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Integral closure of powers of the graded maximal
ideal in a monomial ring

Vincenzo Micale*

Abstract

In this paper we study the integral closure of ideals of monomial sub-
rings R of k[z1,x2,...,z4] spanned by a finite set of distinct monomials
of the polynomial ring. We generalize a well known result for monomial
ideals in the polynomial ring to rings R as above proving that the integral
closure of a monomial ideal is monomial and we give a geometric descrip-
tion of the integral closure of an ideal of R. Then we focus our attention
to the study of the integral closure of powers of the graded maximal ideal
of R in two particular cases.

MSC: 13B25; 13F20

1 Introduction

Let H = {hy,ha,...,hy} be a finite set of distinct monomials in k[zq, za,. ..,
xq] and let R = k[H]| = k[h1, ha, ..., hn] C klx1,22,...,24] be the monomial
subring spanned by H. Furthermore we suppose that the complement to N¢ of
the set of exponents of all monomials in R is finite.

In this paper we study the integral closure of ideals in R. In Section 2 we give
the concepts of multidegree of a monomial and of integral closure and normality
of an ideal. In Section 3 we generalize a well known result for monomial ideals
in the polynomial ring to rings R as above proving that the integral closure of a
monomial ideal is monomial and we give a geometric description of the integral
closure of an ideal of R. In Section 4 we focus our attention to the study of the
integral closure of powers of the graded maximal ideal of R in two particular
cases.

2 Preliminaries

Let R be a ring as in the Introduction. We can associate to every monomial
uzy® ---z3® in R, with u € k\ {0}, the power product z{"---z3*. Let m be
a monomial in R and let 7' --- 23 be the associated power product. We call
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(a1, as,...,aq) € N the multidegree of m and we denote it by mdeg(m). If m,
and my are monomials in R, then m; and mgy have the same multidegree if there
exists u € k \ {0} such that m; = ums.

Let I be an ideal of R. We denote by I the integral closure {z € R |
2"+ 2" 4+, = 0, for some 7; € I},

By definition I C I and, in general, it may happen that I C I. Anideal I
in R is called normal if I7 = I7 for every j > 1.

3 Integral closure of monomial ideals

Now we generalize a well known result for monomial ideals in the polynomial
ring to rings R as in the Introduction; we have used some ideas from [2].

Theorem 3.1. Let I be a monomial ideal in R. Then I is a monomial ideal.

Proof. Since it is well known that I is an ideal in R, we only need to prove
that T is generated by monomials. Let z € I, z = my + --- + mg, where the
m;’s are monomials with different multidegrees. We want to prove that m; € T
for every i = 1,...,s. By induction, it suffices to verify that m; € I for some i
since I is an ideal in R. To this aim we prove that there exists N > 0 such that
m¥N € IV for some i = 1,...s (hence m; € I since it is root of Z¥ —m¥ =0).

From the definition of integral closure, we have

(my+-+mg)" +lh(mi+-+m)" 1, =0, (I; €Y.

Let us consider the multidegree of m?}. There must exist another term in

the equation above which has the same multidegree and it must be of the form
biymi"! - -mit?, where b;, € I and Y, _, ji,x = n— i1 (we note that if s =1,
then z =mq € I).

Since the set of elements of the same multidegree as m[ is a 1-dimensional

vector space over R and since b;,m}"" ---mi"® and m?} have the same multi-

degree, we get ubilmil‘l ~-m3'* = m? for some u € k\ {0}. Using the same

argument as above, we get that for every v = 1,...,s, m”? = ¢;, m7"" -+ -m3"*
. y S . .
with ¢;, € I'™, Y7 | Jok =N — Gy,
Since m! is a monomial, we get (after cancelling out common terms) that
jv,k

mett = ¢, H,#U my,”" for some n1,. We note that 0 < j, x < ni, for every
v and k. Indeed if, for example, ja1 = ny1, then mi"" = ¢;;my"" with ¢;, €
k, whence mdeg(m;""') = mdeg(msy"'), that is mdeg(m;) = mdeg(mz). A
contradiction.

Hence we have a system of s equalities

ni1o_ J1,k
my =iy [T my,

ni2 _ J2,k
My ™ = Ciy Hk;ﬁQ my

1,s Js,k
ms = = Ci, Hk;és my



We use an induction on s to prove that there exists N > 0 such that m¥ € IV
for some i = 1,...s. If s =1, then m;"" = ¢, , € I"™. Suppose now such N
exists for systems as above with s — 1 equalities.

Consider the system above. For every v = 2,...,s, we first raise, myt? to
n11 and my™" to j, 1, then we substitute m|""*" in my""""" with
(ciy [, 1 m?cl”‘ y7»1 and finally we cancel out common terms (it is easy to check
that, by jyr < n1,, for every v and k, we never cancel out m, " *""")
i
for every v = 2,...,s, we get my>" = diﬂng“’2 CemEe e for some n2.v

—

. _ ku,v
and with d;, € T2~ (Fvztthooathoviit+hos) (where my"" means that we

v,

. Hence,

delete mf in the product). Using induction we get the proof.

3.1 A geometric description

Our next aim is to have a geometric description of the integral closure of ideals
in R.
Let a; € N%, i =1,...,r and let

CODV(CLl, ey aT) = {Z )\iai | Z )\z = 1, )\z S @20}
=1 =1

be the convex hull (over the rational numbers) of aq,...,a,.
For a = (a1, ..., aq) € N? we set 2% = 2" -+ - 257,
Proposition 3.2. Let I be a monomial ideal in R generated by x*, ..., x% .

Then the exponents a such that a monomial x* in R belongs to the integral
closure I are the integer points in the convex hull of the union of the set b+ N¢,
where b is an exponent of an element in I.

Proof. Let z* € R such that a is in the convex hull of the union of the set
b+ N?, where b is an exponent of an element in I. Hence a = Yo Aia; with
z% € 1,3 A =1and \; € Q>¢. Let m an integer such that mA; € N for
every i = 1,...,7. Then, by 3°7_, m); = m, we get (z%)™ = (z2i=1 i)™
(z@)mA. . (gar)ymA € ™ So 2% € 1.

Vice versa if 2% € I, then, by the proof of Theorem 3.1, we get %™ € I™,
that is % = 2 ... 2bm with 2% € I. By a = Dy %bi, we get that a is in
the convex hull of the union of the set b + N¢, where b is an exponent of an
element in 1.

4 Integral closure of powers of the graded max-
imal ideal m in special cases

We recall that we are interested in monomial subrings R = k[h1, ho, ..., Ay
of k[z1,x2,...,24) spanned by a finite set H of monomials and such that the
complement to N¢ of the set of exponents of all power products in R is finite.
R is a graded ring with graded maximal ideal m = (hq, ho, ..., hy,).



In this section we focus our attention to the study of the integral closure of
powers of the graded maximal ideal m of R in two particular cases. We remark
that, by definition of integral closure of an ideal, m = m.

4.1 The first case

In this first case we restrict to rings R = k + (21, ..., 2%)k[x], subalgebras of
k[z1,72] = k[x] such that the complement to N? of the set of exponents of all
power products in R is finite. Let m denote the graded maximal ideal of R. By
m= (2%, ..., 2%)k[z], we get m" = ((z%, ..., 2%)k[z])" = («%,...,2%) k[z].

Let
a; = min{ag # 0] z{* € m},

az = min{ag # 0 | 2{25? € m, for some a < a1}

As the complement to N? of the set of exponents of all power products in R
is finite, such a; exists for i = 1,2. By definition of a2, we get z]x5? € m for
some positive integer v < a;.

Proposition 4.1. Suppose that a; > 2, for i = 1,2. If there exists v as above
such that a; — v > 2, then mi \ m/ # () for every j > 2.

Proof. Let j > 2 and let us consider m; = m{al*lxgz_l.

By definition of a; and by j > 2, we have 7" 252~ € R. Since a; —y > 2,
2282 — m§y71)a1 (221 72282) € m7. Finally by ay > 2, 1% 23272 € m.
Since (ja; —1,a2—1) = A (jax —2,2)+)\2(ja1,a2 —2) with Ay = Ag =1/2,

we get, by Proposition 3.2, that m; € m7. But m; ¢ m’ as, by definition of as,

z‘f‘zSZ_l € m’ only if a > ja.

Remark 4.2. We can change the role of ;1 with that one of x5 in Proposition
4.1. Indeed let
bQ = min{ﬂg 7& 0 | 9322 S m},

by = min{f; #0| osllscg € m, for some § < ba}.

As above such b; exists for 4 = 0,1. By definition of b1, we get z5'z] € m for

some v < bs.
Using the same argument as for a;, we get that if there exists v as above
such that by —~ > 2, then 28 122”1 € mi \ mJ for every j > 2.

Ezample 4.3. Let R = k+ (29, 2227, 2325, 2923, 29)k[x1, 2] and let us consider

m = (23, 2328, 2325, 2323, 29)k[r1, 22] the graded maximal ideal of R as in Fig-
ure 1 . Then a3 = 9,as = 3,b1 = 2,b = 9 and {legflx%,zlscégfl} Cmi\ml

for every j > 2.

Remark 4.4. We can generalize Proposition 4.1 to the d-dimensional case. Let
R=Fk+ (2%,...,2%)k[x] be a subalgebra of k[z1,za,...,24) = k[r] and let

a; = min{a; # 0| z* € m}.



Suppose a1 > 2 and that there exists ¢ with 2 < i < d such that

« 0

a; :=min{a; # 0 | z{z;" € m, for some o < a1} > 2.

By definition of a; there exists a positive integer ~v; < a; such that x'lyxfl €m.
Suppose a; —7; > 2. Since (for every j > 2)

) ) 1
(ja1-1,0,...,0,a;,—1,0,...,0) = (ja1—2,07...707ai,0,...,O)+§(ja1,0,...,0,

N =

ai72,0...,0)

and by definition of a;, we get that for every j > 2 the element x{al*lx;“_l €
mJ \ mJ.

It is straightforward to change the role of x; with that one of each z;,
ie€{2,...,d}.

Example 4.5. Let R = k+ (2%, 23, 22}, 23)k[x1, 72, 23] and let us consider m =
(2%, 23, 2123, 23)k[z1, 22, 23] the graded maximal ideal of R. o .
Then a; = 8, az = 3 and a3 = 5 and, by Remark 4.4, 27’ 23,27’ 23 €

mi \ m’ for every j > 2.

FIGURE 1

Let us come back to the 2-dimensional case, that is R subalgebras of k[z1, z2].
Our next aim is to show that if a power ¢ (with ¢ > 2) of the graded maximal
ideal m is integrally closed, then every other power [, with [ > ¢, of m is integrally



closed (cf. Theorem 4.11). As corollaries to this we give a characterization and
a sufficient condition for m to be normal (cf. Corollaries 4.13 and 4.15).

To this aim we need a little amount of work. From now on we always denote
any power of m by J.

We note that if 2§25 and z}’ ng‘ are different minimal generators of J as a
k[z]-module, then a; # a; and b; # b; and, furthermore, a; < a; implies b; > b;.
‘We say that (ai, bz) < (aj, bj) in N2 if a; < aj.

Let 2% and x|’ ng‘ be two generators of J as a k[z]-module with (a;, b;) <
(a;,b;) and with the property that if x?zg is any other element of J, then

(bj — bi)or+ (ai — a;)B + ai(bi — bj) + bi(a; —a;) = 0

that is, (v, 3) is not under the straight line in R? connecting (a;, b;) and (a;, b;).
We call the pair (a;,b;)(aj,b;) of elements of N? as above special pair of
generators of J as a k[z]-module, (spg(J)).

Ezample 4.6. Let R = k + (23, 2223, 2323, 2529, 2])k[z1, 22] and consider m =

(28, 2225, 233, 23wa, 27)k[x1, 22] the graded maximal ideal of R as in Figure 2.

It is easy to check that the only spg(m) are (0,7)(5,1) and (5,1)(7,0).

5
“2 2223

4
“2 3l
T2

z{wo
1 1 1:% 1:‘;' 1:411 1:? 1:? £t
FIGURE 2

Lemma 4.7. Let J be generated by x’flzgl , )2 zg2, e ,z'llrxgr as a k[z]-module

with (a1,b1) < (ag,b2) <--- < (ar,b,). Then it is possible to choose (a;,,b;,) <
(@iy,biy) <+ < (as,,b;,) among the elements of N as above such that

(ai1 ; biy )(aiz ; biy )7 (aiz ) bi2)(ai3 ) bis)a RE) (a’isfl 2bi, )(ais ) bis) are spg(J) with
(@ir, biy) = (a1,b1) and (i, bi,) = (ar, br)

Proof. Since the complement to N? of the set of exponents of all power
products in R is finite, then a3 = 0 = b,.. If (a1,b1)(a;,b;) is not a spg(J) for



every i = 2,...,7 — 1, then (by definition of spg(J)) (a1, b1)(ar,b,) is a spg(J)
and we get the proof.

Hence suppose there exists i3 < r such that (ay,b1)(a;,,b;,) is a spg(J).
As above, if (ai,,bi,)(ak,bx) is not a spg(J) for every k = iy + 1,...,r — 1,
then (ai,,bi,)(ar,by) is a spg(J) and we get the proof. If not, using the same
argument as above we get, after a finite number of steps (as the number of
generators of J as a k[z]-module is finite), the proof.

Lemma 4.8. Let (a;,b;)(a;,b;) be a spg(m), then (lai, 1b;)(laj,1b;) is a spg(m!).
Proof. Since (la;, 1b;) < (la],lb ) whenever (a;, b;) < (aj,b;), to get the proof

we need that if x?:z:g € m!, then (o, 3) is not under the straight line in R?
connecting (la;,lb;) and (laj,lb]) and that z'* 2z and ml ZClij are generators

for m! as a k[z]-module.
Let 2¢z5 € m!, hence (o, ) = Zk 1 (o, Br) and 272 Ok € m.

Since (a;, b;)(a;,b;) is a spg( ),
(bj = bi)o + (ai — a;) Bk + ai(bi — bj) + bi(a; —a;) >0

for every k =1,...,1. Hence

l l

(Ibj — 16:) Y o + (lai —laj) Y Br + lag(b; — 1b;) + Ubi(la; — la;) =
k=1 k=1

l l
bi) D+ (ai —ag) Y B+ Uai(bi = bj) + bila; — )] =
k=1 k=1

l[(bj — bi>041 + (ai — aj)ﬂ1 + (lz(bz — b]) + bi(aj — ai) + - F
(bj — bi)ay + (a; — a;j) By + a;(b; — bj) + bi(a; —a;)] > 0.

Suppose a:llaj ZClij is not a generator for m! as a k[z]-module, then there exists
z{x8 € m! such that either a = la; and b < lb; or a < laj and b = [b;. Since, in
this case, (a, b) is under the straight line in R? connecting (la;, lb;) and (la;, 1b;),

we get
(lbj — lbl)a + (lCLi — laj)b + lai(lbi — lbj) + lbl(laj — lal) <0

that is a contradiction to what we proved above, since if x?acg € m!, then (o, B)

can not be under the straight line in R? connecting (la;, 1b;) and (laj, 1b;).

Corollary 4.9. If (ai,,bi,) < (i, bi,) <---<(as,,b;,) are as in Lemma 4.7 with
J =m, then (la;,,1b;, )(laiy, 1bi,), (laiy, 1biy) (lais, big), - . .y (las._,, Wb, )(la;.,
Ib;.) are spg(m!) (with (la“,lbzl) (la1,1b1) and (la;,,1b;,) = (la,,1b,)) .

Remark 4.10. Let (la;,1b;)(laj,1b;) be a spg(m!) and let 7(X,Y) = (b; —b;) X +
(a; — a;)Y + la;(bi — bj) + bi(a; —a;)] =0 the straight line in R? connecting
(lai, 1b;) and (laj,lb;). It is straightforward to prove that for every k such that
0 < k < I, the integer point (({ — k)a;, (I — k)b;) + (kaj, kb;) = (I — k)a; +
kaj, (I — k)b; + kb;) is in the straight line in R? with equation 7(X,Y).



Let m = (2025, ..., 28728 k[21, 2] and 27 € m! \ m! (hence [ > 2) with

~v = (71,72). By Proposition 3.2, 7 is an integer point in the convex hull of the
union of the set b + N¢, where b is an exponent of an element in m‘. Hence,
by Corollary 4.9, there exists (la;, [b;)(la;y1,1bi+1) spg(m!) such that (y1,72) is
not under the straight line in R? connecting (la;, 1b;) and (la;+1,(b;11) and such
that la; < v < lai+1.

So v is in the triangle in R? with vertices (la;, 1b;), (la;s1,1biv1), (lais1,1b;)
(we note that v cannot be out of the triangle since 27 ¢ m! and z7* 25",
zllai“zl;"“ are generators for m! as a k[x]-module by the proof of Lemma 4.8).

Finally, since v is in the triangle in R? with vertices (la;, 1b;), (la;y1,1biy1),
(la;+1,1b;) and since (cf. Remark 4.10), for every k with 1 < k < I, ((I—k)a;, (I—
k)b;) + (ka;, kb;) is in the straight line connecting (la;,1b;) and (lait+1,1bi11),
we get

7 is in the triangle in R? with vertices
(lai, lbi), ((l — k’)ai, (l - k)bl) + (k/’CL]‘, k/’bj), ((l - k:)ai + kaj, lbl)

or
7 is in the triangle in R? with vertices
((l - k)ai, (l - k)bz) + (k:aj, kbj), (laj, lbj), (laj, (l - k)bz + kbj)
Theorem 4.11. Let m = (z* x5, .. .,_:E‘llTng)k[xl, x2] and suppose there exists

t > 2 such that m* = mt. Then m! =m! for every | > t.

Proof. It is enough to prove that if m* = m? with ¢ > 2, then m**! = mt+1.
Suppose 27 € mtt1\m!*! and let [ = ¢+ 1 (hence [ > 3). By what is written
above, for a fixed k£ with 1 < k <[ we have either

~ is in the triangle in R? with vertices
(lai, 1b;), (I = K)ai, (I — k)bi) + (kaj, kbs), (I — k)ai + kaj, 1b;)

or

~ is in the triangle in R? with vertices
((l — k)ai, (l — k/’)bz) + (kaj, kbj), (laj, lbj), (laj, (l - k/’)bz + kb])

Let us consider the first case. Hence
(71,72) = A1 (lag, b)) + X2 (I —k)ai+kaj, (1 —k)b;+kbj) + A3 ((I —k)a; + kaj, 1b;),
A+ XA+ A3 =1, )\ € Qxo.
Let 6 = (61,02) = (71,72) — (as, b;). Since 27 ¢ m!, necessary x° ¢ m!~1. But
0=(61,02) = M((l—=Da;, ( —1)b;) + X2 (I —k—1)a; + kaj, (1 —k—1)b; + kbj)+
A((l—k—1)a; + kaj, (I —1)b;), A + X2 + A3 =1, \; € Q>0

hence



d is in the triangle in R? with vertices ((I — 1)a;, (I — 1)b;), (I — k — V)a;, (1 —
k— 1)1)1) + (k:aj, kbj), ((l —k— I)CLZ + kaj, (l — 1)[)1),

that is 6 is an integer point in the convex hull of the union of the set b 4 N¢,
where b is an exponent of an element in m'~!. By 2° € R and Proposition 3.2,
we get 2° € m!=1 = m!~!. Absurd.

Similarly we get the proof for the other case.

The statement of Theorem 4.11 is, in general, not true for other kind of rings
R as in the Introduction (cf. Remark 4.33).

Remark 4.12. We note that it is not true in general that if m* = mt, then m! =
m! for some [ < t. Indeed, let n > 1 and R = k+ (a7, 2} oo, m12d 1 2l k[, 22].
In Remark 4.20 we show that m* = m* if and only if k > n — 2.

As corollary to Theorem 4.11 and by m = m, we get a criterion for m to be
normal.
Corollary 4.13. The graded mazimal ideal m is normal if and only if m® = m2.
Example 4.14. Let R =k + (25, 2125, 2323, 212, 2822, 2320, 211 ) k|21, 22] as in
Figure 4. By Proposition 3.2,

2 _ (.16 14 212 .3 11 4,10 .6.9 .8 8 10,7 .11.6 .13 .5 15 4 17,3
m® = (2, 213, X1 Ty, TITy , X1 Ty, T Ty, T1To, Ty Ty, T T, T1°Ts, Ty T, T1' Ty,

18,2 20 22 _3
x1oxs, ) e, 17 )k[T1, 2] = m

and, by Corollary 4.13, we get that m is normal.

3 8
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FIGURE 4



We note that in the Example 4.14, 2723 ¢ R, while (7,3) is an integer point
in the convex hull of the union of the set b + N?, where b is an exponent of an
element in m.

By the proof of Theorem 4.11, we get the following corollary.

Corollary 4.15. If for every integer point a in the convex hull of the union of
the set b+ N, where b is an exponent of an element in m, we get @ € m, then
m is normal.

Example 4.16. Let be k+ (23, 2328, 2325, 2123, x1la3, 21423, 210, 232)k[21, 22].
Since for every integer point @ in the convex hull of the union of the set b+ N¢,

where b is an exponent of an element in m = (23, 2225, 2323, 2723 21123, v1%23,

21829, 222)k[z1, 22], Wwe get 2% € m, then, by Corollary 4.15, m is normal.

4.1.1 A class of examples

Let n = (21, 22) be the graded maximal ideal of the polynomial ring k[z1, z2] =
k[x]. We look for rings R = k + (2%, ..., 2%)k[x] with graded maximal ideal
m = (2%, ..., 2%)k[x] such that m* = n?" (n > 1). Indeed by Proposition 3.2
and by Corollary 4.13, we have that m is normal.

Let a3 = min{ay # 0| 27" € m} and by = min{Bs # 0 | 25> € m} as at the
beginning of Subsection 3.1. By m? = n?" = (21, x2)?", we necessarily have that
a1 = n = by and that, if " = 2]'25? is a generator for m as a k[z]-module, then
r1 + ro > n. Furthermore if vy + ro > n, then this generator is uninteresting in
our discussion as if (2°1,...,2%)2k[x] = (21, 22)?" then a := ({2%,... 2%} \

{2"})?k[z] is equal to (z1,22)?". Indeed if there exists z{'z5* € m? \ a with
Cc1 ,..C2

2§ 252 generator for m? as a k[z]-module, then 25'z52 = (2] h?) (2 %?). This
is absurd as 2n = ¢; + ¢co = r1 + 19 + b1 + bs > 2n. Hence we can assume
rT+ro=n

Finally by Proposition 4.1 and Remark 4.2, x?ilzg, xl:rZ*l € R. Moreover,
since we can suppose 7 + 12 = n whenever " = z]'z5? is a generator for m as a
k[x]-module, we have that 7 2o, 2125~ are generators of m as a k[x]-module.

By what is written above we can translate the problem to a merely combi-
natorial problem just considering the powers of the x3’s in the generators of m
as a k[z]-module. Indeed we look for a class of sets X with {0,1,n — 1,n} C
X C{0,1,...,n} such that 2X := X + X ={0,1,...,2n}.

From now on, given two integers a and b with a < b, we denote the set of
integers between a and b (included) by [a, b].

Proposition 4.17. Let X ={0,1,...,h1 — 1, hy,ho,...,h. =n—hy,n—h1 +
1,...,n} with hy > 1 and hiy1 — h; < hi + 1 for everyi € [1,z — 1] (*). Then
2X = [0,2n].

Proof. We show that for every z € [0, 2n], there exist x1, 22 € X such that
r1+ T =a.

If x € [0, hq], then 7 = 2 and 25 = 0.

If € [h1,h;], then there exists i such that h; < 2 < h;11. If x = h; or
x = hi+1, then 1 = x and x5 = 0. Suppose hence that h; < z < h;y1, that is

10



hz+1§1’§h1+171 By(*), hz+171§h1+h1,hencehz+1§x§hz+h1
So x = h; + h with 0 < h < hy and we can assume x1 = h; and zo = h.

If x € [h,,n], then 21 = x and z9 = 0.

If ¢ € [n,n+hq], then x = n—+h with 0 < h < hy. Hence 1 = n and a2 = h.

If z € [n+ hy,n+ h.], then there exists ¢ such that n+h; < <n+h;yq. If
x = n+h;, then 1 = n and 2 = h;. Suppose hence that n+h; < x < n+h;y1.
So n+hi7hi+1 < .T*hiJrl <n. By (*)7 n—hy—1 §n+h17h1+1 and this
implies n —hy — 1 < x — hjy1 < n. Hence x — h;11 € X and we can assume
T = hi+1 and To =T — hi+1-

Finally if € [n 4+ h.,2n] = [2n — hq,2n], then @ = 2n — hy + h with
0< h<hy. Sincen—hy <n—nhy+h<n, thenn—h; —h € X. Hence
x1 =n—hy +h and 22 = n.

Corollary 4.18. The graded mazimal ideal m of R = k + (z}, 2 o, ...,
z’f_hlzgl,:c?_hzscé”, . ,x?_hzzgz , z}fl_lzg_hﬁl, ook, xo] with hy > 1

and hitz1 — h; < hy + 1 for every i € [1,z — 1] is normal.

We now generalize Proposition 4.17. Indeed we look for rings R with graded
maximal ideal m such that m* = n¥” (n > 1). By Proposition 3.2 and by
Theorem 4.11, this implies m! = m! for every | > k.

As above we have that a; = n = by, that :z:’f_lzg, zlzg_l € R are generators
of m as a k[z]-module and that if x7'x5? is a generator for m as a k[x]-module,
then we can assume r1; + r9 = n. Hence we look for a class of sets X with

{0,1,n—1,n} C X C [0,n] such that kX = [0, kn].

Proposition 4.19. Let X be a set with {0,1,n —1,n} C X C [0,n] and such
that pX = [0, pn]. Then for every q > p, ¢X =[0,qn].

Proof. Tt is enough to prove the proposition for ¢ = p+1. By [0, (p+ 1)n] =
{{0} +pX}U{{n}+pX} C (p+1)X, we get the proof.

Remark 4.20. We note that if X = {0,1,n — 1,n}, then kX = [0, kn] if and
only if K > n — 2. Indeed for every ¢ = 0,...,n — 2, [i(ln — 1)+ (n — i —
2)-0,in+(n—i—2)-1] =[in—14, G+ 1)n—(i+2)] C (n—2)X. Hence
[0, (n—2)n] = U?;OQ[in —i,(i+Dn—(i+2)]C (n—2)X. Moreover n —2 ¢ aX
when o < n — 3.

In particular, if & > n — 2, then kX = [0, kn] for every set X such that
{0,1,n —1,n} C X C [0,n]. Hence if m is the graded maximal ideal of R for
which 27, 27 ag, 2125, 28 are part of a set of generators for m as a k[z]-
module, then mk = mF for every k >n — 2.

As a particular case of Proposition 4.19 we get that the class of set X as in
Proposition 4.17, satisfies kX = [0, kn] for every k > 2.

Now we find a class of sets X such that kX = [0, kn] but, in general, (k —
1)X # [0, (k — 1)n]. To this aim we generalize the class X of Proposition 4.17.
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Proposition 4.21. Let X ={0,1,...,hy —1,hy,ho,...,h, =n—hy,n—hy —
1,...,n} such that hy > 2 and hix1 — h; < hy +k —1 for every i € [1,z — 1]
(**). Then kX =0, kn).

Proof. The case k = 2 is Proposition 4.17. We suppose hence k > 3.

Let YV := {0,1,...,h1,n — hy,...,n} C X. So kY = {0,...,khy,n —
hl,. ..,n+(k:fl)h1,2(n7h1),. ,2n+(k72)h1, .,k(nfhl),. ,kn} Q kX.
To get the proof we need to cover all the holes in kX between in + (k — i)hy
and (¢ +1)(n — hy) for every 0 < i <k — 1.

We start covering all the holes in kX between kh; and n — hy. We note that
(k—l)Y: {0,...,(]6—1)h1,7’L—h1,...,7’L+(/{3—2)h1,2(n—h1),...,2n+(k’—
3hi,...,(k—=1(n—"h),...,(k=1)n} C (k—1)X.

For every ! € [1,z—1] we have {h;}+10, (k—1)h1] = [h, i+ (k—1)h1] C kX.
By (**) and by hy > 2 and k > 3, we get hy11 < h; + (k — 1)hy. Hence
{hl,hg, .. .,hz} + [0, (k - 1>h1] = {hl,hl +1,...,h, + (k - 1)h1} = [hl,hz +
(k—1)h1) CkX.

By k >3 and h, =n — hy, we get hy < khy and n — hy < h, + (k — 1)hy,
that is [kh1,n — h1] C [h1, h, + (kK — 1)h1] and we have covered all the holes in
kX between kh; and n — h;.

Making exactly the same sort of calculus as above you can check that
{h1,ha,...,h}+]i(n—"h1),in+ (k—i—1)h;] covers all the holes in kX between
in+ (k—1i)hy and (i + 1)(n — hy) for every 1 <i < k — 1. Hence [0, kn] = kX.

Corollary 4.22. Let R =k + (27,27 'y, . .. ,$?7h1x§1 , x?ihzxgz, cey
z?ihzxgz,x}fl*l:cgfhﬁl, oo )k, xo] with hy > 2, hip1 —h; < hi+k—1 for
every i € [1,z — 1]. Then for every l > k, the l-th power of the graded mazimal
ideal m of R is integrally closed.

Remark 4.23. We note that h; in Proposition 4.21 must be greater than 1.
Indeed if X ={0,1,4,7,9,10} (hence n = 10, k = 3 and hy = 1), then 22,25 ¢
3X.

Remark 4.24. If X is a set in the class as in Proposition 4.21, then we know
kX =[0,kn|. Anyway in general (k—1)X # [0, (k —1)n] (in particular the con-
verse to Proposition 4.19 does not hold). Indeed let X = {0, 1,2,6,10,12,13,14}
(hence n = 14, hy = 2 and k = 3). By Proposition 4.21, 3X = [0,3n] = [0,42].
Anyway 5,9,17 ¢ 2X.

Let V = [0,n] and k > 2 and let us consider the collection Ay of subset of V
such that F' € Ay, if and only if 0,1,n — 1,n ¢ F and k(V \ F') = [0, kn]. Since
F € Ay, whenever F' C G for some G € A and since {i} € Ay for every i €
V\{0,1,n—1,n}, then Ay is a (finite) simplicial complex on V'\ {0,1,n—1,n}.

We first find a lower and an upper bound for dim Ay := sup{dim(F) | F €
A}, where dim(F) := |F| — 1.

Theorem 4.25. dimA, < n — (_1*'7 V216”+91. Furthermore, if n > 4 then
n—+v8n+1<dimAs,.
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Proof. Let F' be a face in Ay with |[V'\ F| =m. As F is a face, 2(V\ F)| =
[[0,2n]] = 2n + 1. Since there are no more than @ sums of mutually
different numbers from X along with no more than m sums of equal numbers,
we get that 2n+1 < w, hence m > [—1Hv10n+9 V216"+9]. Sodim Az < ((n+1)—
[FERGOER]) — 1 = - [T,

Let now n > 4 and let us consider X = {0,1,...,hy — 1,hy1,ho,..., h, =
n—hy,n—hy+1,...,n} with hy > 1, hjp1 —h; = hy + 1 for every i € [1,z — 2]
(note that z—2 > 1lasn >4) and h,—h,_1 < h1+1. By Proposition 4.17, 2X =
[0,2n]. Since in X we exclude 2(hq + 1) + \_%J =2(h+1)+[557] -2
integers from [0,n], we get n — 2(hy + 1) — | 72~ ] + 2 number of vertices in a
maximal face of As.

[FES
Let us consider f(h1) :=n —2(h1 +1) — -5 + 2 as a function of h;. The

derivative f’(h1) = 0 if and only if hy = \/Z—1. Since f(1/5—1) = n—v8n+2
and —| | —1, we have dim Ay > n — v/8n + 1.

hlrilJ z 7h17fH z 7Lh17}H

Remark 4.26. We note that since, for n > 0, n — V8n + 1 = n — v/8n and
n— [_1*‘7 V216"+9] ~ n — V/4n, then the class of sets X as in the second part of
the proof of Theorem 4.25 is a almost extremal class of examples.

Now we generalize part of Theorem 4.25 finding a lower bound for Ay.

Proposition 4.27. Let n > 4. Then dim Ay, > n —2(\/§ +k—2 — k) —
n+2k—4

WEsT=s

Proof. Let X = {O,l,...,hl - 1,h1,h2,...,hz :n—hl,n—hlJrl,...,n}
with hy > 2, hip1—h; = hi+k—1foreveryi € [1,z—2]and h,—h,_1 < hy+k—1.
By Proposition 4.21, kX = [0, kn]. Since in X we exclude 2(h+1)+ | 220utl) |

hi+k—1
integers from [0, n], we get n —2(hy +1) — \_%J number of vertices in a
maximal face of Ay.
Let us consider f(hy) :=n—2(h;+1)— % as a function of h;. Using
the same argument as in Theorem 4.25, we get the proof.

We note that for n = 1,2,3 then Ay, = {0} for every k > 2; for n = 4,
A = {0,{2}} for every k > 2; for n = 5, As = {0,{2},{3}} and Ay =
{0,{2,3}} for every k > 3; for n = 6, Ay = {0,{2},{3},{4},{2,4}}, A3 =
{@7 {2}7 {3}7 {4}’ {2’ 3}7 {27 4}7 {3> 4}}a Ay = {@7 {2}7 {3}7 {4}’ {27 3}7 {27 4}7
{3,4},{2,3,4}} for every k > 4.

Our next aim is to prove that if £ > 3, then Ay is connected for every n and
that As is connected for every n £ 5,6. We need to show that if n > 7 then for
every a,b € V' \ {0,1,n — 1,n} there exist v1,...,vm € V' \ {0,1,n — 1,n} such
that {a,y1}.,{71,72}, - -+ s{ym, b} are in Ay for every k > 2.

Lemma 4.28. If F € A;, then F € Ay for every l > i.

Proof. This follows by definition of face of A; and by Proposition 4.19.
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Lemma 4.29. Let n > 7 and a,b € V \ {0,1,n — 1,n} with a < b. Then
{a,b} € A, with k > 3, and {a,b} € Ay if and only if the pair (a,b) is different
from (2,3) and from (n —3,n —2).

Proof. Let (a,b) be different from (2, 3) and (n —3,n — 2) (this is possible as
n > 7). We need to prove that {a, b} is a face in Ao, that is 2(V\{a, b}) = [0, 2n].
Let z € [0,2n] and suppose first that = < n.

If v #a,b,then x =2 +0€2(V\{a,b}). fx =a,thenz=(x—-1)+1¢
2(V\{a,b}). Finally if t = b, thenx = (b— 1)+ 1€ 2(V\ {a,b})ifa#b—1
andz=(0b-2)+2€2(V\{a,b})ifa=0b—-1.

Suppose now n < x < 2n—4. Since x —n < n—4, we get n > x —n,
n—1>z—n+1landn—2>x—n-+ 2. Hence we can write x in at least
three different ways as a sum of two natural number less or equal to n. Precisely
x=n+x-n),z=nh-1)+@-n+1)andz=n-2)+(z—n+2).
This implies that in at least one of the sums above the two summands are both
different from a and b. Thus z € 2(V '\ {a,b}).

Suppose now 2n — 3 < z < 2n. Since {n — 2,n — 1,n} C V \ {a,b} or
{n—=3,n—1,n} CV\{a,b}, then z € 2(V \ {a,b}). Hence {a,b} € A,.

To get the proof we need to show that {2,3} and {n—3,n—2} are not in As.
Indeed if X = [0,n]\{2, 3} then [0,2n]\2X = {3} and if X = [0,n]\{n—3,n—2}
then [0,2n] \ 2X = {2n — 3}.

Let now k£ > 3. By the first part of the proof and by Lemma 4.28 we
know that if a,b € V' \ {0,1,n — 1,n} with (a,b) different from (2,3) and from
(n — 3,n — 2), then {a,b} € Ag. Let V' \ {2,3} = {0,1,4,5,6,...,n}. By
3{0,1,4,5,6} = [0,12], by 3[4, n] = [12, 3n] and by Lemma 4.28, we have {2,3} €
Ag. Finally let V\{n—-3,n -2} ={0,1,...,n—4,n—1,n}. By 3[0,n — 4] =
[0,3n —12], by 3{n —5,n —4,n—1,n} = [3n — 12,3n] and by Lemma 4.28, we
have {n —3,n —2} € Ag.

Theorem 4.30. If k > 3, then Ay is connected for every n. As is connected
for every n #£5,6.

Proof. By what is written before Lemma 4.28, we need to show that if n > 7,
then Ay is connected for every k > 2. The case k > 3 is immediate by Lemma
4.29.

Let k = 2. Given a,b € V\ {0,1,n— 1,n}. If (a,b) # (2,3),(n — 3,n — 2),
then, by Lemma 4.29, {a,b} € Ay. Otherwise, since n > 7, there exists v €
V\{0,1,a,b,n —1,n — 2}. By Lemma 4.29, {a,~v} and {~,b} are in As.

4.2 The second case

Let us denote the set of all power products in the indeterminates 1, zs, ...,

zq of degree i in k[ry,@a,...,z4), that is {z%, 2} 'ze,... 2%}, by Fi. Let
91592, - - -, gn be positive natural numbers with g1 < go < - -+ < g, and ged(g1, g2,
cogn) = 1.

In this second case we study the integral closure of powers of the graded
maximal ideal of R = k[Fy,, Fy,,..., Fy.].
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We define the k-algebra homomorphism
’lb : k[xl,xg, ce ,.Td] — k[t]

with ¥(f(z1,...,2q)) = f(t,...,1).

We also define the k-algebra homomorphism
¢ : k[t] - k[xlazQa o 7:Cd]

with ¢(I(t)) = I(a1).

Theorem 4.31. Let R = k[Fy,,F,,,...,Fy,] and T = k[t9*,¢92,... t9"]. Let
m = (Fy,,Fy,,....,Fg,) and M = (19,192, ...,t9") denote the graded mazimal
ideal of R and T respectively. Then for every natural number a, m®\ m® # () if
and only if M@\ M® # ().

Proof. Tt is straightforward to verify that, since ged(gi,go,...,9n) = 1,
the complements to N% and N respectively of the set of exponents of all power
products in R and in T are finite.

Suppose there exists z € m® \ m® for some a. By Theorem 3.1, we can
suppose that z is a monomial in k[z1,2a,...,z4], that is z = xﬁ ,TZ, 1<
i <o <ip < d.

We note that ¢(z) = t/1---ti» ¢ M* (since z ¢ m?®). We will show that
Y(z) € Me.

By z € m%, there exist c1, ca, . . ., ¢y With ¢; € (m®)? such that 2™ +cp 2™ 1+
-+ 4 ¢,; = 0. Hence

0=+ 12"+t em) = 0(E™) + () (Z™) + - Plem) =

P(2)™ +1p(e)ip ()" 4+ (em)-

Since ¢; € (m®)?, we get 1(c;) € (M?)*. Thus 9 (z) € Me.

Suppose now M\ M® # () for some a. By Theorem 3.1 we can suppose
tb € Ma\ M for some b. Let us consider 4. Clearly 2% ¢ m® (if not o (2%) =
tb € M2). We will show that 2 € m?.

By t* € M@ there exist c,ca,...,cn with ¢; € (M%) such that (t°)™ +
()™t + .- 4 ¢, = 0. Hence

0=((t")" +er(t’)" "+t em) = (")) +6(cr)d((t°)™ ™) ++ -+ lem) =

(@)™ + ¢le) (@)™ + - + d(cm).

Since ¢(c;) € (m?)t, we get ¢ € m?.

Corollary 4.32. Let (R,m) and (T, M) be rings as in Theorem 4.31. Then m
is normal if and only if M is normal.

A study on normal graded maximal ideal for rings k[t9t,t92, ... t9"] with
ged(g1, 92, -+, gn) = 1 can be found in [1].
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Remark 4.33. Let R = k[Fg, Fr, F11]. Then, using Theorem 4.31, it is easy to
check that m? = m2, but %2 € m3 \ m®. Hence the statement of Theorem 4.11
is not true for this kind of rings.

Corollary 4.34. Let R be a ring as above with graded mazimal ideal m =
(Fy,, F, F,

gi» g2y gn)
(i) If m is normal, then g2 = g1 + 1 and g, < 2¢;.
(i) m is normal if and only if m*+t1 = mem for every a > 0.

(1ii) Let m; denote the mazimal ideal of k[Fy,, Fy,, ..., Fy.]; if m; is not normal
for some i < n, then m,(= m) is not normal.

Proof. (i) This follows by Corollary 4.32 and [1, Proposition 3.1]).
(ii) Use Corollary 4.32 and [1, Theorem 3.5].
(iii) By Corollary 4.32 and [1, Theorem 3.14].

In the 3-generated case (n = 3) we can give a concrete characterization
for normal graded maximal ideal m. Suppose go = ¢1 + 1 and g3 < 2¢; (if
one of these two conditions is not satisfied, then m is not normal by (i) of
Corollary 4.34) and let a be the unique integer such that (a« — 1)gs < gy and
ags > (a+1)g1.

Corollary 4.35. Let R, g2 and g3 as above. Then m is normal if and only if
ags < (a+1)ga.

Proof. This follows by Corollary 4.32 and [1, Theorem 3.25].
Ezample 4.536. Let

010 .9 10 .11 .10 11 .17 .16 17
k[Fi0, Fi1, Fiz] = kg, 2 za, ... &g, 1, X1 X2y oo, Ty X7 L] T2y, Xg' |-

Then o = 2 and, by Corollary 4.35, we get m = (Fio, F11, F17) is not normal.
Using the same argument as above it is easy to check that in k[Fio, F11, Fi6),
m= (F107 Fll; F17) is normal.
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