

Poincaré series and homotopy Lie algebras of monomial rings

Alexander Berglund

Research Reports in Mathematics
Number 6, 2005
Department of Mathematics
Stockholm University

Electronic versions of this document are available at http://www.math.su.se/reports/2005/6

Date of publication: November 28, 2005
2000 Mathematics Subject Classification: Primary 13D40, Secondary 13D02, 13D07.
Postal address:
Department of Mathematics
Stockholm University
S-106 91 Stockholm
Sweden

Electronic addresses:
http://www.math.su.se/
info@math.su.se

POINCARÉ SERIES AND HOMOTOPY LIE ALGEBRAS OF MONOMIAL RINGS

ALEXANDER BERGLUND

Abstract. This thesis comprises an investigation of (co)homological invariants of monomial rings, by which is meant commutative algebras over a field whose minimal relations are monomials in a set of generators for the algebra, and of combinatorial aspects of these invariants. Examples of monomial rings include the 'Stanley-Reisner rings' of simplicial complexes. Specifically, we study the homotopy Lie algebra $\pi(R)$, whose universal enveloping algebra is the Yoneda algebra $\operatorname{Ext}_{R}(k, k)$, and the multigraded Poincaré series of R,

$$
\mathrm{P}_{R}(\mathbf{x}, z)=\sum_{i \geq 0, \alpha \in \mathbb{N}^{n}} \operatorname{dim}_{k} \operatorname{Ext}_{R}^{i}(k, k)_{\alpha} x^{\alpha} z^{i}
$$

To a set of monomials M we introduce a finite lattice K_{M}, and show how to compute the Poincaré series of an algebra R, with minimal relations M, in terms of the homology groups of lower intervals in this lattice. We introduce a finite dimensional L_{∞}-algebra $\mathfrak{L}_{\infty}(M)$, and compute the Lie algebra $\pi^{\geq 2}(R)$ in terms of the cohomology Lie algebra $\mathrm{H}^{*}\left(\mathfrak{L}_{\infty}(M)\right)$. Applications of these results include a combinatorial criterion for when a monomial ring is Golod.

Analysis of the combinatorics involved leads us to introduce a new class of finite lattices, called complete lattices, which contain all geometric lattices and is closed under direct products. Completeness of a lattice L is characterized by the property that the higher operations of $\mathfrak{L}_{\infty}(M)$ are trivial, where M is the 'minimal realization' of L. We show how to interpret K_{M} as the intersection lattice of a certain real subspace arrangent \mathcal{A}_{M} and, via the Goresky-MacPherson formula, we are able to give a new proof of a result relating the cohomology of the complement of the arrangement to the graded vector space $\operatorname{Tor}_{*}^{R}(k, k)$.

Department of Mathematics, Stockholm University SE-106 91 Stockholm, SWEdEn
E-mail address: alexb@math.su.se

[^0]
Contents

Introduction 2
Conventions, notations 5
Minimal models and strongly homotopy Lie algebras 7

1. Free commutative dg-algebras 7
2. The homotopy Lie algebra of a free commutative dg-algebra 9
3. Models 11
4. Minimizing free commutative dg-algebras 13
Algebras with monomial relations 15
5. Lattices and simplicial complexes associated to monomial sets 16
6. Minimal model of a monomial ring 18
7. \mathbb{N}^{n}-graded deviations 20
8. Poincaré series 22
9. (Strongly) homotopy Lie algebras 25
10. Golodness 29
Combinatorics 30
11. Realizations of lattices 30
12. Complete monomial sets and geometric lattices 31
13. Connections to real subspace arrangements 34
Appendix 37
Appendix A. Simplicial complexes 37
Appendix B. Semilattices 38
References 39

Introduction

Classical cohomology theory assigns to a space X and a commutative ring k a graded k-algebra $\mathrm{H}^{*}(X ; k)=\bigoplus_{n \geq 0} \mathrm{H}^{n}(X ; k)$. Naively, the n :th graded component of this cohomology algebra detects n-dimensional 'holes' in the space X. For an algebraist, the natural objects to study are algebras, rather than spaces. What is the correct cohomology theory for algebras, or, in naive terms, what is the analogue of a 'hole' in an algebra? One cohomology theory for augmented k-algebras R is the Hochschild cohomology, $\mathrm{H}^{*}(R ; k)$. In the case when k is a field, $\mathrm{H}^{n}(R ; k)$ is isomorphic to $\operatorname{Ext}_{R}^{n}(k, k)$, the value at k of the nth right derived functor of $\operatorname{Hom}_{R}(-, k)$. Furthermore, the Yoneda interpretation of $\operatorname{Ext}_{R}^{n}(k, k)$ as equivalence classes of exact sequences $0 \rightarrow k \rightarrow E_{n} \rightarrow \ldots \rightarrow E_{1} \rightarrow k \rightarrow 0$ of R-modules enables one to define a multiplication on $\operatorname{Ext}_{R}^{*}(k, k)$ by 'splicing' sequences, cf. [28], so that $\mathrm{H}^{*}(R ; k)$ becomes a graded k-algebra.

If R is a commutative noetherian augmented k-algebra, where k is a field, then $\operatorname{Ext}_{R}^{*}(k, k)$ is the universal enveloping algebra of a graded Lie algebra $\pi(R)=$ $\bigoplus_{i \geq 1} \pi^{i}(R)$, called the homotopy Lie algebra of R, cf. [4]. The name comes from an analogy with rational homotopy theory. For a simply connected based topological space X, the collection of rational homotopy groups $\pi^{n}(\Omega X) \otimes \mathbb{Q}$ of the loop space
ΩX form a graded Lie algebra with bracket induced from the Whitehead products. It is called the rational homotopy Lie algebra of X, and its universal enveloping algebra is isomorphic to the homology algebra $H_{*}(\Omega X ; \mathbb{Q})$. See $[6]$ for an elaboration of this analogy.

There are few examples of algebras R where $\operatorname{Ext}_{R}(k, k)$, its dual $\operatorname{Tor}^{R}(k, k)$, or equivalently the Lie algebra $\pi(R)$, have been described explicitly, say in terms of a presentation of R. Even the enumerative problem of determining the graded vector space structure of $\operatorname{Ext}_{R}(k, k)$, or equivalently, determining the Poincaré series of R,

$$
\mathrm{P}_{R}(z)=\sum_{i \geq 0} \operatorname{dim}_{k} \operatorname{Ext}_{R}^{i}(k, k) z^{i}
$$

is in general difficult. In practice, it amounts to constructing a minimal free resolution of k as an R-module, which will be infinite unless R is a regular ring.

In this thesis we focus on the problem of describing these objects for the class of monomial rings, by which we mean commutative algebras R whose minimal relations are monomials in the minimal set of generators for R.

There are at least two motivations for studying monomial rings. If $R=S / I$ for some homogeneous ideal I in the polynomial ring $S=k\left[x_{1}, \ldots, x_{n}\right]$, then one can form the monomial ideal $\operatorname{in}(I)$ which is generated by the initial terms of the elements of I with respect to some term order for the monomials in S. Letting $A=S / \operatorname{in}(I)$, there is a convergent spectral sequence

$$
\operatorname{Tor}_{*, *}^{A}(k, k) \Longrightarrow \operatorname{Tor}_{*, *}^{R}(k, k),
$$

so in this sense the homological behaviour of R is approximated by that of A, cf. [2]. Secondly, numerous examples of monomial rings appear in algebraic combinatorics under the name of 'Stanley-Reisner rings', or 'face rings', of simplicial complexes. Computations of algebraic invariants of face rings have led to interesting results in combinatorics. For instance, the local cohomology of a face ring $k[\Delta]$ is computable in terms of the homology of the links of the simplicial complex Δ, and as a consequence one can derive topological criteria for when $k[\Delta]$ is a Cohen-Macaulay ring, cf. [13] or [32]. So a combinatorial description of the algebra $\operatorname{Ext}_{k[\Delta]}(k, k)$ could lead to new results in combinatorics. For instance, in simple-minded comparison with the case of local cohomology, such a description would in principle yield a combinatorial criterion for when a face ring is Golod (cf. Section 10).

A finitely generated monomial ring is of the form $R=S / I$, where S is the polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ and $I \subseteq S$ is an ideal generated by monomials. The algebra R inherits the natural \mathbb{N}^{n}-grading of S, and $\operatorname{Ext}_{R}(k, k)$ can be equipped with an \mathbb{N}^{n}-grading by considering \mathbb{N}^{n}-graded resolutions of k over R. Backelin [7] proved that the multigraded Poincaré series

$$
\mathrm{P}_{R}(\mathbf{x}, z)=\sum_{i \geq 0, \alpha \in \mathbb{N}^{n}} \operatorname{dim}_{k} \operatorname{Ext}_{R}^{i}(k, k)_{\alpha} x^{\alpha} z^{i} \in \mathbb{Z} \llbracket x_{1}, \ldots, x_{n}, z \rrbracket
$$

is the Taylor series expansion of a rational function of the form

$$
\frac{\prod_{i=1}^{n}\left(1+x_{i} z\right)}{b_{R}(\mathbf{x}, z)}
$$

for some polynomial $b_{R}(\mathbf{x}, z) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}, z\right]$. This result was subsequently generalized by Backelin and Roos [8], who proved that the double Yoneda algebra
$\operatorname{Ext}_{\operatorname{Ext}_{R}(k, k)}(k, k)$ is noetherian. From this it follows that $\operatorname{Ext}_{R}(k, k)$, or equivalently $\pi(R)$, is finitely generated.

These qualitative results notwithstanding, only recently has one realized what combinatorial structures govern the (co)homological behaviour of R. For a monomial ideal I, with minimal set of generators M, let L_{I} denote the set $\left\{m_{S} \mid S \subseteq M\right\}$ partially ordered by divisibility, where m_{S} denotes the least common multiple of the monomials in S. It is called the lcm-lattice of I, cf. [21]. In addition to the partial order, L_{I} is the vertex set of a graph whose edges are pairs of monomials that have a non-trivial common factor. Avramov [5] proved that most of the homotopy Lie algebra $\pi(R)$ is determined by the combinatorial data encoded in the partially ordered graph L_{I}. Indeed, if I and J are two monomial rings in the polynomial rings S and T respectively, we say that I is equivalent to J if there is a bijection $f: L_{I} \rightarrow L_{J}$ which is both an isomorphism of graphs and of partial orders. With $Q=S / I$ and $R=T / J$, Avramov's result says that if I and J are equivalent, then there is an isomorphism of graded Lie algebras

$$
\pi^{\geq 2}(Q) \cong \pi^{\geq 2}(R)
$$

Here $\pi^{\geq 2}(Q)$ is the sub Lie algebra $\bigoplus_{i \geq 2} \pi^{i}(Q)$ of $\pi(Q)$. Recently, Charalambous [15] showed that this isomorphism behaves as expected with respect to multidegrees.

This equivalence relation on monomial ideals first made its appearance in [21], where it was proved that R is a Golod ring if and only if Q is. This follows also from the above isomorphism of Lie algebras, because of the general fact that R is Golod if and only if $\pi^{\geq 2}(R)$ is a free Lie algebra.

Results. This thesis is an expanded and modified version of the paper [9]. Also, parts of the material from the section 'Combinatorics' will appear in [10].

The thesis contains two main results. The first is the computation of the Poincaré series of a monomial ring R and the second is the computation of the graded Lie algebra $\pi^{\geq 2}(R)$.

We introduce a finite lattice K_{M} associated to a monomial set M - the lattice of 'saturated subsets' of M - and we prove (Theorem 5) that for a monomial ideal I in $S=k\left[x_{1}, \ldots, x_{n}\right]$ with minimal set of generators M, the denominator of the Poincaré series of $R=S / I$ can be computed by the formula

$$
b_{R}(\mathbf{x}, z)=1+\sum_{\emptyset \neq S \in K_{M}} m_{S}(-z)^{c(S)+2} \widetilde{\mathrm{H}}((\emptyset, S) ; k)(z) .
$$

Here, $c(S)$ denotes the number of connected components of S with respect to the graph structure given by connecting monomials with non-trivial common factors, (\emptyset, S) is the open interval between \emptyset and S in the poset K_{M}, and $\widetilde{\mathrm{H}}((\emptyset, S) ; k)(z)$ denotes the generating function of the dimensions of the reduced homology groups of the poset (\emptyset, S) with coefficients in the field k.

To a set of monomials M we associate a combinatorially defined finite dimensional \mathbb{N}^{n}-graded L_{∞}-algebra, $\mathfrak{L}_{\infty}(M)$, and we show how to compute the graded Lie algebra $\pi^{\geq 2}(R)$ in terms of the cohomology Lie algebra $\mathrm{H}^{*}\left(\mathfrak{L}_{\infty}(M)\right)$. In fact, there is a functor F on the category of multigraded Lie algebras, defined by

$$
F L=\frac{\mathbb{L}(L)}{\langle\llbracket x, y \rrbracket-[x, y] \mid x \perp y \in L\rangle}
$$

where $\llbracket x, y \rrbracket$ denotes the bracket in the free Lie algebra $\mathbb{L}(L)$ and $[x, y]$ the bracket in L, and $x \perp y$ means that the multidegrees of x and y have disjoint supports, and
we show (Theorem 6) that there is an isomorphism of multigraded Lie algebras

$$
\pi^{\geq 2}(R) \cong F \mathrm{H}^{*}\left(\mathfrak{L}_{\infty}(M)\right)
$$

By construction, the L_{∞}-algebra $\mathfrak{L}_{\infty}(M)$ depends (up to an isomorphism which preserves the \perp-relation) only on the partially ordered graph L_{M}, so this could be seen as a refinement of Avramov's result.

As a consequence of our results we solve a problem posed in [5] of determining an upper bound for the degree of the denominator polynomial of the Poincaré series in terms of the number of minimal relations (Corollary 1). Also, the formula in [21] for the Betti numbers of R is coupled with our formula for the Poincaré series to obtain a combinatorial criterion for when a monomial ring is Golod (Theorem 7).

We introduce a new class of finite lattices, called complete lattices, which is closed under direct products and contains all geometric lattices. The main feature of this class is that monomial sets whose lcm-lattices are complete define Golod rings if and only if their corresponding graphs are complete. This generalizes the previously known result that this holds if the lcm-lattice is boolean.

In the last part we note how to interpret the lattice K_{M} as the intersection lattice of a certain real subspace arrangement. Our formula combined with the Goresky-MacPherson formula for the cohomology of the complement of such an arrangement results in a new proof of a result of [31] relating this cohomology to the graded vector space $\operatorname{Tor}_{*}^{R}(k, k)$ for a certain monomial ring R.

Conventions, notations

In this section we list the conventions and notations that should be kept in mind at all times.

Base ring. We work over a field k of arbitrary characteristic. Often, S will denote the polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$.

Multigraded vector spaces. Our work takes place in the category of $\mathbb{N} \times \mathbb{N}^{n}$ graded vector spaces. The objects, referred to as 'multigraded vector spaces', or sometimes simply 'vector spaces', are collections $V=\left\{V_{i, \alpha}\right\}_{i, \alpha}$ of vector spaces $V_{i, \alpha}$ over k, indexed by $(i, \alpha) \in \mathbb{N} \times \mathbb{N}^{n}$. We write $|x|=i, \operatorname{deg}(x)=\alpha$ if $x \in V_{i, \alpha}$. In this case $|x|$ is called the homological degree and $\operatorname{deg}(x)$ is called the multidegree of x. The reason for distinguishing the homological grading from the other \mathbb{N}-gradings is that it governs signs in formulas.

If $\alpha \in \mathbb{N}^{n}$, then the support of α is the set $\operatorname{supp}(\alpha)=\left\{i \mid \alpha_{i} \neq 0\right\}$. Write $x \perp y$ if $\operatorname{supp}(\operatorname{deg}(x)) \cap \operatorname{supp}(\operatorname{deg}(y))=\emptyset$. By coarsening the multigrading, our objects are $\mathbb{N} \times \mathbb{N}$-graded: an element x has degree (i, j) if $|x|=i$ and $|\operatorname{deg}(x)|=j$. Here $|\alpha|=\alpha_{1}+\ldots+\alpha_{n}$ if $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$. In order to avoid confusion with the homological \mathbb{N}-grading we call $|\operatorname{deg}(x)|$ the weight of the element x.

A linear map $f: V \rightarrow W$ of degree (j, β) is a collection of linear maps $f_{i, \alpha}: V_{i, \alpha} \rightarrow$ $W_{i+j, \alpha+\beta}$. Most often, our maps are homogeneous with respect to the multigrading, so when we say ' f has degree n ' it means that f has degree ($n, 0$). Morphisms of multigraded vector spaces are linear maps of degree 0 .

Of course, direct sums of multigraded vector spaces are defined by taking degreewise sums. The tensor product $V \otimes W$ has $(V \otimes W)_{i, \alpha}=\bigoplus V_{j, \beta} \otimes W_{l, \gamma}$, where summation is over $(j, \beta)+(l, \gamma)=(i, \alpha)$, and all tensor products are over k, i.e., $\otimes=\otimes_{k}$.

If V is a vector space with $V_{i, \alpha}$ finite dimensional for all i, α, then the generating function of V is the formal power series

$$
V\left(z, x_{1}, \ldots, x_{n}\right)=\sum_{i \geq 0, \alpha \in \mathbb{N}} \operatorname{dim}_{k}\left(V_{i, \alpha}\right) z^{i} x^{\alpha}
$$

Forgetting multidegrees, $V(z)$ will denote $V(z, 1, \ldots, 1)$, provided all but finitely many $V_{i, \alpha}$ are zero for i fixed.

The suspension $s V$ of a vector space V has $(s V)_{i, \alpha}=V_{i-1, \alpha}$. Thus $|s x|=|x|+1$ and $\operatorname{deg}(s x)=\operatorname{deg}(x)$ for $x \in V$. The dual of V is the vector space V^{*} where $\left(V^{*}\right)_{i, \alpha}=\operatorname{Hom}_{k}\left(V_{i, \alpha}, k\right)$ is the space of linear maps $V_{i, \alpha} \rightarrow k$.
$V_{\geq n}$ denotes the vector space with $\left(V_{\geq n}\right)_{i, \alpha}=V_{i, \alpha}$, if $i \geq n$, and 0 otherwise. Similarly define $V_{\leq n}$ and $V_{>n}$. For a non-negative integer i, we denote by V_{i} the vector space $V_{\geq i} \cap V_{\leq i}$.

If V is a vector space, and if S is a subset of \mathbb{N}^{n}, then V_{S} is the graded vector space with $\left(V_{S}\right)_{i, \alpha}=V_{i, \alpha}$ if $\alpha \in S$ and $\left(V_{S}\right)_{i, \alpha}=0$ otherwise. The space $V_{\tau}:=V_{\{0,1\}^{n}}$ is called the truncation of V, and V is called truncated if $V=V_{\tau}$.

DG-algebras. A complex is a vector space $V=\left\{V_{i, \alpha}\right\}_{i, \alpha}$ together with a map $d: V \rightarrow V$ of homological degree -1 , such that $d^{2}=0$. A differential graded algebra, or a dg-algebra for brevity, is a complex A together with a morphism of complexes $A \otimes A \rightarrow A$, denoted $a \otimes b \mapsto a b$. In this context, this means that $A_{i, \alpha} \cdot A_{j, \beta} \subseteq A_{i+j, \alpha+\beta}$, and d is a derivation, i.e., $d(x y)=d(x) y+(-1)^{|x|} x d(y)$. Note that A and the homology $\mathrm{H}(A)=\operatorname{Ker} d / \operatorname{Im} d$ become graded A_{0}-algebras, where $A_{0}=\left\{A_{0, \alpha}\right\}_{\alpha}$. We say that A is commutative if $x y=(-1)^{|x||y|} y x$ for homogeneous $x, y \in A$. A morphism of dg-algebras is called a quasi-isomorphism if the induced map on homology is an isomorphism. An algebra A is called connected if $A_{0}=k$.

When convenient, we assume our algebras to be augmented with a morphism of algebras $\epsilon: A \rightarrow k$ such that the augmentation ideal $\operatorname{Ker} \epsilon$ is concentrated in positive weight. This is to ensure that the results available for local rings are to be valid in our situation as well. Many results are cited from the exposition [4] which deals exclusively with local rings.

Graded Lie algebras. Following [4], by a graded Lie algebra we will mean a vector space $L=\left\{L_{i, \alpha}\right\}$ concentrated in positive homological degrees, i.e., $L=L_{\geq 1}$, together with a linear map $L \otimes L \rightarrow L, x \otimes y \mapsto[x, y]$ of degree 0 and a squaring operation $L_{i, \alpha} \rightarrow L_{2 i, 2 \alpha}, x \mapsto x^{[2]}$, for odd i, such that

$$
\begin{array}{lll}
{[x, y]} & =-(-1)^{|x||y|}[y, x] & \\
{[x,[y, z]]} & =[[x, y], z]+(-1)^{|x||y|}[y,[x, z]] & \\
(x+y)^{[2]} & =x^{[2]}+y^{[2]}+[x, y], & \\
\text { if }|x|=|y| \text { is odd } \\
\left(c x{ }^{[2]}\right. & =c^{2} x^{[2]}, & \\
\text { if }|x| \text { is odd and } c \in k \\
{\left[x^{[2]}, y\right]} & =[x,[x, y]], & \\
\text { if }|x| \text { is odd }
\end{array}
$$

Furthermore it is required that $[x, x]=[y,[y, y]]=0$ for even $|x|$ and odd $|y|$.
The universal enveloping algebra $U L$ of a graded Lie algebra L is defined as the quotient of the tensor algebra $T(L)$ by the relations $x \otimes y-(-1)^{|x||y|} y \otimes x-[x, y]$ for $x, y \in L$ and $x \otimes x-x^{[2]}$ for $x \in L$ with $|x|$ odd.

If L is a graded Lie algebra, then $I=L_{\mathbb{N}^{n}-\{0,1\}^{n}}$ is a homogeneous ideal in L, and L_{τ} is naturally a graded Lie algebra by identifying it with the quotient L / I.

Furthermore, if J is any homogeneous ideal of L, then J_{τ} is an ideal of L_{τ} and $(L / J)_{\tau} \cong L_{\tau} / J_{\tau}$ as graded Lie algebras.

Monomial sets. Let x_{1}, \ldots, x_{n} be variables. If $\alpha \in \mathbb{N}^{n}$, then we write x^{α} for the monomial $x_{1}^{\alpha_{1}} \cdot \ldots x_{n}^{\alpha_{n}}$. The multidegree of x^{α} is $\operatorname{deg}\left(x^{\alpha}\right)=\alpha$. If $\alpha \in\{0,1\}^{n}$, then both α and x^{α} are called squarefree.

To a set M of monomials we associate an undirected graph, with vertices M, whose edges go between monomials having a non-trivial common factor. This is the graph structure referred to when properties such as connectedness etc., are attributed to monomial sets. Thus, for instance, a monomial set is called independent if the monomials therein are pairwise without common factors. By $D(M)$ we denote the set of non-empty independent subsets of M, and the independence number of M is the largest size of an independent subset of M. A connected component of M is a maximal connected subset. Any monomial set M has a decomposition into connected components $M=M_{1} \cup \ldots \cup M_{r}$, and we let $c(M)=r$ denote the number of such.

If I is an ideal in a polynomial ring generated by monomials there is a uniquely determined minimal set of monomials generating I. This minimal generating set, denoted $\operatorname{Gen}(I)$, is characterized by being an antichain with respect to divisibility, that is, for all $m, n \in \operatorname{Gen}(I), m \mid n$ implies $m=n$.

If S is a finite set of monomials, then m_{S} denotes the least common multiple of all elements of S. By convention $m_{\emptyset}=1$. The set $L_{M}=\left\{m_{S} \mid S \subseteq M\right\}$ partially ordered by divisibility is a lattice with 1 cm as join, called the lcm-lattice of the set M. If I is a monomial ideal, then $L_{I}:=L_{\mathrm{Gen}(I)}$ is called the lcm-lattice of I. By our general convention that monomial sets are graphs, L_{I} has also a graph structure. The gcd-graph of I, studied in [5], is the complement of the graph L_{I}, i.e., it has the same vertices L_{I}, but its edges go between monomials that are relatively prime.

Two monomial sets M and N are said to be separated if $\operatorname{gcd}\left(m_{M}, m_{N}\right)=1$.
If M, N are two sets of monomials then M_{N} denotes the set of those monomials in M which divide some monomial in N. Write $M_{m}=M_{\{m\}}$, and $M_{\alpha}=M_{x^{\alpha}}$.

Sign convention. The following sign convention will be used. If X is a totally ordered set, let $\left\{v_{x}\right\}_{x \in X}$ be anti-commuting variables indexed by X. For a subset $S=\left\{x_{1}, \ldots, x_{n}\right\}$ of X, where $x_{1}<\ldots<x_{n}$, let $v_{S}=v_{x_{1}} \wedge \ldots \wedge v_{x_{n}}$. If $S=$ $S_{1} \cup \ldots \cup S_{r}$ is a partition of S, then define the $\operatorname{sign} \operatorname{sgn}\left(S_{1}, \ldots, S_{r}\right) \in\{-1,1\}$ by

$$
v_{S}=\operatorname{sgn}\left(S_{1}, \ldots, S_{r}\right) v_{S_{1}} \wedge \ldots \wedge v_{S_{r}}
$$

Set $\operatorname{sgn}\left(S_{1}, \ldots, S_{r}\right)=0$ if $S_{i} \cap S_{j} \neq \emptyset$ for some $i \neq j$.

Minimal models and strongly homotopy Lie algebras

1. Free commutative DG-algebras

We here collect some well known facts about free commutative algebras.
The free graded commutative algebra on a graded vector space V is the algebra

$$
\Lambda V=\text { exterior algebra }\left(V_{\text {odd }}\right) \otimes_{k} \text { symmetric algebra }\left(V_{\text {even }}\right) .
$$

There is a unique comultiplication in ΛV making it into a Hopf algebra in which V is the space of primitive elements. If X is a well ordered basis for V, then a basis for ΛV is given by the monomials $x_{1}^{a_{1}} \ldots x_{r}^{a_{r}}$, where $r \geq 0, x_{1}<\ldots<x_{r}$
and $a_{i}=1$ if $\left|x_{i}\right|$ is odd. The subspace $\Lambda^{n} V$ has basis all such monomials with $a_{1}+\ldots+a_{r}=n$, and elements thereof have word length n.

A graded vector space $V=\left\{V_{i}\right\}_{i \geq 1}$ is called locally finite if V_{i} is finite dimensional for each i. Note that if V is locally finite, then so is ΛV. In this case the dual Hopf algebra of ΛV is isomorphic to the divided power algebra $\Gamma\left(V^{*}\right)$ on V^{*}, cf. [24]. This Hopf algebra can be described as follows. If X is an ordered basis for V, and X^{*} is a dual basis, then $\Gamma\left(V^{*}\right)$ has a basis of 'divided monomials' dual to the monomial basis for ΛV :

$$
\xi_{r}^{\left(a_{r}\right)} \ldots \xi_{1}^{\left(a_{1}\right)}
$$

where $r \geq 0, \xi_{i} \in X^{*}$ is the dual basis element of $x_{i} \in X, x_{1}<\ldots<x_{r}$ and $a_{i}=1$ if $\left|x_{i}\right|$ is odd. $\Gamma^{n}\left(V^{*}\right)$ has basis all such monomials with $a_{1}+\ldots+a_{r}=n$. The multiplication of $\Gamma\left(V^{*}\right)$ is graded commutative and satisfies

$$
\xi^{(i)} \xi^{(j)}=\binom{i+j}{i} \xi^{(i+j)}
$$

The comultiplication Δ is a morphism of algebras and

$$
\Delta\left(\xi^{(n)}\right)=\sum_{i+j=n} \xi^{(i)} \otimes \xi^{(j)}
$$

The following two properties of $\Gamma(V)$ will be needed. The map $p_{V}: \Gamma(V) \rightarrow V$ is defined to be the identity on $\Gamma^{1}(V)$ and zero on $\Gamma^{n}(V)$ if $n \neq 1$.

- A linear map $f: V \rightarrow W$ of degree 0 extends uniquely to a morphism of coalgebras $\tilde{f}: \Gamma(V) \rightarrow \Gamma(W)$ such that $f p_{V}=p_{W} \tilde{f}$. The extension is given by

$$
\tilde{f}\left(x_{1}^{\left(a_{1}\right)} \ldots x_{n}^{\left(a_{n}\right)}\right)=\left(f\left(x_{1}\right)\right)^{\left(a_{1}\right)} \ldots\left(f\left(x_{n}\right)\right)^{\left(a_{n}\right)}
$$

on basis elements.

- A linear map $\delta: \Gamma^{n}(V) \rightarrow V$ extends uniquely to a coderivation $\tilde{\delta}$ on $\Gamma(V)$ which decreases word length by $n-1$. On a basis element it is given by

$$
\begin{equation*}
\tilde{\delta}\left(x_{1}^{\left(a_{1}\right)} \ldots x_{r}^{\left(a_{r}\right)}\right)=\sum_{\substack{i_{1}+\ldots+i_{r}=n \\ 0 \leq i_{j} \leq a_{j}}} \pm \delta\left(x_{1}^{\left(i_{1}\right)} \ldots x_{r}^{\left(i_{r}\right)}\right) x_{1}^{\left(a_{1}-i_{1}\right)} \ldots x_{r}^{\left(a_{r}-i_{r}\right)} \tag{1}
\end{equation*}
$$

where the sign is determined by the Koszul sign convention.
Denote by (V) the ideal generated by V in ΛV. A homomorphism $f: \Lambda V \rightarrow \Lambda W$ of graded algebras with $f(V) \subseteq(W)$ induces a linear map $L f: V \rightarrow W$, called the linear part of f, which is defined by the requirement $f(v)-L f(v) \in(W)^{2}$ for all $v \in V$.

If x_{1}, \ldots, x_{n} is a basis for V_{0}, then $\Lambda V=S \otimes_{k} \Lambda\left(V_{+}\right)$, where $S=k\left[x_{1}, \ldots, x_{n}\right]$ and V_{+}is the sum of all V_{i} for positive i. Therefore ΛV may be regarded as an S-module and each $(\Lambda V)_{n}$ is a finitely generated free S-module. Let $\mathfrak{m} \subseteq S$ be the maximal ideal generated by V_{0} in S. Note that $(V)=\left(V_{+}\right)+\mathfrak{m}$ as vector spaces. The following basic lemma is a weak counterpart of Lemma 14.7 in [17] and of Lemma 1.8.7 in [23].

Lemma 1. Let $f: \Lambda U \rightarrow \Lambda V$ be a homomorphism of graded algebras such that $f_{0}: \Lambda\left(U_{0}\right) \rightarrow \Lambda\left(V_{0}\right)$ is an isomorphism and the linear part, $L f: U \rightarrow V$, is an isomorphism of graded vector spaces. Then f is an isomorphism.

Proof. Identify $S=\Lambda\left(U_{0}\right)=\Lambda\left(V_{0}\right)$ via f_{0}. Since $L f$ is an isomorphism, ΛU and ΛV are isomorphic. Thus to show that f is an isomorphism it is enough to show that $f_{n}:(\Lambda U)_{n} \rightarrow(\Lambda V)_{n}$ is surjective in each degree n, because f_{n} is a map between finitely generated isomorphic free S-modules. We do this by induction. The map f_{0} is surjective by assumption. Let $n \geq 1$ and assume that f_{i} is surjective for every $i<n$. Then since $L f$ is surjective we have

$$
(\Lambda V)_{n} \subseteq f\left((\Lambda U)_{n}\right)+\left(\left(V_{+}\right)^{2}\right)_{n}+\mathfrak{m}(\Lambda V)_{n}
$$

$\left(\left(V_{+}\right)^{2}\right)_{n}$ is generated by products $v w$, where $|w|,|v|<n$, so by induction $\left(\left(V_{+}\right)^{2}\right)_{n} \subseteq$ $f\left((\Lambda U)_{n}\right)$. Hence

$$
(\Lambda V)_{n} \subseteq f\left((\Lambda U)_{n}\right)+\mathfrak{m}(\Lambda V)_{n}
$$

$(\Lambda V)_{n}$ and $f\left((\Lambda U)_{n}\right)$ are graded S-modules, so it follows from the graded version of Nakayama's lemma that $(\Lambda V)_{n}=f\left((\Lambda U)_{n}\right)$.

By a free commutative dg-algebra, we will mean a dg-algebra of the form $(\Lambda V, d)$, for some graded vector space V, where the differential d satisfies $d V \subseteq(V)$. The linear part $L d$ of d on ΛV is a differential on V, and will be denoted d_{0}. A free commutative dg-algebra $(\Lambda V, d)$ is called minimal if $d V \subseteq(V)^{2}$. Thus $(\Lambda V, d)$ is minimal if and only if $d_{0}=0$.

The following 'lifting lemma' is often useful.
Lemma 2. Let $\Lambda V=(\Lambda V, d)$ be a free commutative dg-algebra and let $p: A \rightarrow B$ be a surjective quasi-isomorphim of commutative dg-algebras. Then any map of $d g$-algebras $f: \Lambda V \rightarrow B$ lifts to A making the diagram commutative

Proof. ΛV is the union of sub dg-algebras $\Lambda\left(V_{<n}\right)$, and we define η by induction over these 'skeleta'. Suppose $\eta_{n}: \Lambda\left(V_{<n}\right) \rightarrow B$ has been defined so that $p \eta_{n}=$ f and $d \eta_{n}=\eta_{n} d$. Choose a basis X for V_{n}. For $v \in X$, choose an $a \in A$ with $p(a)=f(v)$. Since $d v \in \Lambda\left(V_{<n}\right), \eta_{n}(d v)$ is a cycle in A and by assumption $p \eta_{n}(d v)=f(d v)=d f(v)=d p(a)=p(d a)$, so $\eta_{n}(d v)-d a$ is a cycle in $\operatorname{Ker} p$. Because p is a quasi-isomorphism, the long exact homology sequence derived from $0 \rightarrow \operatorname{Ker} p \rightarrow A \rightarrow B \rightarrow 0$ shows that Ker p has trivial homology. Therefore $\eta_{n}(d v)-d a=d y$ for some $y \in \operatorname{Ker} p$. Set $w_{v}=a+y$. Then $p\left(w_{v}\right)=f(v)$ and $d w_{v}=\eta_{n}(d v)$. Since A is commutative, the map $v \mapsto w_{v}$ from X to A extends to a map of dg-algebras $\eta_{n+1}: \Lambda\left(V_{\leq n}\right)$ such that $p \eta_{n+1}=f$. The induction starts with the structure maps from $k=\Lambda\left(V_{<0}\right)$.

2. The homotopy Lie algebra of a free commutative Dg-algebra

Let $(\Lambda V, d)$ be a free commutative dg-algebra with $V_{0}=0$. The differential d splits as $d=d_{0}+d_{1}+d_{2}+\ldots$, where d_{i} raises word length by i, i.e., $d_{i}\left(\Lambda^{n} V\right) \subseteq$ $\Lambda^{n+i} V$. It is easy to check that each d_{i} is a derivation on ΛV. Furthermore, a look at the homogeneous components of the relation $d^{2}=0$ with respect to word length
yields the sequence of relations

$$
\begin{aligned}
d_{0}^{2} & =0 \\
d_{0} d_{1}+d_{1} d_{0} & =0 \\
d_{0} d_{2}+d_{1}^{2}+d_{2} d_{0} & =0
\end{aligned}
$$

Let $s L=V^{*}$ (or equivalently $\left.L=(s V)^{*}\right)$. Dualizing $(\Lambda V, d)$, we obtain $(\Gamma(s L), \delta)$, where $\delta=d^{*}$ is a coderivation of degree 1 such that $\delta^{2}=0$. The coderivation δ splits as $\delta=\delta_{0}+\delta_{1}+\delta_{2}+\ldots$, where $\delta_{i}=d_{i}^{*}$ is a coderivation decreasing word length by i, i.e., $\delta_{i}\left(\Gamma^{n}(s L)\right) \subseteq \Gamma^{n-i}(s L)$. By definition, the data of a degree 1 coderivation on $\Gamma(s L)$ of square zero determines the structure of an L_{∞}-algebra, or a strongly homotopy Lie algebra, on L, cf. [26] and [27]. If the base field has characteristic zero, then, as is shown in [27], this structure is equivalent to a sequence of antisymmetric brackets $L^{\otimes r} \rightarrow L, x_{1} \otimes \ldots \otimes x_{r} \mapsto\left[x_{1}, \ldots, x_{r}\right]$, of degree $2-r$, for $r \geq 1$, satisfying a the 'generalized Jacobi identities' ([26], Definition 2.1)

$$
\sum_{i=1}^{n} \sum_{\sigma} \chi(\sigma)(-1)^{i(n-i)}\left[\left[x_{\sigma(1)}, \ldots, x_{\sigma(i)}\right], x_{\sigma(i+1)}, \ldots, x_{\sigma(n)}\right]=0
$$

for $n \geq 1$. Here the second sum is over all permutations σ of $\{1,2, \ldots, n\}$ such that $\sigma(1)<\ldots<\sigma(i)$ and $\sigma(i+1)<\ldots<\sigma(n)$, and $\chi(\sigma)= \pm 1$ is the sign for which the equality

$$
\left[x_{1}, \ldots, x_{n}\right]=\chi(\sigma)\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]
$$

is implied by the anti-symmetry condition, e.g., $\chi(231)=(-1)^{\left|x_{1}\right|\left|x_{3}\right|+\left|x_{1}\right|\left|x_{2}\right|}$. The brackets are defined in terms of the coderivations δ_{r-1} as follows:

$$
\delta_{r-1}\left(s x_{1} \ldots s x_{r}\right)=(-1)^{\epsilon} s\left[x_{1}, \ldots, x_{r}\right]
$$

Here $\epsilon=\left|x_{1}\right|+\left|x_{3}\right|+\ldots+\left|x_{r-1}\right|$ if r is even and $\epsilon=1+\left|x_{2}\right|+\left|x_{4}\right|+\ldots+\left|x_{r-1}\right|$ if r is odd. The definition of the brackets uses only the subalgebra of $\Gamma(s L)$ generated by $s L$. In characteristic zero, this is of course the whole algebra, but in positive characteristics, the inclusion is strict. Several non-linear operations can be defined on L, for instance a 'reduced r-th power', $x \mapsto x^{[r]}$, given by $\delta_{r-1}\left((s x)^{(r)}\right)= \pm s x^{[r]}$, and these can not be recovered from the multilinear brackets above.

An L_{∞}-algebra is a Lie algebra 'up to homotopy' in the following sense. The coderivations δ_{0} and δ_{1} give rise to a degree 1 map $d: L \rightarrow L$, a bracket $[\cdot, \cdot]: L^{\otimes 2} \rightarrow$ L, and for elements x of odd degree, a squaring operation $x \mapsto x^{[2]}$:

$$
\delta_{0}(s x)=-s d(x), \quad \delta_{1}(s x s y)=(-1)^{|x|} s[x, y], \quad \delta_{1}\left((s x)^{(2)}\right)=-s x^{[2]} .
$$

The graded commutativity of $\Gamma(s L)$ results in anti-commutativity of the bracket:

$$
[x, y]=-(-1)^{|x||y|}[y, x]
$$

The relations $\delta_{0}^{2}=0$ and $\delta_{0} \delta_{1}+\delta_{1} \delta_{0}=0$ translate via (1) to $d^{2}=0, d[x, y]=$ $[d x, y]+(-1)^{|x|}[x, d y]$ and $d\left(x^{[2]}\right)=d(x) x$. Define $h: L^{\otimes 3} \rightarrow L$ by

$$
\delta_{2}(s x s y s z)=-(-1)^{|y|} \operatorname{sh}(x, y, z)
$$

and let $J(x, y, z)=[[x, y], z]-[x,[y, z]]-(-1)^{|y||z|}[[x, z], y]$ be the Jacobian of the bracket in L. Using (1), it is an easy exercise to verify that

$$
\delta_{1}^{2}(\text { sxsysz })=(-1)^{|y|} s J(x, y, z)
$$

The relation $\delta_{0} \delta_{2}+\delta_{1}^{2}+\delta_{2} \delta_{0}=0$ therefore shows that

$$
J(x, y, z)=d h(x, y, z)+h(d x, y, z)+(-1)^{|x|} h(x, d y, z)+(-1)^{|x|+|y|} h(x, y, d z)
$$

or in other words, $J=d h+h d$, so h is a contracting homotopy for the Jacobian J. In this sense the Jacobi identity is satisfied up to homotopy in L. Applying δ_{1} to the relation $(s x+s y)^{(2)}-(s x)^{(2)}-(s y)^{(2)}=s x s y$, shows that $(x+y)^{[2]}-x^{[2]}-y^{[2]}=[x, y]$, for odd $x, y \in L$. Similarly the rest of the axioms for a graded Lie algebra hold strictly or up to homotopy in L.

Relations that hold up to homotopy in L become strict relations in the cohomology algebra $\mathrm{H}^{*}(L)$. Thus if L is an L_{∞}-algebra, then $\mathrm{H}^{*}(L)$ is a graded Lie algebra. Of course we do not use the full L_{∞}-structure of L in order to exhibit $\mathrm{H}^{*}(L)$ as a graded Lie algebra. We use only the differential, the binary bracket and the squaring operation - the higher operations merely ensure that passage to cohomology produces a strict Lie algebra.
Definition 1. Let $(\Lambda V, d)$ be a free commutative dg-algebra with $V_{0}=0$. The homotopy Lie algebra of $(\Lambda V, d)$ is the graded Lie algebra $\mathfrak{L}(\Lambda V, d)=\mathrm{H}^{*}(L)$, where $L=(s V)^{*}$ is the L_{∞}-algebra associated to $(\Lambda V, d)$.

With serious abuse of notation, the homotopy Lie algebra $\mathfrak{L}(\Lambda V, d)$ of $(\Lambda V, d)$ will sometimes be denoted \mathfrak{L}_{V}. The homotopy Lie algebra construction is a contravariant functor in $(\Lambda V, d)$: A morphism of dg-algebras $f:(\Lambda V, d) \rightarrow\left(\Lambda W, d^{\prime}\right)$ such that $f(V) \subseteq(W)$ has a linear part f_{0} specified by $f(v)-f_{0}(v) \in \Lambda^{\geq 2}(W)$ for all $v \in V$. Inspection of the linear parts of the relations $f(x y)=f(x) f(y)$ and $d^{\prime} f=f d$ shows that f_{0} is a homomorphism dg-algebras $\left(\Lambda V, d_{0}\right) \rightarrow\left(\Lambda W, d_{0}^{\prime}\right)$ with $f_{0}(V) \subseteq W$. Thus the dual map $f_{0}^{*}: \Gamma\left(s L_{W}\right) \rightarrow \Gamma\left(s L_{V}\right)$ is a morphism of coalgebras mapping W^{*} into V^{*}, and therefore $f_{0}^{*}\left(\left(s x_{1}\right)^{\left(a_{1}\right)} \ldots\left(s x_{n}\right)^{\left(a_{n}\right)}\right)=$ $\left(f_{0}^{*}\left(s x_{0}\right)\right)^{\left(a_{0}\right)} \ldots\left(f_{0}^{*}\left(s x_{n}\right)\right)^{\left(a_{n}\right)}$ for all $x_{i} \in L$. The induced map $\hat{f}: L_{W} \rightarrow L_{V}$ is given by $f_{0}^{*}(s x)=s \hat{f}(x)$, and it is a map of complexes. From the relation $\delta_{1} f_{0}^{*}-f_{0}^{*} \delta_{1}^{\prime}=f_{1}^{*} \delta_{0}^{\prime}-\delta_{0} f_{1}^{*}$, we see that \hat{f} is a morphism of algebras up to homotopy. Thus, passing to cohomology, $\mathfrak{L}_{f}:=\mathrm{H}^{*}(\hat{f})$ is seen to be a morphism of Lie algebras $\mathfrak{L}_{W} \rightarrow \mathfrak{L}_{V}$. It is trivial that $\mathfrak{L}_{f g}=\mathfrak{L}_{g} \mathfrak{L}_{f}$ and that $\mathfrak{L}_{1}=1$. So we have a contravariant functor from free commutative dg-algebras to graded Lie algebras.

3. Models

Let $\left(A, d_{A}\right)$ be a commutative dg-algebra. A model for $\left(A, d_{A}\right)$ is a free commutative dg-algebra $(\Lambda V, d)$, where V is a non-negatively graded vector space, together with a quasi-isomorphism of dg-algebras

$$
(\Lambda V, d) \xrightarrow{\sim}\left(A, d_{A}\right)
$$

The model is called minimal if $(\Lambda V, d)$ is a minimal, i.e., if $d(V) \subseteq(V)^{2}$. We focus on two particular species of dg-algebras $\left(A, d_{A}\right)$.

- If $A=A_{0}$ is a commutative algebra with trivial differential, then a model $(\Lambda V, d)$ of A satisfies $A=\mathrm{H}_{0}(\Lambda V, d)=\Lambda\left(V_{0}\right) /(\operatorname{Im} d)_{0}$ and $\mathrm{H}_{i}(\Lambda V, d)=0$ for $i>0$. In particular, A is a module over the polynomial ring $S=\Lambda\left(V_{0}\right)$ and $(\Lambda V, d)$ is a resolution of A by free S-modules

$$
\cdots \rightarrow(\Lambda V)_{n} \rightarrow(\Lambda V)_{n-1} \rightarrow \cdots \rightarrow(\Lambda V)_{1} \rightarrow S \rightarrow A \rightarrow 0
$$

- If $\mathrm{H}_{0}(A)=k$, then the map $A \rightarrow \mathrm{H}_{0}(A)=k$, defined by identifying $\mathrm{H}_{0}(A)$ with $A_{0} /(\operatorname{Im} d)_{0}$, is a morphism of dg-algebras, so A is augmented. In this case it is always possible to choose a model $(\Lambda V, d)$ of A with $V_{0}=0$. If the model is minimal, then necessarily $V_{0}=0$.
By using dg-algebra resolutions with free S-modules, one can bridge the gap between commutative algebras and connected augmented dg-algebras.

Lemma 3. Let $(\Lambda V, d)$ be a model for a commutative k-algebra R concentrated in (homological) degree 0 . Let S be the polynomial ring $\Lambda\left(V_{0}\right)$, and suppose that $F \rightarrow R$ is a surjective quasi-isomorphism, where F is a dg-algebra with $F_{0}=S$ and each F_{i} is a free S-module. Then the algebra $\Lambda V \otimes_{S} k \cong \Lambda\left(V_{\geq 1}\right)$ with differential \bar{d} induced from d is a model of the connected dg-algebra $F \otimes_{S} k$. Furthermore, if $(\Lambda V, d)$ is minimal, then so is $\left(\Lambda\left(V_{\geq 1}\right), \bar{d}\right)$.

Proof. By Lemma 2 there is a map of dg-algebras $\eta: \Lambda V \rightarrow F$ making the diagram below commutative.

The map η is then necessarily a quasi-isomorphism. Both ΛV and F are semi-free S-modules, so there results a quasi-isomorphism $\eta \otimes_{S} 1_{k}: \Lambda V \otimes_{S} k \rightarrow F \otimes_{S} k$. This exhibits $\left(\Lambda V \otimes_{S} k, \bar{d}\right)=\left(\Lambda\left(V_{\geq 1}\right), \bar{d}\right)$ as a model of the dg-algebra $F \otimes_{S} k$. It is clear that minimality of $(\Lambda V, d)$ implies minimality of $\left(\Lambda\left(V_{\geq 1}\right), \bar{d}\right)$.

A minimal model for R always exists, and is unique up to (non-canonical) isomorphism, cf. [4] Proposition 7.2.4.

Lemma 4. Let $\left(\Lambda V, d_{V}\right)$ be a \mathbb{N}^{n}-graded dg-algebra with $\mathrm{H}_{0}\left(\Lambda V, d_{V}\right)=R$, and assume that

$$
\mathrm{H}_{i}\left(\Lambda V, d_{V}\right)_{\tau}=0
$$

for all $i>0$. Then $\left(\Lambda V, d_{V}\right)$ can be embedded into a model $\left(\Lambda W, d_{W}\right)$ of R such that $\left(\Lambda V, d_{V}\right)_{\tau}=\left(\Lambda W, d_{W}\right)_{\tau}$. Furthermore, if $(\Lambda V, d)$ is minimal, then $(\Lambda W, d)$ may be chosen minimal.

Proof. A minimal model is constructed inductively, by successively adjoining basis elements to V in order to kill homology, see [4] Propositions 2.1.10 and 7.2.4 for details. Since ΛV is \mathbb{N}^{n}-graded, we can do the inductive step one multidegree at a time. Adding a basis element of multidegree α will not affect the part of the algebra below α. Since $\mathrm{H}_{i}\left(\Lambda V, d_{V}\right)_{\tau}=0$ for all $i>0$, we do not need to add variables in the multidegrees $\{0,1\}^{n}$ in order to kill homology. Applying this technique, we get a minimal model $\left(\Lambda W, d_{W}\right)$ of R, where W is a vector space obtained from V by adjoining basis elements of degrees outside $\{0,1\}^{n}$. In particular $\left(\Lambda W, d_{W}\right)_{\tau}=\left(\Lambda V, d_{V}\right)_{\tau}$.
3.1. Homotopy Lie algebras of $\mathbf{d g} \Gamma$-algebras. A $d g \Gamma$-algebra is a commutative dg-algebra (F, d) together with a system of divided power operations. This means that for each element $x \in F$ of even positive degree and each $i \geq 0$ there is an element $x^{(i)}$ of degree $i|x|$ subject to certain conditions, cf. [23] Definition 1.7.1. We do not reproduce the definition and elementary properties of dg Γ-algebras here since they will not be used in our further arguments. However, two special cases
should be mentioned. If $F=F_{0}$ is a commutative ring, then $(F, 0)$ is trivially a dg Γ-algebra. If k has characteristic zero, then every dg-algebra over k has a unique structure of dg Γ-algebra. It is given by $x^{(i)}=x^{i} / i$!.

The functors $\operatorname{Ext}_{R}(k, k)$ and $\operatorname{Tor}^{R}(k, k)$ for augmented k-algebras R extend to the category of augmented dg-algebras. For instance, to an augmented dg-algebra (A, d) one associates the 'differential Ext-algebra' $\operatorname{Ext}_{(A, d)}(k, k)$, which can be defined using semi-free resolutions of k. We refer to [17] for the yoga of differential homological algebra.

For an augmented dg Γ-algebra $(F, d) \rightarrow k$ such that $\mathrm{H}_{0}(F, d)$ is a noetherian ring and $\mathrm{H}_{i}(F, d)$ is a noetherian $\mathrm{H}_{0}(F, d)$-module for each i, the Yoneda algebra $\operatorname{Ext}_{(F, d)}(k, k)$ is the universal enveloping algebra of a uniquely determined graded Lie algebra $\pi(F)=\bigoplus_{n \geq 1} \pi^{n}(F)$, called the homotopy Lie algebra of F, cf. [3] Theorems 1.1 and 1.2. A sketch of the argument goes as follows. One proves that $\operatorname{Tor}^{(F, d)}(k, k)$ admits the structure of a graded commutative Hopf Γ-algebra. Then a structure theorem, due to Milnor and Moore [29] in characteristic $p=0$, André [1] in $p>2$ and Sjödin [33] in $p=2$, says that the dual Hopf algebra, in this case $\operatorname{Ext}_{(F, d)}(k, k)$, is the universal enveloping algebra of a uniquely determined graded Lie algebra $\pi(F)$. This may seem like an awkward definition of $\pi(F)$. The question arises of how to compute $\pi(F)$ before knowing the structure of $\operatorname{Ext}_{(F, d)}(k, k)$ as a graded Hopf algebra.

A commutative k-algebra R is a dg Γ-algebra concentrated in degree 0 with trivial differential. Thus, if R is noetherian and augmented with a morphism of algebras $R \rightarrow k$, then it makes sense to talk about the homotopy Lie algebra $\pi(R)$ of R. In this case, $\pi(R)$ can be computed as the homology of the dg Lie algebra of Γ-derivations on an 'acyclic closure' of k over R, cf. [4] section 10.2.

Another method of computing homotopy Lie algebras is by the use of minimal models. The following theorem will be our main tool.

Theorem 1 ([3], Theorem 4.2). Let F be an augmented $d g \Gamma$-algebra such that $\mathrm{H}_{0}(F)=k$ and $\mathrm{H}_{i}(F)$ is a finite dimensional vector space over k for each i, and let $(\Lambda V, d)$ be a minimal model of F. Then there is an isomorphism of graded Lie algebras

$$
\mathfrak{L}(\Lambda V, d) \cong \pi(F) .
$$

4. Minimizing free commutative dg-algebras

The following is a counterpart of Lemma 3.2.1 in [23], but taking the \mathbb{N}^{n}-grading into account. It tells us how to 'minimize' a given dg-algebra. Here the assumption that the augmentation ideal (V) of ΛV is concentrated in positive weight becomes essential.

Proposition 1. Let $(\Lambda V, d)$ be a free commutative dg-algebra and let $H=\mathrm{H}\left(V, d_{0}\right)$. There is a differential d_{H} on ΛH making it a dg-algebra, and a surjective map of dg-algebras

$$
(\Lambda V, d) \xrightarrow{\psi}\left(\Lambda H, d_{H}\right)
$$

such that

- $\left(\Lambda H, d_{H}\right)$ is minimal, i.e., $d_{H}(H) \subseteq \Lambda^{\geq 2} H$.
- $\mathrm{H}_{0}(\Lambda V, d) \cong \mathrm{H}_{0}\left(\Lambda H, d_{H}\right)$.
- The induced map of Lie algebras

$$
\mathfrak{L}_{\psi}: \mathfrak{L}\left(\Lambda\left(H_{\geq 1}\right), \bar{d}_{H}\right) \rightarrow \mathfrak{L}\left(\Lambda\left(V_{\geq 1}\right), \bar{d}\right)
$$

is an isomorphism.

- The squarefree truncation of ψ is a quasi-isomorphism, i.e.,

$$
\left(\psi_{\tau}\right)_{*}: \mathrm{H}(\Lambda V, d)_{\tau} \xrightarrow{\cong} \mathrm{H}\left(\Lambda H, d_{H}\right)_{\tau}
$$

- If k has characteristic 0 , then ψ is a quasi-isomorphism.

Proof. Let W be a graded subspace of V such that $V=\operatorname{Ker} d_{0} \oplus W$ and similarly split $\operatorname{Ker} d_{0}$ as $H \oplus \operatorname{Im} d_{0}$ (hence $H \cong \mathrm{H}\left(V, d_{0}\right)$). Note that since $d V_{1} \subseteq \mathfrak{m}^{2}$, $W_{0}=W_{1}=0$. As V is concentrated in positive weight, so is W. The map d_{0} induces an isomorphism $W \rightarrow \operatorname{Im} d_{0}$, so we may write

$$
V=H \oplus W \oplus d_{0}(W)
$$

Consider the graded subspace $U=H \oplus W \oplus d W$ of ΛV. The induced homomorphism of graded algebras $f: \Lambda U \rightarrow \Lambda V$ is an isomorphism by Lemma 1 , because f_{0} is the identity on ΛH_{0} and the linear part of f is the map $1_{H} \oplus 1_{W} \oplus g$, where $g: d W \rightarrow d_{0}(W)$ is the isomorphism taking an element to its linear part (isomorphism precisely because $\operatorname{Ker} d_{0} \cap W=0$). Thus we may identify ΛU and ΛV via f. In particular $f^{-1} d f$ is a differential on ΛU, which we also will denote by d, and $(\Lambda U, d)$ is a dg-algebra in which $\Lambda(W \oplus d W)$ is a dg-subalgebra. The projection $U \rightarrow H$ induces an epimorphism of graded algebras $\phi: \Lambda U \rightarrow \Lambda H$ with kernel $(W \oplus d W) \Lambda U$, the ideal generated by $W \oplus d W$ in ΛU. Define a differential d_{H} on ΛH by

$$
d_{H}(h)=\phi d \iota(h),
$$

where ι is induced by the inclusion $H \subseteq U$. With this definition it is evident that $\left(\Lambda H, d_{H}\right)$ is minimal, and ϕ becomes a morphism of dg-algebras. Let

$$
\psi=\phi f^{-1}: \Lambda V \rightarrow \Lambda H
$$

The linear part ψ_{0} of ψ is the projection of V onto H given by the above splitting, and it induces an isomorphism in homology $\mathrm{H}\left(V, d_{0}\right) \cong H$. The map of Lie algebras $\mathfrak{L}\left(\Lambda\left(H_{\geq 1}\right), \bar{d}_{H}\right)=\left(s\left(H_{\geq 1}\right)\right)^{*} \rightarrow \mathrm{H}^{*}\left(\left(s\left(V_{\geq 1}\right)\right)^{*}\right)=\mathfrak{L}\left(\Lambda\left(V_{\geq 1}\right), \bar{d}\right)$ is the map induced in cohomology by the dual of the suspension of ψ_{0} restricted to positive degrees. Since we work over a field, this is an isomorphism by the universal coefficient theorem.

Consider the increasing filtration

$$
F_{p}=(\Lambda H)_{\leq p} \cdot \Lambda(W \oplus d W) .
$$

Obviously $\cup F_{p}=\Lambda U$, and $d F_{p} \subseteq F_{p}$ since d preserves $\Lambda(W \oplus d W)$. The associated first quadrant spectral sequence is convergent, with

$$
E_{p, q}^{2}=\mathrm{H}_{p}\left(\Lambda H, d_{H}\right) \otimes_{k} \mathrm{H}_{q}(\Lambda(W \oplus d W), d) \Longrightarrow \mathrm{H}_{p+q}(\Lambda U, d) .
$$

Since $W_{0}=W_{1}=0$, we have $\mathrm{H}_{0}(\Lambda(W \oplus d W), d)=k$, and therefore $\mathrm{H}_{0}\left(\Lambda H, d_{H}\right)=$ $E_{0,0}^{2}=E_{0,0}^{3}=\ldots=E_{0,0}^{\infty}=\mathrm{H}_{0}(\Lambda U, d)=\mathrm{H}_{0}(\Lambda V, d)$. If the field k has characteristic zero, then $(\Lambda(W \oplus d W), d)$ is acyclic, so in this case the spectral sequence degenerates, showing that $\mathrm{H}\left(\Lambda H, d_{H}\right) \cong \mathrm{H}(\Lambda V, d)$. However, $\Lambda(W \oplus d W)$ need not be acyclic in positive characteristic $p-$ if $x \in W$ is of even degree, then $x^{n p}$ and $x^{n p-1} d x$ represent non-trivial homology classes for all $n \geq 1$. Recall however that
we are working with \mathbb{N}^{n}-graded objects and maps. Since W is concentrated in positive weight, the truncation $\Lambda(W \oplus d W)_{\tau}$ is acyclic, simply because no elements of the form $x^{n} a$, for $x \in(W \oplus d W), a \in \Lambda(W \oplus d W), n>1$, are there. In particular the dissidents $x^{n p}$ and $x^{n p-1} d x$ live in non-squarefree degrees. Hence the truncated spectral sequence collapses, regardless of characteristic, and so

$$
\mathrm{H}_{i}\left(\Lambda H, d_{H}\right)_{\tau} \cong \mathrm{H}_{i}(\Lambda V, d)_{\tau},
$$

for all i.
Remark 1. A fact that should be clear from the proof, but which we would like to emphasize, is that the map ψ need not be a quasi-isomorphism in positive characteristics. Suppose k has characteristic $p>0$. Let $V=\langle x, y\rangle_{k}$, where $|x|=2,|y|=1$, $\operatorname{deg}(x)=\operatorname{deg}(y)=1(n=1)$. Let $d x=y$ and $d y=0$. Then $H=\mathrm{H}\left(V, d_{0}\right)=0$ and hence $\Lambda H=k$. The map $\psi: \Lambda V \rightarrow k$ is not a quasi-isomorphism, because for instance x^{p} represents a non-trivial homology class in $\mathrm{H}_{2 p}(\Lambda V, d)$. On the other hand $(\Lambda V, d)_{\tau}$ is the algebra $\Lambda V /\left(x^{2}, x y\right)$. It has basis $x, y, 1$ and obviously the map $\psi_{\tau}:(\Lambda V, d)_{\tau} \rightarrow k$ is a quasi-isomorphism, as asserted by the proposition.

Algebras with monomial relations

Let k be any field. Let I be a monomial ideal in $S=k\left[x_{1}, \ldots, x_{n}\right]$ minimally generated by a set M of monomials of degree at least 2 , and let $R=S / I$. The Yoneda algebra $\operatorname{Ext}_{R}(k, k)$ is the universal enveloping algebra of the graded Lie algebra $\pi(R)$. Let $\pi^{\geq 2}(R)=\bigoplus_{i \geq 2} \pi^{i}(R)$. It is an ideal and in particular a sub Lie algebra of $\pi(R)$. The multigraded Poincaré series of R is the formal power series

$$
\mathrm{P}_{R}(\mathbf{x}, z)=\sum_{i \geq 0, \alpha \in \mathbb{N}^{n}} \operatorname{dim}_{k} \operatorname{Ext}_{R}^{i}(k, k)_{\alpha} x^{\alpha} z^{i}
$$

We begin by citing the theorems which were the starting point for our work.
Theorem 2 ([7]). The multigraded Poincaré series of R is a rational of the form

$$
\mathrm{P}_{R}(\mathbf{x}, z)=\frac{\prod_{i=1}^{n}\left(1+x_{i} z\right)}{b_{R}(\mathbf{x}, z)}
$$

for a polynomial $b_{R}(\mathbf{x}, z) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}, z\right]$.
Theorem 3 ([5], Theorem 1). Let I and J be ideals generated by monomials of degree at least 2 in the polynomial rings $k[\mathbf{x}], k[\mathbf{y}]$ respectively, where \mathbf{x} and \mathbf{y} are finite sets of variables. Let $Q=k[\mathbf{x}] / I$ and $R=k[\mathbf{y}] / J$. If L_{I} and L_{J} are isomorphic as partially ordered graphs, then there is an isomorphism of graded Lie algebras

$$
\pi^{\geq 2}(Q) \cong \pi^{\geq 2}(R)
$$

We are aiming at a description of the homotopy Lie algebra and the Poincaré series of R in combinatorial terms. It turns out that the machinery of minimal models is very well suited for this task. To a monomial set M we will associate two objects

- A finite lattice K_{M}, called the 'lattice of saturated subsets of M '.
- A finite dimensional L_{∞}-algebra $\mathfrak{L}_{\infty}(M)$.

These objects are accompanied by their respective theorems. Theorem 5 says that the denominator b_{R} of the Poincaré series of R with set of minimal relations M is given by

$$
b_{R}=1+\sum_{S \in \hat{K}_{M}} m_{S}(-z)^{c(S)+2} \widetilde{\mathrm{H}}((\emptyset, S) ; k)(z)
$$

Here (\emptyset, S) is the open interval from \emptyset to S in the lattice K_{M}.
We define a functor F on the category of multigraded Lie algebras, whose restriction to the subcategory of truncated Lie algebras is left adjoint to the truncation functor, and Theorem 6 says that

$$
\pi^{\geq 2}(R) \cong F \mathrm{H}^{*}\left(\mathfrak{L}_{\infty}(M)\right)
$$

as multigraded Lie algebras.
Thus the study of P_{R} and $\pi^{\geq 2}(R)$ is reduced to combinatorics via these two objects. In proving the results we will reduce to the case when M consists of squarefree monomials. This is done by a procedure called 'polarization'.
4.1. Polarization. We invoke a construction of Fröberg, [19] pp. 30, which is often referred to as polarization. Let I be any monomial ideal in $S=k\left[x_{1}, \ldots, x_{n}\right]$, and let $M=\operatorname{Gen}(I)$. Let $d_{i}=\max _{m \in M} \operatorname{deg}_{x_{i}}(m)$. To each $m \in M$ we associate a squarefree monomial m° in $Q=k\left[x_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq d_{i}\right]$ as follows: If $m=x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{n}^{\alpha_{n}}$ then

$$
m^{\circ}=\prod_{i=1}^{n} \prod_{j=1}^{\alpha_{i}} x_{i, j}
$$

The set $M^{\circ}=\left\{m^{\circ} \mid m \in M\right\}$ minimally generates an ideal in Q, which we denote by I°. The map $M^{\circ} \rightarrow M, m^{\circ} \mapsto m$, extends to a map $f: L_{I^{\circ}} \rightarrow L_{I}$ characterized by the property that $x_{i, j}$ divides $m \in L_{I^{\circ}}$ if and only if x_{i}^{j} divides $f(m)$. From this defining property it is easily seen that f is an isomorphism of pographs. Hence by Theorem 3, with $R=S / I$ and $R^{\circ}=Q / I^{\circ}$, we have

$$
\pi^{\geq 2}(R) \cong \pi^{\geq 2}\left(R^{\circ}\right)
$$

It is also easy to see that

$$
b_{R}\left(x_{1}, \ldots, x_{n}, z\right)=b_{R^{\circ}}\left(x_{1}, \ldots, x_{1}, x_{2}, \ldots, x_{2}, \ldots, x_{n}, z\right) .
$$

Therefore, questions about P_{R} or $\pi^{\geq 2}(R)$ may always be reduced to the squarefree case, if necessary.

5. Lattices and simplicial Complexes associated to monomial sets

Elementary definitions and facts about simplicial complexes are found in Appen$\operatorname{dix} \mathrm{A}$.

Definition/Lemma 1. If M is a monomial set, then the set

$$
\left\{S \subseteq M \mid m_{S} \neq m_{M} \text { or } S \text { disconnected }\right\}
$$

is the set of faces of a simplicial complex Δ_{M}^{\prime} with vertex set M.
If $M=M_{1} \cup \ldots \cup M_{r}$ is the decomposition of M into its connected components, then let Δ_{M} be the simplicial complex $\Delta_{M}=\Delta_{M_{1}}^{\prime} \cdot \ldots \cdot \Delta_{M_{r}}^{\prime}$ (cf. Appendix A). Thus Δ_{M} has vertices M and faces

$$
\left\{S \subseteq M \mid m_{S} \neq m_{M} \text { or } M_{i} \cap S \text { disconnected for some } i\right\}
$$

Proof. To see that Δ_{M}^{\prime} is indeed a simplicial complex, suppose $T \subseteq S \in \Delta_{M}^{\prime}$. If $m_{S} \neq m_{M}$, then clearly $m_{T} \neq m_{M}$. If S is disconnected, decompose S as $S=S_{1} \cup S_{2}$ where S_{1} and S_{2} are separated and non-empty. Then both $m_{S_{1}}, m_{S_{2}}$ strictly divide m_{M}. Since T is a connected subset of S, we have that $T \subseteq S_{i}$ for some i, and therefore m_{T} strictly divides m_{M}.

Definition 2. Let S be a subset of a monomial set M, and let $S=S_{1} \cup \ldots \cup S_{r}$ be its decomposition into connected components. The saturation of S in M is the set $\bar{S}=\overline{S_{1}} \cup \ldots \cup \overline{S_{r}}$, where $\overline{S_{i}}=M_{m_{S_{i}}}$ for connected S_{i}. Clearly $S \subseteq \bar{S}$, and S is called saturated in M if equality holds. Equivalently, S is saturated in M if for all $m \in M, m \mid m_{T}$ implies $m \in S$ if T is a connected subset of S.

Define K_{M} to be the set of saturated subsets of M. It is a lattice with intersection as meet and the saturation of the union of saturated subsets as join. Set $\hat{K}_{M}=$ $K_{M}-\{\emptyset\}$ and $\bar{K}_{M}=\hat{K}_{M}-\{M\}$.

It is easily checked that if $T \subseteq S \subseteq M$ and S is saturated in M, then T is saturated in S if and only if T is saturated in M. Therefore, if $S \in K_{M}$, then K_{S} is equal to the sublattice $\left(K_{M}\right)_{\subseteq S}=\left\{T \in K_{M} \mid T \subseteq S\right\}$ of K_{M}.

As usual, a partially ordered set P is considered to be a topological space by passage to the simplicial complex of chains in P. If L is a lattice, with top and bottom element $\hat{1}$ and $\hat{0}$, then its proper part is the poset $\bar{L}=L-\{\hat{0}, \hat{1}\}$. If L is atomic, with atoms A, the crosscut complex $\Gamma(\bar{L}, A)$ is the simplicial complex with vertices A and faces all subsets S of A such that $\vee S \neq \hat{1}$. The 'Crosscut Theorem', cf. [12] Theorem 10.8, asserts that \bar{L} is homotopy equivalent to $\Gamma(\bar{L}, A)$. Note that K_{M} is an atomic lattice with atoms $A_{M}=\{\{m\} \mid m \in M\}$.

Proposition 2. Δ_{M} is isomorphic to the crosscut complex $\Gamma\left(\bar{K}_{M}, A_{M}\right)$. In particular, for each $S \in K_{M}$, the open interval (\emptyset, S) in K_{M} is homotopy equivalent to Δ_{S}.

Proof. Identify $\Gamma\left(K_{M}, A_{M}\right)$ with the complex $\{S \subseteq M \mid \bar{S} \neq M\}$. Decompose M into connected components, $M=M_{1} \cup \ldots \cup M_{p}$, and let $m_{i}=m_{M_{i}}$. We need to show that $\bar{S}=M$ is equivalent to $m_{S}=m_{M}$ and $S \cap M_{i}$ connected for each i. Let S_{1}, \ldots, S_{r} be the components of S. Suppose $\bar{S}=M$. Then $m_{S}=m_{\bar{S}}=m_{M}$ and $\bar{S}_{1}, \ldots, \bar{S}_{r}$ are the components of M. Note that $S \cap \bar{S}_{i}=S_{i}$, which is connected.

Conversely, suppose that $m_{S}=m_{M}$ and that each $S \cap M_{i}$ is connected. If $m \in$ M, then $m \in M_{i}$ for some i. Since $m_{S}=m_{M}=m_{1} \ldots m_{p}$ and $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ when $i \neq j$, it follows that $m_{i}=m_{S \cap M_{i}}$. Since $S \cap M_{i}$ is connected and $m \mid m_{S \cap M_{i}}$ it follows that $m \in \bar{S}$.

The second assertion follows because the open interval (\emptyset, S) in K_{M} equals \bar{K}_{S}.

Two monomial ideals I, J are called equivalent if there is an isomorphism of posets $f: L_{I} \rightarrow L_{J}$ which is also an isomorphism of graphs, that is, f is an isomorphism of pographs. In particular, one checks that polarization yields an isomorphism of pographs $L_{I} \rightarrow L_{I^{\circ}}$, so I and I° are equivalent in this sense.

Let $\epsilon_{I}: K_{I} \rightarrow L_{I}$ be the map of join-semilattices taking S to m_{S}.
Proposition 3. Let $f: L_{I} \rightarrow L_{J}$ be a bijective morphism of pographs. Then there is a surjective morphism of join-semilattices $\bar{f}: K_{I} \rightarrow K_{J}$ such that the following
diagram of join-semilattices commutes:

If in addition f^{-1} is a morphism of graphs, then \bar{f} is an isomorphism of lattices and $c(S)=c(\bar{f}(S))$ for all $S \in K_{I}$.

Proof. Let M and N be the sets of minimal generators for I and J respectively. M and N are the atoms of L_{I} and L_{J} respectively, so f restricts to a bijective morphism of graphs $M \rightarrow N$. This means that if $S \subseteq M$ is connected, then so is $f(S)$. Define $\bar{f}: K_{I} \rightarrow K_{J}$ by $\bar{f}(S)=\overline{f(S)}$. To show that \bar{f} is a morphism of join-semilattices we need to show that $\overline{f(S)}=\overline{f(\bar{S})}$ for all $S \subseteq M$. Indeed, assume $m \in \overline{f(\bar{S})}$. Then $m \mid m_{T}$ for some connected $T \subseteq f(\bar{S})$. If $n \in T$, then $f^{-1}(n) \in \bar{S}$, so $f^{-1}(n) \mid m_{U}$ for some connected $U \subseteq S$. Since f is an isomorphism of lattices, $n \mid m_{f(U)}$, and by the above $f(U)$ is a connected subset of $f(S)$. Therefore $T \subseteq \overline{f(S)}$ and then $m \mid m_{T}$ and T connected implies $m \in \overline{f(S)}$. The reverse inclusion is obvious.

If $S \in K_{J}$ then $f^{-1}(S) \in K_{I}$, because $m \mid m_{T}$ and $T \subseteq f^{-1}(S)$ connected implies $f(m) \mid m_{f(T)}$ and $f(T) \subseteq S$ connected, whence $f(m) \in S$, i.e, $m \in f^{-1}(S)$. Moreover, $\bar{f}\left(f^{-1}(S)\right)=S$. This shows that \bar{f} is surjective.

If f is an isomorphism of graphs, then it restricts to an isomorphism of graphs $M \rightarrow N$. In particular $c(S)=c(f(S))$ for all $S \in K_{I}$. Also $\bar{f}(S)=f(S)$, so in this case \bar{f} is bijective. It is trivial to verify that the diagram is commutative.

Corollary 1. An isomorphism of pographs $f: L_{I} \rightarrow L_{J}$ induces an isomorphism of lattices $K_{I} \rightarrow K_{J}$ such that $c(S)=c(f(S))$ for all $S \in K_{I}$.

6. Minimal model of a monomial Ring

Let I be a monomial ideal in $S=k\left[x_{1}, \ldots, x_{n}\right]$ minimally generated by a set M of monomials of degree at least 2 . Fix a total order on M. Let $R=S / I$. We will construct explicitly the squarefree part of a multigraded minimal model for R. This will enable us to read off the homotopy Lie algebra and to compute the Poincaré series of R. The construction is modelled on the Taylor complex, whose definition we now will recall.
6.1. The Taylor complex. The Taylor complex associated to I is a finite S-free resolution of S / I. It was originally introduced by Taylor in [34].

Let E be the vector space with basis $\left\{e_{S} \mid \emptyset \neq S \subseteq M\right\}$, with gradings defined by $\left|e_{S}\right|=|S|$ and $\operatorname{deg}\left(e_{S}\right)=\operatorname{deg}\left(m_{S}\right)$. Let X be the span of x_{1}, \ldots, x_{n}, with $\left|x_{i}\right|=0$ and the standard \mathbb{N}^{n}-grading. Let

$$
T_{I}=\Lambda(X \oplus E) / J
$$

where J is the ideal generated by the elements $e_{S} e_{T}-\operatorname{sgn}(S, T) \operatorname{gcd}\left(m_{S}, m_{T}\right) e_{S \cup T}$ for all pairs of subsets $S, T \subseteq M$. Recall that $\operatorname{sgn}(S, T)=0$ if S and T are not disjoint, so for such a pair we get the generator $e_{S} e_{T}$. The generators of J are homogeneous with respect to all gradings, so T_{I} is an $\mathbb{N} \times \mathbb{N}^{n}$-graded algebra.

Clearly, $\left(T_{I}\right)_{i}$ is a free ΛX-module with basis e_{S} for $|S|=i$. Set $e_{\emptyset}=1$. Define a $\operatorname{map} d: E \rightarrow \Lambda(X \oplus E)$ by

$$
d e_{S}=\sum_{s \in S} \operatorname{sgn}(s, S-\{s\}) \frac{m_{S}}{m_{S-\{s\}}} e_{S-\{s\}},
$$

and extend it to $\Lambda(X \oplus E)=\Lambda X \otimes_{k} \Lambda E$ as a ΛX-linear derivation. One checks that $d^{2}=0$ and that d preserves J, so we get an induced differential δ on the quotient T_{I}. We have a canonical map of algebras $(T, \delta) \rightarrow \mathrm{H}_{0}(T, \delta)=\Lambda X / I=R$.

Definition 3. The Taylor complex on the monomial ideal I is the dg-algebra $\left(T_{I}, \delta\right)$.
Proposition 4. The canonical map $\left(T_{I}, \delta\right) \rightarrow R$ is a quasi-isomorphism. In particular, $\left(T_{I}, \delta\right)$ is a resolution of R by free S-modules.

Proof. See for instance [18] for a short proof.
Note that the underlying algebra of $\left(T_{I}, \delta\right)$ is not free, so it is not a model of R. It will become apparent later that the Taylor algebra is actually the truncation of a model of R.

The following is proved in [5].
Proposition 5. $\left(T_{I}, \delta\right)$ is a dg Γ-algebra and

$$
\pi^{\geq 2}(R) \cong \pi\left(T_{I} \otimes_{S} k\right)
$$

as graded Lie algebras.
Note that it makes sense to talk about $\pi\left(T_{I} \otimes_{S} k\right)$ only because we know that T_{I}, and hence $T_{I} \otimes_{S} k$, is a dg Γ-algebra.
6.2. Minimal model of a monomial ring. Let $V=X \oplus Y$, where $X=V_{0}$ is the linear span over k of x_{1}, \ldots, x_{n} with $\left|x_{i}\right|=0$ and the standard \mathbb{N}^{n}-grading. The space $Y=V_{\geq 1}$ is defined by

$$
\left.Y=\left\langle y_{S}\right| S \text { non-empty connected subset of } M\right\rangle_{k},
$$

where gradings are given by $\left|y_{S}\right|=|S|$ and $\operatorname{deg}\left(y_{S}\right)=\operatorname{deg}\left(m_{S}\right)$. We extend the definition of the symbol y_{S} to arbitrary subsets of M as follows. If S is any, not necessarily connected, subset of M and $S=S_{1} \cup \ldots \cup S_{r}$ is its decomposition into connected components, then define y_{S} to be the element

$$
y_{S}=\operatorname{sgn}\left(S_{1}, \ldots, S_{r}\right) y_{S_{1}} \cdot \ldots \cdot y_{S_{r}} \in \Lambda V
$$

Set $y_{\emptyset}=1$. With these definitions it is clear that $\left|y_{S}\right|=|S|$ and $\operatorname{deg}\left(y_{S}\right)=\operatorname{deg}\left(m_{S}\right)$ for any $S \subseteq M$.

A differential d on ΛV is defined on the basis as follows. We set $d x_{i}=0$ for all i and if S is a connected subset of M, then

$$
\begin{equation*}
d y_{S}=\sum_{s \in S} \operatorname{sgn}(s, S-\{s\}) \frac{m_{S}}{m_{S-\{s\}}} y_{S-\{s\}}, \tag{2}
\end{equation*}
$$

The differential is extended to all of ΛV as an ΛX-linear derivation. Obviously, this definition is modelled on the differential of the Taylor complex. Note that it may happen that $y_{S-\{s\}}$ becomes decomposable as a product in the sum above. One verifies easily that the formula (2) remains valid for disconnected S. By definition, d is of homological degree -1 and is homogeneous with respect to the \mathbb{N}^{n}-grading. The verification of $d^{2}=0$ is routine.

The algebra ΛY is isomorphic to $\Lambda V \otimes_{\Lambda X} k$, and therefore inherits a differential \bar{d} from ΛV.

Proposition 6. Let I be a an ideal in S generated by squarefree monomials of degree at least 2 , and let $R=S / I$. There is a multigraded minimal model $\left(\Lambda W, d_{W}\right)$ of R such that $W_{\tau}=\mathrm{H}\left(V, d_{0}\right)$ and $\mathfrak{L}\left(\Lambda\left(W_{\geq 1}\right), \bar{d}_{W}\right)_{\tau} \cong \mathfrak{L}(\Lambda Y, \bar{d})$.

Proof. By definition, $\mathrm{H}_{0}(\Lambda V, d)=R$. Furthermore, we have an isomorphism of dg-algebras $\Lambda(V)_{\tau} \cong T_{\tau}$, where T is the Taylor complex of the ideal I. In particular, since the Taylor complex is a multigraded resolution of R over S, we have $\mathrm{H}_{i}(\Lambda V, d)_{\tau}=0$ for $i>0$. Let $H=\mathrm{H}\left(V, d_{0}\right)$. From Proposition 1 we get a differential d_{H} on ΛH making it a minimal dg-algebra such that $\mathrm{H}_{0}\left(\Lambda H, d_{H}\right)=R$, $\mathrm{H}_{i}\left(\Lambda H, d_{H}\right)_{\tau}=0$ for $i>0$ and $\mathfrak{L}\left(\Lambda\left(H_{\geq 1}\right), \bar{d}_{H}\right) \cong \mathfrak{L}(\Lambda Y, \bar{d})$. Applying Lemma 4 to the minimal dg-algebra $\left(\Lambda H, d_{H}\right)$, we get a vector space W and minimal model $\left(\Lambda W, d_{W}\right)$ of R, such that $\left(\Lambda W, d_{W}\right)_{\tau}=\left(\Lambda H, d_{H}\right)_{\tau}$. Then it follows immediately from the definition of the functor \mathfrak{L} that $\mathfrak{L}\left(\Lambda\left(W_{\geq 1}\right), \bar{d}_{W}\right)_{\tau}=\mathfrak{L}\left(\Lambda\left(H_{\geq 1}\right), \bar{d}_{H}\right)_{\tau}=$ $\mathfrak{L}\left(\Lambda\left(H_{\geq 1}\right), \bar{d}_{H}\right) \cong \mathfrak{L}(\Lambda Y, \bar{d})$ and that $W_{\tau}=H$.

Proposition 7. If I is generated by squarefree monomials, then $\pi^{\geq 2}(R)_{\tau} \cong \mathfrak{L}_{Y}$.
Proof. Let $\left(\Lambda W, d_{W}\right)$ be the minimal model of R constructed in Proposition 6. The Taylor complex T_{I} is a dg Γ-algebra resolution of R by free S-modules. Therefore, by Lemma $3,\left(\Lambda W \otimes_{S} k, \bar{d}_{W}\right)=\left(\Lambda\left(W_{\geq 1}\right), \bar{d}_{W}\right)$ is a minimal model of the $\mathrm{dg} \Gamma$ algebra $T_{I} \otimes_{S} k$. Hence, by Theorem 1 and Proposition 5,

$$
\mathfrak{L}_{W_{\geq 1}}=\pi\left(T_{I} \otimes_{S} k\right)=\pi^{\geq 2}(R)
$$

By Proposition 6, we conclude that

$$
\mathfrak{L}_{Y} \cong\left(\mathfrak{L}_{W_{\geq 1}}\right)_{\tau}=\pi^{\geq 2}(R)_{\tau}
$$

7. \mathbb{N}^{n}-GRADED DEVIATIONS

The next observation is the extension of Remark 7.1.1 of [4] to the \mathbb{N}^{n}-graded situation, and it is proved in a similar manner, cf. [15] Proposition 3.1.

Let $P=1+\sum_{i \geq 1, \alpha \in \mathbb{N}^{n}} b_{i, \alpha} x^{\alpha} z^{i}$ be a formal power series with integer coefficients $b_{i, \alpha}$ such that for i fixed, $b_{i, \alpha}=0$ when $|\alpha| \gg 0$. Then there are uniquely determined integers $e_{i, \alpha}$ such that

$$
P=\prod_{i \geq 1, \alpha \in \mathbb{N}^{n}} \frac{\left(1+x^{\alpha} z^{2 i-1}\right)^{e_{2 i-1, \alpha}}}{\left(1-x^{\alpha} z^{2 i}\right)^{e_{2 i, \alpha}}}
$$

the product converging in the (z)-adic topology. Furthermore, for a fixed i, we have $e_{i, \alpha}=0$ when $|\alpha| \gg 0$.

This observation applies to the Poincaré series $\mathrm{P}_{R}(\mathrm{x}, z)$ of a monomial ring R : since $\operatorname{Ext}_{R}^{i}(k, k)$ is a finite dimensional vector space for each i, it can be non-zero in only finitely many multidegrees. Thus we have a product decomposition

$$
\begin{equation*}
\mathrm{P}_{R}(\mathbf{x}, z)=\prod_{i \geq 1, \alpha \in \mathbb{N}^{n}} \frac{\left(1+x^{\alpha} z^{2 i-1}\right)^{\epsilon_{2 i-1, \alpha}}}{\left(1-x^{\alpha} z^{2 i}\right)^{\epsilon_{2 i, \alpha}}} \tag{3}
\end{equation*}
$$

The numbers $\epsilon_{i, \alpha}(R)=\epsilon_{i, \alpha}$ are called the \mathbb{N}^{n}-graded deviations of R. These refine the ordinary deviations ϵ_{i} of R (cf. [4], Section 7.1):

$$
\epsilon_{i}=\sum_{\alpha \in \mathbb{N}^{n}} \epsilon_{i, \alpha} .
$$

Multigraded deviations have been introduced also in [15].
It is a fundamental result that the ordinary deviations $\epsilon_{i}(R)$ can be computed from a minimal model of R, cf. [4] Theorem 7.2.6. The same is true in the multigraded setting. Recall that $\operatorname{Ext}_{R}(k, k)=U \pi(R)$ as multigraded algebras. By the Poincaré-Birkhoff-Witt theorem, there is an isomorphism of graded vector spaces $U \pi(R) \cong \Lambda \pi(R)$. In view of the vector space structure of $\Lambda \pi(R)$ there results a product decomposition of the Poincaré series

$$
\mathrm{P}_{R}(\mathbf{x}, z)=\prod_{i \geq 1, \alpha \in \mathbb{N}^{n}} \frac{\left(1+x^{\alpha} z^{2 i-1}\right)^{p_{2 i-1, \alpha}}}{\left(1-x^{\alpha} z^{2 i}\right)^{p_{2 i, \alpha}}}
$$

where $p_{i, \alpha}=\operatorname{dim}_{k} \pi^{i}(R)_{\alpha}$. It follows from the remark that the numbers $\operatorname{dim}_{k} \pi^{i}(R)_{\alpha}$ equal the deviations $\epsilon_{i, \alpha}(R)$ of R.

The space $\pi^{1}(R) \cong \operatorname{Ext}_{R}^{1}(k, k)$ can be identified with the dual of the vector space $s\left\langle x_{0}, \ldots, x_{n}\right\rangle_{k}$ of minimal algebra generators for R. By Lemma 3, if $(\Lambda W, d)$ is a minimal model for R, then $\left(\Lambda\left(W_{\geq 1}\right), \bar{d}\right)$ is a minimal model for $T_{I} \otimes_{S} k$, whence by Proposition 5 and Theorem 1, $\pi^{\geq 2}(R)=\mathfrak{L}_{W_{\geq 1}}=\left(s\left(W_{\geq 1}\right)\right)^{*}$. Therefore $\epsilon_{i, \alpha}(R)=$ $\operatorname{dim}_{k} \pi^{i}(R)_{\alpha}=\operatorname{dim}_{k} W_{i-1, \alpha}$ for $i \geq 2$. Furthermore, $W_{0}=\left\langle x_{0}, \ldots, x_{n}\right\rangle_{k}$, so it is also true that $\pi^{1}(R) \cong\left(s W_{0}\right)^{*}$. We state this as a lemma for future reference.

Lemma 5. Let $(\Lambda W, d)$ be an \mathbb{N}^{n}-graded minimal model of a monomial ring R. Then the \mathbb{N}^{n}-graded deviations $\epsilon_{i, \alpha}$ of R are given by

$$
\epsilon_{i, \alpha}=\operatorname{dim}_{k} W_{i-1, \alpha},
$$

for $i \geq 1$ and $\alpha \in \mathbb{N}^{n}$.
7.1. Squarefree deviations. In the squarefree case, there is a nice interpretation of the squarefree deviations in terms of simplicial homology. Recall the definition of Δ_{M}^{\prime} found in Section 5. As usual, M_{α} denotes the set of monomials in M dividing x^{α}.

Theorem 4. Assume that I is minimally generated by a set M of squarefree monomials of degree at least 2 . Let $\alpha \in\{0,1\}^{n}$ and let $i \geq 2$. If $x^{\alpha} \notin L_{I}$, then $\epsilon_{i, \alpha}=0$, and if $x^{\alpha} \in L_{I}$ then

$$
\epsilon_{i, \alpha}=\operatorname{dim}_{k} \widetilde{\mathrm{H}}_{i-3}\left(\Delta_{M_{\alpha}}^{\prime} ; k\right)
$$

Proof. By Proposition 6 there is a minimal model $\left(\Lambda W, d_{W}\right)$ of R such that $W_{\tau}=$ $\mathrm{H}\left(V, d_{0}\right)$. By Lemma 5 we get that

$$
\begin{equation*}
\epsilon_{i, \alpha}=\operatorname{dim}_{k} W_{i-1, \alpha}=\operatorname{dim}_{k} H_{i-1, \alpha}=\operatorname{dim}_{k} \mathrm{H}_{i-1, \alpha}\left(V, d_{0}\right), \tag{4}
\end{equation*}
$$

for $\alpha \in\{0,1\}^{n}$. We will now proceed to give a combinatorial description of the complex $V=\left(V, d_{0}\right)$. As a complex, V splits into its \mathbb{N}^{n}-graded components

$$
V=\bigoplus_{\alpha \in \mathbb{N}^{n}} V_{\alpha} .
$$

$V_{e_{i}}$ is one-dimensional and concentrated in degree 0 for $i=1, \ldots, n$. This accounts for the first deviations $\epsilon_{1, e_{i}}=1$. If $|\alpha|>1$, then V_{α} has basis y_{S} for S in the set

$$
C_{\alpha}=\left\{S \subseteq M \mid m_{S}=x^{\alpha}, S \text { connected }\right\}
$$

In particular $V_{\alpha}=0$ if $x^{\alpha} \notin L_{I}$. The differential of V_{α} is given by

$$
\begin{equation*}
d y_{S}=\sum_{\substack{s \in S \\ S-\{s\} \in C_{\alpha}}} \operatorname{sgn}(s, S-\{s\}) y_{S-\{s\}} \tag{5}
\end{equation*}
$$

Let Σ_{α} be the simplicial complex whose faces are all subsets of the set $M_{\alpha}=$ $\left\{m \in M|m| x^{\alpha}\right\}$, with orientation induced from the orientation $\left\{m_{1}, \ldots, m_{n}\right\}$ of M. Define a map from the chain complex $\widetilde{C}\left(\Sigma_{\alpha} ; k\right)$ to the desuspended complex $s^{-1} V_{\alpha}$ by sending a face $S \subseteq M_{\alpha}$ to $s^{-1} y_{S}$ if $S \in C_{\alpha}$ and to 0 otherwise. In view of (5), this defines a morphism of complexes, which clearly is surjective. The kernel of this morphism is the chain complex associated to $\Delta_{M_{\alpha}}^{\prime}$, so we get a short exact sequence of complexes

$$
0 \rightarrow \widetilde{C}\left(\Delta_{M_{\alpha}}^{\prime} ; k\right) \rightarrow \widetilde{C}\left(\Sigma_{\alpha} ; k\right) \rightarrow s^{-1} V_{\alpha} \rightarrow 0
$$

Since Σ_{α} is acyclic, the long exact sequence in homology derived from the above sequence shows that $\mathrm{H}_{i}\left(V_{\alpha}\right) \cong \widetilde{\mathrm{H}}_{i-2}\left(\Delta_{M_{\alpha}}^{\prime} ; k\right)$. The theorem now follows from (4).

8. Poincaré series

This section is devoted to the deduction of the following theorem which gives a formula for the Poincaré series of a monomial ring in terms of simplicial homology.
Theorem 5. Let k be any field. Let I be an ideal in $S=k\left[x_{1}, \ldots, x_{n}\right]$ generated by monomials of degree at least 2 , and let M be its minimal set of generators. The denominator of the Poincaré series of $R=S / I$ is given by

$$
\begin{equation*}
b_{R}(\mathbf{x}, z)=1+\sum_{S \in \hat{K}_{M}} m_{S}(-z)^{c(S)+2} \widetilde{\mathrm{H}}((\emptyset, S) ; k)(z), \tag{6}
\end{equation*}
$$

Some intermediate results will be needed before we can give the proof. Retain the notations of Theorem 5 throughout this section. We will frequently suppress the variables and write $b_{R}=b_{R}(\mathbf{x}, z)$ and $\mathrm{P}_{R}=\mathrm{P}_{R}(\mathbf{x}, z)$.

Assume that the ideal I is minimally generated by squarefree monomials $M=$ $\left\{m_{1}, \ldots, m_{g}\right\}$ of degree at least 2. By Backelin [7], the Poincaré series of R is rational of the form

$$
\mathrm{P}_{R}(\mathbf{x}, z)=\frac{\prod_{i=1}^{n}\left(1+x_{i} z\right)}{b_{R}(\mathbf{x}, z)}
$$

where $b_{R}(\mathbf{x}, z)$ is a polynomial with integer coefficients and x_{i}-degree at most 1 for each i. We start with the following observation made while scrutinizing Backelin's proof.

Lemma 6. If I is generated by squarefree monomials, then the polynomial b_{R} is squarefree with respect to the x_{i}-variables. Moreover b_{R} depends only on the deviations $\epsilon_{i, \alpha}$ for $\alpha \in\{0,1\}^{n}$. In fact, there is a congruence modulo $\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$:

$$
b_{R} \equiv \prod_{\alpha \in\{0,1\}^{n}}\left(1-x^{\alpha} p_{\alpha}(z)\right)
$$

where $p_{\alpha}(z)$ is the polynomial $p_{\alpha}(z)=\sum_{i=1}^{|\alpha|} \epsilon_{i, \alpha} z^{i}$.

Proof. Note that $\epsilon_{1, e_{i}}=1$ and $\epsilon_{1, \alpha}=0$ for $\alpha \neq e_{i}=\operatorname{deg}\left(x_{i}\right)(i=1, \ldots, n)$. Hence using the product representation (3) and reducing modulo $\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$ we get (note that $(1+m p(z))^{n} \equiv 1+n m p(z)$ for any integer n and any squarefree monomial m):

$$
\begin{align*}
b_{R} & =\frac{\prod_{i \geq 1, \alpha}\left(1-x^{\alpha} z^{2 i}\right)^{\epsilon_{2 i, \alpha}}}{\prod_{i \geq 2, \alpha}\left(1+x^{\alpha} z^{2 i-1}\right)^{\epsilon_{2 i-1, \alpha}}} \\
& \equiv \prod\left(1-x^{\alpha}\left(\epsilon_{2 i-1, \alpha} z^{2 i-1}+\epsilon_{2 i, \alpha} z^{2 i}\right)\right) \\
& \equiv \prod\left(1-x^{\alpha} p_{\alpha}(z)\right) \tag{7}
\end{align*}
$$

product taken over all $\alpha \in\{0,1\}^{n}$, where $p_{\alpha}(z) \in \mathbb{Z}[z]$ is the polynomial $p_{\alpha}(z)=$ $\sum_{i=1}^{|\alpha|} \epsilon_{i, \alpha} z^{i}$.

This gives a formula for b_{R} in terms of finitely many deviations $\epsilon_{i, \alpha}$. In terms of the polynomials $p_{\alpha}(z)$, Theorem 4 may be stated as

$$
\begin{equation*}
p_{\alpha}(z)=z^{3} \widetilde{\mathrm{H}}\left(\Delta_{M_{\alpha}}^{\prime} ; k\right)(z) \tag{8}
\end{equation*}
$$

for $x^{\alpha} \in L_{I}$.
Proof of Theorem 5. Square-free case. By Theorem 4, $p_{\alpha}(z)=0$ unless $x^{\alpha} \in L_{I}$, in which case $p_{\alpha}(z)=z^{3} \widetilde{\mathrm{H}}\left(\Delta_{M_{\alpha}}^{\prime} ; k\right)(z)$. But $\Delta_{M_{\alpha}}^{\prime}$ is a simplex and hence contractible if M_{α} is disconnected, so $p_{\alpha}(z)=0$ unless $x^{\alpha} \in c L_{I}$, where $c L_{I}$ denotes the subset of L_{I} consisting of elements $m \neq 1$ such that M_{m} is connected. Hence by Lemma 6

$$
b_{R} \equiv \prod_{x^{\alpha} \in c L_{I}}\left(1-x^{\alpha} p_{\alpha}(z)\right) \quad \bmod \left(x_{1}^{2}, \ldots, x_{n}^{2}\right)
$$

If we carry out the multiplication in the above formula and use that b_{R} is squarefree with respect to the x_{i}-variables (by Lemma 6) we get the equality

$$
b_{R}=1+\sum_{N \in D\left(c L_{I}\right)} \prod_{x^{\alpha} \in N}\left(-x^{\alpha} p_{\alpha}(z)\right)=1+\sum_{N \in D\left(c L_{I}\right)} m_{N}(-1)^{|N|} \prod_{x^{\alpha} \in N} p_{\alpha}(z)
$$

(the identity $\prod_{x^{\alpha} \in N} x^{\alpha}=m_{N}$ holds because N is independent). Using (8) the formula takes the form

$$
b_{R}=1+\sum_{N \in D\left(c L_{I}\right)} m_{N}(-1)^{|N|} \prod_{x^{\alpha} \in N} z^{3} \widetilde{\mathrm{H}}\left(\Delta_{M_{\alpha}}^{\prime} ; k\right)(z) .
$$

By (13) this may be written

$$
b_{R}=1+\sum_{N \in D\left(c L_{I}\right)} m_{N}(-1)^{|N|} z^{|N|+2} \widetilde{\mathrm{H}}(\Gamma ; k)(z)
$$

where $\Gamma=\Delta_{M_{\alpha_{1}}}^{\prime} \cdot \ldots \cdot \Delta_{M_{\alpha_{r}}}^{\prime}$, if $N=\left\{x^{\alpha_{1}}, \ldots, x^{\alpha_{r}}\right\}$. The point here is that $M_{N}=M_{\alpha_{1}} \cup \ldots \cup M_{\alpha_{r}}$ is the decomposition of M_{N} into its connected components: every $M_{\alpha_{i}}$ is connected because $x^{\alpha_{i}} \in c L_{I}$, and since N is independent, there are no edges between $M_{\alpha_{i}}$ and $M_{\alpha_{j}}$ if $i \neq j$. Therefore

$$
\Delta_{M_{N}}=\Delta_{M_{\alpha_{1}}}^{\prime} \cdot \ldots \cdot \Delta_{M_{\alpha_{r}}}^{\prime}=\Gamma
$$

For any $N \in D\left(c L_{I}\right)$, the set M_{N} is obviously saturated in M. Conversely, for any saturated subset S of M, let $S=S_{1} \cup \ldots \cup S_{r}$ be the decomposition of S into connected components. Then $N=\left\{m_{S_{1}}, \ldots, m_{S_{r}}\right\} \in D\left(L_{I}\right)$ and since $S_{i}=M_{m_{S_{i}}}$, as S is saturated, it follows that $M_{m_{S_{i}}}$ is connected for each i, so that $N \in D\left(c L_{I}\right)$.

This sets up a one-to-one correspondence between \hat{K}_{M} and $D\left(c L_{I}\right)$. Furthermore, under this correspondence $m_{S}=m_{N}$ and $c(S)=|N|$, so it translates our formula to:

$$
b_{R}=1+\sum_{S \in \hat{K}_{M}} m_{S}(-z)^{c(S)+2} \widetilde{\mathrm{H}}\left(\Delta_{S} ; k\right)(z)
$$

To finish the proof, we use Proposition 2, which says that for any $S \in K_{M}$, the simplicial complex Δ_{S} is homotopy equivalent to the order complex of the open interval (\emptyset, S) in K_{M}.

Introduce the auxiliary notation

$$
F(M)=1+\sum_{S \in \hat{K}_{M}} m_{S}(-z)^{c(S)+2} \widetilde{\mathrm{H}}\left(\Delta_{S} ; k\right)(z),
$$

when M is a set of monomials of degree at least 2. If I is a monomial ideal in some polynomial ring Q over k, then set $F(I)=F(\operatorname{Gen}(I))$. So far we have proved that $b_{Q / I}=F(I)$ whenever I is generated by squarefree monomials. The claim of Theorem 5 is that $b_{Q / I}=F(I)$ for all monomial ideals I.

Lemma 7. Let I and J be equivalent monomial ideals, and let $f: L_{I} \rightarrow L_{J}$ be an isomorphism of pographs. Then $f(F(I))=F(J)$, where $f(F(I))$ denotes the result of applying f to the coefficients m_{S} of $F(I)$, regarding it as a polynomial in z with coefficients in L_{I}.

Proof. Let $M=\operatorname{Gen}(I)$ and $N=\operatorname{Gen}(J)$. By Proposition 3, f induces an isomorphism of lattices $K_{M} \rightarrow K_{N}$ which maps $S \in K_{M}$ to $f(S) \in K_{M}$. In particular the open intervals $(\emptyset, S)_{K_{M}}$ and $(\emptyset, f(S))_{K_{N}}$ are isomorphic. Furthermore, $c(S)=c(f(S))$ and $f\left(m_{S}\right)=m_{f(S)}$ for all $S \subseteq M$. The result follows.

Proof of Theorem 5. General case. We use polarization. Let $I^{\circ} \subseteq Q$ be the squarefree monomial ideal associated to I as in section 4.1, and let $R=S / I, R^{\circ}=Q / I^{\circ}$. The map $f: L_{I^{\circ}} \rightarrow L_{I}$ is an isomorphism of pographs. Therefore we get

$$
b_{R}=f\left(b_{R^{\circ}}\right)=f\left(F\left(I^{\circ}\right)\right)=F(I),
$$

where the first equality follows from the construction in [19], the second from the squarefree case of Theorem 5, and the third from Lemma 7. This proves Theorem 5 in general.
8.1. Applications and remarks. We will here give the proofs of some corollaries to Theorem 5 and make some additional remarks.

Corollary 1. With notations as in Theorem 5

$$
\operatorname{deg} b_{R}(z) \leq g+d
$$

where $b_{R}(z)=b_{R}(1, \ldots, 1, z), g=|M|$ is the number of minimal generators of I and d is the independence number of M, i.e., the largest size of an independent subset of M. In particular

$$
\operatorname{deg} b_{R}(z) \leq 2 g
$$

with equality if and only if R is a complete intersection.

Proof. If Δ is a simplicial complex with v vertices, then $\operatorname{deg} \widetilde{\mathrm{H}}(\Delta ; k)(z) \leq v-2$, because either $\operatorname{dim} \Delta=v-1$, in which case Δ is the $(v-1)$-simplex and $\widetilde{\mathrm{H}}(\Delta ; k)=0$, or else $\operatorname{dim} \Delta \leq v-2$, in which case $\widetilde{\mathrm{H}}_{i}(\Delta ; k)=0$ for $i>v-2$. The simplicial complex Δ_{S} has $|S|$ vertices. Thus the z-degree of a general summand in the formula (6) for $b_{R}(\mathbf{x}, z)$ is bounded above by $c(S)+2+|S|-2 \leq d+g$, because the number of components of S can not exceed the independence number of M. Since $d \leq g$ we get in particular that

$$
\operatorname{deg} b_{R}(z) \leq 2 g
$$

with equality if and only if M is independent itself, which happens if and only if R is a complete intersection.

Now that we know that Q and R below satisfy $b_{Q}=F(I)$ and $b_{R}=F(J)$, the next corollary is merely a restatement of Lemma 7 .

Corollary 2. Let I and J be ideals generated by monomials of degree at least 2 in the rings $k[\mathbf{x}]$ and $k[\mathbf{y}]$ respectively, where \mathbf{x} and \mathbf{y} are finite sets of variables. Let $Q=k[\mathbf{x}] / I$ and $R=k[\mathbf{y}] / J$. If $f: L_{I} \rightarrow L_{J}$ is an equivalence, then

$$
b_{R}(\mathbf{y}, z)=f\left(b_{Q}(\mathbf{x}, z)\right),
$$

where $f\left(b_{Q}(\mathbf{x}, z)\right)$ denotes the result of applying f to the coefficients of $b_{Q}(\mathbf{x}, z)$, regarding it as a polynomial in z.

Remark 2. Given formula (6), it is easy to reproduce the result, implicit in [18] and explicit in [16], that

$$
b_{R}(\mathbf{x}, z)=\sum_{S \subseteq M}(-1)^{c(S)} z^{|S|+c(S)} m_{S}
$$

when the Taylor complex on M is minimal. The Taylor complex is minimal precisely when $m_{T}=m_{S}$ implies $S=T$, for $S, T \subseteq M$, i.e., when L_{I} is isomorphic to the boolean lattice of subsets of M. In this case every non-empty subset S of M is saturated, because $m \mid m_{T}$ implies $m \in T$ for any $T \subseteq M$, and Δ_{S} is a triangulation of the $(|S|-2)$-sphere, because $m_{S}=m_{M}$ only if $S=M$.

9. (Strongly) homotopy Lie algebras

Fix a field k and let $S=k\left[x_{1}, \ldots, x_{n}\right]$. Let $I \subseteq S$ be an ideal generated by a set M of squarefree monomials of degree at least 2 , and set $R=S / I$. Recall the definition of the dg-algebra $(\Lambda Y, \bar{d})$ constructed in Section 6.2. By Proposition $7, \pi^{\geq 2}(R) \cong \mathfrak{L}_{Y}$, and this is by definition the cohomology of the L_{∞}-algebra obtained from dualizing the dg-algebra $(\Lambda Y, \bar{d})$. We will now describe this L_{∞}-algebra combinatorially.

Definition 4. Let M be any set of monomials. Then $\mathfrak{L}_{\infty}(M)$ is a multigraded L_{∞}-algebra with

$$
\left.\mathfrak{L}_{\infty}(M)_{\alpha}^{i}=\left\langle\xi_{S}\right| S \text { connected subset of } M ;|S|=i-1, m_{S}=x^{\alpha}\right\rangle
$$

Thus ξ_{S} has cohomological degree $|S|+1$ and multidegree m_{S}. For each $r \geq 1$, we have an r-ary bracket $\mathfrak{L}_{\infty}(M)^{\otimes r} \rightarrow \mathfrak{L}_{\infty}(M)$ of cohomological degree $2-r$ which is homogeneous with respect to the \mathbb{N}^{n}-grading. Whenever S_{1}, \ldots, S_{r} are connected
subsets of M satisfying $\operatorname{gcd}\left(m_{S_{i}}, m_{S_{j}}\right)=1$ when $i \neq j$, then this bracket is given by

$$
\begin{equation*}
\left[\xi_{S_{1}}, \ldots, \xi_{S_{r}}\right]=(-1)^{\epsilon} \sum \operatorname{sgn}\left(m, S_{r}, \ldots, S_{1}\right) \xi_{S \cup m} \tag{9}
\end{equation*}
$$

Here $S=S_{1} \cup \ldots \cup S_{r}$ and the summation is over all $m \in M-S$ such that $S \cup m$ is connected and $m \mid m_{S}$. The number ϵ is defined by

$$
\epsilon= \begin{cases}1+\left|\xi_{S_{1}}\right|+\left|\xi_{S_{3}}\right|+\ldots\left|\xi_{S_{r}}\right|, & \text { if } r \text { is odd } \\ 1+\left|\xi_{S_{2}}\right|+\left|\xi_{S_{4}}\right|+\ldots\left|\xi_{S_{r}}\right|, & \text { if } r \text { is even }\end{cases}
$$

The bracket is anti-symmetric in the sense that

$$
\left[\xi_{S_{1}}, \ldots, \xi_{S_{i}}, \xi_{S_{i+1}}, \ldots, \xi_{S_{r}}\right]=-(-1)^{\left|\xi_{S_{i}}\right|\left|\xi_{S_{i+1}}\right|}\left[\xi_{S_{1}}, \ldots, \xi_{S_{i+1}}, \xi_{S_{i}}, \ldots, \xi_{S_{r}}\right]
$$

The bracket is zero whenever $\operatorname{gcd}\left(m_{S_{i}}, m_{S_{j}}\right) \neq 1$ for some $i \neq j$. All operations coming from higher divided powers, such as the squaring operations $x \mapsto x^{[2]}$, are zero in $\mathfrak{L}_{\infty}(M)$.

If I is a monomial ideal, then $\mathfrak{L}_{\infty}(I)$ is defined to be $\mathfrak{L}_{\infty}(M)$, where M is the minimal set of generators for I.

Proposition 8. Let $I \subseteq S$ be an ideal generated by squarefree monomials and let $R=S / I$. Then we have an isomorphism of multigraded Lie algebras

$$
\pi^{\geq 2}(R)_{\tau} \cong \mathrm{H}^{*}\left(\mathfrak{L}_{\infty}(I)\right)
$$

Proof. If I is generated by squarefree monomials, then $\mathfrak{L}_{Y}=\mathrm{H}^{*}\left(\mathfrak{L}_{\infty}(I)\right)$, by definition of $\mathfrak{L}_{\infty}(I)$. Therefore the proposition follows from Proposition 7 .

Remark 3. Since the definition of $\mathfrak{L}_{\infty}(M)$ only uses properties of M which can be extracted from the pograph L_{M}, it is clear that, up to isomorphism of L_{∞}-algebras, $\mathfrak{L}_{\infty}(M)$ depends only on the equivalence class of the monomial set M.

A sort of converse to this is true in the sense that the lattice L_{M} can be recovered from the graph structure of M and the L_{∞}-algebra $\mathfrak{L}_{\infty}(M)$ with the given base indexed by connected non-empty subsets of M. Indeed, the lattice L_{M} is determined by what relations $m \mid m_{S}$ hold for $m \in M$ and subets S of M. The relation $m \mid m_{S}$ holds if and only if there is a subset T of S, with connected components T_{1}, \ldots, T_{r} say, such that $T \cup m$ is connected and $\xi_{T \cup m}$ occurs with a non-zero coefficient in the bracket $\left[\xi_{T_{1}}, \ldots, \xi_{T_{r}}\right]$.

Next we wish to prove that $\pi^{\geq 2}(R)$ is obtained from $\pi^{\geq 2}(R)_{\tau}$ by 'extending it freely in higher multidegrees'. Before doing so, we need to make this last sentence precise. Recall that for homogeneous elements x, y of a vector space, $x \perp y$ means that the multidegrees of x and y have disjoint supports.
Definition 5. If L is a Lie algebra, then let

$$
F L=\frac{\mathbb{L}(L)}{\langle\llbracket x, y \rrbracket-[x, y] \mid x \perp y, x, y \in L\rangle}
$$

where $\llbracket x, y \rrbracket$ denotes the bracket in the free Lie algebra $\mathbb{L}(L)$ on the vector space L and $[x, y]$ the bracket in L. This defines a functor $F: \mathfrak{L i e} \rightarrow \mathfrak{L i e}$.

One can check that the restriction of F to the full subcategory of truncated Lie algebras is left adjoint to the truncation functor $L \mapsto L_{\tau}$ from Lie algebras to truncated Lie algebras. It is also easy to check that if L is a truncated Lie algebra with a presentation $\mathbb{L}(V)_{\tau} /\langle W\rangle$, where V is a truncated vector space and $\langle W\rangle$ is
the ideal in $\mathbb{L}(V)_{\tau}$ generated by a subspace $W \subseteq \mathbb{L}(V)_{\tau}$, then $F L=\mathbb{L}(V) /\langle W\rangle$, where $\langle W\rangle$ is the ideal generated in $\mathbb{L}(V)$ by W. In this sense $F L$ is obtained from the truncated Lie algebra L by extending it freely in multidegrees outside $\{0,1\}^{n}$, taking only into account relations in degrees $\{0,1\}^{n}$. Note also that $(F L)_{\tau}=L$, so one could say that $F L$ is the largest Lie algebra whose truncation is L.

If L is a multigraded Lie algebra, then its universal enveloping algebra $U L$ is a multigraded associative algebra and the cohomology vector spaces $\mathrm{H}^{*}(L, k)=$ $\operatorname{Ext}_{U L}^{*}(k, k)$ are multigraded. $\operatorname{Ext}_{U L}^{1}(k, k)$ can be seen as the vector space of minimal generators for L and similarly $\operatorname{Ext}_{U L}^{2}(k, k)$ is the space of minimal relations among the minimal generators of L. Therefore the next statement should be clear.

The following are equivalent for a multigraded Lie algebra L :

- $\operatorname{Ext}_{U L}^{i}(k, k)$ is a truncated vector space for $i=1,2$.
- L has a free presentation $L \cong \mathbb{L}(V) /\langle W\rangle$, where V and W are truncated vector spaces.
- $L=F\left(L_{\tau}\right)$.

In this case we say that L is presented in squarefree multidegrees.
Proposition 9. The \mathbb{N}^{n}-graded Lie algebra $\pi^{\geq 2}(R)$ is presented in squarefree multidegrees. In other words

$$
\pi^{\geq 2}(R)=F\left(\pi^{\geq 2}(R)_{\tau}\right)
$$

Proof. $\operatorname{Ext}_{R}(k, k)$ is the universal enveloping algebra of the Lie algebra $\pi(R)$. Let

$$
H\left(z_{1}, z_{2}, \mathbf{x}\right)=\sum_{i, j, \alpha} \operatorname{dim}_{k} \operatorname{Ext}_{\operatorname{Ext}_{R}^{j}(k, k)}^{i}(k, k)_{\alpha} z_{1}^{i} z_{2}^{j} x^{\alpha}
$$

be the Hilbert series of the \mathbb{N}^{n+2}-graded algebra $\operatorname{Ext}_{\operatorname{Ext}_{R}(k, k)}(k, k)$ According to [8] Theorem 5^{\prime}, this algebra is generated by elements in squarefree degrees, so $\operatorname{Ext}_{\operatorname{Ext}_{R}(k, k)}^{1}(k, k)_{\alpha}=0$ unless $\alpha \in\{0,1\}^{n}$. Furthermore the Hilbert series is of the form

$$
H\left(z_{1}, z_{2}, \mathbf{x}\right)=\frac{p\left(z_{1}, z_{2}, \mathbf{x}\right)}{\prod_{i=1}^{n}\left(1-z_{1} z_{2} x_{i}\right)}
$$

where $p\left(z_{1}, z_{2}, \mathbf{x}\right)$ is reduced modulo $\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$. By looking at the z_{1}^{2}-coefficient of this series, one sees that $\operatorname{Ext}_{\operatorname{Ext}_{R}(k, k)}^{2}(k, k)$ is concentrated in multidegrees of the form $x_{i} \cdot m$, where m is a squarefree monomial in x_{1}, \ldots, x_{n}. Therefore, $\pi(R)$ is generated by elements of squarefree degrees, and the minimal relations between these generators are situated in degrees of the form $x_{i} m$, where m is squarefree.

Consider the ring $R^{\prime}=k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] / J$, where J is generated by the monomials $m^{\prime}=m\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)$, for $m \in M$. Clearly the monomials m^{\prime} are squarefree and the correspondence $m \leftrightarrow m^{\prime}$ gives an equivalence $M \sim M^{\prime}$. According to Theorem 3, we have an isomorphism $\pi^{\geq 2}(R) \cong \pi^{2}\left(R^{\prime}\right)$ of Lie algebras, and in particular a set of generators for the Lie algebra $\pi^{\geq 2}(R)$ is transferred to one for $\pi^{\geq 2}(R)$. Since $\pi\left(R^{\prime}\right)$ is generated as a Lie algebra by elements of squarefree multidegrees it follows that $\pi^{\geq 2}\left(R^{\prime}\right)$ as a $\pi\left(R^{\prime}\right)$-module is generated by squarefree elements. But we have constructed R^{\prime} so that the action of $\pi^{1}\left(R^{\prime}\right)$ on $\pi^{\geq 2}\left(R^{\prime}\right)$ is trivial. Indeed, it follows from Lemma 5 and the fact that the generators are in squarefree multidegrees that $\pi^{\geq 2}\left(R^{\prime}\right)_{\alpha}=0$ unless $x^{\alpha} \in\left[L_{M^{\prime}}\right]$. Here $\left[L_{M^{\prime}}\right]$ denotes the sub-semigroup of $\left[x_{1} \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ generated by $L_{M^{\prime}}$. But by construction any such α has the property that $x_{i} \mid x^{\alpha}$ if and only if $y_{i} \mid x^{\alpha}$. Therefore, as $\pi^{1}\left(R^{\prime}\right)$ is concentrated in the multidegrees $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ and $\pi^{\geq 2}\left(R^{\prime}\right)$ is
concentrated in the multidegrees $\left[L_{M^{\prime}}\right]$, the product $\left[\pi^{1}\left(R^{\prime}\right), \pi^{\geq 2}\left(R^{\prime}\right)\right]$ is zero for multidegree reasons. So $\pi^{\geq 2}\left(R^{\prime}\right)$ is generated by elements of squarefree degrees. By the above, the minimal relations among the generators for $\pi^{22}\left(R^{\prime}\right)$ are situated in multidegrees of the form $x_{i} m$ or $y_{i} m$, where m is squarefree. It follows that the minimal relations are concentrated in squarefree multidegrees as it is impossible to reach a multidegree of the form $x_{i}^{2} n$ or $y_{i}^{2} n$, where n is squarefree, from the generators of $\pi^{\geq 2}\left(R^{\prime}\right)$.

Thus the Lie algebra $\pi^{\geq 2}\left(R^{\prime}\right)$ has a squarefree presentation. By [15], squarefree multidegrees are mapped to squarefree ones by the isomorphism $\pi^{\geq 2}(R) \cong \pi^{\geq 2}\left(R^{\prime}\right)$, so the same is true for $\pi^{\geq 2}(R)$.

Remark 4. Replacing M by an equivalent monomial set M^{\prime} does not change the isomorphism class of $\pi^{\geq^{2}}(R)$, but the action of $\pi^{1}(R)$ is altered. The key point in the proof is that any R is equivalent to some R^{\prime} where $\pi^{1}\left(R^{\prime}\right)$ has a trivial action on $\pi\left(R^{\prime}\right)$.

We are now in position to give the main theorem of this section in which we also remove the squarefree hypothesis.
Theorem 6. Let $I \subseteq S$ be any monomial ideal, and let $R=S / I$. There is an isomorphism of multigraded Lie algebras

$$
\pi^{\geq 2}(R) \cong F \mathrm{H}^{*}\left(\mathfrak{L}_{\infty}(I)\right)
$$

Proof. Proposition 9 together with Proposition 8 yield that $\pi^{\geq 2}(R) \cong F \mathrm{H}^{*}\left(\mathfrak{L}_{\infty}(I)\right)$ when I is generated by squarefree monomials. If I and J are equivalent ideals, then $\mathfrak{L}_{\infty}(I) \cong \mathfrak{L}_{\infty}(J)$ and this isomorphism respects the relation \perp, whence also $F \mathrm{H}^{*}\left(\mathfrak{L}_{\infty}(I)\right) \cong F \mathrm{H}^{*}\left(\mathfrak{L}_{\infty}(J)\right)$. Applying this to the equivalence of I and its polarization I° and using Theorem 3, we get

$$
\pi^{\geq 2}(R) \cong \pi^{\geq 2}\left(R^{\circ}\right) \cong F \mathrm{H}^{*}\left(\mathfrak{L}_{\infty}\left(I^{\circ}\right)\right) \cong F \mathrm{H}^{*}\left(\mathfrak{L}_{\infty}(I)\right)
$$

The relevant data for computing $\pi^{\geq 2}(R)$ is the differential and the binary bracket of $\mathfrak{L}_{\infty}(I)$. As a favour to the reader, we write these out. The differential d of $\mathfrak{L}_{\infty}(I)$ has degree 1 and is given on basis elements by

$$
d \xi_{S}=\sum_{\substack{m \in M-S \\ m \mid m_{S}}} \operatorname{sgn}(S, m) \xi_{S \cup m}
$$

The bracket of L, which is a Lie bracket only up to homotopy, is given by

$$
\left[\xi_{S}, \xi_{T}\right]=\sum_{\substack{m \in M-(S \cup T) \\ m \mid m m_{S} \\ S \cup T}} \operatorname{sgn}(T, m, S) \xi_{S \cup T \cup m},
$$

if $\operatorname{gcd}\left(m_{S}, m_{T}\right)=1$ and zero otherwise. Note the order T, m, S in the sign. The reduced square is $\xi_{S}^{[2]}=0$ for all $\xi_{S} \in L$.

We note two special cases when the structure of $\pi^{22}(R)$ is simple.

- If the lcm-lattice L_{M} is boolean, then there are no cover relations $m \mid m_{S}$, and therefore all operations in $\mathfrak{L}_{\infty}(M)$ are trivial. Therefore the homotopy Lie algebra $\pi^{\geq 2}(R)$ is the free graded Lie algebra generated by ξ_{S} for nonempty connected subsets S of M divided by the relations $\left[\xi_{S}, \xi_{T}\right]=0$ for all pairs $S, T \subseteq M$ such that $\operatorname{gcd}\left(m_{S}, m_{T}\right)=1$.
- If M is a complete graph, i.e., if $\operatorname{gcd}(m, n) \neq 1$ for all $m, n \in M$, then $\pi^{\geq 2}(R)$ is the free graded Lie algebra on the vector space $\mathrm{H}^{*}\left(\mathfrak{L}_{\infty}(M)\right)$. In this case, this vector space is isomorphic to $\operatorname{Ext}_{\bar{S}}{ }^{1}(R, k)$.
Example 1. Forgetting the multigrading, Theorem 5 shows that the graded vector space $\pi^{\geq 2}(R)$ is determined by the combinatorial data (K_{M}, c). Indulging ourselves in a comparison, this is reminiscent of the fact that the homotopy type of the complement of an affine subspace arrangement is determined by its intersection lattice and its dimension function, cf. [11]. Despite this analogy, the datum $\left(K_{M}, c\right)$ is not sufficient for determining the Lie bracket on $\pi^{22}(R)$, as is shown by the following example. Consider the monomial rings R, Q defined by the sets $M=\left\{x^{2}, x y, y^{2}\right\}$ and $N=\left\{x^{2}, x y z, y^{2}\right\}$ respectively. These monomial sets are isomorphic as graphs and the pairs $\left(K_{M}, c_{M}\right),\left(K_{N}, c_{N}\right)$ are isomorphic. Therefore $\pi^{\geq 2}(R) \cong \pi^{\geq 2}(Q)$ as graded vector spaces. They are not isomorphic as graded Lie algebras. $\pi^{\geq 2}(R)$ is the free graded Lie algebra generated by $\xi_{1}, \xi_{2}, \xi_{3}, \xi_{1,3}, \xi_{2,3}$, whereas $\pi^{\geq 2}(Q)$ has generators $\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{1,3}, \zeta_{2,3}, \zeta_{1,2,3}$ and the single relation $\left[\zeta_{1}, \zeta_{2}\right]=0$.
Example 2. In spite of what the previous example might suggest, it is possible to have $\pi^{\geq 2}(R) \cong \pi^{\geq 2}(Q)$ without M and N being equivalent. The monomial sets $M=\left\{x^{2}, y^{2}, z^{2}, x y z\right\}$ and $N=\left\{x^{2}, y^{2}, z^{2}, x y z w\right\}$ are not equivalent because their lcm-lattices are not isomorphic, but their homotopy Lie algebras are isomorphic. Both have the presentation

$$
\mathbb{L}\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{1,4}, \xi_{2,4}, \xi_{3,4}, \xi_{1,2,4}, \xi_{1,3,4}, \xi_{2,3,4}, \xi_{1,2,3,4}\right) /\left(\left[\xi_{1}, \xi_{2}\right],\left[\xi_{1}, \xi_{3}\right],\left[\xi_{2}, \xi_{3}\right]\right)
$$

10. Golodness

As a conclusion, we note how our formula gives a combinatorial criterion for when a monomial ring is Golod. Interesting sufficient combinatorial conditions have been found earlier, see for instance [25], but the author is not aware of any necessary condition which is formulated in terms of the combinatorics of the monomial generators.

Our formula for the Poincaré series denominator could be compared with the result of [21] that the Betti numbers $\operatorname{dim}_{k} \operatorname{Tor}_{i, \alpha}^{S}(R, k)$ of a monomial ring $R=$ $k\left[x_{1}, \ldots, x_{n}\right] / I$ can be computed from the homology of the lower intervals of the lcm-lattice, L_{I}, of I. Specifically, Theorem 2.1 of [21] can be stated as

$$
\begin{equation*}
\mathrm{P}_{R}^{S}(\mathbf{x}, z)=1+\sum_{1 \neq m \in L_{I}} m z^{2} \widetilde{\mathrm{H}}\left((1, m)_{L_{I}} ; k\right)(z) . \tag{10}
\end{equation*}
$$

Here $\mathrm{P}_{R}^{S}(\mathbf{x}, z)$ is the polynomial

$$
\mathrm{P}_{R}^{S}(\mathbf{x}, z)=\sum_{i \geq 0, \alpha \in \mathbb{N}^{n}} \operatorname{dim}_{k} \operatorname{Tor}_{i, \alpha}^{S}(R, k) x^{\alpha} z^{i}
$$

Recall that R is called a Golod ring if there is an equality of formal power series

$$
\mathrm{P}_{R}(\mathbf{x}, z)=\frac{\prod_{i=1}^{n}\left(1+x_{i} z\right)}{1-z\left(\mathrm{P}_{R}^{S}(\mathbf{x}, z)-1\right)}
$$

In terms of the denominator polynomial the condition reads

$$
\begin{equation*}
b_{R}(\mathbf{x}, z)=1-z\left(\mathrm{P}_{R}^{S}(\mathbf{x}, z)-1\right) \tag{11}
\end{equation*}
$$

It is easily seen that S is saturated in M if and only if S is saturated in $M_{m_{S}}$. Note also that $(1, m)_{L_{M}}=L_{M_{m}}-\{1, m\}=: \bar{L}_{M_{m}}$. Therefore, after plugging the
formulas (6) and (10) into (11) and equating the coefficients of each $m \in L_{I}$, we get a criterion for R to be a Golod ring as follows:

Definition 6. A monomial set N is called pre-Golod over k if

$$
\widetilde{\mathrm{H}}\left(\bar{L}_{N} ; k\right)(z)=\sum_{\substack{S \in \hat{K}_{N} \\ m_{S}=m_{N}}}(-z)^{c(S)-1} \widetilde{\mathrm{H}}\left((\emptyset, S)_{K_{N}} ; k\right)(z)
$$

Theorem 7. Let k be a field and let I be a monomial ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ with minimal set of generators M. Then the monomial ring $R=k\left[x_{1}, \ldots, x_{n}\right] / I$ is Golod if and only if every non-empty subset of M of the form M_{m} is pre-Golod over k.

Combinatorics

11. Realizations of lattices

Recall that the lcm-lattice of a monomial set M is the set $L_{M}=\left\{m_{S} \mid S \subseteq M\right\}$ of least common multiples of subsets of M partially ordered by divisibility. It is natural to ask which finite lattices occur as lcm-lattices. An isomorphism of a lattice L with the lcm-lattice of some set of monomials M such that M maps to the irreducible elements of L is called a realization of L. Sometimes we will abuse language and call M a realization of L. Construction 2.3 of [30] provides a realization of any geometric lattice. We will show that actually any finite lattice is an lcm-lattice.

A realization of a lattice induces a graph structure on it, by viewing sets of monomials, and in particular lcm-lattices, as graphs with edges going between monomials having non-trivial common factors. The next lemma says that every graph structure induced on L via some realization contains the edges

$$
\{(x, y) \mid x, y \not \leq c, \text { for some coirreducible } c \in L\} .
$$

Proposition 10. Let M be a monomial set. If m and n are elements of L_{M} satisfying $\operatorname{gcd}(m, n)=1$, then for all coirreducible elements $c \in L_{M}$ either $m \mid c$ or $n \mid c$ holds.

Proof. Let X be the variables used in M. For each $x \in X$ and each $n \geq 1$, consider the function $\alpha_{x^{n}}: L_{M} \rightarrow \underline{2}$ defined by

$$
\alpha_{x^{n}}(w)= \begin{cases}0 & x^{n} \nmid w \\ 1 & x^{n} \mid w\end{cases}
$$

$\alpha_{x^{n}}$ is an element of $\left(L_{M}\right)^{*}$. We claim that the set $\left\{\alpha_{x^{n}} \mid x \in X, n \geq 1\right\}$ generates $\left(L_{M}\right)^{*}$ as a join-semilattice. To see this, note that if $f \in\left(L_{M}\right)^{*}$, then with $v=$ $\vee f^{-1}(0)$ we have $f=f_{v}$, where $f_{v}(w)=0$ if and only if $w \leq v$. Hence, as is easy to check,

$$
f=\bigvee_{x^{n} \nmid v} \alpha_{x^{n}}
$$

Now let c be a coirreducible element of L_{M}. Then f_{c} is irreducible in $\left(L_{M}\right)^{*}$. Therefore $f_{c}=\alpha_{x^{n}}$ for some $x \in X$ and some $n \geq 1$, that is, $c \mid w$ if and only if $x \nmid w$ for $w \in L_{M}$. If $\operatorname{gcd}(m, n)=1$, then either $x^{n} \nmid m$ or $x^{n} \nmid n$, i.e., $m \mid c$ or $n \mid c$.

Definition 7. Let L be a finite lattice and let $I(C)$ be its set of irreducible (coirreducible) elements. The minimal realization of L is the monomial set $M=$ $\left\{m_{a} \mid a \in I\right\}$, where for each $z \in L, m_{z}$ is the squarefree monomial in the variables $\left\{x_{c}\right\}_{c \in C}$ defined by

$$
m_{z}=\prod_{\substack{c \in C \\ z \nmid c}} x_{c} .
$$

If one starts with a geometric lattice and takes its minimal realization then one obtains the same monomial set as that constructed by Peeva, cf. [30] Construction 2.3. The next proposition justifies the name 'minimal realization'.

Proposition 11. Let L be a finite lattice and let M be its minimal realization. The map $L \rightarrow L_{M}, z \mapsto m_{z}$ is an isomorphism of lattices. Furthermore the graph structure induced on L via this isomorphism is the minimal possible, i.e., $x, y \in L$ are connected by an edge if and only if $x, y \not \leq c$ for some coirreducible $c \in L$.

Proof. That we have an isomorphism of lattices follows from the fact that $x \leq y$ in L if and only if $C_{y} \subseteq C_{x}$, where C_{x} denotes the set of coirreducible elements above x. Also, the graph structure on L is the minimal allowed by Proposition 10 $-\operatorname{gcd}\left(m_{a}, m_{b}\right)=1$ if and only if for all $c \in C$ either $a \leq c$ or $b \leq c$, or both.

Remark 5. Proposition 11 shows that any finite lattice is the lcm-lattice of some set of monomials. Restricting attention to antichains of monomials, which is the same thing as minimal generators for monomial ideals, we see that a finite lattice is the lcm-lattice of some monomial ideal if and only if it is atomic.

12. Complete monomial sets and geometric lattices

As suggested by Theorem 7, the Golod property of a monomial ring $S /(M)$ is a property of the morphism of semilattices $K_{M} \rightarrow L_{M}$. This part contains a closer investigation of this morphism. We introduce a new class of finite lattices, called complete lattices, which is closed under direct products and contains all geometric lattices. The main feature of this class is that monomial sets whose lcm-lattices are complete define Golod rings if and only if their corresponding graphs are complete. This generalizes the previously known result that this holds if the lcm-lattice is boolean. It should be noted that the arguments in this part do not formally depend on Theorem 7 or any other result established in preceding parts. It is rather the case that this theorem pointed toward which structure to examine more carefully.

We will investigate the two lattices L_{M} and K_{M} associated to a monomial set M. Notions and definitions concerning semilattices are collected in Appendix B.

Recall that M_{m} denotes the set of all $n \in M$ that divide m, if m is a monomial and M is a set of monomials. L_{M} embeds into K_{M} as a meet-semilattice by mapping $x \in L_{M}$ to $\overline{\{x\}}=M_{x}$. The map $K_{M} \rightarrow L_{M}$ sending S to m_{S} is a map of join-semilattices and a retraction onto L_{M}, because $m_{M_{x}}=x$. Thus K_{M} is isomorphic to L_{M} if and only if the equality $M_{m_{S}}=S$ holds for every saturated subset S of M.

Definition 8. A monomial set M is called complete if K_{M} is isomorphic to L_{M}, i.e., if $M_{m_{S}}=S$ holds for all $S \in K_{M}$.

For instance, it is easily seen that if the graph underlying M is complete, i.e., if every two monomials in M have a non-trivial common factor, then M is a complete monomial set.

Proposition 12. M is complete if and only if for all $x, y \in L_{M}$ with $\operatorname{gcd}(x, y)=1$ and for all $m \in M, m \mid x y$ implies $m \mid x$ or $m \mid y$.

Proof. Assume M complete and suppose $x, y \in L_{M}$ and $\operatorname{gcd}(x, y)=1$. Let $S=$ $M_{x} \cup M_{y} . S$ is saturated in M because the saturated sets M_{x} and M_{y} are the connected components of S. Note that $m_{S}=x y$, so by completeness $M_{x} \cup M_{y}=$ $M_{x y}$, which is exactly what is required.

Conversely, if $M_{x y}=M_{x} \cup M_{y}$ whenever $\operatorname{gcd}(x, y)=1$ and $x, y \in L_{M}$, then for $S \in K_{M}$, decompose S into connected components as $S=S_{1} \cup \ldots \cup S_{r}$. Since $S_{i}=M_{m_{S_{i}}}$, it follows that $S=M_{m_{S_{1}}} \cup \ldots \cup M_{m_{S_{r}}}=M_{m_{S_{1}} \ldots m_{S_{r}}}=M_{m_{S}}$.

Let M be the minimal realization of a lattice L and let N be any realization of L. Then by Propositions 10 and 11, the induced lattice isomorphism $f: L_{M} \rightarrow L_{N}$ is morphism of graphs, i.e., the graph L_{M} is obtained from the graph L_{N} by removing some edges. Then as in Proposition 3 there is a commutative diagram of joinsemilattices

If M is complete, i.e., if $K_{M} \rightarrow L_{M}$ is an isomorphism, then so is N. In other words, if the minimal realization of a lattice L is complete, then all realizations of L are complete. In view of this fact we call the lattice L complete if its minimal realization is a complete monomial set, and we have the following characterization.
Proposition 13. The following are equivalent for a lattice L :

- L is complete.
- The minimal realization of L is complete.
- Every realization of L is complete.
- For any $x, y \in L$ such that $L_{\geq x} \cup L_{\geq y}$ contains all coirreducible elements of L, if $a \in L$ is irreducible, then $a \leq x \vee y$ only if $a \leq x$ or $a \leq y$.

If M and N are sets of monomials in the variables X and Y, respectively, then $M \bigoplus N$ is the monomial set $M \cup N$ in the variables $X \sqcup Y$. The graph underlying $M \bigoplus N$ is the disjoint union of the graphs of M and N. Clearly, $L_{M} \oplus N \cong L_{M} \times L_{N}$ and $K_{M \oplus N} \cong K_{M} \times K_{N}$. Therefore $M \oplus N$ is complete if M and N are complete. One can also verify that if M and N are the minimal realizations of the lattices L and K, then $M \bigoplus N$ is the minimal realization of $L \times K$. Consequently, direct products of complete lattices are complete.

Recall that a finite lattice L is called geometric if it is atomic and if it semimodular, meaning that for all $x, y \in L$, if x and y both cover $x \wedge y$, then both x and y are covered by $x \vee y$. Geometric lattices abound in combinatorics and other areas of mathematics. Among the many results concerning geometric lattices, we cite here a structure theorem which will be useful to us. A lattice is called indecomposable if it is not isomorphic to a direct product of smaller lattices.

Theorem 8 ([22], Theorems IV.3.5 and IV.3.6). Every geometric lattice is isomorphic to a direct product of indecomposable geometric lattices. A geometric lattice L is indecomposable if and only if for any two atoms $a, b \in L$, there is a coatom $c \in L$ such that $a \not \leq c$ and $b \not \leq c$.

The next result was discovered by J.Blasiak and P.Hersh. Their original proof uses matroid theory. We present here an alternative proof using the above structure theorem.

Corollary 2. The graph underlying the minimal realization of a geometric lattice L is a disjoint union of complete graphs, the components being in one-to-one correspondence with the factors of the decomposition of L as a direct product of indecomposable geometric lattices.

Proof. A geometric lattice is coatomic, so the coirreducible elements of L are precisely the coatoms. Thus, in the minimal realization $f: L \rightarrow L_{M}$, two monomials $m, n \in M$ have a common factor if and only if there is a coatom c of L such that $f^{-1}(m), f^{-1}(n) \not \leq c$.

By Proposition 13 we conclude
Corollary 3. Geometric lattices are complete.
Remark 6. Not all complete lattices are geometric. The complete monomial set $M=\left\{x^{2} y, x z, y z\right\}$ is a minimal realization of its lcm-lattice, but this lattice is not ranked, let alone geometric.

It is well known that geometric lattices are shellable (that is, the order complex of the proper part of a geometric lattice is a shellable simplicial complex). However, not all shellable lattices are complete; the lcm-lattice of the monomial set $M=$ $\left\{x^{2}, x y, y^{2}\right\}$ is shellable, but not complete.
12.1. The Golod property and L_{∞}-algebra of complete monomial sets. Our interest in complete monomial sets stems from the fact that it is trivial to determine whether or not such a set is Golod. It is easily seen that if the graph underlying a monomial set M is complete, then M is Golod over any field k. In [16] it is proved that if L_{M} is boolean (i.e., isomorphic to the lattice of subsets of $M)$ then the converse holds, i.e., M is Golod if and only if its underlying graph is complete. Boolean lattices are geometric and hence complete, and we have the following generalization of the quoted result.

Proposition 14. If M is a complete antichain of monomials, then M is Golod if and only if the graph underlying M is complete.

Proof. We need only the following two properties of the class of Golod sets:

- A Golod set is connected.
- If M is Golod, then M_{m} is Golod for any monomial m.

Suppose M is Golod and let $x, y \in M$. If $\operatorname{gcd}(x, y)=1$, then $M_{x y}$ must be Golod, and hence connected. On the other hand $M_{x y}=M_{x} \cup M_{y}$ by completeness, but this set is not connected. Therefore $\operatorname{gcd}(x, y) \neq 1$ for all $x, y \in M$.

Corollary 4. If the lcm-lattice of M is geometric, then M is Golod if and only if its underlying graph is complete.

The L_{∞}-algebra $\mathfrak{L}_{\infty}(M)$ is particularly simple when M is a complete monomial set. In fact, completeness of M has the following algebraic characterization.

Proposition 15. A monomial set M is complete if and only if all higher operations of the L_{∞}-algebra $\mathfrak{L}_{\infty}(M)$ are trivial.

Proof. Assume that M is complete. Let S_{1}, \ldots, S_{r} be pairwise separated connected subsets of M, where $r \geq 2$, and let S be their union. If $m \mid m_{S_{1}} \ldots m_{S_{r}}$, then $m \mid m_{S_{i}}$ for some i, by completeness of M. Therefore $S \cup\{m\}$ cannot be connected. From the definition (9) of the brackets, we see that $\left[\xi_{S_{1}}, \ldots, \xi_{S_{r}}\right]=0$.

Conversely, assume that all r-ary operations of $\mathfrak{L}_{\infty}(M)$ are zero, for all $r \geq 2$. In view of Proposition 12, it is clear that M is complete if and only if for all $m \in M$ and all $S \subseteq M$, if $m \mid m_{S}$ then $m \mid m_{S_{i}}$ for some connected component S_{i} of S. Thus let $m \in M$, and let S be a subset of M with connected components S_{1}, \ldots, S_{r}. Suppose $m \mid m_{S}$. Since $\left[\xi_{S_{1}}, \ldots, \xi_{S_{r}}\right]=0$, we conclude that $S \cup\{m\}$ is not connected - otherwise $\xi_{S \cup\{m\}}$ would have occured with a non-zero coefficient in the bracket. Therefore $\operatorname{gcd}\left(m, m_{S_{i}}\right)=1$ for some i, and by renumbering we may assume that $i=r$. Therefore $m \mid m_{T}$, where $T=S_{1} \cup \ldots \cup S_{r-1}$. Continuing in this way we end up with $m \mid m_{S_{j}}$ for some j. This proves the claim.

Remark 7. It follows from the previous proposition that $\mathrm{H}^{*}\left(\mathfrak{L}_{\infty}(M)\right)$ is an abelian Lie algebra if M is complete. We stress that this does not imply that $\pi^{\geq 2}(R)$ is abelian. What it does imply is that the product of two elements in $\pi^{\geq 2}(R)$ of relatively prime multidegrees is zero.

13. Connections to real subspace arrangements

We first recall the notion of a subspace arrangement. Let \mathbb{F} be a field, often $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$. A subspace arrangement is a finite collection $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ of affine subspaces of \mathbb{F}^{n}. The complement of the arrangement is the space

$$
\mathcal{M}_{\mathcal{A}}=\mathbb{F}^{n}-\bigcup_{i=1}^{n} A_{i}
$$

An arrangement is called central if all A_{i} are linear subspaces.
The intersection lattice of an arrangement \mathcal{A} is the set of intersections of subspaces,

$$
L_{\mathcal{A}}=\left\{A_{i_{1}} \cap \ldots \cap A_{i_{r}} \mid r \geq 0\right\},
$$

ordered by reverse inclusion. Here an empty intersection is interpreted as \mathbb{F}^{n}.
The cohomology of the complement of a subspace arrangement can be understood in terms of the combinatorics of intersection lattices. The GoreskyMacPherson formula states that for a real arrangement \mathcal{A} the integral cohomology groups of the complement are given by (cf. [11])

$$
\widetilde{\mathrm{H}}^{*}\left(\mathcal{M}_{\mathcal{A}}\right) \cong \bigoplus_{x \in L_{\mathcal{A}}, x \neq \hat{0}} \widetilde{\mathrm{H}}_{\operatorname{codim}(x)-2-i}(\hat{0}, x) .
$$

Relations between certain types of complex arrangements and monomial rings have been investigated. In some cases the cohomology algebra of the complement can be described purely algebraically. Specifically, to a simplicial complex Δ with vertex set $\{1,2, \ldots, n\}$ one may associate a complex arrangement $\mathcal{A}(\Delta)$. It consists of all subspaces $W_{F}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i}=0\right.$ if $\left.i \in F\right\}$, where F ranges over the
set of minimal non-faces of Δ. Let $U(\Delta)$ denote the complement of the arrangement $\mathcal{A}(\Delta)$. Theorem 8.13 of [14] states that there is an isomorphism of graded algebras

$$
\mathrm{H}^{*}(U(\Delta)) \cong \operatorname{Tor}_{*}^{S}(k[\Delta], k)
$$

For a related result in the real case see [20].
13.1. Real diagonal subspace arrangements. Let m be a squarefree monomial in the variables x_{1}, \ldots, x_{n}. To m we associate the diagonal subspace

$$
U_{m}=\left\{u \in \mathbb{R}^{n} \mid u_{i}=u_{j}, \text { if } x_{i} x_{j} \text { divides } m\right\}
$$

which is a linear subspace of \mathbb{R}^{n}. If M is a set of squarefree monomials in the variables x_{1}, \ldots, x_{n}, then let \mathcal{A}_{M} be the arrangement $\left\{U_{m} \mid m \in M\right\}$. The intersection lattice of \mathcal{A}_{M} is the set

$$
L_{\mathcal{A}_{M}}=\left\{U_{m_{1}} \cap \ldots \cap U_{m_{r}} \mid r \geq 0, m_{i} \in M\right\} .
$$

partially ordered by reverse inclusion. Here an empty intersection is interpreted as \mathbb{R}^{n}.

Proposition 16. Let M be a set of squarefree monomials. The lattice of saturated subsets of M, K_{M}, is isomorphic to the intersection lattice $L_{\mathcal{A}_{M}}$ of the diagonal arrangement \mathcal{A}_{M} associated to M. Furthermore for $S \in K_{M}$

$$
\operatorname{codim}(S)+c(S)=\operatorname{deg} m_{S}
$$

where $\operatorname{codim}(S)$ is the codimension of the image of S in the intersection lattice.
Proof. For the diagonal subspaces, we have that $U_{m} \cap U_{n}=U_{\operatorname{lcm}(m, n)}$ if $\operatorname{gcd}(m, n) \neq$ 1. Hence any intersection may be brought to the form

$$
U_{m_{1}} \cap \ldots \cap U_{m_{r}}
$$

where m_{i} are pairwise relatively prime and $m_{i} \in c L_{M}$, that is, $\left\{m_{1}, \ldots, m_{r}\right\}$ is an element of $D\left(c L_{M}\right)$. Recall that $c L_{M}$ denotes the subset of L_{M} consisting of monomials $m \in L_{M}$ such that M_{m} is connected. Conversely, if $m \in c L_{M}$, then

$$
U_{m}=\bigcap_{n \in M_{m}} U_{n}
$$

This establishes an isomorphism of partial orders $L_{\mathcal{A}_{M}} \cong D\left(c L_{M}\right)$.
An isomorphism $D\left(c L_{M}\right) \cong K_{M}$ is given by mapping

$$
\left\{m_{1}, \ldots, m_{r}\right\} \mapsto M_{m_{1}} \cup \ldots \cup M_{m_{r}}
$$

The inverse is given by

$$
S \mapsto\left\{m_{S_{1}}, \ldots, m_{S_{r}}\right\}
$$

where S_{1}, \ldots, S_{r} are the connected components of $S \in K_{M}$.
Clearly, $\operatorname{codim}\left(U_{m}\right)=\operatorname{deg}(m)-1$. The element in the intersection lattice corresponding to $S \in K_{M}$ is

$$
U_{m_{1}} \cap \ldots \cap U_{m_{r}}
$$

where $m_{i}=m_{S_{i}}$ and S_{1}, \ldots, S_{r} are the connected components of S. Since the monomials m_{i} are pairwise relatively prime

$$
\begin{aligned}
\operatorname{codim}\left(U_{m_{1}} \cap \ldots \cap U_{m_{r}}\right) & =\operatorname{codim}\left(U_{m_{1}}\right)+\ldots+\operatorname{codim}\left(U_{m_{r}}\right) \\
& =\left(\operatorname{deg}\left(m_{1}\right)-1\right)+\ldots+\left(\operatorname{deg}\left(m_{r}\right)-1\right) \\
& =\operatorname{deg}\left(m_{S}\right)-c(S)
\end{aligned}
$$

The next proposition could be given a direct proof, but instead we give a neat proof using the formula for the Poincaré series.
Proposition 17. Let M be a monomial set, and let $\alpha \in \mathbb{N}^{n}$. Then we have an isomorphism of graded vector spaces

$$
\operatorname{Tor}_{*}^{S /(M)}(k, k)_{\alpha} \cong \operatorname{Tor}_{*}^{S /\left(M_{\alpha}\right)}(k, k)_{\alpha}
$$

Proof. $\operatorname{Tor}_{*}^{S /(M)}(k, k)_{\alpha}(z)$ is the coefficient of x^{α} in the formal power series $\mathrm{P}_{S /(M)}$. Therefore the result follows if we can show the congruence

$$
\mathrm{P}_{S /(M)} \equiv \mathrm{P}_{S /\left(M_{\alpha}\right)} \quad \bmod \left(x_{1}^{\alpha_{1}+1}, \ldots, x_{n}^{\alpha_{n}+1}\right)
$$

But this follows since

$$
\begin{aligned}
b_{S /(M)} & =1+\sum_{S \in \hat{K}_{M}} m_{S}(-z)^{c(S)+2} \widetilde{\mathrm{H}}((\emptyset, S) ; k)(z) \\
& \equiv 1+\sum_{S \in \hat{K}_{M}, S \subseteq M_{\alpha}} m_{S}(-z)^{c(S)+2} \widetilde{\mathrm{H}}((\emptyset, S) ; k)(z) \\
& =b_{S /\left(M_{\alpha}\right)}
\end{aligned}
$$

The last equality holds because $\left\{S \in K_{M} \mid S \subseteq M_{\alpha}\right\}=K_{M_{\alpha}}$.
Let $\mathcal{M}_{\mathcal{A}_{M}}=\mathbb{R}^{n}-\cup \mathcal{A}_{M}$ be the complement of the union of all subspaces in \mathcal{A}_{M}. The Goresky-Macpherson formula [11] expresses the cohomology of $\mathcal{M}_{\mathcal{A}_{M}}$ in terms of the homology groups of the lower intervals in the intersection lattice. We state here a generating functions version of the formula using coefficients from a field k :

$$
\widetilde{\mathrm{H}}^{*}\left(\mathcal{M}_{\mathcal{A}_{M}} ; k\right)(z)=\sum_{x \in L_{\mathcal{A}_{M}}, x \neq \hat{0}} z^{\operatorname{codim} x-2} \widetilde{\mathrm{H}}((\hat{0}, x) ; k)\left(z^{-1}\right)
$$

Using the Bar resolution to resolve k over R, Peeva, Reiner and Welker relates the cohomology of real diagonal subspace arrangements, with coefficients in a field k, to $\operatorname{Tor}_{*}^{R}(k, k)$ for monomial rings R. We are able give a new proof of their result using our formula for the deviations $\epsilon_{i, \alpha}$ and the Goresky-MacPherson formula. Let $\tau=(1, \ldots, 1) \in \mathbb{N}^{n}$.
Theorem 9 ([31], Theorem 1.3). For a monomial ring $R=k\left[x_{1}, \ldots, x_{n}\right] / I$ there is an isomorphism of vector spaces

$$
\mathrm{H}^{i}\left(\mathcal{M}_{\mathcal{A}_{M}} ; k\right) \cong \operatorname{Tor}_{n-i}^{R}(k, k)_{\tau}
$$

where M is the set of squarefree monomials in the minimal set of generators for I. Proof. Since we work over a field, the required isomorphism is equivalent to the equality

$$
\mathrm{H}^{*}\left(\mathcal{M}_{\mathcal{A}_{M}} ; k\right)(z)=z^{n} \operatorname{Tor}_{*}^{R}(k, k)_{\tau}\left(z^{-1}\right)
$$

According to the Goresky-MacPherson formula

$$
\begin{equation*}
\widetilde{\mathrm{H}}^{*}\left(\mathcal{M}_{\mathcal{A}_{M}} ; k\right)(z)=\sum_{x \in L_{\mathcal{A}_{M}}, x \neq \hat{0}} z^{\operatorname{codim}(x)-2} \widetilde{\mathrm{H}}((\hat{0}, x) ; k)\left(z^{-1}\right) \tag{12}
\end{equation*}
$$

On the other hand consider the $x_{1} \ldots x_{n}$-part of the Poincaré series P_{R}. According to Proposition 17, this is the same as the $x_{1} \ldots x_{n}$ part of $\mathrm{P}_{S /(M)}$. We use the product decomposition of $\mathrm{P}_{S /(M)}$ and reduce modulo $\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$:

$$
P_{S /(M)}=\prod_{i \geq 1, \alpha \in \mathbb{N}^{n}}\left(1-x^{\alpha}(-z)^{i}\right)^{(-1)^{i-1} \epsilon_{i, \alpha}} \equiv \prod_{\alpha \in\{0,1\}^{n}}\left(1+x^{\alpha} p_{\alpha}(z)\right)
$$

where

$$
p_{\alpha}(z)=\sum_{i \geq 1} \epsilon_{i, \alpha} z^{i}
$$

Since M is squarefree, we infer from Theorem 4 that $p_{e_{i}}(z)=z$, for e_{i} a standard basis vector, and

$$
p_{\alpha}(z)=z^{3} \widetilde{\mathrm{H}}\left(\Delta_{M_{\alpha}} ; k\right)(z)
$$

for $x^{\alpha} \in L_{M}$. Also $p_{\alpha}(z)=0$ unless $x^{\alpha} \in c L_{M}$. Therefore

$$
P_{S /(M)} \equiv \prod_{i=1}^{n}\left(1+x_{i} z\right) \prod_{x^{\alpha} \in c L_{M}}\left(1+x^{\alpha} p_{\alpha}(z)\right)
$$

Note that the right factor is the same as the expression (7) for $b_{S /(M)}$, except for a sign. Carrying out the same manipulations as for $b_{S /(M)}$ we get

$$
P_{S /(M)} \equiv \prod_{i=1}^{n}\left(1+x_{i} z\right)\left(1+\sum_{S \in \hat{K}_{M}} m_{S} z^{c(S)+2} \widetilde{\mathrm{H}}((\emptyset, S) ; k)(z)\right) .
$$

The $x_{1} \ldots x_{n}$-part of P_{R} is therefore given by

$$
\operatorname{Tor}^{R}(k, k)_{\tau}(z)=z^{n}+\sum_{S \in \hat{K}_{M}} z^{n+c(S)-\operatorname{deg}\left(m_{S}\right)+2} \widetilde{\mathrm{H}}((\emptyset, S) ; k)(z)
$$

Proposition 16 now tells us that $K_{M} \cong L_{\mathcal{A}_{M}}$ and $\operatorname{deg}\left(m_{S}\right)-c(S)=\operatorname{codim}(S)$. Thus we see that

$$
\begin{aligned}
z^{n} \operatorname{Tor}^{R}(k, k)_{\tau}\left(z^{-1}\right) & =1+\sum_{S \in \hat{K}_{M}} z^{\operatorname{deg}\left(m_{S}\right)-c(S)-2} \widetilde{\mathrm{H}}((\emptyset, S) ; k)\left(z^{-1}\right) \\
& =1+\sum_{x \in L_{\mathcal{A}_{M}}} z^{\operatorname{codim}(x)-2} \widetilde{\mathrm{H}}((\hat{0}, x) ; k)\left(z^{-1}\right) \\
& =\mathrm{H}^{*}\left(\mathcal{M}_{\mathcal{A}_{M}} ; k\right)(z),
\end{aligned}
$$

by (12). This is what we wanted to prove.

Appendix

Appendix A. Simplicial complexes

A simplicial complex on a set V is a set Δ of subsets of V such that $F \subseteq G \in \Delta$ implies $F \in \Delta$. The set V is called the vertex set of Δ. The i-faces or i-simplices of Δ are the elements in Δ of cardinality $i+1$. We do not require that $\{v\} \in \Delta$ for all $v \in V$, but if a simplicial complex Δ is given without reference to a vertex set V, then it is assumed that $V=\cup \Delta$.

If Δ is a simplicial complex then $\widetilde{C}(\Delta)$ will denote the augmented chain complex associated to Δ. Thus $\widetilde{C}_{i}(\Delta)$ is the free abelian group on the i-faces of Δ, the empty set being considered as the unique (-1)-face, and $\widetilde{C}(\Delta)$ is equipped with the standard differential of degree -1 . Therefore

$$
\mathrm{H}_{i}(\widetilde{C}(\Delta))=\widetilde{\mathrm{H}}_{i}(\Delta) .
$$

As usual, if G is an abelian group, then $\widetilde{C}(\Delta ; G)=\widetilde{C}(\Delta) \otimes G$ and $\widetilde{\mathrm{H}}_{i}(\Delta ; G)=$ $\mathrm{H}_{i}(\widetilde{C}(\Delta ; G))$. Also $\widetilde{\mathrm{H}}(\Delta ; G)=\bigoplus_{i \in \mathbb{Z}} \widetilde{\mathrm{H}}_{i}(\Delta ; G)$.

The Alexander dual of a simplicial complex Δ with vertices V is the complex

$$
\Delta^{\vee}=\{F \subseteq V \mid V-F \notin \Delta\}
$$

The join of two complexes Δ_{1}, Δ_{2} with disjoint vertex sets V_{1}, V_{2} is the complex with vertex set $V_{1} \cup V_{2}$ and faces

$$
\Delta_{1} * \Delta_{2}=\left\{F_{1} \cup F_{2} \mid F_{1} \in \Delta_{1}, F_{2} \in \Delta_{2}\right\}
$$

With Δ_{1} and Δ_{2} as above, we define what could be called the dual join of them:

$$
\Delta_{1} \cdot \Delta_{2}=\left(\Delta_{1}^{\vee} * \Delta_{2}^{\vee}\right)^{\vee}
$$

Thus $\Delta_{1} \cdot \Delta_{2}$ is the simplicial complex with vertex set $V_{1} \cup V_{2}$ and simplices

$$
\left\{F \subseteq V_{1} \cup V_{2} \mid F \cap V_{1} \in \Delta_{1} \text { or } F \cap V_{2} \in \Delta_{2}\right\}
$$

We will now briefly review the effects of these operations on the homology groups when the coefficients come from a field k.

If $|V|=n$, then ([13] Lemma 5.5.3)

$$
\widetilde{\mathrm{H}}_{i}(\Delta ; k) \cong \widetilde{\mathrm{H}}_{n-i-3}\left(\Delta^{\vee} ; k\right)
$$

If H is a graded vector space, then $s H$ denotes the graded vector space with $(s H)_{i}=$ H_{i-1}. Because of the convention that a set with d elements has dimension $d-1$ considered as a simplex there is a shift in the following formula:

$$
\widetilde{\mathrm{H}}\left(\Delta_{1} * \Delta_{2} ; k\right) \cong s\left(\widetilde{\mathrm{H}}\left(\Delta_{1} ; k\right) \otimes_{k} \widetilde{\mathrm{H}}\left(\Delta_{2} ; k\right)\right)
$$

If $H=\bigoplus_{i \in \mathbb{Z}} H_{i}$ is a graded vector space such that each H_{i} is of finite dimension, then let $H(z)=\sum_{i \in \mathbb{Z}} \operatorname{dim} H_{i} z^{i}$ be the generating function of H. The above isomorphisms of graded vector spaces can be interpreted in terms of generating functions. If Δ has n vertices, then

$$
z^{n} \widetilde{\mathrm{H}}\left(\Delta^{\vee} ; k\right)\left(z^{-1}\right)=z^{3} \widetilde{\mathrm{H}}(\Delta ; k)(z)
$$

and if $\Delta=\Delta_{1} * \Delta_{2}$, then

$$
\widetilde{\mathrm{H}}(\Delta ; k)(z)=z \widetilde{\mathrm{H}}\left(\Delta_{1} ; k\right)(z) \cdot \widetilde{\mathrm{H}}\left(\Delta_{2} ; k\right)(z) .
$$

From these two identities and an induction one can work out the following formula. If $\Delta=\Delta_{1} \cdot \ldots \cdot \Delta_{r}$, then

$$
\begin{equation*}
\widetilde{\mathrm{H}}(\Delta ; k)(z)=z^{2 r-2} \widetilde{\mathrm{H}}\left(\Delta_{1} ; k\right)(z) \cdot \ldots \cdot \widetilde{\mathrm{H}}\left(\Delta_{r} ; k\right)(z) . \tag{13}
\end{equation*}
$$

Appendix B. Semilattices

By a semilattice we mean a commutative monoid $(X, \vee, 0)$ such that $x \vee x=x$ holds for all $x \in X$. The element $x \vee y$ is called the join of x and y. We will only consider finite semilattices. Morphisms of semilattices are required to preserve 0 .

A semilattice is partially ordered by the relation $a \leq b \Leftrightarrow a \vee b=b$. Any finite semilattice L has a meet operation $x \wedge y$ such that $(L, \vee, \wedge, 0,1)$ becomes a lattice, where $1=\vee L$. If X and Y are finite semilattices, then the set $\operatorname{Hom}_{\vee}(X, Y)$ consisting of all morphisms of semilattices from X to Y is a semilattice with operations defined pointwise. The set $\underline{2}=\{0,1\}$ becomes a semilattice by setting $i \vee j=\max (i, j)$. As partial orders, $X^{*}:=\operatorname{Hom}_{\vee}(X, \underline{2})$ is anti-isomorphic to X by associating to $x \in X$ the morphism $f_{x}: X \rightarrow \underline{2}$ defined by $f_{x}(y)=0 \Leftrightarrow y \leq x$. To $f \in X^{*}$ we associate $x=\vee f^{-1}(0)$. These functions are readily seen to be orderreversing bijections $X \leftrightarrows X^{*}$. In particular, if $x \in X$ is coirreducible, meaning that
it cannot be written as the meet of strictly greater elements, then f_{x} is irreducible, meaning that it cannot be written as the join of strictly lower elements.

An element x of a poset is said to cover another element y if $x>y$ and $x \geq z \geq y$ implies $z=x$ or $z=y$. An atom of a lattice is an element covering $\hat{0}$, and a coatom is an element covered by $\hat{1}$. A lattice is called atomic if every element is the join of all atoms below it.

References

. M. André, Hopf algebras with divided powers, J. Algebra 18 (1971), 19-50.
2. D.J. Anick, On the homology of associative algebras, Trans. Amer. Math. Soc. 296 (1986), no. 2, 641-659.
3. L.L. Avramov, Local algebra and rational homotopy, Homotopie Algébrique et Algèbre Locale, Astérisque 113-114 (1984), 15-43.
4. \qquad , Infinite free resolutions, Six lectures on commutative algebra (Bellaterra, 1996), Progr. Math., vol. 166, Birkhäuser, 1998, pp. 1-118.
5. \qquad , Homotopy Lie algebras and Poincaré series of algebras with monomial relations, Homology Homotopy Appl. 4 (2002), no. 2, 17-27, The Roos Festschrift, vol. 1.
6. L.L. Avramov and S. Halperin, Through the looking glass: a dictionary between rational homotopy theory and local algebra, Algebra, algebraic topology and their interactions (Stockholm, 1983), Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp. 1-27.
7. J. Backelin, Les anneaux locaux à relations monomiales ont des séries de Poincaré-Betti rationelles, C.R. Acad. Sc. Paris (1982), 607-610.
8. J. Backelin and J-E. Roos, When is the double Yoneda Ext-algebra of a local noetherian ring again noetherian?, Springer Lecture Notes; Algebra, algebraic topology and their interactions 1183 (1983), 101-119.
9. A. Berglund, Poincaré series of monomial rings, J. Algebra, to appear.
10. A. Berglund, J. Blasiak, and P. Hersh, Combinatorics of multigraded Poincaré series for monomial rings, in preparation, 2005.
11. A. Björner, Subspace arrangements, First European Congress of Mathematics (Paris), Progr. Math. 119, vol. I, Birkhäuser, Basel, 1994, pp. 321-370.
12. , Topological methods, Handbook of combinatorics, Vol. 1, 2, Elsevier, Amsterdam, 1995, pp. 1819-1872.
13. W. Bruns and J. Herzog, Cohen-Macaulay rings, second ed., Cambridge Studies in Advanced Mathematics, no. 39, Cambridge University Press, 1996.
14. V. M. Buchstaber and T. E. Panov, Torus actions and their applications in topology and combinatorics, University lecture series, vol. 24, American mathematical society, 2002.
15. H. Charalambous, On the denominator of the Poincaré series for monomial quotient rings, arxiv:math.AC/0412295, to appear in Comm. Algebra.
16. H. Charalambous and A. Reeves, Poincaré series and resolutions of the residue field over monomial rings, Comm. Algebra 23 (1995), 2389-2399.
17. Y. Félix, S. Halperin, and J-C. Thomas, Rational homotopy theory, Grad. Texts in Math., no. 205, Springer Verlag, 2000.
18. R. Fröberg, Some complex constructions with applications to Poincaré series, Lecture Notes in Math. 740 (1979), 272-284.
19. \qquad , A study of graded extremal rings and of monomial rings, Math. Scand. 51 (1982), 22-34.
20. V. Gasharov, I. Peeva, and V. Welker, Coordinate subspace arrangements and monomial ideals, Adv. Stud. Pure. Math. (1999), no. 33, 65-74.
21. \qquad , The LCM-lattice in monomial resolutions, Math. Res. Lett. 6 (1999), 521-532.
22. G. Grätzer, General lattice theory, 2nd ed., Birkhäuser, 1998.
23. T.H. Gulliksen and G. Levin, Homology of local rings, no. 20, Queen's Papers Pure Appl. Math., 1969.
24. S. Halperin, Universal enveloping algebras and loop space homology, J. Pure Appl. Algebra 83 (1992), no. 3, 237-282.
25. J. Herzog, V. Reiner, and V. Welker, Componentwise linear ideals and Golod rings, Michigan Math. J. 46 (1999), no. 2, 211-223.
26. T. Lada and M. Markl, Strongly homotopy Lie algebras, Comm. Algebra 23 (1995), no. 6, 2147-2161.
27. T. Lada and J. Stasheff, Introduction to SH Lie algebras for physicists, International Journal of Theoretical Physics 32 (1993), no. 7, 1087-1103.
28. S. Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1975 edition.
29. J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264.
30. I. Peeva, Resolutions and lattices, Homology Homotopy and applications 4 (2002), no. 2, 427-437, The Roos Festschrift volume 2.
31. I. Peeva, V. Reiner, and V. Welker, Cohomology of real diagonal subspace arrangements via resolutions, Compositio Math. 117 (1999), no. 1, 99-115.
32. R.P.Stanley, Combinatorics and commutative algebra, 2nd ed., Progress in Mathematics, no. 41, Birkhäuser, 1996.
33. G. Sjödin, Hopf algebras and derivations, J. Algebra 64 (1980), no. 1, 218-229.
34. D. Taylor, Ideals generated by monomials in an R-sequence, Ph.D. thesis, University of Chicago, 1966.

[^0]: 2000 Mathematics Subject Classification. 13D40; Secondary: 13D02, 13D07.

