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EM + Ext− + ACint ⇐⇒ ACext

Jesper Carlström

Abstract

It is well known that the extensional axiom of choice (ACext) implies
the law of excluded middle (EM). In this note it is proved that the
converse holds as well if we have the intensional (‘type-theoretical’) axiom
of choice ACint, which is provable in Martin-Löf’s type theory, and a
weak extensionality principle (Ext

−
), which is provable in Martin-Löf’s

extensional type theory. In particular, EM⇔ ACext holds in extensional
type theory.

The following is the principle ACint of intensional choice: if A, B are sets
and R a relation such that (∀y : B)(∃x : A)R(x, y) is true, there is a function
g : B → A such that (∀y : B)R(g(y), y) is true. It is provable in Martin-Löf’s
type theory [7, p. 50].

We may from this principle derive that surjective functions have right in-
verses: If =B is an equivalence relation on B and f : A → B, we say that f is sur-

jective if (∀y : B)(∃x : A)(f(x) =B y) is true. If we take R(x, y)
def

=(f(x) =B y),
we see that surjectivity is an instance of the premise needed to apply inten-
sional choice. It gives us that there is a function g : B → A such that
(∀y : B)(f(g(y)) =B y) is true, that is, a right inverse of f .

This, however, does not mean that g is extensional, i.e., that it preserves
equivalence relations. If =A is an equivalence relation on A and =B is an
equivalence relation on B, it might very well happen that f preserves them but
g does not. The principle ACext of extensional choice states precisely that the
g obtained does preserve the equivalence relations. To be precise, it states that
if R is an extensional relation (i.e., it respects the equivalence relations) and
(∀y : B)(∃x : A)R(x, y) is true, there is an extensional function g : B → A such
that (∀y : B)R(g(y), y) is true.

One cannot justify ACext from a constructive point of view, since it implies
the principle of excluded middle.1

In theories with sufficiently strong axioms for quotient sets, like ZF and
other theories with a suitable powerset axiom, extensional choice is obviously
equivalent with intensional choice. Therefore, we are used to hear the name
“axiom of choice”, with little attention paid to the fact that extensionality of
the choice is important.

1This was left as an exercise by Bishop [1, p. 58, pb. 2]. It was proved for toposes by
Diaconescu [3], for intuitionistic set theory by Goodman–Myhill [4], and for type theory
e.g. by Chicli–Pottier–Simpson [2] (there are also related results in [5, 6]). We include an
alternative proof in the proof of the theorem of this note.
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Proposition (well-known). ACint is equivalent with the principle that every

surjective function f : A → B has a right inverse g.
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ACext is equivalent with the principle that every surjective and extensional

function f : A/=A → B/=B has an extensional right inverse g.
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Proof. We have already commented that ACint and ACext imply the correspond-
ing principles. It remains to prove the converse implications. Here is a sketch,
the details are left to the reader. It suffices to consider ACext, since ACint can
be seen as the special case when the equalities are Id(A) and Id(B).

Given an extensional relation R between sets A, B. Form the set {(x, y) ∈
A × B |R(x, y)},2 with equality inherited from A × B.

(a, b) =× (a′, b′) ⇐⇒ a =A a′ ∧ b =B b′

Let f be the right projection (x, y) 7→ y, which is surjective and extensional.
Hence there is an extensional right inverse g. Compose it with the left projection
(x, y) 7→ x, which is also extensional, and you have the function which is asserted
to exist by ACext.

Let us define also the other principles we will consider.

• EM is the principle of excluded middle, i.e., that if A is a proposition,
A ∨ ¬A is true.

• Ext is the principle which, expressed in type-theoretical terms, says the
following. Let A, B be sets and f, g : A → B. We define extensional
equality as

(f
ext

= g)
def

= (∀x : A) Id(B, app(f, x), app(g, x)) .

Ext says that if f
ext

= g, Id(A → B, f, g) is true. This principle is provable
in extensional type theory [8, pp. 76–77]. That is generally considered as
a drawback of this theory, because there is no constructive evidence for
Ext. It is not derivable in Martin-Löf’s intensional type theory, since if it
was, we could decide if number-theoretic functions are extensionally equal
[8, p. 76].3

2In type theory, the set should be (Σz : A × B)R(π`(z), πr(z)), where π` and πr are the
left and right projections, respectively.

3Thanks to Per Martin-Löf for reminding me of this argument.
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• Ext− was invented for the proof of the theorem below. In categorical

terms, it expresses that if A, B are sets, then (A → B)/
ext

= is projective
in the category of sets with equivalence relations (setoids). In elementary
terms, it says that for any sets A, B, there is an endofunction ·̂ on A → B
such that f

ext

= f̂ for every f and f
ext

= g ⇒ Id(A → B, f̂, ĝ). It is a weakening

of Ext since if we have Ext we can take f̂
def

= f . It is also a weakening of
ACext, since it says that the projection (A → B)/Id(A → B) → (A →

B)/
ext

= has an extensional right inverse. Also Ext− is impossible to derive
in type theory, by the same argument as for Ext.

Our proof will actually use Ext− only in the case when B is Bool, so we
could have weakened it further.

Theorem. EM + Ext− + ACint ⇔ ACext

Proof. (ACext ⇒ EM + Ext− + ACint) We have already remarked that Ext−
is a weakening of ACext, and of course, so is ACint. So it remains to prove
ACext ⇒ EM. The proofs in [3, 4, 2] can all be used but we include one which
is more natural in the present setting.

Fix a proposition P . We shall prove that it is decidable, using ACext.
Let, for a, b : Bool,

R(a, b)
def

= Id(Bool, a, b) ∨ P .

R is then an equivalence relation and it is, trivially, extensional with respect
to the equality Id(Bool) in the first argument and with respect to itself in the
second argument. Further, (∀y : Bool)(∃x : Bool)R(x, y) is true, since we can
take y for x. Hence we may apply ACext.

We get an extensional function g : Bool /R → Bool / Id(Bool) with R(g(b), b)
true for every b : Bool. In particular, if Id(Bool, g(a), g(b)) is true, so is R(a, b).
On the other hand, since g preserves the equalities, R(a, b) ⇒ Id(Bool, g(a), g(b)).
So R(a, b) ⇔ Id(Bool, g(a), g(b)), hence R is decidable.

Now observe that R(0, 1) ⇔ P (using a universe reflecting ⊥ and >), so also
P is decidable.

(EM+Ext−+ACint ⇒ ACext) The idea of the proof is very simple: if we have
excluded middle, we can prove that prop /⇔ is isomorphic to Bool /Id(Bool).
Hence subsets correspond to boolean characteristic functions. Now, because
we have a principle saying that functions f, g, which are pointwise identical,
correspond, via the operation ·̂, to identical functions, we can conclude that
extensionally equal subsets correspond to identical boolean functions. Hence
we can pick representatives out of equivalence classes in an extensional way.
This is sufficient to prove ACext in a few steps.

Let us turn this idea into a rigorous proof.
Suppose A, B are sets and =A and =B equivalence relations on them. Sup-

pose R is extensional and that (∀y : B)(∃x : A)R(x, y) is true. We shall con-
struct an extensional function g : B → A which satisfies (∀y : B)R(g(y), y). We
suppose in the following that B is inhabited, since the case when B is empty is
trivial and because we have EM we may decide which is the case.

First apply intensional choice, so that we get a function g : B → A with
(∀y : B)R(g(y), y) true. This g need not be extensional, but we will construct a
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new one which is. The idea is to compose g with another function which picks
unique representatives from equivalence classes. This function will be built in
three parts, called [·], ·̂ and g′.
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Define a valuation v : prop → Bool which takes true propositions to 1 and
false propositions to 0. That can be done in Martin-Löf’s type theory using
em(P ) : P ∨ ¬P (P : prop), which exists by EM:

v(P )
def

= when(em(P ), (x)1, (x)0) : Bool .

The inverse v−1 : Bool → prop is defined by

v−1(p)
def

= Id(Bool, p, 1) .

These functions are extensional in the sense that they preserve the equalities
⇔, Id(Bool) and they are inverses in the sense that Id(Bool, v(v−1(p)), p) is true
for every p : Bool and v−1(v(P )) ⇔ P is true for every P : prop.

Let us denote by [b] the characteristic boolean function

λx.v(x =B b) : B → Bool .

We will construct a left inverse to the function [·] : B → (B → Bool) using
intensional choice. Let, for b : B and f : B → Bool,

R′(b, f)
def

= (∃x : B)v−1(app(f, x)) → v−1(app(f, b))

and note the following fact, which will be very useful:

R′(b, [b′])
def

=(∃x : B)v−1(app([b′], b)) → v−1(app([b′], b))
def

=(∃x : B)v−1(v(x =B b′)) → v−1(v(b =B b′))

⇔ (∃x : B)(x =B b′) → (b =B b′)

⇔ (b =B b′).

The proposition (∀y : B → Bool)(∃x : B)R′(x, y) is easily proved using EM
and that B is inhabited: For every f : B → Bool, make a case analysis on (∃x :
B)v−1(app(f, x)). If it is true, say v−1(app(f, b)) is true, then R′(f, b) is true
and hence (∃x : B)R′(x, f) is true. If (∃x : B)v−1(app(f, x)) is false, R′(b, f) is
vacuously true for any b : B, and hence, since B is inhabited, (∃x : B)R′(x, f)
is true in this case too.

Hence intensional choice gives us a function g′ : (B → Bool) → B such that
(∀y : B → Bool)R′(g′(y), y) is true.
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It is clear that all functions in the diagram above are indeed extensional in
the sense that they preserve the equalities indicated. For ·̂ and g this is true by
construction. For g′ and π it follows from the fact that all functions preserve
Id-equalities. For [·] it is true by the definition of

ext

=.

It remains to prove (∀y : B)R(g(g′([̂y])), y). So take an arbitrary b : B

and prove R(g(g′([̂b])), b). By construction of g, we have R(g(g′([̂b])), g′([̂b]))
true and so, since R is extensional in the second argument, it suffices to prove

g′([̂b]) =B b. Our ’useful fact’ gives us that this is equivalent to R′(g′([̂b]), [b]),

which in turn is equivalent to R′(g′([̂b]), [̂b]) (just plug this into the definition of

R′ and use [b]
ext

= [̂b]). But this is true since (∀y : B → Bool)R′(g′(y), y) is true
by construction of g′.
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