
Chapter 18
Continuous Approximations of Discrete
Choice Models Using Point Process
Theory

Hannes Malmberg and Ola Hössjer

Abstract We analyze continuous approximations of discrete choice models with a
large number of options. We start with a discrete choice model where agents choose
between different options, and where each option is defined by a characteristic vector
and a utility level. For each option, the characteristic vector and the utility level are
random and jointly dependent. We analyze the optimal choice, which we define as
the characteristic vector of the option with the highest utility level. This optimal
choice is a random variable. The continuous approximation of the discrete choice
model is the distributional limit of this random variable as the number of offers
tends to infinity. We use point process theory and extreme value theory to derive an
analytic expression for the continuous approximation, and show that this can be done
for a range of distributional assumptions. We illustrate the theory by applying it to
commuting data. We also extend the initial results by showing how the theory works
when characteristics belong to an infinite-dimensional space, and by proposing a
setup which allows us to further relax our distributional assumptions.
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18.1 Introduction

There is a long tradition in economics to use random utility theory to study discrete
choices such as the choice of mode of transportation. Early contributions are Luce
[12] and Mcfadden [15]. Over time, random utility theory has been extended to
encompassmore functional forms, distributional assumptions, and applications (Ben-
Akiva and Lerman [2], Anderson et al. [1], Train [20]). The theory posits that agents
maximize utility, but that utility is random from the econometrician’s point of view.
Utility is expressed as a random variable

Ui = f (Xi ) + εi i = 1, . . . , n,

where Ui is the utility of option i , Xi are random variables that describe the char-
acteristics of option i , f (Xi ) is the deterministic component of utility, and εi are
independently and identically distributed random variables. The agent chooses the
option with the highest utility.

Insofar each option has distinct characteristics, we can equivalently view this as
a choice over the characteristics Xi . We write X [n:n] for the Xi corresponding to the
largest Ui . This is a random variable taking values in the set {X1, . . . , Xn} ⊆ Ω ,
where Ω is a general characteristics space.

We are interested in a continuous approximation to the discrete choice problem
when the number of options is large, and we define the approximation as the distribu-
tional limit of the law of X [n:n] as n → ∞. A continuous approximation takes an offer
distribution densityΛ, a deterministic utility component f (·), and the distribution of
the random utility component εi , as inputs. The output is a probability distribution
of choices over Ω .

The theory is relevant in situations where agents face discrete choices and a
large number of options. For example, the choice of residential location in a city
is a discrete choice as agents only buy one residence. This makes a random utility
approach natural. On the other hand, the number of potential residential locations is
large. In this case, it can be useful to approximate the discrete choice process with a
continuous probability distribution over space.

We approach the problem by interpreting the collection of characteristics-utility
pairs (X1,U1), . . . , (Xn,Un) as the realizations of a point process ξn on the Cartesian
product Ω × R of the characteristics space and the utility space. With this interpre-
tation, the best choice X [n:n] is a function of ξn . More details on point process theory
can be found, for instance, in Cox and Isham [4] and Jacobsen [9]. More specifi-
cally, we can build on the results in point process theory presented in Resnick [17]
to derive sharp results on the limiting behavior of X [n:n]. In particular, we show
that a monotone transformation of the underlying point process ξn converges to a
Poisson process on Ω × R and we derive the limiting behavior of X [n:n] using con-
tinuity properties of the mapping from ξn to X [n:n]. We show that there is a tractable
continuous approximation for a range of distributional assumptions.
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After our theoretical result, we illustrate our theory with an empirical example
taken fromBurke and Brown [3] who analyze commuter walking distances.We show
that our theory predicts that walking distances are gamma-distributed and verify that
this prediction is confirmed by the data. In the discussion section, we also propose an
extension which would allow us to analyze the asymptotic behavior under an even
wider range of distributional assumptions.

In Sect. 18.2 we outline the model environment. In Sect. 18.3, we provide the
necessary theoretical background on point processes. Section18.4 derives the lim-
iting behavior of our point processes and use this to derive the limiting behavior of
choice probabilities. Section18.5 outlines the empirical application and other appli-
cations, whereas Sect. 18.6 proposes an extension to encompass a wider range of
distributional assumptions. Section18.7 concludes.

The paper is similar in aim to Malmberg and Hössjer [14]. However, they used
asymptotic properties of deterministic point processes in order to analyze random
utilities bymethods developed in the literature on random supmeasures (see O’Brien
et al. [16], Resnick and Roy [18], and Stoev and Taqqu [19]). The novel approach
in this paper is to analyze the problem using random point process theory instead,
and this method allows for a mathematically simpler formulation than the one used
in Malmberg and Hössjer [14]. Since we analyze the values X associated with the
maximumU , the paper also connects to the theory of concomitants of extremes (see
Ledford and Tawn [11]). The theory proposed in the extension section also relates
to conditional extreme value theory, which is discussed in Heffernan and Tawn [8].

In this paper, we illustrate our theory using commuting patterns. Earlier work
on random choice models with an infinite number of options has also been used to
model distance dependence in international trade (Kapiarz et al. [10]). Even though
the motivation for our setup comes from random choice theory, the theory has also
been used inmachine learning byMaddison et al. [13],who usemethods inMalmberg
and Hössjer [14] to derive a new way of sampling from a posterior distribution in
problems of Bayesian statistics.

18.2 Model Environment

18.2.1 Model Setup and Assumptions

Consider a sequence of independent and identically distributed pairs of random
variables {(Xi ,Ui )}∞i=1, where Xi ∈ Ω and Ui ∈ R, and where Ω is a complete,
separable, metric space.

Here Xi gives the characteristics of the choice i and Ω is the characteristic space.
In case of residential choice, we might have Ω ⊆ R

2, where Xi gives the location
of choice i . In industrial organization, Ω ⊂ R

n might denote a multidimensional
product characteristics vector, and Xi is the characteristics of a particular good. It
aids intuition to think of Ω as a subset of Euclidean space, but the analysis is done
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for the general case of a complete, separable, metric space. This means that the setup
can be used to analyze cases where choice options are functions, for example choices
of continuous consumption paths over finite intervals when the valuation is random
from the econometrician’s perspective.

We defineUn:i as the i th order statistic increasing order of {U1, . . . ,Un}. For each
n, we define the characteristic X [n:i] to be the X -value (the concomitant) associated
with Un:i for a sample of size n.

We are interested in the limiting probability distribution of the characteristics of
the optimal choice X [n:n], and to this end, we study the asymptotic behavior of the
sequence of probability measures

Cn(·) = P
(
X [n:n] ∈ ·) . (18.1)

The distribution of (X,U ) is

P((X,U ) ∈ A × B) =
∫

A
μ(x; B)dΛ(x),

where FX = Λ is the marginal distribution of X over Ω , and μ(x; ·) is the regular
conditional probability measure of Ui given Xi = x .1 The interpretation here is that
the characteristics of offers are distributed according to Λ. For example, Λ gives the
distribution of potential dwellings over space in the case of residential choice, or the
distribution of products over the characteristic space in case of industrial organization
applications. For each offer, there is a distribution of utility μ(x; ·) depending on the
characteristics x . We make the following assumption on μ:

Assumption 1 For the collection μ = {μ(x; ·); x ∈ Ω}, there exists a function

p : Ω → (0,∞), (18.2)

and sequences an > 0, bn , independent of x , and a distribution function Gα with
α ∈ R, such that

μ(x; (−∞, anu + bn])n → Gα(u)p(x) (18.3)

as n → ∞, where Gα is a distribution function of one of the following three forms:

Gα(u) =
⎧
⎨

⎩

exp(−(−u)−α I (u < 0)), α < 0,
exp(− exp(−u)), α = 0,
I (u > 0) exp(−u−α), α > 0,

and I (·) is the indicator function.
The assumption above essentially asserts that all μ(x; ·) belong to the domain of at-
traction of the same extreme value distribution, indexed by α, and that their limiting

1In terms of the example in the introduction, Λ corresponds to the law of the random variables Xi ,
and μ(x; ·) corresponds to the law of the random variable f (Xi ) + εi |Xi = x .
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relative sizes can be described by the one dimensional parameter p(x). The function
p(x) captures the deterministic “quality” inherent in characteristics x , which deter-
mines the limiting behavior of offer quality. The following example makes it clear
in what sense p(x) captures a deterministic component of utility.

Example 18.1 Assume there is a function h(x) such that μ(x; ·) is given by an
exponential distribution shifted h(x) to the right. Formally, let μ(x; ·) be the law of
a random variable h(x) + ε where ε ∼ Exp(1).

This collection of distributions satisfiesAssumption 1when p(x) = eh(x), an = 1,
bn = log(n), and α = 0. Equation (18.3) follows from

μ(x; (−∞, bn + anu])n = (1 − exp(−u − h(x) − log n))n

→ exp(− exp(−u)p(x)),
= G0(u)p(x).

(18.4)

The distributional assumption is not vacuous. Below is a class of distributions which
does not satisfy Assumption 1.

Example 18.2 Suppose there exists a non-constant function h(x) such that μ(x; ·)
is the law of a normal distribution with mean h(x) and variance 1.

Let F ∼ N (0, 1) and assumewithout loss of generality that there exists an x0 ∈ Ω

such that h(x0) = 0, and find an, bn such that Fn (an y + bn) converges to a non-
degenerate distribution function G(y). Extreme value theory means that the normal-
ization constants for a normal distribution satisfies an → 0 and bn → ∞, and we
know that the limiting distribution function G(·) is of Gumbel type α = 0 (Resnick
[17]).

But this means that Fn(an y + bn − h(x)) converges to 0 if h(x) > 0, as

lim
n→∞ Fn(an y + bn − h(x)) = lim

n→∞ Fn

[
an

(
y − h(x)

an

)
+ bn)

]

≤ lim
n→∞ Fn

[
an

(
y − h(x)

aN

)
+ bn)

]

= G

(
y − h(x)

aN

)

for any sufficiently large N . Let N → ∞ and we obtain the conclusion. As the limit
is 0, we need p(x) = ∞ which violates that p(x) < ∞. On the other hand, we can
use an analogous reasoning to conclude that Fn(an y + bn − h(x)) converges to 1 if
h(x) < 0, so that p(x) = 0. This violates p(x) > 0.

We conclude that a non-constant function h(x) is not consistent with Assump-
tion 1.

It limits the theory that the traditional normal regression structure does not satisfy
Assumption 1. The reason is that the normal distribution is too thin-tailed. Formally,
the condition for when the linear regression formulation works is whether the limit
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lim
u→∞

P(U + h(x1) > u)

P(U + h(x2) > u)

exists and is not 0 or ∞ when h(x1) 	= h(x2). This condition holds when U is
exponentially distributed but notwhenU is normally distributed.WhenU is normally
distributed, the limit is∞ forh(x1) > h(x2) and0 forh(x1) < h(x2). InSect. 18.6,we
propose an extension which would allow us to analyze normal regression functions.

18.2.2 Point Process Formulation and Strategy

The sequence {(Xi ,Ui )}ni=1 can be viewed as a random collection of points inΩ × R,
and can be described as a sequence of point processes ξn . We will show that after a
suitable transformation, this sequence of point processes ξn converges to a Poisson
point process ξ in a sense which will be formalized later. As

Cn(A) = P(X [n:n] ∈ A) = P

(

sup
i :Xi∈A

Ui > sup
i :Xi /∈A

Ui

)

is a functional on our point process ξn , the problem of finding limn→∞ Cn reduces to
determine whether this functional is continuous. In this case, we can use the limiting
point process ξ to calculate our results.

We will start with an introduction to point processes – in particular sufficient
conditions for convergence. After this, we will apply the point process machinery
to our setup, and characterize the limit of our point process. Once this is done, we
will define random fields taking point processes as inputs, and derive the asymptotic
behavior of Cn from continuity properties of these random fields.

18.3 Background on Point Processes and Convergence
Results

This section contains background results and a notational machinery for point pro-
cesses. See Chapter 3 of Resnick [17] for a more detailed treatment.

Throughout this discussion, the generic point process will take values in a locally
compact set E , with an associated σ -algebra E. For the purpose of our discussion,
E will be a subset of Ω × R, and we assume that E = B(E) is the Borel σ -algebra.
A point mass is a set function, defined by

δz(F) =
{
1, if z ∈ F ,
0, if z /∈ F,
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where F ⊆ E , F ∈ E. A point measure is a measurem(·) on E such that there exists
a countable collections of points {zk} ⊆ E and numbers {wk} ≥ 0, such that

m(·) =
∑

zk

wkδzk (·).

We will confine our attention to the case wk ≡ 1. Let MP(E) be the set of point
measures on E , and let it have the minimal σ -algebra which makes

{m ∈ MP(E) : m(F) ∈ B}

measurable for all F ∈ E, B ∈ B(R) where m(F) is the point measure m evaluated
at the set F and B(R) is the Borel σ -algebra on R. We define a point process to be
a random element ofMP(E).

If N is an arbitrary point process, we define the Laplace transform ψ associated
with N as

ψN ( f ) = E
(
exp

{− ∫
E f (x)N (dx)

})

= ∫
MP (E)

exp
{− ∫

E f (x)m(dx)
}
PN (dm).

(18.5)

Here PN is a probability measure over the set MP(E) which corresponds to the
distribution of N . Moreover, the class of functions f for which we are interested in
ψN is usually the continuous non-negative functions on E with a compact support.
We write C+

K (E) to denote this set.

Definition 18.1 A sequence of point processes Nn , n ≥ 0, converges in a point
process sense to N0, written Nn ⇒p N0, if

ψNn ( f ) → ψN0( f )

for all f ∈ C+
K (E).

We use the notation=⇒ for weak convergence of vector valued random variables
in Euclidean space or on Ω , in contrast to ⇒p for point process convergence.

Definition 18.2 Let E be a metric space. We call F ⊆ E relatively compact if its
closure F̄ in E is compact.

Definition 18.3 Let μ be a measure on a metric space X. We say that a sequence of
measures μn converges vaguely to μ, written

μn ⇒v μ,

if
μn(F) → μ(F)

for all relatively compact F withμ(∂F) = 0, where ∂F is the boundary of the set F .
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Definition 18.4 For a point process N , the Laplace functional associated with N is
defined by

ΨN ( f ) = E
[
exp(−N ( f ))

]

where N ( f ) = ∑
x∈N f (x).

It is known from point process theory that the Laplace functional uniquely defines
a point process. Thus, the Laplace functional can be used to define a Poisson process
and derive its properties (see, for example, Resnick [17], p. 130).

Definition 18.5 A Poisson process with intensity measure μ is a point process de-
fined by the Laplace functional

ΨN ( f ) = e− ∫
E (1−e− f (x))dμ(x).

Proposition 18.1 For any F ∈ E, and any non-negative integer k, a Poisson process
satisfies

P(N (F) = k) =
{
e−μ(F)(μ(F))k/k!, if μ(F) < ∞,

0, if μ(F) = ∞,

and that for any k ≥ 1, if F1, . . . , Fk are mutually disjoint sets in E, then {N (Fi )}
are independent random variables.

Our main theorem will also depend on the following proposition which is a mod-
ification of a result presented in the proof of a more extensive Proposition 3.21 in
Resnick [17].

Proposition 18.2 For each n, suppose {Zn, j : 1 ≤ j ≤ n} are independent and iden-
tically distributed (i.i.d.) random variables on E and that

nP(Zn,1 ∈ ·) ⇒v μ.

where μ is a measure on E. Then

Nn =
n∑

j=1

δZn, j ⇒p N

where N is a Poisson random measure on E with intensity μ.

Proof This proof is essentially equivalent to the first half of the proof of Proposition
3.21 in Resnick [17]. We use that convergence in point measures is equivalent to
convergence in Laplace functionals. Indeed, pick an arbitrary f ∈ C+

K (E), with a
compact support F ⊆ E . Then:
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ψNn ( f ) = E exp {−Nn( f )}
= E exp

{
−∑n

j=1 f (Zn, j )
}

= (
E exp{− f (Zn,1)}

)n

=
(
1 −

∫
E(1−e− f (z))nP[Zn,1∈dz]

n

)n

=
(
1 −

∫
F(1−e− f (z))nP[Zn,1∈dz]

n

)n

→ e− ∫
F (1−e− f (z))dμ(z)

= e− ∫
E (1−e− f (z))dμ(z)

= ψN ( f ),

(18.6)

where the convergence step is obtained from the vague convergence of nP[Zn,1 ∈ ·].
Indeed, vague convergence is equivalent to weak convergence on every compact
subspace. As 1 − e− f (z) continuous and bounded, and weak convergence means that
the integral of every continuous and bounded function converges, we get the desired
result. Thus,

Nn ⇒p N

as required. �
Before giving the full proof of Theorem 18.1, we state and prove the following

lemma:

Lemma 18.1 If (X × U,Λ × ν) is a product measure space, where X and U are
two complete, separable metric spaces, and if F ⊆ X × U satisfies

(Λ × ν)(∂F) = 0,

then
ν(∂Fx ) = 0 Λ − a.e.

where Fx = {u ∈ U : (x, u) ∈ F} is the cross-section of F at the point x, and a.e.
refers to convergence almost everywhere (or almost surely).

Proof We note that if we write

B = {(x, u) ∈ X × U : u ∈ ∂Fx },

we have
B ⊆ ∂F

(as each ball around a point (x, u) ∈ B contains both a point within and outside F).
Thus, as

(Λ × ν)(B) =
∫

X

ν(∂Fx )dΛ(x) ≤ (Λ × ν)(∂F) = 0,

we get that ν(∂Fx ) = 0 Λ-almost everywhere. �
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18.4 Limiting Behavior of Choice Probabilities

In this section, we use point process theory to derive the limit of the choice proba-
bilities Cn(·) = P(X [n:n] ∈ ·). We first show that the point process generated by the
collection {(Xi ,Ui )} converges to a Poisson process after a suitable transformation.
We then use this fact to calculate the limit of Cn .

18.4.1 Convergence of Point Process

We consider a sequence of transformations

gn(u) = (u − bn)/an

where an, bn are chosen to ensure extreme value convergence for all x ∈ Ω as in
(18.3) of Assumption 1.

Let δ(x,u) denote a one point distribution at (x, u) and define the extremal marked
point process (cf. Resnick [17])

ξn =
n∑

i=1

δ(Xi ,gn(Ui )) (18.7)

for a sample of size n. This is a point process on (Ω × R,B(Ω × R)).
We are now ready to formulate our first main result. It states that ξn converges to a

Poisson processwith a product intensitymeasurewhichmultiplies the initialmeasure
Λ on Ω with p(x). Before stating this result, we first introduce a few concepts.

Definition 18.6 A random variable X stochastically dominates a random variable
Y if

P(X ≥ x) ≥ P(Y ≥ x) ∀x ∈ R.

We also say that a measure μX on the real numbers dominates μY if they are laws
of random variables X and Y and X stochastically dominates Y .

Theorem 18.1 Let Gα and p be as in Assumption 1. Suppose that for each compact
subset A ⊆ Ω , the function p : Ω → (0,∞) is bounded on that subset, and that
μ(x0, ·), for some x0 ∈ Ω is an upper bound for all {μ(x; ·); x ∈ A} in the sense of
stochastic dominance. Then

ξn ⇒p ξ,

as n → ∞ where ξn is given by (18.7), and ξ is a Poisson random measure on
(Ω × R,B(Ω × R)) with mean intensity Λp × να , where
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Λp(A) =
∫

A
p(x)Λ(dx)

for all relatively compact A ∈ B(Ω) and

να([u,∞)) = − log(Gα(u)) =
⎧
⎨

⎩

I (u < 0)(−u)−α, if α < 0 and u < 0 ,

exp(−u), if α = 0,
u−α, if α > 0 and u > 0.

Proof Note that we have Gα(u) = 0 for α > 0 and u ≤ 0. Whenever α > 0, it is
therefore implicit in the proof that u > 0. Using the proof of Proposition 18.2, it
suffices to show that

nP((X1, gn(U1)) ∈ ·) ⇒v Λp × να,

i.e. that
nP((X1, gn(U1)) ∈ F) → (Λp × να)(F),

for all F ⊆ Ω × R which are relatively compact sets with respect toB(Ω × R) and
satisfy

(Λp × να)(∂F) = 0.

Henceforth, let F be an arbitrary set with these properties. Now, we note that

nP((X1, gn(U1)) ∈ F) =
∫

Ω

nP(gn(U1) ∈ Fx |X1 = x)dΛ(x),

where Fx is the x-cross section of F . Thus, our task is to show that

∫

Ω

nP(gn(U1) ∈ Fx |X1 = x)dΛ(x) →
∫

Ω

p(x)να(Fx)dΛ(x).

We do this first by showing that the integrand converges almost everywhere to the
desired quantity, and then we show that the sequence of integrands satisfy regularity
conditions allowing us to infer convergence of integrals from pointwise convergence.

We observe that for every x ,

nP(gn(U1) ∈ ·|X1 = x) ⇒v p(x)να(·). (18.8)

Indeed, it is true that for any sequence xn such that

(xn)
n → a, (18.9)

we have
n(1 − xn) → − log(a). (18.10)
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Thus, letting xn = P(gn(U1) < u|X1 = x) and using Assumption 1, we obtain

nP(gn(U1) ≥ u|X1 = x) → −p(x) log(Gα(u)) = p(x)να ([u,∞)) . (18.11)

In order to deduce (18.8) from (18.11), we can note that if we have a measure γ

with
γ ([u,∞)) < +∞

for some u, then vague convergence of γn to γ is equivalent to

γn([u,∞)) → γ ([u,∞)), (18.12)

for all u such that γ ({u}) = 0. This can be seen by noting that if (18.12) is true, then
the sequence Pnu(·) = γn(· ∩ [u,∞))/γn([u,∞))of probabilitymeasures converges
weakly for all continuity points u of γ ([u,∞)) to Pu(·) = γ (· ∩ [u,∞))/γ [u,∞)),
and hence Pnu(F) → Pu(F) for all such u, from which (18.8) follows.

Now, using the previous lemma, we know that

να(∂Fx) = 0 Λp − a.e.,

which means that
p(x)να(∂Fx) = 0 Λp − a.e.

as p(x) > 0 implies that p(x)να and να are equivalent for all x ∈ Ω . Thus, we can
use (18.8) to conclude that

nP(gn(U1) ∈ Fx |X1 = x) → p(x)να(Fx) Λp − a.e.

Therefore, we have established pointwise convergence of the integrand almost ev-
erywhere.

Now,we seek to show that nP(gn(U1) ∈ Fx |X1 = x) is uniformly bounded over n
andΩ to ensure that pointwise convergence almost everywhere implies convergence
in integrals. To do so, we want to define a maximal random variable which dominates
nP(gn(U1) ∈ Fx |X1 = x) for all n and x .

We write
πΩ : (x, u) �→ x

and
πR : (x, u) �→ u

for the projection on Ω and R respectively. In this case, we know that πΩ(F) and
πR(F) are relatively compact sets of Ω and R respectively. By the assumptions in
the theorem, there is an x0(F) ∈ Ω that maximizes p on πΩ(F). This means that
a random variable Ū (F) with measure μ(x0(F); ·) dominates U1|X1 = x stochas-
tically for all x ∈ πΩ(F). Write p̄(F) = p(x0(F)) for the corresponding p-value
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of p. Furthermore, we can define u as the smallest u-value attained on the whole
set πR(F), which again is finite by the assumption of F being relatively compact.
Combining these two definitions gives us

nP(gn(U1) ∈ Fx |X1 = x) ≤ nP(gn(U1) ≥ u|X1 = x)
≤ nP(gn(Ū (F)) ≥ u|X1 = x)
= nP(gn(Ū (F)) ≥ u)
→ p̄(F)να([u,∞))

< +∞,

which means that nP(gn(U1) ∈ Fx |X1 = x) is uniformly bounded. Using the
bounded convergence theorem, we get

nP((X1, gn(U1)) ∈ F) = ∫
Ω
nP(gn(U1) ∈ Fx |X1 = x)dΛ(x)

→ ∫
Ω

να(Fx )p(x)dΛ(x)
= (Λp × να)(F),

which completes the proof. �

This theorem is similar to Proposition 3.21 in Resnick [17]. There are two dif-
ferences. First, in [17], the author considers ξn = ∑

j=1 δ( jn−1,gn(Uj )) where {Uj } is
a sequence of independent and identically distributed random variables. Thus, the
difference is that we model the first coordinate as a random variable, and let the
distribution of the second coordinate depend on this first coordinate. Furthermore,
we let X take values in a general separable metric space. The differences add some
technicalities to the proof, but they turn out not to affect the main result.

We can also note that the distributional assumptions ensure that the optimal choice
and the maximum value are independent in the limit, which means that we can write
the product measure as a direct product of measures on the two spaces. See Fosgerau
et al. [6] for a general discussion of probability distributions having this invariance
property.

The assumption that p is bounded on compact sets is for example satisfied when-
ever p is continuous. The assumption that we can construct a stochastically dominat-
ing random variable for each compact set is a technical assumption required to apply
the bounded convergence theorem.As a counterexamplewhen the theorem fails, con-
sider themodel of Example 18.1,withΛ having a uniformdistribution onΩ = [0, 1),
h(x) = − log(x) and p(x) = x−1 for x 	= 0, whereas h(0) = 0 and p(0) = 1. In or-
der to have convergence ξn(F) =⇒ ξ(F) for relatively compact sets F ∈ E with
μ(∂F) = 0, for which the closure of the projection of F onto Ω does not contain 0,
we take an = 1 and bn = log(n). On the other hand, if F = [0, δ] × [−K , K ], it can
be seen that ξn(F) tends to infinity with probability 1 as n → ∞, for any values of
0 < δ < 1 and K > 0.
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18.4.2 Convergence of Choice Probability Distribution

Recall that our task is to study the limiting behavior of Cn as defined in (18.1). The
key to connect this limit to point processes is the observation that because gn is strictly
increasing for all n: Cn(A) = P(X [n:n] ∈ A) = P(Mξn (A) > Mξn (A

c)) for all A ∈
B(Ω), withMξn a randomfield defined asMξn (A) = max

Xi∈A
1≤i≤n

gn(Ui ), A ∈ B(Ω),where

B(Ω) is the Borel sigma algebra over Ω , and ξn is the point process from (18.7).
This formulation of the argmax-measure Cn in terms of random fields defined over
point processes allows us to generalize the notion of argmax to the limiting case
where the number of offers goes to infinity. We will study the limiting behavior of
finite-dimensional distributions of Mξn . This will allow us to calculate the limit of
Cn .

The mean intensityΛp × να in Theorem 18.1 is a non-finite measure defined over
Ω × R. However, if Λ(Ω) < ∞, it is possible to write Ω × R as a countable union
of sets with finite measures Λp × να . Hence, the realization of the point process ξ

has countably infinite many points almost surely. If we write {X∞
i ,U∞

i }∞i=1 for the
sequence of random variables giving the locations of these points, we can define,
Mξ (A) = max

i;X∞
i ∈A

U∞
i as a random field giving the highest variable attained for a

given set A ⊆ Ω , and C(A) = P(Mξ (A) > Mξ (Ac)) for the probability that A will
contain the largest U -element.

Proposition 18.3 If Λp(Ω) < ∞, we have C(A) = Λp(A)/Λp(Ω).

Proof Suppose first that Λp(Ac) = 0 or Λp(A) = 0. In this case, it is clear that we
have C(A) = 1 or C(A) = 0 respectively as required by the formula for A ∈ B(Ω).
Indeed, using the convention that the supremum of an empty set is minus infinity,
if Λp(A) = 0, then Mξ (A) = −∞ almost surely. As Mξ (Ac) > −∞ almost surely,
we will get C(A) = 0. A similar reasoning applies to Ac.

Furthermore, since ξ is a Poisson random measure with mean measure Λp × να ,
we note that if Λp(Ω) < ∞ we have that Mξ (A) and Mξ (Ac) are two independent,
proper random variables with

P(Mξ (A) ≤ y) = P(ξ(A × (y,∞)) = 0) = e−Λp(A)να((y,∞)) (18.13)

P(Mξ (A
c) ≤ y) = P(ξ(Ac × (y,∞)) = 0) = e−Λp(Ac)να((y,∞)). (18.14)

Standard calculations yield

P(Mξ (A) > Mξ (A
c)) = Λp(A)

Λp(A) + Λp(Ac)
= Λp(A)/Λp(Ω)

and the proof is complete. �

From this result, we automatically get that C is a probability measure as it is a
normalized version of Λp which is a finite measure.



18 Continuous Approximations of Discrete Choice Models … 427

In order to prove that Cn converges weakly, we need some additional results. We
use that

ν1 � μ1 and ν2 � μ2 ⇒ ν1 × ν2 � μ1 × μ2, (18.15)

where � means “absolutely continuous with respect to”.
We will also use that if ξn are point processes, ξ is a Poisson process, and

ξn ⇒p ξ,

then
P(ξn(F) = 0) → P(ξ(F) = 0) (18.16)

for all F ∈ E with μ(∂F) = 0, where μ is the intensity measure of ξ .
After these preliminaries, we are ready to state our second main result:

Theorem 18.2 If Λp(Ω) < ∞, we have

Cn(·) ⇒ C(·) = Λp(·)
Λp(Ω)

. (18.17)

Proof Assume we have A with C(∂A) = 0. We aim to prove that Cn(A) → C(A).
By Proposition 18.3,C andΛp are equivalent, andwe haveΛp(∂A) = 0. Noting that
the result is clearly true whenever Λp(A) = 0 or Λp(Ac) = 0, we can assume that
both are different from 0. By (18.13) and (18.14), this means that (Mξ (A), Mξ (Ac))

is a proper random variable on R2, and we will show that (Mξn (A), Mξn (A
c)) jointly

converge weakly to this random variable. Indeed, consider

P(Mξn (A) ≤ x1, Mξn (A
c) ≤ x2) = P (ξn(A × (x1,∞) ∪ Ac × (x2,∞)) = 0)

→ P (ξ(A × (x1,∞) ∪ Ac × (x2,∞)) = 0)
= P(Mξ (A) ≤ x1, Mξ (Ac) ≤ x2)
= FMξ (A),Mξ (Ac)(x1, x2).

The convergence step uses (18.16) and that

∂
(
A × (x1,∞) ∪ Ac × (x2,∞)

) ⊂ ∂A × (min(x1, x2),∞) ∪ A × ({x1} ∪ {x2})

and we have (Λp × να)(∂A × (min(x1, x2),∞) ∪ A × ({x1} ∪ {x2})) = 0 since
Λp(∂A) = 0 and να({x1} ∪ {x2}) = 0, where Λp × να is the intensity measure of
ξ . Hence

(Mξn (A), Mξn (A
c)) ⇒ (Mξ (A), Mξ (A

c)).

Defining
D = {(a, b) ∈ R

2 : a > b}



428 H. Malmberg and O. Hössjer

and using (18.15), with ν1 ∼ Mξ (A), ν2 ∼ Mξ (Ac), and μ1, μ2 Lebesgue measure
in R, to conclude that

P((Mξ (A), Mξ (A
c)) ∈ ∂D) = 0

we get
Cn(A) = P(Mξn (A) > Mξn (A

c))

= P((Mξn (A), Mξn (A
c)) ∈ D)

→ P((Mξ (A), Mξ (Ac)) ∈ D)

= C(A)

and the proof is complete. �

18.5 Examples

Here we provide a few examples to illustrate our theory.

Example 18.3 (Exponential and mixture models) This example extends Example
18.1, and calculates the argmax distribution associated with that example. Consider
a family of models where the regular conditional probability measure μ(x; ·) is
indexed by α, and where for each A ∈ B(R) we have

μα(x; A) =

⎧
⎪⎪⎨

⎪⎪⎩

P
(
(2 × 1{V1<p(x)} − 1)(1 − V−1/α

2 ) ∈ A
)

, α < 0,

P (log(p(x)/V1) ∈ A) , α = 0,

P
(
(2 × 1{V1<p(x)} − 1)V−1/α

2 ∈ A
)

, α > 0,

where V1, V2 ∼ U (0, 1) are two independent and uniformly distributed random vari-
ables on (0, 1). A bit less formal, we may write

μα(x) ∼
⎧
⎨

⎩

−(1 − p(x))Beta(1,−α) + p(x)Beta(1,−α), α < 0,
Exp(log(p(x)), 1), α = 0,
−(1 − p(x))Pareto(α, 1) + p(x)Pareto(α, 1), α > 0,

whereBeta(a, b) refers to a beta distributionwith densityCxa−1(1 − x)b−1 on (0, 1),
Exp(a, b) is a shifted exponential distribution with location parameter a and scale
parameter b, having distribution function 1 − e−(x−a)/b for x ≥ a, Pareto(α, b) is a
Pareto distribution with shape parameter α and scale parameter b, corresponding to
a distribution function 1 − (x/b)−α for x ≥ b. We let x0 ∈ Ω be an arbitrary point
for which p(x0) = 1.

We have chosen the parameter α for μα(x, ·) in a way so that (18.3) holds, with
an = n1/α , bn = 1 when α < 0, an = 1, bn = log(n) when α = 0, and an = n1/α ,
bn = 0 when α > 0.When α = 0, this follows from tail properties of the exponential
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distribution, as shown in Example 18.1. For α 	= 0, we have that

μα(x; (−∞, bn + anu])n = {1 − p(x)(1 − μα(x0; (−∞, bn + anu]))}n
→ Gα(u)p(x).

In the last step we used that μα(x0, (−∞, bn + anu])n → Gα(u). This is a well
known fact of univariate extreme value theory (see for instance Fisher and Tippett
[5], Gnedenko [7], and Chapter 1 in Resnick [17]), and it follows from tail properties
of the beta and Pareto distributions.

This means that for all these three families of distribution, the choice probabilities
will give us a tilted distribution p × Λwhich modifies the underlyingΛ-distribution
with p. This effect captures that areas with a high deterministic utility component p
are relatively more likely to get chosen. For the case α = 0 this effect means that if
utility is given byUi = h(xi ) + εi , where εi ∼ Exp(1), then the choice distribution
is an exponential tilt eh(x)Λ(dx) of the original distribution.

Example 18.4 (An example from the commuting literature) If we focus on α = 0 in
the previous example, we have an interesting special case. Suppose that a person has
received a new job, and potential residencies are distributed uniformly on B(0, R),
a disk in R

2. There is a linear cost c||x || associated with travelling to a location
x ∈ B(0, R), and there is an exponentially distributed random component associated
with each residence. This means that utility is given byU |X = x ∼ Exp(−c||x ||, 1),
where ||x || is the Euclidean distance from the origin. This gives a very simple model
to think about commuting choices. In this case, Λ has a uniform distribution on

B(0, R), and p(x) = Exp(−c||x ||). Thus, we get C(A) =
∫
A e

−c||x ||dx
∫
B(0,R)

e−c||x ||dx
. The

particular direction of commuting is often not as interesting as the distribution of
distances. The probability that we commute less than r is given by

C({x : ||x || ≤ r}) =
∫ r
0 se−csds

∫ R
0 se−csds

,

which we recognize as a truncated Gamma(2, 1/c)-distribution.

There is suggestive evidence that travel patterns follow a gamma distribution over
short distances. One good source is Burke and Brown [3], which documents the
distances people walk for transport purposes to different destinations. The data was
collected from a survey in Brisbane. Even though the investigators not onlymeasured
the time walked to work, the situation is somewhat analogous to the example above
in that walking is a roughly linear cost. They found that the distance walked for
one-leg trips is very close to a gamma distribution with shape parameter α and scale
parameter β, and the same for the total distance walked from train stations to end
destinations (see Figs. 18.1 and 18.2).

We see that the estimated parameters (α̂, β̂) are (1.42, 0.66) and (2.13, 0.37)
respectively. The estimated shape parameter is close to but not exactly 2 as would be
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Fig. 18.1 Histogram over walking distances to final destination and fitted Gamma(α, β)-dis-
tribution (Burke and Brown [3])

Fig. 18.2 Histogram over walking distances from train station to final destination and fitted
Gamma(α, β)-distribution (Burke and Brown, [3])

predicted by the theory. The focus in the paper is to test the distributional assumption
rather than to find the exact parameters, and the authors report an Anderson-Darling
test but no standard errors on the parameter estimates. Hence, we do not know if α

is significantly different from 2.
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Example 18.5 (The logit model: a special case) Let Λ be a uniform distribution on
the finite support {x1, . . . , xn0}. As in Example 18.1, let utilities be given by

Uj |X j = x ∼ Exp(h(x), 1). (18.18)

This corresponds to p(xi ) = eh(xi ) and we get

C({xi }) = eh(xi )

∑n0
j=1 e

h(x j )
.

This corresponds to the famous logit model from the random choice literature (Mc-
Fadden [15]).

The following is an example where we let Ω be a functional space. This shows
that themethodology can be applied tomore general spaces than subsets of Euclidean
space, and motivates the more general space definition we introduced in Sect. 18.2.

Example 18.6 Let Ω be the space of bounded functions on [0, 1], metrized by the
sup-norm. A function x ∈ Ω describes a continuum of choice characteristics. An
agent values a function x ∈ Ω by sampling k points of [0, 1] according to a density
function g, and valuing them according to their sum and an exponentially distributed
noise term on each observation. In this case X is a random variable taking values in
Ω with law Λ. Algebraically,

U |X = x =
∑k

j=1 x(Tj )

k
+

∑k
j=1 ε j

k
= hk(x) + ε

where Tj are i.i.d. distributed on [0, 1] with density function g, and ε j ∼ Exp(1)
independently.Wewant to find the argmax distribution onΩ .Wewill treat a sequence
of approximations as equalities, and verify ex post that such a treatment is justified.

The random variable ε has a Gamma(k, 1/k) distribution, which means that

F̄ε(z) ≡ 1 − Fε(z) =
k−1∑

m=0

e−kz (kz)
m

m! ∼ e−kz(kz)k−1

(k − 1)! ,

where the ratio of the last two expressions tends to 1 when z gets large. Now, we
use that x is bounded to get y(x) ≤ inf t∈[0,1] x(t) ≤ supt∈[0,1] x(t) ≤ ȳ(x). We write
μ(x; ·) for the law of U |X = x , and approximate the upper tail when u is large:
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1 − μ (x; (−∞, u]) = 1 −
∫ ȳ(x)

y(x)
Fε(u − y)dFhk (x)(y)

=
∫ ȳ(x)

y(x)
F̄ε(u − y)dFhk (x)(y) ∼

∫ ȳ(x)

y(x)

(k(u − y))k−1

(k − 1)! e−k(u−y)dFhk (x)(y)

∼ (ku)k−1

(k − 1)!
∫ ȳ(x)

y(x)
e−k(u−y)dFhk (x)(y) ∼ F̄ε(u)pk(x),

where pk(x) is the moment generating function of Fhk (x) with argument k. We write
ηk(u) = F̄ε(u)pk(x) − (1 − μ (x; (−∞, u])) for the approximation error. Now de-
fine an = 1/k and bn = F̄−1

ε (1/n), which gives us

μ(x; (−∞, anu + bn])n = (
1 − F̄ε

(
u
k + bn

)
pk(x) + ηk

(
u
k + bn

))n

∼ (
1 − F̄ε

(
u
k + bn

)
pk(x)

)n

∼
(
1 − e

−k( u
k +bn)kk−1( u

k +bn)
k−1

(k−1)! pk(x)

)n

∼ (
1 − pk(x)e−u F̄ε(bn)

)n

=
(
1 − pk (x)e−u

n

)n

→ (e−e−u
)pk (x) = G0(u)pk (x)

as n → ∞. It follows that (18.3) holds with α = 0 and p(x) replaced by pk(x),
provided our approximations are justified. In particular, we need lim

n→∞nF̄ε(u/k +
bn) = e−u and lim

n→∞n × ηk
(
u
k + bn

) = 0. The first of these two equations follows

from

limn→∞ nF̄ε(u/k + bn) = limn→∞ nF̄ε(bn)
∑k−1

m=0 e
−kbn km (u/k+bn)m/m!

∑k−1
m=0 e

−kbn kmbmn /m! e−u

= e−u

as F̄ε(bn) = 1/n, bn → ∞ and u/k is bounded, and for the second equation we use
that

lim
n→∞ nηk (u/k + bn) = lim

n→∞
∣∣n

{
F̄ε(u/k + bn)pk (x) − (1 − μ (x; (−∞, u/k + bn ]))}∣∣

= lim
n→∞

∣
∣n(F̄ε(u/k + bn)

∣
∣

∣
∣∣∣
∣
F̄ε(u/k+bn )pk (x)−

∫ ȳ
y F̄ε(u/k+bn−y)dFhk (x)(y)

F̄ε(u/k+bn )

∣
∣∣∣
∣

= 0.

The first term on the second line is bounded and it can be checked that the second
term converges to zero, and our result follows.

Given that Assumption 1 holds with p(x) replaced by pk(x), we get the argmax
measure

C(A; k) =
∫
A pk(x)dΛ(x)

∫
Ω
pk(x)dΛ(x)

.
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This measure has a nice consistency property when k → ∞. Indeed, by the Law of
Large Numbers, as k → ∞ the probability distribution of hk(x) converges to a point
mass at h(x) = Eg(x) = ∫ 1

0 g(s)x(s)ds, so pk(x) ∼ ekh(x). We define the maximum
value that h attains as

h̄ = sup
h′

{
h′ : Λ(x : h(x) ≤ h′) < 1

}
.

This definition ensures that Aδ = {x ∈ Ω : h(x) > h̄ − δ} has non-zero Λ-measure
for every δ.

Now, this means that lim
k→∞

C(Aδ; k)
C(Ω − A2δ; k) ≥ lim

k→∞
ek(h̄−δ)Λ(Aδ)

ek(h̄−2δ)Λ(Ω − A2δ)
= ∞,

Hence limk→∞ C(Aδ; k) = 1 for all δ > 0.We can interpret this as when k grows, the
choice becomes less random from the point of view of the statistician and the agent
will choose the option x with the highest expected value h(x) with probability 1.

18.6 Extension

We have derived a way to calculate the asymptotic behavior of the best choice Cn =
X [n:n], and have done so for a number of assumptions on the joint distribution of
(Xi ,Ui ) of characteristics and values. However, in order to extend our results to a
wider range of distributional assumptions, we must relax the requirement that X [n:n]
should converge to a non-degenerate distribution. For example, when X and U are
distributed bivariate normally with positive correlation, |X [n:n]| → ∞ almost surely,
whereas for other models, X [n:n] converges to a one-point distribution.

In these cases, it can nevertheless be possible to find a sequence of functions
hn such that hn(X [n:n]) ⇒ C for a non-degenerate random variable C . In this case,

we would have X [n:n]
d≈ h−1

n (C) for large n, where
d≈ means that the two random

variables have approximately the same distribution.
We have done some exploratory studies on this extension, and there are indications

that for a much larger class of distributions than studied in the present paper, it is

possible to find sequences hn and gn such that
n∑

i=1

δ(hn(Xi ),gn(Ui )) ⇒p ξ for some

non-degenerate Poisson process ξ with intensity measure μ on E = Ω × R. The

asymptotic argmax distribution of hn(X [n:n]) is then C(A) =
∫

R

μ(A, dx)

μ(Ω, dx)
FU (dx),

for all A ∈ B(Ω), where U = Mξ (Ω) is the maximum utility of ξ . In particular,
if μ = Λp × ν, this argmax distribution coincides with the one in Theorem 18.2.
We also conjecture that this extension can be connected to the theory of conditional
extreme values, as discussed in Heffernan and Tawn [8].
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18.7 Conclusion

Wehave shown that point process theory can be used to derive continuous approxima-
tions of discrete choice problems with a large number of options. When the random
component of utility is exponentially distributed, or a convex linear combination
of beta or Pareto distributions, we have derived analytical solutions to the approx-
imation problem. Potential applications involve commuting choices, and we have
provided suggestive evidence that some observed commuting flows distributions can
be justified within our framework.

However, there is still a need to generalize the theory to allow for more flexible
distributional assumptions. Essentially, functional formsoutside our assumeddomain
might lead to all choices asymptotically diverging, or asymptotically collapsing on
one point. For example, if the tail of utility is too thin, the distribution of choices
will converge to the set of values with the highest deterministic utility value. In
other cases, Cn(A) → 0 for any compact A, and the choice probabilities will drift
to infinity. In Sect. 18.6, we have outlined a potential extension of that would allow
for a more flexible set of assumptions on the distribution of utilities. The idea is to
renormalize the characteristics space to analyze the rate at which choice probabilities
converge or diverge as the number of points n → ∞.
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