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Abstract

In this paper we partially settle our conjecture from [1] on the roots
of eigenpolynomials for degenerate exactly-solvable operators. Namely,
for any such operator we establish a lower bound (which supports our
conjecture) for the largest modulus of all roots of its unique and monic
eigenpolynomial p, as the degree n tends to infinity. The main theorem
below thus extends earlier results obtained in [1] for a restrictive class of
operators.

1 Introduction

We are interested in roots of eigenpolynomials satisfying certain linear differen-
tial equations. Namely, consider an operator

k
T=> Q;D
j=1

where D = d/dz and the @); are complex polynomials in one variable satisfying
the condition deg@; < j, with equality for at least one j, and in particular
deg Qr < k for the leading term. Such operators are referred to as degenerate
ezactly-solvable operators', see [1]. We are interested in eigenpolynomials of 7T,
that is polynomials satisfying

T(pn) = Anpn (1)

for some value of the spectral parameter A,, where n is a positive integer and
degp, = n. The importance of studying eigenpolynomials for these operators

ICorrespondingly, operators for which degQ) = k are called non-degenerate ezactly-
solvable operators. We have treated roots of eigenpolynomials for these operators in [2].



is among other things motivated by numerous examples coming from classical
orthogonal polynomials, such as the Laguerre and Hermite polynomials, which
appear as solutions to (1) for certain choices on the polynomials @); when k = 2.
Note however that for the operators considered here the sequence of eigenpoly-
nomials {p,} is in general not an orthogonal system.

Let us briefly recall our previous results:

A. In [2] we considered eigenpolynomials of non-degenerate exactly-solvable op-
erators, that is operators of the above type but with the condition degQr = k
for the leading term. We proved that when the degree n of the unique and
monic eigenpolynomial p, tends to infinity, the roots of p, stay in a compact
set in C and are distributed according to a certain probability measure which
is supported by a tree and which depends only on the leading polynomial Q.

B. In [1] we studied eigenpolynomials of degenerate exactly-solvable operators
(deg Qr < k). We proved that there exists a unique and monic eigenpolynomial
pp for all sufficiently large values on the degree n, and that the largest mod-
ulus of the roots of p, tends to infinity when n — co. We also presented an
explicit conjecture and partial results on the growth of the largest root. Namely,

Conjecture (from [1]). Let T = E;C:l Q;D7 be a degenerate exactly-solvable
operator of order k and denote by jo the largest j for which deg@; = j. Let
rn, = max{|a| : pp(a) = 0}, where p, is the unique and monic nth degree
eigenpolynomial of T. Then

Tn

lim — = Cop,
n—oo N

where cg > 0 4s a positive constant and

J—Jo
d:= max — .
j€Lio+1,k] (.7 — deg Qj)

Extensive computer experiments listed in [1] confirm the existence of such a
constant co. Now consider the scaled eigenpolynomial q,(z) = pn(n?z). We
construct the probability measure u, by placing a point mass of size 1/n
at each zero of ¢,. Numerical evidence indicates that for each degenerate
exactly-solvable operator T, the sequence {u,} converges weakly to a proba-
bility measure pr which is (compactly) supported by a tree. In [1] we deduced
the algebraic equation satisfied by the Cauchy transform of p7.2 Namely, let

T = Ele Qj(2)Di = Yk_ (0% ¢ .2)) Di and denote by jo the largest j

Jj=1
for which deg ; = j. Assuming wlog that ();, is monic, i.e. gj, j, =1, we have

2o (2) + Z j,deg @; 2989 CI(2) = 1,
JEA

2Tt remains to prove the existence of ur and to describe its support explicitly.



where C(z) = [ d’;f(f) is the Cauchy transform of pr and A= {5 : (j —jo)/(j —

deg ;) = d}, where d is defined in the conjecture. Below we present some

typical pictures of the roots of the scaled eigenpolynomial g,(z) = p,(nz).

Fig.1: Fig.2: Fig.3:
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Fig.1: Ty = zD + 2D? + 2D? + zD* + zD>.
Fig.2: Ty = 2°D? + D".
Fig.8: T3 = 23D3 + 2°D* + 2D5.

In this paper we extend the results from [1] by establishing a lower bound for
ry, for all degenerate exactly-solvable operators and which supports the above
conjecture.® This is our main result:

Main Theorem. Let T = 2?21 Qij be a degenerate exactly-solvable op-
erator and denote by jo the largest j for which deg Q; = j. Let p, be the unique
and monic nth degree eigenpolynomial of T and r, = max{|a| : p,(a) = 0}.
Then there ezists a positive constant ¢ > 0 such that

llm _d > C,
n—oo n
where o
J —Jo
d:= max (————).
j€lo+1,k]  J — deg Qj)
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2 Proofs

Lemma 1. For any monic polynomial p(z) of degree n > 2 for which all the
zeros are contained in a disc of radius A > 1, there exists an integer n(j) and

31t is still an open problem to prove the upper bound.



an absolute constant C; depending only on j, such that for every j > 1 and
every n > n(j) we have

<G 45 (2)

1 [PV
C; Al ] p(2)

2A

where p\9)(2) denotes the jth derivative of p(z), and where we have used the
mazimum norm ||p(z)||2a = max, ;=4 |p(2)|.

Remark. The right-hand side of the above inequality actually holds for all
n > 2, whereas the left-hand side holds for all n > n(j).

Proof. To obtain the inequality on the right-hand side we use the notation
p(z) = [[i;(z — @;) where by assumption |a;| < A for every complex root
of p(z). Then p((z) is the sum of n(n — 1)---(n — j + 1) terms, each be-
ing the product of (n — j) factors (z — a;).* Thus p{)(2)/p(2) is the sum of
nn—1)---(n—j+1) terms, each equal to 1 divided by a product consisting of
n—(n—j)=jfactors (z — ;). If |[2| =2A we get [z —a;| > A = |z,'j—a\ <4,
and thus _

nn—1)---(n—j+1) n?

||2AS AJ SCJ'E-

Here we can choose C; = 1 for all j, but we refrain from doing this since we
will need C; large enough to obtain the constant 1/C; in the left-hand side in-
equality. To prove the left-hand side inequality we will need inequalities (i)-(iv)
below, where we need (i) to prove (ii), and we need (ii) and (iii) to prove (iv),
from which the left-hand side inequality of this lemma, follows.

! P
p

For every j > 1 we have

. (4) . i
@ L) |pa < A

For every 7 > 1 there exists a positive constant C} depending only on j, such that

.. (3) Y] i—1

@ |5 -2 <o
2A

e /

@) 5[4 > 7

For every j > 1 there exists a positive constant C} and some integer n(j)
such that for all n > n(j) we have

@) |22 n

THQA ZC;I'H_j"

n

4 Differentiating p(z) = ]} (z — o) once yields (7
of (n —1) factors (z — a; ), differentiating once again we obtain n(";l) = n(n—1) terms, each
being the product of (n — 2) factors (z — ), etc.

) = n terms each term being a product



To prove (i), let p(z) = [, (z — a;), where |a;| < A for each complex root
a; of p(z). Then again p\¥)(2)/p(2) is the sum of n(n — 1) ---(n — j + 1) terms
and each term equals 1 divided by a product consisting of j factors (z — ;).
Differentiating each such term we obtain a sum of j terms each being on the
form (—1) divided by a product consisting of (j + 1) factors (z — a;).> Thus
%(%) is a sum consisting of j-n(n —1)---(n — j + 1) terms, each on the
form (—1) divided by (j + 1) factors (z — a;). Using =57 < 7 for [2] = 24
since |a;| < A for all i € [1,n], we thus get

G R UE |\ EUEY RV S,
||dz 2(2) Mlpa < AL S0 g
To prove (ii) we use (i) and induction over j. The case j = 1 is trivial
’ 7\1
since 2. — ((’;)1) =0. If weput j = 1in (12 we get ||d%(%)||2A < %, But
! 2
d%(%) == - (’;%, and thus ||”T - (I;%H < 2, so (ii) holds for j = 2.

We now proceed by induction. Assume that (ii) holds for some j = p > 2, i.e.
||P(P) (P)P <Cl np 1

|| 9A . Also note that with j = p in (i) we have

and also ||%||2 4 < % (from the right-hand side inequality of this lemma). Thus
we have

‘ p(p+1) (p/)p+1

PP ) 4 p® P
- P2 ||2A:||%T||2A—p'm’

Hp(PJrl) B p® . p p® .y B (p')P+!

P PPl P P PP 4
Py ‘ g’(zﬁ _ (p’)”>
P llea 2\ p P Jla
n _, nP!
s P Ap+1 1% o
. , np . , np
= (p+0p)‘W— P i

To prove (iii) observe that I;)((z)) =>r, ﬁ =>

n 1
zlzl

By assumption
1

|a;| < A for all complex roots a; of p(z), so for |z| =

a| < A=
for all i € [1,n]. Writing w; = _la, we obtain
1 1o =] g
w; — 1| = — — Z | = Z < —|w;
|Z | 1— & 1 — & |1_& —2| l|’
z z z

DT (s —as

5With D = d/dz consider for example D ——1 = ZLDIL G2 which is a sum

[T (z—as) [T} (z—a;)?
of j terms, each being on the form (—1) divided by a product consisting of 25 —(j—1) = (j+1)
factors (z — ;).



which implies

1 2 A | 2n
= i) 2 3 ' 1, - > —.
Re(l_%> Re(w)_3 Vie| Mz}Re(;l—%) 3
Thus
‘P'(z) _ P _ 2":
p(2) [l24 maa | p(2) | zimaa |z| -
1 1
> 94| Xi=,, > 55 (“1 )
>
= 34

> g’%, and this

To prove (iv) we note that from (iii) we obtain ||(‘%)j||2 4>

together with (ii) yields

5., - H( )5 -G LG, |5 (&)
p p p 24
/ n/~! _ n (1 1"
2 3JAJ AT _E(ﬁ_ﬁ = 'AJ
where C7' is a positive constant such that C} < (35 — —) for all n > n(j).

The left-hand side inequality in this lemma now follows from (iv) if we choose
the constant C; on right-hand side inequality so large that CLJ <Cy. O

To prove Main Theorem we will need the following lemma, which follows from
Lemma 1:

Lemma 2. Let 0 < s < 1 and d > 0 be real numbers. Let p(z) be any
monic polynomial of degree n > 2 such that all its zeros are contained in a disc
of radius A = s-n?, and let ;(2) be arbitrary polynomials. Then there exists

some positive integer no and positive constants K; such that
gdeg Q; p)

sdeg Q;
<|Qj(z) - —

L daes -+ ST
Kj 87

<K;- nd(deg Q;—i)+j

J
2snd s

p

for every j > 1 and all n > max(ng,n(j)), where n(j) is as in Lemma 1.

Proof. Let Q;(z) = Y0%8% ¢ ;1. Then for |2| = 24 >> 1 we have

. _ 1
(Q(2)]24 = 47,005 0,205 @ A5 (1 * 0(;))'



Since A = s-n? there exists some integer ng such that n > ng = A > A4y >> 1,
and thus by Lemma 1 there exists a positive constant K; such that the following
inequality holds for all n > max(n(j),ng) and all j > 1:

_._,.AdegQ;<H () —
W <)%

< K- o - ARG,

2A

Inserting A = s - n? in this inequality we obtain

; . :
L degqddes@; o Q.(z).fﬂ M deg @ ddeg@;
K; sindi = D |loggna — ° sind
=4

o degQ G)  degQ;
1 ddeg@—j)+s  STE < 11Q;(2) - Y < K -ntdesQi—iti . 5T
Kj s’ P ll2sna s’
for every j > 1 and all n > max(ng,n(j)). O

Proof of Main Theorem. Let d = maxjc[j,41,4 (T_%Jgo@) where jo is
the largest j for which deg(); = j in the degenerate exactly-solvable opera-
tor T = 2521 Q; D7, where Q;(2) = Y08 ¢; ;2. Let pn(2) be the nth degree
unique and monic eigenpolynomial of T' and denote by A,, the corresponding
eigenvalue. Then the eigenvalue equation can be written

k (7
(. Pn (2) _

where A\, = 2;0:1 IR (n%']), We will now use the result in Lemma 2 to esti-
mate each term in (3).

* Denote by jn, the largest j for which d is attained. Then d = (jn, —
Jo)/ (jm—deg Qj,,) = d(deg Qj,,—jm)+jm = jo, and jp,—deg Qj,, = (jm—Jo)/d.
By Lemma 2 we have:

1
K;

plim)
p

Note that the exponent of s is positive since j,,, > jo and d > 0. In what follows
we will only need the left-hand side of the above inequality.

; 1
S K-] ’ ’,’LJO ’ im—ijo ° (4)

2snd s d

. 1
i L < HQjm )
s 4

* Consider the remaining (if there are any) jo < j < j, for which d is
attained. For such j we have (using the right-hand side inequality of Lemma
2):

K .pJo 1 Jo
g . —-Jign .

i—djo
d

; 1
< Kj;n’ - -st/d ()

jm —ijo
d

)
p

IA

HQ]'(Z)

im—ig
d

»

2snd




where we have used that (j,, —j) > 1 and s < 1 = slim—9)/d < g1/d,

* Consider all jo < j < k for which d is not attained. Then (j —deg@;) >0
and (j — jo)/(j —degQ;) < d = d(deg@Q; — j) +j < jo and we can write
d(deg Q; — j) + j < jo — 0 where § > 0. Then we have:

deg Q; deg Q;
s egQJ S KJ - njo—é - s eg'Qg
sJ

(9
H@-(z) Rt

IN

K - nd(deg@i—i)+j . :
j 5

2snd

1
S Kj-nJO 6‘8_10’ (6)

where the last inequality follows since deg@; > 0 = s9¢8Qi < 50 = 1 and
j<k=s>sksince0<s<l1.

* For j = jo by definition deg Q;, = jo and thus:
lo

* Now consider all 1 < j < jo — 1. Since n > ng = A = sn >> 1 we get
(sn?)7—4e8 @i > 1 and thus:

deg Q;
. ; ; S Y .
S K]o . nd(deg QJ() _JO)+J0 . Sjo — KJO . nJO‘ (7)

Jo (z)

2snd

4 tog 0,
HQJ.(Z) Nyl < K;-ntes@iti ST g i gy (des @)
P llasna B 87
. 1 . .
= K;-nl- <Kj-nd <Kj-nPol. o (8)

(snd)j_deg QJ'

* Finally we estimate the eigenvalue \,, = Zfozl 4 #'J),, which grows as
ndo for large n, since there exists an integer nj, and some positive constant K J’-O
such that for all n > n;, we obtain:

J0 ! ! . — o)
n! n! g | (n—jo)!
Al < |q',-|-—.=|q-,-|-—.[1+ e ]
n ]:Zl J»J (n — ])' Jo,Jjo (n — .70)' 1S540 Qjo.jo (n — ])‘
< Kj, -n. 9)

Finally we rewrite the eigenvalue equation (3) as follows:

(3m) (4)
C (2 IL(Z) — (2 Pr (z)
Un@) gy =Mt 2 BT

J#jm



Applying inequalities (5)-(9) to this we obtain

(jm) ()
pim(2) pr’ (%)
o 28| < e B [
pﬂ(z) 2snd v pn(z) 2snd
J#Im
< Kjno + Kjn + Z Knfo~!
1<j<jo
pjo—3 g1/
+ Z VK P Z VK in® — =
jo<i<h: j0<i<im s 4
(Fmass @y <¢ (=aega; =¢
, pjo—3 1/d
< Kt K K (10)

for all n > max(ng, n(j),nj,), where K is some positive constant and 0 < s < 1.
For the term on the left-hand side of the rewritten eigenvalue equation above
we obtain using (4) the following estimation:

1 1 1 . 1 (im)
Uy e S—'”’("ﬁSHQjm'w (11)
K st T K, sTTE Pn(2) |logna

for some constant K > K;,, which also satisfies (10). Now combining (10) and
(11) we get

ndo—9 ) 1/d
+ K -n°

jm—ijo °
sk i3

1 .
_.nJO_

K Sjmd—jo SK'nJO-i_K'

Dividing this inequality by n’® and multiplying by K we have

1/d
sl gK2+K2-%-Slk+K2- fmT_m
=4
1 K2 1 1/d
s_w_K2+S_k-E+K2-SS—“’
=4

K2 1

1
s—w[l—K2-sl/d]§K2+s—k- (12)

nd’

where w = (jin — Jjo)/d > 0.

In what follows we will obtain a contradiction to this inequality for some
small properly chosen 0 < s < 1 and all sufficiently large n. Since j,, € [jo+1, k]
we have w = (Jp, — jo)/d > 1/d, and since s < 1 we get s¥ < si/d = 1/s* >
1/s'/4. Now choose s!/¢ = 1, where K is the constant in (12). Then
estimating the left-hand side of (12) we get

1

1 .
S_,w[]- _K2 'Sl/d] Z m[]_ _K2 ‘Sl/d] — 4KZ _K2 — 3K2
S




and thus from (12) we have

1 K? 1
2 2 1/d 2
3K gs—w[1—K-s/]§K + 5
iS4
K? 1
2
S
iS4
11 1
§ 2dk
< - — = _(2K)%*,
n sy k)

We therefore obtain a contradiction to this inequality, and hence to inequal-
ity (12) and thus to the eigenvalue equation (3), if n® > 1(2K)?¥* and s =
1/(2K)??, and consequently all roots of p,, cannot be contained in a disc of ra-
dius s -n? for such choices on s and n, whence r, > s-n? where r,, denotes the
largest modulus of all roots of p,,, so clearly there exists some positive constant
¢ such that lim,,_, 2_75 > c. O
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