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This thesis 
onsists of two papers:Paper A. Chord properties of digital straight line segmentsThis paper treats digital straight line segments in two di�erent 
ases, in the 8-
onne
ted plane and in the Khalimsky plane. We investigate them using a new
lassi�
ation, dividing them into a union of horizontal and diagonal segments.Then we study ne
essary and su�
ient 
onditions for straightness in both 
ases,using verti
al distan
es for 
ertain points. We also establish ne
essary and suf-�
ient 
onditions in the 8-
onne
ted plane as well as in the Khalimsky plane bytransforming their 
hain 
odes. Using this te
hnique we 
an transform Khalim-sky lines to the 8-
onne
ted 
ase.Paper B. The number of Khalimsky-
ontinuous fun
tions on intervalsThis paper deals with Khalimsky-
ontinuous fun
tions. We 
onsider these fun
-tions when they have two, three or four points in their 
odomain. In the 
aseof two points in the 
odomain, we see a new example of the 
lassi
al Fibona

isequen
e. In the study of fun
tions with three and four points in their 
odomain,we �nd some new sequen
es, the asymptoti
 behavior of whi
h we investigate.Finally, we 
onsider Khalimsky-
ontinuous fun
tions with one �xed endpoint.In this 
ase, we get a sequen
e whi
h has the same re
ursion relation as thePell numbers but di�erent initial values. We also obtain a new example of theDelannoy numbers.
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Paper AChord properties of digitalstraight line segmentsShiva SamieiniaDepartment of Mathemati
s, Sto
kholm Universityshiva�math.su.seAbstra
tWe exhibit the stru
ture of digital straight line segments in the 8-
onne
tedplane and in the Khalimsky plane by 
onsidering verti
al distan
es andunions of two segments.1. Introdu
tionIn the �eld of digital geometry one of the themes whi
h has been studied exten-sively is digital straight lines. Malo¬ and Freeman (1961) and Freeman (1970)introdu
ed the 
hain 
ode as a te
hnique for representing 8-
onne
ted ar
s andlines. The most important problem related to straightness is how to re
ognizethe sets of pixels or 
odes representing a digital straight line. Rosenfeld (1974)
hara
terized straightness by the 
hord property and found two fundamentalproperties of run lengths in a digital line. He stated that the digitized line 
anonly 
ontain runs of two di�erent lengths and these run lengths must be 
onse
u-tive integers. Hung and Kasvand (1984) gave a ne
essary and su�
ient 
onditionfor a digital ar
 to have the 
hord property. This 
ondition made the 
hord prop-erty easier to 
he
k. Kim (1982) 
hara
terized it by 
onvexity, and showed thata digital straight line segment is a digital ar
 whi
h is digitally 
onvex.In the present paper we deal with grid points in the 8-
onne
ted plane aswell as the plane equipped with the Khalimsky topology. Digital straight linesegments are spe
ial 
ases of digital ar
s. We shall investigate Rosenfeld's digi-tization and his 
hord property in se
tion 1.1. Melin (2005) introdu
ed a mod-i�ed version of the 
hord property of Rosenfeld. He established ne
essary andsu�
ient 
onditions for straightness in the Khalimsky plane. We mention hisresults in se
tion 1.3 and put them into another framework using instead verti
aldistan
es in se
tion 2.1. Bru
kstein (1991) presented some transformations onsequen
es 
omposed of two symbols, 0 and 1. These transformations 
an be de-s
ribed by matri
es whi
h form a well-known group 
alled GL(2, Z). The mainresults in his paper is that the image of the 
hain 
ode under one of these trans-formations represents a digital straight line segment if and only if the originalsequen
e is the 
hain 
ode of a digital straight line segment. Similar transfor-mations have been used by Jamet and Toutant (2006:231) in the 
ase of threedimensions.



6 Shiva Samieinia: Li
entiate ThesisIn se
tion 2 we shall investigate sets of 8-
onne
ted and Khalimsky-
onne
tedpoints by dividing them into unions of horizontal and diagonal segments. Thenwe shall present ne
essary and su�
ient 
onditions in both 
ases using verti-
al distan
es for 
ertain points. We shall also establish ne
essary and su�
ient
onditions in the 8-
onne
ted plane as well as in the Khalimsky plane by trans-forming the sequen
es of their 
hain 
odes. Using this te
hnique we transformKhalimsky lines to the 8-
onne
ted 
ase.1.1. Rosenfeld's digitization of straight linesWe present here Rosenfeld's digitization of straight lines in the digital plane Z
2.First we de�ne the set

C(0) = {x; x1 = 0 and − 1/2 < x2 6 1/2} ∪ {x; x2 = 0 and − 1/2 < x1 6 1/2}.For ea
h p ∈ Z
2, let C(p) = C(0) + p, whi
h we shall 
all the 
ross with 
enter

p. Now the Rosenfeld digitization in R
2 is:(1.1) DR : P(R2) → P(Z2), DR(A) = {p ∈ Z

2; C(p) ∩ A 6= ∅}.This digitization is based on the one-dimensional digitization
R ∋ x 7→ ⌈x − 1/2⌉ ∈ Z.The union of all 
rosses C(p) for p ∈ Z

2 is equal to the set of all grid lines
(R×Z)∪ (Z×R), so that every straight line has a nonempty digitization. Notethat the family of all 
rosses is disjoint, whi
h implies that the digitization ofa point is either empty or a singleton set. In the real plane, the 
on
ept of astraight line is well-known: it is a set of the form {(1− t)a + tb; t ∈ R}, where aand b are two distin
t points in the plane. A straight line segment is a 
onne
tedsubset of a straight line (perhaps the whole line).We shall 
onsider in parti
ular 
losed segments of �nite length and we writethem as {(1 − t)a + tb; 0 6 t 6 1}, where a and b are the endpoints. We shalldenote this segment by [a, b]. Like Rosenfeld, we will 
onsider lines and straightline segments with slope between 0 and 45◦ in the 8-
onne
ted 
ase and in theKhalimsky plane.We shall say that D is a digital straight line segment, and write D ∈ DSLS 8,if and only if there exists a real line segment the Rosenfeld digitization of whi
his equal to D.Rosenfeld (1974) introdu
ed the 
hord property to 
hara
terize digitalstraight line segments in Z

2:De�nition 1.1. A subset D ⊆ R
2 is said to have the 
hord property if for allpoints p, q ∈ D the segment [p, q] is 
ontained in D +B∞

< (0, 1), the dilation of Dby the open unit ball for the l∞ metri
.



Paper A. Chord properties of digital straight line segments 7Rosenfeld's digitization of a subset in the plane Z
2 is 8-
onne
ted, but if we
onsider it in the Khalimsky plane, it is not ne
essarily 
onne
ted for that topol-ogy. Also, we do not have the 
hord property with respe
t to the l∞ distan
efor 
ertain Khalimsky-
onne
ted sets whi
h are digitizations of straight line seg-ments. Melin (2005) solved these problems by suggesting another digitizationand modi�ed Rosenfeld's 
hord property. To explain this, we shall start with thede�nition of the Khalimsky plane and then 
ontinue with Melin's digitization.1.2. The Khalimsky topologyThere are several di�erent ways to introdu
e the Khalimsky topology on theinteger line. We present the Khalimsky topology by a topologi
al basis. Forevery even integer m, the set {m − 1, m, m + 1} is open, and for every oddinteger n the singleton {n} is open. A basis is given by

{

{2n + 1}, {2n − 1, 2n, 2n + 1}; n ∈ Z
}

.It follows that even points are 
losed.A digital interval [a, b]Z = [a, b] ∩ Z with the subspa
e topology is 
alled aKhalimsky interval, and a homeomorphi
 image of a Khalimsky interval into atopologi
al spa
e is 
alled a Khalimsky ar
.On the digital plane Z
2, the Khalimsky topology is given by the produ
ttopology. A point with both 
oordinates odd is open. If both 
oordinates areeven, the point is 
losed. These types of points are 
alled pure. Points with oneeven and one odd 
oordinate are neither open nor 
losed; these are 
alled mixed.Note that the mixed points are only 
onne
ted to their 4-neighbors, whereasthe pure points are 
onne
ted to all eight neighbors. More information on theKhalimsky plane and the Khalimsky topology 
an be found in Kiselman (2004).1.3. Continuous Khalimsky digitizationThe Rosenfeld digitization in R

2 does not work well when Z
2 is equipped withthe Khalimsky topology. This means that the Rosenfeld digitization of a straightline segment is not in general 
onne
ted for the Khalimsky topology. Melin(2005) introdu
ed a Khalimsky-
ontinuous digitization. This digitization givesus Khalimsky-
onne
ted digital straight line segments.Here we re
all his de�nition and related results. Let

D(0) = {(t, t) ∈ R
2;−1/2 < t 6 1/2} ∪ {(t,−t) ∈ R

2;−1/2 < t 6 1/2}.For ea
h pure point p ∈ Z
2, de�ne D(p) = D(0) + p. Note that D(p) is a 
ross,rotated 45◦, with 
enter at p, and that D(p) is 
ontained in the Voronoi 
ell

{x ∈ R
2; ‖x − p‖∞ 6 1/2}. This means that a digitization with D(p) as a 
rosswith nu
leus p is a Voronoi digitization. We de�ne the pure digitization DP (A)of a subset A of R

2 as
DP (A) = {p ∈ Z

2; p is pure and D(p) ∩ A 6= ∅}.



8 Shiva Samieinia: Li
entiate ThesisThis digitization is the basis for the 
ontinuous digitization. The 
ontinuousdigitization D(L) of L is de�ned as follows: If L is horizontal or verti
al D(L) =
DR(L), the Rosenfeld digitization de�ned in (1.1). Otherwise de�ne DM(L) as

DM(L) = {p ∈ Z
2; (p1 ± 1, p2) ∈ DP (L)} ∪ {p ∈ Z

2; (p1, p2 ± 1) ∈ DP (L)}and let D(L) = DP (L) ∪ DM(L). In this digitization we add mixed points
(p1, p2) if the two points (p1 ± 1, p2) or the two points (p1, p2 ± 1) belong to thepure digitization. Melin (2005) 
hara
terized digital straight line segments inthe 8-
onne
ted and the Khalimsky-
onne
ted 
ases by using a fun
tion whi
hhe 
alled 
hord measure.De�nition 1.2. Let A ∈ Pfinite(Z

2) be a �nite set. Then the 
hord measure of
A, denoted by ξ(A), is de�ned by:

ξ(A) = max
p,q∈A

H(A, p, q),where H(A, p, q) is the distan
e from the line segment [p, q] to A, whi
h is de�nedby
H : Pfinite(Z

2) × Z
2 × Z

2 → [0, +∞], H(A, p, q) = sup
x∈[p,q]

min
m∈A

d(m, x).The distan
e fun
tion H is related to the Hausdor� distan
e between A and [p, q]as two subsets of the metri
 spa
e (Z2, d).De�nition 1.3. Let A ∈ Pfinite(Z
2). We say that A has the 
hord property forthe metri
 d if ξ(A) < 1.As to the Rosenfeld digitization, Melin (2005) showed that a 
ontinuous Khalim-sky digitization satis�es the 
hord property for a 
ertain metri
 and, 
onversely,a Khalimsky ar
 satisfying this 
hord property is the digitization of a straightline segment. He 
onsidered a spe
ial metri
. Let δ∞ be the metri
 on R

2 de�nedby
δ∞(x, y) = max

(

1
2
|x1 − y1|, |x2 − y2|

)

;it is the l∞-metri
 res
aled in the �rst 
oordinate. For ea
h positive α, we mayde�ne a metri
 δ∞α (x, y) = max(α|x1 − y1|, |x2 − y2|), but Melin (2005) showedby examples that the 
hoi
e α = 1
2
is suitable.We shall 
all D a digital straight line segment in the Khalimsky plane, andwrite D ∈ DSLSKh if and only if there exists a real straight line segment whoseKhalimsky digitization is equal to D. Melin (2005) proved two theorems that
hara
terize DSLSKh.Theorem 1.4. (Melin 2005: Theorem 6.3) The 
ontinuous Khalimsky digitiza-tion of a straight line segment is a Khalimsky ar
 (possibly empty) having the
hord property for the δ∞-metri
 (when the slope is between 0◦ and 45◦) or themetri
 δ̌(x, y) = δ((x2, x1), (y2, y1)) (for lines with slope between 45◦ and 90◦).



Paper A. Chord properties of digital straight line segments 9Theorem 1.5. (Melin 2005: Theorem 6.4) Suppose that a Khalimsky ar

D = {(x, f(x)); x ∈ I} ⊆ Z

2is the graph of a monotone, 
ontinuous fun
tion f , and that D has pure end-points. If D has the 
hord property for the δ∞-metri
, then D is the Khalimsky-
ontinuous digitization of a straight line segment.Remark 1.6. Melin (2005) de�ned another way to distinguish DSLSKh in theproof of Theorem 1.5. He de�ned a strip S(α, β, ρ) for given α, β, ρ ∈ R by
S(α, β, ρ) = {x ∈ R

2; αx1 + β − ρ(1 + α) 6 x2 6 αx1 + β + ρ(1 + α)},He 
alled the number ρ the diagonal half-width of the strip. The boundary ofthe strip 
onsists of two 
omponents given by the lines x2 = αx1 + β ± ρ(1 + α),i.e., the 
enter line, x2 = αx1 + β, translated by the ve
tors (−ρ, ρ) and (ρ,−ρ).As a 
onsequen
e of the digitization of pure points, we 
an see easily that a setof pure points is a subset of a digital straight line segment if and only if they are
ontained in a strip with a diagonal width stri
tly less than 1
2
.2. Boomerangs and digital straight line segmentIn this paper we want to 
hara
terize the digital straight line segments, so we
onsider the 
olle
tion of monotone fun
tions on a bounded interval. We may re-stri
t attention to monotone fun
tions, be
ause a fun
tion whi
h is not monotone
an never represent a straight line segment.In the 
ase of the Khalimsky topology, it is 
lear that the graph of a dis
on-tinuous fun
tion 
annot have the 
hord property, so we do not need to 
onsidersu
h fun
tions. We 
onsider in
reasing fun
tions; the 
ase of de
reasing fun
-tions is similar. For this 
ase we have the 
hord property whi
h we introdu
edin De�nition 1.3.If P = (pi)n

i=0 is a sequen
e of points whi
h is the graph of a fun
tion f , thuswith pi
2 = f(pi

1), we de�ne its 
hain 
ode c = (ci)i=1,...,n by ci = f(i) − f(i − 1),
i = 1, . . . , n. For the fun
tions we work on, ci is equal to zero or one. (Thisde�nition agrees with the Freeman 
hain 
ode in this 
ase.)The simplest straight line segments in the digital plane are the horizontal,diagonal and verti
al ones. In the remaining 
ases the graph 
ontains bothhorizontal and diagonal steps; we shall 
all them 
onstant and in
reasing, re-spe
tively, so in this 
ase we have at least one point pre
eded by a horizontalinterval and followed by a diagonal interval, or 
onversely.De�nition 2.1. When a graph P is given, we shall say that a digital 
urve
onsisting of m + 1 points, B = (bi)m

i=0, m > 2, is a boomerang in P if it 
onsistsof a horizontal segment [b0, bk], where 0 < k < m, followed by a diagonal segment
[bk, bm], or 
onversely, and if B is maximal with this property. We shall 
all thehorizontal and diagonal segments, Con(B) and Inc(B), respe
tively.



10 Shiva Samieinia: Li
entiate ThesisWe use |Con| = |Con(B)| = k for the number of horizontal intervals in thesegment [b0, bk], and |Inc| = |Inc(B)| = m−k for the number of diagonal intervalsin the segment [bk, bm], or 
onversely if the horizontal segment 
omes last. Theyare equal to the number of zeros and ones in the related 
hain 
ode, respe
tively.We introdu
e |B| = k + (m − k) = m as the sum of |Con(B)| and |Inc(B)|. Weremark that the boomerangs need not be disjoint and that the last segment aboomerang may be a starting segment of the next boomerang, so the number ofboomerangs is equal to the number of verti
es.We thus divide the 
olle
tion of graphs of monotone fun
tions on boundedintervals into two 
ases:(I) Horizontal or diagonal;(II) All others.The 
ase (I) is straightforward. We shall now dis
uss the se
ond type ofdigital 
urves.De�nition 2.2. Given any subset P of R
2 we de�ne its 
hord set chord(P ) asthe union of all 
hords, i.e., all segments with endpoints in P , as

chord(P ) =
⋃

x,y∈P

[x, y] ⊆ R
2.We also need the broken line de�ned for a �nite sequen
e P = (pi)n

i=0,
BL(P ) =

n−1
⋃

i=0

[pi, pi+1] ⊆ R
2.Similarly for an in�nite sequen
e (pi)i∈N or (pi)i∈Z.Lemma 2.3. For an 8-
onne
ted sequen
e P = (pi)n
i=0 we have

BL(P ) + B1
<(0, 1) ⊆

n
⋃

i=0

(

{pi} + B∞
< (0, 1)

)

,where BL(P )+B1
<(0, 1) and {pi}+B∞

< (0, 1) are the dilations of BL(P ) and {pi}by the open unit ball for the l1 and l∞ metri
, respe
tively.Proof. We 
an see easily that(2.1) BL(P ) + B1
<(0, 1) =

n−1
⋃

i=1

[pi, pi+1] + B1
<(0, 1) ⊆

(

{p0, pn} + B1
<(0, 1)

)

∪
(

n−1
⋃

i=0

[pi, pi+1] + {0} × [−1, 1]

)

.We have(2.2) {p0, pn} + B1
<(0, 1) ⊆ {p0, pn} + B∞

< (0, 1),



Paper A. Chord properties of digital straight line segments 11and(2.3) n−1
⋃

i=0

[pi, pi+1] + {0} × [−1, 1] ⊆
n
⋃

i=0

{pi} + B∞
< (0, 1).Then (2.2) and (2.3) give the result. �Remark 2.4. In the equation (2.1), if we 
onsider an in�nite sequen
e P = (pi)i∈Z,we have

⋃

i

[pi, pi+1] + B1
<(0, 1) ⊆

⋃

i

(

[pi, pi+1] + {0} × [−1, 1]
)

.2.1. Boomerangs and verti
al distan
eSuppose that P = (pi)i=0,...,n is a sequen
e of points whi
h has b boomerangs.Let V = (vi)b
i=1 be the sequen
e of all verti
es of the boomerangs of P . We de�nethe verti
al distan
e dv as dv(x, y) = |x2 − y2| when x1 = y1. We shall show arelation between verti
al distan
es and DSLS 8 and DSLSKh.Theorem 2.5. Let P = (pi)n

i=0 be an 8-
onne
ted sequen
e of points whi
h is thegraph of a fun
tion and has b boomerangs. Let V = (vi)i=1,...,b be the sequen
e ofall verti
es of its boomerangs. Then P ∈ DSLS 8 if and only if for all i = 1, . . . , band all real points a ∈ chord(P ) su
h that a1 = vi
1 we have dv(v

i, a) < 1.Proof. Suppose that there is a vertex v = pj for some 0 < j < n and a point
a ∈ chord(P ) with a1 = v1 su
h that dv(v, a) > 1. We shall show that P 6∈
DSLS 8. Sin
e we have dv(v, a) > 1,(2.4) a 6∈ {v} + B∞

< (0, 1).Also(2.5) |a1 − pi
1| > 1 for i 6= j.Therefore, by (2.4), (2.5), we see that

a 6∈ {pi}n
i=0 + B∞

< (0, 1),and so P 6∈ DSLS 8.Conversely, suppose that P 6∈ DSLS 8, so there is a point c and two indi
es
k, l su
h that 0 6 k < l 6 n and c ∈ [pk, pl] but c 6∈ P + B∞

< (0, 1). By Lemma2.3,(2.6) c 6∈ BL(P ) + B1
<(0, 1).De�ne Qk,l = BL((pi)i=k,...,l). Consider the fun
tion Fk,l : [pk, pl] → R de�ned by

Fk,l(x) = dv(x, y) for y ∈ Qk,l with y1 = x1.



12 Shiva Samieinia: Li
entiate ThesisConsider the point x ∈ Qk,l with x1 = c1. By (2.6),
dv(c, x) > 1.Therefore Fk,l(c) > 1. The fun
tion Fk,l attains its maximum at a point that lieson a verti
al line passing through a vertex, so there is a vertex v of the boomerang

B su
h that the fun
tion Fk,l attains its maximum at the point a ∈ [pk, pl] with
a1 = v1, thus

1 6 Fk,l(c) 6 Fk,l(a) = dv(v, a).This shows that, for the vertex v and a point a ∈ chord(P ) with same �rst
oordinate as v, we have dv(a, v) > 1. We are done. �We shall now study the same result for Khalimsky-
onne
tedness. We 
onsidermixed points m = (m1, m2) whi
h lie on P and su
h that for some vertex v =
(v1, v2), we have m1 = v1 ± 1. In the next theorem we shall show that we havestraightness if and only if the verti
al distan
e is less than one at these mixedpoints.Theorem 2.6. Suppose that P = (pi)n

i=0 is a Khalimsky-
onne
ted sequen
e withpure endpoints and let b be the number of its boomerangs. Let M be the set ofall mixed points in P . Then P ∈ DSLSKh if and only if for all m ∈ M and all
a ∈ chord(P ) with a1 = m1 we have dv(m, a) < 1.Proof. Suppose that there exist a mixed point m = pj for some 0 < j < n and apoint a ∈ chord(P ) with a1 = m1 su
h that dv(m, a) > 1, so that(2.7) a 6∈ {m} + Bδ∞

< (0, 1),where Bδ∞

< (0, 1) is the open unit ball for the metri
 δ∞.It is 
lear that
∣

∣a1 − pj−2
1

∣

∣ = 2 and ∣∣a1 − pj+2
1

∣

∣ = 2;so(2.8) ∣

∣a1 − pk
1

∣

∣ > 2 for k > j + 2 and k 6 j − 2.We 
an see easily also that(2.9) ∣

∣a2 − pj−1
2

∣

∣ =
∣

∣a2 − pj+1
2

∣

∣ > 1.Therefore, by (2.7), (2.8) and (2.9)
a 6∈ P + Bδ∞

< (0, 1).Thus P 6∈ DSLSKh.Conversely, suppose that P ∈ DSLSKh so that there is a straight line L withequation x2 = αx1 + β whose digitization equals the set of points P . Without



Paper A. Chord properties of digital straight line segments 13loss of generality we may assume that 0 < α < 1. As we saw in remark 1.6, thereis a strip
S(α, β, ρ) = {x ∈ R

2; αx1 + β − ρ(1 + α) 6 x2 6 αx1 + β + ρ(1 + α)},with diagonal half-width ρ less than 1
2
, whi
h 
ontains P and also chord(P ).We shall show that the verti
al distan
e between an arbitrary mixed point m =

(m1, m2) in M and the two boundary lines S(α, β, ρ) is less than one, so thatthe verti
al distan
e between m and all a ∈ chord(P ) with a1 = m1 is less thanone. Consider a mixed point m in M . Sin
e α is less than 1, the two pure points
p = (m1−1, m2) and q = (m1 +1, m2) belong to P . Let r ∈ D(p)∩L where D(p)is the 
ross de�ned in subse
tion 1.3. By the 
onstru
tion of Melin's digitizationwhi
h we mentioned in subse
tion 1.3, the distan
e with l∞ metri
 between thepure point p and the line segment L is less than 1

2
, i.e.,(2.10) d∞(p, r) < 1

2
.The diagonal half-width of the strip S is less than 1

2
, so the distan
e with the l∞metri
 between the line segment L and the strip S is less than 1

2
. Thus(2.11) d∞(r, S) < 1

2
.By (2.10) and (2.11)(2.12) d∞(p, S) 6 d∞(p, r) + d∞(r, S) < 1.In the same way, we have(2.13) d∞(q, S) < 1.By (2.12) and (2.13), we 
on
lude that dv(m, a) < 1 for all a ∈ S with a1 = m1.

�3. Boomerangs and straightnessWe shall now dis
uss straightness by 
onsidering boomerangs and using the 
on-ditions on verti
al distan
es in Theorems 2.5 and 2.6. First we just 
onsiderone boomerang. In two lemmas we shall �nd 
onditions for straightness in the8-
onne
ted 
ase and the Khalimsky 
ase, and then we shall do the same whenwe have more than one boomerang.Lemma 3.1. Let B = (bi)n
i=0 be an 8-
onne
ted boomerang. Then the followingtwo properties are equivalent.(i) B ∈ DSLS 8;(ii) If |Con(B)| > 2, then |Inc(B)| = 1;



14 Shiva Samieinia: Li
entiate ThesisProof. (i) ⇒ (ii). Suppose that a boomerang B ∈ DSLS 8 and |Con| > 2 and
|Inc| > 2. Therefore the verti
al distan
e between the vertex of B and chord(B)is at least one. Theorem 2.5 now gives a 
ontradi
tion.(ii) ⇒ (i). Suppose that |Inc| = 1, and that |Con| = m > 2. We 
an 
he
keasily the 
ondition Theorem 2.5 and see that B ∈ DSLS 8. �Lemma 3.2. Let a boomerang B = (bi)n

i=0 be a Khalimsky-
onne
ted set withpure end points. Then the following two properties are equivalent.(i) B ∈ DSLSKh;(ii) If |Con(B)| > 4, then |Inc(B)| = 1.Proof. (i) ⇒ (ii). Suppose that B ∈ DSLSKh and |Con| > 4 and |Inc| > 2. ByTheorem 2.6, we have 
ontradi
tion.(ii) ⇒ (i). Suppose that |Inc| = 1, and |Con| > 4. We 
an see easily that the
ondition in Theorem 2.6 is satis�ed, and we are done. �The two previous Lemmas 3.1 and 3.2 show the relation between the 
lass DSLSand an arbitrary boomerang, but of 
ourse there are digital 
urves su
h that allits 
onstituent boomerangs satisfy the 
ondition of these lemmas but the 
urveitself is not in DSLS . In order to avoid 
ompli
ated proofs in Propositions 3.3and 3.4 and Lemmas 3.6 and 3.7, or a 
ompli
ated statement in Theorem 3.8,we will 
onsider only 
on
ave boomerangs.Proposition 3.3. Suppose that P = (pi)n
i=0 is a set of points su
h that

P ∈ DSLS 8 and denote by b the number of 
on
ave boomerangs in P . If
|Con(Bj)| > 2 for some j with 1 6 j 6 b, then |Inc(Bi)| = 1 for all i with
1 6 i 6 b.Proof. Let P ∈ DSLS 8. Suppose that there exist 1 6 i 6 j 6 b su
h that
|Inc(Bi)| > 2 and |Con(Bj)| > 2. We may assume that |Inc(Bi)| = 2, |Con(Bj)| =
2 by passing to subsets and Bi is the 
losest boomerang to Bj with 
ardinalityof the in
reasing part not equal to 1. If i = j, the result is obvious by Lemma3.1. For j − i = 1, by Lemma 3.1 we must have |Con(Bi)| = |Inc(Bj)| = 1. ByTheorem 2.5 we do not have straightness in this 
ase.Suppose now that j − i > 1. In this 
ase the 
hain 
ode for P is

(1, 1, 0, (1, 0)t, 1, 0, 0),where (1, 0)t means that we have t times the subsequen
e (1, 0). Let (pi)l+2t+6
i=l bethe points related to this 
hain 
ode. The slope of the line segment [pl, pl+2t+6

]is equal to 3+t
6+2t

= 1
2
. We 
an 
he
k easily that the verti
al distan
e betweenthe vertex pl+2 and the line segment [pl, pl+2t+6

] is 1. Thus we are done just by
onsidering Theorem 2.5. �Proposition 3.4. Suppose that P = (pi)n
i=0 is a Khalimsky-
onne
ted sequen
ewith pure endpoints su
h that P ∈ DSLSKh and denote by b the number of 
on
aveboomerangs in P . If |Con(Bj)| > 4 for some 1 6 j 6 b, then |Inc(Bi)| = 1 for all

1 6 i 6 b.



Paper A. Chord properties of digital straight line segments 15Proof. We do as in the proof of Proposition 3.3. Suppose that there exist 1 6 i 6

j 6 b su
h that |Inc(Bi)| > 2 and |Con(Bj)| > 4. We may assume that |Inc(Bi)| =
2, |Con(Bj)| = 4 by passing to subsets. We 
an assume that Bi is the 
losestboomerang to Bj with 
ardinality of the in
reasing part not equal to 1. For j−i =
1, we 
an �nd a 
ontradi
tion as in Proposition 3.3. Finally, we shall show thatwe do not have straightness when j − i > 1. Let (1, 1, 0, 0, (1, 0, 0)t, 1, 0, 0, 0, 0)be the related 
hain 
ode for the set of boomerangs Bi, . . . , Bj and (pi)l+3t+9

i=l bethe points related to this 
hain 
ode. The slope of the line segment [pl, pl+3t+9]is equal to 3+t
9+3t

= 1
3
. Thus, we 
an see that the verti
al distan
e between themixed point pl+3 and the line segment [pl, pl+3t+9] is equal to 1. Therefore, wedo not have straightness by Theorem 2.6. �By Propositions 3.3 and 3.4, there are just two 
ases when we study straightness.We write them in the following de�nition.De�nition 3.5. Let Ii = |Inc(Bi)| and Ci = |Con(Bi)|, where 1 6 i 6 b and b isthe number of boomerangs in P . We shall 
onsider four 
ases:(8-a) Ii = 1 for all 1 6 i 6 b;(8-b) Ci = 1 for all 1 6 i 6 b;(Kh-a) Ii = 1 for all 1 6 i 6 b;(Kh-b) Ci = 2 for all 1 6 i 6 b.We shall 
all P dominant 
onstant if it satis�es 
ondition (8-a) in the 
ase of 8-
onne
tedness, and 
ondition (Kh-a) in the 
ase of Khalimsky 
onne
tedness, anddominant in
reasing if it satis�es 
ondition (8-b) in the 
ase of 8-
onne
tednessand 
ondition (Kh-b) in the 
ase of Khalimsky 
onne
tedness.If the dis
rete straight line has slope between 0 and 1

2
, we have dominant 
onstantand for the slope of the line between 1

2
and 1, we have dominant in
reasing.There are some results on the runs of 8-
onne
ted digital straight lines thatare related to our work. We give a summary of them. Freeman (1970:260) hasobserved that (ex
ept possibly at the beginning and end of the segment) the�su

essive o

urren
ies of the element o

urring singly are as uniformly spa
edas possible.�Rosenfeld (1974) provided a formal proof of these fa
ts for the 8-
onne
ted
ase. We present two propositions, in the 8-
onne
ted 
ase and the Khalimsky-
onne
ted 
ase with this 
on
lusion. We shall show that we have two possibilitiesfor the number of boomerangs in both 
ases. This result is similar to Rosenfeld's
on
lusion in the 8-
onne
ted 
ase for runs. We shall use the results of theselemmas in Theorem 3.8, so we write the statements of the two lemmas usingboomerangs. To prove these lemmas we shall use Theorems 2.5 and 2.6.Lemma 3.6. If P ∈ DSLS 8, then we have at most two possible values for the
ardinality of the boomerangs in P , that is, ∣∣|Bi+k| − |Bi|

∣

∣ 6 1 for all i, k ∈ N.Proof. Let P be dominant in
reasing. To avoid 
ompli
ated indi
es and to sim-plify the 
onstru
tion of the proof, we 
onsider 
on
ave boomerangs only. We
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hoose k minimal su
h that
∣

∣|Bi+j | − |Bi|
∣

∣ = 1 for 1 6 j < k,and
∣

∣|Bi+k| − |Bi|
∣

∣ > 2.Without loss of generality, we may assume that |Bi+j| > |Bi| for 1 6 j 6 k.Thus
|Bi+j | − |Bi| = 1 for 1 6 j < k,and

|Bi+k| − |Bi| > 2.Consider now the line segment [p, q] su
h that p is the starting point of Con(Bi−1)and q is the endpoint of Inc(Bi+k). This line segment has slope
(k + 1)Ii + k − 1 + t

(k + 1)Ii + 2k + t
,where

t = |Bi+k| − |Bi| > 2 and Ii = |Inc(Bi)|.We 
an see easily that the verti
al distan
e is at least one at the point (Ii +2, Ii)(whi
h is the vertex of a 
onvex boomerang). Therefore, we get a 
ontradi
tionby Theorem 2.5. The proof for dominant 
onstant 
an be obtained in the sameway. �Lemma 3.7. If P ∈ DSLSKh, then we have two possible values for the 
ardinalityof boomerangs in P , that is, in the dominant in
reasing 
ase,
∣

∣|Bi+k| − |Bi|
∣

∣ 6 1 for all k ∈ N,and in the dominant 
onstant 
ase,
∣

∣|Bi+k| − |Bi|
∣

∣ 6 2 for all k ∈ N.Proof. For the dominant in
reasing, we do as in Lemma 3.6. Here we 
onsider,as in Lemma 3.6, 
on
ave boomerangs. We 
hoose k minimal su
h that
|Bi+j | − |Bi| = 1 for 1 6 j < k,and

|Bi+k| − |Bi| > 2.Consider the line segment [p, q] su
h that p is the starting point of Con(Bi−1)and q is the endpoint of Inc(Bi+k). This line segment has slope
(k + 1)Ii + k − 1 + t

(k + 1)Ii + 3k + t + 1
,
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t = |Bi+k| − |Bi| > 2 and Ii = |Inc(Bi)|.We 
an see easily that the verti
al distan
e is at least one at the mixed point

(Ii + 3, Ii). Thus, we are done for the dominant in
reasing 
ase by getting a
ontradi
tion with Theorem 2.6.Suppose now that P is dominant 
onstant. We may 
hoose k minimal su
hthat
|Bi+j | − |Bi| = 2 for 1 6 j < k,and

|Bi+k| − |Bi| > 4.Consider the line segment [p, q] where p and q are the start point of Inc(Bi) andthe endpoint of Con(Bi+k), respe
tively. We 
an easily 
he
k that the verti
aldistan
e is at least one at the mixed point (Ci + 3, 2), where Ci = |Con(Bi)|.Thus, 
onsidering Theorem 2.6, we get a 
ontradi
tion. �The 
onditions in Lemmas 3.6 and 3.7 are ne
essary but not su�
ient for straight-ness. An example for this 
laim is the set of 8-
onne
ted points with Freeman
hain 
ode 11010110101010. These points satisfy the 
on
lusion of Proposi-tion 3.6 but do not have the 
hord property. In the Khalimsky plane we 
an seethese results in the set of points with Freeman 
hain 
ode 11001001100100100100.Hung and Kasvand (1984) introdu
ed a way to �nd the su�
ient 
ondition forstraightness in the 8-
onne
ted plane. He 
onsidered a digital ar
 as a sequen
eof two symbols. Then he noted that a segment in a sequen
e of symbols isa 
ontinuous blo
k of symbols of this sequen
e; the number of symbols in asegment is the length of this segment. All segments having the same length ina sequen
e were 
alled equal segments. Two equal segments he 
alled uneven iftheir sums di�er by more than 1. He 
alled any two uneven segments an unevenpair. Then he went on to prove that a digital ar
 has the 
hord property if andonly if there are no uneven segments in its 
hain 
ode. He named a digital ar
straight if and only if for equal segments in this ar
, their sums 
annot di�er bymore than 1. Therefore, like the 
hord property, the absen
e of uneven segmentsis one of the most fundamental properties in the stru
ture of a digital straightline.Bru
kstein (1991) presented several interesting self-similarity properties of
hain 
odes of digital straight line. He introdu
ed some transformations givenby matri
es of determinant ±1. These matri
es belong to the well-known group
GL(2, Z). As a result of these transformations, he showed that the new sequen
eprodu
ed by applying these transformation to a sequen
e of 0 and 1 is the 
hain
ode of digital straight line segment if and only if the original sequen
e is the
hain 
ode of a digital straight line segment.To �nd a su�
ient 
ondition for straightness, we shall de�ne a mapping whi
htransforms 
ertain 
odes to the set {0, 1}. Let B(P ) be the 
olle
tion of allboomerangs in P . By Lemmas 3.6 and 3.7, we have just two possibilities forthe values of |Bi|. Thus we 
an de�ne a mapping from the set of Freeman 
hain
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ode of P to {0, 1} whi
h maps the boomerangs with greater 
ardinality to 1and the other boomerangs to 0. The graph of f is an 8-
onne
ted set and bythis fa
t we 
an see easily that if P is a Khalimsky-
onne
ted set, then f(P )will be an 8-
onne
ted set and so for investigating the straightness in Khalimskyplane we 
an go to the 8-
onne
ted 
ase. In the following theorem we shallshow that f(P ) and so the 
omposition of f with itself 
an give a ne
essary andsu�
ient 
ondition for straightness in the 8-
onne
ted 
ase and therefore also inthe Khalimsky-
onne
ted plane.Theorem 3.8. We de�ne a fun
tion f on a subset of the set {0, 1}N of sequen
esof zeros and ones and with values in the same set: f(C) is de�ned for those 
hain
odes that represent dominant in
reasing or dominant 
onstant sequen
es whi
harise from sets of boomerangs of at most two di�erent lengths. We de�ne f(C)as the sequen
e obtained by repla
ing the 
hain 
ode of a long 
on
ave boomerangby 1 and that of a short 
on
ave boomerang by 0. Then(I) C is the 
hain 
ode of an element of DSLS 8 if and only if f(C) ∈ DSLS 8,and(II) C is the 
hain 
ode of an element of DSLSKh if and only if C the 
hain 
odeof a Khalimsky-
onne
ted set and f(C) ∈ DSLS 8.Remark 3.9. If we 
ompose f with itself and de�ne f 0(C) = C, fn+1(C) =
f(fn(C)) for n ∈ N, then fn(C) belongs to DSLS 8 for all n ∈ N and all
C ∈ DSLS 8, and fn(C) belongs to DSLS 8 for all n ∈ N

∗ = N r {0} for all
C ∈ DSLSKh.Proof. We de�ne a transformation whi
h gives us the 
hain 
ode of f(C). Wewant to transform a short boomerang to a ve
tor V1 whi
h 
omes from the linesegment between the starting point and the endpoint of this boomerang. Then,in analogy with short boomerangs we 
an do the same for a long boomerang andtransform it to a ve
tor V3. We de�ne a grid T whi
h is 
ontained in R

2 and hastwo linearly independent basis ve
tors V1 and V2, where V2 is the sum of V1 and
V3. Therefore

T = {a + x1V1 + x2V2; x = (x1, x2) ∈ Z
2} with a = (a1, a2) as origin.With this transformation, we 
an map the set chord(P ) into R

2. The image of
x = (x1, x2)

T =

(

x1

x2

)

∈ Z
2 in T is(3.1) (

t1
t2

)

=

(

a1

a2

)

+ A

(

x1

x2

)

,where(3.2) A =

(

1 −1
1 − p p

) or A =

(

0 1
1 −p

)for the set of 8-
onne
ted points whi
h is dominant in
reasing or dominant 
on-stant, respe
tively, and p denotes the 
ardinality of a short boomerang.
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h gives us the 
hain 
ode of
f(C) in the Khalimsky 
ase. We noti
e that in the dominant in
reasing 
ase, the
onstant part is always 2 and in the dominant 
onstant 
ase, the 
onstant partmust be an even number. We 
an write this transformation in the Khalimsky
ase using a matrix A de�ned as follows:

A = 1
2

(

1 −1
2 − p p

) or A =

(

0 1
1
2

−1
2
p

)for the set of points whi
h is dominant in
reasing or dominant 
onstant, respe
-tively. The number p is the 
ardinality of the short boomerangs, whi
h is an oddnumber for the dominant 
onstant 
ase. In both 
ases we 
an 
ome ba
k from Tto Z
2 as follows:(3.3) (

x1

x2

)

= A−1

[(

t1
t2

)

−
(

a1

a2

)]

,By the statement of Theorem 3.8, C is dominant in
reasing or dominant
onstant. If f(C) is a digital straight line segment, then we have four possibilitiesin ea
h of the two 
ases, the 8-
onne
ted 
ase and the Khalimsky 
ase. Wepresent them in the following list.
(3.4) 1. C is dominant in
reasing and f(C) is dominant in
reasing, so

C has dominant long boomerangs;
2. C is dominant 
onstant and f(C) is dominant in
reasing, so

C has dominant long boomerangs;
3. C is dominant in
reasing and f(C) is dominant 
onstant, so

C has dominant short boomerangs;
4. C is dominant 
onstant and f(C) is dominant 
onstant, so

C has dominant short boomerangs.In the 
ase of 8-
onne
tedness, there are no spe
ial di�eren
es in the proof ofthe four 
ases in (3.4), but in the Khalimsky 
ase, we must be 
areful whi
hpossibility we 
hoose to work on, and how we 
an transform a mixed point to avertex and vi
e versa.Case (I), ⇒. Now we shall prove the impli
ation ⇒ in 
ase (I). Let
C ∈ DSLS 8. If f(C) 6∈ DSLS 8 then we 
an �nd a vertex v = (v1, v2)

T of aboomerang B su
h that we have verti
al distan
e at least one at this point. Sup-pose that this verti
al distan
e is attained between v and the line segment withequation Y = MX + N in T . Thus
dv(v, a) = v2 − Mv1 − N > 1.Sin
e we ex
lude 
onvex boomerangs in this se
tion, we 
an �nd easily the verti
aldistan
es without 
onsidering the absolute value. We may assume that C isdominant in
reasing. The transformation of the vertex v into Z

2 is an endpointof a boomerang in C. Let v′ be this image. Thus
v′ =

(

p 1
p − 1 1

)(

v1

v2

)

=

(

pv1 + v2

(p − 1)v1 + v2

)

.
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entiate ThesisTo �nd the image of the straight line Y = MX + N in Z
2, we do as follows:(3.5) (

x
y

)

=

(

p 1
p − 1 1

)(

X
Y

)

.By (3.5) and a simple 
al
ulation,
x = (p + M)X + N,

y = (p − 1 + M)X + N.This implies(3.6) y =
M + p − 1

M + p
x +

N

M + p
.Thus the verti
al distan
e between the line segment with equation (3.6) and thevertex (pv1 + v2 − 1, (p − 1)v1 + v2)

T is
(p − 1)v1 + v2 −

M + p − 1

M + p
(pv1 + v2 − 1) − N

M + p

=
(v2 − Mv1 − N) + (M + p − 1)

M + p
> 1.By Theorem 2.5, we 
an 
on
lude that C 6∈ DSLS 8. That is a 
ontradi
tion.Therefore, the assertion is proved when C is dominant in
reasing. The proof issimilar for the dominant 
onstant 
ase.Case (I), ⇐. Conversely, we shall now prove the impli
ation ⇐ in 
ase (I).Let f(C) be in DSLS 8. By the statement of this Theorem, C must be dominantin
reasing or dominant 
onstant. We have two possibilities for the 
ardinalitiesof boomerangs. By (3.4) we have four possibilities and the proof for those we usethe same 
onstru
tion. We must 
onsider the matrix for the transformation withthe 
onstru
tion of C as dominant in
reasing or dominant 
onstant. Assumenow we are in 
ase 1 in (3.4). Thus the sequen
es C and f(C) are dominantin
reasing and C has dominant long boomerangs. Suppose that C 6∈ DSLS 8.Then by Theorem 2.5 we 
an �nd a vertex v of a boomerang B su
h that theverti
al distan
e between this vertex and chord(C) is at least one. First, we shallshow that the maximal verti
al distan
e in C is attained at a vertex v of a longboomerang, where the following boomerang is short. Let (Bl, . . . , Bl+k) be theset of all long boomerangs whi
h lie between two short boomerangs and su
h thatthere is no short boomerang between them. Consider the line segment [a, b] withequation y = αx + β in the chord(P ) su
h that the maximal verti
al distan
e isattained between this line segment and the vertex v. The point a must be thestarting point of a boomerang and b the endpoint of another boomerang. Thusthe slope of this line segment is(3.7) α =

(r + s)p − s

(r + s)p + r
,



Paper A. Chord properties of digital straight line segments 21where r and s are the number of long and short boomerangs, respe
tively. Bya simple 
al
ulation, we 
an see that the 
ondition for the maximal verti
aldistan
e to be attained at the vertex of Bl+k is(3.8) p − 1

p
6 α 6

p

p + 1
.We 
an 
he
k that the inequality (3.8) is 
orre
t by using (3.7). By the previousdis
ussion, the vertex v must be the vertex of the last boomerang, i.e., Bl+k.Sin
e (Bl, . . . , Bl+k) are long boomerangs and Bl+k+1 is a short boomerang, theimage of (Bl, . . . , Bl+k, Bk+l+1) in T is a boomerang with its vertex equal to theimage of the endpoint of Bl+k in T . By the previous dis
ussion, the maximalverti
al distan
e is attained at the vertex v = (v1, v2)

T of the boomerang Bl+k.So that the point a with the same �rst 
oordinate as v and whi
h lies on the linesegment y = αx + β satis�es
dv(v, a) = v2 − αv1 − β > 1.Sin
e C is dominant in
reasing, the endpoint of Bl+k is q = (v1 + 1, v2)

T. Theimage of q in T is
q′ =

(

1 −1
1 − p p

)(

v1 + 1
v2

)

=

(

v1 − v2 + 1
(1 − p)(v1 + 1) + pv2

)

,that is, the vertex of the boomerang B in T . The image of a line segment withequation y = αx + β in T is
Y =

αp − p + 1

1 − α
X +

β

1 − α
,so the verti
al distan
e between this line segment and q′ is

(1 − p)(v1 + 1) + pv2 −
αp − p + 1

1 − α
(v1 − v2 + 1) − β

1 − α

=
v2 − αv1 − β − α

1 − α
>

1 − α

1 − α
= 1.Finally, by 
onsidering Theorem 2.5, we get a 
ontradi
tion. For 
ase 3 in (3.4),the maximal verti
al distan
e is attained at the vertex of a long boomerang wherethe following boomerang is short. In 
ase 2 [4℄ we have maximal verti
al distan
eat the vertex of a long [long℄ boomerang where the previous boomerang is short[short℄. We 
an prove these fa
ts in the same way as in 
ase 1. The proofs forstraightness in these 
ases are also similar to that of 
ase 1.Case (II), ⇒. We shall now prove the impli
ation ⇒ in 
ase (II). Let

C ∈ DSLSKh. If f(C) 6∈ DSLS 8 then we 
an �nd a vertex v = (v1, v2)
T ofa boomerang B and the line segment with equation Y = MX + N in T su
hthat for the point a whi
h lies on this line segment and has the same �rst 
oor-dinate as v, the verti
al distan
e is at least one. Thus

dv(v, a) = v2 − Mv1 − N > 1.
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entiate ThesisSuppose that C is dominant in
reasing. The transformation of the vertex v into
Z

2 is an endpoint of a boomerang in C. Let v′ be this image. Thus
v′ =

(

p 1
p − 2 1

)(

v1

v2

)

=

(

pv1 + v2

(p − 2)v1 + v2

)

.The image of the straight line Y = MX + N in Z
2 is(3.9) y =

M + p − 2

M + p
x +

2N

M + p
.The point m = (pv1 + v2 − 1, (p− 2)v1 + v2)

T is a mixed point in a boomerang in
C. Thus the verti
al distan
e between the line segment with equation (3.9) andthe mixed point m is

(p − 2)v1 + v2 −
M + p − 2

M + p
(pv1 + v2 − 1) − 2N

M + p

=
(2v2 − 2Mv1 − 2N) + (M + p − 2)

M + p
>

2 + M + p − 2

M + p
= 1.By Theorem 2.6; C 6∈ DSLSKh. That is a 
ontradi
tion.Suppose now C is dominant 
onstant. The image of the vertex v in Z

2 is:
v′ =

(

p 2
1 0

)(

v1

v2

)

=

(

pv1 + 2v2

v1

)

.Without loss of generality, we 
an assume that the vertex v is the vertex of a
onvex boomerang. Thus, the verti
al distan
e between this point and the linesegment with equation Y = MX+N is Mv1+N−v2, whi
h is at least one. Sameas previous dis
ussion, we 
an �nd the image of the straight line Y = MX + Nin Z
2 as follows:(3.10) y =

1

p + 2M
x − 2N

p + 2M
.The point (pv1 + 2v2 + 2

v1 + 1

) is a mixed point in a 
on
ave boomerang of C. Theverti
al distan
e between this point and the line segment in (3.10) is:
(v1 + 1) − pv1 + 2v2 + 2 − 2N

p + 2M

=
2Mv1 + 2N − 2v2 − 2 + p + 2M

p + 2M
>

2 − 2 + p + 2M

p + 2M
= 1.Thus, the result in this 
ase is also obvious by a 
ontradi
tion with Theorem 2.6.Case (II), ⇐. Conversely, we shall now prove the impli
ation ⇐ in 
ase (II).Let f(C) ∈ DSLS 8. As in Case (I), ⇐, we have the four possibilities whi
h were
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onsider 
ase 1. Thus, C and f(C) are dominantin
reasing and C has dominant long boomerangs. Suppose that C 6∈ DSLSKh.Therefore by Theorem 2.6, there is a mixed point m of a boomerang B su
hthat the verti
al distan
e at this point is at least one. We shall show that themaximal verti
al distan
e in C is attained at a mixed point m = (m1, m2)
T ofa long boomerang, where the following boomerang is short. Suppose that thismaximal verti
al distan
e is attained between the mixed point m and the linesegment [a, b] with equation y = αx + β. We 
an see easily that we have themaximal verti
al distan
e when a is the starting point of a boomerang and b isthe endpoint of another boomerang. The slope of this line segment is(3.11) α =

(r + s)p − 2s

(r + s)p + 2r
,where r and s are the number of long and short boomerangs, respe
tively. By asimple 
al
ulation, we �nd that the 
ondition for the maximal verti
al distan
eto be attained at a mixed point of the last long boomerang where the followingboomerang is short, is(3.12) p − 2

p
6 α 6

p

p + 2
.We 
an see that the inequalities in (3.12) are 
orre
t by using (3.11). We 
anprove in the same way as for the 
ase 3 in (3.4), that the maximal verti
al distan
eis attained at the vertex of a long boomerang where the following boomerangis short. As in the 8-
onne
ted 
ase, for 
ase 2 [4℄, we have maximal verti
aldistan
e at the vertex of a long [long℄ boomerang where the previous boomerangis short [short℄. With the same dis
ussion as Case (I), ⇐, we must show thatthe verti
al distan
e at the image of the point m′ = (m1 + 1, m2)

T in the grid Tis at least 1. Let m′′ be this image. Thus
m′′ = 1

2

(

1 −1
2 − p p

)(

m1 + 1
m2

)

= 1
2

(

m1 − m2 + 1
(2 − p)(m1 + 1) + pm2

)

.The point m′′ is a vertex of a boomerang in f(C). The image of a line segment
y = αx + β in T is(3.13) Y =

2 − p + pα

1 − α
X +

β

1 − α
.Therefore, the verti
al distan
e between line segment with equation (3.13) andthe vertex m′′ is

(2 − p)(m1 + 1) + pm2

2
− 2 − p + pα

1 − α
(m1 − m2 + 1) − β

1 − α

=
2m2 − 2αm1 − 2β + β − 2α

1 − α
>

2 − 2α + β

1 − α
= 2 +

β

1 − α
.That is a 
ontradi
tion. We 
an prove 
ase 3 in (3.4) in the same way.
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entiate ThesisLet us now prove 
ase 2 in (3.4). In this 
ase, the maximal verti
al distan
e isattained at the mixed point of a long boomerang where the previous boomerangis short. We 
onsider the image of the point m′ = (m1 − 2, m2 − 1)T. The imageof m′ is the vertex of a 
onvex boomerang in f(C). We shall show that theverti
al distan
e at this point is at least one. The image of the point m′ 
anobtain as follows:
m′′ =

(

0 1
1
2

−1
2
p

)(

m1 − 2
m2 − 1

)

=

(

m2 − 1
m1 + p − pm2 − 2

2

)

.The image of a line segment y = αx + β in T is(3.14) Y =
1 − pα

2α
X − β

2α
.Therefore, the verti
al distan
e between line segment with equation (3.14) andthe vertex m′′ is

1 − pα

2α
(m2 − 1) − β

2α
− m1 + p − pm2 − 2

2

=
m2 − αm1 − β + 2α − 1

2α
>

1 + 2α − 1

2α
= 1.Now Theorem 2.5 gives a 
ontradi
tion. The 
ase 4 in (3.4) 
an be proved in thesame way. �Remark 3.10. The matri
es A in (3.2) have determinant ±1 so they have inverseswith integer entries. The 2×2 matri
es with determinant ±1 (
alled unimodularmatri
es) form a linear group GL(2, Z). Bru
kstein (1991) introdu
ed su
h atransformation de�ned by 2 × 2 matri
es with determinant ±1. These matri
esbelong to GL(2, Z) and so have inverses in this group. He wrote that the image ofall su
h transformations will provide 
hain 
odes of linearly separable di
hotomiesif and only if the transformed line indu
es a linearly separable di
hotomy. Usingthis fa
t, he noted that all sequen
e transformations having this property yield
hain 
odes for straight lines if and only if the original 
hain 
ode is a digitizedstraight line. In the Khalimsky plane the matri
es A have determinant±2. Thus,they do not have su
h properties.In the next theorem, we shall present another transformation to show therelation between DSLSKh and DSLS8.Theorem 3.11. We de�ne a fun
tion g on a subset of the set {0, 1}N of sequen
esof zeros and ones and with values in the same set. For a 
hain 
ode C, g(C) isde�ned for dominant in
reasing or dominant 
onstant sequen
es in the Khalimskyplane. We de�ne g(C) by repla
ing ea
h pair of zeros by one zero. Then C isthe 
hain 
ode of an element of DSLSKh if and only if g(C) ∈ DSLS8.
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h gives us the 
hain 
odes of g(C). Toget the 
hain 
ode of g(C), we must repla
e 00 by 0, and 1 by 1. Thus, we de�nea grid T same as the proof of Theorem 3.8, where
V1 =

(

1
2

0

) and V3 =

(

1
2

1

)

.We use the matrix A =

(

1
2

1
2

0 1

) for the equation in (3.1). We 
an 
ome ba
kfrom T into Z
2 by using the matrix A−1 =

(

2 −1
0 1

) in (3.3).We shall prove the impli
ation ⇒. Let C ∈ DSLSKh. Suppose that g(C) 6∈
DSLS8. Thus, we 
an �nd a vertex v su
h that the verti
al distan
e betweenthis point and the line segment with equation Y = MX +N is at least one. Theimage of this line in Z

2 is(3.15) y =
M

2 − M
x +

2N

2 − M
.Let v′ be the image of the point v in Z

2. Thus,
v′ =

(

2 −1
0 1

)(

v1

v2

)

=

(

2v1 − v2

v2

)

.It is 
lear that v′ is a vertex of C. We shall show that the verti
al distan
ebetween the mixed point (2v1 − v2 + 1, v2)
T and the line segment with equation(3.15) is at least one. This verti
al distan
e is

v2 −
M

2 − M
(2v1 − v2 + 1) − 2N

2 − M
=

2(v2 − Mv1 − N) − M

2 − M
>

2 − M

2 − M
= 1.This is a 
ontradi
tion with Theorem 2.6.We shall now prove the impli
ation ⇐. Let g(C) ∈ DSLS 8. If C 6∈ DSLSKh,then we 
an �nd a mixed point m su
h that the verti
al distan
e is at least oneat this point. Suppose that the maximal verti
al distan
e is attained betweenthe mixed point m and the line segment with equation y = αx + β. We mayassume that m2 > αm1 + β + 1. The proof for the 
ase m2 6 αm1 + β − 1 issimilar. We 
onsider the image of the point m′ = (m1 − 1, m2)

T in the grid T .Let this image be m′′. Thus
m′′ =

(

1
2

1
2

0 1

)(

m1 − 1
m2

)

=

(

1
2
(m1 + m2 − 1)

m2

)

.The image of the line y = αx + β under T is:
Y =

2α

1 + α
X +

β

1 + α
.
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entiate ThesisTherefore
m2 −

2α

1 + α

m1 + m2 − 1

2
− β

1 + α

=
m2 − αm1 − β + α

1 + α
>

1 + α

1 + α
= 1.Hen
e, we get a 
ontradi
tion with Theorem 2.5. �A
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Paper B
The number of Khalimsky-
ontinuousfun
tions on intervalsShiva SamieiniaDepartment of Mathemati
s, Sto
kholm Universityshiva�math.su.seAbstra
tWe determine the number of Khalimsky-
ontinuous fun
tions de�ned onan interval and with values in an interval.1. Introdu
tionIn this paper we shall determine the number of 
ontinuous fun
tions whi
h arede�ned on an interval of the digital line Z equipped with the Khalimsky topologyand with values in that line. The Khalimsky topology is a topology for whi
hthe digital line is 
onne
ted. We shall begin by re
alling the de�nition and �rstproperties of the Khalimsky topology and then 
onsider Khalimsky-
ontinuousfun
tions. Then in se
tion 2, we 
onsider these fun
tions when they have twopoints in the 
odomain. In this se
tion we see a new example of the 
lassi
al�bona

i sequen
e. In se
tion 3 and 4, we study the Khalimsky-
ontinuousfun
tions with three or four points in their 
odomain and as a 
onsequen
e ofthese parts we �nd some new sequen
es, the asymptoti
 behavior of whi
h weinvestigate. Finally, in the se
tion 5 we 
onsider Khalimsky-
ontinuous fun
tionswith one �xed endpoint. In this se
tion we get a sequen
e whi
h has the samere
ursion relation as the Pell numbers but with di�erent initial values. We alsoobtain a new example of the Delannoy numbers.The Khalimsky topologyThere are several di�erent ways to introdu
e the Khalimsky topology on theintegers. We present the Khalimsky topology using a topologi
al basis. Forevery even integer m, the set {m − 1, m, m + 1} is open, and for every oddinteger n, the singleton set {n} is open. A basis is given by

{{2n + 1}, {2n − 1, 2n, 2n + 1}; n ∈ Z}.It follows that even points are 
losed. A digital interval [a, b]Z = [a, b] ∩ Z withthe subspa
e topology is 
alled a Khalimsky interval, and a homeomorphi
 imageof a Khalimsky interval into a topologi
al spa
e is 
alled a Khalimsky ar
. On



28 Shiva Samieinia: Li
entiate Thesisthe digital plane Z
2, the Khalimsky topology is given by the produ
t topology.A point with both 
oordinates odd is open. If both 
oordinates are even, thepoint is 
losed. These types of points are 
alled pure. Points with one even andone odd 
oordinate are neither open nor 
losed; these are 
alled mixed. Notethat a mixed point m = (m1, m2) is 
onne
ted only to its 4-neighbors,

(m1 ± 1, m2) and (m1, m2 ± 1),whereas a pure point p = (p1, p2) is 
onne
ted to all its 8-neighbors,
(p1 ± 1, p2), (p1, p2 ± 1), (p1 + 1, p2 ± 1) and (p1 − 1, p2 ± 1).More information on the Khalimsky plane and the Khalimsky topology 
an befound in Kiselman (2004).Khalimsky-
ontinuous fun
tionsWhen we equip Z with the Khalimsky topology, we may speak of 
ontinuousfun
tions Z → Z. It is easily proved that a 
ontinuous fun
tion f is Lips
hitzwith 
onstant 1. This is however not su�
ient for 
ontinuity. It is not hard toprove that f : Z → Z is 
ontinuous if and only if (i) f is Lip-1 and (ii) for every

x, x 6≡ f(x) (mod 2) implies f(x ± 1) = f(x). For more information see Melin(2005).Also, we observe that the following fun
tions are 
ontinuous:(1) Z ∋ x 7→ a ∈ Z, where a is 
onstant;(2) Z ∋ x 7→ ±x + c ∈ Z, where c is an even 
onstant;(3) max(f, g) and min(f, g) if f and g are 
ontinuous.A
tually every 
ontinuous fun
tion on a bounded Khalimsky interval 
an beobtained by a �nite su

ession of the rules (1), (2), (3); Kiselman (2004).2. Continuous fun
tions with a two-point 
odomainWe shall �rst look at the fun
tions whi
h take their values in an interval 
onsistingof two points. It turns out that the number of su
h fun
tions is given by theFibona

i sequen
e.Theorem 2.1. Let an be the number of Khalimsky-
ontinuous fun
tions
[0, n − 1]Z → [0, 1]Z. Then an = Fn+2, where (Fn)∞0 is the Fibona

i sequen
e,de�ned by F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, n > 2.Proof. Let ai

n = card({f : [0, n− 1]Z → [0, 1]Z; f(n− 1) = i}) for i = 0, 1, so that(2.1) an = a0
n + a1

n.By the de�nition of the Khalimsky topology, we see that(2.2) a0
2k+1 = a2k, k > 1,

a1
2k+1 = a1

2k, k > 1.



Paper B. The number of Khalimsky-
ontinuous fun
tions on intervals 29Moreover,(2.3) a1
2k = a2k−1, k > 1,

a0
2k = a0

2k−1, k > 1.Hen
e, using in turn (2.1), (2.2) and (2.3), we obtain
a2k+1 = a0

2k+1 + a1
2k+1 = a2k + a1

2k = a2k + a2k−1,whi
h is the Fibona

i relation. Similarly, by using (2.1), (2.3) and (2.2), we get
a2k = a0

2k + a1
2k = a0

2k−1 + a2k−1 = a2k−2 + a2k−1.Now we need only observe that a1 = 2 = F3 and a2 = 3 = F4 to �nish. �We noti
e that Theorem 2.1 leads us to a new example of the 
lassi
al Fi-bona

i sequen
e. We list the number an of Khalimsky-
ontinuous fun
tions for
n = 1, . . . , 14 in the next table.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
an 2 3 5 8 13 21 34 55 89 144 233 377 610 987The asymptoti
 behavior of the number of 
ontinuous fun
tions witha two-point 
odomainWe 
onsider two frequen
ies

P 0
n =

a0
n

an

,and
P 1

n =
a1

n

an

.By (2.1) we have(2.4) P 0
n + P 1

n = 1.We shall determine these frequen
ies asymptoti
ally. First, we re
all theinteresting property of the Fibona

i sequen
e: the fra
tion Fn+1

Fn

tends to α as
n → ∞ and where α denotes the Golden Se
tion 1

2
(
√

5 + 1). Therefore Fn+1

Fn−1tends to α2. In the following theorem we 
onsider the frequen
ies for odd andeven indi
es separately.Theorem 2.2. Let an and ai
n be as in Theorem 2.1 and de�ne P i

n = ai
n/an for

i = 0, 1. Then as k → +∞ we have
P 0

2k−1 → 1
α
, P 0

2k → 1
α2and

P 1
2k−1 → 1

α2 , P
1
2k → 1

αwhere α = 1
2
(
√

5 + 1).



30 Shiva Samieinia: Li
entiate ThesisProof. By (2.3) and (2.1),
a1

2k = a1
2k−1 + a0

2k−1,therefore we obtain another relation between frequen
ies and the values of a2kand a2k−1 as(2.5) P 1
2ka2k = P 1

2k−1a2k−1 + P 0
2k−1a2k−1.Then using (2.4) lead us to

P 1
2ka2k = a2k−1.Thus,

P 1
2k =

a2k−1

a2k

→ 1

α
as k → +∞.By Theorem 2.1,

a2k − P 0
2ka2k = a2k−1,so(2.6) P 0

2k =
a2k − a2k−1

a2k

.By using (2.1), (2.3) and (2.2) we have(2.7) a2k − a2k−1 = a2k−2,thus by (2.6) and (2.7) we have
P 0

2k =
a2k−2

a2k

,and so
P 0

2k → 1

α2
as k → +∞.As before, we 
an �nd

P 0
2k+1 =

a2k

a2k+1

,implying that
P 0

2k+1 →
1

α
as k → +∞.Also,

P 1
2k+1 =

a2k−1

a2k+1
,whi
h implies that

P 1
2k+1 →

1

α2
as k → +∞.

�In the next table we 
an see the values of a0
n, a1

n, an, P 0
n and P 1

n for n =
6, . . . , 13.
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tions on intervals 31
n 6 7 8 9 10 11 12 13
a0

n 5 13 13 34 34 89 89 233
a1

n 8 8 21 21 55 55 144 144
an 13 21 34 55 89 144 233 377
P 0

n 0.3846 0.6190 0.3824 0.6182 0.3820 06181 0.382 0.618
P 1

n 0.6154 0.381 0.6176 0.382 0.618 0.382 0.618 0.3823. Continuous fun
tions with a three-point 
odomainWe sum up the results for fun
tions with up to three values.Theorem 3.1. Let bn be the number of Khalimsky-
ontinuous fun
tions
[0, n − 1]Z → [0, 2]Z. Then b1 = 3, b2 = 5, and(3.1) b2k = b2k−1 + b2k−2 + b2k−3 = 2b2k−2 + 3b2k−3, k > 2,

b2k−1 = b2k−2 + 2b2k−3, k > 2.Proof. Let bi
n = card({f : [0, n − 1]Z → [0, 2]Z; f(n − 1) = i}) for i = 0, 1, 2.Therefore it is 
lear that(3.2) bn = b0

n + b1
n + b2

n.From the properties of the Khalimsky topology we see that(3.3) b0
2k = b0

2k−1, k > 1,

b1
2k = b0

2k−1 + b1
2k−1 + b2

2k−1, k > 1,

b2
2k = b2

2k−1, k > 1.and(3.4) b0
2k−1 = b0

2k−2 + b1
2k−2, k > 2,

b1
2k−1 = b1

2k−2, k > 2,

b2
2k−1 = b2

2k−2 + b1
2k−2, k > 2.We assume that n = 2k − 1 in equation (3.2) and then using in turn (3.4) and(3.3) we obtain the equalities(3.5) b2k−1 = b2k−2 + 2b1

2k−2 = b2k−2 + 2b2k−3.Now we need to do the same for n = 2k in equation (3.2) and then using in turn(3.3) and (3.4) we obtain(3.6) b2k = b2k−1 + b0
2k−1 + b2

2k−1 = b2k−1 + b2k−2 + b1
2k−2.Now if we use equation (3.3) in (3.6) we 
an see the result for b2k, i.e.,(3.7) b2k = b2k−1 + b2k−2 + b2k−3.The another result for b2k will be obvious if we put equation (3.5) into equation(3.7), i.e.,

b2k = b2k−1 + b2k−2 + b2k−3 = b2k−2 + 2b2k−3 + b2k−2 + b2k−3 = 2b2k−2 + 3b2k−3.

�
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entiate ThesisThe Ja
obsthal sequen
e is de�ned by Jn = Jn−1 + 2Jn−2 with J1 = 0and J2 = 1 (the sequen
e number A001045 in Sloane's On-line En
y
lopediaof Integer Sequen
es), and the Tribona

i sequen
e is de�ned by the formula
Tn = Tn−1 + Tn−2 + Tn−3 with initial values 1, 1, 1 (sequen
e number A000213),so by Theorem (3.1) we see that bn is a mixture between the Tribona

i andJa
obsthal sequen
es.We give below the sequen
e (bn) for n = 1, . . . , 12.

n 1 2 3 4 5 6 7 8 9 10 11 12
bn 3 5 11 19 41 71 153 265 571 989 2131 3691The asymptoti
 behavior of the number of 
ontinuous fun
tions witha three-point 
odomainWe shall now determine how the number of 
ontinuous fun
tions grows with thenumber of points in the domain.Theorem 3.2. Let bn be the number of Khalimsky-
ontinuous fun
tions

[0, n − 1]Z → [0, 2]Z. Then there is a sequen
e (tn) tending to a positive limit
t = 1

2
+ 1

6

√
3 ≈ 0.788675 as k → +∞ and su
h that(3.8) b2k = t2k

√
3
(

2 +
√

3
)k

, k > 2,

b2k−1 = t2k−1

(

2 +
√

3
)k

, k > 2.Proof. We de�ne a sequen
e (tn) by the following equations,(3.9) t2k = b2kθ
−1γ−k, k > 2,

t2k−1 = b2k−1γ
−k, k > 2.Thus, using (3.9) and (3.1) we get(3.10) t2k = 2γ−1t2k−2 + 3γ−1θ−1t2k−3, k > 2,

t2k−1 = θγ−1t2k−2 + 2γ−1t2k−3, k > 2.With equation (3.10) we have the following equation for all θ, γ > 0,(3.11) t2k − t2k−1 = (2γ−1 − θγ−1)t2k−2 + (3γ−1θ−1 − 2γ−1)t2k−3.While this formula is true for all values of γ and θ, it is of interest mainly whenthe two 
oe�
ients in equation (3.11) sum up to zero. We therefore de�ne γ and
θ so that 2γ−1 − θγ−1 + 3γ−1θ−1 − 2γ−1 = 0. This implies θ =

√
3.Next we 
onsider the equation for t2k+1 − t2k,(3.12) t2k+1 − t2k = θγ−1t2k + 2γ−1t2k−1 − t2k = (θγ−1 − 1)t2k + 2γ−1t2k−1.
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ontinuous fun
tions on intervals 33In the same way we 
onsider the spe
ial 
ase of equation (3.12) when the 
o-e�
ients have zero sum, and therefore we get γ = 2 + θ = 2 +
√

3. By usingindu
tion in equation (3.11) we have,(3.13) t2k − t2k−1 =

(

2 −
√

3

2 +
√

3

)k−1

(t2 − t1),and for equation (3.12),(3.14)
t2k+1 − t2k =

( −2

2 +
√

3

)

(t2k − t2k−1) =

( −2

2 +
√

3

)

(

2 −
√

3

2 +
√

3

)k−1

(t2 − t1).Sin
e ∣∣
∣

2−
√

3
2+

√
3

∣

∣

∣
< 1, equation (3.13) and (3.14) lead us to the same limit t,

0 < t < +∞ for the sequen
e (tn) as k tends to in�nity.To determine the limit t, we shall use matri
es, inspired by the treatment inCull et al. (2005:16).Formula (3.1) 
an be written in matrix form
Xn = AXn−1 where Xn =

(

b2n

b2n−1

) and A =

(

2 3
1 2

)

.With initial 
ondition X1 =

(

5
3

) we have Xn = An−1

(

5
3

). The matrix A has
hara
teristi
 polynomial
hA(x) = det

(

2 − x 3
1 2 − x

)

= (2 − x)2 − 3and has distin
t eigenvalues, λ1 = 2+
√

3 and λ2 = 2−
√

3, and this implies that
A is diagonalizable. With a simple 
omputation, we 
an see that A = PDP−1,where
D =

(

2 +
√

3 0

0 2 −
√

3

)

, P =

(√
3 −

√
3

1 1

)

, and P−1 =
1

2
√

3

(

1
√

3

−1
√

3

)

.Therefore
Xn = An−1

(

5
3

)

= PDn−1P−1

(

5
3

)

=
1

2
√

3

(

(5
√

3 + 9)(2 +
√

3)n−1 + (5
√

3 − 9)(2 −
√

3)n−1

(5 + 3
√

3)(2 +
√

3)n−1 + (−5 + 3
√

3)(2 −
√

3)n−1

)

,so(3.15) b2n =
1

2
√

3

(

(5
√

3 + 9)(2 +
√

3)n−1 + (5
√

3 − 9)(2 −
√

3)n−1
)

.
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entiate ThesisInserting the values already found for θ and γ into (3.9) we obtain
t2n =

1

6



(5
√

3 + 9)(2 +
√

3)−1 + (5
√

3 − 9)

(

2 −
√

3

2 +
√

3

)n−1

(2 +
√

3)−1



 ,proving that t2n tends to 1
2

+ 1
6

√
3 ≈ 0.7886751 and so tn 
onverges to thisnumber. �Proposition 3.3. Let bn be the number of Khalimsky-
ontinuous fun
tions

[0, n − 1]Z → [0, 2]Z, let bi
n be the number of Khalimsky-
ontinuous fun
tions

[0, n− 1]Z → [0, 2]Z satisfying f(n − 1) = i for i = 0, 1, 2, and de�ne P i
n = bi

n/bnfor i = 0, 1, 2. As k tends to in�nity,
P 2

2k = P 0
2k → 1

2
− 1

6

√
3, P 2

2k−1 = P 0
2k−1 → 1

2

√
3 − 1

2
,also

P 1
2k → 1√

3
, P 1

2k−1 → 2 −
√

3.Proof. Using the Khalimsky topology we have(3.16) b0
2k = b0

2k−1, k > 2,

b1
2k = 2b0

2k−1 + b1
2k−1, k > 2,

b2
2k = b0

2k−1, k > 2,and(3.17) b0
2k−1 = b0

2k−2 + b1
2k−2, k > 2,

b1
2k−1 = b1

2k−2, k > 2,

b2
2k−1 = b0

2k−2 + b1
2k−2, k > 2.Let

P i
n =

bi
n

bn

for i = 0, 1, 2.Also we 
an see easily that P 0
n = P 2

n , so by using (3.2) we get(3.18) 2P 0
n + P 1

n = 1.It is obvious that the frequen
ies for odd and even indi
es are di�erent butthere is a relation between them. We shall study them separately. By (3.16),(3.19) {

P 0
2kb2k = P 0

2k−1b2k−1,

(1 − 2P 0
2k)b2k = 2P 0

2k−1b2k−1 + (1 − 2P 0
2k−1)b2k−1.We solve the equation (3.19) and obtain

P 0
2k =

b2k − b2k−1

2b2k

and P 0
2k−1 =

b2k − b2k−1

2b2k−1

.



Paper B. The number of Khalimsky-
ontinuous fun
tions on intervals 35Therefore by Theorem (3.2) we see that, as k → ∞,
P 0

2k → θ − 1

2θ
=

1

2
− 1

6

√
3,and

P 0
2k−1 →

θ − 1

2
=

1

2

√
3 − 1

2
.Also by using (3.18) and a simple 
al
ulation,

P 1
2k → 1√

3
and P 1

2k−1 → 2 −
√

3.

�In the following table we 
an see some values of P i
n for i = 0, 1, 2.

n 6 7 8 9 10 11 12
b0
n 15 56 56 209 209 780 780

b1
n 41 41 153 153 571 571 2131

b2
n 15 56 56 209 209 780 780

bn 71 153 265 571 989 2131 3691
P 0

n 0.2113 0.36601 0.21132 0.36602 0.21132 0.36602 0.21132
P 1

n 0.57746 0.26797 0.57736 0.26795 0.57735 0.26795 0.57735
P 2

n 0.2113 0.36601 0.21132 0.36602 0.21132 0.36602 0.211324. Continuous fun
tions with a four-point 
odomainTheorem 4.1. Let cn be the number of Khalimsky-
ontinuous fun
tions
f : [0, n − 1]Z → [0, 3]Z and let ci

n be the number of Khalimsky-
ontinuous fun
-tions f : [0, n − 1]Z → [0, 3]Z su
h that f(n − 1) = i for i = 0, 1, 2, 3. Then
c1
1 = c2

1 = 1, c2 = 7, c3 = 15 and(4.1) cn = cn−1 + 2cn−2 + c1
n−3 + c2

n−3.Formula (4.1) together with formulas (4.3) and (4.4) below determine the cn.Proof. We have by de�nition(4.2) cn = c0
n + c1

n + c2
n + c3

n.Using properties of the Khalimsky topology, we see that(4.3) c0
2k+1 = c0

2k + c1
2k, k > 1,

c1
2k+1 = c1

2k, k > 1,
c2
2k+1 = c1

2k + c2
2k + c3

2k, k > 1,
c3
2k+1 = c3

2k, k > 1,
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entiate Thesisand(4.4) c0
2k = c0

2k−1, k > 1,
c1
2k = c0

2k−1 + c1
2k−1 + c2

2k−1, k > 1,
c2
2k = c2

2k−1, k > 1,
c3
2k = c2

2k−1 + c3
2k−1, k > 1.If we insert (4.3) into (4.2), we get(4.5) c2k+1 = c2k + 2c1

2k + c3
2k.By using (4.4), we have(4.6) 2c1

2k + c3
2k = 2c2k−1 + c2

2k−1 − c3
2k−1.But the equations in (4.3) give us(4.7) c2

2k−1 = c1
2k−2 + c2

2k−2 + c3
2k−2,

c3
2k−1 = c3

2k−2.Now, we need just to 
onsider the equations (4.5), (4.6) and (4.7) to have theresult for odd n, n = 2k + 1. Next we pro
eed in the same way for n = 2k.Using properites of the Khalimsky topology we see that if we add equation (4.4)to equation (4.2), we see that(4.8) c2k = c2k−1 + 2c2
2k−1 + c0

2k−1.Therefore, by (4.3) we have(4.9) 2c2
2k−1 + c0

2k−1 = 2c2k−2 + c1
2k−2 − c0

2k−2.Also, (4.4) gives us(4.10) c1
2k−2 = c0

2k−3 + c1
2k−3 + c2

2k−3,

c0
2k−2 = c0

2k−3.We insert (4.10) and (4.9) into (4.8) to get the result for even n. �We present in the following table the sequen
e with four values in the 
o-domain and n 6 10 points in the domain.
n 1 2 3 4 5 6 7 8 9 10
cn 4 7 15 31 65 136 285 597 1251 2621
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ontinuous fun
tions on intervals 37The asymptoti
 behavior of the number of 
ontinuous fun
tions witha four-point 
odomainTheorem 4.2. Let ci
n be the number of Khalimsky-
ontinuous fun
tions

f : [0, n − 1]Z → [0, 3]Z su
h that f(n − 1) = i for i = 0, 1, 2, 3, and let cn betheir sum. Then
c1
n + c2

n

c1
n−1 + c2

n−1

,
c0
n + c3

n

c0
n−1 + c3

n−1

as well as cn

cn−1
tend to

1
2

√

7 +
√

5 +

√

38 + 14
√

5 ≈ 2.095293985.Proof. Let us �x a positive number γ (to be determined later) and de�ne sequen
e
tin for i = 0, . . . , 3 by the following equation(4.11) ci

n = tinγn.Let(4.12) tn = t0n + t1n + t2n + t3nThen (4.3) and (4.11) yield(4.13) t02k+1 = γ−1(t02k + t12k),
t12k+1 = γ−1t12k,
t22k+1 = γ−1(t12k + t22k + t32k),
t32k+1 = γ−1t32k.By (4.4) and (4.11) we get(4.14) t02k = γ−1t02k−1,

t12k = γ−1(t02k−1 + t12k−1 + t22k−1),
t22k = γ−1t22k−1,
t32k = γ−1(t22k−1 + t32k−1).We now de�ne a sequen
e (Xn) as follows.(4.15) Xn =









t0n
t1n
t2n
t3n









,and introdu
e the two matri
es(4.16) A2k =









1 0 0 0
1 1 1 0
0 0 1 0
0 0 1 1









, A2k−1 =









1 1 0 0
0 1 0 0
0 1 1 1
0 0 0 1









.



38 Shiva Samieinia: Li
entiate ThesisBy using (4.13), (4.14), (4.15) and (4.16) we 
an see easily that(4.17) Xn = γ−1AnXn−1 for n > 2.Let B be equal to A2k+1A2k, whi
h is independent of k. Then
B =









2 1 1 0
1 1 1 0
1 1 3 1
0 0 1 1









.It is symmetri
, so there exist a diagonal matrix D whose diagonal entries are theeigenvalues of B and a matrix P su
h that ea
h 
olumn of P is an eigenve
tor of
B and B = PDP T. The 
olumns of P form an orthogonal set, so PP T = PTP .We shall now determine the eigenvalues and eigenve
tors of the matrix B. It hasthe following 
hara
teristi
 fun
tion.(4.18) det(B − xI) = x4 − 7x3 + 13x2 − 7x + 1.The symmetry of the 
oe�
ients in this equation implies that if λ is eigenvaluethen also 1

λ
is an eigenvalue. Thus we 
an �nd the four eigenvalues of equation(4.18) by putting α = λ0 + 1

λ0
and β = λ1 + 1

λ1
. Then we get α + β = 7 and

αβ = 11, so α = 7+
√

5
2

and β = 7−
√

5
2

and therefore(4.19) λ0 =
7+

√
5−
√

38+14
√

5

4
and λ3 = 1/λ0 =

7+
√

5+
√

38+14
√

5

4
,

λ1 =
7+

√
5−
√

38−14
√

5

4
and λ2 = 1/λ1 =

7+
√

5+
√

38−14
√

5

4
.Let P =

(

P0 P1 P2 P3

), where Pi is an eigenve
tor with respe
t to the eigen-value λi for i = 0, . . . , 3. Therefore BPi = λiPi. Now we shall solve the followingequation system.(4.20) 













2x + y + z = λx,
x + y + z = λy,

x + y + 3z + t = λz,
z + t = λt,where λ is equal to one of the eigenvalues λi, and where Pi =

(

x y z t
)T for

i = 0, . . . , 3. Therefore
y =

λ − 1

λ
x, z =

λ2 − 3λ + 1

λ
x, t =

λ2 − 3λ + 1

λ(λ − 1)
x.We 
hoose for 
onvenien
e x = λ(λ − 1); thus

y = (λ − 1)2, z = (λ2 − 3λ + 1)(λ − 1), t = λ2 − 3λ + 1.
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ontinuous fun
tions on intervals 39Let from now on λ = λ3 and (x, y, z, t)T be the eigenve
tors related to λ3. Sin
ewe need to 
onsider Bk as k → ∞, we need not 
onsider the powers of λi for
i = 0, 1, 2. Hen
e, the powers of B that we need to 
onsider are

Bk =









λkx2 λkxy λkxz λkxt
λkxy λky2 λkyz λkyt
λkxz λkyz λkz2 λkzt
λkxt λkyt λkzt λkt2









.Equation (4.17) and the previous 
al
ulation lead us to(4.21) X2k−1 = (γ−2λ)k−3









x2t05 + xyt15 + xzt25 + xtt35
xyt05 + y2t15 + zyt25 + tyt35
xzt05 + yzt15 + z2t25 + tzt35
xtt05 + ytt15 + ztt25 + t2t35









.Let α = xt05 + yt15 + zt25 + tt35. Thus by (4.14) and (4.21)
t12k = γ−1(t02k−1 + t12k−1 + t22k−1) = (γ−2λ)(k−3)γ−1(x + y + z)α

t22k−1 = (γ−2λ)(k−3)zα.We now de�ne γ =
√

λ, the positive square root of the largest eigenvalue, and�nd that (γ−2λ)k−3 tends to 1 as k → +∞. We 
laim that γ−1(x + y + z) = z orequivalently that
0 = γ−1(x + y + z) − z = x

[

γ−1

(

1 +
λ − 1

λ
+

λ2 − 3λ + 1

λ

)

− λ2 − 3λ + 1

λ

]

.We need to show that
γ−1(λ − 1)λ − (λ2 − 3λ + 1) = 0.Sin
e λ is the largest root of equation (4.18), we obtain(4.22) 0 = λ4 − 7λ3 + 13λ2 − 7λ + 1

= λ4 − 6λ3 + 11λ2 − 6λ + 1 − λ3 + 2λ2 − λ

= (λ2 − 3λ + 1)
2 − λ (λ − 1)2 .The equations in (4.22) imply

λ =
λ2 (λ − 1)2

(λ2 − 3λ + 1)2
.Therefore

γ−1 =
λ2 − 3λ + 1

λ (λ − 1)
.
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entiate ThesisThis proves our 
laim. Hen
e the sequen
es t12k and t22k−1 have the same formula,and therefore they tend to the same limit zα as k → ∞. Similarly, we 
an provethe 
orresponding result for some other sequen
es as follows:(4.23) t12k = t22k−1 → zα as k → ∞,

t22k = t12k−1 → yα as k → ∞,and(4.24) t32k = t02k−1 → xα as k → ∞,

t02k = t32k−1 → tα as k → ∞.If we sum the two limits in (4.23) we obtain(4.25) (t1n + t2n) tends to (y + z)α as n → ∞.Analogously, (4.24) shows that(4.26) (t0n + t3n) tends to (x + t)α as n → ∞.We now easily 
on
lude that the sum of these two sequen
es, i.e., (tn), 
onvergesto (x + y + z + t)α. Sin
e the sequen
e (t1n + t2n) 
onverges, we see easily that
c1
n + c2

n

c1
n−1 + c2

n−1

→ γ as n → ∞,and also the 
onvergen
e of the sequen
e (t0n + t3n) leads us to
c0
n + c3

n

c0
n−1 + c3

n−1

→ γ as n → +∞.We have the same result for cn/cn−1 be
ause as we found, the sequen
e (tn)
onverges to some real number, so
cn

cn−1
→ γ as n → +∞.

�We shall now investigate frequen
ies in the 
ase of a four-point 
odomain.Proposition 4.3. Let cn be the number of Khalimsky-
ontinuous fun
tions
f : [0, n − 1]Z → [0, 3]Z and let ci

n be the number of Khalimsky-
ontinuous fun
-tions f : [0, n−1]Z → [0, 3]Z su
h that f(n−1) = i for i = 0, 1, 2, 3. If pi
n = ci

n/cnfor i = 0, 1, 2, 3, then(4.27) P 3
2k and P 0

2k−1 → x
x+y+z+t

≈ 0.258582;

P 2
2k and P 1

2k−1 → y

x+y+z+t
≈ 0.199679;

P 1
2k and P 2

2k−1 → z
x+y+z+t

≈ 0.418335;

P 0
2k and P 3

2k−1 → t
x+y+z+t

≈ 0.123402.
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ontinuous fun
tions on intervals 41as k → ∞, where x, y, z, t are the numbers whi
h were de�ned in the proof ofTheorem 4.2. As a 
onsequen
e, if we add these numbers two and two, thedi�erent parities play no role, and we obtain(4.28) P 1
n + P 2

n → y+z

x+y+z+t
≈ 0.618014

P 0
n + P 3

n → x+t
x+y+z+t

≈ 0.381984as n tends to in�nity.Proof. By the proof of Theorem 4.2 we know that the sequen
e (tn) 
onvergen
eto number (x + y + z + t)α. This fa
t and (4.23) imply that(4.29) P 2
2k and P 1

2k−1 → y

x+y+z+t
≈ 0.199679 as k → ∞;

P 1
2k and P 2

2k−1 → z
x+y+z+t

≈ 0.418335 as k → ∞.Analogously, by using (4.24) we 
on
lude that(4.30) P 3
2k and P 0

2k−1 → x
x+y+z+t

≈ 0.258582 as k → ∞;

P 0
2k and P 3

2k−1 → t
x+y+z+t

≈ 0.123402 as k → ∞.It is obvious that if we sum up the limits in (4.29) we obtain
P 1

n + P 2
n → y + z

x + y + z + t
≈ 0.618014 as n → ∞,similarly if we sum the limits in (4.30) we have

P 0
n + P 3

n → x + t

x + y + z + t
≈ 0.381984 as n → ∞.

�In the next table we 
an see the values of P i
n for i = 0, . . . , 3 and the sums ofsome of the frequen
ies.

n 6 7 8 9 10
c0
n 17 74 74 324 324

c1
n 57 57 250 250 1097

c2
n 27 119 119 523 523

c3
n 35 35 154 154 677

cn 136 285 597 1251 2621
P 0

n 0.125 0.259649 0.123953 0.258992 0.123616
P 1

n 0.419117 0.2 0.418760 0.199840 0.418542
P 2

n 0.1985294 0.4175439 0.19933 0.4180655 0.1995422
P 3

n 0.2573529 0.122807 0.2579564 0.1231015 0.2582984
P 0

n + P 3
n 0.3823529 0.382456 0.3819094 0.3820935 0.3819144

P 1
n + P 2

n 0.6176464 0.6175439 0.61809 0.6179055 0.6180842
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entiate Thesis5. Continuous fun
tions with one �xed endpointTheorem 5.1. Let yn be the number of Khalimsky-
ontinuous fun
tions
f : [0, n − 1]Z 7→ Z su
h that f(0) = 0. Then(5.1) yn = 2yn−1 + yn−2 for n > 3.Proof. Let yi

n be the number of Khalimsky-
ontinuous fun
tion f : [0, n−1]Z → Zsu
h that f(0) = 0 and f(n − 1) = i. We have yn =
∑n−1

i=−(n−1) yi
n, but withKhalimsky topology we 
an 
on
lude that we have symmetry for yi

n, that is,
yi

n = y−i
n for i = 1, . . . , n− 1. Therefore we 
an 
onsider another formulation for

yn, i.e.,(5.2) yn = y0
n + 2

n−1
∑

i=1

yi
n.Moreover, using properties of the Khalimsky topology, we see that(5.3) yi

2k =















yi−1
2k−1 + yi

2k−1 + yi+1
2k−1, i = 2t − 1 for t = 1, . . . , k − 1,

yi
2k−1, i = 2t for t = 1, . . . , k − 1,

y2k−2
2k−1, i = 2k − 1,

y0
2k−1, i = 0,and(5.4) yi

2k+1 =















yi−1
2k + yi

2k + yi+1
2k , i = 2t for t = 1, . . . , k − 1,

yi
2k, i = 2t − 1 for t = 1, . . . , k,

y2k−1
2k , i = 2k,

y0
2k + 2y1

2k, i = 0.We shall show the formula for n = 2k and for n = 2k + 1 we 
an have the resultin the same way,(5.5) y2k = y0
2k + 2

2k−1
∑

i=1

yi
2k = y0

2k + 2y2k−1
2k + 2

k−1
∑

t=1

y2t
2k + 2

k−1
∑

t=1

y2t−1
2k .Equation (5.5) 
omes from (5.2) and the simple separation of odd and evenindi
es. Plugging equations (5.3) into (5.5) gives us

y2k = y0
2k−1 + 2y2k−2

2k−1 + 2

k−1
∑

t=1

y2t
2k−1 + 2

k−1
∑

t=1

(

y2t−2
2k−1 + y2t−1

2k−1 + y2t
2k−1

)

,and then with a simple 
al
ulation,(5.6) y2k = y0
2k−1 + 2y2k−2

2k−1 + 2

k−1
∑

t=1

y2t
2k−1+

2

k−1
∑

t=1

y2t−2
2k−1 + 2

k−1
∑

t=1

y2t−1
2k−1 + 2

k−1
∑

t=1

y2t
2k−1.
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ontinuous fun
tions on intervals 43We have(5.7) 2
k−1
∑

t=1

y2t−2
2k−1 = 2y0

2k−1 + 2
k−1
∑

t=2

y2t−2
2k−1 = 2y0

2k−1 + 2
k−2
∑

t=1

y2t
2k−1.Therefore, by putting (5.7) in (5.6) and using (5.2);(5.8) y2k = 2y2k−1 + 2y2k−2

2k−1 + y0
2k−1 + 2

k−2
∑

t=1

y2t
2k−1 − 2

k−1
∑

t=1

y2t−1
2k−1.Pluggin (5.4) into (5.8) gives us(5.9) y2k = 2y2k−1 + 2y2k−3

2k−2 + y0
2k−2 + 2y1

2k−2

+2

k−2
∑

t=1

y2t−1
2k−2 + 2

k−2
∑

t=1

y2t
2k−2 + 2

k−2
∑

t=1

y2t+1
2k−2 − 2

k−1
∑

t=1

y2t−1
2k−2.By a simple 
al
ulation we have the two followings equations,(5.10) 2y2k−3

2k−2 + 2

k−2
∑

t=1

y2t−1
2k−2 − 2

k−1
∑

t=1

y2t−1
2k−2 = 0,and(5.11) 2y1

2k−2 + 2

k−2
∑

t=1

y2t+1
2k−2 = 2

k−1
∑

t=1

y2t−1
2k−2.Finally, by putting (5.10) and (5.11) into (5.9) and by using (5.2), we obtain thedesired formula. �The sequen
e in Theorem 5.1 is a well-known sequen
e, and appears as se-quen
e number A078057 in Sloane's En
y
lopedia. It is given by the expli
itformula yn = 1

2

[

(

1 +
√

2
)n

+
(

1 −
√

2
)n
]. A
tually yn has the same re
ursionformula as the Pell numbers Pn, but with di�erent initial values. The sequen
e

(Pn) is de�ned as
Pn =







0, n = 0,
1, n = 1,
2Pn−1 + Pn−2, n > 2.The reader 
an �nd more information about this sequen
e in item (A000129) ofthe en
y
lopedia. Now we shall study the asymptoti
 behavior of this sequen
eas we did for earlier sequen
es. In the next theorem we shall show that yn tendsto the Silver Ratio 1 +

√
2 as n tends to in�nity.Theorem 5.2. Let yn be the number of Khalimsky-
ontinuous fun
tions

f : [0, n − 1]Z 7→ Z su
h that f(0) = 0. Then yn+1/yn → 1 +
√

2 as n → ∞.
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entiate ThesisProof. We de�ne the sequen
e (tn) by the equation tn = ynγ−n for n > 1. Byusing (5.1) we have
γ2tn − 2γtn−1 − tn−2 = 0,thus(5.12) tn − tn−1 = (

2

γ
− 1)tn−1 +

1

γ2
tn−2.We are interested in having the sum of the two 
oe�
ients in (5.12) to be zero.Hen
e, we 
on
lude that γ is the positive solution of the equation γ2−2γ−1 = 0.Thus, γ = 1 +

√
2.
|tn − tn−1| = γ−2|tn−1 − tn−2| = γ−2(n−2)|t2 − t1|.The sequen
e (tn) is a Cau
hy sequen
e and hen
e it 
onverges. Thus

yn

yn−1

=
tn

tn−1

γ → 1 +
√

2 as n → ∞.

�The following table shows the values of yi
n and yn for 1 6 n 6 10.9 18 1 17 1 1 176 1 1 15 155 1 1 13 13 1134 1 1 11 11 85 853 1 1 9 9 61 61 3772 1 1 7 7 41 41 231 2311 1 1 5 5 25 25 129 129 6810 1 1 3 3 13 13 63 63 321 321

−1 1 1 5 5 25 25 129 129 681
−2 1 1 7 7 41 41 231 231
−3 1 1 9 9 61 61 377
−4 1 1 11 11 85 85
−5 1 1 13 13 113
−6 1 1 15 15
−7 1 1 17
−8 1 1
−9 1
yn 1 3 7 17 41 99 239 577 1393 3363There is a ni
e relation between the Delannoy numbers and the number ofKhalimsky-
ontinuous fun
tions with a �xed point f(0) = 0. The Delannoynumbers were introdu
ed by Henri Delannoy (1895). The Delannoy array dj,k is

dj,k = dj−1,k + dj,k−1 + dj−1,k−1,
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tions on intervals 45with 
onditions d0,0 = 1 and dj,k = 0 for j < 0 or k < 0. The numbers
(di,i)i>0 = 1, 3, 13, 63, 321, 1683, 8989, 48639, . . . (A001850) are known as the 
en-tral Delannoy numbers. We give the Delannoy numbers in the following table:6 1 13 85 377 1289 3653 89895 1 11 61 231 681 1683 36534 1 9 41 129 321 681 12893 1 7 25 63 129 231 3772 1 5 13 25 41 61 851 1 3 5 7 9 11 130 1 1 1 1 1 1 10 1 2 3 4 5 6There are 
onne
tions between many matemati
al problems and the Delannoynumbers. Sulanke (2003) listed 29 di�erent 
ontexts where the 
entral Delannoynumbers appear. A 
lassi
al example is the number of latti
e paths from (0, 0)to (n, n) using the steps (0, 1), (1, 0), and (1, 1). From this path model one 
anobtain a 
ombinatorial proof that, for n > 0,

dn,n =
n
∑

i=0

(

n
i

)(

n + i
i

)

.In the next theorem we 
an see the 30th example of Delannoy numbers.Theorem 5.3. Let yi
n be the number of Khalimsky-
ontinuous fun
tions f : [0, n−

1]Z 7→ Z su
h that f(0) = 0 and f(n−1) = i. Then yi
n = dr,s for r = 1

2
(n−1− i)and s = 1

2
(n − 1 + i) where n − 1 + i ∈ 2Z.Proof. We shall use indu
tion to prove the result. It is easy to see that y0

1 = 1 =
d0,0, y1

2 = 1 = d0,1, y−1
2 = 1 = d1,0 and y0

3 = 3 = d1,1. Suppose that the formulais true for t < 2k. We shall show that the result is true for t = 2k. The proof for
t = 2k+1 
an be done in the same way. We 
onsider i su
h that 2k−1+ i ∈ 2Z;hen
e i is odd number. For an even number i the proof is simple be
ause by(5.3), yi

2k = yi
2k−1 and so it is true by indu
tion. By (5.3)(5.13) yi

2k = yi−1
2k−1 + yi

2k−2 + yi+1
2k−1.By the statement we have(5.14) yi−1

2k−1 + yi
2k−2 + yi+1

2k−1 = dr,s−1 + dr−1,s−1 + dr−1,s,where(5.15) 2k − 1 − i

2
= r and 2k − 1 + i

2
= sThus by (5.13), (5.14) and (5.15), we get the result. �
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