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THE OPERAD OF TWO COMPATIBLE PRE-LIE PRODUCTS

AND POINTED WEIGHTED PARTITIONS

HENRIK STROHMAYER

Abstract. We introduce weighted and pointed weighted partitions and use
them to show the Koszulness of Lie2 and PreLie2, the operads governing two
compatible Lie brackets and two compatible pre-Lie products, respectively.

1. Introduction

In [Val07] B. Vallette introduced a new method to show the Koszulness of a class
of set theoretic operads and their associated algebraic operads. By associating a
certain poset to a set theoretic operad, P , and then studying its Cohen-Macaulay
properties, one gets a concrete recipe for checking whether P , and thus also its
Koszul dual operad, is Koszul or not. Studying the posets of unordered and ordered
pointed and multipointed partitions in [CV06], B. Vallette and F. Chapoton were
able to prove the Koszulness of several important operads such as Perm, PreLie,
ComT rias, PostLie, Dias, Dend, T rias, T riDend over a field of any characteristic
and over Z. In [DK07], A. Khoroshkin and V. Dotsenko constructed a new operad,
Lie2, by considering two compatible Lie brackets (compatible in the sense that
any linear combination of the two Lie brackets is a Lie bracket). In this note we
construct an operad, PreLie2, describing two compatible pre-Lie products. To
show the Koszulness of Lie2 and PreLie2 by the poset method of Vallette we
introduce weighted and pointed weighted partition posets. These posets are not
totally semimodular, therefore we need to refine the arguments of [CV06] in order
to show that they are Cohen-Macaulay.

All vector spaces and tensor products are considered over K, where K is a field
of characteristic 0 or Fp. For n ∈ N, let [n] denote the set {1, . . . , n} and given a
finite set S we denote the cardinality of S by |S|.

2. PreLie2, Lie2 and their Koszul dual operads

In this section we introduce a new operad, PreLie2, governing two compatible
pre-Lie products and explicitly describe its Koszul dual operad. We also recall
the definition of the operad Lie2 from [DK07] as well as some definitions from
[Val07] related to set theoretic operads.

Definition 2.1. A pre-Lie algebra is a vector space V over K equipped with a
mapping ◦ : V ⊗ V → V called a pre-Lie product such that

(a ◦ b) ◦ c − a ◦ (b ◦ c) = (a ◦ c) ◦ b − a ◦ (c ◦ b) ,

for any a, b, c ∈ V .

In [Ger63] M. Gerstenhaber, in his study of the Hochschild cochain complex
of an associative algebra, found a structure on the cochains satisfying the above
condition and gave it the name pre-Lie because the operation

[a, b]◦ := a ◦ b − b ◦ a
1
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defines a Lie algebra. The Lie bracket obtained in this way is a part of the Ger-
stenhaber structure on the Hochschild complex. The same structure also appeared
in a paper [Vin63] of È. Vinberg in his study of convex homogeneous cones, thus it
has also been referred to as Vinberg algebra.

Given two pre-Lie products ◦ and • on V we say that they are compatible if any
linear combination of the two products, (α ◦+β•)(a, b) := αa ◦ b+βa • b, again is a
pre-Lie product for any α, β ∈ K. This property is equivalent to the condition that

(a◦b)•c−a◦(b•c)+(a•b)◦c−a•(b◦c) = (a◦c)•b−a◦(c•b)+(a•c)◦b−a•(c◦b),

for any a, b, c ∈ V .
We now want to describe the operad encoding this structure. To fix the notation

we first give two definitions concerning operads. For an introduction to operads see
e.g. [MSS02].

Definition 2.2. A quadratic operad F (E)/〈R〉 is the free operad on a Σ-module
E modulo relations R ⊂ F(2)(E), where F(2)(E) is the weight two part of F (E),
i.e. trees decorated with exactly two elements of E.

Definition 2.3. Let P = F (E)/〈R〉 be a quadratic operad. Then the Koszul dual

operad P ! of P is defined as P ! = F (E∨)/〈R⊥〉. Here the Czech dual Σ-module E∨ is
given by E∨(n) = E(n)∗⊗sgnn, sgnn is the sign representation of Σn and R⊥ are the
relations orthogonal to R w.r.t. the natural pairing 〈 , 〉 : F(2)(E

∨)⊗F(2)(E) → K.

Definition 2.4. Translating the properties of two compatible pre-Lie products into
the language of operads we have that PreLie2 is the quadratic operad F (E)/〈R〉,
where the Σ-module E is given by

E(n) :=

{
K[Σ2] ⊕ K[Σ2] if n = 2
0 if n 6= 2

It is useful to represent the natural basis of E(2) as four binary corollas

K[Σ2] ⊕ K[Σ2] = K •

1 2
�� ?? ⊕ K •

2 1
�� ?? ⊕ K ◦

1 2
�� ?? ⊕ K ◦

2 1
�� ??

with Σ2 action defined by

•

1 2
�� ?? (12) = •

2 1
�� ?? , ◦

1 2
�� ?? (12) = ◦

2 1
�� ?? .

Then the relations R can be represented as follows (when described by planar trees)

•

•
c

a b

�� ??

�� ??
−

•

•
a

cb

??�� ??��
=

•

•

b

a c

�� ??

�� ??
−

•

•
a

bc

??�� ??��
,

◦

◦
c

a b

�� ??

�� ??
−

◦

◦
a

cb

??�� ??��
=

◦

◦

b

a c

�� ??

�� ??
−

◦

◦
a

bc

??�� ??��
,

•

◦
c

a b

�� ??

�� ??
−

•

◦
a

cb

??�� ??��
+

◦

•
c

a b

�� ??

�� ??
−

◦

•
a

cb

??�� ??��
=

•

◦

b

a c

�� ??

�� ??
−

•

◦
a

bc

??�� ??��
+

◦

•

b

a c

�� ??

�� ??
−

◦

•
a

bc

??�� ??��
.

The Koszul dual operad PreLie2
! is then generated by

K •

1 2
�� ??

∨

⊕ K •

2 1
�� ??

∨

⊕ K ◦

1 2
�� ??

∨

⊕ K ◦

2 1
�� ??

∨

with Σ2 action given by

•

1 2
�� ??

∨

(12) = − •

2 1
�� ??

∨

, ◦

1 2
�� ??

∨

(12) = − ◦

2 1
�� ??

∨

.
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It is in fact more natural to work with a different basis in PreLie2
! defined by

•

1 2
�� ?? := •

1 2
�� ??

∨

, •

2 1
�� ?? := − •

2 1
�� ??

∨

, ◦

1 2
�� ?? := ◦

1 2
�� ??

∨

, ◦

2 1
�� ?? := − ◦

2 1
�� ??

∨

.

The Σ2 action is then given on the new basis by

•

1 2
�� ?? (12) = •

2 1
�� ?? , ◦

1 2
�� ?? (12) = ◦

2 1
�� ?? ,

and the relations R⊥ are

•

•
c

a b

�� ??

�� ??
=

•

•
a

cb

??�� ??��
=

•

•

b

a c

�� ??

�� ??
=

•

•
a

bc

??�� ??��
,

◦

◦
c

a b

�� ??

�� ??
=

◦

◦
a

cb

??�� ??��
=

◦

◦

b

a c

�� ??

�� ??
=

◦

◦
a

bc

??�� ??��
,

•

◦
c

a b

�� ??

�� ??
=

•

◦
a

cb

??�� ??��
=

•

◦

b

a c

�� ??

�� ??
=

•

◦
a

bc

??�� ??��
=

◦

•
c

a b

�� ??

�� ??
=

◦

•
a

cb

??�� ??��
=

◦

•

b

a c

�� ??

�� ??
=

◦

•
a

bc

??�� ??��
.

Since the Koszul dual operad of PreLie was named Perm (from permutation)
by F. Chapoton [Cha01], we give the name Perm2 to the Koszul dual operad
of PreLie2. It will be clear from the context whether decorated trees belong to
PreLie2 or Perm2.

In [Cha01] Perm(n) was described as Perm(n) = Kn with Σn acting on the
standard basis {e1, . . . , en} by eiσ = eσ−1(i) for σ ∈ Σn.

Proposition 2.5. Perm2(n) = Perm(n)⊕ · · ·⊕Perm(n), where the sum consists

of n terms. In terms of trees decorated with E∨ a basis for Perm2(n) is given by





◦...
◦

•...
•

an−1

ai+1

ai

a1j

??

??��
??

�� ??





0≤i≤n−1
1≤j≤n

where (a1, . . . , an−1) = (1, . . . , j − 1, j + 1, . . . , n).
Denote by Cn

i,j the basis element in Perm2(n) corresponding to a given pair (i, j).
The composition product in Perm2 is then given by

µ(Cn
i,j ; C

m1

i1,j1
, . . . , Cmn

in,jn
) = Cm1+···+mn

i+i1+···+in,m1+···+ml−1+jl

Proof. Writing an element of F (E∨) (i.e. a tree whose vertices are decorated with
elements of E∨) in the plane, we see that the relations R⊥ yield that any decorated
tree is equivalent to one of the above form. The relations also imply that on any
such tree we may permute all but the leftmost index, i.e.

◦...
◦

•...
•

an−1

ai+1

ai

a1j

??

??��
??

�� ??

=

◦...
◦

•...
•

aσ(n−1)

aσ(i+1)
aσ(i)

aσ(1)j

??

??��
??

�� ??

for any σ ∈ Σn−1.

Since the relations are homogenous in the number of white and black dots, this
number is also an invariant under the relations. As there are no other relations, the
class of any decorated tree in Perm2(n) is completely determined by its leftmost
index j, which ranges over [n], and the number of black dots i, of which there can
be 0 to n − 1. Note that Cn

i,j corresponds to (0, . . . , 0, ej, 0, . . . , 0) with ej in the
i + 1th component of the direct sum.

The definition of the composition in the free operad as grafting of trees with the
obvious numbering of the indices gives the second claim. �
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For completeness we recall here the definition of the operad of two compatible
Lie brackets of [DK07].

Definition 2.6. Lie2 is the quadratic operad F (E)/〈R〉 where the Σ-module E is
given by

E(n) :=

{
sgn2 ⊕ sgn2 if n = 2
0 if n 6= 2

We represent a natural basis of E(2) as two binary corollas

sgn2 ⊕ sgn2 = K •

1 2
�� ?? ⊕ K ◦

1 2
�� ??

with Σ2 action defined by

•

1 2
�� ?? (12) = − •

1 2
�� ?? , ◦

1 2
�� ?? (12) = − ◦

1 2
�� ?? ,

Then the relations R are as follows

•

•
c

a b

�� ??

�� ??
+

•

•
a

b c

�� ??

�� ??
+

•

•

b

c a

�� ??

�� ??
= 0,

◦

◦
c

a b

�� ??

�� ??
+

◦

◦
a

b c

�� ??

�� ??
+

◦

◦

b

c a

�� ??

�� ??
= 0,

•

◦
c

a b

�� ??

�� ??
+

•

◦
a

b c

�� ??

�� ??
+

•

◦

b

c a

�� ??

�� ??
+

◦

•
c

a b

�� ??

�� ??
+

◦

•
a

b c

�� ??

�� ??
+

◦

•

b

c a

�� ??

�� ??
= 0.

Lie2
! is generated by

K •

1 2
�� ??

∨

⊕ K ◦

1 2
�� ??

∨

with Σ2 action given by

•

1 2
�� ??

∨

(12) = •

1 2
�� ??

∨

, ◦

1 2
�� ??

∨

(12) = ◦

1 2
�� ??

∨

.

From now on we will skip the ∨. The relations R⊥ are then given by

•

•
c

a b

�� ??

�� ??
=

•

•
a

b c

�� ??

�� ??
=

•

•

b

c a

�� ??

�� ??
,

◦

◦
c

a b

�� ??

�� ??
=

◦

◦
a

b c

�� ??

�� ??
=

◦

◦

b

c a

�� ??

�� ??
,

•

◦
c

a b

�� ??

�� ??
=

•

◦
a

b c

�� ??

�� ??
=

•

◦

b

c a

�� ??

�� ??
=

◦

•
c

a b

�� ??

�� ??
=

◦

•
a

b c

�� ??

�� ??
=

◦

•

b

c a

�� ??

�� ??
.

Lie2
! was given the name Com2 in [DK07]. Though we use the same notation for

Com2 as we did for Perm2 no confusion should arise.

Proposition 2.7. Com2(n) = 1ln⊕· · ·⊕1ln, where the sum consists of n terms and

1ln denotes the trivial representation of Σn. In terms of trees decorated with E∨ a

basis for Com2(n) is given by





◦...
◦

•...
•

n

i+2

i+1

21

??

??��
??

�� ??





0≤i≤n−1

.

Denote by Dn
i the basis element in Com2(n) corresponding to i black dots. The

composition product in Com2 is then given by

µ(Dn
i ; Dm1

i1
, . . . , Dmn

in
) = Dm1+···+mn

i+i1+···+in

Proof. Obvious. �
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A Σ-set is a collection of sets, S = (Sn)n∈N, equipped with a right action of the
symmetric group Σn on Sn. Define a monoidal product in the category of Σ-sets
by:

S ◦ Tn =
⊔

1≤k≤n

(
⊔

i1+···+ik=n

Sk × (Ti1 × · · · × Tik
) ×Σi1×···×Σik

Σn

)

Σk

,

where we consider the coinvariants with respect to the action of Σk given by
(s, (ti1 , . . . , tik

), σ)τ = (sτ, (tiτ(1)
, . . . , tiτ(k)

), τ̄−1σ) and τ̄ is the induced block per-
mutation. A unit I with respect to this product is given by the Σ-set defined
by

In :=

{
[1] if n = 1
∅ if n 6= 1.

Definition 2.8. A set operad is a monoid (P , µ : P ◦ P → P , ε : I → P) in the
monoidal category (Σ-sets, ◦, I).

To any set operad P one can associate an algebraic operad P̃ by considering

formal linear combinations of the elements, i.e. P̃(n) = K[Pn]. To an element
(ν1, . . . , νr) ∈ Pi1 × · · · × Pik

one can associate a map µν1,...,νk
: Pk → Pi1+···+ik

defined as
µν1,...,νk

(ν) = µ(ν; ν1, . . . , νk).

The following definition was introduced in [Val07] since it is a crucial property
for set theoretic operads in order to use the poset method.

Definition 2.9. A set operad P is called a basic-set operad if the map µν1,...,νr
is

injective for all (ν1, . . . , νr) ∈ P(i1) × · · · × P(ir).

Lemma 2.10. Perm2 and Com2 come from basic-set operads.

Proof. First we note that Perm2 comes from a set theoretic operad, Perm2 = P̃ ,
where Pn = {Cn

i,j} and the Cn
i,j are the basis elements given in Proposition 2.5.

The map µC
m1
i1,j1

,...,C
mn
in,jn

sends Cn
k,l to Cm1+···+mn

k+i1+···+in,m1+···+ml−1+jl
. Since ms ≥ 1

and 0 ≤ js ≤ ms − 1, clearly this map is injective.
Also Com2 comes from a set operad Q, where Qn = {Dn

i } and the Dn
i are as

in Proposition 2.7. The proof is immediate from the definiton of the composition
product. �

3. Operadic partition posets

To a set operad P one can associate a certain poset encoding important proper-
ties of P , as was done in [Val07]. We present it slightly differently and then recall
the definition of the poset of pointed partitions. See [BW83, Val07] for definitions
of the various notions related to posets.

Definition 3.1. Let P be a set operad. A P-partition of [n] is the following
data {(B1, p1), . . . , (Bs, ps)}, where {B1, . . . , Bs} is a partition of [n] and pi ∈
P(|Bi|). We let ΠP (n) denote the set of all P-partitions of [n] and let ΠP denote
the collection {ΠP(n)}n∈N. For an algebraic operad O coming from a set operad

P , i.e. O = P̃ , we will write ΠO for ΠP .

Remark 3.2. One can think of this as enriching a partition with elements of an
operad or, shifting the perspective, as labeling the input of the operation that an
element pi ∈ P(|Bi|) describes with the elements of the block Bi instead of with
[|Bi|]. E.g. one can identify



{3, 4, 7},
◦

◦

1

2 3

�� ??

�� ??



 ∼
◦

◦

3

4 7

�� ??

�� ??
.
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The definition in [Val07] uses ordered sequences of elements of the blocks instead
of unordered blocks and then considers equivalence classes of pairs (SB , p), where
SB is an ordered sequence of the elements of a block B where each element appears
exactly once and p ∈ P(|SB|). E.g.


(3, 4, 7),

◦

◦

1

2 3

�� ??

�� ??


 ∼


(4, 7, 3),

◦

◦

3

1 2

�� ??

�� ??


 ∼

◦

◦

3

4 7

�� ??

�� ??
.

Our definition corresponds to choosing the representative of a class with the ele-
ments of the sequence in ascending order. In the following we will assume that, given
a partition α = {(A1, p1), . . . , (Ar , pr)}, the elements of a block Ai = {ai

1, . . . , a
i
mi

}
are indexed in ascending order, i.e. ai

j < ai
j+1.

Next we define a partial order on ΠP(n) .

Definition 3.3. Let α = {(A1, p1), . . . , (Ar , pr)} and β = {(B1, q1), . . . , (Bs, qs)}
be two P-partitions of [n]. We let α ≤ β if

(i) {A1, . . . , Ar} is a refinement of {B1, . . . , Bs}, i.e. each Bj is the union of
one or more Ai.

(ii) when Bj = Ai1 ∪ · · · ∪ Ait
then there exists a p ∈ Pt such that qj =

µ(p; pi1 , . . . , pit
)σ−1, where σ ∈ Σ|Bj | is the obvious permutation associ-

ated to (
bj
1 . . . bj

|Bj|

ai1
1 . . . ait

mit

)
.

We call ΠP together with this partial order the operadic partition poset of P .

Remark 3.4. We define the order in the opposite way to the one in [Val07] to
make it correspond to the way it is defined in [CV06]. Note that with this in mind
our definition leads to the same ordering of the corresponding equivalence classes.

Example 3.5. Using the identification in Remark 3.2 we see that in ΠPerm2(7)




◦

◦

4

3 7

�� ??

�� ??
,

◦

◦

6

1 2

�� ??

�� ??
,

5



 ≤





◦

◦

4
•

7

5 3

�� ??

�� ??

�� ??
,

◦

◦

6

1 2

�� ??

�� ??





since

µ( •

1 2
�� ?? ;

5

,
◦

◦

4

3 7

�� ??

�� ??
) =

•

◦

◦

5 4

3 7

�� JJ

�� ??

�� ??
=

◦

◦

4
•

7

5 3

�� ??

�� ??

�� ??
.

Example 3.6. ΠPerm(3) can be depicted as in Figure 1, with greater elements
above.

In [Val07] pointed partitions were introduced to describe ΠPerm.

Definition 3.7. A pointed partition of [n] is a partition β = {B1, . . . , Bs} of
[n] together with a distinguished element bi in each block Bi. This element is

emphasized by bi and we define p(Bi) := bi. The set {p(Bi)|Bi ∈ β} of pointed
elements of β is denoted by p(β). We denote the set of all pointed partions of [n]
by Πp

n and denote the collection {Πp
n}n∈N by Πp.

We define a partial order relation on Πp
n by α ≤ β if α is a refinement of β as a

partition and p(β) ⊂ p(α). Πp together with this partial order is called the poset

of pointed partitions.

Remark 3.8. What we call a pointed partition here is precisely what is called a
pointed partition of type A in [CV06].
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◦

◦

3

1 2

�� ??

�� ??
◦

◦

1

2 3

�� ??

�� ??
◦

◦

2

3 1

�� ??

�� ??

◦

,
321

??��
◦

,
231

??��
◦

,
312

??��
◦

,
132

??��
◦

,
213

??��
◦

,
123

??��

, ,
1 2 3

Figure 1. The poset ΠPerm(3)

123

��
��

��
��

��
��

33
33

33
33

33
33

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 123

��
��

��
��

��
��

ppppppppppppppppppppppp

33
33

33
33

33
33

NNNNNNNNNNNNNNNNNNNNNNN 123

lllllllllllllllllllllllllllllll

��
��

��
��

��
��

33
33

33
33

33
33

1|23

NNNNNNNNNNNNNNNNNNNNNN 1|23

EEEEEEEEE
EEEEEEE
2|13

33
33

33
33

33
33

2|13

��
��

��
��

��
��

3|12

yyyy
yyyyyyyyy

yyy
3|12

pppppppppppppppppppppp

1|2|3

Figure 2. The poset Πp

3

In [Val07], Vallette studied homological properties of the order complex associ-
ated to the partition poset of an operad. The following is the main result.

Theorem 3.9 (Theorem 9 of [Val07]). Let P be a basic-set quadratic operad, then

the associated algebraic operad P̃ is Koszul iff each subposet [0̂, γ] of each ΠP(n) is

Cohen-Macaulay, where γ is a maximal element of ΠP (n).

This theorem was used in [CV06] to show the Koszulness of Perm (over a field
of any characteristic and over Z, it was shown for a field of characteristic 0 in
[CL01]). There it was shown that for each Πp

n (isomorphic to ΠPerm(n) by [Val07])

all subposets [0̂, γ] of the form in the above theorem were totally semimodular.
Hence by Corollary 5.2 of [BW83] they are CL-shellable and by Proposition 2.3 of
the same paper shellable from whence it follows that they are Cohen-Macaulay by
Theorem 4.2 of [Gar80]. The chain of implications is
(3.10)

totally semimodular =⇒ CL-shellable =⇒ shellable =⇒ Cohen-Macaulay.
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4. Weighted partitions, Com2 and Lie2

Contrary to the claims in [DK07], the maximal chains of ΠCom2 are not totally
semimodular as we will see. To handle posets of this type we introduce a new kind
of partitions which we call weighted partitions. We then use this poset to show the
Koszulness of Com2 and Lie2 via Vallette’s poset method.

Definition 4.1. Given a partition β = {B1, . . . , Bs} of [n], we assign a weight wi

to each block Bi = {bi
1, . . . , b

i
ki
}, with 0 ≤ wi ≤ ki − 1. The weight of the block is

denoted by w(Bi) := wi. The weight of a partition β is w(β) := w(B1)+· · ·+w(Bs).
A partition with this extra structure we call a weighted partition and we denote the
set of weighted partions of [n] by Πw

n . The collection {Πw
n}n∈N is denoted by Πw.

Let n(β) be the number of blocks of β. Then we can define a partial order on
Πw

n by letting α ≤ β if

(i) the partition of α is a refinement of the partition of β and
(ii) w(β) − w(α) ≤ n(α) − n(β).

We call Πw together with this partial order the poset of weighted partitions.

Remark 4.2. We see that the covering relation ≺ of the above partial order is
given by α ≺ β if

(i) the partition of α is a refinement of that of β obtained by splitting exactly
one block of β into two and

(ii) 0 ≤ w(β) − w(α) ≤ 1.

We denote the maximal elements of Πw
n by µt, 0 ≤ t ≤ n−1, where t denotes the

weight. Any element α of Πw
n can be described by α = {(A1, w1), . . . , (Am, wm)}

where {A1, . . . Ar} is a partition of {1, . . . , n} and wi = w(Ai).
We observe that Πw

n is a pure poset, i.e. all maximal chains have the same length.
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Figure 3. The poset Πw
3

Remark 4.3. In Figure 3. the weight w of a block B = {b1, . . . , bk} is indicated by
bw+1, recall that we order the elements bi of a block in increasing order. E.g. the
block {1, 2} has weight 0 whereas the block {1, 3} has weight 1.

Lemma 4.4. The poset ΠCom2(n) is isomorphic to Πw

n.

Proof. There is an obvious bijection between the elements of ΠCom2(n) and Πw
n

where a block B enriched with an element D
|B|
i with i black product(s) corresponds

to the same block B with weight i in Πw
n .
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Now let α = {(A1, p1), . . . , (Am, pm)} be a Com2-partition, then β covers α iff

β = {(Aj ∪ Ak, µ( •�� ??; pj, pk)), (A1, p1), . . . , ̂(Aj , pj), . . . , ̂(Ak, pk), . . . , (Am, pm)}

or

β = {(Aj ∪ Ak, µ( ◦�� ??; pj , pk)), (A1, p1), . . . , ̂(Aj , pj), . . . , ̂(Ak, pk), . . . , (Am, pm)}.

The first case corresponds to increasing the weight by one when uniting two blocks
of a weighted partition and the second case to keeping it constant, which precisely
is the covering relation of Πw

n . �

Definition 4.5. A finite poset P is called semimodular if it is bounded and for
any distinct κ, λ ∈ P covering a ν ∈ P there exists a ω ∈ P covering both κ and
λ. P is said to be totally semimodular if it is bounded and all intervals [ζ, ξ] are
semimodular.

Remark 4.6. ΠCom2 has maximal intervals which are not totally semimodular.
E.g. consider the elements

( ◦

1 2
�� ?? ,

3

,
4

), (
1

,
2

, ◦

3 4
�� ?? ) ∈ [(

1

,
2

,
3

,
4

), (
◦

•

4
•

3

1 2

�� ??

�� ??

�� ??
)] ⊂ ΠCom2(4).

They both cover (
1

,
2

,
3

,
4

) but the only element covering both of them is ( ◦

1 2
�� ?? , ◦

3 4
�� ?? )

which does not belong to the interval [(
1

,
2

,
3

,
4

), (
◦

•

4
•

3

1 2

�� ??

�� ??

�� ??
)].

Remembering the chain of implications (3.10) at the end of the previous section
we see that it is in fact sufficient to show that the maximal intervals of ΠCom2

are CL-shellable. By Theorem 3.2 of [BW83], showing CL-shellability of a poset
is equivalent to showing that it allows a recursive atom ordering. Recall that the
atoms of a poset are the elements covering 0̂.

Definition 4.7. A graded poset P admits a recursive atom ordering if the length
of the poset is 1 or if the length is greater than 1 and there is an ordering α1, . . . , αm

of the atoms of P satisfying

(i) For all j ∈ [m], [αj , 1̂] admits a recursive atom ordering in which the atoms

of [αj , 1̂] that come first in the ordering are those that cover some αi, where
i < j.

(ii) For all i < j, if αi, αj < λ then there is a k < j, not necessarily distinct
from i, and an element κ ≤ λ such that κ covers both αj and αk

Lemma 4.8. Πw

n allows a recursive atom ordering for any n.

Proof. Since Πw
n is pure, [0̂, µt] is graded. Now suppose the length of [0̂, µt] is greater

than 1, otherwise we are done. We may also assume that 0 < t < n − 1, since if
t = 0 or t = n − 1 we have that [0̂, µt] is isomorphic to Πn, the poset of ordinary
partitions of n. This poset is easily seen to be totally semimodular, analogously
to the proof in [CV06] that Πp

n is totally semimodular. Thus by Theorem 5.1 of
[BW83] any ordering of the atoms is a recursive atom ordering.

When denoting pointed weighted partitions we will supress the blocks only con-
taining one element e.g.

{({i, j}, w), ({k, l}, w′)} = {({i, j}, w), ({k, l}, w′), ({1}, 0), . . . , ̂({i}, 0), . . . ,

̂({j}, 0), . . . , ̂({k}, 0), . . . , ̂({l}, 0), . . . , ({n}, 0)}.
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Denote the atom {({i, j}, w)} by αw
i,j , where the upper index indicates the weight.

We claim that any atom ordering of the form

(4.9) α0
i1,j1

⊣ α1
i1,j1

⊣ α0
i2,j2

⊣ α1
i2,j2

⊣ · · · ⊣ α0
ir ,jr

⊣ α1
ir ,jr

fullfills the second criterion of being a recursive atom ordering, with α ⊣ β meaning
that α is less than β in the atom ordering.

Let αw1

i,j and αw2

k,l be distinct atoms with αw1

i,j ⊣ αw2

k,l and suppose αw1

i,j ,αw2

k,l ≤ γ.

We want to show that there is a δ ≤ γ and a αw′

i′,j′ ⊣ αw2

k,l such that αw′

i′,j′ , α
w2

k,l ≺ δ.

Lemma 1 of [DK07] shows that this is true, with αw′

i′,j′ = αw1

i,j , for all cases except
when i, j, k, l are distinct and w1 = w2.

Now consider this case, i.e. w1 = w2 =: w, and let w̃ be the element of {0, 1} \
{w}. By the ordering (4.9) of the atoms, αw

i,j ⊣ αw
k,l implies αw̃

i,j ⊣ αw
k,l and either

{({i, j}, w), ({k, l}, w)} ≤ γ and covers αw
i,j and αw

k,l, in which case we take αw′

i′,j′ =

αw
i,j and δ = {({i, j}, w), ({k, l}, w)}, or {({i, j}, w̃), ({k, l}, w)} ≤ γ and covers αw̃

i,j

and αw
k,l, in which case we take αw′

i′,j′ = αw̃
i,j and δ = {({i, j}, w̃), ({k, l}, w)}.

We also have to show that any interval [αw
i,j , µt] allows a recursive atom ordering

in which the atoms that come first are those that cover some αw
k,l ⊣ αw

i,j .

We also need to show that, given the ordering (4.9), [αw
i,j , µt] satisfies the first

criterion of being a recursive atom ordering. We may identify

{{i, j}, 1, . . . , î, . . . , ĵ, . . . , n} ∼ [n − 1]

and it is easily seen that [αw
i,j , µt] is isomorphic to a maximal interval [0̂, µt−w] in

Πpw

n−1. Thus checking the above step is readily done if we may order the atoms in
the same way as above. We only need to show that some way of ordering the atoms
of [αw

i,j , µt] in pairs as above satisfies that the first atoms are the ones covering some

atom αw′

i′,j′ ⊣ αw
i,j . After that we can proceed by induction.

We may assume that the length of [αw
i,j , µt] is greater than 1, since otherwise

we are done. We may also assume that 0 < t − w < n − 2, since if t = w or
t = n − 2 + w the interval [αw

i,j , µt] is isomorphic to the interval [{i, j}, [n]] in the
poset of ordinary partitions. In the same way as above we see that any such interval
is is totally semimodular whereby any ordering of the atoms is a recursive atom
ordering. We may therefore freely order the atoms of [αw

i,j , µt] so that the atoms

that come first are those that cover some atom less than αw
i,j in the ordering (4.9).

Now the atoms are either of the form {({i, j}, w), ({k, l}, v)} which we denote by
βv

k,l or of the form {({i, j, k}, w + v)} which we denote by βv
k , where v ∈ {0, 1}.

We have that βv
k,l covers some αw′

i′,j′ ⊣ αw
i,j , namely αw′

i′,j′ = αv
k,l, iff αv

k,l ⊣ αw
i,j .

Since by the atom ordering of [0̂, µt] we have that αv
k,l ⊣ αw

i,j iff αṽ
k,l ⊣ αw

i,j , we have

that βv
k,l covers some αw′

i′,j′ ⊣ αw
i,j iff βṽ

k,l covers some αw′

i′,j′ ⊣ αw
i,j .

Similarily we have that βv
k may cover some αw′

i′,j′ ⊣ αw
i,j , where {i′, j′} ⊂ {i, j, k}.

Again αw′

i′,j′ ⊣ αw
i,j iff αw̃′

i′,j′ ⊣ αw
i,j . Hence βv

k covers some αw′

i′,j′ ⊣ αw
i,j iff βṽ

k does.

Thus we may order the atoms of [αw
i,j , µt] by first putting all pairs of atoms,

differing only in weight, covering some atom less than αw
i,j followed by all pairs of

atoms not covering any atom less than αw
i,j . Using the aforementioned identification

[αw
i,j , µt] ∼= [0̂, µt−w], we just proceed by induction.

�

Theorem 4.10. Com2 and Lie2 are Koszul.

Proof. By Lemma 4.8 Πw
n allows a recursive atom ordering and therefore is CL-

shellable. The chain of implications (3.10) thus gives us that Πw
n is Cohen-Macaulay.

Lemma 4.4 yields that this also is true for ΠCom2 . By Lemma 2.10 we have that the
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set operad associated to Com2 is a basic-set operad. Thus we may apply Theorem
3.9 and conclude that Com2 is Koszul and so also its Koszul dual operad Lie2. �

5. Pointed weighted partitions, Perm2 and PreLie2

In this section we will prove that PreLie2 is Koszul by considering its Koszul dual
operad Perm2. To prove the Koszulness of Perm2 via Vallette’s poset method we
have to introduce a new kind of partitions, pointed weighted partitions. The poset
of such partitions combine properties of the poset of pointed partitions of [CV06]
and the poset of weighted partitions from the previous section. By this we obtain a
poset structure which keeps track of both the distinguished input and the number
of occurrences of ◦�� ??and •��?? in Perm2. This process is completely analogous to what
we did in the previous section. We include it in detail for the sake of completeness.

Definition 5.1. Given a partition β = {B1, . . . , Bs} of [n], then in a block Bi =
{bi

1, . . . , b
i
ki
} one of the bi

l is pointed out. We denote this by p(Bi) := bi
l. We

denote the set of pointed elements of a partition β by p(β). We also assign a weight
wi to each block Bi, with 0 ≤ wi ≤ ki − 1. The weight of the block is denoted
by w(Bi) := wi. The weight of a partition β is w(β) := w(B1) + · · · + w(Bs).
A partition with this extra structure we call a pointed weighted partition and we
denote the set of pointed weighted partions of [n] by Πpw

n . The collection {Πpw
n }n∈N

is denoted by Πpw

Let n(β) be the number of blocks of β. We define a partial order on Πpw
n by

letting α ≤ β if

(i) the partition of α is a refinement of the partition of β,
(ii) p(β) ⊂ p(α) and
(iii) w(β) − w(α) ≤ n(α) − n(β).

We call Πpw together with this partial order the poset of pointed weighted partitions.

Remark 5.2. We see that the covering relation ≺ is given by α ≺ β if

(i) the partition of α is a refinement of that of β obtained by splitting exactly
one block of β into two,

(ii) p(β) ⊂ p(α) and
(iii) 0 ≤ w(β) − w(α) ≤ 1.

We denote the maximal elements of Πpw
n by µs,t, 0 ≤ s, t ≤ n− 1, where the first

index is the pointed element and the second is the weight. Any element α of Πpw
n

can be described by α = {(A1, a1, w1), . . . , (Am, am, wm)} where {A1, . . . Am} is a
partition of {1, . . . , n}, ar = p(Ar) and wr = w(Ar).

We observe that Πpw
n is a pure poset, i.e. all maximal chains have the same

length.

Remark 5.3. In Figure 4. the weight w of a block B = {b1, . . . , bk} is indicated
by bw+1, recall that we order the elements bi of a block in increasing order. The

pointed element bj is indicated by bj. E.g. the block {1,3} has weight 1 and the
element 3 is pointed out whereas the block {1,2} has weight 0 and the element 2
is pointed out.

Lemma 5.4. The poset ΠPerm2 is isomorphic to Πpw.

Proof. There is an obvious bijection between the elements of ΠPerm2(n) and Πpw
n

where a block B = {b1, . . . , bu} enriched with an element Cu
i,j with i black prod-

uct(s) corresponds to the element in Πpw
n given by the same block B with weight i

and bj pointed out.
Now let α = {(A1, p1), . . . , (Am, pm)} be a Perm2-partition, then β covers α iff

β = {(Aj ∪ Ak, µ( •�� ??; pj, pk)), (A1, p1), . . . , ̂(Aj , pj), . . . , ̂(Ak, pk), . . . , (Am, pm)}
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Figure 4. The poset Πpw

3 .

or

β = {(Aj ∪ Ak, µ( ◦�� ??; pj, pk)), (A1, p1), . . . , ̂(Aj , pj), . . . , ̂(Ak, pk), . . . , (Am, pm)}

or β is given as above but with pj and pk switching places in the operadic compo-
sition. The first case corresponds to increasing the weight by one when uniting two
blocks of a weighted partition and the second case to keeping it constant. Which
of pj and pk that is grafted to the left leg of the corolla corresponds to which of
the pointed elements of the united blocks that stay pointed. This is precisely the
covering relation of Πpw

n . �

As in the previous section we want to show CL-shellability of the maximal in-
tervals of the poset we study and again we do this by showing that they allow a
recursive atom ordering. The proof combines the arguments of Lemma 4.8 and
Lemma 1.10. of [CV06].

Lemma 5.5. Any maximal interval [0̂, µs,t] of Πpw

n allows a recursive atom order-

ing.

Proof. Since Πpw
n is pure, [0̂, µs,t] is graded. Now suppose the length of [0̂, µs,t] is

greater than 1, otherwise we are done. We may also assume that 0 < t < n − 1,
since if not, we have that [0̂, µs,t] is isomorphic to the interval [0̂, µs] in the poset of
pointed partitions Πp

n. By [CV06] any such interval is totally semimodular. Thus
by Theorem 5.1 of [BW83] any ordering of the atoms is a recursive atom ordering.

When denoting pointed weighted partitions we will supress the blocks only con-
taining one element e.g.

{({i, j}, p, w), ({k, l}, p′, w′)} = {({i, j}, p, w), ({k, l}, p′, w′), ({1}, 1, 0), . . . ,

̂({i}, i, 0), . . . , ̂({j}, j, 0), . . . , ̂({k}, k, 0), . . . , ̂({l}, l, 0), . . . , ({n}, n, 0)}.

Denote the atom {({i, j}, p, w)} by αp,w
i,j , where the first upper index indicates the

pointed element and the second the weight.
We claim that any ordering of the form

(5.6) αp1,0
i1,j1

⊣ αp1,1
i1,j1

⊣ αp2,0
i2,j2

⊣ αp2,1
i2,j2

⊣ · · · ⊣ αpr ,0
ir ,jr

⊣ αpr ,1
ir ,jr
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fullfills the second criterion of being a recursive atom ordering, with α ⊣ β meaning
that β is greater than α in the atom ordering.

Let αp1,w1

i,j and αp2,w2

k,l be distinct atoms with αp1,w1

i,j ⊣ αp2,w2

k,l and suppose

αp1,w1

i,j ,αp2,w2

k,l ≤ γ. We want to show that there is a δ ≤ γ and a αp′,w′

i′,j′ ⊣ αp2,w2

k,l

such that δ ≻ αp′,w′

i′,j′ , αp2,w2

k,l . We have three main cases to consider.

(i) {i, j}={k, l}. Since the length of [0̂, µs,t] is greater than 1 there must be
at least one m ∈ [n] \ {i, j} such that {i, j, m} is a subset of a block B
in γ. Then δ = {({i, j, m}, p, w)} is an element covering both αp1,w1

i,j and

αp2,w2

k,l and which is less than γ, where p and w depend on in which of three
subcases we are:
(a) p1 = p2 and w1 6= w2: p = p(B) if p(B) = p1 or p(B) = m otherwise

any of them, and w = max(q, v).
(b) p1 6= p2 and w1 = w2: p = m and w = w1 if w(B) = w1 and

w = w1 + 1 otherwise.
(c) p1 6= p2 and w1 6= w2: p = m and w = max(w1, w2).

(ii) {i, j} ∩ {k, l} = {m}, for some m ∈ {i, j}. Let n be the element of {k, l} \
{m}. Since both atoms are less then γ we must have that {i, j, n} is
a subset of a block B in γ. Then δ = {({i, j, n}, p, w)} is an element
covering both αp1,w1

i,j and αp2,w2

k,l and which is less than γ, where p and w
depend on in which of four subcases we are:
(a) p1 = p2 and w1 = w2: p = p1 = m, and w = w1 if w(B) = w1 and

w = w1 + 1 otherwise.
(b) p1 = p2 and w1 6= w2: p = p1 = m and w = max(w1, w2).
(c) p1 6= p2 and w1 = w2: p is any of p1 and p2, and w = w1 if w(B) = w1

and w = w1 + 1 otherwise.
(d) p1 6= p2 and w1 6= w2: p is any of p1 and p2, and w = max(w1, w2).

(iii) {i, j} ∩ {k, l} = ∅. Here we have two subcases:
(a) w1 6= w2: δ = {({i, j}, p1, w1), ({k, l}, p2, w2)} covers both αp1,w1

i,j and

αp2,w2

k,l and will always be less than or equal to any γ greater than
both atoms.

(b) w1 = w2: By the ordering of the atoms αp1,w1

i,j ⊣ αp2,w2

k,l implies

αp1,w̃1

i,j ⊣ αp2,w2

k,l , where w̃1 is the element in {0, 1} \ {w1}. Now since

αp1,w1

i,j ,αp2,w2

k,l ≤ γ either δ = {({i, j}, p1, w1), ({k, l}, p2, w2)} ≤ γ or

δ̃ = {({i, j}, p1, w̃1), ({k, l}, p2, w2)} ≤ γ, where δ covers αp1,w1

i,j and

αp2,w2

k,l whereas δ̃ covers αp1,w̃1

i,j and αp2,w2

k,l .

We also need to show that, given an ordering of the form (5.6), any interval
[αp,w

i,j , µs,t] satisfies the first criterion of being a recursive atom ordering. We may
identify

{{i, j}, 1, . . . , î, . . . , ĵ, . . . , n} ∼ [n − 1]

and we see that [αp,w
i,j , µs,t] is isomorphic to a maximal interval [0̂, µs′,t−w] in Πpw

n−1,

where s′ is the appropriate pointed element after the above identification. Thus
checking the above step is readily done if we may order the atoms in the same way
as above. We only need to show that some way of ordering the atoms of [αp,w

i,j , µs,t]
in pairs as above satisfies that the first atoms are the ones covering some atom

αp′,w′

i′,j′ ⊣ αp,w
i,j . After that we can proceed by induction.

We may assume that the length of [αp,w
i,j , µs,t] is greater than 1, since otherwise we

are done. We may also assume that 0 < t−w < n−2, since if t = w or t = n−2+w
then by the same argument as above the interval is totally semimodular whence
it follows that any ordering of the atoms is a recursive atom ordering. Thus we
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may order the atoms of [αp,w
i,j , µs,t] in accordance with the first criterion of being a

recursive atom ordering.
Now the atoms are either of the form {({i, j}, p, w), ({k, l}, q, v)} which we denote

by βq,v
k,l or of the form {({i, j, k}, q, w+v)} which we denote by βq,v

k , where v ∈ {0, 1}.

Let ṽ be the element of {0, 1} \ {v}.

We have that βq,v
k,l covers some αp′,w′

i′,j′ ⊣ αp,w
i,j , namely αp′,w′

i′,j′ = αq,v
k,l , iff αq,v

k,l ⊣

αp,w
i,j . Since by the atom ordering of [0̂, µs,t] we have that αq,v

k,l ⊣ αp,w
i,j iff αq,ṽ

k,l ⊣ αp,w
i,j ,

we have that βq,v
k,l covers some αp′,w′

i′,j′ ⊣ αp,w
i,j iff βq,ṽ

k,l covers some αp′,w′

i′,j′ ⊣ αp,w
i,j .

Similarily we have that βq,v
k may cover some αp′,w′

i′,j′ ⊣ αp,w
i,j , where {i′, j′} ⊂

{i, j, k}. Again αp′,w′

i′,j′ ⊣ αp,w
i,j iff αp′,w̃′

i′,j′ ⊣ αp,w
i,j . Hence βq,v

k covers some αp′,w′

i′,j′ ⊣ αp,w
i,j

iff βq,ṽ
k does.

Thus we may order the atoms of [αp,w
i,j , µs,t] by first putting all pairs of atoms,

differing only in weight, covering some atom less than αp,w
i,j followed by all pairs of

atoms not covering any atom less than αp,w
i,j . Using the aforementioned identifica-

tion [αp,w
i,j , µs,t] ∼= [0̂, µs′,t−w], we just proceed by induction.

�

Theorem 5.7. Perm2 and PreLie2 are Koszul.

Proof. Using Lemma 5.5, Lemma 2.10 and Lemma 5.4 the proof is completely
analogous to the proof of Theorem 4.10. �
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