
t−1,k + c2I

−2
t−1,k + c3I

−3
t−1,k + logSt,k + εt,k, (11)

where the εt,k’s are zero-mean random variables. Altogether, conditionally on S1,k expression
(11) represents a linear regression model which can be fitted using maximum likelihood. The
resulting profile loglikelihood in S1,k can then be optimized for each unit separately.

As already mentioned, one problem with the above model formulation, is that the update
given in (9) does not ensure that It,k ≤ St−1,k+Bt−1,k. In other words St,k ≥ 0 is not explicitly
ensured by the model. When fitting the model to data this is unproblematic, because the
St,k’s are computed by a separate pre-processing step. However, when simulating from the
model and hence computing St,k in each step from (10) it becomes clear that these can become
negative if It,k is large enough. To ensure validity of the model we thus right-truncate the
NB(λt,k, It−1,k) at St−1,k.

3.6 Fitting the mTSIR Model to Data

In the work of Xia et al. (2004) a heuristic optimization criterion is applied, which consists
both of a one-step ahead squared prediction error assessment and a criterion aimed at min-
imizing the absolute difference between the observed and predicted cross-correlation at lag
zero between the time series of a unit and the time series of London. The 26 seasonal pa-
rameters βt are explicitly fixed at the values obtained in Finkenstädt and Grenfell (2000).
However, from Xia et al. (2004) it is not entirely clear how the point prediction of Ît,k is de-
fined. Instead, we proceed here using a marginal likelihood oriented approach for inference in
the mTSIR model. We do so by computing the marginal distribution of It,k given It−1 = it−1
as follows

fm(it,k|it−1;ψ) =

∫ ∞
0

f(it,k|ιt,k, it−1;ψ)f(ιt,k|it−1;ψ)dιt,k,

where the two integrated densities refer to the PMF of the truncated negative binomial
and the PDF of the gamma distribution, respectively. The former is computed from the
ordinary negative binomial PMF as fNB(it,k)/FNB(St−1,k) with F denoting the cumulative
distribution function. Based on the above the marginal loglikelihood for the parameter vector
ψ = (β′, α, θ, τ1, τ2, ρ)′ is then given as

l(ψ) =

T∑
t=2

K∑
k=1

log fm(it,k|it−1;ψ). (12)

This expression is then optimized numerically for ψ in order to find the maximum likelihood
estimator (MLE). In our R implementation (R Core Team, 2014) of the model we use a BFGS-
method, as implemented in the function optim, for optimization while using the function
gauss.quad.prob to perform Gaussian quadrature based on orthogonal Laguerre polynomials
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for handling the integration over the Gamma densities. In recent work Jandarov et al. (2014)
present a more complex Bayesian approach including an evaluation of the required integrals
by MCMC (Smyth, 1998). Note that the quadrature strategy can be numerically difficult in
practice, because the the marginal density for some parameter configurations to be evaluated
is so small that – with the given floating point precision – it becomes zero. This then causes
problems when taking the logarithm. A simplification to allow for estimation is to replace
the stochastic ιt,k component in (9) by its expectation mt,k – as also done in Jandarov et al.
(2014) – at the cost of reducing the variability of the model.

3.7 Endemic-Epidemic Modelling

Inspired by the SIR and mTSIR model, Held et al. (2005) presented a multivariate count
data time series model for routine surveillance data, which does not require the number of
susceptibles to be available. The formal inspiration for the model was the spatial branching
process with immigration, which means that observation time and generation time have to
correspond. In a series of successive papers the modelling was subsequently extended such
that it now constitutes a powerful and flexible regression approach for multivariate count data
time series (Paul et al., 2008; Paul and Held, 2011; Held and Paul, 2012; Meyer and Held,
2014). From a spatial statistics perspective this even includes the use of CAR type random
effects (Besag et al., 1991) in the time series modelling. The fundamental idea is to divide the
infection dynamics into two components: an endemic component handles the influx of new
infections from external sources and an epidemic component covers the contagious nature by
letting the expected number of transmissions be a function of the lag-one number of infections.
The resulting so called HHH model is given by:

Yt,k ∼ NB(µt,k, γk), t = 2, . . . , T, k = 1, . . . ,K, (13)

µt,k = Nt,k νt,k + λt,k Yt−1,k + φt,k
∑
j 6=k

wjk Yt−1,j .

In the above, Yt,k denotes the number of new cases in unit k at time t which is assumed
to follow a negative binomial distribution with expectation µt,k and region specific clumping
parameter γk. As before, Nt,k denotes the corresponding population in region k at time t
and the wjk are known weights describing the impact of cases in unit j on unit k. This
can, for example, be population flux data such as airline passenger data (Paul et al., 2008)
or neighbourhood indicators such as wjk ∝ I(djk = 1) or a power-law weight wjk ∝ d−ρjk ,
where in the later two examples djk denotes the graph-based distance between units j and
k in the neighbourhood graph while ρ is a parameter to estimate (Meyer and Held, 2014).
Furthermore, νt,k, λt,k and φt,k are linear predictors covering the endemic component as well
as the within and between unit auto-regressive behaviour, respectively,

log(νt,k) = α(ν) + b
(ν)
k + z

(ν)
t,k

′
β(ν),

log(λt,k) = α(λ) + b
(λ)
k + z

(λ)
t,k

′
β(λ),

log(φt,k) = α(φ) + b
(φ)
k + z

(φ)
t,k

′
β(φ).

In each case, α(·) denotes the overall intercept, b
(·)
k a unit-specific random intercept and z

(·)
t,k

represents a length p(·) vector of possibly time-varying predictor specific covariates with asso-
ciated parameter vector β(·). The use of covariates allows for a flexible modelling of, e.g., secu-
lar trends and concurrent processes influencing the disease dynamics (temperature, occurence
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of other diseases, vaccination, etc.). The vector of random effects per unit (b
(ν)
k , b

(λ)
k , b

(φ)
k )′

can either be iid normal with predictor specific variance, trivariate normal with a correlation
matrix (to be estimated) or of CAR type for each predictor. The HHH model allows the
absence of one or several of the model components, e.g., lack of endemic component, and also
supports the use of offsets in the linear predictors, which is especially convenient to represent
population influences as we shall see subsequently. The HHH model has already been suc-
cessfully used to describe influenza, measles and meningococcal dynamics, see for example
Herzog et al. (2011) or Geilhufe et al. (2014).

3.7.1 Linking the HHH and mTSIR model

As an example of the flexibility of HHH modelling we consider it here as a framework for
representing a simplified version of the mTSIR model including a gravity model based flux
of infectives: Replacing the stochastic ιt,k component in (9) by its expectation and assuming
α = τ2 = 1 then yields

λmTSIR
t,k = µHHH

t,k =
1

Nt,k
β(t)St−1,k

It−1,k + θ N τ1
t−1,k

∑
j 6=k

d−ρj,k It−1,j

 .

Ignoring the difference between Nt−1,k and Nt,k, this corresponds to a HHH model without
endemic component, i.e. νt,k ≡ 0, and

log(λt,k) = log(St−1,k/Nt,k) + log β(t),

log(φt,k) = log(St−1,k) + (τ1 − 1) log(Nt,k) + log(θ) + log β(t),

together with weights wjk ∝ d−ρjk , where djk is a integer-discretised version (e.g. in steps of 50
km) of the Euclidean distance between units j and i. Note that in both predictors, the first
term is an offset and that the number of susceptibles has been included as a time and unit
specific covariate. Even if no data on the number of susceptibles is available, good proxies can
be established. For example Herzog et al. (2011) perform a spatio-temporal analysis using the
county specific vaccination rate against measles as a proxy for the availability of susceptibles
and hence as the result of the modeling obtain a quantification of the effectiveness of the
vaccination. Note also that the clumping parameter of the negative binomial is different in
the two models: in the HHH model it is time constant but varies freely, whereas in the mTSIR
model it is time varying but fixed to be the previous number of infectives.

3.8 Fitting HHH Models to Data

Likelihood based inference for the HHH model is performed by maximizing the corresponding
(marginal) log-likelihood function, which is similar to (12), with fm being the (marginalized)
PMF of the negative binomial model given by (13). Altogether, a variant of the penalized
quasi-likelihood approach discussed in Breslow and Clayton (1993) is used, if the predictors
contain random effects. Model selection is performed by AIC or – in case of random effects
– using proper-scoring rules for count data based on one-step ahead forecasts (Czado et al.,
2009; Paul and Held, 2011); see the respective HHH papers for the inferential details.

4 Measles Dynamics in the Pre-Vaccination Area

In this section we analyze the 1944-1966 biweekly England and Wales measles data already
presented in Sect. 2. These pre-vaccination data have been analysed univariately in Finken-
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städt and Grenfell (2000) and Finkenstädt et al. (2002) and are available for download from
the internet (Grenfell, 2006). The present analysis is an attempt to analyse the data in
spatio-temporal fashion. In a pre-processing step we determine S1,k for each of the 60 series
as follows: the linear model (11) is fitted for a grid of S1,k values and the resulting log-

likelihood is used to determine Ŝ1,k. Subsequently, the recursion in (10) is used to compute

the time series of susceptibles in unit k given Ŝ1,k. Figure 3 shows this exemplarily for the
time series of London.
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Figure 3: (left) Loglikelihood of the linear model as a function of S1,k for London. (right)
Resulting time series of susceptibles obtained from the S1,k maximizing the loglikelihood.

4.1 Results of the mTSIR Model

We use the individually reconstructed series of susceptibles for each city to fit the mTSIR
model to the multivariate time series of the 60 cities. Fitting the model based on the likelihood
proves to be a complicated matter: We therefore follow the strategy of Xia et al. (2004)
by fixing β(t) to the 26 parameters found in Finkenstädt and Grenfell (2000) and fixing
α = 0.97. Table 1 contains the ML results in a model where the ιt,k variables are replaced
with their expectation. The table also contains 95% Wald confidence intervals (CI) based on
the observed inverse Fisher information.

Estimate 2.5% 97.5%

τ1 2.24 2.24 2.24
τ2 1.10 1.10 1.10
ρ 3.05 · 10−2 2.94 · 10−2 3.16 · 10−2

θ 1.79 · 10−16 1.77 · 10−16 1.81 · 10−16

Table 1: Parameter estimates and 95% CIs for the mTSIR model.

Altogether, the results differ quite markedly from the results reported in Xia et al. (2004),
where the estimates are τ̂1 ≈ 1, τ̂2 ≈ 1.5, ρ̂ ≈ 1 and θ̂ ≈ 4.6·10−9. Several explanations for the
differences exist: different estimation approaches and different data were used. Altogether,
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it appears that the full mTSIR model appears too flexible for the available reduced data set
containing only 60 cities. Still, the one-step ahead 95% predictive distributions obtained by
plug-in of the MLE show that the model enables too little variation: a substantial number
of observations lay outside the 95% predictive intervals obtained by computing the 2.5% and
97.5% quantile of the truncated negative-binomial in (9). Fig. 4 shows this exemplarily for the
London time series. One explanation might be the direct use of It−1,k as clumping parameter
for the negative binomial distribution in (9) – it appears more intuitive that the variance with
increasing It−1,k should increase instead of converging to the Poisson variance as implied by
the model.
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Figure 4: One-step ahead 95% predictive intervals for the London time series obtained by
plug-in of the MLE in the mTSIR model. Also shown is the actual observed time series.

4.2 Results of the HHH modelling

Instead of trying to improve the mTSIR model manually, we do so by performing this in-
vestigation within the HHH model. As initial HHH model capturing seasonality in both the
endemic and epidemic components we consider the following model:

log(νt,k) = log(Nt,k) + α(ν) + β
(ν)
1 sin

(
2πt

26

)
+ β

(ν)
2 cos

(
2πt

26

)
,

log(λt,k) = α(λ) + β(λ) log(Nt,k) + β
(λ)
1 sin

(
2πt

26

)
+ β

(λ)
2 cos

(
2πt

26

)
,

log(φt,k) = α(φ) + β(φ) log(Nt,k) + β
(φ)
1 sin

(
2πt

26

)
+ β

(φ)
2 cos

(
2πt

26

)
,

and with weights wjk = I(0 < distjk ≤ 50km), where distjk denotes the geographic distance
between cities j and k in km. As a first step in our model selection strategy we compare this
model to one using weights wjk = d−ρjk , which corresponds to a power-law distance relationship
with djk = ddistjk /50kme. Based on AIC such a power-law distance kernel is prefered (AIC
3.172·105 vs. 3.189·105) and we hence proceed analysing the power-law version. Figure 5 shows
the model fit decomposed into the three components exemplarily for the three largest and
three smallest cities. We observe that the endemic and neighbourhood components only play
a small role in the measles transmission. However, neither exluding the endemic component
(AIC 3.1981 · 105) nor exluding the neighbourhood component (AIC 3.1977 · 105) provides
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a better AIC. Furthermore, Fig. 6 shows the weight quantifying neighbourhood interaction
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Figure 5: Time series of counts for the three largest (top row) and three smallest (bottom
row) cities. Also shown are the model predicted expectations decomposed into the three
components: endemic, within city and from outside cities.

as a function of distance (in steps of 50km). The right panel of the figure contrasts the
powerlaw model with a model containing individual coefficients for lags 1-4; this gives some
indication that the distance influence might be stronger at short lags than implied by the
powerlaw model. Also, the AIC of this more flexible model is slightly better (AIC 3.198 ·105).
However, there is not enough information in the data to fit individual coefficients for lags 5
and higher.

The seasonal component in the two components is best illustrated graphically, c.f. Fig. 7.
We note that the seasonality of the dominating within city transmission component has
a shape very similar to what was found in previous work, i.e. with a lower transmission
during the summer time. On the other hand, during summer time imports from external
sources appear more likely. The interpretation of the neighbourhood transmission is slightly
inconclusive as it is shifted compared to the two other – this component only makes up a
small part of the overall transmission though.

4.3 Results of the mTSIR mimicking HHH model

When α = 1 and the auto-regressive part is just It,k−1+mt,k we can, as described in Sect. 3.7,
mimic the behaviour of the mTSIRmodel by using a HHH model with

16



PR
EP
RI
NT

4.3 Results of the mTSIR mimicking HHH model

djk

w
jk

0.00

0.05

0.10

0.15

1 2 3 4 5 6 7 8 9 10 11

●

●

●

●

●

●

●

●●●●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●●

●●

●
●● ●

●

●

● ●●

●

●

●

●

●
●

●●

●●

●
● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●●

●

●
●● ●

●
●

● ●
●

●● ●

●

●●
●● ●

●● ●
●●

● ●
●

●

●
●

●

●

●

● ●

●

●
●

● ●
●●

●

●

●●

●●
●●● ●●

●

●
●

●●●

● ●

●

●
●

●
●

●
● ●●

●

●

●
●

●●
● ●

●
●

●

●

●

●

●
●

●

●

●●●

●

●
●

●●

●

●

●
●●●

●

●●

●

●

●

●
●

●

●

●

●

●●● ●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●● ●
●

●

● ●●

●

●

●

●

●
●

●●

●●

● ●

●
●

●●
●

●●

●

●

●

●

●

●
●

●

●

●●●●

●

●●
●

●
●

●

● ●
●●

●

●

●

●●

●● ●
●● ●●

●

● ●●

●

●

●●
●
●

● ●

●

●
●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●●

●●

●
●● ●

●

●

● ●●

●

●

●

●

●
●

●●

●●

●
● ●

●

●

●

●

●●

●

●

●●
●

● ●●●

●
●

●

●

●
●● ●

●

●
●
● ●

●●
●●
●

●●

● ● ●

●

● ●● ●

●
●

●

●

●

●●●●

●

●

●●● ●

●

●

●●
●

●●
● ●

●
●

●

●

●
●

●●●● ●
●

●●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●

●

●● ●●

●

● ●●

●

●

●

●

●

●
●●

●●
● ●

●
●

●

●
●●● ●

●

●●
●

●●●

●

●

●● ●
●

●

● ●

●

●

●

●
●

●
●

●●
●

●

●

●● ●
●● ●
●

●

●
●

●

●

●

●●●●

●
●

●●● ●
●

●

● ●
●

●●
● ●●●

●

●●●

●

●

●

●

●

● ●●
●

●

●●
●

●●●
●

●
●

●●

●● ●

●

●
●●

●

●
●●

●

●

●●●

●

●

●

●●
● ●

●

●

●●

●

●●

●
●●●

●

● ●●

●

●

●

●●
●

●

●●
●●

●

●

●

●
●

●

●

●

●
●

● ● ●
●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●●
● ●

● ●●
●

●

●●
● ●

●●

●

●●●

●

●

●

●

●● ●●●

●

●●
● ●●●
●

●
●
●●

●● ●

●

● ●●●

●

●

●

●

●

●●●

●

●

●
●●

● ●

●

●

●●

●

●●

●

●

●

●

●●
●
●

●● ●
●

●
●

●
●

●

●● ●

● ●
●

●●●

●

●●
●●

●
●
● ●

●● ● ●●
●

●●
●
●
●

● ●

●

●
●

●

●

●●

●

●

●●

●
●

● ●
●

●●●

●

●

●

●

●

●
●

●● ●
●

●

●
●

●

●

●
●

●

●
●

●● ●●

●

●

●
●

●

●

●

●

●

●●● ●

●

●

●●● ●
●●

● ●
●

● ●
● ●●●

●

●●●

●

●
●

●●
●● ●

●
●

●
●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●
●

●

●

●●●

●

●●

●●

●

●

●
●●

●

●

●●

●

●
●

●

●

●●
● ●
●

●●
●

●
●

●

●

●●●
●

●

●

●●

●

●
●

●●●
●

●

●

●

●

●
●

●●
●

● ●
●
●
●

●●●
●

●

●
● ●

●

●

●

●
●

●
●

●●
●

●●●

●

●

●
●

●

●

● ●● ● ●●
● ●●●●● ●

●●
● ● ●

●

● ●● ●

●

●

●

●

●

●●●
●

●

●
●●● ●

●

●

●●
●

●●
● ●●● ●

● ●● ●
●

●●● ●● ●●● ●
●●

●
●●

●
●● ●●●●

●

●●
●●● ● ●●● ●

●

●● ● ●●●● ●

●

● ●
●

● ●●● ●

●

● ●
●

●●●
●

●

●

●

●

●●

●

●● ●●
●

●

●
●

●
●

●

●●

●●
●●

●

●

●
●

● ●
●

●
● ●

●● ●
●

●

●●●
● ●●● ●● ●●●●

●

●
●

●

●

●

●

●

●●● ●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●●

●

●● ●

●

●

● ●●

●

●

●

●

●

●
●●

●

●

● ●

●
●

●

●
●●● ●

●

● ●●● ●● ●

●

●●
●

●● ●●
●

●

●
●●

●

●●
●

●
●●●●

●

●
●
●

●
● ● ●●● ●

●
●

●

● ●●
●

●●

●

● ●

●

●●●●●

●

● ●
●

●●●
●
●

●

●

●

●
●

●

● ● ●●

●

●
●

●

●
●

●

●●

●● ●●

●

●

●
●

●
●

●

●

●

●●● ●
●

●

●●● ●●●● ●
●

● ●
● ●●●

●
● ●●

●
●

●
●

●

●●

●

●●
●●

●

●

●

●

●
●

●

●●

●● ●●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●●● ● ● ●● ●
●

●●
●●

●
●
●●

●
●

●

●

●●● ●
●

●●

●

●

●

●

●
●

●
●●

● ●●
●●

●

●● ●

●

●

● ●●

●

●

●

●

●

●
●●

●●
● ●

●
●

●

●●
●● ●

●

● ●

●

●●●
●●
●●

●

●● ●

●●

●●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●●
●

●

●●

●
● ●●

●●

●

●
● ●●

●

●

●●

●
●

●

●

●●

●

●

●

●

●●●●

●

●
●●

●
●

●

● ●
●

●● ● ●●
●● ●

●● ●
●●

● ●
●

●

●
●

●

●

●

● ●

●

●
●

● ●
●●

●

●

●●

●●

●●
●

● ●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●●● ●
●●
●●

●
●●

● ●●●

●

●●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

●

●●
●●

●

●

●●
● ●

● ●
●●

●

●●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●
●

●●●

●●

●

●●●
●

●

●

● ●●
●

●
●

●

●

●

●●

●●

●

● ●
●

●●
●

●●

●
●

●

●
●

●

●

●

●

●

●●●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●
●● ●

●

●

● ●●

●

●
●

●

●
●

●●

●●

●
● ●

●

●●
●

●●

●
●

●● ●
● ●● ●
●

●●● ●● ●●● ●

●

●●
●

●●
●

●● ●●●● ●●
●●● ● ●●● ●

●

●● ● ●●●● ●

●

● ●
●

● ●●● ●

●

●●

●

●●●

●

●

●

●

●

●

● ●
●

●

●

●●
● ●

●●
●

●
●

●●
● ● ●
● ●●

●

●
●
●

●

●

●●●

●

●

●
●●

● ●

●

●

●●

●

●●

●
●●●

●

● ●●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

● ● ●
●
●

●

●

●

●
●

●

●

●●
●
● ●

●

●●
● ●

● ●
●●

●

●●

●

●
● ●

●
● ●●

●
●

●
●

●

●●

●

●● ●●

●

●

●

●
●

●
●

●

●
●

● ●
●●

●●
●
● ●

●
●

● ●
●● ●
●

●

●●● ● ● ●● ●
●

●●●●●●

●

● ●● ●●
●●

●

●● ●

●

●

●●

●●
●

●
●●

●

●
●

●●●
●

●

●

●●
●

●
●

●
● ●

●
●

●
●●●

●
●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●●●●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●

●●

●
●● ●

●

● ●●

●

●
●

●

●

●
●●

●●

●
● ●

●

●

●
●

●●

●

●

●●

●

● ●●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●●

●

●

●

●
●

● ● ●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●●● ●

●
●

●●

●

●●

●
●

●●● ●●●

●

●

●●

●

●

● ●● ●

●

●●● ●●●●●●
●●
● ● ●

●

● ●●●
●

●

●
●

●●●
●

●
●
●●● ●

●

●

●●● ●●● ●●●
●

● ●●

●

●

●

●
●●

●

●
● ●

●

●
●

●
●

●●

●●
●

●●

● ● ●

●
● ●

●
●

● ●

●

●

●●●●

●

●

●●● ●

●
●

●●
●

●●
● ●

●

●

●

●

●

●

●

●

●●●●

●

●●
●

●
●

●

● ●
●

●

●

●

●

●●

●

●

●
●● ●

●

●

● ●●●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●●

●●

●●

●

●●●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●● ●

●
●

●
●

●

●

●

●

● ●●●
●

●

●

●●
● ●

●●

●●

●

● ●

●
●● ● ●●●● ●

●
●●● ●● ●●● ●

●

●●
●

●●
●

●● ●●●●

●

●●
●●● ● ●●● ●●● ● ●●●● ●

●

● ●
●

● ●●● ●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●●

●●

●
●● ●

●

●

● ●●

●

●
●

●
●

●●

●●

●
● ●

●

●●
●

●●

●

●

●
●
●●
●

●
●

●

●●
●

●

●

●●

●

●
● ●

●
●

●

●

●

●

● ●●

●

● ●
●

●
●

●

●

● ●●
●

●
●● ●

●●
●

●

●
●

● ●

●

●

●

●●
●
●

●
●
●

●●
● ●● ●

●

●

●●

●

●●
●

● ●●
●

●●●●
●

●●
●●

●

●
●

●
●
●

●
●●

●
●

●
●

● ● ●
●●
●

●

●

●●
●
●

●●

●

●
●●

●
●●●

●

●

●

●
●

●

●

●
● ●

●

●
●

●
●

●●

●
●

●

●●

●● ●

●

● ●
●

●

●

●

●

●

●

●●●
●

●

●●● ●

●●

●●
●

● ●
●

●●●
●

● ●●

●

●

●

●

●

●
●

●

● ●
●

●

●

●
●

●

●

●
●

●

●
●

●● ●
●

●

●

●
●

●

●

●

●

●

●●●●

●

●●● ●
●●

● ●
●

●●
● ●

●

●

●

●

●

●

●

●

●●●●

●

●
●●

●
●

●

● ●
●

●

●
●

●

●●

●●

●
●● ●

●

●

● ●●

●

●

●

●

●
●

● ●

●

●
● ●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●●●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●●

●●

●
●● ●

●

●

● ●●
●

●
●

●

●

●

●●

●

●

● ●
●

●●
●

●●

●
●

●
●
●

●
●

●
●

●
●●●●

●

●

●

●

●● ●
●

●

●●
●●●

●●

●

●
●

●●
●

●

● ● ●●
●

● ●
●
●
●

● ●
●

●

●

●

●

●●

●

●●

●

●

●● ●
● ●● ●
●

●●● ●● ●●● ●

●

●●

●

●●
●

●● ●●●●

●

●● ●●● ● ●●● ●

●

●● ● ●●●● ● ● ●
●

● ●●● ●

●

●●
●

●●●

●

●
●

●

●

●

● ●● ●

●

●●● ● ●●●●●
●●

●● ●

●

● ●●●

●

●

●

●
●

●● ●

● ●

●
●●

● ●

●

●●
●

●●
●

●●●
●

●●●

●

●

●
●

●

●

● ●● ●

●

●●
● ●●●●● ●

●●
●● ●

●

● ●●●
●

●

●

●

●
●●●

●

●

●
●●● ●

●

●●
●

●●
● ●

●
●
●●
●

●
●

●

●●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
● ●●

●●
●

●● ●

●

●

● ●●

●

●

●

●

●

●
●●

●●
● ●

●
●

●●
●● ●

●

●

●

●●

●

●

●

●

●● ●●

●

●●
●

●
●

●

● ●
●

●● ●

●

●●
●● ●

●● ●
●●

● ●
●

●

●
●

●
●

●

●●

●

●
●

● ●
●●●

●●

●●
●●

●

● ●●
●●
●

●●●●

●

●

●
●

●●●
● ●●

●

●

●
●

●●
● ●

●
●

●

●

●

●
●●

●

●

●●

●
●

●
●

●
●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●
●

●

● ●
●●

●
●

●

●●

●●

●
●● ●

●

●

● ●●

●

●
●

●

●
●

● ●

●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●
●●

●
●

●

● ●
●

●

●
●

●

●●

●●

●
●● ●

●

●

● ●●

●

●

●

●

●
●

●●

●●

●
● ●

●

●

●

●

●

●●
●●

●

●●●
●●
●

●
●

●●

●

●

●
●

●●●
● ●●

●

●

●
●

●●●
●

●
●

●

●

●

●
●●

●

●

●●

●

●

●
●

●
●

●

●

●
●●●

●

●
● ●

●
● ●

●
●

●

●

●

●●●
●

●
●●

●
●

●

●●

●

●
●

●

●
● ●●●

●
●

●● ●●●
● ●●● ●

●

●
●

● ●●●
●

●

●

● ●

●

● ●●● ●

●

●

●

●
●

● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Neighbourhood order o

N
on

−
no

rm
al

iz
ed

 w
ei

gh
t

●

●

●

●

● ● ● ● ● ● ●

●

●

Power−law model o−d

Fourth−order model

Figure 6: (left) Normalized weights as a function of djk. (right) Difference between the power-
law model and a model containing individual coefficients for each neighbourhood order 1-4
and zero weight thereafter.
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Figure 7: Illustration of the seasonal terms of the endemic, auto-regressive and neighbourhood
component of the powerlaw HHH model.
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and wjk = d−ρjk , which corresponds to a power-law distance relationship. In both these
components the last term of the predictor represents an offset – an alternative would have

been to use terms of the type β
(.)
3 log(St−1,k) in order to address additional non-linearity in

the susceptibles as suggested in the original TSIR formulations (Finkenstädt and Grenfell,
2000; Finkenstädt et al., 2002). The results obtained from fitting this model to the 60 cities
data are given in Tab. 2.

By transformation we find the corresponding mTSIR model parameters to be θ̂ = 2.5 ·
10−5 (95% CI: 1.9 · 10−5-3.4 · 10−5), τ̂1 = 1.10 (95% CI: 1.08-1.13) and ρ̂ = 0.84 (95%
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5 Discussion

Estimate 2.5 % 97.5 %

ar.sin(2 * pi * t/26) 1.35 1.20 1.50
ar.cos(2 * pi * t/26) 4.12 4.05 4.18

ne.1 -10.58 -10.87 -10.29
ne.log(N) 0.10 0.08 0.13

ne.sin(2 * pi * t/26) -0.20 -0.25 -0.15
ne.cos(2 * pi * t/26) -1.31 -1.35 -1.27

neweights.d 0.84 0.75 0.93
overdisp 2.72 2.68 2.76

Table 2: Parameter estimates and 95% CIs for the mTSIR mimicking HHH model.

CI: 0.75-0.93). It also becomes clear that the clumping parameter of the negative binomial is
estimated to be at a very different scale than suggested by the mTSIR model. As an additional
sensitivity analysis we investigate whether the addition of an endemic component of the form
log(νt,k) = log(St,k−1) +α(ν) is mandated. This would indicate that there is additional influx
of measles cases from unspecified sources, e.g. imports from other cities than the 60 included
in the analysis. However, and as expected for measles, the AIC of the original model is not
improved by this extension (difference in the loglikelihood almost immeasurable). Altogether,
no subtantial improvement over the best fitting model in Sect. 4.2 is seen though.

5 Discussion

Focus in this manuscript was on infectious disease data where disease location was known to
occur at a fixed and known set of units (e.g. cities or county centroids) hence ultimately lead-
ing to the analysis of multivariate time series of counts. Underlying, the epidemic process may,
however, be continuous in space: For infectious diseases such continuous-space continuous-
time models have been developed in, e.g., Lawson and Leimich (2000) as well as Meyer et al.
(2012). Other recent advances have been a more direct focus on the actual who-infected-who
transmission chains manifesting as spatio-temporal point patters. This could for example be
based on a covariate augmented network model of the underlying contact structure in the
population (Groendyke et al., 2012). Another path is to supplement the reconstruction with
available microbiological information about the disease strain in the cases, e.g., by taking the
difference in RNA sequences as additional genetic distance metric supplementing spatial dis-
tance (Aldrin et al., 2011; Ypma et al., 2012). Others have taken the collapse of geographical
space even further by visualizing and computing only effective-distances based on, e.g., mo-
bility or population flux data (Brockmann and Helbing, 2013). Spatio and spatio-temporal
methods have also been used for the detection of disease clusters (Kulldorff, 2001; Diggle
et al., 2005; Lawson and Kleinman, 2005) Another application of spatial methods in infec-
tious disease epidemiology has been the source identification of large food-borne outbreaks.
Here, point-patters of cases are aligned with knowledge about the spatial and spatio-temporal
distribution of food items or appropriate proxies (Manitz et al., 2014; Kaufman et al., 2014).

In a world of commuting and travelling, ’location’ of a case is at best a ’most likely’ or
’average’ of the individuals location over time. In the digital age new data sources emerge
allowing an even more exact spatio-temporal tracking of individuals. Hence, location is
destined to become a more dynamic concept in future spatio-temporal epidemic models. In
general and for stigmatizing diseases in particular, positional accuracy is destined to be in
conflict with data protection of the individual. It is a matter of discussion and evaluation
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References

how the right balance is to be found between the two.

Addressing spatial heterogeneity can be one aspect to improve on the usefulness of epi-
demic models, but certainly also complicates the analysis. When such models are used to
support the decision making processes on intervention, control and vaccination, it is impor-
tant to remember how formidable a task the modelling of infectious diseases is and where the
limitations lie. From a statistician’s point of view transmission modelling in practice misses a
stronger emphasis on parameter estimation, uncertainty handling and model selection. While
the modelling community has published high-impact semi-mechanistic models, the concurrent
advances in the field by the statistical community have gone somewhat unnoticed. In the last
10 years, though, mechanistic modelling, data science and statistical inference for dynamic
processes appear to have synthesized more. This means that Markov Chain Monte Carlo,
approximate Bayesian computation and plug-and-play simulation methods are now standard
instruments for spatially enriched epidemic models (Mugglin et al., 2002; McKinley et al.,
2009; He et al., 2010; Jandarov et al., 2014). Furthermore, flexible open-source R packages
have become available for visualizing, analysing and simulating such epidemic models. In
particular, the R package surveillance (Höhle et al., 2015) implements both the two com-
ponent SIR model and the HHH as illustrated in Meyer et al. (2014). However, with powerful
computational tools at hand it is also worthwhile to discuss, how complex models need to be
in order to answer the questions they are designed for. Long computation times often imply
little room for model diagnostics or model selection, which is equally important. The power
of mathematical models lies in their abstraction as May (2004) reminds us. What to include
and what to abstract upon in order to make a model relevant requires an interdisciplinary
approach.
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