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This thesis consists of two papers:

Paper A.  Chord properties of digital straight line segments

This paper treats digital straight line segments in two different cases, in the 8-
connected plane and in the Khalimsky plane. We investigate them using a new
classification, dividing them into a union of horizontal and diagonal segments.
Then we study necessary and sufficient conditions for straightness in both cases,
using vertical distances for certain points. We also establish necessary and suf-
ficient conditions in the 8-connected plane as well as in the Khalimsky plane by
transforming their chain codes. Using this technique we can transform Khalim-
sky lines to the 8-connected case.

Paper B.  The number of Khalimsky-continuous functions on intervals

This paper deals with Khalimsky-continuous functions. We consider these func-
tions when they have two, three or four points in their codomain. In the case
of two points in the codomain, we see a new example of the classical Fibonacci
sequence. In the study of functions with three and four points in their codomain,
we find some new sequences, the asymptotic behavior of which we investigate.
Finally, we consider Khalimsky-continuous functions with one fixed endpoint.
In this case, we get a sequence which has the same recursion relation as the
Pell numbers but different initial values. We also obtain a new example of the
Delannoy numbers.
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Paper A

Chord properties of digital
straight line segments

Shiva Samieinia,

Department of Mathematics, Stockholm University
shiva@math.su.se

Abstract

We exhibit the structure of digital straight line segments in the 8-connected
plane and in the Khalimsky plane by considering vertical distances and
unions of two segments.

1. Introduction

In the field of digital geometry one of the themes which has been studied exten-
sively is digital straight lines. Malon and Freeman (1961) and Freeman (1970)
introduced the chain code as a technique for representing 8-connected arcs and
lines. The most important problem related to straightness is how to recognize
the sets of pixels or codes representing a digital straight line. Rosenfeld (1974)
characterized straightness by the chord property and found two fundamental
properties of run lengths in a digital line. He stated that the digitized line can
only contain runs of two different lengths and these run lengths must be consecu-
tive integers. Hung and Kasvand (1984) gave a necessary and sufficient condition
for a digital arc to have the chord property. This condition made the chord prop-
erty easier to check. Kim (1982) characterized it by convexity, and showed that
a digital straight line segment is a digital arc which is digitally convex.

In the present paper we deal with grid points in the 8-connected plane as
well as the plane equipped with the Khalimsky topology. Digital straight line
segments are special cases of digital arcs. We shall investigate Rosenfeld’s digi-
tization and his chord property in section [LI Melin (2005) introduced a mod-
ified version of the chord property of Rosenfeld. He established necessary and
sufficient conditions for straightness in the Khalimsky plane. We mention his
results in section and put them into another framework using instead vertical
distances in section Xl Bruckstein (1991) presented some transformations on
sequences composed of two symbols, 0 and 1. These transformations can be de-
scribed by matrices which form a well-known group called GL(2,Z). The main
results in his paper is that the image of the chain code under one of these trans-
formations represents a digital straight line segment if and only if the original
sequence is the chain code of a digital straight line segment. Similar transfor-
mations have been used by Jamet and Toutant (2006:231) in the case of three
dimensions.
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In section Pl we shall investigate sets of 8-connected and Khalimsky-connected
points by dividing them into unions of horizontal and diagonal segments. Then
we shall present necessary and sufficient conditions in both cases using verti-
cal distances for certain points. We shall also establish necessary and sufficient
conditions in the 8-connected plane as well as in the Khalimsky plane by trans-
forming the sequences of their chain codes. Using this technique we transform
Khalimsky lines to the 8-connected case.

1.1. Rosenfeld’s digitization of straight lines

We present here Rosenfeld’s digitization of straight lines in the digital plane Z2.
First we define the set

C0)={z;zy =0and —1/2 <z <1/2}U{z;20 =0and —1/2 <z <1/2}.

For each p € Z?, let C(p) = C(0) + p, which we shall call the cross with center
p. Now the Rosenfeld digitization in R? is:

(1.1) Dr: P(R?) — P(7*), Dr(A) = {p € Z* C(p)NA#0D}.
This digitization is based on the one-dimensional digitization
Roz— [z—1/2] € Z.

The union of all crosses C(p) for p € Z? is equal to the set of all grid lines
(R x Z)U(Z x R), so that every straight line has a nonempty digitization. Note
that the family of all crosses is disjoint, which implies that the digitization of
a point is either empty or a singleton set. In the real plane, the concept of a
straight line is well-known: it is a set of the form {(1 — t)a + tb;t € R}, where a
and b are two distinct points in the plane. A straight line segment is a connected
subset of a straight line (perhaps the whole line).

We shall consider in particular closed segments of finite length and we write
them as {(1 —t)a +tb;0 < ¢t < 1}, where a and b are the endpoints. We shall
denote this segment by [a,b]. Like Rosenfeld, we will consider lines and straight
line segments with slope between 0 and 45° in the 8-connected case and in the
Khalimsky plane.

We shall say that D is a digital straight line segment, and write D € DSLSsy,
if and only if there exists a real line segment the Rosenfeld digitization of which
is equal to D.

Rosenfeld (1974) introduced the chord property to characterize digital
straight line segments in Z?:

Definition 1.1. A subset D C R? is said to have the chord property if for all
points p, g € D the segment [p, ¢] is contained in D + B2(0, 1), the dilation of D
by the open unit ball for the [ metric.
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Rosenfeld’s digitization of a subset in the plane Z? is 8-connected, but if we
consider it in the Khalimsky plane, it is not necessarily connected for that topol-
ogy. Also, we do not have the chord property with respect to the [*° distance
for certain Khalimsky-connected sets which are digitizations of straight line seg-
ments. Melin (2005) solved these problems by suggesting another digitization
and modified Rosenfeld’s chord property. To explain this, we shall start with the
definition of the Khalimsky plane and then continue with Melin’s digitization.

1.2. The Khalimsky topology

There are several different ways to introduce the Khalimsky topology on the
integer line. We present the Khalimsky topology by a topological basis. For
every even integer m, the set {m — 1,m,m + 1} is open, and for every odd
integer n the singleton {n} is open. A basis is given by

{{2n+1},{2n — 1,2n,2n+ 1};n € Z}.

It follows that even points are closed.

A digital interval [a,b]z = [a,b] N Z with the subspace topology is called a
Khalimsky interval, and a homeomorphic image of a Khalimsky interval into a
topological space is called a Khalimsky arc.

On the digital plane Z2, the Khalimsky topology is given by the product
topology. A point with both coordinates odd is open. If both coordinates are
even, the point is closed. These types of points are called pure. Points with one
even and one odd coordinate are neither open nor closed; these are called mized.
Note that the mixed points are only connected to their 4-neighbors, whereas
the pure points are connected to all eight neighbors. More information on the
Khalimsky plane and the Khalimsky topology can be found in Kiselman (2004).

1.3. Continuous Khalimsky digitization

The Rosenfeld digitization in R? does not work well when Z? is equipped with
the Khalimsky topology. This means that the Rosenfeld digitization of a straight
line segment is not in general connected for the Khalimsky topology. Melin
(2005) introduced a Khalimsky-continuous digitization. This digitization gives
us Khalimsky-connected digital straight line segments.

Here we recall his definition and related results. Let

D(0) = {(t,t) e R} —1/2 <t < 1/2} U{(t,—t) € R*; —1/2 <t < 1/2}.

For each pure point p € Z?, define D(p) = D(0) + p. Note that D(p) is a cross,
rotated 45°, with center at p, and that D(p) is contained in the Voronoi cell
{z € R? ||z — plloc < 1/2}. This means that a digitization with D(p) as a cross
with nucleus p is a Voronoi digitization. We define the pure digitization Dp(A)
of a subset A of R? as

Dp(A) = {p € Z*;p is pure and D(p) N A # (}.
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This digitization is the basis for the continuous digitization. The continuous
digitization D(L) of L is defined as follows: If L is horizontal or vertical D(L) =
Dgr(L), the Rosenfeld digitization defined in ([CIl). Otherwise define Dy,(L) as

Du(L) = {p € Z* (p1 £ 1,p2) € Dp(L)} U{p € Z* (p1,p2 = 1) € Dp(L)}

and let D(L) = Dp(L) U Dp(L). In this digitization we add mixed points
(p1,p2) if the two points (p; & 1, pg) or the two points (p1, p2 £ 1) belong to the
pure digitization. Melin (2005) characterized digital straight line segments in
the 8-connected and the Khalimsky-connected cases by using a function which
he called chord measure.

Definition 1.2. Let A € P4,1.(Z?) be a finite set. Then the chord measure of
A, denoted by £(A), is defined by:

§(A) = max H(A,p, q),

p,g€A

where H(A, p,q) is the distance from the line segment [p, q] to A, which is defined
by

H: i@ﬁnite(ZZ) X ZZ X Z2 - [0,+OO], H(Aapa Q) = Sup mlnd(mvl‘)

z€[p,q] meA

The distance function H is related to the Hausdorff distance between A and [p, ¢]
as two subsets of the metric space (Z?,d).

Definition 1.3. Let A € Pq,.(Z%). We say that A has the chord property for
the metric d if £(A) < 1.

As to the Rosenfeld digitization, Melin (2005) showed that a continuous Khalim-
sky digitization satisfies the chord property for a certain metric and, conversely,
a Khalimsky arc satisfying this chord property is the digitization of a straight
line segment. He considered a special metric. Let 6° be the metric on R? defined
by

0%(x,y) = max (3lz1 — yil, |2 — ) ;

it is the [*°-metric rescaled in the first coordinate. For each positive o, we may
define a metric 0°(z,y) = max(a|x; — yi1|, |2 — y2|), but Melin (2005) showed
by examples that the choice a = % is suitable.

We shall call D a digital straight line segment in the Khalimsky plane, and
write D € DSLSky, if and only if there exists a real straight line segment whose
Khalimsky digitization is equal to D. Melin (2005) proved two theorems that
characterize DSLSky,.

Theorem 1.4. (Melin 2005: Theorem 6.3) The continuous Khalimsky digitiza-
tion of a straight line segment is a Khalimsky arc (possibly empty) having the
chord property for the 0°-metric (when the slope is between 0° and 45°) or the
metric 6(z,y) = 8((x2, 1), (y2,y1)) (for lines with slope between 45° and 90°).
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Theorem 1.5. (Melin 2005: Theorem 6.4) Suppose that a Khalimsky arc
D ={(z f(z));z € I} CZ°

is the graph of a monotone, continuous function f, and that D has pure end-
points. If D has the chord property for the 6°°-metric, then D is the Khalimsky-
continuous digitization of a straight line segment.

Remark 1.6. Melin (2005) defined another way to distinguish DSLSkj, in the
proof of Theorem He defined a strip S(«, 3, p) for given «, 3, p € R by

S(a, B,p) = {z € R axy + 8 — p(1+0a) <z <oy + B+ p(1+ )},

He called the number p the diagonal half-width of the strip. The boundary of
the strip consists of two components given by the lines o = ax; + 8+ p(1 + ),
i.e., the center line, x5 = axy + (3, translated by the vectors (—p, p) and (p, —p).
As a consequence of the digitization of pure points, we can see easily that a set
of pure points is a subset of a digital straight line segment if and only if they are
contained in a strip with a diagonal width strictly less than %

2. Boomerangs and digital straight line segment

In this paper we want to characterize the digital straight line segments, so we
consider the collection of monotone functions on a bounded interval. We may re-
strict attention to monotone functions, because a function which is not monotone
can never represent a straight line segment.

In the case of the Khalimsky topology, it is clear that the graph of a discon-
tinuous function cannot have the chord property, so we do not need to consider
such functions. We consider increasing functions; the case of decreasing func-
tions is similar. For this case we have the chord property which we introduced
in Definition

If P = (p), is a sequence of points which is the graph of a function f, thus
with pb = f(p}), we define its chain code ¢ = (¢;)i=1..n by ¢; = f(i) — f(i — 1),
i = 1,...,n. For the functions we work on, ¢; is equal to zero or one. (This
definition agrees with the Freeman chain code in this case.)

The simplest straight line segments in the digital plane are the horizontal,
diagonal and vertical ones. In the remaining cases the graph contains both
horizontal and diagonal steps; we shall call them constant and increasing, re-
spectively, so in this case we have at least one point preceded by a horizontal
interval and followed by a diagonal interval, or conversely.

Definition 2.1. When a graph P is given, we shall say that a digital curve
consisting of m + 1 points, B = (b")™,, m > 2, is a boomerang in P if it consists
of a horizontal segment [b°, ], where 0 < k < m, followed by a diagonal segment
[b%,b™], or conversely, and if B is maximal with this property. We shall call the
horizontal and diagonal segments, Con(B) and Inc(B), respectively.
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We use |Con| = |Con(B)| = k for the number of horizontal intervals in the
segment [0°, b¥], and |Inc| = |Inc(B)| = m —k for the number of diagonal intervals
in the segment [b*, b™], or conversely if the horizontal segment comes last. They
are equal to the number of zeros and ones in the related chain code, respectively.
We introduce |B| = k + (m — k) = m as the sum of |Con(B)| and |Inc(B)|. We
remark that the boomerangs need not be disjoint and that the last segment a
boomerang may be a starting segment of the next boomerang, so the number of
boomerangs is equal to the number of vertices.

We thus divide the collection of graphs of monotone functions on bounded
intervals into two cases:
(I) Horizontal or diagonal;
(IT) All others.

The case (I) is straightforward. We shall now discuss the second type of
digital curves.

Definition 2.2. Given any subset P of R? we define its chord set chord(P) as
the union of all chords, i.e., all segments with endpoints in P, as

chord(P) = U [z,y] € R%
z,yeP

We also need the broken line defined for a finite sequence P = (p*)™,,

n—1
= Ui
1=0

Similarly for an infinite sequence (p')sen or (p')icz.

Lemma 2.3. For an 8-connected sequence P = (p')"_, we have

n

BL(P)+ BL(0,1) € | J ({r'} + BX(0, 1)),

=0

where BL(P)+ BL(0,1) and {p'} + B=(0, 1) are the dilations of BL(P) and {p'}
by the open unit ball for the I' and [ metric, respectively.

Proof. We can see easily that

BL(P) + B1(0.1) = I »™"] + BL(0.1) €
(2.1) =t

({»°p"} + B2(0,1)) (U[pp”1+{0}[ ])-

We have

(2.2) (%, p"} + BL(0,1) C {p°,p"} + B(0, 1),
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and
23) U+ 40} x 10 € U + B2 (0, ).

Then (Z2) and ([Z3)) give the result. O

Remark 2.4. In the equation (7]), if we consider an infinite sequence P = (p);cz,

we have
Ui’ p1+ BL0, 1) € U (1) + {0} < [-1,1)

2.1. Boomerangs and vertical distance

Suppose that P = (p%)io..... is a sequence of points which has b boomerangs.
Let V = (v%)%_, be the sequence of all vertices of the boomerangs of P. We define
the vertical distance d, as dy(z,y) = |r2 — y2| when z; = y;. We shall show a

relation between vertical distances and DSLSg and DSLSky,.

Theorem 2.5. Let P = (p')™, be an 8-connected sequence of points which is the
graph of a function and has b boomerangs. Let V = (v');=1. be the sequence of
all vertices of its boomerangs. Then P € DSLSg if and only if for alli =1,...,b
and all real points a € chord(P) such that a; = v} we have d,(v',a) < 1.

Proof. Suppose that there is a vertex v = p’ for some 0 < j < n and a point
a € chord(P) with a; = v; such that d,(v,a) > 1. We shall show that P ¢
DSLSg. Since we have d,(v,a) > 1,

(2.4) a ¢ {v}+ BZ(0,1).
Also
(2.5) la; — pi| = 1 for i # j.

Therefore, by (Z4), (Z3), we see that

a & {p'to + BZ(0,1),

and so P ¢ DSLSs.

Conversely, suppose that P ¢ DSLSg, so there is a point ¢ and two indices
k,l such that 0 < k <l < nand c € [p,p'] but ¢ ¢ P+ BX(0,1). By Lemma
23

(2.6) c ¢ BL(P) + BL(0,1).

.....

Fii(z) = dy(z,y) for y € Qg with y; = 2.
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Consider the point = € Qi with z; = ¢;. By (20,
dy(c,z) > 1.

Therefore Fj;(c) > 1. The function F}; attains its maximum at a point that lies
on a vertical line passing through a vertex, so there is a vertex v of the boomerang
B such that the function Fy; attains its maximum at the point a € [p*, p'] with
a1 = v1, thus

1 < FkJ(C) < Fkl(a) = dv(v,a).

This shows that, for the vertex v and a point a € chord(P) with same first
coordinate as v, we have dy(a,v) > 1. We are done. [

We shall now study the same result for Khalimsky-connectedness. We consider
mixed points m = (my, my) which lie on P and such that for some vertex v =
(v1,v9), we have m; = vy = 1. In the next theorem we shall show that we have
straightness if and only if the vertical distance is less than one at these mixed
points.

Theorem 2.6. Suppose that P = (p*)", is a Khalimsky-connected sequence with
pure endpoints and let b be the number of its boomerangs. Let M be the set of
all mized points in P. Then P € DSLSky if and only if for all m € M and all
a € chord(P) with a1 = my we have d,(m,a) < 1.

Proof. Suppose that there exist a mixed point m = p’ for some 0 < j < n and a
point a € chord(P) with a; = m; such that d,(m,a) > 1, so that

(2.7 o ¢ {m}+ BZ(0,1),
where B2 (0, 1) is the open unit ball for the metric §°°.

It is clear that

‘al —p{_Q} =2 and }al —p{“‘ =2;

SO
(2.8) lai —pf| >2for k> j+2and k<j—2.
We can see easily also that
(2.9) |as —pgfl‘ = |as —pgﬂ‘ > 1.
Therefore, by (1), [Z8) and ([Z3J)

a g P+ BX(0,1).

Thus P ¢ DSLSKh
Conversely, suppose that P € DSLSky, so that there is a straight line L with
equation zo = ax; + 0 whose digitization equals the set of points P. Without
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loss of generality we may assume that 0 < a < 1. As we saw in remark [[L8], there
is a strip
S(a,B,p) ={x € R* am; + B —p(1+a) <ao <axy +B+p(l+a)},

with diagonal half-width p less than %, which contains P and also chord(P).
We shall show that the vertical distance between an arbitrary mixed point m =
(mq1,my) in M and the two boundary lines S(«, 3, p) is less than one, so that
the vertical distance between m and all a € chord(P) with a; = m; is less than
one. Consider a mixed point m in M. Since « is less than 1, the two pure points
p = (my—1,ms) and g = (my+1, ms) belong to P. Let r € D(p)N L where D(p)
is the cross defined in subsection By the construction of Melin’s digitization
which we mentioned in subsection [L3, the distance with [°° metric between the
pure point p and the line segment L is less than %, ie.,

(2.10) d®(p,r) <

1
5

The diagonal half-width of the strip S is less than %, so the distance with the [*°
metric between the line segment L and the strip S is less than % Thus

(2.11) d>(r,S) < 3.
By (E10) and (21T)
(2.12) d=(p,S) < d>(p,r)+d>(r,5) < L.

In the same way, we have
(2.13) d>(q,S) < 1.

By [I2) and ([ZI3), we conclude that d,(m,a) < 1 for all a € S with a; = m;.
0

3. Boomerangs and straightness

We shall now discuss straightness by considering boomerangs and using the con-
ditions on vertical distances in Theorems and ZZ8l First we just consider
one boomerang. In two lemmas we shall find conditions for straightness in the
8-connected case and the Khalimsky case, and then we shall do the same when
we have more than one boomerang.

Lemma 3.1. Let B = (V') be an 8-connected boomerang. Then the following
two properties are equivalent.

(i) B € DSLSg;

(i) If |Con(B)| > 2, then |Inc(B)| = 1;
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Proof. (i) = (ii). Suppose that a boomerang B € DSLSg and |Con| > 2 and
lInc| > 2. Therefore the vertical distance between the vertex of B and chord(B)
is at least one. Theorem L3 now gives a contradiction.

(i1) = (i). Suppose that |Inc| = 1, and that |Con| = m > 2. We can check
easily the condition Theorem EL3 and see that B € DSLSg. [

Lemma 3.2. Let a boomerang B = (V') be a Khalimsky-connected set with
pure end points. Then the following two properties are equivalent.

(Z) B e DSLSKh,'

(11) If |Con(B)| = 4, then |Inc(B)| = 1.

Proof. (i) = (ii). Suppose that B € DSLSky, and |Con| > 4 and [Inc| > 2. By
Theorem ZB we have contradiction.

(1) = (i). Suppose that |Inc| = 1, and |Con| > 4. We can see easily that the
condition in Theorem L0l is satisfied, and we are done. [

The two previous Lemmas Bl and show the relation between the class DSLS
and an arbitrary boomerang, but of course there are digital curves such that all
its constituent boomerangs satisfy the condition of these lemmas but the curve
itself is not in DSLS. In order to avoid complicated proofs in Propositions
and B4 and Lemmas and B or a complicated statement in Theorem B8]
we will consider only concave boomerangs.

Proposition 3.3. Suppose that P = (p'), is a set of points such that
P € DSLSg and denote by b the number of concave boomerangs in P. If
|Con(B;j)| = 2 for some j with 1 < j < b, then [Inc(B;)| = 1 for all i with
1<i<b.

Proof. Let P € DSLSg. Suppose that there exist 1 < ¢ < 7 < b such that
lInc(B;)| = 2 and |Con(B;)| > 2. We may assume that |Inc(B;)| = 2, |Con(B;)| =
2 by passing to subsets and B; is the closest boomerang to B; with cardinality
of the increasing part not equal to 1. If ¢ = j, the result is obvious by Lemma
Bl For j —i =1, by Lemma B we must have |Con(B;)| = |Inc(B;)| = 1. By
Theorem we do not have straightness in this case.

Suppose now that j —¢ > 1. In this case the chain code for P is

(1,1,0,(1,0)",1,0,0),

where (1,0)! means that we have ¢ times the subsequence (1,0). Let (p?)Z2*0 be
the points related to this chain code. The slope of the line segment [p pl+2t+6}
34t _ 1

is equal to g; = 5. We can check easily that the vertical distance between

the vertex p'*t? and the line segment [p', p'**+] is 1. Thus we are done just by
considering Theorem O

Proposition 3.4. Suppose that P = (p'), is a Khalimsky-connected sequence
with pure endpoints such that P € DSLSky and denote by b the number of concave
boomerangs in P. If |Con(B;)| > 4 for some 1 < j < b, then |Inc(B;)| =1 for all
1<i<b.
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Proof. We do as in the proof of Proposition B3l Suppose that there exist 1 < i <
J < bsuch that |Inc(B;)| > 2 and |Con(B;)| > 4. We may assume that |Inc(B;)| =
2, |Con(B;)| = 4 by passing to subsets. We can assume that B; is the closest
boomerang to B; with cardinality of the increasing part not equal to 1. For j—i =
1, we can find a contradiction as in Proposition Finally, we shall show that
we do not have straightness when j —¢ > 1. Let (1,1,0,0,(1,0,0)% 1,0,0,0,0)
be the related chain code for the set of boomerangs B;, ..., B; and (p'):=?"* be
the points related to this chain code. The slope of the line segment [p, p!T3:+9)]
is equal to % = % Thus, we can see that the vertical distance between the
mixed point p!™® and the line segment [p!, p!*31%9] is equal to 1. Therefore, we

do not have straightness by Theorem O

By Propositions B3 and B4, there are just two cases when we study straightness.
We write them in the following definition.

Definition 3.5. Let [; = |Inc(B;)| and C; = |Con(B;)|, where 1 < i < b and b is
the number of boomerangs in P. We shall consider four cases:

(8-a) I;=1foralll<i<b

(8b) Ci=1foralll<i<b

(Kh-a) I; = 1 for all 1 < < b;

(Kh-b) C; =2 for all 1 < i <b.

We shall call P dominant constant if it satisfies condition (8-a) in the case of 8-
connectedness, and condition (Kh-a) in the case of Khalimsky connectedness, and
dominant increasing if it satisfies condition (8-b) in the case of 8-connectedness
and condition (Kh-b) in the case of Khalimsky connectedness.

If the discrete straight line has slope between 0 and %, we have dominant constant
1

and for the slope of the line between 5 and 1, we have dominant increasing.

There are some results on the runs of 8-connected digital straight lines that
are related to our work. We give a summary of them. Freeman (1970:260) has
observed that (except possibly at the beginning and end of the segment) the
“successive occurrencies of the element occurring singly are as uniformly spaced
as possible.”

Rosenfeld (1974) provided a formal proof of these facts for the 8-connected
case. We present two propositions, in the 8-connected case and the Khalimsky-
connected case with this conclusion. We shall show that we have two possibilities
for the number of boomerangs in both cases. This result is similar to Rosenfeld’s
conclusion in the 8-connected case for runs. We shall use the results of these
lemmas in Theorem B8 so we write the statements of the two lemmas using

boomerangs. To prove these lemmas we shall use Theorems and

Lemma 3.6. If P € DSLSg, then we have at most two possible values for the
cardinality of the boomerangs in P, that is, ||Bix| — |BZ|’ <1 for all i,k € N.

Proof. Let P be dominant increasing. To avoid complicated indices and to sim-
plify the construction of the proof, we consider concave boomerangs only. We
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choose k minimal such that
and
[Bisxl = |Bil| > 2.

Without loss of generality, we may assume that |B;y;| > |B;| for 1 < j < k.
Thus

and
|Biyi| — |Bi| = 2.

Consider now the line segment [p, g| such that p is the starting point of Con(B;_1)
and ¢ is the endpoint of Inc(B;,). This line segment has slope
(k+D)Li+k—1+1
(E+1)L+2k+1t 7

where

We can see easily that the vertical distance is at least one at the point (I; +2, I;)
(which is the vertex of a convex boomerang). Therefore, we get a contradiction
by Theorem The proof for dominant constant can be obtained in the same
way. [

Lemma 3.7. If P € DSLSxky, then we have two possible values for the cardinality
of boomerangs in P, that is, in the dominant increasing case,

|Bisi| — |Bil| <1 for all k € N,
and in the dominant constant case,
HBHk‘ — |BZH < 2 for all k € N.

Proof. For the dominant increasing, we do as in Lemma Here we consider,
as in Lemma B.0l concave boomerangs. We choose £ minimal such that

|Bi+j| — |Bz| =1for1l <] < kf,

and
|Bisk| — |Bi| 2 2.

Consider the line segment [p, ¢] such that p is the starting point of Con(B;_1)
and ¢ is the endpoint of Inc(B;, ). This line segment has slope
(k+D)Li+k—1+1
(k+ 1) +3k+t+1
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where

We can see easily that the vertical distance is at least one at the mixed point
(I; + 3,1;). Thus, we are done for the dominant increasing case by getting a
contradiction with Theorem 26
Suppose now that P is dominant constant. We may choose & minimal such
that
|Bivj| — |Bi| =2for 1 <j <k,

and
|Bivk| — |Bi| > 4.

Consider the line segment [p, ] where p and ¢ are the start point of Inc(B;) and
the endpoint of Con(B;,), respectively. We can easily check that the vertical
distance is at least one at the mixed point (C; + 3,2), where C; = |Con(B;)|.
Thus, considering Theorem Z6 we get a contradiction. [J

The conditions in LemmasB.fland B are necessary but not sufficient for straight-
ness. An example for this claim is the set of 8-connected points with Freeman
chain code 11010110101010. These points satisfy the conclusion of Proposi-
tion but do not have the chord property. In the Khalimsky plane we can see
these results in the set of points with Freeman chain code 11001001100100100100.

Hung and Kasvand (1984) introduced a way to find the sufficient condition for
straightness in the 8-connected plane. He considered a digital arc as a sequence
of two symbols. Then he noted that a segment in a sequence of symbols is
a continuous block of symbols of this sequence; the number of symbols in a
segment is the length of this segment. All segments having the same length in
a sequence were called equal segments. Two equal segments he called uneven if
their sums differ by more than 1. He called any two uneven segments an uneven
pair. Then he went on to prove that a digital arc has the chord property if and
only if there are no uneven segments in its chain code. He named a digital arc
straight if and only if for equal segments in this arc, their sums cannot differ by
more than 1. Therefore, like the chord property, the absence of uneven segments
is one of the most fundamental properties in the structure of a digital straight
line.

Bruckstein (1991) presented several interesting self-similarity properties of
chain codes of digital straight line. He introduced some transformations given
by matrices of determinant £1. These matrices belong to the well-known group
GL(2,Z). As a result of these transformations, he showed that the new sequence
produced by applying these transformation to a sequence of 0 and 1 is the chain
code of digital straight line segment if and only if the original sequence is the
chain code of a digital straight line segment.

To find a sufficient condition for straightness, we shall define a mapping which
transforms certain codes to the set {0,1}. Let Z(P) be the collection of all
boomerangs in P. By Lemmas and B.7, we have just two possibilities for
the values of |B;|. Thus we can define a mapping from the set of Freeman chain
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code of P to {0,1} which maps the boomerangs with greater cardinality to 1
and the other boomerangs to 0. The graph of f is an 8-connected set and by
this fact we can see easily that if P is a Khalimsky-connected set, then f(P)
will be an 8-connected set and so for investigating the straightness in Khalimsky
plane we can go to the 8-connected case. In the following theorem we shall
show that f(P) and so the composition of f with itself can give a necessary and
sufficient condition for straightness in the 8-connected case and therefore also in
the Khalimsky-connected plane.

Theorem 3.8. We define a function f on a subset of the set {0, 1} of sequences
of zeros and ones and with values in the same set: f(C) is defined for those chain
codes that represent dominant increasing or dominant constant sequences which
arise from sets of boomerangs of at most two different lengths. We define f(C)
as the sequence obtained by replacing the chain code of a long concave boomerang
by 1 and that of a short concave boomerang by 0. Then

(I) C' is the chain code of an element of DSLSg if and only if f(C) € DSLSs,
and

(IT) C' is the chain code of an element of DSLSky, if and only if C' the chain code
of a Khalimsky-connected set and f(C') € DSLSs.

Remark 3.9. If we compose f with itself and define f°(C) = C, f"*(C) =
f(f™(C)) for n € N, then f*(C) belongs to DSLSg for all n € N and all
C € DSLSg, and f"(C) belongs to DSLSg for all n € N* = N ~ {0} for all
C € DSLSkn.

Proof. We define a transformation which gives us the chain code of f(C). We
want to transform a short boomerang to a vector V; which comes from the line
segment between the starting point and the endpoint of this boomerang. Then,
in analogy with short boomerangs we can do the same for a long boomerang and
transform it to a vector V3. We define a grid 7" which is contained in R? and has
two linearly independent basis vectors V; and V5, where V5 is the sum of V; and
V3. Therefore

T = {a+x,Vi + 23Va; 2 = (z1,72) € Z*} with a = (ay,ay) as origin.

With this transformation, we can map the set chord(P) into R?. The image of

r = (21,29)" = (i;) €Z?inTis

1) (m) = ()2 ()
where

(3.2) A= (ip —pl) or A= ((1) _1p)

for the set of 8-connected points which is dominant increasing or dominant con-
stant, respectively, and p denotes the cardinality of a short boomerang.
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In the same way we define a transformation which gives us the chain code of
f(C) in the Khalimsky case. We notice that in the dominant increasing case, the
constant part is always 2 and in the dominant constant case, the constant part
must be an even number. We can write this transformation in the Khalimsky
case using a matrix A defined as follows:

1 —1 0 1
2<2—p p) ' <% —%p)

for the set of points which is dominant increasing or dominant constant, respec-
tively. The number p is the cardinality of the short boomerangs, which is an odd
number for the dominant constant case. In both cases we can come back from T’
to Z? as follows:

(5.3) ()= () - G

By the statement of Theorem B, C' is dominant increasing or dominant
constant. If f(C) is a digital straight line segment, then we have four possibilities
in each of the two cases, the 8-connected case and the Khalimsky case. We
present them in the following list.

1. C is dominant increasing and f(C') is dominant increasing, so
C has dominant long boomerangs;

2. C is dominant constant and f(C) is dominant increasing, so
C has dominant long boomerangs;

3. C is dominant increasing and f(C) is dominant constant, so
C has dominant short boomerangs;

4. C' is dominant constant and f(C) is dominant constant, so
C has dominant short boomerangs.

(3.4)

In the case of 8-connectedness, there are no special differences in the proof of
the four cases in (B4), but in the Khalimsky case, we must be careful which
possibility we choose to work on, and how we can transform a mixed point to a
vertex and vice versa.

Case (I), =. Now we shall prove the implication = in case (I). Let
C € DSLSg. If f(C) ¢ DSLSg then we can find a vertex v = (vy,v9)T of a
boomerang B such that we have vertical distance at least one at this point. Sup-
pose that this vertical distance is attained between v and the line segment with
equation Y = MX + N in T'. Thus

dy(v,a) = vy — Mvy — N > 1.

Since we exclude convex boomerangs in this section, we can find easily the vertical
distances without considering the absolute value. We may assume that C' is
dominant increasing. The transformation of the vertex v into Z? is an endpoint
of a boomerang in C'. Let v’ be this image. Thus

S P LYo\ _ [ putue
p—1 1) \vy (p—1Dvy +uvg )
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To find the image of the straight line Y = M X + N in Z2, we do as follows:

-0 )6)

By (B3) and a simple calculation,

z=(p+M)X+N,
y=@p-14+M)X +N.

This implies

_M+tp-1 N

3.6 T .
(3.6) M +p M+p

Thus the vertical distance between the line segment with equation (B and the
vertex (pv; +vo — 1, (p — 1)vy +v9) 7T is

M4p—1 N
— Doy + vy — —————(pry vy — 1) —
(p=Dvr+ v = === o+ 0 = 1) = 7
(v = Mo, - N)+ (M +p—-1) _,

M+p -

By Theorem EZ3 we can conclude that C' ¢ DSLSg. That is a contradiction.
Therefore, the assertion is proved when C'is dominant increasing. The proof is
similar for the dominant constant case.

Case (I), <. Conversely, we shall now prove the implication < in case (I).
Let f(C) be in DSLSg. By the statement of this Theorem, C' must be dominant
increasing or dominant constant. We have two possibilities for the cardinalities
of boomerangs. By (B4]) we have four possibilities and the proof for those we use
the same construction. We must consider the matrix for the transformation with
the construction of C' as dominant increasing or dominant constant. Assume
now we are in case 1 in (B4). Thus the sequences C' and f(C) are dominant
increasing and C' has dominant long boomerangs. Suppose that C' ¢ DSLSs.
Then by Theorem we can find a vertex v of a boomerang B such that the
vertical distance between this vertex and chord(C) is at least one. First, we shall
show that the maximal vertical distance in C'is attained at a vertex v of a long
boomerang, where the following boomerang is short. Let (B;,..., B;1) be the
set of all long boomerangs which lie between two short boomerangs and such that
there is no short boomerang between them. Consider the line segment [a, b] with
equation y = ax + [ in the chord(P) such that the maximal vertical distance is
attained between this line segment and the vertex v. The point a must be the
starting point of a boomerang and b the endpoint of another boomerang. Thus
the slope of this line segment is

(3.7) a= TIPS
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where r and s are the number of long and short boomerangs, respectively. By
a simple calculation, we can see that the condition for the maximal vertical
distance to be attained at the vertex of By is

p—1 p

(3.8) P <a<p+1.

We can check that the inequality (B8 is correct by using (B1). By the previous
discussion, the vertex v must be the vertex of the last boomerang, i.e., Bj .
Since (B, ..., Bjyx) are long boomerangs and By is a short boomerang, the
image of (By, ..., Biyk, Briiy1) in T is a boomerang with its vertex equal to the
image of the endpoint of B;y; in T. By the previous discussion, the maximal
vertical distance is attained at the vertex v = (v, v2)T of the boomerang By }.
So that the point a with the same first coordinate as v and which lies on the line
segment y = ax + [ satisfies

dy(v,a) = vy —av; — > 1.

Since C' is dominant increasing, the endpoint of By, is ¢ = (v; + 1,v2)T. The
image of ¢ in T is

o 1 —1 Ul+1 . ’Ul—’l}2+]_
T \-p va ) \(1=p)(or +1) +pva)’
that is, the vertex of the boomerang B in T. The image of a line segment with

equation y = ax + Fin T is

:oqo—ijlxjL
l—« 11—«

Y

so the vertical distance between this line segment and ¢ is

g

l—«o

ap—p+1
(L= )01+ 1)+ poy = o

_1)2—()(’01—/8—0(>1—Oz
B l—-« “1-a

(01—02+1)—

=1.

Finally, by considering Theorem X3 we get a contradiction. For case 3 in (B4,
the maximal vertical distance is attained at the vertex of a long boomerang where
the following boomerang is short. In case 2 [4] we have maximal vertical distance
at the vertex of a long [long| boomerang where the previous boomerang is short
[short]. We can prove these facts in the same way as in case 1. The proofs for
straightness in these cases are also similar to that of case 1.

Case (II), =. We shall now prove the implication = in case (II). Let
C € DSLSxn. If f(C) ¢ DSLSg then we can find a vertex v = (vy,vy)T of
a boomerang B and the line segment with equation Y = M X + N in T such
that for the point a which lies on this line segment and has the same first coor-
dinate as v, the vertical distance is at least one. Thus

dy(v,a) =ve — Mvy — N > 1.
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Suppose that C' is dominant increasing. The transformation of the vertex v into
72 is an endpoint of a boomerang in C. Let v/ be this image. Thus

o — p 1\ (un _ pu1 + U2
p—2 1) \vy (p—2)vy +vg )"
The image of the straight line Y = MX + N in Z2 is

_ M+p-2 2N

3.9 T + .
(3.9) M +p M+p

The point m = (pv; +vs — 1, (p — 2)v; +v2) " is a mixed point in a boomerang in
C'. Thus the vertical distance between the line segment with equation (B3) and
the mixed point m is

M+p—2 2N
—2)vy +vg— ————(pv1 +v2 — 1) —
(p Jui 2 M+ p (pv1 2 ) M+p
~ (2ug —2Muv; —2N) + (M +p - 2) - 2+M—i—p—2_1
B M+p -~ M+p

By Theorem X6 C' ¢ DSLSky. That is a contradiction.

Suppose now C' is dominant constant. The image of the vertex v in Z? is:

v = p 2 v\ _ pU1 + 209
10 V2 U1 '

Without loss of generality, we can assume that the vertex v is the vertex of a
convex boomerang. Thus, the vertical distance between this point and the line
segment with equation Y = M X+ N is Mv; + N —uvs, which is at least one. Same
as previous discussion, we can find the image of the straight line Y = M X + N
in Z? as follows:

(3.10) ! 2V
. = x — )
Y= oMt T preM
The point (pvl : 2+2;21+ 2 is a mixed point in a concave boomerang of C'. The
1

vertical distance between this point and the line segment in (BI0) is:

pv1 4 2v + 2 — 2N

1) —
(01 +1) p+2M
_2Mui +2N =20, —24p+2M  2-24p+2M
B p+2M - p4+2M

Thus, the result in this case is also obvious by a contradiction with Theorem
Case (II), <. Conversely, we shall now prove the implication < in case (II).
Let f(C) € DSLSg. As in Case (I), <, we have the four possibilities which were
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mentioned in ([BZ)). First, we consider case 1. Thus, C' and f(C') are dominant
increasing and C' has dominant long boomerangs. Suppose that C' ¢ DSLSky,.
Therefore by Theorem [Z8], there is a mixed point m of a boomerang B such
that the vertical distance at this point is at least one. We shall show that the
maximal vertical distance in C' is attained at a mixed point m = (my,my)" of
a long boomerang, where the following boomerang is short. Suppose that this
maximal vertical distance is attained between the mixed point m and the line
segment [a,b] with equation y = ax + 5. We can see easily that we have the
maximal vertical distance when a is the starting point of a boomerang and b is
the endpoint of another boomerang. The slope of this line segment is

_(r+s)p—2s

(3.11) G +sptar

where r and s are the number of long and short boomerangs, respectively. By a
simple calculation, we find that the condition for the maximal vertical distance
to be attained at a mixed point of the last long boomerang where the following
boomerang is short, is

p—2 p
(3.12) » <a<p+2.
We can see that the inequalities in (BI2) are correct by using (BI1). We can
prove in the same way as for the case 3 in (B4, that the maximal vertical distance
is attained at the vertex of a long boomerang where the following boomerang
is short. As in the 8-connected case, for case 2 [4], we have maximal vertical
distance at the vertex of a long [long] boomerang where the previous boomerang
is short [short]. With the same discussion as Case (I), <, we must show that
the vertical distance at the image of the point m’ = (m; + 1, m3)T in the grid T
is at least 1. Let m” be this image. Thus

m! = 1 1 —1 my + 1 _1 my —mg + 1
2\2—-p p mo 2\(2=p)(m1+1)+pmy /)"
The point m” is a vertex of a boomerang in f(C'). The image of a line segment
y=ax+Fin T is

9 _
_2-ptpa, B
11—« 1l—«

(3.13) Y

Therefore, the vertical distance between line segment with equation ([BI3]) and
the vertex m” is

2—p)(mi+1)+pm 2 —p+po
2-p)mi+1)+pmy 2-p+p (g — gy + 1) — E
2 l—«o l—«o

2me — 2 -2 -2 2—-2
_ 2my am; G+ oz> a+ﬁ:2+i.
11—« 1l -« 1l -«

That is a contradiction. We can prove case 3 in (B4) in the same way.
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Let us now prove case 2 in (B4)). In this case, the maximal vertical distance is
attained at the mixed point of a long boomerang where the previous boomerang
is short. We consider the image of the point m’ = (m; — 2, my — 1)T. The image
of m’ is the vertex of a convex boomerang in f(C'). We shall show that the
vertical distance at this point is at least one. The image of the point m’ can

obtain as follows:
1 m=2) m +m2—_r}1 -2
_%p mo — 1 o ! p 2p 2 ’

= (

The image of a line segment y = ax + 3 in T is

V= O

1 —
_lopay O
2a 200

(3.14) Y

Therefore, the vertical distance between line segment with equation ([BI4]) and
the vertex m” is

1—pa(m _1)_£_m1+p—pm2—2
2a ° 20 2
mg—aml—ﬁ+2a—1> 1—1—204—1_1
20 - 20 o

Now Theorem [ZH gives a contradiction. The case 4 in (B]) can be proved in the
same way. [

Remark 3.10. The matrices A in (B2) have determinant 1 so they have inverses
with integer entries. The 2 x 2 matrices with determinant +1 (called unimodular
matrices) form a linear group GL(2,Z). Bruckstein (1991) introduced such a
transformation defined by 2 x 2 matrices with determinant +1. These matrices
belong to GL(2,7Z) and so have inverses in this group. He wrote that the image of
all such transformations will provide chain codes of linearly separable dichotomies
if and only if the transformed line induces a linearly separable dichotomy. Using
this fact, he noted that all sequence transformations having this property yield
chain codes for straight lines if and only if the original chain code is a digitized
straight line. In the Khalimsky plane the matrices A have determinant £+2. Thus,
they do not have such properties.

In the next theorem, we shall present another transformation to show the
relation between DSLSk, and DSLSsg.

Theorem 3.11. We define a function g on a subset of the set {0, 1} of sequences
of zeros and ones and with values in the same set. For a chain code C, g(C) is
defined for dominant increasing or dominant constant sequences in the Khalimsky
plane. We define g(C) by replacing each pair of zeros by one zero. Then C' is
the chain code of an element of DSLSky, if and only if g(C) € DSLSs.
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Proof. We define a transformation which gives us the chain codes of g(C'). To
get the chain code of g(C'), we must replace 00 by 0, and 1 by 1. Thus, we define
a grid T" same as the proof of Theorem B8, where

1 1
e (o) v (1)

We use the matrix A = for the equation in (B). We can come back

— o=
\—/

R
Ol

from T into Z? by using the matrix A1 = <(2) _11) in (B3).

We shall prove the implication =. Let C' € DSLSky,. Suppose that g(C) ¢
DSLSg. Thus, we can find a vertex v such that the vertical distance between
this point and the line segment with equation Y = M X + N is at least one. The
image of this line in Z2 is

M 2N

vttt

(3.15) Y

Let v’ be the image of the point v in Z2. Thus,

G-

It is clear that v’ is a vertex of C. We shall show that the vertical distance
between the mixed point (2v; — vg + 1, vg)T and the line segment with equation
(B13) is at least one. This vertical distance is

Vg — M (21)1—UQ+1)— 2N =
2—-M 2—-M

2<U2—MU1—N)—M>2—M_1

2—M “2-M

This is a contradiction with Theorem EZG

We shall now prove the implication <. Let g(C) € DSLSg. If C & DS LSk,
then we can find a mixed point m such that the vertical distance is at least one
at this point. Suppose that the maximal vertical distance is attained between
the mixed point m and the line segment with equation y = ax + . We may
assume that ms > am; + 3+ 1. The proof for the case my < am; + (G — 1 is
similar. We consider the image of the point m’ = (m; — 1,my)T in the grid 7.
Let this image be m”. Thus

m//: % % m1—1 _ %(m1+m2—1)
0 1 mo mo '

The image of the line y = ax + 3 under T is:

2 I}

Y = X .
1+« Jr1+0z
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Therefore
20 My +m9e —1 I}

Clta 2 l+a
:mg—aml—ﬁ+a < 14+« _
1+« 1+«
Hence, we get a contradiction with Theorem O

ma
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Abstract

We determine the number of Khalimsky-continuous functions defined on
an interval and with values in an interval.

1. Introduction

In this paper we shall determine the number of continuous functions which are
defined on an interval of the digital line Z equipped with the Khalimsky topology
and with values in that line. The Khalimsky topology is a topology for which
the digital line is connected. We shall begin by recalling the definition and first
properties of the Khalimsky topology and then consider Khalimsky-continuous
functions. Then in section B we consider these functions when they have two
points in the codomain. In this section we see a new example of the classical
fibonacci sequence. In section B and Bl we study the Khalimsky-continuous
functions with three or four points in their codomain and as a consequence of
these parts we find some new sequences, the asymptotic behavior of which we
investigate. Finally, in the section bl we consider Khalimsky-continuous functions
with one fixed endpoint. In this section we get a sequence which has the same
recursion relation as the Pell numbers but with different initial values. We also
obtain a new example of the Delannoy numbers.

The Khalimsky topology

There are several different ways to introduce the Khalimsky topology on the
integers. We present the Khalimsky topology using a topological basis. For
every even integer m, the set {m — 1,m,m + 1} is open, and for every odd
integer n, the singleton set {n} is open. A basis is given by

{{2n+1},{2n —1,2n,2n+ 1};n € Z}.

It follows that even points are closed. A digital interval [a, b]z = [a,b] N Z with
the subspace topology is called a Khalimsky interval, and a homeomorphic image
of a Khalimsky interval into a topological space is called a Khalimsky arc. On
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the digital plane Z2, the Khalimsky topology is given by the product topology.
A point with both coordinates odd is open. If both coordinates are even, the
point is closed. These types of points are called pure. Points with one even and
one odd coordinate are neither open nor closed; these are called mized. Note
that a mixed point m = (my, ms) is connected only to its 4-neighbors,

(my +1,my) and (mq, my £ 1),
whereas a pure point p = (py, p2) is connected to all its 8-neighbors,

(p1£1,p2),(P1,p2 £ 1), (p1 +1,p2£1) and (py — 1, po £ 1).

More information on the Khalimsky plane and the Khalimsky topology can be
found in Kiselman (2004).

Khalimsky-continuous functions

When we equip Z with the Khalimsky topology, we may speak of continuous
functions Z — Z. It is easily proved that a continuous function f is Lipschitz
with constant 1. This is however not sufficient for continuity. It is not hard to
prove that f: Z — 7 is continuous if and only if (i) f is Lip-1 and (ii) for every
z, x Z f(x) (mod 2) implies f(x & 1) = f(x). For more information see Melin
(2005).

Also, we observe that the following functions are continuous:
(1) Z >z~ a € Z, where a is constant;
(2) Z >z +— £x + c € Z, where ¢ is an even constant;
(3) max(f,g) and min(f,g) if f and g are continuous.

Actually every continuous function on a bounded Khalimsky interval can be
obtained by a finite succession of the rules (1), (2), (3); Kiselman (2004).

2. Continuous functions with a two-point codomain

We shall first look at the functions which take their values in an interval consisting
of two points. It turns out that the number of such functions is given by the
Fibonacci sequence.

Theorem 2.1. Let a, be the number of Khalimsky-continuous functions
[0,n — 1]z — [0,1]z. Then a, = F,.2, where (F,)5° is the Fibonacci sequence,
defined by Fo =0, Fi =1, F,=F,_ 1+ F, 2, n > 2.

Proof. Let a!, = card({f: [0,n—1]z — [0,1]z; f(n—1) = i}) for i = 0, 1, so that

(2.1) an, = a’ + a}.
By the definition of the Khalimsky topology, we see that

0 _
Aop+1 = A2k, k>1,

(22 (g1 = Qg k=1
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Moreover,

1 _

(gj, = A2k—1, E>1,
0 _ .0

Aoy, = Qsj_1,s k>1.

Hence, using in turn (ZT)), (Z2) and (3)), we obtain

_ 0 1 _ 1 _
A2k4+1 = Aoy + Qop 11 = A2k + Qg = Aok + Q2k—1,

which is the Fibonacci relation. Similarly, by using 1), (Z3) and 2), we get

(2.3)

ok = Ay, + Ay, = A1 + Aop_1 = Aop_2 + Aop_1.
Now we need only observe that a; =2 = F3 and ay = 3 = F}; to finish. [

We notice that Theorem [ZT] leads us to a new example of the classical Fi-
bonacci sequence. We list the number a,, of Khalimsky-continuous functions for
n=1,...,14 in the next table.

n|1{2|3}4|5 6|7 8910 |11 |12 | 13 | 14
an | 213581321 (345589144 | 233 | 377 | 610 | 987

The asymptotic behavior of the number of continuous functions with
a two-point codomain

We consider two frequencies

0
a
Pl ==
n an’
and )
Qa
P! ="
n a,
By (1)) we have
(2.4) P+ Pl =1.

We shall determine these frequencies asymptotically. First, we recall the
interesting property of the Fibonacci sequence: the fraction F;i—:l tends to « as
n — oo and where a denotes the Golden Section (v/5 + 1). Therefore %
tends to o?. In the following theorem we consider the frequencies for odd and
even indices separately.

Theorem 2.2. Let a,, and a’, be as in Theorem 2l and define P! = a! /a, for
1=0,1. Then as k — 400 we have

1

0 1 po
P2k71_)E7P2k_)¥

and

1 1 pl 1
P2k_1—>?’P2kHa

where o = 1(v/5 +1).



30

Proof. By (Z3)) and 1),

11 0
Agp, = Qgp_q + Aoy,

Shiva Samieinia: Licentiate Thesis

therefore we obtain another relation between frequencies and the values of aqy

and ao,_1 as
(2.5) Py g, =

Then using (Z4) lead us to

1
sza% = Q2k—1-

Thus,
Qk— 1
P), = 2, 2 as k — +oo.
QAo (0%
By Theorem [ZT],
agr, — Poypaor = g1,
S0
Aop — Qok—
(2.6) py = 2k Tkl
2k
By using (1)), (Z3) and (Z2) we have
(2.7) Aok — G2k—1 = A2k—2,

thus by (Z8) and ([Z1) we have

a9 —
0 2k—2
P 2k

)

A2k
and so

1
ngﬁ?ask;é+oo.

As before, we can find

a
0 . 2k
P2k+1 - )
A2k+1
implying that
1
PQO,~C+1 — - as k — 4o0.
Also,
Qof—
1 W2k
P2k+1 - )
A2k+1

which implies that
1
1
P2k+1_> ? ask—>+oo.
OJ

1

n?

In the next table we can see the values of a¥, a
6,...,13.

1 0
Py _agk—1 + Py, _ag,_1.

a,, P’ and P! for n =
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n| 6 7 8 9 10 11 [ 12 | 13
R 13 13 34 34 89 | 89 | 233
al |8 8 21 21 55 55 | 144 | 144
a, | 13 21 34 55 89 | 144 | 233 | 377

PY 10.3846 | 0.6190 | 0.3824 | 0.6182 | 0.3820 | 06181 | 0.382 | 0.618
Pl10.6154 | 0.381 | 0.6176 | 0.382 | 0.618 | 0.382 | 0.618 | 0.382

3. Continuous functions with a three-point codomain

We sum up the results for functions with up to three values.

Theorem 3.1. Let b, be the number of Khalimsky-continuous functions
[0,n— 1]z — [0,2]z. Then by =3, by =5, and

o, = bo—1 + bor—o2 + bop—3 = 2bop_o + 3bop_3, k=2,

bog—1 = bag—2 + 2b9p_3, k> 2.

Proof. Let b, = card({f: [0,n — 1]z — [0,2]z; f(n — 1) = 4}) for i = 0,1,2.
Therefore it is clear that

(3.1)

(3.2) by, = b + by + 2.

From the properties of the Khalimsky topology we see that
bgk = bgkfh k=1,

(3.3) by = Voo + bgpy + 05y, k> 1

and

byp = U3 o+ oy o, k>2,
(34) by 1 = by, k> 2,
Va1 = D3po + by, k=2

We assume that n = 2k — 1 in equation (B2J) and then using in turn (B4 and
B3) we obtain the equalities

(3.5) bok—1 = bop_g + 2b3, 5 = bajp_o + 2boj_s.

Now we need to do the same for n = 2k in equation (B2) and then using in turn
B3) and ([B4) we obtain

(3.6) bk = bag—1 + by + 03y = bag—1 + bap—a + by _s.

Now if we use equation (B3) in ([BH) we can see the result for by, i.e.,

(3.7) bor = bogk—1 + bog—2 + bog_3.

The another result for by, will be obvious if we put equation (BI) into equation
B, i.e.,

bor = bak—1 + bap—2 + bag—3 = bop—o + 2bop—3 + ba—2 + ba—3 = 2bap_o + 3boy_3.
O
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The Jacobsthal sequence is defined by J, = J,_1 + 2J,_o with J; = 0
and Jy = 1 (the sequence number A001045 in Sloane’s On-line Encyclopedia
of Integer Sequences), and the Tribonacci sequence is defined by the formula
T, =Ty 1+ T2+ T,_3 with initial values 1,1,1 (sequence number A000213),
so by Theorem (BJl) we see that b, is a mixture between the Tribonacci and
Jacobsthal sequences.

We give below the sequence (b,) forn=1,...,12.

n|l1|23 |45 |6 7 8 9 10 11 12
by | 35|11 | 19|41 | 71| 153|265 | 571 | 989 | 2131 | 3691

The asymptotic behavior of the number of continuous functions with
a three-point codomain

We shall now determine how the number of continuous functions grows with the
number of points in the domain.

Theorem 3.2. Let b, be the number of Khalimsky-continuous functions
[0,n — 1]z — [0,2]z. Then there is a sequence (t,) tending to a positive limit
t= % + %\/5 ~ 0.788675 as k — +o0o and such that

k=2

k
bak—1 = tor—1 (24+V3)",
Proof. We define a sequence (t,,) by the following equations,

t2k; = b2k971’yika k > 27

3.9
(39) tor—1 = box 17", k=2

Thus, using ([B3) and BI]) we get

bor, = 2y Mop—o + 37y 10 o3, k=2,

3.10 _ _
(3.10) bok—1 = Oy Mop—o + 2y Mtops, k=2

With equation (BI0) we have the following equation for all 6,y > 0,
(311) tQk — tgkfl = (2"}/71 — ‘9’}/71)152]6,2 + (3’)/71971 — 2’}/71)152]6,3.

While this formula is true for all values of v and 0, it is of interest mainly when
the two coefficients in equation (BIT]) sum up to zero. We therefore define - and
6 so that 29y~1 — @yt +37719~1 — 2¢~1 = 0. This implies § = /3.

Next we consider the equation for top, 1 — tog,

(3.12)  topys — tox = Oy Mo + 29 Mop1 — tor = (077" — Dtog + 27 Mop_1.
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In the same way we consider the special case of equation ([BIZ) when the co-
efficients have zero sum, and therefore we get v = 2+ 6 = 2 + /3. By using
induction in equation (BIT)) we have,

23 k-1
(3.13) tog — tog—1 = (2 n \/§> (t2 — t1),

and for equation (BI2),
(3.14)

e (g2 = (5525) (1520)

Since ‘;;g < 1, equation (BI3) and (BId) lead us to the same limit ¢,

0 < t < +oo for the sequence (t,) as k tends to infinity.
To determine the limit ¢, we shall use matrices, inspired by the treatment in

Cull et al. (2005:16).
Formula (BJ) can be written in matrix form

X, = AX,,_; where X,, = bon and A = 23 )
b2n—1 1 2

bt

With initial condition X; = (2) we have X, = A"! (3

). The matrix A has

characteristic polynomial

chA(:c):det(QIx 2333) —(2—12) -3

and has distinct eigenvalues, \; = 2+ V3and \y =2— \/5, and this implies that
A is diagonalizable. With a simple computation, we can see that A = PDP~!,
where

(7). e (8 ) ()

Therefore

5 5)
_ n—1 n—1 1

= <(5ﬁ+9)<2+“§>"‘1+<w5 —9><2—¢§>"_1>

23 \ (54 3v3)(2+ v3)" 1 + (=5 + 3v3) (2 — V3" !
1 . .
313) b= ((6vB+9)2+ V3" + (53 - 9)(2 - V3" ).
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Inserting the values already found for 6 and  into (B3) we obtain

t2n -

=

(5v3+9)(2+V3) '+ (5v3-9) (;J_rg) 2+Vv3)'|,

proving that 9, tends to % + %\/5 ~ 0.7886751 and so t, converges to this
number. [

Proposition 3.3. Let b, be the number of Khalimsky-continuous functions
0,n — 1]z — [0,2]z, let b’ be the number of Khalimsky-continuous functions
[0,n — 1]z — [0, 2]z satisfying f(n —1) =i fori=0,1,2, and define P: = /b,
fori=0,1,2. As k tends to infinity,

2 _ po 11 2 _ po 1 1
sz—szﬁg—g\/ga P2k71_P2k71_>§\/§_§>

also
1

%,

Proof. Using the Khalimsky topology we have

Py, — P21k71_>2_\/§'

bgk = bgkfl’ k=2,
(3.16) by, = 263y + bypoys K22,
bgk = bgkfl’ k=2,

and
Doy = b9+ by k=2,
(3.17) b%kfl = b%kf% k=2,
Vopy = 0o+ by, k=2

Let .

P = b—" fori=0,1,2.
Also we can see easily that P? = P2, so by using [B2) we get
(3.18) 2P + P! = 1.

It is obvious that the frequencies for odd and even indices are different but
there is a relation between them. We shall study them separately. By (BI6),

{ PQOkak = P20k71b2k—17

(3.19) ) ) )

We solve the equation ([BI9) and obtain

bZk‘ - b?k—l ka - bZk‘—l
P ="——""and P)_, = ——"—.
2k 2b2k 2k—1 2b2k;—1
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Therefore by Theorem (B2)) we see that, as k — oo,

0—1
B -t =

20 V3

1 1
2 6
and

0—1

1 1
Piy =5 =5V8-5

Also by using (BI8) and a simple calculation,

75 and Ph_, —2—/3.

1
Py, —

O

In the following table we can see some values of P! for i = 0,1, 2.

n 6 7 8 9 10 11 12
2 15 26 56 209 209 780 780
bl 41 41 153 153 571 571 2131
b2 15 26 56 209 209 780 780
by 71 153 265 571 989 2131 3691
PY 1 0.2113 | 0.36601 | 0.21132 | 0.36602 | 0.21132 | 0.36602 | 0.21132
P} 10.57746 | 0.26797 | 0.57736 | 0.26795 | 0.57735 | 0.26795 | 0.57735
P21 0.2113 | 0.36601 | 0.21132 | 0.36602 | 0.21132 | 0.36602 | 0.21132

4. Continuous functions with a four-point codomain

Theorem 4.1. Let ¢, be the number of Khalimsky-continuous functions
f:]0,n—1]z — [0, 3]z and let ¢, be the number of Khalimsky-continuous func-
tions f:[0,n — 1]z — [0,3]z such that f(n — 1) = ¢ for i = 0,1,2,3. Then

cd=ci=1,c="7,c3=15 and

(4.1) Cn=Cn1+20h g9+ s+ 5
Formula (1)) together with formulas ([3]) and () below determine the c,,.

Proof. We have by definition

(4.2)

cn:cg+ci+ci+ci.
Using properties of the Khalimsky topology, we see that

k>l
C%k-{—l = C%kv k=1,
51 2 3

Copyp1 = Cop T Cop + o, k21,
E>1,

0 _ 0 1
Cokt1 = Cop T Cap;
(4.3)

Copy1 = Cops
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and
O = Cp_1s k>,
1 _ 0 1 2
(4.4) Cop = Copy + Copy T 1y K21,
' ok = Co k>1
Cor = Cop—1> 2 1,
3 = Cp1 T Gt k=1
If we insert (E3)) into (), we get
_ 1 3
(45) Cok+1 = Cok + 262k + Cop-

By using ([E4l), we have
(4.6) 20y + Cop = 2Ca-1 + Cyp_y — Copy-
But the equations in ({3) give us

2 _ 1 2 3
Cop—1 = Cop_g Tt Cop_o T+ Cop_o,

(4.7)

3 _ 3
Cop—1 = Cop_o-

Now, we need just to consider the equations (X)), () and () to have the
result for odd n, n = 2k + 1. Next we proceed in the same way for n = 2k.
Using properites of the Khalimsky topology we see that if we add equation (B2
to equation (EZ), we see that

(4.8) Cok = Cop_1+ 2651 + Cop_1-

Therefore, by ([E3) we have

2 o 1 0
(4.9) 205, 1+ Copq = 2092 + Cgp_g — Cop_o.

Also, (EA) gives us

1 _ 0 1 2
Cop—o = Cop_g + Cop_3 + Cyp_3,

(4.10)

0 _ 0
Cop—o = Cop_3-

We insert (EI0) and (L9) into (X)) to get the result for even n. O

We present in the following table the sequence with four values in the co-
domain and n < 10 points in the domain.

cn |47 15]31]65]136 | 285 | 597 | 1251 | 2621
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The asymptotic behavior of the number of continuous functions with
a four-point codomain

Theorem 4.2. Let ¢! be the number of Khalimsky-continuous functions
f:10,n—1]z — [0,3]z such that f(n —1) =i for i = 0,1,2,3, and let ¢, be
their sum. Then

c,ll + ci 02 + Ci

as well as
1 2 0 3
Cna1 + Cn—1 Cn—1 + Cn—1 Cn—1

g\/7«+»x/5+\/38«+»14\/5'a:2.095293985.

Proof. Let us fix a positive number v (to be determined later) and define sequence
t! for 1 =0,...,3 by the following equation

Cn

tend to

(4.11) ch o=t "
Let
(4.12) tn =10 +tL + 12+t

Then ([3) and @II) yield

t%kﬂ = 771(%3/& + t31),
t =5

4.15 2k+1 3 2k>

) B =7 (e + B+ 850,
Lok =7 Loy

By ([E4) and (EII) we get

to, =7 (top_1 g1 H151),

tgk = 77175315717 \
o, =7 (tge_y + 1o 1)-

(4.14)

We now define a sequence (X,,) as follows.

tO
)
(4.15) X, = tg ,
/3
and introduce the two matrices
1 00 0 11 00
1 110 01 00
(4.16) Ar=1o o 1 0] A1=lg 111
0 011 00 01
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By using ({13), (ET4), (EETH) and ([ETI6) we can see easily that
(4.17) X, =~v"14,X,_1 for n>2.

Let B be equal to Asyy1As, which is independent of k. Then

_ = O O

1
1
3
1

S = =N
O~ =

It is symmetric, so there exist a diagonal matrix D whose diagonal entries are the
eigenvalues of B and a matrix P such that each column of P is an eigenvector of
B and B = PDP?T. The columns of P form an orthogonal set, so PPT = PTP.
We shall now determine the eigenvalues and eigenvectors of the matrix B. It has
the following characteristic function.

(4.18) det(B — zl) = 2* — 72* + 132 — 7o + 1.

The symmetry of the coefficients in this equation implies that if X\ is eigenvalue
then also % is an eigenvalue. Thus we can find the four eigenvalues of equation
(EI]) by putting o = )\0+/\—10 and 3 = )\1+/\i1. Then we get o + 5 = 7 and
aff=11,s0 a = 7+T*/5 and 3 = 7_7*/5 and therefore

Ao = 7+\/_—\/438+14\/5 and g =1/ = T+V5+1/38+145

4 9

A = 7+\/_—\/438—14\/5 and A\, — 1/)\1 _ 7+v5+4/38—14/5

1 .

(4.19)

Let P = (PO P B Pg), where P; is an eigenvector with respect to the eigen-
value \; for i = 0,...,3. Therefore BP; = \; P, Now we shall solve the following
equation system.

20 +y+ 2z = Az,
r+y+z=2\y,
r+y+3z+1t= Az,
z+t= At

(4.20)

where A is equal to one of the eigenvalues \;, and where P, = (x Yy oz t)T for
1=0,...,3. Therefore

A—1 AN —32+1 N —32+1
T, zZ=——""7, = .

A AN —1)

We choose for convenience x = A(A — 1); thus

y=MA—-12 2z=N=3Ax+1)(A—-1), t=X-3\+1
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Let from now on A = A3 and (z,y, 2,t)T be the eigenvectors related to \3. Since
we need to consider B¥ as k — oo, we need not consider the powers of \; for
1 =0,1,2. Hence, the powers of B that we need to consider are

Nex? Nexy Nexz Next
Neay  Ney? Neyz Nyt
Nexz Neyz Aez2 0 Nt
Neat  Neyt Nzt NP2

BF =

Equation (ET7) and the previous calculation lead us to

2 + wyth + 212 + wtt}
zytd + y*tl + 2yt? + tytd
r2td + yzt) + 223 + et
wtt) + ytts + 2t + 23

(4.21) Xop1 = (v2N)F?

Let a = xtd + ytt + 2t + ¢t3. Thus by @I4) and E2])

thy =7 (191 + o1+ 13 ) = (7 PNE ey + 2)a
to = (V2N 20
We now define v = /), the positive square root of the largest eigenvalue, and

find that (y72X)*=3 tends to 1 as k — +o00. We claim that v !(z +y+2) = z or
equivalently that

)\—1+)\2—3)\+1 _)\2—3)\+1
A A A '

O=7y'(z+y+2)—2z=x {'y_l (1+
We need to show that

YA =DA = (A2 =31 +1)=0.
Since A is the largest root of equation (EZIF]), we obtain

0 =M—=TN+1302 -7 +1
(4.22) =M 6N H 1IN —6A+1— A4+ 2)%2 — )
= (A2 =3A+ 17 =AM —1).

The equations in ([E22) imply

A2 (XN —1)
(A2 —3x+1)*

Therefore

TN -
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This proves our claim. Hence the sequences t}, and 2, | have the same formula,
and therefore they tend to the same limit za as & — oo. Similarly, we can prove
the corresponding result for some other sequences as follows:

th, =13, | — za as k — oo,

4.23

(423) ta, =ty | — yaas k — oo,
and

(4.24) t3, =19, | — za as k — oo,

5, =13, |, — ta as k — oo.

If we sum the two limits in (EZ3)) we obtain

(4.25) (t1 +12) tends to (y + 2)a as n — oo.
Analogously, [Z24)) shows that

(4.26) (t% +¢3) tends to (v +t)a as n — oo.

We now easily conclude that the sum of these two sequences, i.e., (¢,), converges
to (z +y + 2z + t)a. Since the sequence (t! +t2) converges, we see easily that

1 2
¢, +c

- 5 — 7Y asSn — o0
1 2 )
Cn71<kcnfl

and also the convergence of the sequence (2 + ¢3) leads us to

0 3
c, t¢,

- . —7Yyasn — —+00.
0 3
Cpn—1 + Cn—1

We have the same result for ¢,/c,—1 because as we found, the sequence (t,)
converges to some real number, so

Cn

— 7y as n — +00.
Cn—1

O

We shall now investigate frequencies in the case of a four-point codomain.

Proposition 4.3. Let ¢, be the number of Khalimsky-continuous functions
f:10,n —1]z — [0,3]z and let ¢t be the number of Khalimsky-continuous func-
tions f: [0,n—1]z — [0, 3]z such that f(n—1) =1 fori=0,1,2,3. Ifp!, = /c,
fori=20,1,2,3, then

Py and Py, —
P} and P, | —
Py, and Py —

0 3
Py and Py, | —

~ 0.258582;
~ 0.199679;
~ 0.418335;
~ 0.123402.

T
r4+y+z+t
Yy
r4+y+z+t
t

r4+y+z+t
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as k — oo, where x,y,z,t are the numbers which were defined in the proof of
Theorem [[.3 As a consequence, if we add these numbers two and two, the
different parities play no role, and we obtain
y+z
r+y+z+t

T+t
r4+y+z+t

~ 0.618014
~ (0.381984

P!+ P? —
as n tends to infinity.

Proof. By the proof of Theorem we know that the sequence (t,) convergence
to number (x +y + z + t)a. This fact and [23)) imply that

2 1 y
Py and Py ) —

r+y+z+1
1 2
Py and P;, | —

~ 0.199679 as k — o0;

(4.29) ~ 0.418335 as k — oo,

z
r+y+z+1
Analogously, by using ([EZ4)) we conclude that

3 0
Py and Py | —

0 3
Py, and By ) —

~ 0.258582 as k — oo:

:eryinrt
L ~(.123402 as k — oo.

(4.30)
r+y+z+1

It is obvious that if we sum up the limits in ([E29) we obtain

y+z

plyp,_YTE
Thy+ztt

~ 0.618014 as n — oo,

similarly if we sum the limits in (E30) we have

PO+ s L 0381984 as n — oo,
Tyttt
O
In the next table we can see the values of P! for i = 0,...,3 and the sums of
some of the frequencies.

n 6 7 8 9 10
ol 17 74 74 324 324
ct 57 57 250 250 1097
2 27 119 119 523 523
a3 35 35 154 154 677
Cn 136 285 597 1251 2621
P 0.125 0.259649 | 0.123953 | 0.258992 | 0.123616
P! 0.419117 0.2 0.418760 | 0.199840 | 0.418542
P? 0.1985294 | 0.4175439 | 0.19933 | 0.4180655 | 0.1995422
pP3 0.2573529 | 0.122807 | 0.2579564 | 0.1231015 | 0.2582984

P+ P31 0.3823529 | 0.382456 | 0.3819094 | 0.3820935 | 0.3819144

P4+ P? 1 0.6176464 | 0.6175439 | 0.61809 | 0.6179055 | 0.6180842
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5. Continuous functions with one fixed endpoint

Theorem 5.1. Let y, be the number of Khalimsky-continuous functions
f:[0,n— 1]z — Z such that f(0) =0. Then

(5.1) Yn = 2Un_1+ Yn_o forn = 3.

Proof. Let y be the number of Khalimsky-continuous function f: [0,n—1]z — Z

such that f(0) = 0 and f(n — 1) = i. We have y, = Z;:}(nq) y., but with
Khalimsky topology we can conclude that we have symmetry for yi, that is,

yl =yt fori=1,...,n— 1. Therefore we can consider another formulation for
Yns 1.€.,

n—1
(5.2) Un =Y +2> yh

i=1

Moreover, using properties of the Khalimsky topology, we see that

Yot b by, i=2t—Lfort=1... k-1,

A IR i=2tfort=1,... k-1,
(5-3) Yo, = yglizj’ i=2k—1,
Yor—1» i=0,
and
iyt st i=2tfort =1, k-1,
i Yoo i=2t—1fort=1,... k,
(5-4) Yorr1 = ?/é%_la i = 2k,
Yor, + 2Yay,, 1 =0.

We shall show the formula for n = 2k and for n = 2k + 1 we can have the result
in the same way,

2k—1 k—1 k—1
(55) =y 2> vh =y F 20 2D wa+2> v
=1 t=1 t=1

Equation (&3) comes from (E2) and the simple separation of odd and even
indices. Plugging equations (3] into (BH) gives us

k—1 k—1
Yo = Yo 1 F 2051 H2) s 2> (U s k)
t=1 t=1

and then with a simple calculation,
k—1
Yok = Yot T 20ab 1 T2 skt
(5.6) =1

k—1 k—1 k—1
2 Ty 2D w2 s
t=1 t=1 t=1
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We have
- k-1 k-2

(5.7) 2 Z?/gitgj = 21 + 22?/32_21 = 2y + 2 Zy% 1-
t=1 t=2 t=1

Therefore, by putting (E1) in (B6) and using (B2);
k—2 -

(5.8) Yok = 2Yak—1 + 2Yop 1 + Yoy + 2 Z Yor—1 — 2 Z Yot
t=1 —

Pluggin (B4)) into (B8] gives us

Yok = 2Yak—1 + QZJSZ:S) + Yoo + 2U3 o

k—2 k-2 k-1
+2) yiTh + 2Zy2k 2 T2 Uty —2) yhh
t=1 t=1 t=1

By a simple calculation we have the two followings equations,

(5.9)

(5.10) 2y5n” §’+2Zy§}i 5= QZySZ 5=0,
and

(5.11) 2oy, 2+22 2t+1 QZygl’; 12

Finally, by putting (EE10) and (EI1)) into (E9) and by using (E2), we obtain the
desired formula. [

The sequence in Theorem Bl is a well-known sequence, and appears as se-
quence number A078057 in Sloane’s Encyclopedia. It is given by the explicit

formula 1, = % [(1 + \/ﬁ)n + (1 — \/ﬁ)n} Actually ¥, has the same recursion

formula as the Pell numbers P,, but with different initial values. The sequence
(P,) is defined as
0, n =0,
P,=< 1, n=1,
2P, 1+ P, 5, n=>2.

The reader can find more information about this sequence in item (A000129) of
the encyclopedia. Now we shall study the asymptotic behavior of this sequence
as we did for earlier sequences. In the next theorem we shall show that y,, tends
to the Silver Ratio 1 + v/2 as n tends to infinity.

Theorem 5.2. Let y, be the number of Khalimsky-continuous functions
f:10,n — 1]z — Z such that f(0) = 0. Then ypi1/yn — 1+ V2 as n — oo.
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Proof. We define the sequence (t,) by the equation t, = y,7™ for n > 1. By

using (EJ]) we have
Vot — 29t 1 — ty_o =0,

thus
2 1
(5.12) tn —tne1 = (= = Dtp_y + —tn_o.
v Y2

We are interested in having the sum of the two coefficients in (I2) to be zero.
Hence, we conclude that « is the positive solution of the equation > —2v—1 = 0.
Thus, v = 14+ V2.

[ty = tna| =7 2 ftn1 — taa| = 72ty — 1.
The sequence (t,) is a Cauchy sequence and hence it converges. Thus

n t'I’L
In_ _ y—1++V2asn — oco.

Yn—1 tnfl

0

The following table shows the values of 3’ and v, for 1 < n < 10.
1
1

9
8 1
7 1 1 17
6 1 1 15 15
Y 1 1 13 13 113
4 1111 ] 11 85 85
3 11119 9 61 61 377
2 11 7| 7] 41 | 41 | 231 | 231
1 115 |5 |25] 25 | 129 129 | 681
01 313 |13 13| 63 | 63 | 321 | 321
-1 105 |5 |25] 25 | 129 129 | 681
-2 11| 7| 7| 41| 41 | 231 | 231
-3 11119 9 61 61 377
—4 1111 ] 11 85 85
-5 1 1 13 13 113
—6 1 1 15 15
-7 1 1 17
-8 1 1
-9 1
Yo | 1| 371741 |99 | 239|577 | 1393 | 3363

There is a nice relation between the Delannoy numbers and the number of
Khalimsky-continuous functions with a fixed point f(0) = 0. The Delannoy
numbers were introduced by Henri Delannoy (1895). The Delannoy array d; ; is

djp=dj1 5+ djp—1+dj_1 -1,
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with conditions dpg = 1 and d;;, = 0 for j < 0 or k& < 0. The numbers
(dm-)go =1,3,13,63,321, 1683, 8989, 48639, . .. (A001850) are known as the cen-
tral Delannoy numbers. We give the Delannoy numbers in the following table:

61| 13]85| 377 | 1289 | 3653 | 8989
51|11 ]61]|231 ] 681 | 1683 | 3653
41119 |[41]129] 321 | 681 | 1289
311|725 63 | 129 | 231 | 377
2115 13| 25| 41 61 85
1113 |5 7 9 11 13
011171 1 1 1 1
0] 1] 2 3 4 5 6

There are connections between many matematical problems and the Delannoy
numbers. Sulanke (2003) listed 29 different contexts where the central Delannoy
numbers appear. A classical example is the number of lattice paths from (0, 0)
to (n,n) using the steps (0,1), (1,0), and (1,1). From this path model one can
obtain a combinatorial proof that, for n > 0,

=3 (1) ("T1),

In the next theorem we can see the 30th example of Delannoy numbers.

Theorem 5.3. Let y’, be the number of Khalimsky-continuous functions f: [0,n—
1]z +— Z such that f(0) =0 and f(n—1) =i. Theny), =d,, forr = 3(n—1—1)
and s = 1(n — 1 44) wheren — 1 +1i € 2Z.

Proof. We shall use induction to prove the result. It is easy to see that y) =1 =
doo, ya =1 =doy1, y;' =1 =dy and y) = 3 = dy ;. Suppose that the formula
is true for ¢t < 2k. We shall show that the result is true for t = 2k. The proof for
t = 2k+1 can be done in the same way. We consider ¢ such that 2k — 141 € 2Z;
hence i is odd number. For an even number ¢ the proof is simple because by

B3), vi, = vh, , and so it is true by induction. By (B&3)

(5.13) Yok = Yorir T Yoo + Yot
By the statement we have
(514) y;;il + y;k72 + ZJ;J/QL = dr,sfl + drfl,sfl + drfl,m
where
2k —1—1 2k — 1+
(5.15) A Ty and it B s

2 2
Thus by (13), (EI4) and (I3, we get the result. O
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