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POINCARÉ SERIES AND HOMOTOPY LIE ALGEBRAS OF

MONOMIAL RINGS

ALEXANDER BERGLUND

Abstract. This thesis comprises an investigation of (co)homological invari-
ants of monomial rings, by which is meant commutative algebras over a field

whose minimal relations are monomials in a set of generators for the algebra,
and of combinatorial aspects of these invariants. Examples of monomial rings
include the ‘Stanley-Reisner rings’ of simplicial complexes. Specifically, we
study the homotopy Lie algebra π(R), whose universal enveloping algebra is
the Yoneda algebra ExtR(k, k), and the multigraded Poincaré series of R,

PR(x, z) =
�

i≥0,α∈ � n

dimk Exti
R(k, k)αxαzi.

To a set of monomials M we introduce a finite lattice KM , and show how
to compute the Poincaré series of an algebra R, with minimal relations M , in
terms of the homology groups of lower intervals in this lattice. We introduce a
finite dimensional L∞-algebra � ∞(M), and compute the Lie algebra π≥2(R)
in terms of the cohomology Lie algebra H∗( � ∞(M)). Applications of these
results include a combinatorial criterion for when a monomial ring is Golod.

Analysis of the combinatorics involved leads us to introduce a new class
of finite lattices, called complete lattices, which contain all geometric lattices
and is closed under direct products. Completeness of a lattice L is char-
acterized by the property that the higher operations of � ∞(M) are trivial,
where M is the ‘minimal realization’ of L. We show how to interpret KM

as the intersection lattice of a certain real subspace arrangent AM and, via
the Goresky-MacPherson formula, we are able to give a new proof of a result
relating the cohomology of the complement of the arrangement to the graded
vector space TorR

∗ (k, k).
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Introduction

Classical cohomology theory assigns to a space X and a commutative ring k a
graded k-algebra H∗(X ; k) =

⊕
n≥0 Hn(X ; k). Naively, the n:th graded component

of this cohomology algebra detects n-dimensional ‘holes’ in the space X . For an
algebraist, the natural objects to study are algebras, rather than spaces. What is
the correct cohomology theory for algebras, or, in naive terms, what is the analogue
of a ‘hole’ in an algebra? One cohomology theory for augmented k-algebras R is
the Hochschild cohomology, H∗(R; k). In the case when k is a field, Hn(R; k)
is isomorphic to ExtnR(k, k), the value at k of the nth right derived functor of
HomR(−, k). Furthermore, the Yoneda interpretation of ExtnR(k, k) as equivalence
classes of exact sequences 0 → k → En → . . .→ E1 → k → 0 of R-modules enables
one to define a multiplication on Ext∗R(k, k) by ‘splicing’ sequences, cf. [28], so that
H∗(R; k) becomes a graded k-algebra.

If R is a commutative noetherian augmented k-algebra, where k is a field, then
Ext∗R(k, k) is the universal enveloping algebra of a graded Lie algebra π(R) =⊕

i≥1 π
i(R), called the homotopy Lie algebra of R, cf. [4]. The name comes from an

analogy with rational homotopy theory. For a simply connected based topological
space X , the collection of rational homotopy groups πn(ΩX)⊗Q of the loop space
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ΩX form a graded Lie algebra with bracket induced from the Whitehead products.
It is called the rational homotopy Lie algebra of X , and its universal enveloping
algebra is isomorphic to the homology algebra H∗(ΩX ; Q). See [6] for an elaboration
of this analogy.

There are few examples of algebras R where ExtR(k, k), its dual TorR(k, k), or
equivalently the Lie algebra π(R), have been described explicitly, say in terms of a
presentation of R. Even the enumerative problem of determining the graded vector
space structure of ExtR(k, k), or equivalently, determining the Poincaré series of
R,

PR(z) =
∑

i≥0

dimk ExtiR(k, k)zi,

is in general difficult. In practice, it amounts to constructing a minimal free reso-
lution of k as an R-module, which will be infinite unless R is a regular ring.

In this thesis we focus on the problem of describing these objects for the class
of monomial rings, by which we mean commutative algebras R whose minimal
relations are monomials in the minimal set of generators for R.

There are at least two motivations for studying monomial rings. If R = S/I
for some homogeneous ideal I in the polynomial ring S = k[x1, . . . , xn], then one
can form the monomial ideal in(I) which is generated by the initial terms of the
elements of I with respect to some term order for the monomials in S. Letting
A = S/ in(I), there is a convergent spectral sequence

TorA∗,∗(k, k) =⇒ TorR∗,∗(k, k),

so in this sense the homological behaviour of R is approximated by that of A, cf. [2].
Secondly, numerous examples of monomial rings appear in algebraic combinatorics
under the name of ‘Stanley-Reisner rings’, or ‘face rings’, of simplicial complexes.
Computations of algebraic invariants of face rings have led to interesting results in
combinatorics. For instance, the local cohomology of a face ring k[∆] is computable
in terms of the homology of the links of the simplicial complex ∆, and as a conse-
quence one can derive topological criteria for when k[∆] is a Cohen-Macaulay ring,
cf. [13] or [32]. So a combinatorial description of the algebra Extk[∆](k, k) could
lead to new results in combinatorics. For instance, in simple-minded comparison
with the case of local cohomology, such a description would in principle yield a
combinatorial criterion for when a face ring is Golod (cf. Section 10).

A finitely generated monomial ring is of the form R = S/I , where S is the
polynomial ring k[x1, . . . , xn] and I ⊆ S is an ideal generated by monomials. The
algebra R inherits the natural Nn-grading of S, and ExtR(k, k) can be equipped
with an Nn-grading by considering Nn-graded resolutions of k over R. Backelin [7]
proved that the multigraded Poincaré series

PR(x, z) =
∑

i≥0,α∈Nn

dimk ExtiR(k, k)αx
αzi ∈ Z[[x1, . . . , xn, z]]

is the Taylor series expansion of a rational function of the form
∏n
i=1(1 + xiz)

bR(x, z)
,

for some polynomial bR(x, z) ∈ Z[x1, . . . , xn, z]. This result was subsequently gen-
eralized by Backelin and Roos [8], who proved that the double Yoneda algebra
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ExtExtR(k,k)(k, k) is noetherian. From this it follows that ExtR(k, k), or equiva-
lently π(R), is finitely generated.

These qualitative results notwithstanding, only recently has one realized what
combinatorial structures govern the (co)homological behaviour of R. For a mono-
mial ideal I , with minimal set of generatorsM , let LI denote the set {mS | S ⊆M}
partially ordered by divisibility, where mS denotes the least common multiple of
the monomials in S. It is called the lcm-lattice of I , cf. [21]. In addition to the par-
tial order, LI is the vertex set of a graph whose edges are pairs of monomials that
have a non-trivial common factor. Avramov [5] proved that most of the homotopy
Lie algebra π(R) is determined by the combinatorial data encoded in the partially
ordered graph LI . Indeed, if I and J are two monomial rings in the polynomial
rings S and T respectively, we say that I is equivalent to J if there is a bijection
f : LI → LJ which is both an isomorphism of graphs and of partial orders. With
Q = S/I and R = T/J , Avramov’s result says that if I and J are equivalent, then
there is an isomorphism of graded Lie algebras

π≥2(Q) ∼= π≥2(R).

Here π≥2(Q) is the sub Lie algebra
⊕

i≥2 π
i(Q) of π(Q). Recently, Charalambous

[15] showed that this isomorphism behaves as expected with respect to multidegrees.
This equivalence relation on monomial ideals first made its appearance in [21],

where it was proved that R is a Golod ring if and only if Q is. This follows also
from the above isomorphism of Lie algebras, because of the general fact that R is
Golod if and only if π≥2(R) is a free Lie algebra.

Results. This thesis is an expanded and modified version of the paper [9]. Also,
parts of the material from the section ‘Combinatorics’ will appear in [10].

The thesis contains two main results. The first is the computation of the Poincaré
series of a monomial ring R and the second is the computation of the graded Lie
algebra π≥2(R).

We introduce a finite lattice KM associated to a monomial set M — the lattice
of ‘saturated subsets’ of M — and we prove (Theorem 5) that for a monomial ideal
I in S = k[x1, . . . , xn] with minimal set of generators M , the denominator of the
Poincaré series of R = S/I can be computed by the formula

bR(x, z) = 1 +
∑

∅6=S∈KM

mS(−z)c(S)+2H̃((∅, S); k)(z).

Here, c(S) denotes the number of connected components of S with respect to the
graph structure given by connecting monomials with non-trivial common factors,

(∅, S) is the open interval between ∅ and S in the poset KM , and H̃((∅, S); k)(z)
denotes the generating function of the dimensions of the reduced homology groups
of the poset (∅, S) with coefficients in the field k.

To a set of monomials M we associate a combinatorially defined finite dimen-
sional Nn-graded L∞-algebra, L∞(M), and we show how to compute the graded
Lie algebra π≥2(R) in terms of the cohomology Lie algebra H∗(L∞(M)). In fact,
there is a functor F on the category of multigraded Lie algebras, defined by

FL =
L(L)

〈[[x, y]]−[x, y] | x ⊥ y ∈ L〉
,

where [[x, y]] denotes the bracket in the free Lie algebra L(L) and [x, y] the bracket
in L, and x ⊥ y means that the multidegrees of x and y have disjoint supports, and
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we show (Theorem 6) that there is an isomorphism of multigraded Lie algebras

π≥2(R) ∼= F H∗(L∞(M)).

By construction, the L∞-algebra L∞(M) depends (up to an isomorphism which
preserves the ⊥-relation) only on the partially ordered graph LM , so this could be
seen as a refinement of Avramov’s result.

As a consequence of our results we solve a problem posed in [5] of determining
an upper bound for the degree of the denominator polynomial of the Poincaré series
in terms of the number of minimal relations (Corollary 1). Also, the formula in [21]
for the Betti numbers of R is coupled with our formula for the Poincaré series to
obtain a combinatorial criterion for when a monomial ring is Golod (Theorem 7).

We introduce a new class of finite lattices, called complete lattices, which is
closed under direct products and contains all geometric lattices. The main feature
of this class is that monomial sets whose lcm-lattices are complete define Golod
rings if and only if their corresponding graphs are complete. This generalizes the
previously known result that this holds if the lcm-lattice is boolean.

In the last part we note how to interpret the lattice KM as the intersection
lattice of a certain real subspace arrangement. Our formula combined with the
Goresky-MacPherson formula for the cohomology of the complement of such an
arrangement results in a new proof of a result of [31] relating this cohomology to

the graded vector space TorR∗ (k, k) for a certain monomial ring R.

Conventions, notations

In this section we list the conventions and notations that should be kept in mind
at all times.

Base ring. We work over a field k of arbitrary characteristic. Often, S will denote
the polynomial ring k[x1, . . . , xn].

Multigraded vector spaces. Our work takes place in the category of N × Nn-
graded vector spaces. The objects, referred to as ‘multigraded vector spaces’, or
sometimes simply ‘vector spaces’, are collections V = {Vi,α}i,α of vector spaces Vi,α
over k, indexed by (i, α) ∈ N×Nn. We write |x| = i, deg(x) = α if x ∈ Vi,α. In this
case |x| is called the homological degree and deg(x) is called the multidegree of x.
The reason for distinguishing the homological grading from the other N-gradings is
that it governs signs in formulas.

If α ∈ Nn, then the support of α is the set supp(α) = {i | αi 6= 0}. Write x ⊥ y
if supp(deg(x)) ∩ supp(deg(y)) = ∅. By coarsening the multigrading, our objects
are N × N-graded: an element x has degree (i, j) if |x| = i and | deg(x)| = j. Here
|α| = α1 + . . .+ αn if α = (α1, . . . , αn) ∈ Nn. In order to avoid confusion with the
homological N-grading we call | deg(x)| the weight of the element x.

A linear map f : V →W of degree (j, β) is a collection of linear maps fi,α : Vi,α →
Wi+j,α+β . Most often, our maps are homogeneous with respect to the multigrading,
so when we say ‘f has degree n’ it means that f has degree (n, 0). Morphisms of
multigraded vector spaces are linear maps of degree 0.

Of course, direct sums of multigraded vector spaces are defined by taking de-
greewise sums. The tensor product V ⊗W has (V ⊗W )i,α =

⊕
Vj,β ⊗Wl,γ , where

summation is over (j, β) + (l, γ) = (i, α), and all tensor products are over k, i.e.,
⊗ = ⊗k.
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If V is a vector space with Vi,α finite dimensional for all i, α, then the generating
function of V is the formal power series

V (z, x1, . . . , xn) =
∑

i≥0,α∈N

dimk(Vi,α)zixα.

Forgetting multidegrees, V (z) will denote V (z, 1, . . . , 1), provided all but finitely
many Vi,α are zero for i fixed.

The suspension sV of a vector space V has (sV )i,α = Vi−1,α. Thus |sx| = |x|+1
and deg(sx) = deg(x) for x ∈ V . The dual of V is the vector space V ∗ where
(V ∗)i,α = Homk(Vi,α, k) is the space of linear maps Vi,α → k.
V≥n denotes the vector space with (V≥n)i,α = Vi,α, if i ≥ n, and 0 otherwise.

Similarly define V≤n and V>n. For a non-negative integer i, we denote by Vi the
vector space V≥i ∩ V≤i.

If V is a vector space, and if S is a subset of Nn, then VS is the graded vector space
with (VS)i,α = Vi,α if α ∈ S and (VS)i,α = 0 otherwise. The space Vτ := V{0,1}n is
called the truncation of V , and V is called truncated if V = Vτ .

DG-algebras. A complex is a vector space V = {Vi,α}i,α together with a map
d : V → V of homological degree −1, such that d2 = 0. A differential graded
algebra, or a dg-algebra for brevity, is a complex A together with a morphism of
complexes A ⊗ A → A, denoted a ⊗ b 7→ ab. In this context, this means that
Ai,α · Aj,β ⊆ Ai+j,α+β , and d is a derivation, i.e., d(xy) = d(x)y + (−1)|x|xd(y).
Note that A and the homology H(A) = Ker d/ Im d become graded A0-algebras,
where A0 = {A0,α}α. We say that A is commutative if xy = (−1)|x||y|yx for
homogeneous x, y ∈ A. A morphism of dg-algebras is called a quasi-isomorphism if
the induced map on homology is an isomorphism. An algebra A is called connected
if A0 = k.

When convenient, we assume our algebras to be augmented with a morphism
of algebras ε : A → k such that the augmentation ideal Ker ε is concentrated in
positive weight. This is to ensure that the results available for local rings are to be
valid in our situation as well. Many results are cited from the exposition [4] which
deals exclusively with local rings.

Graded Lie algebras. Following [4], by a graded Lie algebra we will mean a
vector space L = {Li,α} concentrated in positive homological degrees, i.e., L = L≥1,
together with a linear map L ⊗ L → L, x ⊗ y 7→ [x, y] of degree 0 and a squaring
operation Li,α → L2i,2α, x 7→ x[2], for odd i, such that

[x, y] = −(−1)|x||y|[y, x]
[x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]]

(x+ y)[2] = x[2] + y[2] + [x, y], if |x| = |y| is odd
(cx)[2] = c2x[2], if |x| is odd and c ∈ k

[x[2], y] = [x, [x, y]], if |x| is odd

Furthermore it is required that [x, x] = [y, [y, y]] = 0 for even |x| and odd |y|.
The universal enveloping algebra UL of a graded Lie algebra L is defined as the

quotient of the tensor algebra T (L) by the relations x⊗ y − (−1)|x||y|y ⊗ x− [x, y]
for x, y ∈ L and x⊗ x− x[2] for x ∈ L with |x| odd.

If L is a graded Lie algebra, then I = LNn−{0,1}n is a homogeneous ideal in L,
and Lτ is naturally a graded Lie algebra by identifying it with the quotient L/I .
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Furthermore, if J is any homogeneous ideal of L, then Jτ is an ideal of Lτ and
(L/J)τ ∼= Lτ/Jτ as graded Lie algebras.

Monomial sets. Let x1, . . . , xn be variables. If α ∈ Nn, then we write xα for the
monomial xα1

1 · . . . ·xαn
n . The multidegree of xα is deg(xα) = α. If α ∈ {0, 1}n, then

both α and xα are called squarefree.
To a set M of monomials we associate an undirected graph, with vertices M ,

whose edges go between monomials having a non-trivial common factor. This is the
graph structure referred to when properties such as connectedness etc., are attrib-
uted to monomial sets. Thus, for instance, a monomial set is called independent if
the monomials therein are pairwise without common factors. By D(M) we denote
the set of non-empty independent subsets of M , and the independence number of
M is the largest size of an independent subset of M . A connected component of
M is a maximal connected subset. Any monomial set M has a decomposition into
connected components M = M1∪ . . .∪Mr, and we let c(M) = r denote the number
of such.

If I is an ideal in a polynomial ring generated by monomials there is a uniquely
determined minimal set of monomials generating I . This minimal generating set,
denoted Gen(I), is characterized by being an antichain with respect to divisibility,
that is, for all m,n ∈ Gen(I), m|n implies m = n.

If S is a finite set of monomials, then mS denotes the least common multiple of
all elements of S. By convention m∅ = 1. The set LM = {mS | S ⊆M} partially
ordered by divisibility is a lattice with lcm as join, called the lcm-lattice of the set
M . If I is a monomial ideal, then LI := LGen(I) is called the lcm-lattice of I . By our
general convention that monomial sets are graphs, LI has also a graph structure.
The gcd-graph of I , studied in [5], is the complement of the graph LI , i.e., it has
the same vertices LI , but its edges go between monomials that are relatively prime.

Two monomial sets M and N are said to be separated if gcd(mM ,mN ) = 1.
If M,N are two sets of monomials then MN denotes the set of those monomials

in M which divide some monomial in N . Write Mm = M{m}, and Mα = Mxα .

Sign convention. The following sign convention will be used. If X is a totally
ordered set, let {vx}x∈X be anti-commuting variables indexed by X . For a subset
S = {x1, . . . , xn} of X , where x1 < . . . < xn, let vS = vx1

∧ . . . ∧ vxn
. If S =

S1 ∪ . . . ∪ Sr is a partition of S, then define the sign sgn(S1, . . . , Sr) ∈ {−1, 1} by

vS = sgn(S1, . . . , Sr)vS1
∧ . . . ∧ vSr

.

Set sgn(S1, . . . , Sr) = 0 if Si ∩ Sj 6= ∅ for some i 6= j.

Minimal models and strongly homotopy Lie algebras

1. Free commutative dg-algebras

We here collect some well known facts about free commutative algebras.
The free graded commutative algebra on a graded vector space V is the algebra

ΛV = exterior algebra(Vodd) ⊗k symmetric algebra(Veven).

There is a unique comultiplication in ΛV making it into a Hopf algebra in which
V is the space of primitive elements. If X is a well ordered basis for V , then a
basis for ΛV is given by the monomials xa1

1 . . . xar
r , where r ≥ 0, x1 < . . . < xr
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and ai = 1 if |xi| is odd. The subspace ΛnV has basis all such monomials with
a1 + . . .+ ar = n, and elements thereof have word length n.

A graded vector space V = {Vi}i≥1 is called locally finite if Vi is finite dimen-
sional for each i. Note that if V is locally finite, then so is ΛV . In this case the
dual Hopf algebra of ΛV is isomorphic to the divided power algebra Γ(V ∗) on V ∗,
cf. [24]. This Hopf algebra can be described as follows. If X is an ordered basis for
V , and X∗ is a dual basis, then Γ(V ∗) has a basis of ‘divided monomials’ dual to
the monomial basis for ΛV :

ξ(ar)
r . . . ξ

(a1)
1 ,

where r ≥ 0, ξi ∈ X∗ is the dual basis element of xi ∈ X , x1 < . . . < xr and ai = 1
if |xi| is odd. Γn(V ∗) has basis all such monomials with a1 + . . . + ar = n. The
multiplication of Γ(V ∗) is graded commutative and satisfies

ξ(i)ξ(j) =

(
i+ j

i

)
ξ(i+j).

The comultiplication ∆ is a morphism of algebras and

∆(ξ(n)) =
∑

i+j=n

ξ(i) ⊗ ξ(j).

The following two properties of Γ(V ) will be needed. The map pV : Γ(V ) → V
is defined to be the identity on Γ1(V ) and zero on Γn(V ) if n 6= 1.

• A linear map f : V → W of degree 0 extends uniquely to a morphism of
coalgebras f̃ : Γ(V ) → Γ(W ) such that fpV = pW f̃ . The extension is given
by

f̃(x
(a1)
1 . . . x(an)

n ) = (f(x1))
(a1) . . . (f(xn))(an)

on basis elements.
• A linear map δ : Γn(V ) → V extends uniquely to a coderivation δ̃ on Γ(V )

which decreases word length by n− 1. On a basis element it is given by

(1) δ̃(x
(a1)
1 . . . x(ar)

r ) =
∑

i1+...+ir=n
0≤ij≤aj

±δ(x
(i1)
1 . . . x(ir)

r )x
(a1−i1)
1 . . . x(ar−ir)

r ,

where the sign is determined by the Koszul sign convention.

Denote by (V ) the ideal generated by V in ΛV . A homomorphism f : ΛV → ΛW
of graded algebras with f(V ) ⊆ (W ) induces a linear map Lf : V →W , called the
linear part of f , which is defined by the requirement f(v) − Lf(v) ∈ (W )2 for all
v ∈ V .

If x1, . . . , xn is a basis for V0, then ΛV = S ⊗k Λ(V+), where S = k[x1, . . . , xn]
and V+ is the sum of all Vi for positive i. Therefore ΛV may be regarded as an
S-module and each (ΛV )n is a finitely generated free S-module. Let m ⊆ S be the
maximal ideal generated by V0 in S. Note that (V ) = (V+) + m as vector spaces.
The following basic lemma is a weak counterpart of Lemma 14.7 in [17] and of
Lemma 1.8.7 in [23].

Lemma 1. Let f : ΛU → ΛV be a homomorphism of graded algebras such that
f0 : Λ(U0) → Λ(V0) is an isomorphism and the linear part, Lf : U → V , is an
isomorphism of graded vector spaces. Then f is an isomorphism.
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Proof. Identify S = Λ(U0) = Λ(V0) via f0. Since Lf is an isomorphism, ΛU and ΛV
are isomorphic. Thus to show that f is an isomorphism it is enough to show that
fn : (ΛU)n → (ΛV )n is surjective in each degree n, because fn is a map between
finitely generated isomorphic free S-modules. We do this by induction. The map
f0 is surjective by assumption. Let n ≥ 1 and assume that fi is surjective for every
i < n. Then since Lf is surjective we have

(ΛV )n ⊆ f((ΛU)n) + ((V+)2)n + m(ΛV )n.

((V+)2)n is generated by products vw, where |w|, |v| < n, so by induction ((V+)2)n ⊆
f((ΛU)n). Hence

(ΛV )n ⊆ f((ΛU)n) + m(ΛV )n.

(ΛV )n and f((ΛU)n) are graded S-modules, so it follows from the graded version
of Nakayama’s lemma that (ΛV )n = f((ΛU)n). �

By a free commutative dg-algebra, we will mean a dg-algebra of the form (ΛV, d),
for some graded vector space V , where the differential d satisfies dV ⊆ (V ). The
linear part Ld of d on ΛV is a differential on V , and will be denoted d0. A free
commutative dg-algebra (ΛV, d) is called minimal if dV ⊆ (V )2. Thus (ΛV, d) is
minimal if and only if d0 = 0.

The following ‘lifting lemma’ is often useful.

Lemma 2. Let ΛV = (ΛV, d) be a free commutative dg-algebra and let p : A → B
be a surjective quasi-isomorphim of commutative dg-algebras. Then any map of
dg-algebras f : ΛV → B lifts to A making the diagram commutative

A

∼
����

ΛV
f

//

η
==

B

Proof. ΛV is the union of sub dg-algebras Λ(V<n), and we define η by induction
over these ‘skeleta’. Suppose ηn : Λ(V<n) → B has been defined so that pηn =
f and dηn = ηnd. Choose a basis X for Vn. For v ∈ X , choose an a ∈ A
with p(a) = f(v). Since dv ∈ Λ(V<n), ηn(dv) is a cycle in A and by assumption
pηn(dv) = f(dv) = df(v) = dp(a) = p(da), so ηn(dv) − da is a cycle in Ker p.
Because p is a quasi-isomorphism, the long exact homology sequence derived from
0 → Ker p → A → B → 0 shows that Ker p has trivial homology. Therefore
ηn(dv) − da = dy for some y ∈ Ker p. Set wv = a + y. Then p(wv) = f(v) and
dwv = ηn(dv). Since A is commutative, the map v 7→ wv from X to A extends to a
map of dg-algebras ηn+1 : Λ(V≤n) such that pηn+1 = f . The induction starts with
the structure maps from k = Λ(V<0). �

2. The homotopy Lie algebra of a free commutative dg-algebra

Let (ΛV, d) be a free commutative dg-algebra with V0 = 0. The differential d
splits as d = d0 + d1 + d2 + . . ., where di raises word length by i, i.e., di(Λ

nV ) ⊆
Λn+iV . It is easy to check that each di is a derivation on ΛV . Furthermore, a look
at the homogeneous components of the relation d2 = 0 with respect to word length
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yields the sequence of relations

d2
0 = 0

d0d1 + d1d0 = 0

d0d2 + d2
1 + d2d0 = 0

...

Let sL = V ∗ (or equivalently L = (sV )∗). Dualizing (ΛV, d), we obtain (Γ(sL), δ),
where δ = d∗ is a coderivation of degree 1 such that δ2 = 0. The coderivation δ
splits as δ = δ0+δ1+δ2+. . ., where δi = d∗i is a coderivation decreasing word length
by i, i.e., δi(Γ

n(sL)) ⊆ Γn−i(sL). By definition, the data of a degree 1 coderivation
on Γ(sL) of square zero determines the structure of an L∞-algebra, or a strongly
homotopy Lie algebra, on L, cf. [26] and [27]. If the base field has characteristic
zero, then, as is shown in [27], this structure is equivalent to a sequence of anti-
symmetric brackets L⊗r → L, x1⊗ . . .⊗xr 7→ [x1, . . . , xr], of degree 2−r, for r ≥ 1,
satisfying a the ‘generalized Jacobi identities’ ([26], Definition 2.1)

n∑

i=1

∑

σ

χ(σ)(−1)i(n−i)[[xσ(1), . . . , xσ(i)], xσ(i+1), . . . , xσ(n)] = 0

for n ≥ 1. Here the second sum is over all permutations σ of {1, 2, . . . , n} such that
σ(1) < . . . < σ(i) and σ(i + 1) < . . . < σ(n), and χ(σ) = ±1 is the sign for which
the equality

[x1, . . . , xn] = χ(σ)[xσ(1) , . . . , xσ(n)]

is implied by the anti-symmetry condition, e.g., χ(231) = (−1)|x1||x3|+|x1||x2|. The
brackets are defined in terms of the coderivations δr−1 as follows:

δr−1(sx1 . . . sxr) = (−1)εs[x1, . . . , xr].

Here ε = |x1|+ |x3|+ . . .+ |xr−1| if r is even and ε = 1+ |x2|+ |x4|+ . . .+ |xr−1| if r
is odd. The definition of the brackets uses only the subalgebra of Γ(sL) generated
by sL. In characteristic zero, this is of course the whole algebra, but in positive
characteristics, the inclusion is strict. Several non-linear operations can be defined
on L, for instance a ‘reduced r-th power’, x 7→ x[r], given by δr−1((sx)

(r)) = ±sx[r],
and these can not be recovered from the multilinear brackets above.

An L∞-algebra is a Lie algebra ‘up to homotopy’ in the following sense. The
coderivations δ0 and δ1 give rise to a degree 1 map d : L→ L, a bracket [·, ·] : L⊗2 →
L, and for elements x of odd degree, a squaring operation x 7→ x[2]:

δ0(sx) = −sd(x), δ1(sxsy) = (−1)|x|s[x, y], δ1((sx)
(2)) = −sx[2].

The graded commutativity of Γ(sL) results in anti-commutativity of the bracket:

[x, y] = −(−1)|x||y|[y, x].

The relations δ20 = 0 and δ0δ1 + δ1δ0 = 0 translate via (1) to d2 = 0, d[x, y] =
[dx, y] + (−1)|x|[x, dy] and d(x[2]) = d(x)x. Define h : L⊗3 → L by

δ2(sxsysz) = −(−1)|y|sh(x, y, z),

and let J(x, y, z) = [[x, y], z] − [x, [y, z]] − (−1)|y||z|[[x, z], y] be the Jacobian of the
bracket in L. Using (1), it is an easy exercise to verify that

δ21(sxsysz) = (−1)|y|sJ(x, y, z).
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The relation δ0δ2 + δ21 + δ2δ0 = 0 therefore shows that

J(x, y, z) = dh(x, y, z) + h(dx, y, z) + (−1)|x|h(x, dy, z) + (−1)|x|+|y|h(x, y, dz),

or in other words, J = dh+hd, so h is a contracting homotopy for the Jacobian J .
In this sense the Jacobi identity is satisfied up to homotopy in L. Applying δ1 to the
relation (sx+sy)(2)−(sx)(2)−(sy)(2) = sxsy, shows that (x+y)[2]−x[2]−y[2] = [x, y],
for odd x, y ∈ L. Similarly the rest of the axioms for a graded Lie algebra hold
strictly or up to homotopy in L.

Relations that hold up to homotopy in L become strict relations in the coho-
mology algebra H∗(L). Thus if L is an L∞-algebra, then H∗(L) is a graded Lie
algebra. Of course we do not use the full L∞-structure of L in order to exhibit
H∗(L) as a graded Lie algebra. We use only the differential, the binary bracket
and the squaring operation — the higher operations merely ensure that passage to
cohomology produces a strict Lie algebra.

Definition 1. Let (ΛV, d) be a free commutative dg-algebra with V0 = 0. The
homotopy Lie algebra of (ΛV, d) is the graded Lie algebra L(ΛV, d) = H∗(L), where
L = (sV )∗ is the L∞-algebra associated to (ΛV, d).

With serious abuse of notation, the homotopy Lie algebra L(ΛV, d) of (ΛV, d)
will sometimes be denoted LV . The homotopy Lie algebra construction is a con-
travariant functor in (ΛV, d): A morphism of dg-algebras f : (ΛV, d) → (ΛW,d′)
such that f(V ) ⊆ (W ) has a linear part f0 specified by f(v) − f0(v) ∈ Λ≥2(W )
for all v ∈ V . Inspection of the linear parts of the relations f(xy) = f(x)f(y)
and d′f = fd shows that f0 is a homomorphism dg-algebras (ΛV, d0) → (ΛW,d′0)
with f0(V ) ⊆ W . Thus the dual map f∗

0 : Γ(sLW ) → Γ(sLV ) is a morphism
of coalgebras mapping W ∗ into V ∗, and therefore f∗

0 ((sx1)
(a1) . . . (sxn)

(an)) =

(f∗
0 (sx0))

(a0) . . . (f∗
0 (sxn))(an) for all xi ∈ L. The induced map f̂ : LW → LV

is given by f∗
0 (sx) = sf̂(x), and it is a map of complexes. From the relation

δ1f
∗
0 − f∗

0 δ
′
1 = f∗

1 δ
′
0 − δ0f

∗
1 , we see that f̂ is a morphism of algebras up to homo-

topy. Thus, passing to cohomology, Lf := H∗(f̂) is seen to be a morphism of Lie
algebras LW → LV . It is trivial that Lfg = LgLf and that L1 = 1. So we have a
contravariant functor from free commutative dg-algebras to graded Lie algebras.

3. Models

Let (A, dA) be a commutative dg-algebra. A model for (A, dA) is a free commu-
tative dg-algebra (ΛV, d), where V is a non-negatively graded vector space, together
with a quasi-isomorphism of dg-algebras

(ΛV, d)
∼ // (A, dA)

The model is called minimal if (ΛV, d) is a minimal, i.e., if d(V ) ⊆ (V )2. We focus
on two particular species of dg-algebras (A, dA).

• If A = A0 is a commutative algebra with trivial differential, then a model
(ΛV, d) of A satisfies A = H0(ΛV, d) = Λ(V0)/(Im d)0 and Hi(ΛV, d) = 0
for i > 0. In particular, A is a module over the polynomial ring S = Λ(V0)
and (ΛV, d) is a resolution of A by free S-modules

· · · → (ΛV )n → (ΛV )n−1 → · · · → (ΛV )1 → S → A→ 0
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• If H0(A) = k, then the map A → H0(A) = k, defined by identifying H0(A)
with A0/(Im d)0, is a morphism of dg-algebras, so A is augmented. In this
case it is always possible to choose a model (ΛV, d) of A with V0 = 0. If
the model is minimal, then necessarily V0 = 0.

By using dg-algebra resolutions with free S-modules, one can bridge the gap
between commutative algebras and connected augmented dg-algebras.

Lemma 3. Let (ΛV, d) be a model for a commutative k-algebra R concentrated
in (homological) degree 0. Let S be the polynomial ring Λ(V0), and suppose that
F → R is a surjective quasi-isomorphism, where F is a dg-algebra with F0 = S and
each Fi is a free S-module. Then the algebra ΛV ⊗S k ∼= Λ(V≥1) with differential
d̄ induced from d is a model of the connected dg-algebra F ⊗S k. Furthermore, if
(ΛV, d) is minimal, then so is (Λ(V≥1), d̄).

Proof. By Lemma 2 there is a map of dg-algebras η : ΛV → F making the diagram
below commutative.

F

∼

��
ΛV

∼ //

η
==

R

The map η is then necessarily a quasi-isomorphism. Both ΛV and F are semi-free
S-modules, so there results a quasi-isomorphism η⊗S 1k : ΛV ⊗S k → F ⊗S k. This
exhibits (ΛV ⊗S k, d̄) = (Λ(V≥1), d̄) as a model of the dg-algebra F ⊗S k. It is clear
that minimality of (ΛV, d) implies minimality of (Λ(V≥1), d̄). �

A minimal model for R always exists, and is unique up to (non-canonical) iso-
morphism, cf. [4] Proposition 7.2.4.

Lemma 4. Let (ΛV, dV ) be a Nn-graded dg-algebra with H0(ΛV, dV ) = R, and
assume that

Hi(ΛV, dV )τ = 0

for all i > 0. Then (ΛV, dV ) can be embedded into a model (ΛW,dW ) of R such that
(ΛV, dV )τ = (ΛW,dW )τ . Furthermore, if (ΛV, d) is minimal, then (ΛW,d) may be
chosen minimal.

Proof. A minimal model is constructed inductively, by successively adjoining basis
elements to V in order to kill homology, see [4] Propositions 2.1.10 and 7.2.4 for
details. Since ΛV is Nn-graded, we can do the inductive step one multidegree
at a time. Adding a basis element of multidegree α will not affect the part of
the algebra below α. Since Hi(ΛV, dV )τ = 0 for all i > 0, we do not need to
add variables in the multidegrees {0, 1}n in order to kill homology. Applying this
technique, we get a minimal model (ΛW,dW ) of R, where W is a vector space
obtained from V by adjoining basis elements of degrees outside {0, 1}n. In particular
(ΛW,dW )τ = (ΛV, dV )τ . �

3.1. Homotopy Lie algebras of dg Γ-algebras. A dg Γ-algebra is a commu-
tative dg-algebra (F, d) together with a system of divided power operations. This
means that for each element x ∈ F of even positive degree and each i ≥ 0 there is
an element x(i) of degree i|x| subject to certain conditions, cf. [23] Definition 1.7.1.
We do not reproduce the definition and elementary properties of dg Γ-algebras here
since they will not be used in our further arguments. However, two special cases



POINCARÉ SERIES AND HOMOTOPY LIE ALGEBRAS OF MONOMIAL RINGS 13

should be mentioned. If F = F0 is a commutative ring, then (F, 0) is trivially a dg
Γ-algebra. If k has characteristic zero, then every dg-algebra over k has a unique
structure of dg Γ-algebra. It is given by x(i) = xi/i!.

The functors ExtR(k, k) and TorR(k, k) for augmented k-algebras R extend to
the category of augmented dg-algebras. For instance, to an augmented dg-algebra
(A, d) one associates the ‘differential Ext-algebra’ Ext(A,d)(k, k), which can be de-
fined using semi-free resolutions of k. We refer to [17] for the yoga of differential
homological algebra.

For an augmented dg Γ-algebra (F, d) → k such that H0(F, d) is a noetherian
ring and Hi(F, d) is a noetherian H0(F, d)-module for each i, the Yoneda algebra
Ext(F,d)(k, k) is the universal enveloping algebra of a uniquely determined graded
Lie algebra π(F ) =

⊕
n≥1 π

n(F ), called the homotopy Lie algebra of F , cf. [3]
Theorems 1.1 and 1.2. A sketch of the argument goes as follows. One proves that

Tor(F,d)(k, k) admits the structure of a graded commutative Hopf Γ-algebra. Then
a structure theorem, due to Milnor and Moore [29] in characteristic p = 0, André
[1] in p > 2 and Sjödin [33] in p = 2, says that the dual Hopf algebra, in this case
Ext(F,d)(k, k), is the universal enveloping algebra of a uniquely determined graded
Lie algebra π(F ). This may seem like an awkward definition of π(F ). The question
arises of how to compute π(F ) before knowing the structure of Ext(F,d)(k, k) as a
graded Hopf algebra.

A commutative k-algebra R is a dg Γ-algebra concentrated in degree 0 with
trivial differential. Thus, if R is noetherian and augmented with a morphism of
algebras R→ k, then it makes sense to talk about the homotopy Lie algebra π(R)
of R. In this case, π(R) can be computed as the homology of the dg Lie algebra of
Γ-derivations on an ‘acyclic closure’ of k over R, cf. [4] section 10.2.

Another method of computing homotopy Lie algebras is by the use of minimal
models. The following theorem will be our main tool.

Theorem 1 ([3], Theorem 4.2). Let F be an augmented dg Γ-algebra such that
H0(F ) = k and Hi(F ) is a finite dimensional vector space over k for each i, and
let (ΛV, d) be a minimal model of F . Then there is an isomorphism of graded Lie
algebras

L(ΛV, d) ∼= π(F ).

4. Minimizing free commutative dg-algebras

The following is a counterpart of Lemma 3.2.1 in [23], but taking the Nn-grading
into account. It tells us how to ‘minimize’ a given dg-algebra. Here the assumption
that the augmentation ideal (V ) of ΛV is concentrated in positive weight becomes
essential.

Proposition 1. Let (ΛV, d) be a free commutative dg-algebra and let H = H(V, d0).
There is a differential dH on ΛH making it a dg-algebra, and a surjective map of
dg-algebras

(ΛV, d)
ψ

// (ΛH, dH)

such that

• (ΛH, dH ) is minimal, i.e., dH(H) ⊆ Λ≥2H.
• H0(ΛV, d) ∼= H0(ΛH, dH ).
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• The induced map of Lie algebras

Lψ : L(Λ(H≥1), d̄H ) → L(Λ(V≥1), d̄)

is an isomorphism.
• The squarefree truncation of ψ is a quasi-isomorphism, i.e.,

(ψτ )∗ : H(ΛV, d)τ
∼= // H(ΛH, dH)τ

.
• If k has characteristic 0, then ψ is a quasi-isomorphism.

Proof. Let W be a graded subspace of V such that V = Ker d0 ⊕W and similarly
split Ker d0 as H ⊕ Im d0 (hence H ∼= H(V, d0)). Note that since dV1 ⊆ m

2,
W0 = W1 = 0. As V is concentrated in positive weight, so is W . The map d0

induces an isomorphism W → Im d0, so we may write

V = H ⊕W ⊕ d0(W ).

Consider the graded subspace U = H ⊕W ⊕ dW of ΛV . The induced homomor-
phism of graded algebras f : ΛU → ΛV is an isomorphism by Lemma 1, because
f0 is the identity on ΛH0 and the linear part of f is the map 1H ⊕ 1W ⊕ g, where
g : dW → d0(W ) is the isomorphism taking an element to its linear part (isomor-
phism precisely because Kerd0 ∩W = 0). Thus we may identify ΛU and ΛV via
f . In particular f−1df is a differential on ΛU , which we also will denote by d, and
(ΛU, d) is a dg-algebra in which Λ(W ⊕ dW ) is a dg-subalgebra. The projection
U → H induces an epimorphism of graded algebras φ : ΛU → ΛH with kernel
(W ⊕ dW )ΛU , the ideal generated by W ⊕ dW in ΛU . Define a differential dH on
ΛH by

dH(h) = φdι(h),

where ι is induced by the inclusion H ⊆ U . With this definition it is evident that
(ΛH, dH) is minimal, and φ becomes a morphism of dg-algebras. Let

ψ = φf−1 : ΛV → ΛH.

The linear part ψ0 of ψ is the projection of V onto H given by the above splitting,
and it induces an isomorphism in homology H(V, d0) ∼= H . The map of Lie algebras
L(Λ(H≥1), d̄H ) = (s(H≥1))

∗ → H∗((s(V≥1))
∗) = L(Λ(V≥1), d̄) is the map induced

in cohomology by the dual of the suspension of ψ0 restricted to positive degrees.
Since we work over a field, this is an isomorphism by the universal coefficient
theorem.

Consider the increasing filtration

Fp = (ΛH)≤p · Λ(W ⊕ dW ).

Obviously ∪Fp = ΛU , and dFp ⊆ Fp since d preserves Λ(W ⊕ dW ). The associated
first quadrant spectral sequence is convergent, with

E2
p,q = Hp(ΛH, dH) ⊗k Hq(Λ(W ⊕ dW ), d) =⇒ Hp+q(ΛU, d).

Since W0 = W1 = 0, we have H0(Λ(W ⊕ dW ), d) = k, and therefore H0(ΛH, dH) =
E2

0,0 = E3
0,0 = . . . = E∞

0,0 = H0(ΛU, d) = H0(ΛV, d). If the field k has charac-
teristic zero, then (Λ(W ⊕ dW ), d) is acyclic, so in this case the spectral sequence
degenerates, showing that H(ΛH, dH) ∼= H(ΛV, d). However, Λ(W ⊕ dW ) need not
be acyclic in positive characteristic p — if x ∈ W is of even degree, then xnp and
xnp−1dx represent non-trivial homology classes for all n ≥ 1. Recall however that
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we are working with Nn-graded objects and maps. Since W is concentrated in pos-
itive weight, the truncation Λ(W ⊕ dW )τ is acyclic, simply because no elements of
the form xna, for x ∈ (W ⊕ dW ), a ∈ Λ(W ⊕ dW ), n > 1, are there. In particular
the dissidents xnp and xnp−1dx live in non-squarefree degrees. Hence the truncated
spectral sequence collapses, regardless of characteristic, and so

Hi(ΛH, dH)τ ∼= Hi(ΛV, d)τ ,

for all i. �

Remark 1. A fact that should be clear from the proof, but which we would like to
emphasize, is that the map ψ need not be a quasi-isomorphism in positive character-
istics. Suppose k has characteristic p > 0. Let V = 〈x, y〉k, where |x| = 2, |y| = 1,
deg(x) = deg(y) = 1 (n = 1). Let dx = y and dy = 0. Then H = H(V, d0) = 0
and hence ΛH = k. The map ψ : ΛV → k is not a quasi-isomorphism, because
for instance xp represents a non-trivial homology class in H2p(ΛV, d). On the other
hand (ΛV, d)τ is the algebra ΛV/(x2, xy). It has basis x, y, 1 and obviously the map
ψτ : (ΛV, d)τ → k is a quasi-isomorphism, as asserted by the proposition.

Algebras with monomial relations

Let k be any field. Let I be a monomial ideal in S = k[x1, . . . , xn] minimally
generated by a set M of monomials of degree at least 2, and let R = S/I . The
Yoneda algebra ExtR(k, k) is the universal enveloping algebra of the graded Lie
algebra π(R). Let π≥2(R) =

⊕
i≥2 π

i(R). It is an ideal and in particular a sub Lie

algebra of π(R). The multigraded Poincaré series of R is the formal power series

PR(x, z) =
∑

i≥0,α∈Nn

dimk ExtiR(k, k)αx
αzi.

We begin by citing the theorems which were the starting point for our work.

Theorem 2 ([7]). The multigraded Poincaré series of R is a rational of the form

PR(x, z) =

∏n
i=1(1 + xiz)

bR(x, z)
,

for a polynomial bR(x, z) ∈ Z[x1, . . . , xn, z].

Theorem 3 ([5], Theorem 1). Let I and J be ideals generated by monomials of
degree at least 2 in the polynomial rings k[x], k[y] respectively, where x and y
are finite sets of variables. Let Q = k[x]/I and R = k[y]/J . If LI and LJ are
isomorphic as partially ordered graphs, then there is an isomorphism of graded Lie
algebras

π≥2(Q) ∼= π≥2(R).

We are aiming at a description of the homotopy Lie algebra and the Poincaré
series of R in combinatorial terms. It turns out that the machinery of minimal
models is very well suited for this task. To a monomial set M we will associate two
objects

• A finite lattice KM , called the ‘lattice of saturated subsets of M ’.
• A finite dimensional L∞-algebra L∞(M).
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These objects are accompanied by their respective theorems. Theorem 5 says that
the denominator bR of the Poincaré series of R with set of minimal relations M is
given by

bR = 1 +
∑

S∈K̂M

mS(−z)c(S)+2H̃((∅, S); k)(z).

Here (∅, S) is the open interval from ∅ to S in the lattice KM .
We define a functor F on the category of multigraded Lie algebras, whose restric-

tion to the subcategory of truncated Lie algebras is left adjoint to the truncation
functor, and Theorem 6 says that

π≥2(R) ∼= F H∗(L∞(M))

as multigraded Lie algebras.
Thus the study of PR and π≥2(R) is reduced to combinatorics via these two

objects. In proving the results we will reduce to the case when M consists of
squarefree monomials. This is done by a procedure called ‘polarization’.

4.1. Polarization. We invoke a construction of Fröberg, [19] pp. 30, which is often
referred to as polarization. Let I be any monomial ideal in S = k[x1, . . . , xn], and
let M = Gen(I). Let di = maxm∈M degxi

(m). To each m ∈ M we associate a
squarefree monomial m◦ in Q = k[xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ di] as follows: If
m = xα1

1 · . . . · xαn
n then

m◦ =

n∏

i=1

αi∏

j=1

xi,j .

The set M◦ = {m◦ | m ∈ M} minimally generates an ideal in Q, which we denote
by I◦. The map M◦ →M , m◦ 7→ m, extends to a map f : LI◦ → LI characterized
by the property that xi,j divides m ∈ LI◦ if and only if xji divides f(m). From this
defining property it is easily seen that f is an isomorphism of pographs. Hence by
Theorem 3, with R = S/I and R◦ = Q/I◦, we have

π≥2(R) ∼= π≥2(R◦).

It is also easy to see that

bR(x1, . . . , xn, z) = bR◦(x1, . . . , x1, x2, . . . , x2, . . . , xn, z).

Therefore, questions about PR or π≥2(R) may always be reduced to the squarefree
case, if necessary.

5. Lattices and simplicial complexes associated to monomial sets

Elementary definitions and facts about simplicial complexes are found in Appen-
dix A.

Definition/Lemma 1. If M is a monomial set, then the set

{S ⊆M | mS 6= mM or S disconnected}

is the set of faces of a simplicial complex ∆′
M with vertex set M .

If M = M1 ∪ . . .∪Mr is the decomposition of M into its connected components,
then let ∆M be the simplicial complex ∆M = ∆′

M1
· . . . · ∆′

Mr
(cf. Appendix A).

Thus ∆M has vertices M and faces

{S ⊆M | mS 6= mM or Mi ∩ S disconnected for some i} .
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Proof. To see that ∆′
M is indeed a simplicial complex, suppose T ⊆ S ∈ ∆′

M .
If mS 6= mM , then clearly mT 6= mM . If S is disconnected, decompose S as
S = S1 ∪ S2 where S1 and S2 are separated and non-empty. Then both mS1

,mS2

strictly divide mM . Since T is a connected subset of S, we have that T ⊆ Si for
some i, and therefore mT strictly divides mM . �

Definition 2. Let S be a subset of a monomial set M , and let S = S1 ∪ . . . ∪ Sr
be its decomposition into connected components. The saturation of S in M is the
set S = S1 ∪ . . . ∪ Sr, where Si = MmSi

for connected Si. Clearly S ⊆ S, and S is
called saturated in M if equality holds. Equivalently, S is saturated in M if for all
m ∈M , m | mT implies m ∈ S if T is a connected subset of S.

DefineKM to be the set of saturated subsets ofM . It is a lattice with intersection
as meet and the saturation of the union of saturated subsets as join. Set K̂M =
KM − {∅} and K̄M = K̂M − {M}.

It is easily checked that if T ⊆ S ⊆ M and S is saturated in M , then T is
saturated in S if and only if T is saturated in M . Therefore, if S ∈ KM , then KS

is equal to the sublattice (KM )⊆S = {T ∈ KM | T ⊆ S} of KM .
As usual, a partially ordered set P is considered to be a topological space by

passage to the simplicial complex of chains in P . If L is a lattice, with top and
bottom element 1̂ and 0̂, then its proper part is the poset L̄ = L − {0̂, 1̂}. If L is
atomic, with atoms A, the crosscut complex Γ(L̄, A) is the simplicial complex with

vertices A and faces all subsets S of A such that ∨S 6= 1̂. The ‘Crosscut Theorem’,
cf. [12] Theorem 10.8, asserts that L̄ is homotopy equivalent to Γ(L̄, A). Note that
KM is an atomic lattice with atoms AM = {{m} | m ∈ M}.

Proposition 2. ∆M is isomorphic to the crosscut complex Γ(K̄M , AM ). In par-
ticular, for each S ∈ KM , the open interval (∅, S) in KM is homotopy equivalent
to ∆S .

Proof. Identify Γ(KM , AM ) with the complex
{
S ⊆M | S 6= M

}
. Decompose M

into connected components, M = M1 ∪ . . . ∪Mp, and let mi = mMi
. We need to

show that S = M is equivalent to mS = mM and S ∩Mi connected for each i. Let
S1, . . . , Sr be the components of S. Suppose S = M . Then mS = mS = mM and

S1, . . . , Sr are the components of M . Note that S ∩ Si = Si, which is connected.
Conversely, suppose that mS = mM and that each S ∩Mi is connected. If m ∈

M , then m ∈ Mi for some i. Since mS = mM = m1 . . .mp and gcd(mi,mj) = 1
when i 6= j, it follows that mi = mS∩Mi

. Since S∩Mi is connected and m | mS∩Mi

it follows that m ∈ S.
The second assertion follows because the open interval (∅, S) in KM equals K̄S.

�

Two monomial ideals I , J are called equivalent if there is an isomorphism of
posets f : LI → LJ which is also an isomorphism of graphs, that is, f is an isomor-
phism of pographs. In particular, one checks that polarization yields an isomorphism
of pographs LI → LI◦ , so I and I◦ are equivalent in this sense.

Let εI : KI → LI be the map of join-semilattices taking S to mS .

Proposition 3. Let f : LI → LJ be a bijective morphism of pographs. Then there
is a surjective morphism of join-semilattices f̄ : KI → KJ such that the following
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diagram of join-semilattices commutes:

KI
f̄

// //

εI
����

KJ

εJ
����

LI
f

// LJ

If in addition f−1 is a morphism of graphs, then f̄ is an isomorphism of lattices
and c(S) = c(f̄(S)) for all S ∈ KI .

Proof. Let M and N be the sets of minimal generators for I and J respectively. M
andN are the atoms of LI and LJ respectively, so f restricts to a bijective morphism
of graphs M → N . This means that if S ⊆M is connected, then so is f(S). Define

f̄ : KI → KJ by f̄(S) = f(S). To show that f̄ is a morphism of join-semilattices

we need to show that f(S) = f(S) for all S ⊆M . Indeed, assume m ∈ f(S). Then
m | mT for some connected T ⊆ f(S). If n ∈ T , then f−1(n) ∈ S, so f−1(n) | mU

for some connected U ⊆ S. Since f is an isomorphism of lattices, n | mf(U), and

by the above f(U) is a connected subset of f(S). Therefore T ⊆ f(S) and then

m | mT and T connected implies m ∈ f(S). The reverse inclusion is obvious.
If S ∈ KJ then f−1(S) ∈ KI , because m | mT and T ⊆ f−1(S) connected

implies f(m) | mf(T ) and f(T ) ⊆ S connected, whence f(m) ∈ S, i.e, m ∈ f−1(S).

Moreover, f̄(f−1(S)) = S. This shows that f̄ is surjective.
If f is an isomorphism of graphs, then it restricts to an isomorphism of graphs

M → N . In particular c(S) = c(f(S)) for all S ∈ KI . Also f̄(S) = f(S), so in this
case f̄ is bijective. It is trivial to verify that the diagram is commutative. �

Corollary 1. An isomorphism of pographs f : LI → LJ induces an isomorphism
of lattices KI → KJ such that c(S) = c(f(S)) for all S ∈ KI .

6. Minimal model of a monomial ring

Let I be a monomial ideal in S = k[x1, . . . , xn] minimally generated by a set M
of monomials of degree at least 2. Fix a total order on M . Let R = S/I . We will
construct explicitly the squarefree part of a multigraded minimal model for R. This
will enable us to read off the homotopy Lie algebra and to compute the Poincaré
series of R. The construction is modelled on the Taylor complex, whose definition
we now will recall.

6.1. The Taylor complex. The Taylor complex associated to I is a finite S-free
resolution of S/I . It was originally introduced by Taylor in [34].

Let E be the vector space with basis {eS | ∅ 6= S ⊆M}, with gradings defined by
|eS| = |S| and deg(eS) = deg(mS). Let X be the span of x1, . . . , xn, with |xi| = 0
and the standard Nn-grading. Let

TI = Λ(X ⊕E)/J,

where J is the ideal generated by the elements eSeT − sgn(S, T ) gcd(mS ,mT )eS∪T
for all pairs of subsets S, T ⊆ M . Recall that sgn(S, T ) = 0 if S and T are not
disjoint, so for such a pair we get the generator eSeT . The generators of J are
homogeneous with respect to all gradings, so TI is an N × Nn-graded algebra.
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Clearly, (TI)i is a free ΛX-module with basis eS for |S| = i. Set e∅ = 1. Define a
map d : E → Λ(X ⊕E) by

deS =
∑

s∈S

sgn(s, S − {s})
mS

mS−{s}
eS−{s},

and extend it to Λ(X⊕E) = ΛX⊗kΛE as a ΛX-linear derivation. One checks that
d2 = 0 and that d preserves J , so we get an induced differential δ on the quotient
TI . We have a canonical map of algebras (T, δ) → H0(T, δ) = ΛX/I = R.

Definition 3. The Taylor complex on the monomial ideal I is the dg-algebra
(TI , δ).

Proposition 4. The canonical map (TI , δ) → R is a quasi-isomorphism. In par-
ticular, (TI , δ) is a resolution of R by free S-modules.

Proof. See for instance [18] for a short proof. �

Note that the underlying algebra of (TI , δ) is not free, so it is not a model of R.
It will become apparent later that the Taylor algebra is actually the truncation of
a model of R.

The following is proved in [5].

Proposition 5. (TI , δ) is a dg Γ-algebra and

π≥2(R) ∼= π(TI ⊗S k)

as graded Lie algebras.

Note that it makes sense to talk about π(TI ⊗S k) only because we know that
TI , and hence TI ⊗S k, is a dg Γ-algebra.

6.2. Minimal model of a monomial ring. Let V = X⊕Y , where X = V0 is the
linear span over k of x1, . . . , xn with |xi| = 0 and the standard Nn-grading. The
space Y = V≥1 is defined by

Y = 〈yS | S non-empty connected subset of M〉k,

where gradings are given by |yS | = |S| and deg(yS) = deg(mS). We extend the
definition of the symbol yS to arbitrary subsets of M as follows. If S is any, not
necessarily connected, subset of M and S = S1 ∪ . . . ∪ Sr is its decomposition into
connected components, then define yS to be the element

yS = sgn(S1, . . . , Sr)yS1
· . . . · ySr

∈ ΛV.

Set y∅ = 1. With these definitions it is clear that |yS | = |S| and deg(yS) = deg(mS)
for any S ⊆M .

A differential d on ΛV is defined on the basis as follows. We set dxi = 0 for all
i and if S is a connected subset of M , then

(2) dyS =
∑

s∈S

sgn(s, S − {s})
mS

mS−{s}
yS−{s},

The differential is extended to all of ΛV as an ΛX-linear derivation. Obviously, this
definition is modelled on the differential of the Taylor complex. Note that it may
happen that yS−{s} becomes decomposable as a product in the sum above. One
verifies easily that the formula (2) remains valid for disconnected S. By definition,
d is of homological degree −1 and is homogeneous with respect to the Nn-grading.
The verification of d2 = 0 is routine.
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The algebra ΛY is isomorphic to ΛV ⊗ΛX k, and therefore inherits a differential
d̄ from ΛV .

Proposition 6. Let I be a an ideal in S generated by squarefree monomials of
degree at least 2, and let R = S/I. There is a multigraded minimal model (ΛW,dW )
of R such that Wτ = H(V, d0) and L(Λ(W≥1), d̄W )τ ∼= L(ΛY, d̄).

Proof. By definition, H0(ΛV, d) = R. Furthermore, we have an isomorphism of
dg-algebras Λ(V )τ ∼= Tτ , where T is the Taylor complex of the ideal I . In par-
ticular, since the Taylor complex is a multigraded resolution of R over S, we have
Hi(ΛV, d)τ = 0 for i > 0. Let H = H(V, d0). From Proposition 1 we get a dif-
ferential dH on ΛH making it a minimal dg-algebra such that H0(ΛH, dH) = R,
Hi(ΛH, dH)τ = 0 for i > 0 and L(Λ(H≥1), d̄H ) ∼= L(ΛY, d̄). Applying Lemma 4
to the minimal dg-algebra (ΛH, dH), we get a vector space W and minimal model
(ΛW,dW ) of R, such that (ΛW,dW )τ = (ΛH, dH )τ . Then it follows immediately
from the definition of the functor L that L(Λ(W≥1), d̄W )τ = L(Λ(H≥1), d̄H)τ =
L(Λ(H≥1), d̄H ) ∼= L(ΛY, d̄) and that Wτ = H . �

Proposition 7. If I is generated by squarefree monomials, then π≥2(R)τ ∼= LY .

Proof. Let (ΛW,dW ) be the minimal model of R constructed in Proposition 6. The
Taylor complex TI is a dg Γ-algebra resolution of R by free S-modules. Therefore,
by Lemma 3, (ΛW ⊗S k, d̄W ) = (Λ(W≥1), d̄W ) is a minimal model of the dg Γ-
algebra TI ⊗S k. Hence, by Theorem 1 and Proposition 5,

LW≥1
= π(TI ⊗S k) = π≥2(R).

By Proposition 6, we conclude that

LY
∼= (LW≥1

)τ = π≥2(R)τ .

�

7. Nn-graded deviations

The next observation is the extension of Remark 7.1.1 of [4] to the Nn-graded
situation, and it is proved in a similar manner, cf. [15] Proposition 3.1.

Let P = 1+
∑

i≥1,α∈Nn bi,αx
αzi be a formal power series with integer coefficients

bi,α such that for i fixed, bi,α = 0 when |α| � 0. Then there are uniquely determined
integers ei,α such that

P =
∏

i≥1,α∈Nn

(1 + xαz2i−1)e2i−1,α

(1 − xαz2i)e2i,α
,

the product converging in the (z)-adic topology. Furthermore, for a fixed i, we have
ei,α = 0 when |α| � 0.

This observation applies to the Poincaré series PR(x, z) of a monomial ring R:
since ExtiR(k, k) is a finite dimensional vector space for each i, it can be non-zero
in only finitely many multidegrees. Thus we have a product decomposition

PR(x, z) =
∏

i≥1,α∈Nn

(1 + xαz2i−1)ε2i−1,α

(1 − xαz2i)ε2i,α
.(3)
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The numbers εi,α(R) = εi,α are called the Nn-graded deviations of R. These refine
the ordinary deviations εi of R (cf. [4], Section 7.1):

εi =
∑

α∈Nn

εi,α.

Multigraded deviations have been introduced also in [15].
It is a fundamental result that the ordinary deviations εi(R) can be computed

from a minimal model of R, cf. [4] Theorem 7.2.6. The same is true in the multi-
graded setting. Recall that ExtR(k, k) = Uπ(R) as multigraded algebras. By the
Poincaré-Birkhoff-Witt theorem, there is an isomorphism of graded vector spaces
Uπ(R) ∼= Λπ(R). In view of the vector space structure of Λπ(R) there results a
product decomposition of the Poincaré series

PR(x, z) =
∏

i≥1,α∈Nn

(1 + xαz2i−1)p2i−1,α

(1 − xαz2i)p2i,α
,

where pi,α = dimk π
i(R)α. It follows from the remark that the numbers dimk π

i(R)α
equal the deviations εi,α(R) of R.

The space π1(R) ∼= Ext1R(k, k) can be identified with the dual of the vector space
s〈x0, . . . , xn〉k of minimal algebra generators for R. By Lemma 3, if (ΛW,d) is a
minimal model for R, then (Λ(W≥1), d̄) is a minimal model for TI ⊗S k, whence by
Proposition 5 and Theorem 1, π≥2(R) = LW≥1

= (s(W≥1))
∗. Therefore εi,α(R) =

dimk π
i(R)α = dimkWi−1,α for i ≥ 2. Furthermore, W0 = 〈x0, . . . , xn〉k, so it is

also true that π1(R) ∼= (sW0)
∗. We state this as a lemma for future reference.

Lemma 5. Let (ΛW,d) be an Nn-graded minimal model of a monomial ring R.
Then the Nn-graded deviations εi,α of R are given by

εi,α = dimkWi−1,α,

for i ≥ 1 and α ∈ Nn. �

7.1. Squarefree deviations. In the squarefree case, there is a nice interpretation
of the squarefree deviations in terms of simplicial homology. Recall the definition of
∆′
M found in Section 5. As usual, Mα denotes the set of monomials in M dividing

xα.

Theorem 4. Assume that I is minimally generated by a set M of squarefree mono-
mials of degree at least 2. Let α ∈ {0, 1}n and let i ≥ 2. If xα 6∈ LI , then εi,α = 0,
and if xα ∈ LI then

εi,α = dimk H̃i−3(∆
′
Mα

; k).

Proof. By Proposition 6 there is a minimal model (ΛW,dW ) of R such that Wτ =
H(V, d0). By Lemma 5 we get that

(4) εi,α = dimkWi−1,α = dimkHi−1,α = dimk Hi−1,α(V, d0),

for α ∈ {0, 1}n. We will now proceed to give a combinatorial description of the
complex V = (V, d0). As a complex, V splits into its Nn-graded components

V =
⊕

α∈Nn

Vα.
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Vei
is one-dimensional and concentrated in degree 0 for i = 1, . . . , n. This accounts

for the first deviations ε1,ei
= 1. If |α| > 1, then Vα has basis yS for S in the set

Cα = {S ⊆M | mS = xα, S connected} .

In particular Vα = 0 if xα 6∈ LI . The differential of Vα is given by

(5) dyS =
∑

s∈S
S−{s}∈Cα

sgn(s, S − {s})yS−{s}.

Let Σα be the simplicial complex whose faces are all subsets of the set Mα =
{m ∈M | m | xα}, with orientation induced from the orientation {m1, . . . ,mn} of

M . Define a map from the chain complex C̃(Σα; k) to the desuspended complex
s−1Vα by sending a face S ⊆Mα to s−1yS if S ∈ Cα and to 0 otherwise. In view of
(5), this defines a morphism of complexes, which clearly is surjective. The kernel
of this morphism is the chain complex associated to ∆′

Mα
, so we get a short exact

sequence of complexes

0 → C̃(∆′
Mα

; k) → C̃(Σα; k) → s−1Vα → 0

Since Σα is acyclic, the long exact sequence in homology derived from the above

sequence shows that Hi(Vα) ∼= H̃i−2(∆
′
Mα

; k). The theorem now follows from (4).
�

8. Poincaré series

This section is devoted to the deduction of the following theorem which gives a
formula for the Poincaré series of a monomial ring in terms of simplicial homology.

Theorem 5. Let k be any field. Let I be an ideal in S = k[x1, . . . , xn] generated
by monomials of degree at least 2, and let M be its minimal set of generators. The
denominator of the Poincaré series of R = S/I is given by

(6) bR(x, z) = 1 +
∑

S∈K̂M

mS(−z)c(S)+2H̃((∅, S); k)(z),

Some intermediate results will be needed before we can give the proof. Retain
the notations of Theorem 5 throughout this section. We will frequently suppress
the variables and write bR = bR(x, z) and PR = PR(x, z).

Assume that the ideal I is minimally generated by squarefree monomials M =
{m1, . . . ,mg} of degree at least 2. By Backelin [7], the Poincaré series of R is
rational of the form

PR(x, z) =

∏n
i=1(1 + xiz)

bR(x, z)
,

where bR(x, z) is a polynomial with integer coefficients and xi-degree at most 1 for
each i. We start with the following observation made while scrutinizing Backelin’s
proof.

Lemma 6. If I is generated by squarefree monomials, then the polynomial bR
is squarefree with respect to the xi-variables. Moreover bR depends only on the
deviations εi,α for α ∈ {0, 1}n. In fact, there is a congruence modulo (x2

1, . . . , x
2
n):

bR ≡
∏

α∈{0,1}n

(1 − xαpα(z)),

where pα(z) is the polynomial pα(z) =
∑|α|

i=1 εi,αz
i.
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Proof. Note that ε1,ei
= 1 and ε1,α = 0 for α 6= ei = deg(xi) (i = 1, . . . , n). Hence

using the product representation (3) and reducing modulo (x2
1, . . . , x

2
n) we get (note

that (1 + mp(z))n ≡ 1 + nmp(z) for any integer n and any squarefree monomial
m):

bR =

∏
i≥1,α(1 − xαz2i)ε2i,α

∏
i≥2,α(1 + xαz2i−1)ε2i−1,α

≡
∏

(1 − xα(ε2i−1,αz
2i−1 + ε2i,αz

2i))

≡
∏

(1 − xαpα(z)),(7)

product taken over all α ∈ {0, 1}n, where pα(z) ∈ Z[z] is the polynomial pα(z) =∑|α|
i=1 εi,αz

i. �

This gives a formula for bR in terms of finitely many deviations εi,α. In terms of
the polynomials pα(z), Theorem 4 may be stated as

(8) pα(z) = z3H̃(∆′
Mα

; k)(z),

for xα ∈ LI .

Proof of Theorem 5. Square-free case. By Theorem 4, pα(z) = 0 unless xα ∈ LI , in

which case pα(z) = z3H̃(∆′
Mα

; k)(z). But ∆′
Mα

is a simplex and hence contractible
if Mα is disconnected, so pα(z) = 0 unless xα ∈ cLI , where cLI denotes the subset
of LI consisting of elements m 6= 1 such that Mm is connected. Hence by Lemma 6

bR ≡
∏

xα∈cLI

(1 − xαpα(z)) mod (x2
1, . . . , x

2
n).

If we carry out the multiplication in the above formula and use that bR is squarefree
with respect to the xi-variables (by Lemma 6) we get the equality

bR = 1 +
∑

N∈D(cLI)

∏

xα∈N

(−xαpα(z)) = 1 +
∑

N∈D(cLI)

mN (−1)|N |
∏

xα∈N

pα(z)

(the identity
∏
xα∈N x

α = mN holds because N is independent). Using (8) the
formula takes the form

bR = 1 +
∑

N∈D(cLI)

mN (−1)|N |
∏

xα∈N

z3H̃(∆′
Mα

; k)(z).

By (13) this may be written

bR = 1 +
∑

N∈D(cLI)

mN (−1)|N |z|N |+2H̃(Γ; k)(z),

where Γ = ∆′
Mα1

· . . . · ∆′
Mαr

, if N = {xα1 , . . . , xαr}. The point here is that

MN = Mα1
∪ . . .∪Mαr

is the decomposition of MN into its connected components:
every Mαi

is connected because xαi ∈ cLI , and since N is independent, there are
no edges between Mαi

and Mαj
if i 6= j. Therefore

∆MN
= ∆′

Mα1
· . . . · ∆′

Mαr
= Γ.

For any N ∈ D(cLI), the set MN is obviously saturated in M . Conversely, for
any saturated subset S of M , let S = S1 ∪ . . . ∪ Sr be the decomposition of S into
connected components. Then N = {mS1

, . . . ,mSr
} ∈ D(LI) and since Si = MmSi

,

as S is saturated, it follows that MmSi
is connected for each i, so that N ∈ D(cLI).
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This sets up a one-to-one correspondence between K̂M and D(cLI). Furthermore,
under this correspondence mS = mN and c(S) = |N |, so it translates our formula
to:

bR = 1 +
∑

S∈K̂M

mS(−z)c(S)+2H̃(∆S ; k)(z).

To finish the proof, we use Proposition 2, which says that for any S ∈ KM , the
simplicial complex ∆S is homotopy equivalent to the order complex of the open
interval (∅, S) in KM . �

Introduce the auxiliary notation

F (M) = 1 +
∑

S∈K̂M

mS(−z)c(S)+2H̃(∆S ; k)(z),

when M is a set of monomials of degree at least 2. If I is a monomial ideal in
some polynomial ring Q over k, then set F (I) = F (Gen(I)). So far we have proved
that bQ/I = F (I) whenever I is generated by squarefree monomials. The claim of
Theorem 5 is that bQ/I = F (I) for all monomial ideals I .

Lemma 7. Let I and J be equivalent monomial ideals, and let f : LI → LJ be an
isomorphism of pographs. Then f(F (I)) = F (J), where f(F (I)) denotes the result
of applying f to the coefficients mS of F (I), regarding it as a polynomial in z with
coefficients in LI .

Proof. Let M = Gen(I) and N = Gen(J). By Proposition 3, f induces an iso-
morphism of lattices KM → KN which maps S ∈ KM to f(S) ∈ KM . In par-
ticular the open intervals (∅, S)KM

and (∅, f(S))KN
are isomorphic. Furthermore,

c(S) = c(f(S)) and f(mS) = mf(S) for all S ⊆M . The result follows. �

Proof of Theorem 5. General case. We use polarization. Let I◦ ⊆ Q be the square-
free monomial ideal associated to I as in section 4.1, and let R = S/I , R◦ = Q/I◦.
The map f : LI◦ → LI is an isomorphism of pographs. Therefore we get

bR = f(bR◦) = f(F (I◦)) = F (I),

where the first equality follows from the construction in [19], the second from the
squarefree case of Theorem 5, and the third from Lemma 7. This proves Theorem
5 in general. �

8.1. Applications and remarks. We will here give the proofs of some corollaries
to Theorem 5 and make some additional remarks.

Corollary 1. With notations as in Theorem 5

deg bR(z) ≤ g + d,

where bR(z) = bR(1, . . . , 1, z), g = |M | is the number of minimal generators of I
and d is the independence number of M , i.e., the largest size of an independent
subset of M . In particular

deg bR(z) ≤ 2g,

with equality if and only if R is a complete intersection.
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Proof. If ∆ is a simplicial complex with v vertices, then deg H̃(∆; k)(z) ≤ v − 2,

because either dim ∆ = v−1, in which case ∆ is the (v−1)-simplex and H̃(∆; k) = 0,

or else dim ∆ ≤ v − 2, in which case H̃i(∆; k) = 0 for i > v − 2. The simplicial
complex ∆S has |S| vertices. Thus the z-degree of a general summand in the
formula (6) for bR(x, z) is bounded above by c(S)+2+ |S|−2 ≤ d+ g, because the
number of components of S can not exceed the independence number of M . Since
d ≤ g we get in particular that

deg bR(z) ≤ 2g,

with equality if and only if M is independent itself, which happens if and only if R
is a complete intersection. �

Now that we know that Q and R below satisfy bQ = F (I) and bR = F (J), the
next corollary is merely a restatement of Lemma 7.

Corollary 2. Let I and J be ideals generated by monomials of degree at least 2 in
the rings k[x] and k[y] respectively, where x and y are finite sets of variables. Let
Q = k[x]/I and R = k[y]/J . If f : LI → LJ is an equivalence, then

bR(y, z) = f(bQ(x, z)),

where f(bQ(x, z)) denotes the result of applying f to the coefficients of bQ(x, z),
regarding it as a polynomial in z. �

Remark 2. Given formula (6), it is easy to reproduce the result, implicit in [18]
and explicit in [16], that

bR(x, z) =
∑

S⊆M

(−1)c(S)z|S|+c(S)mS ,

when the Taylor complex onM is minimal. The Taylor complex is minimal precisely
when mT = mS implies S = T , for S, T ⊆ M , i.e., when LI is isomorphic to the
boolean lattice of subsets of M . In this case every non-empty subset S of M is
saturated, because m | mT implies m ∈ T for any T ⊆M , and ∆S is a triangulation
of the (|S| − 2)-sphere, because mS = mM only if S = M .

9. (Strongly) homotopy Lie algebras

Fix a field k and let S = k[x1, . . . , xn]. Let I ⊆ S be an ideal generated by
a set M of squarefree monomials of degree at least 2, and set R = S/I . Recall
the definition of the dg-algebra (ΛY, d̄) constructed in Section 6.2. By Proposition
7, π≥2(R) ∼= LY , and this is by definition the cohomology of the L∞-algebra ob-
tained from dualizing the dg-algebra (ΛY, d̄). We will now describe this L∞-algebra
combinatorially.

Definition 4. Let M be any set of monomials. Then L∞(M) is a multigraded
L∞-algebra with

L∞(M)iα = 〈ξS | S connected subset of M ; |S| = i− 1, mS = xα〉.

Thus ξS has cohomological degree |S|+ 1 and multidegree mS . For each r ≥ 1, we
have an r-ary bracket L∞(M)⊗r → L∞(M) of cohomological degree 2− r which is
homogeneous with respect to the Nn-grading. Whenever S1, . . . , Sr are connected
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subsets of M satisfying gcd(mSi
,mSj

) = 1 when i 6= j, then this bracket is given
by

(9) [ξS1
, . . . , ξSr

] = (−1)ε
∑

sgn(m,Sr, . . . , S1)ξS∪m.

Here S = S1 ∪ . . . ∪ Sr and the summation is over all m ∈M − S such that S ∪m
is connected and m | mS . The number ε is defined by

ε =

{
1 + |ξS1

| + |ξS3
| + . . . |ξSr

|, if r is odd
1 + |ξS2

| + |ξS4
| + . . . |ξSr

|, if r is even

The bracket is anti-symmetric in the sense that

[ξS1
, . . . , ξSi

, ξSi+1
, . . . , ξSr

] = −(−1)|ξSi
||ξSi+1

|[ξS1
, . . . , ξSi+1

, ξSi
, . . . , ξSr

].

The bracket is zero whenever gcd(mSi
,mSj

) 6= 1 for some i 6= j. All operations

coming from higher divided powers, such as the squaring operations x 7→ x[2], are
zero in L∞(M).

If I is a monomial ideal, then L∞(I) is defined to be L∞(M), where M is the
minimal set of generators for I .

Proposition 8. Let I ⊆ S be an ideal generated by squarefree monomials and let
R = S/I. Then we have an isomorphism of multigraded Lie algebras

π≥2(R)τ ∼= H∗(L∞(I)).

Proof. If I is generated by squarefree monomials, then LY = H∗(L∞(I)), by defi-
nition of L∞(I). Therefore the proposition follows from Proposition 7. �

Remark 3. Since the definition of L∞(M) only uses properties of M which can be
extracted from the pograph LM , it is clear that, up to isomorphism of L∞-algebras,
L∞(M) depends only on the equivalence class of the monomial set M .

A sort of converse to this is true in the sense that the lattice LM can be recovered
from the graph structure of M and the L∞-algebra L∞(M) with the given base in-
dexed by connected non-empty subsets of M . Indeed, the lattice LM is determined
by what relations m | mS hold for m ∈M and subets S of M . The relation m | mS

holds if and only if there is a subset T of S, with connected components T1, . . . , Tr
say, such that T ∪m is connected and ξT∪m occurs with a non-zero coefficient in
the bracket [ξT1

, . . . , ξTr
].

Next we wish to prove that π≥2(R) is obtained from π≥2(R)τ by ‘extending it
freely in higher multidegrees’. Before doing so, we need to make this last sentence
precise. Recall that for homogeneous elements x, y of a vector space, x ⊥ y means
that the multidegrees of x and y have disjoint supports.

Definition 5. If L is a Lie algebra, then let

FL =
L(L)

〈[[x, y]]−[x, y] | x ⊥ y, x, y ∈ L〉
,

where [[x, y]] denotes the bracket in the free Lie algebra L(L) on the vector space L
and [x, y] the bracket in L. This defines a functor F : Lie → Lie.

One can check that the restriction of F to the full subcategory of truncated
Lie algebras is left adjoint to the truncation functor L 7→ Lτ from Lie algebras to
truncated Lie algebras. It is also easy to check that if L is a truncated Lie algebra
with a presentation L(V )τ/〈W 〉, where V is a truncated vector space and 〈W 〉 is



POINCARÉ SERIES AND HOMOTOPY LIE ALGEBRAS OF MONOMIAL RINGS 27

the ideal in L(V )τ generated by a subspace W ⊆ L(V )τ , then FL = L(V )/〈W 〉,
where 〈W 〉 is the ideal generated in L(V ) by W . In this sense FL is obtained from
the truncated Lie algebra L by extending it freely in multidegrees outside {0, 1}n,
taking only into account relations in degrees {0, 1}n. Note also that (FL)τ = L, so
one could say that FL is the largest Lie algebra whose truncation is L.

If L is a multigraded Lie algebra, then its universal enveloping algebra UL is
a multigraded associative algebra and the cohomology vector spaces H∗(L, k) =
Ext∗UL(k, k) are multigraded. Ext1UL(k, k) can be seen as the vector space of min-
imal generators for L and similarly Ext2UL(k, k) is the space of minimal relations
among the minimal generators of L. Therefore the next statement should be clear.

The following are equivalent for a multigraded Lie algebra L:

• ExtiUL(k, k) is a truncated vector space for i = 1, 2.
• L has a free presentation L ∼= L(V )/ 〈W 〉, where V and W are truncated

vector spaces.
• L = F (Lτ ).

In this case we say that L is presented in squarefree multidegrees.

Proposition 9. The Nn-graded Lie algebra π≥2(R) is presented in squarefree mul-
tidegrees. In other words

π≥2(R) = F (π≥2(R)τ ).

Proof. ExtR(k, k) is the universal enveloping algebra of the Lie algebra π(R).
Let

H(z1, z2,x) =
∑

i,j,α

dimk Exti
Extj

R
(k,k)

(k, k)αz
i
1z
j
2x
α

be the Hilbert series of the Nn+2-graded algebra ExtExtR(k,k)(k, k) According to
[8] Theorem 5′, this algebra is generated by elements in squarefree degrees, so
Ext1ExtR(k,k)(k, k)α = 0 unless α ∈ {0, 1}n. Furthermore the Hilbert series is of the
form

H(z1, z2,x) =
p(z1, z2,x)∏n
i=1(1 − z1z2xi)

,

where p(z1, z2,x) is reduced modulo (x2
1, . . . , x

2
n). By looking at the z2

1-coefficient
of this series, one sees that Ext2ExtR(k,k)(k, k) is concentrated in multidegrees of the

form xi · m, where m is a squarefree monomial in x1, . . . , xn. Therefore, π(R) is
generated by elements of squarefree degrees, and the minimal relations between
these generators are situated in degrees of the form xim, where m is squarefree.

Consider the ring R′ = k[x1, . . . , xn, y1, . . . , yn]/J , where J is generated by the
monomials m′ = m(x1y1, . . . , xnyn), for m ∈ M . Clearly the monomials m′ are
squarefree and the correspondence m ↔ m′ gives an equivalence M ∼ M ′. Ac-
cording to Theorem 3, we have an isomorphism π≥2(R) ∼= π≥2(R′) of Lie algebras,
and in particular a set of generators for the Lie algebra π≥2(R) is transferred to
one for π≥2(R). Since π(R′) is generated as a Lie algebra by elements of squarefree
multidegrees it follows that π≥2(R′) as a π(R′)-module is generated by squarefree
elements. But we have constructed R′ so that the action of π1(R′) on π≥2(R′) is
trivial. Indeed, it follows from Lemma 5 and the fact that the generators are in
squarefree multidegrees that π≥2(R′)α = 0 unless xα ∈ [LM ′ ]. Here [LM ′ ] denotes
the sub-semigroup of [x1 . . . , xn, y1, . . . , yn] generated by LM ′ . But by construc-
tion any such α has the property that xi | xα if and only if yi | xα. Therefore,
as π1(R′) is concentrated in the multidegrees x1, . . . , xn, y1, . . . , yn and π≥2(R′) is
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concentrated in the multidegrees [LM ′ ], the product [π1(R′), π≥2(R′)] is zero for
multidegree reasons. So π≥2(R′) is generated by elements of squarefree degrees.
By the above, the minimal relations among the generators for π≥2(R′) are situated
in multidegrees of the form xim or yim, where m is squarefree. It follows that the
minimal relations are concentrated in squarefree multidegrees as it is impossible
to reach a multidegree of the form x2

i n or y2
i n, where n is squarefree, from the

generators of π≥2(R′).
Thus the Lie algebra π≥2(R′) has a squarefree presentation. By [15], squarefree

multidegrees are mapped to squarefree ones by the isomorphism π≥2(R) ∼= π≥2(R′),
so the same is true for π≥2(R). �

Remark 4. Replacing M by an equivalent monomial set M ′ does not change the
isomorphism class of π≥2(R), but the action of π1(R) is altered. The key point in
the proof is that any R is equivalent to some R′ where π1(R′) has a trivial action
on π(R′).

We are now in position to give the main theorem of this section in which we also
remove the squarefree hypothesis.

Theorem 6. Let I ⊆ S be any monomial ideal, and let R = S/I. There is an
isomorphism of multigraded Lie algebras

π≥2(R) ∼= F H∗(L∞(I)).

Proof. Proposition 9 together with Proposition 8 yield that π≥2(R) ∼= F H∗(L∞(I))
when I is generated by squarefree monomials. If I and J are equivalent ideals,
then L∞(I) ∼= L∞(J) and this isomorphism respects the relation ⊥, whence also
F H∗(L∞(I)) ∼= F H∗(L∞(J)). Applying this to the equivalence of I and its polar-
ization I◦ and using Theorem 3, we get

π≥2(R) ∼= π≥2(R◦) ∼= F H∗(L∞(I◦)) ∼= F H∗(L∞(I)).

�

The relevant data for computing π≥2(R) is the differential and the binary bracket
of L∞(I). As a favour to the reader, we write these out. The differential d of L∞(I)
has degree 1 and is given on basis elements by

dξS =
∑

m∈M−S
m|mS

sgn(S,m)ξS∪m.

The bracket of L, which is a Lie bracket only up to homotopy, is given by

[ξS , ξT ] =
∑

m∈M−(S∪T )
m|mS∪T

S ∪ T ∪ m connected

sgn(T,m, S)ξS∪T∪m,

if gcd(mS ,mT ) = 1 and zero otherwise. Note the order T,m, S in the sign. The

reduced square is ξ
[2]
S = 0 for all ξS ∈ L.

We note two special cases when the structure of π≥2(R) is simple.

• If the lcm-lattice LM is boolean, then there are no cover relations m | mS ,
and therefore all operations in L∞(M) are trivial. Therefore the homotopy
Lie algebra π≥2(R) is the free graded Lie algebra generated by ξS for non-
empty connected subsets S of M divided by the relations [ξS , ξT ] = 0 for
all pairs S, T ⊆M such that gcd(mS ,mT ) = 1.
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• If M is a complete graph, i.e., if gcd(m,n) 6= 1 for all m,n ∈ M , then
π≥2(R) is the free graded Lie algebra on the vector space H∗(L∞(M)). In

this case, this vector space is isomorphic to Ext≥1
S (R, k).

Example 1. Forgetting the multigrading, Theorem 5 shows that the graded vector
space π≥2(R) is determined by the combinatorial data (KM , c). Indulging ourselves
in a comparison, this is reminiscent of the fact that the homotopy type of the com-
plement of an affine subspace arrangement is determined by its intersection lattice
and its dimension function, cf. [11]. Despite this analogy, the datum (KM , c) is not
sufficient for determining the Lie bracket on π≥2(R), as is shown by the following
example. Consider the monomial rings R, Q defined by the sets M = {x2, xy, y2}
and N = {x2, xyz, y2} respectively. These monomial sets are isomorphic as graphs
and the pairs (KM , cM ), (KN , cN ) are isomorphic. Therefore π≥2(R) ∼= π≥2(Q)
as graded vector spaces. They are not isomorphic as graded Lie algebras. π≥2(R)
is the free graded Lie algebra generated by ξ1, ξ2, ξ3, ξ1,3, ξ2,3, whereas π≥2(Q) has
generators ζ1, ζ2, ζ3, ζ1,3, ζ2,3, ζ1,2,3 and the single relation [ζ1, ζ2] = 0.

Example 2. In spite of what the previous example might suggest, it is possible
to have π≥2(R) ∼= π≥2(Q) without M and N being equivalent. The monomial sets
M = {x2, y2, z2, xyz} and N = {x2, y2, z2, xyzw} are not equivalent because their
lcm-lattices are not isomorphic, but their homotopy Lie algebras are isomorphic.
Both have the presentation

L(ξ1, ξ2, ξ3, ξ1,4, ξ2,4, ξ3,4, ξ1,2,4, ξ1,3,4, ξ2,3,4, ξ1,2,3,4)/([ξ1, ξ2], [ξ1, ξ3], [ξ2, ξ3]).

10. Golodness

As a conclusion, we note how our formula gives a combinatorial criterion for
when a monomial ring is Golod. Interesting sufficient combinatorial conditions
have been found earlier, see for instance [25], but the author is not aware of any
necessary condition which is formulated in terms of the combinatorics of the mono-
mial generators.

Our formula for the Poincaré series denominator could be compared with the
result of [21] that the Betti numbers dimk TorSi,α(R, k) of a monomial ring R =
k[x1, . . . , xn]/I can be computed from the homology of the lower intervals of the
lcm-lattice, LI , of I . Specifically, Theorem 2.1 of [21] can be stated as

(10) PSR(x, z) = 1 +
∑

16=m∈LI

mz2H̃((1,m)LI
; k)(z).

Here PSR(x, z) is the polynomial

PSR(x, z) =
∑

i≥0,α∈Nn

dimk TorSi,α(R, k)xαzi.

Recall that R is called a Golod ring if there is an equality of formal power series

PR(x, z) =

∏n
i=1(1 + xiz)

1 − z(PSR(x, z) − 1)
.

In terms of the denominator polynomial the condition reads

(11) bR(x, z) = 1 − z(PSR(x, z) − 1).

It is easily seen that S is saturated in M if and only if S is saturated in MmS
.

Note also that (1,m)LM
= LMm

− {1,m} =: L̄Mm
. Therefore, after plugging the
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formulas (6) and (10) into (11) and equating the coefficients of each m ∈ LI , we
get a criterion for R to be a Golod ring as follows:

Definition 6. A monomial set N is called pre-Golod over k if

H̃(L̄N ; k)(z) =
∑

S∈K̂N
mS=mN

(−z)c(S)−1H̃((∅, S)KN
; k)(z).

Theorem 7. Let k be a field and let I be a monomial ideal in k[x1, . . . , xn] with
minimal set of generators M . Then the monomial ring R = k[x1, . . . , xn]/I is
Golod if and only if every non-empty subset of M of the form Mm is pre-Golod
over k. �

Combinatorics

11. Realizations of lattices

Recall that the lcm-lattice of a monomial set M is the set LM = {mS | S ⊆M}
of least common multiples of subsets of M partially ordered by divisibility. It
is natural to ask which finite lattices occur as lcm-lattices. An isomorphism of
a lattice L with the lcm-lattice of some set of monomials M such that M maps
to the irreducible elements of L is called a realization of L. Sometimes we will
abuse language and call M a realization of L. Construction 2.3 of [30] provides a
realization of any geometric lattice. We will show that actually any finite lattice is
an lcm-lattice.

A realization of a lattice induces a graph structure on it, by viewing sets of mono-
mials, and in particular lcm-lattices, as graphs with edges going between monomials
having non-trivial common factors. The next lemma says that every graph structure
induced on L via some realization contains the edges

{(x, y) | x, y 6≤ c, for some coirreducible c ∈ L} .

Proposition 10. Let M be a monomial set. If m and n are elements of LM
satisfying gcd(m,n) = 1, then for all coirreducible elements c ∈ LM either m | c or
n | c holds.

Proof. Let X be the variables used in M . For each x ∈ X and each n ≥ 1, consider
the function αxn : LM → 2 defined by

αxn(w) =

{
0 xn - w
1 xn | w

αxn is an element of (LM )∗. We claim that the set {αxn | x ∈ X, n ≥ 1} generates
(LM )∗ as a join-semilattice. To see this, note that if f ∈ (LM )∗, then with v =
∨f−1(0) we have f = fv, where fv(w) = 0 if and only if w ≤ v. Hence, as is easy
to check,

f =
∨

xn-v

αxn .

Now let c be a coirreducible element of LM . Then fc is irreducible in (LM )∗.
Therefore fc = αxn for some x ∈ X and some n ≥ 1, that is, c | w if and only if
x - w for w ∈ LM . If gcd(m,n) = 1, then either xn - m or xn - n, i.e., m | c or
n | c. �
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Definition 7. Let L be a finite lattice and let I (C) be its set of irreducible
(coirreducible) elements. The minimal realization of L is the monomial set M =
{ma | a ∈ I} , where for each z ∈ L, mz is the squarefree monomial in the variables
{xc}c∈C defined by

mz =
∏

c∈C
z-c

xc.

If one starts with a geometric lattice and takes its minimal realization then one
obtains the same monomial set as that constructed by Peeva, cf. [30] Construction
2.3. The next proposition justifies the name ‘minimal realization’.

Proposition 11. Let L be a finite lattice and let M be its minimal realization.
The map L → LM , z 7→ mz is an isomorphism of lattices. Furthermore the graph
structure induced on L via this isomorphism is the minimal possible, i.e., x, y ∈ L
are connected by an edge if and only if x, y 6≤ c for some coirreducible c ∈ L.

Proof. That we have an isomorphism of lattices follows from the fact that x ≤ y
in L if and only if Cy ⊆ Cx, where Cx denotes the set of coirreducible elements
above x. Also, the graph structure on L is the minimal allowed by Proposition 10
— gcd(ma,mb) = 1 if and only if for all c ∈ C either a ≤ c or b ≤ c, or both. �

Remark 5. Proposition 11 shows that any finite lattice is the lcm-lattice of some
set of monomials. Restricting attention to antichains of monomials, which is the
same thing as minimal generators for monomial ideals, we see that a finite lattice
is the lcm-lattice of some monomial ideal if and only if it is atomic.

12. Complete monomial sets and geometric lattices

As suggested by Theorem 7, the Golod property of a monomial ring S/(M) is a
property of the morphism of semilattices KM → LM . This part contains a closer
investigation of this morphism. We introduce a new class of finite lattices, called
complete lattices, which is closed under direct products and contains all geometric
lattices. The main feature of this class is that monomial sets whose lcm-lattices are
complete define Golod rings if and only if their corresponding graphs are complete.
This generalizes the previously known result that this holds if the lcm-lattice is
boolean. It should be noted that the arguments in this part do not formally depend
on Theorem 7 or any other result established in preceding parts. It is rather the
case that this theorem pointed toward which structure to examine more carefully.

We will investigate the two lattices LM and KM associated to a monomial set
M . Notions and definitions concerning semilattices are collected in Appendix B.

Recall that Mm denotes the set of all n ∈ M that divide m, if m is a monomial
and M is a set of monomials. LM embeds into KM as a meet-semilattice by
mapping x ∈ LM to {x} = Mx. The map KM → LM sending S to mS is a map
of join-semilattices and a retraction onto LM , because mMx

= x. Thus KM is
isomorphic to LM if and only if the equality MmS

= S holds for every saturated
subset S of M .

Definition 8. A monomial set M is called complete if KM is isomorphic to LM ,
i.e., if MmS

= S holds for all S ∈ KM .
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For instance, it is easily seen that if the graph underlying M is complete, i.e., if
every two monomials in M have a non-trivial common factor, then M is a complete
monomial set.

Proposition 12. M is complete if and only if for all x, y ∈ LM with gcd(x, y) = 1
and for all m ∈ M , m | xy implies m | x or m | y.

Proof. Assume M complete and suppose x, y ∈ LM and gcd(x, y) = 1. Let S =
Mx ∪ My. S is saturated in M because the saturated sets Mx and My are the
connected components of S. Note that mS = xy, so by completeness Mx ∪My =
Mxy, which is exactly what is required.

Conversely, if Mxy = Mx ∪My whenever gcd(x, y) = 1 and x, y ∈ LM , then for
S ∈ KM , decompose S into connected components as S = S1 ∪ . . . ∪ Sr. Since
Si = MmSi

, it follows that S = MmS1
∪ . . . ∪MmSr

= MmS1
...mSr

= MmS
. �

Let M be the minimal realization of a lattice L and let N be any realization of L.
Then by Propositions 10 and 11, the induced lattice isomorphism f : LM → LN is
morphism of graphs, i.e., the graph LM is obtained from the graph LN by removing
some edges. Then as in Proposition 3 there is a commutative diagram of join-
semilattices

KM

m
����

f̄
// // KN

m
����

LM
f

∼= // LN

If M is complete, i.e., if KM → LM is an isomorphism, then so is N . In other
words, if the minimal realization of a lattice L is complete, then all realizations of
L are complete. In view of this fact we call the lattice L complete if its minimal
realization is a complete monomial set, and we have the following characterization.

Proposition 13. The following are equivalent for a lattice L:

• L is complete.
• The minimal realization of L is complete.
• Every realization of L is complete.
• For any x, y ∈ L such that L≥x ∪ L≥y contains all coirreducible elements

of L, if a ∈ L is irreducible, then a ≤ x ∨ y only if a ≤ x or a ≤ y.

If M and N are sets of monomials in the variables X and Y , respectively, then
M

⊕
N is the monomial set M ∪N in the variables X t Y . The graph underlying

M
⊕
N is the disjoint union of the graphs ofM andN . Clearly, LM � N

∼= LM×LN
and KM � N

∼= KM×KN . Therefore M
⊕
N is complete if M and N are complete.

One can also verify that if M and N are the minimal realizations of the lattices
L and K, then M

⊕
N is the minimal realization of L ×K. Consequently, direct

products of complete lattices are complete.
Recall that a finite lattice L is called geometric if it is atomic and if it is semi-

modular, meaning that for all x, y ∈ L, if x and y both cover x∧y, then both x and y
are covered by x∨y. Geometric lattices abound in combinatorics and other areas of
mathematics. Among the many results concerning geometric lattices, we cite here
a structure theorem which will be useful to us. A lattice is called indecomposable
if it is not isomorphic to a direct product of smaller lattices.
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Theorem 8 ([22], Theorems IV.3.5 and IV.3.6). Every geometric lattice is isomor-
phic to a direct product of indecomposable geometric lattices. A geometric lattice L
is indecomposable if and only if for any two atoms a, b ∈ L, there is a coatom c ∈ L
such that a 6≤ c and b 6≤ c.

The next result was discovered by J.Blasiak and P.Hersh. Their original proof
uses matroid theory. We present here an alternative proof using the above structure
theorem.

Corollary 2. The graph underlying the minimal realization of a geometric lat-
tice L is a disjoint union of complete graphs, the components being in one-to-one
correspondence with the factors of the decomposition of L as a direct product of
indecomposable geometric lattices.

Proof. A geometric lattice is coatomic, so the coirreducible elements of L are pre-
cisely the coatoms. Thus, in the minimal realization f : L → LM , two monomials
m,n ∈ M have a common factor if and only if there is a coatom c of L such that
f−1(m), f−1(n) 6≤ c. �

By Proposition 13 we conclude

Corollary 3. Geometric lattices are complete.

Remark 6. Not all complete lattices are geometric. The complete monomial set
M = {x2y, xz, yz} is a minimal realization of its lcm-lattice, but this lattice is not
ranked, let alone geometric.

It is well known that geometric lattices are shellable (that is, the order complex of
the proper part of a geometric lattice is a shellable simplicial complex). However,
not all shellable lattices are complete; the lcm-lattice of the monomial set M =
{x2, xy, y2} is shellable, but not complete.

12.1. The Golod property and L∞-algebra of complete monomial sets.
Our interest in complete monomial sets stems from the fact that it is trivial to
determine whether or not such a set is Golod. It is easily seen that if the graph
underlying a monomial set M is complete, then M is Golod over any field k. In
[16] it is proved that if LM is boolean (i.e., isomorphic to the lattice of subsets of
M) then the converse holds, i.e., M is Golod if and only if its underlying graph
is complete. Boolean lattices are geometric and hence complete, and we have the
following generalization of the quoted result.

Proposition 14. If M is a complete antichain of monomials, then M is Golod if
and only if the graph underlying M is complete.

Proof. We need only the following two properties of the class of Golod sets:

• A Golod set is connected.
• If M is Golod, then Mm is Golod for any monomial m.

Suppose M is Golod and let x, y ∈ M . If gcd(x, y) = 1, then Mxy must be Golod,
and hence connected. On the other hand Mxy = Mx ∪My by completeness, but
this set is not connected. Therefore gcd(x, y) 6= 1 for all x, y ∈M . �

Corollary 4. If the lcm-lattice of M is geometric, then M is Golod if and only if
its underlying graph is complete.
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The L∞-algebra L∞(M) is particularly simple when M is a complete monomial
set. In fact, completeness of M has the following algebraic characterization.

Proposition 15. A monomial set M is complete if and only if all higher operations
of the L∞-algebra L∞(M) are trivial.

Proof. Assume that M is complete. Let S1, . . . , Sr be pairwise separated connected
subsets of M , where r ≥ 2, and let S be their union. If m | mS1

. . .mSr
, then

m | mSi
for some i, by completeness of M . Therefore S∪{m} cannot be connected.

From the definition (9) of the brackets, we see that [ξS1
, . . . , ξSr

] = 0.
Conversely, assume that all r-ary operations of L∞(M) are zero, for all r ≥ 2.

In view of Proposition 12, it is clear that M is complete if and only if for all m ∈ M
and all S ⊆ M , if m | mS then m | mSi

for some connected component Si of
S. Thus let m ∈ M , and let S be a subset of M with connected components
S1, . . . , Sr. Suppose m | mS . Since [ξS1

, . . . , ξSr
] = 0, we conclude that S ∪ {m} is

not connected — otherwise ξS∪{m} would have occured with a non-zero coefficient
in the bracket. Therefore gcd(m,mSi

) = 1 for some i, and by renumbering we may
assume that i = r. Therefore m | mT , where T = S1 ∪ . . . ∪ Sr−1. Continuing in
this way we end up with m | mSj

for some j. This proves the claim. �

Remark 7. It follows from the previous proposition that H∗(L∞(M)) is an abelian
Lie algebra if M is complete. We stress that this does not imply that π≥2(R) is
abelian. What it does imply is that the product of two elements in π≥2(R) of
relatively prime multidegrees is zero.

13. Connections to real subspace arrangements

We first recall the notion of a subspace arrangement. Let F be a field, often
F = R or F = C. A subspace arrangement is a finite collection A = {A1, . . . , An}
of affine subspaces of Fn. The complement of the arrangement is the space

MA = Fn −
n⋃

i=1

Ai.

An arrangement is called central if all Ai are linear subspaces.
The intersection lattice of an arrangement A is the set of intersections of sub-

spaces,

LA = {Ai1 ∩ . . . ∩Air | r ≥ 0} ,

ordered by reverse inclusion. Here an empty intersection is interpreted as Fn.
The cohomology of the complement of a subspace arrangement can be un-

derstood in terms of the combinatorics of intersection lattices. The Goresky-
MacPherson formula states that for a real arrangement A the integral cohomology
groups of the complement are given by (cf. [11])

H̃∗(MA) ∼=
⊕

x∈LA,x6=0̂

H̃codim(x)−2−i(0̂, x).

Relations between certain types of complex arrangements and monomial rings
have been investigated. In some cases the cohomology algebra of the complement
can be described purely algebraically. Specifically, to a simplicial complex ∆ with
vertex set {1, 2, . . . , n} one may associate a complex arrangement A(∆). It consists
of all subspacesWF = {(z1, . . . , zn) ∈ Cn | zi = 0 if i ∈ F}, where F ranges over the
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set of minimal non-faces of ∆. Let U(∆) denote the complement of the arrangement
A(∆). Theorem 8.13 of [14] states that there is an isomorphism of graded algebras

H∗(U(∆)) ∼= TorS∗ (k[∆], k).

For a related result in the real case see [20].

13.1. Real diagonal subspace arrangements. Let m be a squarefree monomial
in the variables x1, . . . , xn. To m we associate the diagonal subspace

Um = {u ∈ Rn | ui = uj , if xixj divides m} ,

which is a linear subspace of Rn. If M is a set of squarefree monomials in the vari-
ables x1, . . . , xn, then let AM be the arrangement {Um | m ∈ M}. The intersection
lattice of AM is the set

LAM
= {Um1

∩ . . . ∩ Umr
| r ≥ 0, mi ∈M} .

partially ordered by reverse inclusion. Here an empty intersection is interpreted as
Rn.

Proposition 16. Let M be a set of squarefree monomials. The lattice of saturated
subsets of M , KM , is isomorphic to the intersection lattice LAM

of the diagonal
arrangement AM associated to M . Furthermore for S ∈ KM

codim(S) + c(S) = degmS ,

where codim(S) is the codimension of the image of S in the intersection lattice.

Proof. For the diagonal subspaces, we have that Um∩Un = Ulcm(m,n) if gcd(m,n) 6=
1. Hence any intersection may be brought to the form

Um1
∩ . . . ∩ Umr

,

where mi are pairwise relatively prime and mi ∈ cLM , that is, {m1, . . . ,mr} is
an element of D(cLM ). Recall that cLM denotes the subset of LM consisting of
monomials m ∈ LM such that Mm is connected. Conversely, if m ∈ cLM , then

Um =
⋂

n∈Mm

Un.

This establishes an isomorphism of partial orders LAM
∼= D(cLM ).

An isomorphism D(cLM ) ∼= KM is given by mapping

{m1, . . . ,mr} 7→Mm1
∪ . . . ∪Mmr

.

The inverse is given by
S 7→ {mS1

, . . . ,mSr
},

where S1, . . . , Sr are the connected components of S ∈ KM .
Clearly, codim(Um) = deg(m)− 1. The element in the intersection lattice corre-

sponding to S ∈ KM is
Um1

∩ . . . ∩ Umr
,

where mi = mSi
and S1, . . . , Sr are the connected components of S. Since the

monomials mi are pairwise relatively prime

codim(Um1
∩ . . . ∩ Umr

) = codim(Um1
) + . . .+ codim(Umr

)

= (deg(m1) − 1) + . . .+ (deg(mr) − 1)

= deg(mS) − c(S).

�
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The next proposition could be given a direct proof, but instead we give a neat
proof using the formula for the Poincaré series.

Proposition 17. Let M be a monomial set, and let α ∈ Nn. Then we have an
isomorphism of graded vector spaces

TorS/(M)
∗ (k, k)α ∼= TorS/(Mα)

∗ (k, k)α.

Proof. TorS/(M)
∗ (k, k)α(z) is the coefficient of xα in the formal power series PS/(M).

Therefore the result follows if we can show the congruence

PS/(M) ≡ PS/(Mα) mod (xα1+1
1 , . . . , xαn+1

n ).

But this follows since

bS/(M) = 1 +
∑

S∈K̂M

mS(−z)c(S)+2H̃((∅, S); k)(z)

≡ 1 +
∑

S∈K̂M ,S⊆Mα

mS(−z)c(S)+2H̃((∅, S); k)(z)

= bS/(Mα).

The last equality holds because {S ∈ KM | S ⊆Mα} = KMα
. �

Let MAM
= Rn−∪AM be the complement of the union of all subspaces in AM .

The Goresky-Macpherson formula [11] expresses the cohomology of MAM
in terms

of the homology groups of the lower intervals in the intersection lattice. We state
here a generating functions version of the formula using coefficients from a field k:

H̃∗(MAM
; k)(z) =

∑

x∈LAM
,x6=0̂

zcodimx−2H̃((0̂, x); k)(z−1).

Using the Bar resolution to resolve k over R, Peeva, Reiner and Welker relates
the cohomology of real diagonal subspace arrangements, with coefficients in a field
k, to TorR∗ (k, k) for monomial rings R. We are able give a new proof of their result
using our formula for the deviations εi,α and the Goresky-MacPherson formula. Let
τ = (1, . . . , 1) ∈ Nn.

Theorem 9 ([31], Theorem 1.3). For a monomial ring R = k[x1, . . . , xn]/I there
is an isomorphism of vector spaces

Hi(MAM
; k) ∼= TorRn−i(k, k)τ ,

where M is the set of squarefree monomials in the minimal set of generators for I.

Proof. Since we work over a field, the required isomorphism is equivalent to the
equality

H∗(MAM
; k)(z) = znTorR∗ (k, k)τ (z

−1).

According to the Goresky-MacPherson formula

(12) H̃∗(MAM
; k)(z) =

∑

x∈LAM
,x6=0̂

zcodim(x)−2H̃((0̂, x); k)(z−1).

On the other hand consider the x1 . . . xn-part of the Poincaré series PR. According
to Proposition 17, this is the same as the x1 . . . xn part of PS/(M). We use the

product decomposition of PS/(M) and reduce modulo (x2
1, . . . , x

2
n):

PS/(M) =
∏

i≥1,α∈Nn

(1 − xα(−z)i)(−1)i−1εi,α ≡
∏

α∈{0,1}n

(1 + xαpα(z)),
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where

pα(z) =
∑

i≥1

εi,αz
i.

Since M is squarefree, we infer from Theorem 4 that pei
(z) = z, for ei a standard

basis vector, and

pα(z) = z3H̃(∆Mα
; k)(z),

for xα ∈ LM . Also pα(z) = 0 unless xα ∈ cLM . Therefore

PS/(M) ≡
n∏

i=1

(1 + xiz)
∏

xα∈cLM

(1 + xαpα(z)).

Note that the right factor is the same as the expression (7) for bS/(M), except for a
sign. Carrying out the same manipulations as for bS/(M) we get

PS/(M) ≡
n∏

i=1

(1 + xiz)(1 +
∑

S∈K̂M

mSz
c(S)+2H̃((∅, S); k)(z)).

The x1 . . . xn-part of PR is therefore given by

TorR(k, k)τ (z) = zn +
∑

S∈K̂M

zn+c(S)−deg(mS)+2H̃((∅, S); k)(z).

Proposition 16 now tells us that KM
∼= LAM

and deg(mS) − c(S) = codim(S).
Thus we see that

zn TorR(k, k)τ (z
−1) = 1 +

∑

S∈K̂M

zdeg(mS)−c(S)−2H̃((∅, S); k)(z−1)

= 1 +
∑

x∈LAM

zcodim(x)−2H̃((0̂, x); k)(z−1)

= H∗(MAM
; k)(z),

by (12). This is what we wanted to prove. �

Appendix

Appendix A. Simplicial complexes

A simplicial complex on a set V is a set ∆ of subsets of V such that F ⊆ G ∈ ∆
implies F ∈ ∆. The set V is called the vertex set of ∆. The i-faces or i-simplices
of ∆ are the elements in ∆ of cardinality i+1. We do not require that {v} ∈ ∆ for
all v ∈ V , but if a simplicial complex ∆ is given without reference to a vertex set
V , then it is assumed that V = ∪∆.

If ∆ is a simplicial complex then C̃(∆) will denote the augmented chain complex

associated to ∆. Thus C̃i(∆) is the free abelian group on the i-faces of ∆, the

empty set being considered as the unique (−1)-face, and C̃(∆) is equipped with
the standard differential of degree −1. Therefore

Hi(C̃(∆)) = H̃i(∆).

As usual, if G is an abelian group, then C̃(∆;G) = C̃(∆) ⊗ G and H̃i(∆;G) =

Hi(C̃(∆;G)). Also H̃(∆;G) =
⊕

i∈Z H̃i(∆;G).
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The Alexander dual of a simplicial complex ∆ with vertices V is the complex

∆∨ = {F ⊆ V | V − F 6∈ ∆} .

The join of two complexes ∆1, ∆2 with disjoint vertex sets V1, V2 is the complex
with vertex set V1 ∪ V2 and faces

∆1 ∗ ∆2 = {F1 ∪ F2 | F1 ∈ ∆1, F2 ∈ ∆2} .

With ∆1 and ∆2 as above, we define what could be called the dual join of them:

∆1 · ∆2 = (∆∨
1 ∗ ∆∨

2 )∨.

Thus ∆1 · ∆2 is the simplicial complex with vertex set V1 ∪ V2 and simplices

{F ⊆ V1 ∪ V2 | F ∩ V1 ∈ ∆1 or F ∩ V2 ∈ ∆2} .

We will now briefly review the effects of these operations on the homology groups
when the coefficients come from a field k.

If |V | = n, then ([13] Lemma 5.5.3)

H̃i(∆; k) ∼= H̃n−i−3(∆
∨; k).

IfH is a graded vector space, then sH denotes the graded vector space with (sH)i =
Hi−1. Because of the convention that a set with d elements has dimension d − 1
considered as a simplex there is a shift in the following formula:

H̃(∆1 ∗ ∆2; k) ∼= s(H̃(∆1; k) ⊗k H̃(∆2; k)).

If H =
⊕

i∈Z Hi is a graded vector space such that each Hi is of finite dimen-

sion, then let H(z) =
∑

i∈Z dimHiz
i be the generating function of H . The above

isomorphisms of graded vector spaces can be interpreted in terms of generating
functions. If ∆ has n vertices, then

znH̃(∆∨; k)(z−1) = z3H̃(∆; k)(z),

and if ∆ = ∆1 ∗ ∆2, then

H̃(∆; k)(z) = zH̃(∆1; k)(z) · H̃(∆2; k)(z).

From these two identities and an induction one can work out the following formula.
If ∆ = ∆1 · . . . · ∆r, then

(13) H̃(∆; k)(z) = z2r−2H̃(∆1; k)(z) · . . . · H̃(∆r; k)(z).

Appendix B. Semilattices

By a semilattice we mean a commutative monoid (X,∨, 0) such that x ∨ x = x
holds for all x ∈ X . The element x ∨ y is called the join of x and y. We will only
consider finite semilattices. Morphisms of semilattices are required to preserve 0.

A semilattice is partially ordered by the relation a ≤ b ⇔ a ∨ b = b. Any finite
semilattice L has a meet operation x ∧ y such that (L,∨,∧, 0, 1) becomes a lat-
tice, where 1 = ∨L. If X and Y are finite semilattices, then the set Hom∨(X,Y )
consisting of all morphisms of semilattices from X to Y is a semilattice with op-
erations defined pointwise. The set 2 = {0, 1} becomes a semilattice by setting
i ∨ j = max(i, j). As partial orders, X∗ := Hom∨(X, 2) is anti-isomorphic to X by
associating to x ∈ X the morphism fx : X → 2 defined by fx(y) = 0 ⇔ y ≤ x. To
f ∈ X∗ we associate x = ∨f−1(0). These functions are readily seen to be order-
reversing bijections X � X∗. In particular, if x ∈ X is coirreducible, meaning that
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it cannot be written as the meet of strictly greater elements, then fx is irreducible,
meaning that it cannot be written as the join of strictly lower elements.

An element x of a poset is said to cover another element y if x > y and x ≥ z ≥ y
implies z = x or z = y. An atom of a lattice is an element covering 0̂, and a coatom
is an element covered by 1̂. A lattice is called atomic if every element is the join of
all atoms below it.
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