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LOCALLY RESIDUAL CURRENTS AND DOLBEAULT
COHOMOLOGY ON PROJECTIVE MANIFOLDS

BY
BRUNO FABRE

ABSTRACT. - Let be X a projective manifold of dimension n, and n hyper-
surfaces Y;(1 < i < n) on X, defining ample line bundles, and intersecting properly.
After introducing sheaves of locally residual currents, we enunciate the following two
main theorems. First, for any positive integer i, the Dolbeault cohomology group
Hi(Q%) of the sheaf of holomorphic g—forms on X can be computed as the i—th
cohomology group of some complex of global sections of locally residual currents on
X. We get from this the theorem of [3] that any locally residual current on X which
is O—exact is globally residual. Secondly, for ¢ = n, we get another exact sequence
computing H¢(Q%) by restricting to residual currents obtained from meromorphic
forms with simple poles on the Y;. We deduce from this a reformulation of the
main theorem of [10], saying that we can compute the cohomology groups H*(2%)
by the cohomology of a complex of principal value currents with simple poles. We
also deduce from this the result from [7] that if Y3,...,Y,, intersect transversally
in a finite set of points P;(1 < i < s), then for any sequence of s complex numbers
¢i(1 < i < s), there is a global meromorphic n—form ¥ with simple poles on each
Y; such that:

Vi, 1 <i< s)ResQw’YnlI! =¢

iff 327 ;¢ = 0. In the second part, we give proofs of the theorems by mean
of several exact sequences of sheaves of locally residual currents. We conclude by
giving two directions for further developments: one direction is related to the Hodge
conjecture, the other is concerning the Abel-Radon transform.
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1 Main results

Let us introduce the main objects used in the results, that is locally residual
currents, by giving a brief account of their construction. Further details can
be found in [2], or [1].

Let X be a complex manifold of dimension n. We denote Ox the sheaf of
holomorphic functions, Q% the sheaf of holomorphic g—forms (in particular,
0 =0yx), M the sheaf of meromorphic g—forms. First, there is, canoni-
cally associated to any meromorphic g—form ¥, a current of bidegree (g, 0),
denoted P(¥) or [¥], and called the principal value of ¥, which satisfies the
following properties ([2]):

1. if ¥ is holomorphic, [¥] coincides with the classical current associated
to U:

(@) = [ onv.

2. Let us denote Cgéo (%) the sheaf of currents which can be locally writ-
ten as [w]|, with w a meromorphic g—form, and Cg(’o the subsheaf
of those which are d—closed. Then, P induces an isomorphism of
Ox—modules, P : ML — C%°(x), and also an isomorphism from Q%

to C‘)I(’O. Moreover, the natural operator 8 : M% — ngl commutes

with P: [0¥] = J[¥].

Now, let on an open subset U C X, p + 1 hypersurfaces Yy,...,Y, hy-
persurfaces intersecting properly. There is (cf. [1]), for a meromorphic form
with poles contained in YyU...UY,, a currents on U denoted Resy; ...y, (¥),
and called residual current, or Coleff-Herrera current. We have:

Resy,,..v,(¥) = OResy; .y, (9).
If the Y; are defined by holomorphic functions f;, we also denote:
Resy,, v, (w/fo-. fp) = w/fo NO(1/f1) A... ANO(1/fp),
so that:
L/ fo0(1/ fr) A... NO(L/fp)) = D(L/fo) A .. NO(L]fp).

A locally residual current is a current which can be written locally as a
residual current, thus also as a current w/fo A 9(1/f1) A... AD(1/f,), with



(fo,--., fp) a regular sequence of holomorphic functions and w an holomor-
phic g—form. We do not assume here (as for instance in [4]) that a locally
residual current is 0—closed.

Now let Z an analytic subset of pure codimension p. Then, let us denote
CZP the sheaf which associate to any subset U the set CZP(U) of d—closed
locally residual currents of bidegree (g,p), with support contained in Z. If
Y is an hypersurface of Z, we denote CZ¥(xY’) the sheaf of locally residual
currents of bidegree (g, p) supported in Z, d—closed outside Y.

If Y is an hypersurface in X intersecting Z properly, i.e. such that the
analytic subset ZNY is of pure codimension p + 1, we will denote CZ?(xY')
for CLP(%(Y N Z)). Since

9(1/fo0(1/fr) A... NO(1/fp)) = 0(1/fo) A-.. NO(L/ fp),

we then have a natural map: 9 : CZP(xY) — C%’gj;l.

We associate to a current 7" and a smooth form w the current w AT (¢) =
T(¢ A w), so that we can write formally: T(¢) = [y ¢ A T.

First, let us remark that a special kind of locally residual currents are
given by the following lemma (cf. [2]):

Lemma 1 Let Z be an analytic subset of pure codimension p, and w a
meromorphic r—form on Z. There is a natural way to associate to w a
current of bidegree (r +p,p) on X, denoted w A [Z], and called the principal
value of w (on X ), which coincides with the classical current w A [Z]($) =
J; & ANw if w is holomorphic on Z. w A [Z] is a locally residual current.

The currents locally written as wA[Z] are called principal value currents.
If Z' C Z is the polar hypersurface of w (outside which w is 0—closed),
d(wA[Z]) is a locally residual current of bidegree (r +p,p+ 1) with support
in Z'. We say that w has logarithmic pole if this current can still be written
W' A [Z'], with ' a meromorphic (r — 1)—form on Z'.

We denote C’ TZ+p P the subsheaf of C;’p P of those currents which can
be locally written w A [Z N U], for w a meromorphic r—form. The maps
w — w A [Z] thus gives an isomorphism between the Barlet’s sheaves Q%
on Z of abelian differential ¢—forms and the sheaves C'4™PP. Let Y be
an hypersurface cutting Z properly. We denote C';P(Y) the subsheaf of
C7?(xY), given by those meromorphic forms of maximal degree on Z, having
logarithmic poles on Y.

Let us now assume that X is a compact complex manifold, and that
Yi,...,Y, are analytic hypersurfaces. We assume that the Y; are positive,
in the sense that the corresponding Cartier divisors are ample. By the



theorem of Kodaira, it implies that X is projective. We also assume that
the Y; intersect properly, so that the intersection is a finite set of points.

Theorem 1 1. The complez:

0—>Qq — CPO(xY7)

n—1
_> Cg"lrrbﬁ---ﬂYn_ ( )

o i,o:l

Cq’ (*Yg)
CYhny, =0

is an acyclic resolution of Q% by Ox—modules, and thus we have a
canonical isomorphism for all 1,0 < i < n:

H(Q) = HOCY oy, JOH(CE Ly (6Y5))

2. Moreover, an element T = H O(Cg/’lig}_m,i_l(*Yi)) can be written as a
global residue: T = Resy, .y, ,(¥), with ¥ a meromorphic q—form
with poles contained in Y1 U...UY;.

3. Moreover, T is 0—ezact iff we can choose U with poles in Y1U...UY;_;.

Let us assume now ¢ = n. Let us notice that the operators: 0 :
C”}l{%—.}myp,l(y})) — C';l,’lpn___nyp define a subcomplex of the preceding one.
We also assume now that the Y;(1 < i < n) intersect transversally in s
distinct points.

Then we have the following variant of the preceding theorem:

Theorem 2 1. The complex:
0% - ™) S et(ve) — -
) n—1 el

- 6,317;1---01’71_1( ) -

is an acyclic resolution of Q% by Ox—modules, and thus we have a
canonical isomorphism for all i,0 < i < mn:

) P _ i1
H' () ~ HO( "}Lflzn---nYi)/BHO(CI%ZQ---H)Q_I(Yi))

17T
CYrny, =0

2. Moreover, an element T = HO(C'%ir{_l_nn_l(Y;)) can be written as a
global residue: T = Resy, . v, ,(¥), with U a meromorphic closed
n—form with poles in Y1 U...UY;.

3. Moreover, T is d—ezact iff we can choose ¥ with poles in Y1U... UY;_1.



Remarks.

1. For q < n, it is not true in general that the complex with logarithmic
poles computes the Dolbeault cohomogy groups, since it is not in general
acyclic. The acyclicity for the logarithmic poles, for ¢ = n, comes from the
Kodaira annihilation theorem.

2. In each of the two preceding theorems, the first part is a variant of
Dolbeault’s theorem, representing cohomology classes by 0—closed currents
with fixed supports. The theorems would remain true if we don’t fix the sup-
ports in given complete intersections, but consider more general complexes
of locally residual currents (resp. of principal value currents) with any sup-
ports. In fact, let us denote for instance C'™"* (resp. C'™"(x)) the sheaves of
0—closed principal value currents of bidegree (n,i) (resp. with logarithmic
poles). Then, we have by Dolbeault’s theorem a natural morphism:

HO(C™ JOH(C™ (%)) — HY Q).

This morphism is clearly surjective, since by the preceding theorem we know
that we even can fix the supports. But it is also injective: in fact, if the
image of T € H°(C'™") is zero, we know that by definition of the morphism,
the current T' is 0—exact; and we can include the support of T, which is
of pure codimension i, in a complete intersection of i positive hypersurfaces
Yi1,...,Y;. Thus we can apply again the preceding theorem, to write 7" in
the form Ow’ A [Y'], with Y/ = Y1 N...NY;_1, and ' with logarithmic pole
on Y;. Thus we get, expressed in another way, the main theorem of [10].

3. In the first theorem, we could enonce the same theorem, assuming X
is compact algebraic and the complements X \Y; are affine.

We get as corollary a theorem of P. Griffiths ([7]):

Corollary 1 Let the n positive hypersurfaces Y1,...,Y, intersect transver-
sally in s distinct points Py, ..., Ps, and let be cq,...,cs s complex numbers.
A necessary and sufficient condition for the ezistence of a meromorphic
n—form ¥, with simple pole contained in Y1 U...UY,, and

(Vi,1 <i < s)ResQ’___’Yn‘IJ =g,
is that Y71 ¢; = 0.

Proof.

The existence of ¥ is equivalent of the existence of ¥ such that: Resy; ...y, (¥) =
> i_qci[F;]. Thus, the existence of ¥ imply that the "evaluation” current

T = Y i_;ci[P;], which associate to a function f the sum Y7, f(F;), is



O0—exact, and thus annihilates on 1, which means 5 ;¢; = 0. Recipro-
cally, if the sum is zero, then the current 7' = 77, ¢;[P;] is exact, since
H"(X) ~ H(X) ~ H°(Ox) ~C since X is smooth, compact and con-
nected. Thus by the last theorem, it can be written as a global residue
T = Resy,, ..y, ¥, with ¥ having simple pole on Y1 U... UY,,. [

2 Secondary results and proofs of the main theo-
rems

2.1 Topological residue operator

We recall here the construction of the topological residue operator, as given
in [8], and deduce a composed residue operator on local cohomology classes.
The reason for this is that the residue operator on moderate cohomology
classes will be constructed of the same model.

Let be X be a topological space. Let be F an abelian sheaf on X, and
Y a locally closed subset in X. Then the sheaf I'y F is defined as follows.
Let us assume that Y is a closed subset of the open subset V of X. Then
Iy F(U) is the subgroup of I'(V NU, F) consisting of sections with support
contained in Y. If V' is another open subset such that Y is a closed subset
of V', the two subgroups obtained are isomorphic; so we can identify them
both with the inductive limit, for all the open neighborhoods of Y. Thus,
we obtain as sheaf 'y F the sheaf which fiber is zero for x ¢ Y, and whose
fiber at £ € Y is the germs of sections of F at x, with support in Y. This
is also an abelian sheaf, and thus we get a functor I'y : F — I'yF in the
category of abelian sheaves. This functor is left-exact; we denote Hi the
right derived functor of I'y.

We have:
Iy ol'yr =T'yny

Let us denote T'y(U,e) = T'(U,e) o Ty (resp. Ty = T oTy); thus
I'yF({U) = Ty(U,F). The functor T'y(U,e) (resp. T'y) is left-exact. We
denote HY.(U,e) (resp. Hi) the i—th right derived functor of T'y (U, e)
(resp. I'y). The groups Hi (F) are called the cohomology groups of F with
support in Y.

Let us suppose Y is closed. Then, we have natural the exact sequence:

O%FYF—)f—)Px\}AF,



and for any open set U the exact sequence:
0->TyFU) = FU) - Tx\wFU)

with a zeros at the right if the sheaf F is flabby.
Let be Z two another closed subsets of X. If F is flabby, so is still I'z.F,
and thus we have also the short exact sequences:

0=>TzavF = T2F > TpvyF =0,
0= TzayF(U) = T2zFU) = Ty F(U) — 0.

Let us consider an injective (thus flabby) resolution of F:
0 F =TI 5T — ...
Since the Z* are flabby, we get short exact sequences of complexes:
0—=>TzvZI* —>T21° — I‘Z\YI' — 0,

0= TzryI*(U) = T2Z°(U) = T2yZI*(U) — 0,

By the classical snake lemma, we get from this short exact sequences of
complexes the following long exact sequences:

R
0 = Hyny (F) - HY(F) = ﬂoz\y(]:) gy Hyoy (F)
== Hyay (F) = H(F) = Hipy (F)
L (F) o

and

0= HYy (U, F) - HY(U,F) = HY, (U, F) "3 Hy, (U, F)
== Hyy (U, F) = Hy (U, F) = Hy\ (U, F)
ReSY gitl (U, F) — -

The natural maps in the preceding exact sequence
Resy : HiZ\Y(]: ) = Hiy (F)

and
Resy : Hy\y (U, F) = H,2\ (U, F)

are called the topological residue operators.



Let be Y1,...,Y), be closed subsets. We define the composed topological
residue operator as:

Resy, ...y, == Resy, o -+ o Resy; : /H]%\(Ylu---UYi)(]:) - %iz—ihkyln...myi (F),

for any locally closed subset Z.

Example. Let us consider n hypersurfaces Y;(1 < i < n) intersecting
in a point P. Let us take ¥ be an holomorphic n—form in U\Y; U---UY,,
for some open neighborhood U of P, such that Y1 N...NY, NU = P. Let
us denote HR(Q%) = HpB(Q%)p. Then Resy; ..y, (V) € HB(U, Q%) ~
H}E(Q%). Any element HB(Q%) is written like this for a such ¥ in some
open neighborhood U of P.

Let us consider, for a germ at P of holomorphic n—form ¥ in the com-
plement of Y1 U---UY,,, and a germ of holomorphic function g, the mapping
(U, g9) — ‘ﬁfi|:€i(1§i§n) gV, the f; being a local defining function for Y; at
P, and ¢; sufficiently small. We can check that his defines a perfect pairing
HE(Q%) x Ox,p —C, such that Resy, ...y, (¥) can be seen as a linear form
on the germs of holomorphic functions in a neighborhood of P, continuous
for an appropriate topology. We will denote Reslygv1 .y, () the value at 1 of
this linear form, that is the integral: flfilzei(lsisn) V. This is the punctual
residue.

2.2 Moderate cohomogical residue operator

Let us now assume that X is a complex manifold of dimension 7.

Let Z a closed analytic subset on X, defined by the sheaf of ideals Z,
and Z' C Z another closed analytic subset. We define the following functor,
in the category of Ox—modules:

e
L\ z21(F) = limy Hom (I8, /T, F).

This is a left-exact functor; we define Hiz\  as the right derived cohomology
of this functor.

Let us assume Y is an hypersurface. Then, I'ix\y (F)z can be identified
by the subset of F,, which multiplied by a power of f, extend to an element
of F;; we identify two elements if their difference is annihilated by a power
of f. We denote also F(xY) := I'x\y(F). Then we have:

Lemma 2 F — F(xY) is an exact functor of Ox— modules.

Proof.
We have that ZE is coherent, and locally free, since it is generated by one



element f* at each point, where f is the defining function for Y. Thus,
since for a free A—module M, the functor Hom 4(M,e) is exact, we have
that F — Hom(ZE,F) is exact. By the injective (directed) limit, we get
that I'y\y is also exact. I

In particular: ’HZ\Y(}") = HL(F)(xY).

Lemma 3 Let Z be an analytic subset, and Z' C Z. Then we have a
natural long eract sequence:

OeH&ﬂf%ﬁH%wﬁﬁsz(f) Hizn(F)
= = Hip (F) = Higy(F) = Hip zn(F)

04 i
S HGNF) =

Proof.

Let us consider a resolution 0 — F — Zyg — Z; — ... of F by injective
Ox—modules. Then we have, applying the functor Homo, (e,Z;) to the
short exact sequence 0 — Z%, /I — Ox /It — Ox/IL — 0, an exact
sequence of complexes:

0 — Homoy (Ox /T, T;) — Homo, (Ox /T8, T;) — Homo, (Ts |TE,T;) — 0

For a given 7, we have an injective system of sheaves, indexed by the integers
k; moreover, this system is directed. Thus, the direct limit on k£ remains a
short exact sequence, and we obtain an exact sequence of complexes:

Since the cohomologies of these complexes compute, by definition, the mod-
erate cohomology sheaves, the long exact sequence associated to this short
exact sequence give us the wanted long exact sequence. [

Let be Z an analytic subvariety of pure codimension p, and Y,Y’ two
hypersurfaces intersecting properly on Z. By taking Z' :== ZNY, we get
in the preceding long exact sequence, as connection operator, a moderate
residue operator:

Resiy) : Hizy (%) = Hizov (%)-
By applying the exact functor I'(x\y:] we deduce another operator:

Hfz\(YUY’)](ng) — HE(JFZImY)\Y'](Qg()-



Let us consider the resolution:
0 Q% - D04 pot & pr2_,

by currents.
We know the following (see [9]):

Lemma 4 The sheaves DP have Ox ;—injective fibers.

We thus deduce the short exact sequences:
0 = Homoy (Ox /TEqy, D) = Homoy (Ox [I5, D?P) = Homoy (T5~y /IE, DIP) — 0,
thus by direct limit:

0 = Tizay)(D?*) = T(D*?) = Liz\y(DP) — 0;

these exact sequences commute with the operator 0, thus we get an exact
sequence of complexes:

0 = T2y (D?®) = T12(D?®) = Tz\y(D?*) — 0;

Thus we get a long exact sequence on the cohomologies of these complexes.
But we have:

Lemma 5 These complexes compute the moderate cohomology sheaves:

Hi 707 (%) Hi (%) Hip v (%)

Proof.

Let us restrict to show H, EZ](Dq’p) = 0. Since the sheaves D?P have injective
fibers, the Extp, (Ox /I, DP) are zero, since Ox /I% being coherent, the
fibers commute with the Ext. But since the injective system indexed by the
integers k is directed, the cohomolog)g;f the direct limit coincide with the di-
rect limit of the cohomology, that is, limyExty, (Ox /T, DIP) = HI[’Z](’D‘J”’),

which is thus zero. Thus we have also H{, . .(D%P) = 0, and by the long

) [ZnY]
exact sequence also H [’Z\Y] (D2P) = 0. |

Thus, in the long exact sequence:

Res
0 = 1y (F) = HOp(F) = Hy(F)&Y) = Hipen (F) — ..

the residues Res[y) can in fact, if we compute the cohomogy groups by
currents, be computed as 0—operator.

10



2.3 Relations with the sheaves of locally residual currents

Let us know consider Z an analytic subset of pure codimension p, and Y an
hypersurface inyersecting Z properly. We have by the preceding a natural
application ¢ : CL¥ — H][[’Z](Qg(), by associating to a 0—closed residual
current with support in Z his class. We have, by [4]:

Lemma 6 ¢ is bijective.

This is also true for the maps:

¢ Cy = My (%), 8" - CZRy = H g (%)

Let us assume Z locally complete intersection. Then we have ’Hf Z+] ! Q%) =

0, and by the long exact sequence, since also ’HonY](Qg() as Y intersects Z

properly, an exact sequence:
+1
0 = HPH (%) = HH(Q5) (Y) = M0y (Q%) — 0,
where the second operator is given by .
Thus, we have in particular that in the sequence C2¥ — CLP(xY) —
C%’ﬁ’;l, the first map is injective, and the second map is surjective.
We also have:

Lemma 7 CLP(xY) is an Ox—module.

Proof.

We have to show the stability for the sum. Let us remark that if T €
CP (xY') for some z € Y, then if f is an holomorphic function in an open
nei’ghborhood U, of z such that U, NY C U, N ZnN{f = 0}, we have
that for some integer k, f*T" extends to a germ of C%’fr. Thus, it suffices
to show that the subsheaf CZ? is stable for the sum. Since we assume Z is
locally complete intersection, let us consider a reduced complete intersection
Zy =Y12N...NY, 4, define by a regular sequence (f1,..., fp), and a € C%’i,’c.

Then we can write a = Ja, with:

q;p—1
o) € Cyl,mﬂ...ﬂyp_l,m (*Y;J)7

thus o = ,Bl/f;fp; similarly, 81 = 0(2/ ;f‘ll). Finally, since

1/ fod(1/ i) A ... NB(L/f:) = B(L/fo) A--. AND(1/fi),

11



we get
a=wAO(1/ff")A...AD(1/fl),

with an holomorphic g—form w. [

Thus, if Z is locally complete intersection of codimension p, the bijection:
¢: C%’f; — H?Z],I(Qg{), a— d(a)

is an isomorphism of Ox ;—modules. In particular, we get, if Y cuts Z
properly, an exact sequence of O x —modules:

0 — CLP — CLP(xY) — CIPT! - 0

More generally, if Y, Y’ are two hypersurfaces in X intersecting properly on
Z, we deduce an operator:

Resy : CEP(x(Y UY")) — CLPH (x7).

If Y’ is empty, Resy coincide with 0. We defined the composed residue as
Resy,,...)y, := Resy, o ... o Resy,. The associate residue operator on global
sections coincide with the classical Coleff-Herrera residue, so that we also
write it as Resy; .y, .

Let us assume (fo,..., fp) a regular sequence of germs of holomorphic
functions, and w a germ of holomorphic g—form, at a point x € X. We have
the following fundamental lemma for the residual currents (cf.[2]):

Lemma 8 If we have:

w/fo NO(L/f1) A... ND(1/fp) =0,
then we can write: w; = Y b_, fiwi, with w; germs of holomorphic q—forms.
Moreover:

Lemma 9 If Resy, . y,w/(fo--.fp) is O—closed, then it can be written
Resy,,.v, ¥, with Pol(¥) CY1U...UY).

Proof.

Let us assume that Resy,.v,w/(fo...fp) is O—closed. This means that
wAO1/fo) A...ANO(/f,) = 0. Thus, by the lemma 8, we have: w =
>P , fiwi, with w; holomorphic, and thus:

Resy,,..v,w/(fo-.. fp) = Resy,,..y,wo/(f1.-- fp)-

12



2.4 Exact sequences of sheaves of locally residual currents

Now, let be Y1,...,Y), analytic hypersurfaces, intersecting properly, that is,
Y, N...NYj;, is of pure codimension k for k£ < p, and at each point a reduced

complete intersection. Thus, for 4 < p, the hypersurfaces Yi,...,Y; also
intersect properly. By the preceding, the operator 0 maps C;I/’fm..mq (*Yi4+1)

q,i+1
onto CYm...ﬂYiH'

Lemma 10 We have the following exact sequence of sheaves:

0= Q% = COO+Yy) = CF' (+Ya) = -+ —

g,p—1 q,p
CYm---an,l(*Yp) = &inny, 2 0

with as morphisms the 0—operator on currents.

Proof.
The exactitude of the preceding complex comes from the fact that locally,

when the locally residual current T' € c%’;‘_}myk_l(*yk)z is 0—closed, it be-

qkal . 1 .
longs to CY1 NeNY_q 20 this comes from the above exact sequence:

qyk_l qyk_l qyk
0= Cyn v, = Yinenvi_, %Y%) = Cyinay, — 0.
It suffices then to remark that

7. 19p—1 g,p—1
0: CYm---mYk_l(*Yk) = Cyin.ny,

is surjective. I

Lemma 11 Letk < p—1. Let us denote Y* =Y, U-- UY; 1 VY U- - UY.
Then, the following complex:

n k n o 62k q i
0= Q% = & A} (¥Y;) = - "= &, Q5 (xY7)
§k—1 Resy, ..., Y,

= QL(xV1U---UYy)) BTRCRE =0

where the last operator is the composed residue operator, and the other op-
erators 0* are the alternate sums, is exact. By allowing poles on Yy 1, we
get another exact sequence:

0= Q% (V1) = B Q% ((¥; U Vi) = - = BE, Q% (k(YT U ¥ip1))

k
= Q5 (((Y1 U+ UYgp1)) = CYyy, (FYk41) = 0

13



Proof.

First, it is clear that this is a complex: the succession of two alternate sums
is zero, and the composed residue Resy; ...y, is zero on a meromorphic form
with pole contained in Y1 U...UYj;_1. The exactitude on the last step comes
from a preceding lemma: wAA(1/f1)A...AO[1/fi] = 0 implies that w can be
written as follows: w = Zle fiw; with w; holomorphic forms. The exacti-
tude on the first step is clear, for if w; = w;, then we can glue them together,
and by Hartogs, we can extend them through ¥;NY}, which is of codimension
two. At the other steps, the exactitude comes the Cech complex. In fact,
we can consider on X' := X\(Y1 N...NY}) the sheaf ('Y, whose sections on
an open set U are meromorphic g—forms on X', which are holomorphic on
U. Then, if we consider the covering of X’ by the open subsets U; = X\Y;,
the exactitude of the Cech complex associated to '? relative to the covering
(U;) gives us the searched exactitude. We can modify the preceding exact
sequence by allowing poles on Yy, 1, which is equivalent to apply the exact
functor (xYj11).

We deduce from the preceding that any germ of locally residual cur-
rent T = HO(C;],”’;) can be written as a residue: T = Resy;,..y,(¥) =
OResy;,..v,_,(¥), with ¥ a germ of meromorphic g—form with poles in
YiU...UY,.

Remark. Let us assume that X is a Stein manifold, and that Y7,...,Y),
are analytic hypersurfaces intersecting properly. Since X is Stein, any co-
homology group of positive degree vanishes automatically for any coherent
sheaf. If Q% (kYY) denotes the sheaf of meromorphic g—forms with poles on
Y of order < k, it is coherent and thus acyclic. We conclude by passage to
the direct limit that Q% (xY') is acyclic for any hypersurface Y. Thus, by
the preceding exact sequence of lemma (10), the sheaves C;Z/’ll%___nyk (xYk41)
are acyclic on X. By the exact sequence of lemma 11, we deduce that any
locally residual current 7 = HY(C{¥) can be written as a global residue:
T = Resy;, v, (¥) = gResn’___,ypfl(\If), with ¥ a meromorphic g—form
with poles in Y7 U...UY,,.

Now, let us assume that X is compact, and the hypersurfaces Y1,...,Y,
are positive. Then we have the following:

Lemma 12 For any s < k,1 < j1 < ... < js <k, the sheaves Qg((*le U
...UY;, UY,41) are acyclic. From the ezact sequence of lemma 11, the sheaf
Cg”lkm---mYk (%Yy11) is also acyclic.

Proof.

Since the hypersurfaces Y; are positive, we have by Serre’s theorem, if we
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denote L; the corresponding Cartier divisor on X, that: HY(F(L¥)) = 0
for kK >> 0 and 57 > 0, if F is a coherent sheaf on X. Since X is com-
pact, we can do the passage to the limit when k¥ — oo ([6]), and we
get: HI(F(xY;)) = 0. Since the sheaves Q% (xY;, U...UY],) are not co-
herent, we can not use directly the positivity assumption on Yy,;. But
let us first take a limitation of the order of the poles: we get subsheaves
Qg((Yf1 U...u st), which have poles of order < t along the Y;. These sub-
sheaves are coherent, thus we can apply the positivity assumption; we get
thus: HI(Q4 (Y}, U...UY} )(*Yi41)) = 0 for j > 0; by taking the limit for
t going to infinity, we get: H7(Q%(xY;, U...UYj, UYjyq)) = 0 for j > 0.
So get have the acyclicity of all the terms in the preceding exact sequence,
except the last one. But then the acyclicity of C;I/"lkm---nYk (%Y) 1) follows from
the fact that a sheaf with an ”acyclic” resolution is itself acyclic. 1

Proof of the first theorem.
Since by lemma 12 the given resolution of Q% is acyclic, it computes its
cohomology groups:

H'(Q%) = HY(CH..,) [OH (CY 1y, (KY5)-

We thus get the first part of theorem 1.
Moreover, let us consider the exact sequence:

0 — Q% (*Yiy1) = ®F Q4 (x(Y; UYiq1)) = - = @F Q4 k(YU Y1)
= Q4 (Y1 U+ UY%q1) = CFY Ly, (6Y541) = 0

Since the functor of global section T' is exact on acyclic sheaves, we get a
surjective map:

Resy;,..v, : HO(Q4 (Y1 U+ U Yip1)) = HO(CE, . ay, (xVir1))

which gives us the second part of the theorem 1.

Then, if T_E HO(C;I’;]?W---OY;Q (*Y)41)) can be wricten as Resy,, v, (¥), it
is alsg: T = O(Resy;,. v, ,(¥)), and thus T is 0—exact. Reciprocally, if
T is O—exact, then its class in H*(Q%) is zero, and thus by the first part

o = . k-1
of the theorem, it is T = 0T, with T' € HO(C%m___mYk_l(*Yk)); but then,
T' = Resy,,...v,_, (¥), with ¥ a meromorphic ¢g—form with poles contained
inY1U...UY}; and thus, T = Resy; ...y, (¥). This achieves the proof of the
theorem 1. I

Proof of the second theorem.
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Lemma 13 The following complex is also an ezact resolution of 0% :

0— Q% — CmO(Yy) = O (Ye) = o
Clg’lpm...m)ghl (Yn) — C”}l/;nn...nyn —0

Proof.

It suffices to show that, if U is a Stein open subset and X7, ..., X;;1 are an-
alytic hypersurfaces intersecting properly in U, a d—closed current w A [Y],
with Y = X;N...NX;41 and w a meromorphic r—form of maximal degree,
can be written dw’ A [Y'], with Y/ = X7 N...N X; and ' a meromorphic
(r +1)—form on Y'. The case i = 0 is classical; the general case is shown
by induction. [

Lemma 14 We have similar exact sequence as above for logarithmic poles:

0= Q% = & Q% (V) = - = & Q% (V)
= QL (ViU UY) = C'E Ly, =0

and

0= Q% (Yig1) = O, Q% (Vi UYey) —>k' o @ O (YIUYey)
- QT;((YI u---u Yk-l—l) - C”)l/’lm...myk (Yk—l—l) —0

The sheaves in the left of the above exact sequences:

0— Q% = 0F 0L(Y;) = - = &F 0% (Y

> Q% (VLU UYy) > CYE oy =0

and

0= % (Yip1) = O Q% (Vi UYeqr) = -+ = @5, Q% (Y U Yip1)
= Q% (ViU UYhq1) = C8F Ly, (Vi) = 0

are here coherent, and the amplitude of the divisors suffices here, by Kodaira
vanishing theorem, to show that the sheaves Q% (Y), for ¥ some union

of the Y; (which are also positive), are acyclic, and thus also the sheaves

Cm,k

Ylﬁ---ﬂYk(Y/H'l) are acyclic. Thus the exact sequence:

0= Q% =™ (V) - R (Ye) = - —

myn—1 1157
CyYnny, (Yp) = Cyineny, — 0
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is an acyclic resolution of 2%, and thus the first part of the theorem. The
acyclic exact sequence:

0 = Q% (Yiy1) = @ % (Vi U Y1) AR Bk O (YU Ysy)
— Q}(Yl U---u Yk+1) — CI;L/;O---OY;C (Yk+1) — 0

also shows that any T € HO(C”;/ilrcw---nYk (Yk+1)) can be written as a global

residue of a meromorphic form with simple poles. Finally, the exact se-

quence: .
0= Q% = & Q% (V) = -+ — &f Q% (V)
= QF(Y1U--UY) = Oy — 0
shows that if the current 7' € H° (CIT;/;I?T---OYIC) gives a zero class in H*(QF),

it can be written as a global residue with simple poles. I

3 Prolongations

3.1 Hodge conjecture

Let X be a projective manifold. The Hodge conjecture for the bidegree (p, p)
says the following:

Conjecture 1. If T is a closed form of bidegree (p,p) with rational
class (which means that the integral of T' on any real cycle of dimension 2p
is rational), then 7' is cohomologous, as current, to an integration current
>, ¢ilYi] with Y; analytic subvarities and ¢; rational coefficients.

Proposition. The Hodge conjecture on X, for bidegree (n — p,n — p),
is equivalent to the following:

Conjecture 1°. Any closed current of bidegree (p, p), with integral class,
is cohomologous to a d—closed locally residual current of bidegree (p, p).

Proof.

First, Hodge conjecture implies that any closed current of bidegree (p,p)
with rational cohomology class is cohomologous to integration current -, ¢;[Y;]
with rational coefficients, and thus conjecture 1.

Reciprocally, let us assume that conjecture 1 is true. First, we know that
the Hodge conjecture for bidegree (n—p,n—p) is equivalent to the following:
For a given closed current T of bidegree (p,p), with rational cohomology
class, then: if [, T = (Y,T) = 0 for any complex subvariety Y of dimension
p, then the current is exact. In fact, if Hodge conjecture is true for bidegree
(n — p,n — p), then it follows from the condition: [, T = (Y,T) = 0 for
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any complex subvariety Y of dimension p, that (u,7) = 0 for any p of
degree 2p with rational class, and thus that 7' is exact. And conversely, if
this condition implies exactitude of 7', then the Q—vector spaces of finite
dimension in H?"~?P(X,Q)) generated respectively by integration currents
[Y] or by (n — p,n — p)—currents of rational class have the same orthogonal
in H?P(X,Q), and thus coincide.

Now, let us remark that we could deduce from conjecture 1 that any such
current T' has a representative as integration current, of the form Y, ¢;[Z;],
with Z; irreducible analytic subvarieties of codimension p and ¢; complex
coefficients. In fact, let us consider a d—closed locally residual current 7'
of bidegree (p,p). We can include the support of 7' in a (non-irreducible)
generically reduced complete intersection Z = Y1 N...NY,, and write locally
T, in a neighborhood of a point x € Z, as Resy; ... y,{lx for some meromor-
phic closed p—form w with Pol(w) C Y U...UY,. Then we associate to T
at z the number f| Pty dfol—ep Qx, if f; are the local defining functions for
Y;. These numbers do not depend of the choices of w or of the f;, and are
a constant ¢; along an irreducible component Z; of Z. We thus associate to
T a current Y, ¢;[Z;] with Z; the irreducible components of Z and ¢; the
numbers just defined. This current is homologous to T, since it gives the
same integration on any real oriented 2p—dimensional subvariety.

But now, we can show that sinceT' has rational class, we can find such
a representative YF_; ¢;[Z;], with rational coefficients. In fact, we can first
assume that the [Z;] give independant cohomology classes over . Then, we
can find rational cohomology classes ¢; € H?"~?(X,Q)(1 < i < k) such
that [Z;](¢;) = 6ij. Thus, we get: T'(¢;) = ¢;, and thus the coefficients c;
are rational since 1" has rational class. I

The Hodge conjecture implies the following (also classical) weaker one:
For a cycle ), ¢;Y; with rational coefficients, numerical and cohomological
equivalence coincide. We would have the following stronger one, without
assuming that the coefficients are rational:

Conjecture 2. If a d—closed locally residual current 7" of bidegree (p, p)
has zero integral on any complex subvariety Y of dimension p, it is exact.

Notice that the conjecture would not be true if we replace d—closed
by 0—closed. We have by the preceding that on any complex variety Y
of dimension p, the ”restricted” residual current of bidegree (p,p) on Y
is globally residual, thus residue of a closed meromorphic p—form on Y.
We should use the closed property of T' to show that we can choose these
meromorphic p—forms in such a way that they glue together.

Let us notice that, by the preceding, it would suffice to show this for
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T being an integration current Y, ¢;[Y;], with Y; complex subvarieties of
codimension p, and the ¢; real coeflicients.

The conjecture could still be generalized for other bidegrees. In fact,
these integrals on complex cycles could be viewed as a kind of Abel-Radon
transform. Thus we have the more general conjecture:

Conjecture 3. If a d—closed locally residual current of bidegree (¢, p),q >
p has zero Abel-Radon transform on the space of p—dimensional complex
cycles, it is exact (or, what is the same, globally residual).

3.2 Abel-Radon transform

The first theorem could be generalized to the case when X is the complement
of an (n — p)—complete compact subset in a projective variety Z, and the
hypersurfaces Y; on X extend to positive hypersurfaces on Z. We will use
this generalization in a future article to show the a generalization in arbitrary
codimension of the result concerning the Abel-Radon transform shown in
[5] for codimension 1. This generalization would assert that when the Abel-
Radon transform of a locally residual current 7' of bidegree (q,p),q > p,
in an open subset of the projective space which is reunion of a continuous
family of p—planes, is zero, then the locally residual current 7" in this open
subset extend to a global residual current on the projective space. This could
also be extended on other projective varieties than the projective space.
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