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This thesis onsists of two papers:Paper A. Chord properties of digital straight line segmentsThis paper treats digital straight line segments in two di�erent ases, in the 8-onneted plane and in the Khalimsky plane. We investigate them using a newlassi�ation, dividing them into a union of horizontal and diagonal segments.Then we study neessary and su�ient onditions for straightness in both ases,using vertial distanes for ertain points. We also establish neessary and suf-�ient onditions in the 8-onneted plane as well as in the Khalimsky plane bytransforming their hain odes. Using this tehnique we an transform Khalim-sky lines to the 8-onneted ase.Paper B. The number of Khalimsky-ontinuous funtions on intervalsThis paper deals with Khalimsky-ontinuous funtions. We onsider these fun-tions when they have two, three or four points in their odomain. In the aseof two points in the odomain, we see a new example of the lassial Fibonaisequene. In the study of funtions with three and four points in their odomain,we �nd some new sequenes, the asymptoti behavior of whih we investigate.Finally, we onsider Khalimsky-ontinuous funtions with one �xed endpoint.In this ase, we get a sequene whih has the same reursion relation as thePell numbers but di�erent initial values. We also obtain a new example of theDelannoy numbers.
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Paper AChord properties of digitalstraight line segmentsShiva SamieiniaDepartment of Mathematis, Stokholm Universityshiva�math.su.seAbstratWe exhibit the struture of digital straight line segments in the 8-onnetedplane and in the Khalimsky plane by onsidering vertial distanes andunions of two segments.1. IntrodutionIn the �eld of digital geometry one of the themes whih has been studied exten-sively is digital straight lines. Malo¬ and Freeman (1961) and Freeman (1970)introdued the hain ode as a tehnique for representing 8-onneted ars andlines. The most important problem related to straightness is how to reognizethe sets of pixels or odes representing a digital straight line. Rosenfeld (1974)haraterized straightness by the hord property and found two fundamentalproperties of run lengths in a digital line. He stated that the digitized line anonly ontain runs of two di�erent lengths and these run lengths must be onseu-tive integers. Hung and Kasvand (1984) gave a neessary and su�ient onditionfor a digital ar to have the hord property. This ondition made the hord prop-erty easier to hek. Kim (1982) haraterized it by onvexity, and showed thata digital straight line segment is a digital ar whih is digitally onvex.In the present paper we deal with grid points in the 8-onneted plane aswell as the plane equipped with the Khalimsky topology. Digital straight linesegments are speial ases of digital ars. We shall investigate Rosenfeld's digi-tization and his hord property in setion 1.1. Melin (2005) introdued a mod-i�ed version of the hord property of Rosenfeld. He established neessary andsu�ient onditions for straightness in the Khalimsky plane. We mention hisresults in setion 1.3 and put them into another framework using instead vertialdistanes in setion 2.1. Brukstein (1991) presented some transformations onsequenes omposed of two symbols, 0 and 1. These transformations an be de-sribed by matries whih form a well-known group alled GL(2, Z). The mainresults in his paper is that the image of the hain ode under one of these trans-formations represents a digital straight line segment if and only if the originalsequene is the hain ode of a digital straight line segment. Similar transfor-mations have been used by Jamet and Toutant (2006:231) in the ase of threedimensions.



6 Shiva Samieinia: Lientiate ThesisIn setion 2 we shall investigate sets of 8-onneted and Khalimsky-onnetedpoints by dividing them into unions of horizontal and diagonal segments. Thenwe shall present neessary and su�ient onditions in both ases using verti-al distanes for ertain points. We shall also establish neessary and su�ientonditions in the 8-onneted plane as well as in the Khalimsky plane by trans-forming the sequenes of their hain odes. Using this tehnique we transformKhalimsky lines to the 8-onneted ase.1.1. Rosenfeld's digitization of straight linesWe present here Rosenfeld's digitization of straight lines in the digital plane Z
2.First we de�ne the set

C(0) = {x; x1 = 0 and − 1/2 < x2 6 1/2} ∪ {x; x2 = 0 and − 1/2 < x1 6 1/2}.For eah p ∈ Z
2, let C(p) = C(0) + p, whih we shall all the ross with enter

p. Now the Rosenfeld digitization in R
2 is:(1.1) DR : P(R2) → P(Z2), DR(A) = {p ∈ Z

2; C(p) ∩ A 6= ∅}.This digitization is based on the one-dimensional digitization
R ∋ x 7→ ⌈x − 1/2⌉ ∈ Z.The union of all rosses C(p) for p ∈ Z

2 is equal to the set of all grid lines
(R×Z)∪ (Z×R), so that every straight line has a nonempty digitization. Notethat the family of all rosses is disjoint, whih implies that the digitization ofa point is either empty or a singleton set. In the real plane, the onept of astraight line is well-known: it is a set of the form {(1− t)a + tb; t ∈ R}, where aand b are two distint points in the plane. A straight line segment is a onnetedsubset of a straight line (perhaps the whole line).We shall onsider in partiular losed segments of �nite length and we writethem as {(1 − t)a + tb; 0 6 t 6 1}, where a and b are the endpoints. We shalldenote this segment by [a, b]. Like Rosenfeld, we will onsider lines and straightline segments with slope between 0 and 45◦ in the 8-onneted ase and in theKhalimsky plane.We shall say that D is a digital straight line segment, and write D ∈ DSLS 8,if and only if there exists a real line segment the Rosenfeld digitization of whihis equal to D.Rosenfeld (1974) introdued the hord property to haraterize digitalstraight line segments in Z

2:De�nition 1.1. A subset D ⊆ R
2 is said to have the hord property if for allpoints p, q ∈ D the segment [p, q] is ontained in D +B∞

< (0, 1), the dilation of Dby the open unit ball for the l∞ metri.



Paper A. Chord properties of digital straight line segments 7Rosenfeld's digitization of a subset in the plane Z
2 is 8-onneted, but if weonsider it in the Khalimsky plane, it is not neessarily onneted for that topol-ogy. Also, we do not have the hord property with respet to the l∞ distanefor ertain Khalimsky-onneted sets whih are digitizations of straight line seg-ments. Melin (2005) solved these problems by suggesting another digitizationand modi�ed Rosenfeld's hord property. To explain this, we shall start with thede�nition of the Khalimsky plane and then ontinue with Melin's digitization.1.2. The Khalimsky topologyThere are several di�erent ways to introdue the Khalimsky topology on theinteger line. We present the Khalimsky topology by a topologial basis. Forevery even integer m, the set {m − 1, m, m + 1} is open, and for every oddinteger n the singleton {n} is open. A basis is given by

{

{2n + 1}, {2n − 1, 2n, 2n + 1}; n ∈ Z
}

.It follows that even points are losed.A digital interval [a, b]Z = [a, b] ∩ Z with the subspae topology is alled aKhalimsky interval, and a homeomorphi image of a Khalimsky interval into atopologial spae is alled a Khalimsky ar.On the digital plane Z
2, the Khalimsky topology is given by the produttopology. A point with both oordinates odd is open. If both oordinates areeven, the point is losed. These types of points are alled pure. Points with oneeven and one odd oordinate are neither open nor losed; these are alled mixed.Note that the mixed points are only onneted to their 4-neighbors, whereasthe pure points are onneted to all eight neighbors. More information on theKhalimsky plane and the Khalimsky topology an be found in Kiselman (2004).1.3. Continuous Khalimsky digitizationThe Rosenfeld digitization in R

2 does not work well when Z
2 is equipped withthe Khalimsky topology. This means that the Rosenfeld digitization of a straightline segment is not in general onneted for the Khalimsky topology. Melin(2005) introdued a Khalimsky-ontinuous digitization. This digitization givesus Khalimsky-onneted digital straight line segments.Here we reall his de�nition and related results. Let

D(0) = {(t, t) ∈ R
2;−1/2 < t 6 1/2} ∪ {(t,−t) ∈ R

2;−1/2 < t 6 1/2}.For eah pure point p ∈ Z
2, de�ne D(p) = D(0) + p. Note that D(p) is a ross,rotated 45◦, with enter at p, and that D(p) is ontained in the Voronoi ell

{x ∈ R
2; ‖x − p‖∞ 6 1/2}. This means that a digitization with D(p) as a rosswith nuleus p is a Voronoi digitization. We de�ne the pure digitization DP (A)of a subset A of R

2 as
DP (A) = {p ∈ Z

2; p is pure and D(p) ∩ A 6= ∅}.



8 Shiva Samieinia: Lientiate ThesisThis digitization is the basis for the ontinuous digitization. The ontinuousdigitization D(L) of L is de�ned as follows: If L is horizontal or vertial D(L) =
DR(L), the Rosenfeld digitization de�ned in (1.1). Otherwise de�ne DM(L) as

DM(L) = {p ∈ Z
2; (p1 ± 1, p2) ∈ DP (L)} ∪ {p ∈ Z

2; (p1, p2 ± 1) ∈ DP (L)}and let D(L) = DP (L) ∪ DM(L). In this digitization we add mixed points
(p1, p2) if the two points (p1 ± 1, p2) or the two points (p1, p2 ± 1) belong to thepure digitization. Melin (2005) haraterized digital straight line segments inthe 8-onneted and the Khalimsky-onneted ases by using a funtion whihhe alled hord measure.De�nition 1.2. Let A ∈ Pfinite(Z

2) be a �nite set. Then the hord measure of
A, denoted by ξ(A), is de�ned by:

ξ(A) = max
p,q∈A

H(A, p, q),where H(A, p, q) is the distane from the line segment [p, q] to A, whih is de�nedby
H : Pfinite(Z

2) × Z
2 × Z

2 → [0, +∞], H(A, p, q) = sup
x∈[p,q]

min
m∈A

d(m, x).The distane funtion H is related to the Hausdor� distane between A and [p, q]as two subsets of the metri spae (Z2, d).De�nition 1.3. Let A ∈ Pfinite(Z
2). We say that A has the hord property forthe metri d if ξ(A) < 1.As to the Rosenfeld digitization, Melin (2005) showed that a ontinuous Khalim-sky digitization satis�es the hord property for a ertain metri and, onversely,a Khalimsky ar satisfying this hord property is the digitization of a straightline segment. He onsidered a speial metri. Let δ∞ be the metri on R

2 de�nedby
δ∞(x, y) = max

(

1
2
|x1 − y1|, |x2 − y2|

)

;it is the l∞-metri resaled in the �rst oordinate. For eah positive α, we mayde�ne a metri δ∞α (x, y) = max(α|x1 − y1|, |x2 − y2|), but Melin (2005) showedby examples that the hoie α = 1
2
is suitable.We shall all D a digital straight line segment in the Khalimsky plane, andwrite D ∈ DSLSKh if and only if there exists a real straight line segment whoseKhalimsky digitization is equal to D. Melin (2005) proved two theorems thatharaterize DSLSKh.Theorem 1.4. (Melin 2005: Theorem 6.3) The ontinuous Khalimsky digitiza-tion of a straight line segment is a Khalimsky ar (possibly empty) having thehord property for the δ∞-metri (when the slope is between 0◦ and 45◦) or themetri δ̌(x, y) = δ((x2, x1), (y2, y1)) (for lines with slope between 45◦ and 90◦).



Paper A. Chord properties of digital straight line segments 9Theorem 1.5. (Melin 2005: Theorem 6.4) Suppose that a Khalimsky ar
D = {(x, f(x)); x ∈ I} ⊆ Z

2is the graph of a monotone, ontinuous funtion f , and that D has pure end-points. If D has the hord property for the δ∞-metri, then D is the Khalimsky-ontinuous digitization of a straight line segment.Remark 1.6. Melin (2005) de�ned another way to distinguish DSLSKh in theproof of Theorem 1.5. He de�ned a strip S(α, β, ρ) for given α, β, ρ ∈ R by
S(α, β, ρ) = {x ∈ R

2; αx1 + β − ρ(1 + α) 6 x2 6 αx1 + β + ρ(1 + α)},He alled the number ρ the diagonal half-width of the strip. The boundary ofthe strip onsists of two omponents given by the lines x2 = αx1 + β ± ρ(1 + α),i.e., the enter line, x2 = αx1 + β, translated by the vetors (−ρ, ρ) and (ρ,−ρ).As a onsequene of the digitization of pure points, we an see easily that a setof pure points is a subset of a digital straight line segment if and only if they areontained in a strip with a diagonal width stritly less than 1
2
.2. Boomerangs and digital straight line segmentIn this paper we want to haraterize the digital straight line segments, so weonsider the olletion of monotone funtions on a bounded interval. We may re-strit attention to monotone funtions, beause a funtion whih is not monotonean never represent a straight line segment.In the ase of the Khalimsky topology, it is lear that the graph of a dison-tinuous funtion annot have the hord property, so we do not need to onsidersuh funtions. We onsider inreasing funtions; the ase of dereasing fun-tions is similar. For this ase we have the hord property whih we introduedin De�nition 1.3.If P = (pi)n

i=0 is a sequene of points whih is the graph of a funtion f , thuswith pi
2 = f(pi

1), we de�ne its hain ode c = (ci)i=1,...,n by ci = f(i) − f(i − 1),
i = 1, . . . , n. For the funtions we work on, ci is equal to zero or one. (Thisde�nition agrees with the Freeman hain ode in this ase.)The simplest straight line segments in the digital plane are the horizontal,diagonal and vertial ones. In the remaining ases the graph ontains bothhorizontal and diagonal steps; we shall all them onstant and inreasing, re-spetively, so in this ase we have at least one point preeded by a horizontalinterval and followed by a diagonal interval, or onversely.De�nition 2.1. When a graph P is given, we shall say that a digital urveonsisting of m + 1 points, B = (bi)m

i=0, m > 2, is a boomerang in P if it onsistsof a horizontal segment [b0, bk], where 0 < k < m, followed by a diagonal segment
[bk, bm], or onversely, and if B is maximal with this property. We shall all thehorizontal and diagonal segments, Con(B) and Inc(B), respetively.



10 Shiva Samieinia: Lientiate ThesisWe use |Con| = |Con(B)| = k for the number of horizontal intervals in thesegment [b0, bk], and |Inc| = |Inc(B)| = m−k for the number of diagonal intervalsin the segment [bk, bm], or onversely if the horizontal segment omes last. Theyare equal to the number of zeros and ones in the related hain ode, respetively.We introdue |B| = k + (m − k) = m as the sum of |Con(B)| and |Inc(B)|. Weremark that the boomerangs need not be disjoint and that the last segment aboomerang may be a starting segment of the next boomerang, so the number ofboomerangs is equal to the number of verties.We thus divide the olletion of graphs of monotone funtions on boundedintervals into two ases:(I) Horizontal or diagonal;(II) All others.The ase (I) is straightforward. We shall now disuss the seond type ofdigital urves.De�nition 2.2. Given any subset P of R
2 we de�ne its hord set chord(P ) asthe union of all hords, i.e., all segments with endpoints in P , as

chord(P ) =
⋃

x,y∈P

[x, y] ⊆ R
2.We also need the broken line de�ned for a �nite sequene P = (pi)n

i=0,
BL(P ) =

n−1
⋃

i=0

[pi, pi+1] ⊆ R
2.Similarly for an in�nite sequene (pi)i∈N or (pi)i∈Z.Lemma 2.3. For an 8-onneted sequene P = (pi)n
i=0 we have

BL(P ) + B1
<(0, 1) ⊆

n
⋃

i=0

(

{pi} + B∞
< (0, 1)

)

,where BL(P )+B1
<(0, 1) and {pi}+B∞

< (0, 1) are the dilations of BL(P ) and {pi}by the open unit ball for the l1 and l∞ metri, respetively.Proof. We an see easily that(2.1) BL(P ) + B1
<(0, 1) =

n−1
⋃

i=1

[pi, pi+1] + B1
<(0, 1) ⊆

(

{p0, pn} + B1
<(0, 1)

)

∪
(

n−1
⋃

i=0

[pi, pi+1] + {0} × [−1, 1]

)

.We have(2.2) {p0, pn} + B1
<(0, 1) ⊆ {p0, pn} + B∞

< (0, 1),



Paper A. Chord properties of digital straight line segments 11and(2.3) n−1
⋃

i=0

[pi, pi+1] + {0} × [−1, 1] ⊆
n
⋃

i=0

{pi} + B∞
< (0, 1).Then (2.2) and (2.3) give the result. �Remark 2.4. In the equation (2.1), if we onsider an in�nite sequene P = (pi)i∈Z,we have

⋃

i

[pi, pi+1] + B1
<(0, 1) ⊆

⋃

i

(

[pi, pi+1] + {0} × [−1, 1]
)

.2.1. Boomerangs and vertial distaneSuppose that P = (pi)i=0,...,n is a sequene of points whih has b boomerangs.Let V = (vi)b
i=1 be the sequene of all verties of the boomerangs of P . We de�nethe vertial distane dv as dv(x, y) = |x2 − y2| when x1 = y1. We shall show arelation between vertial distanes and DSLS 8 and DSLSKh.Theorem 2.5. Let P = (pi)n

i=0 be an 8-onneted sequene of points whih is thegraph of a funtion and has b boomerangs. Let V = (vi)i=1,...,b be the sequene ofall verties of its boomerangs. Then P ∈ DSLS 8 if and only if for all i = 1, . . . , band all real points a ∈ chord(P ) suh that a1 = vi
1 we have dv(v

i, a) < 1.Proof. Suppose that there is a vertex v = pj for some 0 < j < n and a point
a ∈ chord(P ) with a1 = v1 suh that dv(v, a) > 1. We shall show that P 6∈
DSLS 8. Sine we have dv(v, a) > 1,(2.4) a 6∈ {v} + B∞

< (0, 1).Also(2.5) |a1 − pi
1| > 1 for i 6= j.Therefore, by (2.4), (2.5), we see that

a 6∈ {pi}n
i=0 + B∞

< (0, 1),and so P 6∈ DSLS 8.Conversely, suppose that P 6∈ DSLS 8, so there is a point c and two indies
k, l suh that 0 6 k < l 6 n and c ∈ [pk, pl] but c 6∈ P + B∞

< (0, 1). By Lemma2.3,(2.6) c 6∈ BL(P ) + B1
<(0, 1).De�ne Qk,l = BL((pi)i=k,...,l). Consider the funtion Fk,l : [pk, pl] → R de�ned by

Fk,l(x) = dv(x, y) for y ∈ Qk,l with y1 = x1.



12 Shiva Samieinia: Lientiate ThesisConsider the point x ∈ Qk,l with x1 = c1. By (2.6),
dv(c, x) > 1.Therefore Fk,l(c) > 1. The funtion Fk,l attains its maximum at a point that lieson a vertial line passing through a vertex, so there is a vertex v of the boomerang

B suh that the funtion Fk,l attains its maximum at the point a ∈ [pk, pl] with
a1 = v1, thus

1 6 Fk,l(c) 6 Fk,l(a) = dv(v, a).This shows that, for the vertex v and a point a ∈ chord(P ) with same �rstoordinate as v, we have dv(a, v) > 1. We are done. �We shall now study the same result for Khalimsky-onnetedness. We onsidermixed points m = (m1, m2) whih lie on P and suh that for some vertex v =
(v1, v2), we have m1 = v1 ± 1. In the next theorem we shall show that we havestraightness if and only if the vertial distane is less than one at these mixedpoints.Theorem 2.6. Suppose that P = (pi)n

i=0 is a Khalimsky-onneted sequene withpure endpoints and let b be the number of its boomerangs. Let M be the set ofall mixed points in P . Then P ∈ DSLSKh if and only if for all m ∈ M and all
a ∈ chord(P ) with a1 = m1 we have dv(m, a) < 1.Proof. Suppose that there exist a mixed point m = pj for some 0 < j < n and apoint a ∈ chord(P ) with a1 = m1 suh that dv(m, a) > 1, so that(2.7) a 6∈ {m} + Bδ∞

< (0, 1),where Bδ∞

< (0, 1) is the open unit ball for the metri δ∞.It is lear that
∣

∣a1 − pj−2
1

∣

∣ = 2 and ∣∣a1 − pj+2
1

∣

∣ = 2;so(2.8) ∣

∣a1 − pk
1

∣

∣ > 2 for k > j + 2 and k 6 j − 2.We an see easily also that(2.9) ∣

∣a2 − pj−1
2

∣

∣ =
∣

∣a2 − pj+1
2

∣

∣ > 1.Therefore, by (2.7), (2.8) and (2.9)
a 6∈ P + Bδ∞

< (0, 1).Thus P 6∈ DSLSKh.Conversely, suppose that P ∈ DSLSKh so that there is a straight line L withequation x2 = αx1 + β whose digitization equals the set of points P . Without



Paper A. Chord properties of digital straight line segments 13loss of generality we may assume that 0 < α < 1. As we saw in remark 1.6, thereis a strip
S(α, β, ρ) = {x ∈ R

2; αx1 + β − ρ(1 + α) 6 x2 6 αx1 + β + ρ(1 + α)},with diagonal half-width ρ less than 1
2
, whih ontains P and also chord(P ).We shall show that the vertial distane between an arbitrary mixed point m =

(m1, m2) in M and the two boundary lines S(α, β, ρ) is less than one, so thatthe vertial distane between m and all a ∈ chord(P ) with a1 = m1 is less thanone. Consider a mixed point m in M . Sine α is less than 1, the two pure points
p = (m1−1, m2) and q = (m1 +1, m2) belong to P . Let r ∈ D(p)∩L where D(p)is the ross de�ned in subsetion 1.3. By the onstrution of Melin's digitizationwhih we mentioned in subsetion 1.3, the distane with l∞ metri between thepure point p and the line segment L is less than 1

2
, i.e.,(2.10) d∞(p, r) < 1

2
.The diagonal half-width of the strip S is less than 1

2
, so the distane with the l∞metri between the line segment L and the strip S is less than 1

2
. Thus(2.11) d∞(r, S) < 1

2
.By (2.10) and (2.11)(2.12) d∞(p, S) 6 d∞(p, r) + d∞(r, S) < 1.In the same way, we have(2.13) d∞(q, S) < 1.By (2.12) and (2.13), we onlude that dv(m, a) < 1 for all a ∈ S with a1 = m1.

�3. Boomerangs and straightnessWe shall now disuss straightness by onsidering boomerangs and using the on-ditions on vertial distanes in Theorems 2.5 and 2.6. First we just onsiderone boomerang. In two lemmas we shall �nd onditions for straightness in the8-onneted ase and the Khalimsky ase, and then we shall do the same whenwe have more than one boomerang.Lemma 3.1. Let B = (bi)n
i=0 be an 8-onneted boomerang. Then the followingtwo properties are equivalent.(i) B ∈ DSLS 8;(ii) If |Con(B)| > 2, then |Inc(B)| = 1;



14 Shiva Samieinia: Lientiate ThesisProof. (i) ⇒ (ii). Suppose that a boomerang B ∈ DSLS 8 and |Con| > 2 and
|Inc| > 2. Therefore the vertial distane between the vertex of B and chord(B)is at least one. Theorem 2.5 now gives a ontradition.(ii) ⇒ (i). Suppose that |Inc| = 1, and that |Con| = m > 2. We an hekeasily the ondition Theorem 2.5 and see that B ∈ DSLS 8. �Lemma 3.2. Let a boomerang B = (bi)n

i=0 be a Khalimsky-onneted set withpure end points. Then the following two properties are equivalent.(i) B ∈ DSLSKh;(ii) If |Con(B)| > 4, then |Inc(B)| = 1.Proof. (i) ⇒ (ii). Suppose that B ∈ DSLSKh and |Con| > 4 and |Inc| > 2. ByTheorem 2.6, we have ontradition.(ii) ⇒ (i). Suppose that |Inc| = 1, and |Con| > 4. We an see easily that theondition in Theorem 2.6 is satis�ed, and we are done. �The two previous Lemmas 3.1 and 3.2 show the relation between the lass DSLSand an arbitrary boomerang, but of ourse there are digital urves suh that allits onstituent boomerangs satisfy the ondition of these lemmas but the urveitself is not in DSLS . In order to avoid ompliated proofs in Propositions 3.3and 3.4 and Lemmas 3.6 and 3.7, or a ompliated statement in Theorem 3.8,we will onsider only onave boomerangs.Proposition 3.3. Suppose that P = (pi)n
i=0 is a set of points suh that

P ∈ DSLS 8 and denote by b the number of onave boomerangs in P . If
|Con(Bj)| > 2 for some j with 1 6 j 6 b, then |Inc(Bi)| = 1 for all i with
1 6 i 6 b.Proof. Let P ∈ DSLS 8. Suppose that there exist 1 6 i 6 j 6 b suh that
|Inc(Bi)| > 2 and |Con(Bj)| > 2. We may assume that |Inc(Bi)| = 2, |Con(Bj)| =
2 by passing to subsets and Bi is the losest boomerang to Bj with ardinalityof the inreasing part not equal to 1. If i = j, the result is obvious by Lemma3.1. For j − i = 1, by Lemma 3.1 we must have |Con(Bi)| = |Inc(Bj)| = 1. ByTheorem 2.5 we do not have straightness in this ase.Suppose now that j − i > 1. In this ase the hain ode for P is

(1, 1, 0, (1, 0)t, 1, 0, 0),where (1, 0)t means that we have t times the subsequene (1, 0). Let (pi)l+2t+6
i=l bethe points related to this hain ode. The slope of the line segment [pl, pl+2t+6

]is equal to 3+t
6+2t

= 1
2
. We an hek easily that the vertial distane betweenthe vertex pl+2 and the line segment [pl, pl+2t+6

] is 1. Thus we are done just byonsidering Theorem 2.5. �Proposition 3.4. Suppose that P = (pi)n
i=0 is a Khalimsky-onneted sequenewith pure endpoints suh that P ∈ DSLSKh and denote by b the number of onaveboomerangs in P . If |Con(Bj)| > 4 for some 1 6 j 6 b, then |Inc(Bi)| = 1 for all

1 6 i 6 b.



Paper A. Chord properties of digital straight line segments 15Proof. We do as in the proof of Proposition 3.3. Suppose that there exist 1 6 i 6

j 6 b suh that |Inc(Bi)| > 2 and |Con(Bj)| > 4. We may assume that |Inc(Bi)| =
2, |Con(Bj)| = 4 by passing to subsets. We an assume that Bi is the losestboomerang to Bj with ardinality of the inreasing part not equal to 1. For j−i =
1, we an �nd a ontradition as in Proposition 3.3. Finally, we shall show thatwe do not have straightness when j − i > 1. Let (1, 1, 0, 0, (1, 0, 0)t, 1, 0, 0, 0, 0)be the related hain ode for the set of boomerangs Bi, . . . , Bj and (pi)l+3t+9

i=l bethe points related to this hain ode. The slope of the line segment [pl, pl+3t+9]is equal to 3+t
9+3t

= 1
3
. Thus, we an see that the vertial distane between themixed point pl+3 and the line segment [pl, pl+3t+9] is equal to 1. Therefore, wedo not have straightness by Theorem 2.6. �By Propositions 3.3 and 3.4, there are just two ases when we study straightness.We write them in the following de�nition.De�nition 3.5. Let Ii = |Inc(Bi)| and Ci = |Con(Bi)|, where 1 6 i 6 b and b isthe number of boomerangs in P . We shall onsider four ases:(8-a) Ii = 1 for all 1 6 i 6 b;(8-b) Ci = 1 for all 1 6 i 6 b;(Kh-a) Ii = 1 for all 1 6 i 6 b;(Kh-b) Ci = 2 for all 1 6 i 6 b.We shall all P dominant onstant if it satis�es ondition (8-a) in the ase of 8-onnetedness, and ondition (Kh-a) in the ase of Khalimsky onnetedness, anddominant inreasing if it satis�es ondition (8-b) in the ase of 8-onnetednessand ondition (Kh-b) in the ase of Khalimsky onnetedness.If the disrete straight line has slope between 0 and 1

2
, we have dominant onstantand for the slope of the line between 1

2
and 1, we have dominant inreasing.There are some results on the runs of 8-onneted digital straight lines thatare related to our work. We give a summary of them. Freeman (1970:260) hasobserved that (exept possibly at the beginning and end of the segment) the�suessive ourrenies of the element ourring singly are as uniformly spaedas possible.�Rosenfeld (1974) provided a formal proof of these fats for the 8-onnetedase. We present two propositions, in the 8-onneted ase and the Khalimsky-onneted ase with this onlusion. We shall show that we have two possibilitiesfor the number of boomerangs in both ases. This result is similar to Rosenfeld'sonlusion in the 8-onneted ase for runs. We shall use the results of theselemmas in Theorem 3.8, so we write the statements of the two lemmas usingboomerangs. To prove these lemmas we shall use Theorems 2.5 and 2.6.Lemma 3.6. If P ∈ DSLS 8, then we have at most two possible values for theardinality of the boomerangs in P , that is, ∣∣|Bi+k| − |Bi|

∣

∣ 6 1 for all i, k ∈ N.Proof. Let P be dominant inreasing. To avoid ompliated indies and to sim-plify the onstrution of the proof, we onsider onave boomerangs only. We



16 Shiva Samieinia: Lientiate Thesishoose k minimal suh that
∣

∣|Bi+j | − |Bi|
∣

∣ = 1 for 1 6 j < k,and
∣

∣|Bi+k| − |Bi|
∣

∣ > 2.Without loss of generality, we may assume that |Bi+j| > |Bi| for 1 6 j 6 k.Thus
|Bi+j | − |Bi| = 1 for 1 6 j < k,and

|Bi+k| − |Bi| > 2.Consider now the line segment [p, q] suh that p is the starting point of Con(Bi−1)and q is the endpoint of Inc(Bi+k). This line segment has slope
(k + 1)Ii + k − 1 + t

(k + 1)Ii + 2k + t
,where

t = |Bi+k| − |Bi| > 2 and Ii = |Inc(Bi)|.We an see easily that the vertial distane is at least one at the point (Ii +2, Ii)(whih is the vertex of a onvex boomerang). Therefore, we get a ontraditionby Theorem 2.5. The proof for dominant onstant an be obtained in the sameway. �Lemma 3.7. If P ∈ DSLSKh, then we have two possible values for the ardinalityof boomerangs in P , that is, in the dominant inreasing ase,
∣

∣|Bi+k| − |Bi|
∣

∣ 6 1 for all k ∈ N,and in the dominant onstant ase,
∣

∣|Bi+k| − |Bi|
∣

∣ 6 2 for all k ∈ N.Proof. For the dominant inreasing, we do as in Lemma 3.6. Here we onsider,as in Lemma 3.6, onave boomerangs. We hoose k minimal suh that
|Bi+j | − |Bi| = 1 for 1 6 j < k,and

|Bi+k| − |Bi| > 2.Consider the line segment [p, q] suh that p is the starting point of Con(Bi−1)and q is the endpoint of Inc(Bi+k). This line segment has slope
(k + 1)Ii + k − 1 + t

(k + 1)Ii + 3k + t + 1
,



Paper A. Chord properties of digital straight line segments 17where
t = |Bi+k| − |Bi| > 2 and Ii = |Inc(Bi)|.We an see easily that the vertial distane is at least one at the mixed point

(Ii + 3, Ii). Thus, we are done for the dominant inreasing ase by getting aontradition with Theorem 2.6.Suppose now that P is dominant onstant. We may hoose k minimal suhthat
|Bi+j | − |Bi| = 2 for 1 6 j < k,and

|Bi+k| − |Bi| > 4.Consider the line segment [p, q] where p and q are the start point of Inc(Bi) andthe endpoint of Con(Bi+k), respetively. We an easily hek that the vertialdistane is at least one at the mixed point (Ci + 3, 2), where Ci = |Con(Bi)|.Thus, onsidering Theorem 2.6, we get a ontradition. �The onditions in Lemmas 3.6 and 3.7 are neessary but not su�ient for straight-ness. An example for this laim is the set of 8-onneted points with Freemanhain ode 11010110101010. These points satisfy the onlusion of Proposi-tion 3.6 but do not have the hord property. In the Khalimsky plane we an seethese results in the set of points with Freeman hain ode 11001001100100100100.Hung and Kasvand (1984) introdued a way to �nd the su�ient ondition forstraightness in the 8-onneted plane. He onsidered a digital ar as a sequeneof two symbols. Then he noted that a segment in a sequene of symbols isa ontinuous blok of symbols of this sequene; the number of symbols in asegment is the length of this segment. All segments having the same length ina sequene were alled equal segments. Two equal segments he alled uneven iftheir sums di�er by more than 1. He alled any two uneven segments an unevenpair. Then he went on to prove that a digital ar has the hord property if andonly if there are no uneven segments in its hain ode. He named a digital arstraight if and only if for equal segments in this ar, their sums annot di�er bymore than 1. Therefore, like the hord property, the absene of uneven segmentsis one of the most fundamental properties in the struture of a digital straightline.Brukstein (1991) presented several interesting self-similarity properties ofhain odes of digital straight line. He introdued some transformations givenby matries of determinant ±1. These matries belong to the well-known group
GL(2, Z). As a result of these transformations, he showed that the new sequeneprodued by applying these transformation to a sequene of 0 and 1 is the hainode of digital straight line segment if and only if the original sequene is thehain ode of a digital straight line segment.To �nd a su�ient ondition for straightness, we shall de�ne a mapping whihtransforms ertain odes to the set {0, 1}. Let B(P ) be the olletion of allboomerangs in P . By Lemmas 3.6 and 3.7, we have just two possibilities forthe values of |Bi|. Thus we an de�ne a mapping from the set of Freeman hain



18 Shiva Samieinia: Lientiate Thesisode of P to {0, 1} whih maps the boomerangs with greater ardinality to 1and the other boomerangs to 0. The graph of f is an 8-onneted set and bythis fat we an see easily that if P is a Khalimsky-onneted set, then f(P )will be an 8-onneted set and so for investigating the straightness in Khalimskyplane we an go to the 8-onneted ase. In the following theorem we shallshow that f(P ) and so the omposition of f with itself an give a neessary andsu�ient ondition for straightness in the 8-onneted ase and therefore also inthe Khalimsky-onneted plane.Theorem 3.8. We de�ne a funtion f on a subset of the set {0, 1}N of sequenesof zeros and ones and with values in the same set: f(C) is de�ned for those hainodes that represent dominant inreasing or dominant onstant sequenes whiharise from sets of boomerangs of at most two di�erent lengths. We de�ne f(C)as the sequene obtained by replaing the hain ode of a long onave boomerangby 1 and that of a short onave boomerang by 0. Then(I) C is the hain ode of an element of DSLS 8 if and only if f(C) ∈ DSLS 8,and(II) C is the hain ode of an element of DSLSKh if and only if C the hain odeof a Khalimsky-onneted set and f(C) ∈ DSLS 8.Remark 3.9. If we ompose f with itself and de�ne f 0(C) = C, fn+1(C) =
f(fn(C)) for n ∈ N, then fn(C) belongs to DSLS 8 for all n ∈ N and all
C ∈ DSLS 8, and fn(C) belongs to DSLS 8 for all n ∈ N

∗ = N r {0} for all
C ∈ DSLSKh.Proof. We de�ne a transformation whih gives us the hain ode of f(C). Wewant to transform a short boomerang to a vetor V1 whih omes from the linesegment between the starting point and the endpoint of this boomerang. Then,in analogy with short boomerangs we an do the same for a long boomerang andtransform it to a vetor V3. We de�ne a grid T whih is ontained in R

2 and hastwo linearly independent basis vetors V1 and V2, where V2 is the sum of V1 and
V3. Therefore

T = {a + x1V1 + x2V2; x = (x1, x2) ∈ Z
2} with a = (a1, a2) as origin.With this transformation, we an map the set chord(P ) into R

2. The image of
x = (x1, x2)

T =

(

x1

x2

)

∈ Z
2 in T is(3.1) (

t1
t2

)

=

(

a1

a2

)

+ A

(

x1

x2

)

,where(3.2) A =

(

1 −1
1 − p p

) or A =

(

0 1
1 −p

)for the set of 8-onneted points whih is dominant inreasing or dominant on-stant, respetively, and p denotes the ardinality of a short boomerang.



Paper A. Chord properties of digital straight line segments 19In the same way we de�ne a transformation whih gives us the hain ode of
f(C) in the Khalimsky ase. We notie that in the dominant inreasing ase, theonstant part is always 2 and in the dominant onstant ase, the onstant partmust be an even number. We an write this transformation in the Khalimskyase using a matrix A de�ned as follows:

A = 1
2

(

1 −1
2 − p p

) or A =

(

0 1
1
2

−1
2
p

)for the set of points whih is dominant inreasing or dominant onstant, respe-tively. The number p is the ardinality of the short boomerangs, whih is an oddnumber for the dominant onstant ase. In both ases we an ome bak from Tto Z
2 as follows:(3.3) (

x1

x2

)

= A−1

[(

t1
t2

)

−
(

a1

a2

)]

,By the statement of Theorem 3.8, C is dominant inreasing or dominantonstant. If f(C) is a digital straight line segment, then we have four possibilitiesin eah of the two ases, the 8-onneted ase and the Khalimsky ase. Wepresent them in the following list.
(3.4) 1. C is dominant inreasing and f(C) is dominant inreasing, so

C has dominant long boomerangs;
2. C is dominant onstant and f(C) is dominant inreasing, so

C has dominant long boomerangs;
3. C is dominant inreasing and f(C) is dominant onstant, so

C has dominant short boomerangs;
4. C is dominant onstant and f(C) is dominant onstant, so

C has dominant short boomerangs.In the ase of 8-onnetedness, there are no speial di�erenes in the proof ofthe four ases in (3.4), but in the Khalimsky ase, we must be areful whihpossibility we hoose to work on, and how we an transform a mixed point to avertex and vie versa.Case (I), ⇒. Now we shall prove the impliation ⇒ in ase (I). Let
C ∈ DSLS 8. If f(C) 6∈ DSLS 8 then we an �nd a vertex v = (v1, v2)

T of aboomerang B suh that we have vertial distane at least one at this point. Sup-pose that this vertial distane is attained between v and the line segment withequation Y = MX + N in T . Thus
dv(v, a) = v2 − Mv1 − N > 1.Sine we exlude onvex boomerangs in this setion, we an �nd easily the vertialdistanes without onsidering the absolute value. We may assume that C isdominant inreasing. The transformation of the vertex v into Z

2 is an endpointof a boomerang in C. Let v′ be this image. Thus
v′ =

(

p 1
p − 1 1

)(

v1

v2

)

=

(

pv1 + v2

(p − 1)v1 + v2

)

.



20 Shiva Samieinia: Lientiate ThesisTo �nd the image of the straight line Y = MX + N in Z
2, we do as follows:(3.5) (

x
y

)

=

(

p 1
p − 1 1

)(

X
Y

)

.By (3.5) and a simple alulation,
x = (p + M)X + N,

y = (p − 1 + M)X + N.This implies(3.6) y =
M + p − 1

M + p
x +

N

M + p
.Thus the vertial distane between the line segment with equation (3.6) and thevertex (pv1 + v2 − 1, (p − 1)v1 + v2)

T is
(p − 1)v1 + v2 −

M + p − 1

M + p
(pv1 + v2 − 1) − N

M + p

=
(v2 − Mv1 − N) + (M + p − 1)

M + p
> 1.By Theorem 2.5, we an onlude that C 6∈ DSLS 8. That is a ontradition.Therefore, the assertion is proved when C is dominant inreasing. The proof issimilar for the dominant onstant ase.Case (I), ⇐. Conversely, we shall now prove the impliation ⇐ in ase (I).Let f(C) be in DSLS 8. By the statement of this Theorem, C must be dominantinreasing or dominant onstant. We have two possibilities for the ardinalitiesof boomerangs. By (3.4) we have four possibilities and the proof for those we usethe same onstrution. We must onsider the matrix for the transformation withthe onstrution of C as dominant inreasing or dominant onstant. Assumenow we are in ase 1 in (3.4). Thus the sequenes C and f(C) are dominantinreasing and C has dominant long boomerangs. Suppose that C 6∈ DSLS 8.Then by Theorem 2.5 we an �nd a vertex v of a boomerang B suh that thevertial distane between this vertex and chord(C) is at least one. First, we shallshow that the maximal vertial distane in C is attained at a vertex v of a longboomerang, where the following boomerang is short. Let (Bl, . . . , Bl+k) be theset of all long boomerangs whih lie between two short boomerangs and suh thatthere is no short boomerang between them. Consider the line segment [a, b] withequation y = αx + β in the chord(P ) suh that the maximal vertial distane isattained between this line segment and the vertex v. The point a must be thestarting point of a boomerang and b the endpoint of another boomerang. Thusthe slope of this line segment is(3.7) α =

(r + s)p − s

(r + s)p + r
,



Paper A. Chord properties of digital straight line segments 21where r and s are the number of long and short boomerangs, respetively. Bya simple alulation, we an see that the ondition for the maximal vertialdistane to be attained at the vertex of Bl+k is(3.8) p − 1

p
6 α 6

p

p + 1
.We an hek that the inequality (3.8) is orret by using (3.7). By the previousdisussion, the vertex v must be the vertex of the last boomerang, i.e., Bl+k.Sine (Bl, . . . , Bl+k) are long boomerangs and Bl+k+1 is a short boomerang, theimage of (Bl, . . . , Bl+k, Bk+l+1) in T is a boomerang with its vertex equal to theimage of the endpoint of Bl+k in T . By the previous disussion, the maximalvertial distane is attained at the vertex v = (v1, v2)

T of the boomerang Bl+k.So that the point a with the same �rst oordinate as v and whih lies on the linesegment y = αx + β satis�es
dv(v, a) = v2 − αv1 − β > 1.Sine C is dominant inreasing, the endpoint of Bl+k is q = (v1 + 1, v2)

T. Theimage of q in T is
q′ =

(

1 −1
1 − p p

)(

v1 + 1
v2

)

=

(

v1 − v2 + 1
(1 − p)(v1 + 1) + pv2

)

,that is, the vertex of the boomerang B in T . The image of a line segment withequation y = αx + β in T is
Y =

αp − p + 1

1 − α
X +

β

1 − α
,so the vertial distane between this line segment and q′ is

(1 − p)(v1 + 1) + pv2 −
αp − p + 1

1 − α
(v1 − v2 + 1) − β

1 − α

=
v2 − αv1 − β − α

1 − α
>

1 − α

1 − α
= 1.Finally, by onsidering Theorem 2.5, we get a ontradition. For ase 3 in (3.4),the maximal vertial distane is attained at the vertex of a long boomerang wherethe following boomerang is short. In ase 2 [4℄ we have maximal vertial distaneat the vertex of a long [long℄ boomerang where the previous boomerang is short[short℄. We an prove these fats in the same way as in ase 1. The proofs forstraightness in these ases are also similar to that of ase 1.Case (II), ⇒. We shall now prove the impliation ⇒ in ase (II). Let

C ∈ DSLSKh. If f(C) 6∈ DSLS 8 then we an �nd a vertex v = (v1, v2)
T ofa boomerang B and the line segment with equation Y = MX + N in T suhthat for the point a whih lies on this line segment and has the same �rst oor-dinate as v, the vertial distane is at least one. Thus

dv(v, a) = v2 − Mv1 − N > 1.



22 Shiva Samieinia: Lientiate ThesisSuppose that C is dominant inreasing. The transformation of the vertex v into
Z

2 is an endpoint of a boomerang in C. Let v′ be this image. Thus
v′ =

(

p 1
p − 2 1

)(

v1

v2

)

=

(

pv1 + v2

(p − 2)v1 + v2

)

.The image of the straight line Y = MX + N in Z
2 is(3.9) y =

M + p − 2

M + p
x +

2N

M + p
.The point m = (pv1 + v2 − 1, (p− 2)v1 + v2)

T is a mixed point in a boomerang in
C. Thus the vertial distane between the line segment with equation (3.9) andthe mixed point m is

(p − 2)v1 + v2 −
M + p − 2

M + p
(pv1 + v2 − 1) − 2N

M + p

=
(2v2 − 2Mv1 − 2N) + (M + p − 2)

M + p
>

2 + M + p − 2

M + p
= 1.By Theorem 2.6; C 6∈ DSLSKh. That is a ontradition.Suppose now C is dominant onstant. The image of the vertex v in Z

2 is:
v′ =

(

p 2
1 0

)(

v1

v2

)

=

(

pv1 + 2v2

v1

)

.Without loss of generality, we an assume that the vertex v is the vertex of aonvex boomerang. Thus, the vertial distane between this point and the linesegment with equation Y = MX+N is Mv1+N−v2, whih is at least one. Sameas previous disussion, we an �nd the image of the straight line Y = MX + Nin Z
2 as follows:(3.10) y =

1

p + 2M
x − 2N

p + 2M
.The point (pv1 + 2v2 + 2

v1 + 1

) is a mixed point in a onave boomerang of C. Thevertial distane between this point and the line segment in (3.10) is:
(v1 + 1) − pv1 + 2v2 + 2 − 2N

p + 2M

=
2Mv1 + 2N − 2v2 − 2 + p + 2M

p + 2M
>

2 − 2 + p + 2M

p + 2M
= 1.Thus, the result in this ase is also obvious by a ontradition with Theorem 2.6.Case (II), ⇐. Conversely, we shall now prove the impliation ⇐ in ase (II).Let f(C) ∈ DSLS 8. As in Case (I), ⇐, we have the four possibilities whih were



Paper A. Chord properties of digital straight line segments 23mentioned in (3.4). First, we onsider ase 1. Thus, C and f(C) are dominantinreasing and C has dominant long boomerangs. Suppose that C 6∈ DSLSKh.Therefore by Theorem 2.6, there is a mixed point m of a boomerang B suhthat the vertial distane at this point is at least one. We shall show that themaximal vertial distane in C is attained at a mixed point m = (m1, m2)
T ofa long boomerang, where the following boomerang is short. Suppose that thismaximal vertial distane is attained between the mixed point m and the linesegment [a, b] with equation y = αx + β. We an see easily that we have themaximal vertial distane when a is the starting point of a boomerang and b isthe endpoint of another boomerang. The slope of this line segment is(3.11) α =

(r + s)p − 2s

(r + s)p + 2r
,where r and s are the number of long and short boomerangs, respetively. By asimple alulation, we �nd that the ondition for the maximal vertial distaneto be attained at a mixed point of the last long boomerang where the followingboomerang is short, is(3.12) p − 2

p
6 α 6

p

p + 2
.We an see that the inequalities in (3.12) are orret by using (3.11). We anprove in the same way as for the ase 3 in (3.4), that the maximal vertial distaneis attained at the vertex of a long boomerang where the following boomerangis short. As in the 8-onneted ase, for ase 2 [4℄, we have maximal vertialdistane at the vertex of a long [long℄ boomerang where the previous boomerangis short [short℄. With the same disussion as Case (I), ⇐, we must show thatthe vertial distane at the image of the point m′ = (m1 + 1, m2)

T in the grid Tis at least 1. Let m′′ be this image. Thus
m′′ = 1

2

(

1 −1
2 − p p

)(

m1 + 1
m2

)

= 1
2

(

m1 − m2 + 1
(2 − p)(m1 + 1) + pm2

)

.The point m′′ is a vertex of a boomerang in f(C). The image of a line segment
y = αx + β in T is(3.13) Y =

2 − p + pα

1 − α
X +

β

1 − α
.Therefore, the vertial distane between line segment with equation (3.13) andthe vertex m′′ is

(2 − p)(m1 + 1) + pm2

2
− 2 − p + pα

1 − α
(m1 − m2 + 1) − β

1 − α

=
2m2 − 2αm1 − 2β + β − 2α

1 − α
>

2 − 2α + β

1 − α
= 2 +

β

1 − α
.That is a ontradition. We an prove ase 3 in (3.4) in the same way.



24 Shiva Samieinia: Lientiate ThesisLet us now prove ase 2 in (3.4). In this ase, the maximal vertial distane isattained at the mixed point of a long boomerang where the previous boomerangis short. We onsider the image of the point m′ = (m1 − 2, m2 − 1)T. The imageof m′ is the vertex of a onvex boomerang in f(C). We shall show that thevertial distane at this point is at least one. The image of the point m′ anobtain as follows:
m′′ =

(

0 1
1
2

−1
2
p

)(

m1 − 2
m2 − 1

)

=

(

m2 − 1
m1 + p − pm2 − 2

2

)

.The image of a line segment y = αx + β in T is(3.14) Y =
1 − pα

2α
X − β

2α
.Therefore, the vertial distane between line segment with equation (3.14) andthe vertex m′′ is

1 − pα

2α
(m2 − 1) − β

2α
− m1 + p − pm2 − 2

2

=
m2 − αm1 − β + 2α − 1

2α
>

1 + 2α − 1

2α
= 1.Now Theorem 2.5 gives a ontradition. The ase 4 in (3.4) an be proved in thesame way. �Remark 3.10. The matries A in (3.2) have determinant ±1 so they have inverseswith integer entries. The 2×2 matries with determinant ±1 (alled unimodularmatries) form a linear group GL(2, Z). Brukstein (1991) introdued suh atransformation de�ned by 2 × 2 matries with determinant ±1. These matriesbelong to GL(2, Z) and so have inverses in this group. He wrote that the image ofall suh transformations will provide hain odes of linearly separable dihotomiesif and only if the transformed line indues a linearly separable dihotomy. Usingthis fat, he noted that all sequene transformations having this property yieldhain odes for straight lines if and only if the original hain ode is a digitizedstraight line. In the Khalimsky plane the matries A have determinant±2. Thus,they do not have suh properties.In the next theorem, we shall present another transformation to show therelation between DSLSKh and DSLS8.Theorem 3.11. We de�ne a funtion g on a subset of the set {0, 1}N of sequenesof zeros and ones and with values in the same set. For a hain ode C, g(C) isde�ned for dominant inreasing or dominant onstant sequenes in the Khalimskyplane. We de�ne g(C) by replaing eah pair of zeros by one zero. Then C isthe hain ode of an element of DSLSKh if and only if g(C) ∈ DSLS8.



Paper A. Chord properties of digital straight line segments 25Proof. We de�ne a transformation whih gives us the hain odes of g(C). Toget the hain ode of g(C), we must replae 00 by 0, and 1 by 1. Thus, we de�nea grid T same as the proof of Theorem 3.8, where
V1 =

(

1
2

0

) and V3 =

(

1
2

1

)

.We use the matrix A =

(

1
2

1
2

0 1

) for the equation in (3.1). We an ome bakfrom T into Z
2 by using the matrix A−1 =

(

2 −1
0 1

) in (3.3).We shall prove the impliation ⇒. Let C ∈ DSLSKh. Suppose that g(C) 6∈
DSLS8. Thus, we an �nd a vertex v suh that the vertial distane betweenthis point and the line segment with equation Y = MX +N is at least one. Theimage of this line in Z

2 is(3.15) y =
M

2 − M
x +

2N

2 − M
.Let v′ be the image of the point v in Z

2. Thus,
v′ =

(

2 −1
0 1

)(

v1

v2

)

=

(

2v1 − v2

v2

)

.It is lear that v′ is a vertex of C. We shall show that the vertial distanebetween the mixed point (2v1 − v2 + 1, v2)
T and the line segment with equation(3.15) is at least one. This vertial distane is

v2 −
M

2 − M
(2v1 − v2 + 1) − 2N

2 − M
=

2(v2 − Mv1 − N) − M

2 − M
>

2 − M

2 − M
= 1.This is a ontradition with Theorem 2.6.We shall now prove the impliation ⇐. Let g(C) ∈ DSLS 8. If C 6∈ DSLSKh,then we an �nd a mixed point m suh that the vertial distane is at least oneat this point. Suppose that the maximal vertial distane is attained betweenthe mixed point m and the line segment with equation y = αx + β. We mayassume that m2 > αm1 + β + 1. The proof for the ase m2 6 αm1 + β − 1 issimilar. We onsider the image of the point m′ = (m1 − 1, m2)

T in the grid T .Let this image be m′′. Thus
m′′ =

(

1
2

1
2

0 1

)(

m1 − 1
m2

)

=

(

1
2
(m1 + m2 − 1)

m2

)

.The image of the line y = αx + β under T is:
Y =

2α

1 + α
X +

β

1 + α
.



26 Shiva Samieinia: Lientiate ThesisTherefore
m2 −

2α

1 + α

m1 + m2 − 1

2
− β

1 + α

=
m2 − αm1 − β + α

1 + α
>

1 + α

1 + α
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Paper B
The number of Khalimsky-ontinuousfuntions on intervalsShiva SamieiniaDepartment of Mathematis, Stokholm Universityshiva�math.su.seAbstratWe determine the number of Khalimsky-ontinuous funtions de�ned onan interval and with values in an interval.1. IntrodutionIn this paper we shall determine the number of ontinuous funtions whih arede�ned on an interval of the digital line Z equipped with the Khalimsky topologyand with values in that line. The Khalimsky topology is a topology for whihthe digital line is onneted. We shall begin by realling the de�nition and �rstproperties of the Khalimsky topology and then onsider Khalimsky-ontinuousfuntions. Then in setion 2, we onsider these funtions when they have twopoints in the odomain. In this setion we see a new example of the lassial�bonai sequene. In setion 3 and 4, we study the Khalimsky-ontinuousfuntions with three or four points in their odomain and as a onsequene ofthese parts we �nd some new sequenes, the asymptoti behavior of whih weinvestigate. Finally, in the setion 5 we onsider Khalimsky-ontinuous funtionswith one �xed endpoint. In this setion we get a sequene whih has the samereursion relation as the Pell numbers but with di�erent initial values. We alsoobtain a new example of the Delannoy numbers.The Khalimsky topologyThere are several di�erent ways to introdue the Khalimsky topology on theintegers. We present the Khalimsky topology using a topologial basis. Forevery even integer m, the set {m − 1, m, m + 1} is open, and for every oddinteger n, the singleton set {n} is open. A basis is given by

{{2n + 1}, {2n − 1, 2n, 2n + 1}; n ∈ Z}.It follows that even points are losed. A digital interval [a, b]Z = [a, b] ∩ Z withthe subspae topology is alled a Khalimsky interval, and a homeomorphi imageof a Khalimsky interval into a topologial spae is alled a Khalimsky ar. On



28 Shiva Samieinia: Lientiate Thesisthe digital plane Z
2, the Khalimsky topology is given by the produt topology.A point with both oordinates odd is open. If both oordinates are even, thepoint is losed. These types of points are alled pure. Points with one even andone odd oordinate are neither open nor losed; these are alled mixed. Notethat a mixed point m = (m1, m2) is onneted only to its 4-neighbors,

(m1 ± 1, m2) and (m1, m2 ± 1),whereas a pure point p = (p1, p2) is onneted to all its 8-neighbors,
(p1 ± 1, p2), (p1, p2 ± 1), (p1 + 1, p2 ± 1) and (p1 − 1, p2 ± 1).More information on the Khalimsky plane and the Khalimsky topology an befound in Kiselman (2004).Khalimsky-ontinuous funtionsWhen we equip Z with the Khalimsky topology, we may speak of ontinuousfuntions Z → Z. It is easily proved that a ontinuous funtion f is Lipshitzwith onstant 1. This is however not su�ient for ontinuity. It is not hard toprove that f : Z → Z is ontinuous if and only if (i) f is Lip-1 and (ii) for every

x, x 6≡ f(x) (mod 2) implies f(x ± 1) = f(x). For more information see Melin(2005).Also, we observe that the following funtions are ontinuous:(1) Z ∋ x 7→ a ∈ Z, where a is onstant;(2) Z ∋ x 7→ ±x + c ∈ Z, where c is an even onstant;(3) max(f, g) and min(f, g) if f and g are ontinuous.Atually every ontinuous funtion on a bounded Khalimsky interval an beobtained by a �nite suession of the rules (1), (2), (3); Kiselman (2004).2. Continuous funtions with a two-point odomainWe shall �rst look at the funtions whih take their values in an interval onsistingof two points. It turns out that the number of suh funtions is given by theFibonai sequene.Theorem 2.1. Let an be the number of Khalimsky-ontinuous funtions
[0, n − 1]Z → [0, 1]Z. Then an = Fn+2, where (Fn)∞0 is the Fibonai sequene,de�ned by F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, n > 2.Proof. Let ai

n = card({f : [0, n− 1]Z → [0, 1]Z; f(n− 1) = i}) for i = 0, 1, so that(2.1) an = a0
n + a1

n.By the de�nition of the Khalimsky topology, we see that(2.2) a0
2k+1 = a2k, k > 1,

a1
2k+1 = a1

2k, k > 1.



Paper B. The number of Khalimsky-ontinuous funtions on intervals 29Moreover,(2.3) a1
2k = a2k−1, k > 1,

a0
2k = a0

2k−1, k > 1.Hene, using in turn (2.1), (2.2) and (2.3), we obtain
a2k+1 = a0

2k+1 + a1
2k+1 = a2k + a1

2k = a2k + a2k−1,whih is the Fibonai relation. Similarly, by using (2.1), (2.3) and (2.2), we get
a2k = a0

2k + a1
2k = a0

2k−1 + a2k−1 = a2k−2 + a2k−1.Now we need only observe that a1 = 2 = F3 and a2 = 3 = F4 to �nish. �We notie that Theorem 2.1 leads us to a new example of the lassial Fi-bonai sequene. We list the number an of Khalimsky-ontinuous funtions for
n = 1, . . . , 14 in the next table.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
an 2 3 5 8 13 21 34 55 89 144 233 377 610 987The asymptoti behavior of the number of ontinuous funtions witha two-point odomainWe onsider two frequenies

P 0
n =

a0
n

an

,and
P 1

n =
a1

n

an

.By (2.1) we have(2.4) P 0
n + P 1

n = 1.We shall determine these frequenies asymptotially. First, we reall theinteresting property of the Fibonai sequene: the fration Fn+1

Fn

tends to α as
n → ∞ and where α denotes the Golden Setion 1

2
(
√

5 + 1). Therefore Fn+1

Fn−1tends to α2. In the following theorem we onsider the frequenies for odd andeven indies separately.Theorem 2.2. Let an and ai
n be as in Theorem 2.1 and de�ne P i

n = ai
n/an for

i = 0, 1. Then as k → +∞ we have
P 0

2k−1 → 1
α
, P 0

2k → 1
α2and

P 1
2k−1 → 1

α2 , P
1
2k → 1

αwhere α = 1
2
(
√

5 + 1).



30 Shiva Samieinia: Lientiate ThesisProof. By (2.3) and (2.1),
a1

2k = a1
2k−1 + a0

2k−1,therefore we obtain another relation between frequenies and the values of a2kand a2k−1 as(2.5) P 1
2ka2k = P 1

2k−1a2k−1 + P 0
2k−1a2k−1.Then using (2.4) lead us to

P 1
2ka2k = a2k−1.Thus,

P 1
2k =

a2k−1

a2k

→ 1

α
as k → +∞.By Theorem 2.1,

a2k − P 0
2ka2k = a2k−1,so(2.6) P 0

2k =
a2k − a2k−1

a2k

.By using (2.1), (2.3) and (2.2) we have(2.7) a2k − a2k−1 = a2k−2,thus by (2.6) and (2.7) we have
P 0

2k =
a2k−2

a2k

,and so
P 0

2k → 1

α2
as k → +∞.As before, we an �nd

P 0
2k+1 =

a2k

a2k+1

,implying that
P 0

2k+1 →
1

α
as k → +∞.Also,

P 1
2k+1 =

a2k−1

a2k+1
,whih implies that

P 1
2k+1 →

1

α2
as k → +∞.

�In the next table we an see the values of a0
n, a1

n, an, P 0
n and P 1

n for n =
6, . . . , 13.
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n 6 7 8 9 10 11 12 13
a0

n 5 13 13 34 34 89 89 233
a1

n 8 8 21 21 55 55 144 144
an 13 21 34 55 89 144 233 377
P 0

n 0.3846 0.6190 0.3824 0.6182 0.3820 06181 0.382 0.618
P 1

n 0.6154 0.381 0.6176 0.382 0.618 0.382 0.618 0.3823. Continuous funtions with a three-point odomainWe sum up the results for funtions with up to three values.Theorem 3.1. Let bn be the number of Khalimsky-ontinuous funtions
[0, n − 1]Z → [0, 2]Z. Then b1 = 3, b2 = 5, and(3.1) b2k = b2k−1 + b2k−2 + b2k−3 = 2b2k−2 + 3b2k−3, k > 2,

b2k−1 = b2k−2 + 2b2k−3, k > 2.Proof. Let bi
n = card({f : [0, n − 1]Z → [0, 2]Z; f(n − 1) = i}) for i = 0, 1, 2.Therefore it is lear that(3.2) bn = b0

n + b1
n + b2

n.From the properties of the Khalimsky topology we see that(3.3) b0
2k = b0

2k−1, k > 1,

b1
2k = b0

2k−1 + b1
2k−1 + b2

2k−1, k > 1,

b2
2k = b2

2k−1, k > 1.and(3.4) b0
2k−1 = b0

2k−2 + b1
2k−2, k > 2,

b1
2k−1 = b1

2k−2, k > 2,

b2
2k−1 = b2

2k−2 + b1
2k−2, k > 2.We assume that n = 2k − 1 in equation (3.2) and then using in turn (3.4) and(3.3) we obtain the equalities(3.5) b2k−1 = b2k−2 + 2b1

2k−2 = b2k−2 + 2b2k−3.Now we need to do the same for n = 2k in equation (3.2) and then using in turn(3.3) and (3.4) we obtain(3.6) b2k = b2k−1 + b0
2k−1 + b2

2k−1 = b2k−1 + b2k−2 + b1
2k−2.Now if we use equation (3.3) in (3.6) we an see the result for b2k, i.e.,(3.7) b2k = b2k−1 + b2k−2 + b2k−3.The another result for b2k will be obvious if we put equation (3.5) into equation(3.7), i.e.,

b2k = b2k−1 + b2k−2 + b2k−3 = b2k−2 + 2b2k−3 + b2k−2 + b2k−3 = 2b2k−2 + 3b2k−3.

�



32 Shiva Samieinia: Lientiate ThesisThe Jaobsthal sequene is de�ned by Jn = Jn−1 + 2Jn−2 with J1 = 0and J2 = 1 (the sequene number A001045 in Sloane's On-line Enylopediaof Integer Sequenes), and the Tribonai sequene is de�ned by the formula
Tn = Tn−1 + Tn−2 + Tn−3 with initial values 1, 1, 1 (sequene number A000213),so by Theorem (3.1) we see that bn is a mixture between the Tribonai andJaobsthal sequenes.We give below the sequene (bn) for n = 1, . . . , 12.

n 1 2 3 4 5 6 7 8 9 10 11 12
bn 3 5 11 19 41 71 153 265 571 989 2131 3691The asymptoti behavior of the number of ontinuous funtions witha three-point odomainWe shall now determine how the number of ontinuous funtions grows with thenumber of points in the domain.Theorem 3.2. Let bn be the number of Khalimsky-ontinuous funtions

[0, n − 1]Z → [0, 2]Z. Then there is a sequene (tn) tending to a positive limit
t = 1

2
+ 1

6

√
3 ≈ 0.788675 as k → +∞ and suh that(3.8) b2k = t2k

√
3
(

2 +
√

3
)k

, k > 2,

b2k−1 = t2k−1

(

2 +
√

3
)k

, k > 2.Proof. We de�ne a sequene (tn) by the following equations,(3.9) t2k = b2kθ
−1γ−k, k > 2,

t2k−1 = b2k−1γ
−k, k > 2.Thus, using (3.9) and (3.1) we get(3.10) t2k = 2γ−1t2k−2 + 3γ−1θ−1t2k−3, k > 2,

t2k−1 = θγ−1t2k−2 + 2γ−1t2k−3, k > 2.With equation (3.10) we have the following equation for all θ, γ > 0,(3.11) t2k − t2k−1 = (2γ−1 − θγ−1)t2k−2 + (3γ−1θ−1 − 2γ−1)t2k−3.While this formula is true for all values of γ and θ, it is of interest mainly whenthe two oe�ients in equation (3.11) sum up to zero. We therefore de�ne γ and
θ so that 2γ−1 − θγ−1 + 3γ−1θ−1 − 2γ−1 = 0. This implies θ =

√
3.Next we onsider the equation for t2k+1 − t2k,(3.12) t2k+1 − t2k = θγ−1t2k + 2γ−1t2k−1 − t2k = (θγ−1 − 1)t2k + 2γ−1t2k−1.



Paper B. The number of Khalimsky-ontinuous funtions on intervals 33In the same way we onsider the speial ase of equation (3.12) when the o-e�ients have zero sum, and therefore we get γ = 2 + θ = 2 +
√

3. By usingindution in equation (3.11) we have,(3.13) t2k − t2k−1 =

(

2 −
√

3

2 +
√

3

)k−1

(t2 − t1),and for equation (3.12),(3.14)
t2k+1 − t2k =

( −2

2 +
√

3

)

(t2k − t2k−1) =

( −2

2 +
√

3

)

(

2 −
√

3

2 +
√

3

)k−1

(t2 − t1).Sine ∣∣
∣

2−
√

3
2+

√
3

∣

∣

∣
< 1, equation (3.13) and (3.14) lead us to the same limit t,

0 < t < +∞ for the sequene (tn) as k tends to in�nity.To determine the limit t, we shall use matries, inspired by the treatment inCull et al. (2005:16).Formula (3.1) an be written in matrix form
Xn = AXn−1 where Xn =

(

b2n

b2n−1

) and A =

(

2 3
1 2

)

.With initial ondition X1 =

(

5
3

) we have Xn = An−1

(

5
3

). The matrix A hasharateristi polynomialhA(x) = det

(

2 − x 3
1 2 − x

)

= (2 − x)2 − 3and has distint eigenvalues, λ1 = 2+
√

3 and λ2 = 2−
√

3, and this implies that
A is diagonalizable. With a simple omputation, we an see that A = PDP−1,where
D =

(

2 +
√

3 0

0 2 −
√

3

)

, P =

(√
3 −

√
3

1 1

)

, and P−1 =
1

2
√

3

(

1
√

3

−1
√

3

)

.Therefore
Xn = An−1

(

5
3

)

= PDn−1P−1

(

5
3

)

=
1

2
√

3

(

(5
√

3 + 9)(2 +
√

3)n−1 + (5
√

3 − 9)(2 −
√

3)n−1

(5 + 3
√

3)(2 +
√

3)n−1 + (−5 + 3
√

3)(2 −
√

3)n−1

)

,so(3.15) b2n =
1

2
√

3

(

(5
√

3 + 9)(2 +
√

3)n−1 + (5
√

3 − 9)(2 −
√

3)n−1
)

.



34 Shiva Samieinia: Lientiate ThesisInserting the values already found for θ and γ into (3.9) we obtain
t2n =

1

6



(5
√

3 + 9)(2 +
√

3)−1 + (5
√

3 − 9)

(

2 −
√

3

2 +
√

3

)n−1

(2 +
√

3)−1



 ,proving that t2n tends to 1
2

+ 1
6

√
3 ≈ 0.7886751 and so tn onverges to thisnumber. �Proposition 3.3. Let bn be the number of Khalimsky-ontinuous funtions

[0, n − 1]Z → [0, 2]Z, let bi
n be the number of Khalimsky-ontinuous funtions

[0, n− 1]Z → [0, 2]Z satisfying f(n − 1) = i for i = 0, 1, 2, and de�ne P i
n = bi

n/bnfor i = 0, 1, 2. As k tends to in�nity,
P 2

2k = P 0
2k → 1

2
− 1

6

√
3, P 2

2k−1 = P 0
2k−1 → 1

2

√
3 − 1

2
,also

P 1
2k → 1√

3
, P 1

2k−1 → 2 −
√

3.Proof. Using the Khalimsky topology we have(3.16) b0
2k = b0

2k−1, k > 2,

b1
2k = 2b0

2k−1 + b1
2k−1, k > 2,

b2
2k = b0

2k−1, k > 2,and(3.17) b0
2k−1 = b0

2k−2 + b1
2k−2, k > 2,

b1
2k−1 = b1

2k−2, k > 2,

b2
2k−1 = b0

2k−2 + b1
2k−2, k > 2.Let

P i
n =

bi
n

bn

for i = 0, 1, 2.Also we an see easily that P 0
n = P 2

n , so by using (3.2) we get(3.18) 2P 0
n + P 1

n = 1.It is obvious that the frequenies for odd and even indies are di�erent butthere is a relation between them. We shall study them separately. By (3.16),(3.19) {

P 0
2kb2k = P 0

2k−1b2k−1,

(1 − 2P 0
2k)b2k = 2P 0

2k−1b2k−1 + (1 − 2P 0
2k−1)b2k−1.We solve the equation (3.19) and obtain

P 0
2k =

b2k − b2k−1

2b2k

and P 0
2k−1 =

b2k − b2k−1

2b2k−1

.



Paper B. The number of Khalimsky-ontinuous funtions on intervals 35Therefore by Theorem (3.2) we see that, as k → ∞,
P 0

2k → θ − 1

2θ
=

1

2
− 1

6

√
3,and

P 0
2k−1 →

θ − 1

2
=

1

2

√
3 − 1

2
.Also by using (3.18) and a simple alulation,

P 1
2k → 1√

3
and P 1

2k−1 → 2 −
√

3.

�In the following table we an see some values of P i
n for i = 0, 1, 2.

n 6 7 8 9 10 11 12
b0
n 15 56 56 209 209 780 780

b1
n 41 41 153 153 571 571 2131

b2
n 15 56 56 209 209 780 780

bn 71 153 265 571 989 2131 3691
P 0

n 0.2113 0.36601 0.21132 0.36602 0.21132 0.36602 0.21132
P 1

n 0.57746 0.26797 0.57736 0.26795 0.57735 0.26795 0.57735
P 2

n 0.2113 0.36601 0.21132 0.36602 0.21132 0.36602 0.211324. Continuous funtions with a four-point odomainTheorem 4.1. Let cn be the number of Khalimsky-ontinuous funtions
f : [0, n − 1]Z → [0, 3]Z and let ci

n be the number of Khalimsky-ontinuous fun-tions f : [0, n − 1]Z → [0, 3]Z suh that f(n − 1) = i for i = 0, 1, 2, 3. Then
c1
1 = c2

1 = 1, c2 = 7, c3 = 15 and(4.1) cn = cn−1 + 2cn−2 + c1
n−3 + c2

n−3.Formula (4.1) together with formulas (4.3) and (4.4) below determine the cn.Proof. We have by de�nition(4.2) cn = c0
n + c1

n + c2
n + c3

n.Using properties of the Khalimsky topology, we see that(4.3) c0
2k+1 = c0

2k + c1
2k, k > 1,

c1
2k+1 = c1

2k, k > 1,
c2
2k+1 = c1

2k + c2
2k + c3

2k, k > 1,
c3
2k+1 = c3

2k, k > 1,



36 Shiva Samieinia: Lientiate Thesisand(4.4) c0
2k = c0

2k−1, k > 1,
c1
2k = c0

2k−1 + c1
2k−1 + c2

2k−1, k > 1,
c2
2k = c2

2k−1, k > 1,
c3
2k = c2

2k−1 + c3
2k−1, k > 1.If we insert (4.3) into (4.2), we get(4.5) c2k+1 = c2k + 2c1

2k + c3
2k.By using (4.4), we have(4.6) 2c1

2k + c3
2k = 2c2k−1 + c2

2k−1 − c3
2k−1.But the equations in (4.3) give us(4.7) c2

2k−1 = c1
2k−2 + c2

2k−2 + c3
2k−2,

c3
2k−1 = c3

2k−2.Now, we need just to onsider the equations (4.5), (4.6) and (4.7) to have theresult for odd n, n = 2k + 1. Next we proeed in the same way for n = 2k.Using properites of the Khalimsky topology we see that if we add equation (4.4)to equation (4.2), we see that(4.8) c2k = c2k−1 + 2c2
2k−1 + c0

2k−1.Therefore, by (4.3) we have(4.9) 2c2
2k−1 + c0

2k−1 = 2c2k−2 + c1
2k−2 − c0

2k−2.Also, (4.4) gives us(4.10) c1
2k−2 = c0

2k−3 + c1
2k−3 + c2

2k−3,

c0
2k−2 = c0

2k−3.We insert (4.10) and (4.9) into (4.8) to get the result for even n. �We present in the following table the sequene with four values in the o-domain and n 6 10 points in the domain.
n 1 2 3 4 5 6 7 8 9 10
cn 4 7 15 31 65 136 285 597 1251 2621



Paper B. The number of Khalimsky-ontinuous funtions on intervals 37The asymptoti behavior of the number of ontinuous funtions witha four-point odomainTheorem 4.2. Let ci
n be the number of Khalimsky-ontinuous funtions

f : [0, n − 1]Z → [0, 3]Z suh that f(n − 1) = i for i = 0, 1, 2, 3, and let cn betheir sum. Then
c1
n + c2

n

c1
n−1 + c2

n−1

,
c0
n + c3

n

c0
n−1 + c3

n−1

as well as cn

cn−1
tend to

1
2

√

7 +
√

5 +

√

38 + 14
√

5 ≈ 2.095293985.Proof. Let us �x a positive number γ (to be determined later) and de�ne sequene
tin for i = 0, . . . , 3 by the following equation(4.11) ci

n = tinγn.Let(4.12) tn = t0n + t1n + t2n + t3nThen (4.3) and (4.11) yield(4.13) t02k+1 = γ−1(t02k + t12k),
t12k+1 = γ−1t12k,
t22k+1 = γ−1(t12k + t22k + t32k),
t32k+1 = γ−1t32k.By (4.4) and (4.11) we get(4.14) t02k = γ−1t02k−1,

t12k = γ−1(t02k−1 + t12k−1 + t22k−1),
t22k = γ−1t22k−1,
t32k = γ−1(t22k−1 + t32k−1).We now de�ne a sequene (Xn) as follows.(4.15) Xn =









t0n
t1n
t2n
t3n









,and introdue the two matries(4.16) A2k =









1 0 0 0
1 1 1 0
0 0 1 0
0 0 1 1









, A2k−1 =









1 1 0 0
0 1 0 0
0 1 1 1
0 0 0 1









.



38 Shiva Samieinia: Lientiate ThesisBy using (4.13), (4.14), (4.15) and (4.16) we an see easily that(4.17) Xn = γ−1AnXn−1 for n > 2.Let B be equal to A2k+1A2k, whih is independent of k. Then
B =









2 1 1 0
1 1 1 0
1 1 3 1
0 0 1 1









.It is symmetri, so there exist a diagonal matrix D whose diagonal entries are theeigenvalues of B and a matrix P suh that eah olumn of P is an eigenvetor of
B and B = PDP T. The olumns of P form an orthogonal set, so PP T = PTP .We shall now determine the eigenvalues and eigenvetors of the matrix B. It hasthe following harateristi funtion.(4.18) det(B − xI) = x4 − 7x3 + 13x2 − 7x + 1.The symmetry of the oe�ients in this equation implies that if λ is eigenvaluethen also 1

λ
is an eigenvalue. Thus we an �nd the four eigenvalues of equation(4.18) by putting α = λ0 + 1

λ0
and β = λ1 + 1

λ1
. Then we get α + β = 7 and

αβ = 11, so α = 7+
√

5
2

and β = 7−
√

5
2

and therefore(4.19) λ0 =
7+

√
5−
√

38+14
√

5

4
and λ3 = 1/λ0 =

7+
√

5+
√

38+14
√

5

4
,

λ1 =
7+

√
5−
√

38−14
√

5

4
and λ2 = 1/λ1 =

7+
√

5+
√

38−14
√

5

4
.Let P =

(

P0 P1 P2 P3

), where Pi is an eigenvetor with respet to the eigen-value λi for i = 0, . . . , 3. Therefore BPi = λiPi. Now we shall solve the followingequation system.(4.20) 













2x + y + z = λx,
x + y + z = λy,

x + y + 3z + t = λz,
z + t = λt,where λ is equal to one of the eigenvalues λi, and where Pi =

(

x y z t
)T for

i = 0, . . . , 3. Therefore
y =

λ − 1

λ
x, z =

λ2 − 3λ + 1

λ
x, t =

λ2 − 3λ + 1

λ(λ − 1)
x.We hoose for onveniene x = λ(λ − 1); thus

y = (λ − 1)2, z = (λ2 − 3λ + 1)(λ − 1), t = λ2 − 3λ + 1.



Paper B. The number of Khalimsky-ontinuous funtions on intervals 39Let from now on λ = λ3 and (x, y, z, t)T be the eigenvetors related to λ3. Sinewe need to onsider Bk as k → ∞, we need not onsider the powers of λi for
i = 0, 1, 2. Hene, the powers of B that we need to onsider are

Bk =









λkx2 λkxy λkxz λkxt
λkxy λky2 λkyz λkyt
λkxz λkyz λkz2 λkzt
λkxt λkyt λkzt λkt2









.Equation (4.17) and the previous alulation lead us to(4.21) X2k−1 = (γ−2λ)k−3









x2t05 + xyt15 + xzt25 + xtt35
xyt05 + y2t15 + zyt25 + tyt35
xzt05 + yzt15 + z2t25 + tzt35
xtt05 + ytt15 + ztt25 + t2t35









.Let α = xt05 + yt15 + zt25 + tt35. Thus by (4.14) and (4.21)
t12k = γ−1(t02k−1 + t12k−1 + t22k−1) = (γ−2λ)(k−3)γ−1(x + y + z)α

t22k−1 = (γ−2λ)(k−3)zα.We now de�ne γ =
√

λ, the positive square root of the largest eigenvalue, and�nd that (γ−2λ)k−3 tends to 1 as k → +∞. We laim that γ−1(x + y + z) = z orequivalently that
0 = γ−1(x + y + z) − z = x

[

γ−1

(

1 +
λ − 1

λ
+

λ2 − 3λ + 1

λ

)

− λ2 − 3λ + 1

λ

]

.We need to show that
γ−1(λ − 1)λ − (λ2 − 3λ + 1) = 0.Sine λ is the largest root of equation (4.18), we obtain(4.22) 0 = λ4 − 7λ3 + 13λ2 − 7λ + 1

= λ4 − 6λ3 + 11λ2 − 6λ + 1 − λ3 + 2λ2 − λ

= (λ2 − 3λ + 1)
2 − λ (λ − 1)2 .The equations in (4.22) imply

λ =
λ2 (λ − 1)2

(λ2 − 3λ + 1)2
.Therefore

γ−1 =
λ2 − 3λ + 1

λ (λ − 1)
.



40 Shiva Samieinia: Lientiate ThesisThis proves our laim. Hene the sequenes t12k and t22k−1 have the same formula,and therefore they tend to the same limit zα as k → ∞. Similarly, we an provethe orresponding result for some other sequenes as follows:(4.23) t12k = t22k−1 → zα as k → ∞,

t22k = t12k−1 → yα as k → ∞,and(4.24) t32k = t02k−1 → xα as k → ∞,

t02k = t32k−1 → tα as k → ∞.If we sum the two limits in (4.23) we obtain(4.25) (t1n + t2n) tends to (y + z)α as n → ∞.Analogously, (4.24) shows that(4.26) (t0n + t3n) tends to (x + t)α as n → ∞.We now easily onlude that the sum of these two sequenes, i.e., (tn), onvergesto (x + y + z + t)α. Sine the sequene (t1n + t2n) onverges, we see easily that
c1
n + c2

n

c1
n−1 + c2

n−1

→ γ as n → ∞,and also the onvergene of the sequene (t0n + t3n) leads us to
c0
n + c3

n

c0
n−1 + c3

n−1

→ γ as n → +∞.We have the same result for cn/cn−1 beause as we found, the sequene (tn)onverges to some real number, so
cn

cn−1
→ γ as n → +∞.

�We shall now investigate frequenies in the ase of a four-point odomain.Proposition 4.3. Let cn be the number of Khalimsky-ontinuous funtions
f : [0, n − 1]Z → [0, 3]Z and let ci

n be the number of Khalimsky-ontinuous fun-tions f : [0, n−1]Z → [0, 3]Z suh that f(n−1) = i for i = 0, 1, 2, 3. If pi
n = ci

n/cnfor i = 0, 1, 2, 3, then(4.27) P 3
2k and P 0

2k−1 → x
x+y+z+t

≈ 0.258582;

P 2
2k and P 1

2k−1 → y

x+y+z+t
≈ 0.199679;

P 1
2k and P 2

2k−1 → z
x+y+z+t

≈ 0.418335;

P 0
2k and P 3

2k−1 → t
x+y+z+t

≈ 0.123402.



Paper B. The number of Khalimsky-ontinuous funtions on intervals 41as k → ∞, where x, y, z, t are the numbers whih were de�ned in the proof ofTheorem 4.2. As a onsequene, if we add these numbers two and two, thedi�erent parities play no role, and we obtain(4.28) P 1
n + P 2

n → y+z

x+y+z+t
≈ 0.618014

P 0
n + P 3

n → x+t
x+y+z+t

≈ 0.381984as n tends to in�nity.Proof. By the proof of Theorem 4.2 we know that the sequene (tn) onvergeneto number (x + y + z + t)α. This fat and (4.23) imply that(4.29) P 2
2k and P 1

2k−1 → y

x+y+z+t
≈ 0.199679 as k → ∞;

P 1
2k and P 2

2k−1 → z
x+y+z+t

≈ 0.418335 as k → ∞.Analogously, by using (4.24) we onlude that(4.30) P 3
2k and P 0

2k−1 → x
x+y+z+t

≈ 0.258582 as k → ∞;

P 0
2k and P 3

2k−1 → t
x+y+z+t

≈ 0.123402 as k → ∞.It is obvious that if we sum up the limits in (4.29) we obtain
P 1

n + P 2
n → y + z

x + y + z + t
≈ 0.618014 as n → ∞,similarly if we sum the limits in (4.30) we have

P 0
n + P 3

n → x + t

x + y + z + t
≈ 0.381984 as n → ∞.

�In the next table we an see the values of P i
n for i = 0, . . . , 3 and the sums ofsome of the frequenies.

n 6 7 8 9 10
c0
n 17 74 74 324 324

c1
n 57 57 250 250 1097

c2
n 27 119 119 523 523

c3
n 35 35 154 154 677

cn 136 285 597 1251 2621
P 0

n 0.125 0.259649 0.123953 0.258992 0.123616
P 1

n 0.419117 0.2 0.418760 0.199840 0.418542
P 2

n 0.1985294 0.4175439 0.19933 0.4180655 0.1995422
P 3

n 0.2573529 0.122807 0.2579564 0.1231015 0.2582984
P 0

n + P 3
n 0.3823529 0.382456 0.3819094 0.3820935 0.3819144

P 1
n + P 2

n 0.6176464 0.6175439 0.61809 0.6179055 0.6180842



42 Shiva Samieinia: Lientiate Thesis5. Continuous funtions with one �xed endpointTheorem 5.1. Let yn be the number of Khalimsky-ontinuous funtions
f : [0, n − 1]Z 7→ Z suh that f(0) = 0. Then(5.1) yn = 2yn−1 + yn−2 for n > 3.Proof. Let yi

n be the number of Khalimsky-ontinuous funtion f : [0, n−1]Z → Zsuh that f(0) = 0 and f(n − 1) = i. We have yn =
∑n−1

i=−(n−1) yi
n, but withKhalimsky topology we an onlude that we have symmetry for yi

n, that is,
yi

n = y−i
n for i = 1, . . . , n− 1. Therefore we an onsider another formulation for

yn, i.e.,(5.2) yn = y0
n + 2

n−1
∑

i=1

yi
n.Moreover, using properties of the Khalimsky topology, we see that(5.3) yi

2k =















yi−1
2k−1 + yi

2k−1 + yi+1
2k−1, i = 2t − 1 for t = 1, . . . , k − 1,

yi
2k−1, i = 2t for t = 1, . . . , k − 1,

y2k−2
2k−1, i = 2k − 1,

y0
2k−1, i = 0,and(5.4) yi

2k+1 =















yi−1
2k + yi

2k + yi+1
2k , i = 2t for t = 1, . . . , k − 1,

yi
2k, i = 2t − 1 for t = 1, . . . , k,

y2k−1
2k , i = 2k,

y0
2k + 2y1

2k, i = 0.We shall show the formula for n = 2k and for n = 2k + 1 we an have the resultin the same way,(5.5) y2k = y0
2k + 2

2k−1
∑

i=1

yi
2k = y0

2k + 2y2k−1
2k + 2

k−1
∑

t=1

y2t
2k + 2

k−1
∑

t=1

y2t−1
2k .Equation (5.5) omes from (5.2) and the simple separation of odd and evenindies. Plugging equations (5.3) into (5.5) gives us

y2k = y0
2k−1 + 2y2k−2

2k−1 + 2

k−1
∑

t=1

y2t
2k−1 + 2

k−1
∑

t=1

(

y2t−2
2k−1 + y2t−1

2k−1 + y2t
2k−1

)

,and then with a simple alulation,(5.6) y2k = y0
2k−1 + 2y2k−2

2k−1 + 2

k−1
∑

t=1

y2t
2k−1+

2

k−1
∑

t=1

y2t−2
2k−1 + 2

k−1
∑

t=1

y2t−1
2k−1 + 2

k−1
∑

t=1

y2t
2k−1.



Paper B. The number of Khalimsky-ontinuous funtions on intervals 43We have(5.7) 2
k−1
∑

t=1

y2t−2
2k−1 = 2y0

2k−1 + 2
k−1
∑

t=2

y2t−2
2k−1 = 2y0

2k−1 + 2
k−2
∑

t=1

y2t
2k−1.Therefore, by putting (5.7) in (5.6) and using (5.2);(5.8) y2k = 2y2k−1 + 2y2k−2

2k−1 + y0
2k−1 + 2

k−2
∑

t=1

y2t
2k−1 − 2

k−1
∑

t=1

y2t−1
2k−1.Pluggin (5.4) into (5.8) gives us(5.9) y2k = 2y2k−1 + 2y2k−3

2k−2 + y0
2k−2 + 2y1

2k−2

+2

k−2
∑

t=1

y2t−1
2k−2 + 2

k−2
∑

t=1

y2t
2k−2 + 2

k−2
∑

t=1

y2t+1
2k−2 − 2

k−1
∑

t=1

y2t−1
2k−2.By a simple alulation we have the two followings equations,(5.10) 2y2k−3

2k−2 + 2

k−2
∑

t=1

y2t−1
2k−2 − 2

k−1
∑

t=1

y2t−1
2k−2 = 0,and(5.11) 2y1

2k−2 + 2

k−2
∑

t=1

y2t+1
2k−2 = 2

k−1
∑

t=1

y2t−1
2k−2.Finally, by putting (5.10) and (5.11) into (5.9) and by using (5.2), we obtain thedesired formula. �The sequene in Theorem 5.1 is a well-known sequene, and appears as se-quene number A078057 in Sloane's Enylopedia. It is given by the expliitformula yn = 1

2

[

(

1 +
√

2
)n

+
(

1 −
√

2
)n
]. Atually yn has the same reursionformula as the Pell numbers Pn, but with di�erent initial values. The sequene

(Pn) is de�ned as
Pn =







0, n = 0,
1, n = 1,
2Pn−1 + Pn−2, n > 2.The reader an �nd more information about this sequene in item (A000129) ofthe enylopedia. Now we shall study the asymptoti behavior of this sequeneas we did for earlier sequenes. In the next theorem we shall show that yn tendsto the Silver Ratio 1 +

√
2 as n tends to in�nity.Theorem 5.2. Let yn be the number of Khalimsky-ontinuous funtions

f : [0, n − 1]Z 7→ Z suh that f(0) = 0. Then yn+1/yn → 1 +
√

2 as n → ∞.



44 Shiva Samieinia: Lientiate ThesisProof. We de�ne the sequene (tn) by the equation tn = ynγ−n for n > 1. Byusing (5.1) we have
γ2tn − 2γtn−1 − tn−2 = 0,thus(5.12) tn − tn−1 = (

2

γ
− 1)tn−1 +

1

γ2
tn−2.We are interested in having the sum of the two oe�ients in (5.12) to be zero.Hene, we onlude that γ is the positive solution of the equation γ2−2γ−1 = 0.Thus, γ = 1 +

√
2.
|tn − tn−1| = γ−2|tn−1 − tn−2| = γ−2(n−2)|t2 − t1|.The sequene (tn) is a Cauhy sequene and hene it onverges. Thus

yn

yn−1

=
tn

tn−1

γ → 1 +
√

2 as n → ∞.

�The following table shows the values of yi
n and yn for 1 6 n 6 10.9 18 1 17 1 1 176 1 1 15 155 1 1 13 13 1134 1 1 11 11 85 853 1 1 9 9 61 61 3772 1 1 7 7 41 41 231 2311 1 1 5 5 25 25 129 129 6810 1 1 3 3 13 13 63 63 321 321

−1 1 1 5 5 25 25 129 129 681
−2 1 1 7 7 41 41 231 231
−3 1 1 9 9 61 61 377
−4 1 1 11 11 85 85
−5 1 1 13 13 113
−6 1 1 15 15
−7 1 1 17
−8 1 1
−9 1
yn 1 3 7 17 41 99 239 577 1393 3363There is a nie relation between the Delannoy numbers and the number ofKhalimsky-ontinuous funtions with a �xed point f(0) = 0. The Delannoynumbers were introdued by Henri Delannoy (1895). The Delannoy array dj,k is

dj,k = dj−1,k + dj,k−1 + dj−1,k−1,



Paper B. The number of Khalimsky-ontinuous funtions on intervals 45with onditions d0,0 = 1 and dj,k = 0 for j < 0 or k < 0. The numbers
(di,i)i>0 = 1, 3, 13, 63, 321, 1683, 8989, 48639, . . . (A001850) are known as the en-tral Delannoy numbers. We give the Delannoy numbers in the following table:6 1 13 85 377 1289 3653 89895 1 11 61 231 681 1683 36534 1 9 41 129 321 681 12893 1 7 25 63 129 231 3772 1 5 13 25 41 61 851 1 3 5 7 9 11 130 1 1 1 1 1 1 10 1 2 3 4 5 6There are onnetions between many matematial problems and the Delannoynumbers. Sulanke (2003) listed 29 di�erent ontexts where the entral Delannoynumbers appear. A lassial example is the number of lattie paths from (0, 0)to (n, n) using the steps (0, 1), (1, 0), and (1, 1). From this path model one anobtain a ombinatorial proof that, for n > 0,

dn,n =
n
∑

i=0

(

n
i

)(

n + i
i

)

.In the next theorem we an see the 30th example of Delannoy numbers.Theorem 5.3. Let yi
n be the number of Khalimsky-ontinuous funtions f : [0, n−

1]Z 7→ Z suh that f(0) = 0 and f(n−1) = i. Then yi
n = dr,s for r = 1

2
(n−1− i)and s = 1

2
(n − 1 + i) where n − 1 + i ∈ 2Z.Proof. We shall use indution to prove the result. It is easy to see that y0

1 = 1 =
d0,0, y1

2 = 1 = d0,1, y−1
2 = 1 = d1,0 and y0

3 = 3 = d1,1. Suppose that the formulais true for t < 2k. We shall show that the result is true for t = 2k. The proof for
t = 2k+1 an be done in the same way. We onsider i suh that 2k−1+ i ∈ 2Z;hene i is odd number. For an even number i the proof is simple beause by(5.3), yi

2k = yi
2k−1 and so it is true by indution. By (5.3)(5.13) yi

2k = yi−1
2k−1 + yi

2k−2 + yi+1
2k−1.By the statement we have(5.14) yi−1

2k−1 + yi
2k−2 + yi+1

2k−1 = dr,s−1 + dr−1,s−1 + dr−1,s,where(5.15) 2k − 1 − i

2
= r and 2k − 1 + i

2
= sThus by (5.13), (5.14) and (5.15), we get the result. �
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