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Abstract: The least trimmed squares estimate is defined by minimizing the sum of the h smallest 
squared residuals. We describe a simple algorithm for computing the least trimmed squares 
estimate exactly in simple linear regression, which requires O(n 3 log n) computations and O(n 2) 
storage. The idea is to compute the least squares (LS) estimate for O(n 2) subsets of size h (and 
not all (~) possible subsets!) and then to choose the LS-estimate with the smallest sum of trimmed 
squares. A faster but more complicated version of the algorithm is obtained by updating the 
subsets and LS-estimates recursively. This refined algorithm has computation time O(n 2 log n) 
and storage O(n). Some numerical examples are presented to compare the exact algorithm with 
approximative ones. The exact algorithm can easily be extended to nonlinear regression. Other 
possible extensions are exact computation of the LMS-estimate and the R-estimate defined in 
H6ssjer (1994). 

Keywords: Breakdown point; Dual plot; Least trimmed squares estimator; Simple linear regres- 
sion; Recursive; Robustness 

1. I n t r o d u c t i o n  

In the simple linear regression model, the observations Yi are generated 
according to 

Yi -~ a q-/3X i q- e i ,  i = 1 , . . . ,  n ,  (1 .1 )  

where a is the intercept parameter,/3 the slope parameter, x; the explanatory 
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variables and finally e i the error terms. If a = 0 we obtain the simple linear 
regression model without intercept, 

y i= /3x  i + e i ,  i = l , . . . , n .  (1.2) 

Let 0 denote the parameter  vector (0 = (a,  /3) in (1.1) and 0 =/3 in (1.2)). A 
quite general class of estimators may be constructed by minimizing a dispersion 
measure D of the residual vector r(O) = (rl(0)), . . . ,  rn(O)) w.r.t. 0, where ri(O) = 
ri(a, / 3 ) = Y i - a - / 3 x  i in (1.1) and ri(O)= ri(fl) = y i - / 3 x  i in (1.2). In other 
words, 

- a r g  min D(r(O)). (1.3) 
0 

Two well-known special cases of (1.3) are the least squares (LS) and Ll-estima- 
tors (with D the sum of squared residuals or the sum of absolute residuals 
respectively). In this paper, we consider the least t r immed squares estimator 
(LTS) defined by Rousseeuw (1985), where 

h 

2 (1.4) D(r)  = E r~,, 
i=1  

where ]r~l [ ~< • • • ~< I r~, [ are the ordered absolute values of the residuals, h is 
the trimming constant and cr = (o'1,... , o- n) is the vector of absolute antiranks, 
i.e., the inverse permutat ion of the ranks of the absolute values of the residuals. 
The trimming constant h is chosen to achieve the desired degree of robustness 
of the estimator. A frequently used measure of robustness is the finite sample 

• (Donoho and Huber, 1983), defined as the smallest propor- breakdown point e n 
tion of observations that after being replaced can change the estimate arbitrarily 

• ~ e * = m i n ( e ,  l - e )  (cf. much. If h/n--*e  as n--*o% it follows that e n 
Rousseeuw, 1984, Remark 1 and H6ssjer, 1994, Remark 2.2). In particular, if 
h/n--* 0.5 we obtain the maximal possible value (=  0.5) for the asymptotic 
breakdown point e*. 

Other special cases of (1.4) are the least median of squares (LMS, Rousseeuw, 
1984), S-estimators (Rousseeuw and Yohai, 1984) and R-estimators (H6ssjer, 
1994). For these estimators, D is defined as the median of squared residuals, an 
M-estimator of scale and an L-estimator of scale respectively. A problem with 
the LTS-estimator is that no reasonably fast algorithm for computing it exactly 
has been known. In the location model, an exact algorithm which requires 
O(n log n) operations is described in Rousseeuw and Leroy (1987, Chapter  4). 
In the general (multiple regression) case we could in principle compute the least 
squares estimate of all (~) subsamples of size h and then choose as our 
LTS-estimate the LS-estimate with minimal tr immed sum of squares. However, 
the required number of computations grows so fast with n that this algorithm 
becomes unpractical even for moderately large values of n. 

Instead, approximative algorithms have been proposed. In the PROGRESS 
algorithm described in Rousseeuw and Leroy (1987, Chapter 5), exact fits are 
computed for elemental subsets of size q, where q is the number of unknown 
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parameters (q = 2 in (1.1) and q = 1 in (1.2)). The exact fit with minimal 
dispersion D is then selected and finally (for the model (1.1)), the intercept of 
this fit is adjusted by means of the exact one-dimensional LTS-algorithm 
mentioned above. A refined version is obtained by adjusting for the intercept at 
each selected elemental subset (described on page 201 of Rousseeuw and Leroy, 
1987). Either all possible (~< (~)) elemental subsets are used, or alternatively, a 
smaller number of (randomly chosen) subsets. If all elemental subsets are used, 
the total number of operations becomes O(n 3 log n) in (1.1) and O(n 2 log n) in 
(1.2). This is because each evaluation of the objective function D requires 
O(n log n) operations for sorting the absolute values of the residuals. Ruppert 
(1992) defines the RANDDIR algorithm for approximate computation of the 
LTS-estimate. In each step of this algorithm, a convex linear combination of the 
current best parameter and the exact fit of the last elemental subset is evalu- 
ated, so that the search for the LTS-estimate is concentrated at the current best 
value. We remark that both of these algorithms are applicable for any estimator 
of the kind (1.4). Only the computation of the objective function D has to be 
changed. Atkinson and Weisberg (1991) define an LTS-algorithm based on 
simulated annealing and Hawkins (1993) introduces the "Feasible Set Algo- 
rithm" for approximative computation of the LTS-estimate. Both of these 
methods are based on first selecting a subset of h data-points at random and 
then successively swapping one data-point from the selected subsample with one 
of the trimmed data points. Both of these algorithms are probabilistic. They 
yield the exact estimate with a certain probability (that can be chosen arbitrarily 
close to one by running the algorithm for a sufficiently long time). 

In this paper, we present a simple algorithm for computing the LTS-estimate 
which requires O(n 3 log n) computations and O(n 2) storage for both of the 
models (1.1) and (1.2). The basic idea is that the LS-estimate of only O(n 2) out 
of all (7,) subsamples of size h need to be computed. The (absolute) dual plot of 
the data (Section 2) determines which subsamples we need to consider. In 
Section 3 we describe the algorithm for simple linear regression without inter- 
cept, and in Section 4 when the intercept is included. An improved, but more 
complicated, version of the algorithm is outlined in Section 5. It only requires 
O(n 2 log n) computations and O(n) storage. We also discuss how to extend the 
algorithm to nonlinear regression in Section 6. Finally, we discuss some numeri- 
cal aspects and extensions to multivariate regression and to the computation of 
other estimators in Section 7. 

2. Dual plots and absolute dual plots 

2.1. Dual  plots 

The dual plot  of the regression data (xl, Ya),.. . ,  (xn, Yn) interchanges the role 
of points and lines. Each point (xi, yi) is represented by the line /3 ~ ri(/3) =Yi 
-/3x~ with intercept Yi and slope - x  i. This line describes how the residual of 
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Fig. 1. Upper left: Artificial data set consisting of the four points (1, 1), (5, 5), (2, - 1) and (4, 1). 
Upper right: Dual plot for the data, with N =  6, /31 = -2 ,  /32 = 0, /33 = 1, /34 = 2 and /35 = 4. We 
see that M k = 1 and N k = 2 when k :~ 3, M 3 = 2 ,  N 3 = 4 and N31 = N32 = 2. Lower left: Absolute 
dual plot for the data, with N + = 9 ,  /3? = - 2 ,  /3~- =0,  /3~- =0.4, /3~ = 4 / 7 ,  /3~ = ] ,  /3~- =1, 
/37- = 2 and/3~ = 4. We see that N~- = 3, M~- = 1, N6 + = 4, M~- = 2. For the remaining values of 

k we have N~- = 2 and M~- = 1. 

the point (Xi, yi ) varies in a mode l  (1.2) without  intercept.  Figure lb  depicts the 
dual plot of  the data set from Figure la.  For a discussion of  dual plots, cf. 
Johnstone and Ve l l eman (1985, Sect. 2.1), and the references  in this article. Two  
other papers that make use of  dual plots are Mount  and Netanyahu (1992) and 
Rosenqvist  (1992). 

De f in e  -r( /3)= ( -Q( /3) , . . . ,  %(/3)) as the vector of  antiranks, i.e., the inverse 
permutat ion of  the ranks of  the residuals r1( /3) , . . . ,  rn(/3). In Sect ion 4, we  will 
make constant use o f  how I"(/3) varies w i th /3 .  It is clear from Figure lb  that the 
antiranks ~'i(/3) only change at the intersection of  two lines /3 ~ ri(/3) and 
/3 ~ G(/3)" This occurres w h e n  

/3 ~U Yi - Yj 
= = - - ,  \ i - - / = \ j ,  (2.1) 

X i - -  Xj  

assuming that we  only def ine  these quantities w h e n  the denominators  are 
nonzero.  For simplicity, we  assume that all (x i ,  Yi) are different,  so that the l ines 
in the dual plot intersect at isolated values o f / 3 .  Let  /31 < "'" < /3N-1 ,  be the 
ordered set o f /3 -va lues  that is formed w h e n  (i,  j )  ranges over all possible pairs 
in (2.1). This def ines  a division of  the real l ine into N intervals I~ = ( /3~-1, /3k),  
k = 1 . . . .  , N (where  /30 = - o o  and /3 N = oo). If at least two x-coordinates  of  the 
data points are distinct we  have 2 ~< N ~< (2) + 1. 
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The  vector of antiranks ,r(/3) is constant  on the interval I t ,  k -- 1 , . . . ,  N. We 
denote  this constant  value by ~./, = (7~ . . . . .  ~'nk). The  vector ~.~+1 differs f rom -r k 
in that  only a few ranks are switched, because some lines in the dual plot  
intersect  at ilk. Typically, only two lines intersect, but  in principle the number  
Ng of intersecting lines could be as high as n (which occurs when  r1(/3 k) . . . .  
= rn(/3k)). Fur thermore ,  the lines that  intersect  at /3k can be organized into M k 
subsets depending  on the value of ri(/3~,). Only the antiranks within the same 
subset are switched when  13 passes /3k" Suppose  that  the ranks on I k of the l-th 
subset are i~, i~+ 1 . . . . .  Jr, with i 1 <J l  < i 2  " ' "  <JMk' and let N k t = j l - - i t +  1 be 
the number  indices in the l-th group. (We omit  the dependence  of il and jz on k 
in the notation.)  We see that  in the regression plot, there are Nkt points that  are 
collinear with slope/3k.  

2.2. Absolute dual plots 

Alternatively, we may express how the absolute values of the residuals 1 I",.(/3) 1 
vary with /3. We call this an absolute dual plot. An absolute dual  plot  of a 
regression data set is shown in Figure lc. We will make  use of this plot  in 
Section 3. 

Typically, two _ curves /3 ~ Iri(/3) l and /3--9 I r~(/3) l intersect at two points,  
e i ther  w h e n / 3  =/3ij, or when  

Yi +Yj i :/=j, x i ~ - x j ,  (2.2) 
/ 3 = L J =  x i + x  i , 

which happens  when  ri( /3)= --rj(/3). Let /3~- < . . -  </3~+_ 1 be the o rdered  
sequence  of all intersect ion points. This defines N ÷ intervals I~- = (/3[-1, /3[). 

Let  0-(/3) denote  the vector of absolute antiranks compu ted  f rom 
[ r1(/3) I . . . . .  I rn(/3) I. We see that  o'(/3) is constant  on each of the intervals I~-. 

Deno te  this constant  value by 0.k __ (tr~ . . . .  , trf).  In analogy with the nota t ion 
for dual  plots, let N~ be the number  of curves intersecting a t /3  +, divided into k 
M~- groups. The  l-th group has N~  elements  with indices i l , . . . ,  Jr 

3. Simple linear regression without intercept 

3.1. Minimizing h-samples 

To simplify notat ion,  we int roduce (valid also in the general  mult iple l inear 
regression setup): 

Definition. A subsample of size h of {(Xi, yi)}in=l, for which the LS-est imate 
equals the LTS-est imate,  is called a minimizing h-sample.  
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The following proposition gives a clue to finding a minimizing h-sample: 

Proposition 1. Let  f3 be an exact LTS-estimate (not necessarily unique) o f  the 
slope parameter in (1.2). Then (t~l( ~ ) , . . . ,  O~h(/3)) define the indices o f  a minimizing 
h-sample. 

Proof. For any/3, 
h h h 

E r~,(~)(/3) 2>/ E r~(t~)(/3) 2>~ E r~i(t~)(/3) 2, (3.1) 
i=1 i=1 i=1 

where the first inequality follows by the definition of the absolute antiranks, and 
the second one from the definition of the LTS-estimate. But (3.1) is equivalent 
to saying that the h-sample with indices o-1(/3~),..., o-h(/3 ~) yields an LS-estimate 

[] 

3.2. The simple algorithm 

According to Proposition 1, we find the indices of a minimizing h-sample by 
varying {o-i(/3)}/h=1 as a function of /3. But since the absolute antiranks are 
piecewise constant as described above, we only have to compute them for N ÷ 
values of/3, one from each interval I k. 

Given a permutation or = ( t r l , . . . ,%)  of (1 , . . . ,n) ,  let /3h~(tr) be the LS- 
estimate computed from {(x~, y~)}~+h-1. The algorithm for computing the 

j • j -  

LTS-estimate/3 may now be described as follows: 

Exact LTS algorithm for calculating /3: 
1. Initialize:Compute/3~ < . . -  </3~+-1, o'1, ~1 :=  ~ h l ( O r l ) '  Da := Ehlr~il(/31)2 

and put /3 =/3a, Dmin = D1 
For k = l t o  N + - l d o  

2. Compute tr k+l 
3. If (~rlk+l,..~, Crh k+l) =~ (~r~ . . . .  ,Crh k) then 

Compute /3k + 1 := [3hS( trk + 1) 
Compute D k + 1 h ^ 2 , :=  Ei=lrc~ik+l(/3k+l) 
If Dk+ 1 < Dmi n then 

O m i n )  Ok +l and /3~/3k+1 

Some remarks on the steps in the algorithm: 

1. Computation of all /3/+ requires sorting of {flij, /3ij; 1 ~< i < j  ~< n}, which 
may be done in O(n 2 log n) steps and requires O(n 2) storage. Then tr I requires 
sorting of {I ri(/3)I}i~afor some /3 ~ 11. This requires O(n log n) computations. 
The computation of /31 and D 1 on the other hand requires only O(n) opera- 
tions. 

2. For each k, ~r k+l may be computed in O(n log n) time by sorting 
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+ 

{I ri(/3)l, 1 ~<i~< n} for any/3  ~ I~+ 1 = (/3~-, /3~-+1). The total number  of opera- 
tions becomes O ( n  3 log n). 

3. This step is actually skipped for most values of k. We only have to go 
through it when h ~ {il , . . .  ,Jl), for some l ~ {1, 2 , . . . ,  M~}. (For instance, when 
no three points are collinear and if Nk + = 2 for all k, the condition for entering 
step 3 becomes i 1 = h ,  and the fraction of intersection points satisfying this 
should be approximately l / n ,  although we have no strict proof of this.) Each 
LS-estimate /3~,+1 may be found in O(n)  steps. An upper  bound for the total 
number  of operations in Step 3 is therefore  O(rt3).  

Remark.  The O ( n  2) storage is not necessary if we let /3 range over the values 
{J~12, J~13 . . . .  , ~ n - l , n ,  /312, /312,'",/3n-l,n} instead of {/3? . . . .  ,/3~+ 1}. This re- 
quires som changes in Step 2, since we don't  know the intervals I~ , . . . ,  I~,+. 

3.3. Numerical examples 

Figure 2 displays an artificial data set consisting of six points, with six LTS fits, 
one using the exact algorithm described here, one using the P R O G R E S S  
algorithm and three using the R A N D D I R  algorithm with 20 randomly chosen 
elemental  subsets. The truncation point h is 5 in all cases. In this case, the 
P R O G R E S S  algorithm gives a poor approximation to the exact estimate, 
whereas the R A N D D I R  estimates are fairly close. 

Our  next example is the lactic data described in Afifi and Azen (1979, p. 125). 
This data set concerns the measured value of lactic acid concentrat ion in blood 
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Fig. 2. Simple linear regression through the origin. LTS estimates for an artificial data set with 
n = 6 and h = 5, using an exact algorithm (solid line, /3 = 1.309, Dmin = 13.427), the PROGRESS 
algorithm (dotted line,/3 = 1.040, Omi n = 18.574) and the RANDDIR algorithm with 20 elemental 

subsets (dashdotted lines, fl = 1.336, 1.305, 1.322 and Dmi n = 13.481, 13.428, 13.440). 
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Fig. 3. Simple linear regression through the origin. LTS estimates for the lactic data with n = 20 
and h = 10, using an exact algorithm (solid line, Dmi n = 1.5785, /3 = 1.3061) and the PROGRESS 
algorithm (dotted line, Dmin  = 1.5871,/3 = 1.3100). Four RANDDIR fits with 50 elemental subsets 
had /3 ranging between 1.3057 and 1.3074 and three RANDDIR estimates with 100 elemental 

subsets varied between 1.3061 and 1.3062. 

(Yi) as a function of the true value (xi). The exact LTS fit and PROGRESS LTS 
fit are displayed in Figure 3. In this case, the two lines are almost indistinguish- 
able, as were all RANDDIR fits (with 50 and 100 random elemental subsets) 
that we tried. 

4. Simple linear regression with intercept 

4.1. Minimiz ing h-samples 

The following proposition characterizes the minimizing h-samples when an 
intercept is present. 

Proposition 2. Let  O= (&,/3) be an exact LTS-es t imate  in the mode l  (1.1) (no t  
necessarily unique) .  Then  f o r  s o m e  i, 1 <~ i <~ n - h + 1, the vector 
( ~'i( [3 ), . . . , ~'i + h -1(13 ) ) gives the indices o f  a minimiz ing h-sample.  

Proof. We may rewrite (1.3) as 

(&,/3) = arg min min D ( r ( o t , / 3 ) ) .  (4.1) 

The inner minimization in (4.1), when/3 is kept fixed, corresponds to finding the 
LTS location estimate from the "sample" {y/-/3xi}i~ 1. By the one-dimensional 
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algorithm described in Rousseeuw and Leroy (1987, Chapter  4), there exists an 
i(/3), 1 ~< i(/3) ~< n - h + 1, such that 

with 

i([3)+h - 1 

min D(r(a ,  /3)) = ~ r~:(t~)(a(/3), /3)2, (4.2) 
a j = i(/3) 

1 i ( f l )+h-  1 

a(fl) = -~ E rj(fl). 
j = i(13) 

In particular, 0 = (a , /~)  = (a(/~), fl). We then obtain for any (a , /3 )  that 

i([3)+h - 1 i (~ )+h  - 1 

E r~:(t~)(a, / 3 ) 2 >  E G,<,)(a(/3), 13) 2=  min D(a,  [3) 
j = i(fl) j = i(fl) a 

i(fi) + h - I 

> min D(a,  f l )= E r , , ,~)(a(13) ,  ~)2 
a i = i(/3) 

i ( /3)+h- 1 ^ 2 
= )--'. r,,<~)( 0 ) , 

i=,<:) 
(4.3) 

where the first inequality in (4.3) follows from (4.2). But (4.3) implies that the 
^ ^ 

LS-estimate computed from the h-sample ri(~)(/3),..., Ti(/~)+ h_ 1(/3) is 0. [] 

4.2. The simple algorithm 

We know from Proposition 2 that the indices of a minimizing h-sample are of 
the form {T i ( /3 ) , . . . ,T i+h_ l ( /3 ) }  for some fl ~ E and i ~ { 1 , . . . , n - h  + 1}. The 
antiranks of the residuals are piecewise constant, and they only change at 
i l l , . . . , /3s-1.  The algorithm is based on the following: At each fl~ we compute 
the LS-estimates of those h-samples (ri(fl), . . . ,  Ti+h_l(fl)} that are changed at 

/3 =&. 
Given a permutat ion r ,  let 0~( ' r )  ^hi ^ "  = (aLS(~'), /3h~('r)) be the LS-estimate 

computed from {(x,j, y,j)}j~h-1. The algorithm may be formulated as follows: 

Exact LTS algorithm for calculating 0 -- (t~,/~): 
^ ^hi 1 1. Initialize: C o m p u t e  /31 < " '"  < /3N-1, "rl, 81i :-- eLS(~ ), Dli := 

Ei+h--l~ [~ "12 :=i grl\Uli] , i = 1, . . . ,  n -  h + 1, and put Dmi n = min i D l i  , 0 = arg min~,/ 
D l i .  

For k - - l t o  N - l d o  
2. For all i such that (r f+l , . . . ,  7ik~l 1) ~ ( r f , . . . ,  r/k+h_l) do 

^ ^ ~ - t -  Compute Ok+l , i  :=  0 I ~  ( ' / 'k  1) 
Compute D k + l ,  i := v , i + h - l _  [ ~  "~2 " ' j = i  l r f + l k ~ k +  1,i J 

If  Dk+ 1,i < Dmin then 
Dmin "-'->Dk+l, i and 0-+ Ok+l,/ 
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Some remarks on the algorithm: 

1. As in Section 3, the computation of all / 3 i  requires O(n 2 log n) operations 
and O(n 2) storage. The vector ~.1 is obtained by ordering of {~(/3)} for some 
/3 ~ 11. This part requires O(n log n) operations. The quantities 0 a i  and Dli are 
computed in O(n) time for each i giving a total of O(n 2) operations. 

2. This step is analogous to Step 2 in Section 3. We compute "r k+l by sorting 
of {ri(/3)} for some /3 ~ I/~+1. This gives a total of O(n 3 log n) operations. 

3. In this step we have to determine for which pairs (k + 1, i) Ok÷l, i and 
Dk+I, i have to be computed, and then compute them. The condition is simply 
that (~-~ + 1, • . . , T ki+h + 1 . . . .  1) =~ (z~, , ~'~+h-1). A pair (k + 1, i) satisfies this iff either 
i t ~< i ~<Jt or i t ~< i - h + 1 ~<jz for some l. Observe that the indices i I < J l  < i2 < 
"'" <JM~ may be obtained in O(n) time when comparing -r ~ with ,r ~÷1 (which 
has been found in Step 2). It thus takes O(n) operations for each k and all in all 
O ( n  3) steps to find out for which pairs (k + 1, i) further computation is needed. 
For each fixed k there are at most 2N~^such pairs, which gives 2S, N k = O(n 2) 
pairs when ranging over k. Since each Ok+ li and D k + l i  may be computed in 
O(n) time, the total number of operations becomes O(n~). 

4.3. Numerical examples 

Figure 4 displays an artificial data set consisting of 13 points together with nine 
fitted regression lines, one using the exact algorithm described here, three using 
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Fig. 4. Simple linear regression. LTS estimates for an artificial data set with n = 13 and h = 7, 
using an exact algorithm (solid line, D m i  n = 13.8557), the PROGRESS algorithm without intercept 
adjustment (dotted line, upper left, Dmi n = 14.64), with one intercept adjustment (dotted line, 
upper right, Dmi n = 14.17) and with several intercept adjustments (dotted line, lower left, D~nin = 
13.8571) and the RANDDIR algorithm with 100 elemental subsets (dotted lines, lower right, 

Dmi n = 14.827, 15.262, 14.520, 14.832, 13.884). 
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different versions of the PROGRESS algorithm (without, with one and with 
several intercept adjustments respectively, as described in Section 1), and finally 
five R A N D D I R  fits with 100 randomly chosen elemental subsets. The trunca- 
tion point h is 7 in all cases. The PROGRESS lines with zero and one intercept 
adjustments differ noticeably form the exact LTS fit, whereas the PROGRESS 
line with several intercept adjustments is practically indistinguishable from it. 
The R A N D D I R  fits approximate the true regression line better than the two 
simpler PROGRESS algorithms, but not as good as the PROGRESS algorithm 
with several intercept adjustments. 

The next example, the stars data set (cf. Rousseeuw and Leroy, 1987, p. 27), 
shows for 47 stars the light intensity against the effective temperature at the 
surface on a log-log scale. The data points are shown in Figure 5 together with 
four regression lines: Exact, PROGRESS without intercept adjustments and two 
R A N D D I R  fits with 500 randomly chosen elemental subsets. The truncation 
point h was 24 in all cases. The PROGRESS fit with one intercept adjustment 
almost coincides with the simple PROGRESS fit, whereas the PROGRESS fit 
with several adjustments was almost identical to the exact fit. Of the two 
R A N D D I R  fits, one was even closer to the exact one than the most accurate 
PROGRESS line based on several intercept adjustments, whereas the other was 
further away. 

In order to obtain a more quantitative comparison between the various 
algorithms, we undertook a small simulation study. The main bulk of [n(1 -E*) ]  
data points (x  i, Yi) were generated from a bivariate normal distribution with 
mean (0, 0) and diagonal covariance matrix diag(1, ore). The remaining outlying 
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Fig. 5a. Simple linear regression. LTS estimates for the stars data with n = 47 and h = 24, using an 
exact algorithm (solid line, O m i  n = 0.7324), and the PROGRESS algorithm (dotted line, D m i  n = 

0.7431). 
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Fig. 5b. T h e  stars data (n = 47, h = 24), using two R ~ d q D D I R  fits with 500 elemental  subsets 
(Dmi . = 0.7324, 0.7389). 

observations were generated form another normal distribution with mean (/z,/z) 
and covariance matrix diag(~, ~). We computed exact LTS estimates {(&i, 
/3/)}N~Ic for NMC(_= 200) Monte Carlo replicates of the data, and corresponding 
estimates {(ffi, ~ ~NMc for each of the studied approximative LTS algorithms. I" ' iJ ,~i  = 1 

Table 1 shows values of 

A a  = E ( ~ i - - S i )  2 

i = 1  

Table 1 
Comparison between different approximative LTS algorithms; PROGRESS without intercept 
adjustment (P), with one intercept adjustment (P1) and several intercept adjustments (P2), 
RANDDIR with Nrand = (~) (R1) and RANDDIR with Nrana = 5(~) (R2), where Nrand is the 
number of randomly chosen elemental subsets 

n e* tr /z P P1 P2 R1 R2 

Aa 20 0.0 0.5 2 0.208 0.158 0.025 0.299 0.125 
A/3 20 0.0 0.5 2 0.299 0.299 0.045 0.411 0.321 
zaa 20 0.2 0.5 2 0.508 0.477 0.081 0.610 0.446 
A/3 20 0.2 0.5 2 0.995 0.995 0.051 1.082 0.945 
za~ 20 0.4 0.5 2 0.482 0.386 0.037 0.544 0.108 
,:1/3 20 0.4 0.5 2 0.238 0.238 0.045 0.302 0.049 
Aa 50 0.2 0.5 2 0.346 0.290 0.014 0.266 0.215 
A/3 50 0.2 0.5 2 0.537 0.537 0.015 0.488 0.487 
Aa 20 0.2 0.5 5 0.335 0.267 0.014 0.203 0.087 
A/3 20 0.2 0.5 5 0.402 0.402 0.030 0.657 0.242 
Aa 20 0.2 2.0 2 1.014 0.871 0.170 1.016 0.172 
/1/3 20 0.2 2.0 2 0.613 0.613 0.074 0.514 0.047 
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and 

~ N ~ c  NMC A/3 = E ( ~ i - - ~ i )  2 
i=l 

for each algorithm and different combinations of n, e*, o- and /x. The trunca- 
tion point h was chosen to [0.6n]. 

Generally, the PROGRESS algorithm with several intercept adjustments (P2) 
gave the best results, followed by RANDDIR.  (Of course, the R A N D D I R  
algorithm can be made arbitrarily good by increasing the number  of randomly 
chosen elemental subsets.) There is a theoretical reason why our exact fit is very 
close to the P2 fit. The latter algorithm computes intercept adjustments over the 
grid /31,.",/3N-a, whereas the exact algorithm can be viewed as if intercept 
adjustments are made for all /3 ~ E. For large n, the grid is so fine that the 
difference is negligible. However, for small n, the difference can be quite 
noticeable. We conjecture that the R A N D D I R  algorithm would have (at least) 
similar performance as P2 if intercept adjustment is performed for each elemen- 
tal subset. Of course, an alternative to this computationally more intensive 
refinement of R A N D D I R  is simply to take more random elemental subsets. 

5. The  refined a lgor i thm 

Considerable savings in computation time and storage are possible in Sections 3 
and 4. The price for this is a more complicated algorithm. We confine ourselves 
to describing how to modify the algorithm for regression with intercept. The 
modification of the algorithm in Section 3 may be done similarly. 

The basic idea is to compute -r k+l, Ok+l, i and Dk+l ,  i recursively from "r k, O~i 
and D1, ~ respectively. This reduces the computation time from O(n 3 log n) to 
O(n z log n). The amount  of storage may also be decreased from O(n z) to O(n) 
by computing /3k+1 recursively from ,r k and /3k for each k in Step 2. This 
implies that /31 < "'" </3N-1 don't  have to be computed and stored at once in 
Step 1. More precisely, the steps of the algorithm are modified as follows: 

1. The computation of /31 < . . .  <fiN-1 is postponed until Step 2. This 
means that we cannot find "r 1 by sorting {ri(fl)} for some /3 ~ I  1 = ( - ~ ,  /31), 
since we don't  know /31 yet. However, as /3 ~ - ~ ,  sorting {ri(/3)} becomes 
equivalent to ordering {xi}, where observations with equal x-coordinates are 
ordered with respect to their y-coordinates. 

2. We start with a schematic description on how to compute -r k+ 1 recursively 
from ~.k: 

7- k+l  = ,ir k 

For / = l t o M  k do 
For m = il to jz do  

T k + l  = T.k . 
m Jlq-tl--m 
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It remains to compute  M k, i1, Jl . . . .  , jM k. Given /3k-1  (with/3 0 : - ~ )  and "r k we 
only have to compute  and store the n - 1 intersection points/3¢~¢?+1' i = 1 , . . . ,  n 
- 1. The reason is that /3k may be found within this "sublist" of intersection 
points as the smallest value greater than /3k-1, or more  precisely; /~V¢?+~ =i lk  
exactly when i ~ {i l , . . . ,  Jl - 1} for some l = 1 , . . . ,  M k. So the union of all pairs 
(i, i + 1) for which/3~?~÷, =/3 k is U l<t<Mk{il,... ,_~/}. At each iteration of Step 2 
we keep an ordered list of  the n - 1 quantities (/3~¢?+1, i), i = 1 , . . . ,  n - 1. The 
ordering is made w.r.t, the first component ,  and if two vectors have equal first 
coordinate they are ordered w.r.t, the second one. It requires o ( N  k) operat ions 
to extract /3k,  Mk and i l ,  Jl,  i2 . . . .  , JM~ from this list. We  also have to update  
this ordered list at each iteration k. There  are at most Nk + Mk /3-values that 
have to be  replaced from the old list, namely all ( ~ ? ÷ , ,  i) such that i t - 1 ~< i ~<Jt 
for some l = 1 , . . . ,  M k. Since each new value may be inserted into the ordered  
sequence of intersection points in O(log n) time using binary search, the whole 
list can be updated  after O ( N  k log n) operations.  In conclusion, the total 
number  of operat ions in Step 2 becomes  O ( E ~ N  k log n) = O(n 2 log n). 

3. In this step we now compute  0~÷1.i and Ok+x, i recursively from Oki and 
Dki respectively, for all 1 ~< i ~< n - h + 1 such that (~-/~+a,..., ~-/k+~_ 1) :~ 

. . . .  , i+h-1)" We have already computed  M k, il , . . . ,JM~ in S t e p 2 ,  and this 
information may be used in order  to derive for which values of i 0k~ and Dk~ 
have to be changed: iff either i ~ {i t + 1 . . . .  , Jr} or i + h - 1 ~ {i t . . . .  , Jl - 1} for 
some 1 ~< l ~< M k. We  will use the fact that b o t h  ~ki and Dk~ may be computed  
from the five quantities Shxi('r k) = E~Lhi-lx~, 3v~hi[i,,.l.k~)= jL, i_i'r~i+h-1 .y,:k, Sxx('Thi k )  = 
v ' i + h - l . . 2  ~ h i ¢  k'~ "r ' , i+h-1 . - ~ - o h i g  Jk'~ " i + h - I  2 ~ -  "J" 1..,i= i A,,rk , Oxy["l" ) = Z.,i= i. X¢k _ anu o~.~'H ) ~" ~ j = i  Yrf" We will now show 

J hi k+el ~i k . how to update  Sxx(~- ) from Sxx(~" ). 

Recursive computation of  Sxx-quantities in Step 3. 
hi k . c, h i l  k +  Sxx(, r )__, ~x~,  r 1 ) , i = l , . . . , n _ h + l  

F o r l = l t o  M k do 
m 0 = max(h, i t) 
For rn = rn o to J l -  1 do 

s h , m - h + l t  k + l )  c, h m - h + l t  k+l~ m 2 Jl 2 
xx  ~"d" --'> ~ x x  I ,T ) "Jr E j = i  XT~+I - -  E j = i l ÷ j , _ r n X , r f + l  

m 0 = min(n - h + 1, Jr) 
For  m = i  t + l t o m  0 do 

s h m i  k+l'~ ¢,hmr k+l~ q_ ~"~Jt X2.+. ~ i l + j t - m  2 
xx  I,'r ) '--> Oxx  ~'i" 1 j _  __. -m--~.K J - -  l..~J=it Xr~+! 

The first line represents  no computation,  it is just for convenience that we 
change names on the Sxx-quantities. We see that the number  of  computat ions in 
Step 3 for updating Sxx is O(~k, tN~l)= O(n2). The last estimate holds since 
Ek.l(~ vk,') ~< (~), which follows form the fact that each pair of lines in the dual plot 
intersect at no more than one value of /3 .  Hence,  the total amount  of computa-  
tion becomes O(n 2) in this step (since the updating of Sxy, Syy, S x and Sy 
require the same order  number  of computations).  The amount  of storage is 
O(n),  since we need to store {Shxix, Shxiy, shyly, Shx i and Shyi; i =  1 , . . . , n  - h  + 1}. 
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6. Nonlinear regression 

279 

Our algorithm may also be extended to the nonlinear regression model 

y i = g ( a ,  /3, x i )+ei ,  i = l , . . . , n ,  (6.1) 

where g is some known nonlinear function that is strictly monotone in its first 
argument. We confine ourselves to the case when a is unknown, extending the 
algorithm of Section 4. When a = 0, the algorithm in Section 3 may be extended 
similarly. Stromberg (1993b) describes a method for computing the LMS-esti- 
mate exactly, in the special case when g(a ,  /3, x ) = ~ ( a  + f ix),  with ~ strictly 
monotone.  

The dual plot now consists of the curves/3 ~ r~(/3) = y~ - g(O,/3, xi). Consider 
the equation 

Fi(/3 ) =fj(/3) ¢~ g(O, /3, Xi)--g(0,  /3, X j ) = Y i - Y j ,  i4~j, (6.2) 

which is nonlinear and may have an arbitrary number  of solutions (including 0). 
Assuming that (6.2) has a finite number  of solutions for each pair (i, j)  we may 
order the solutions (not including values occuring several times) as/31 < " " " < 
/3N-l" The vector of antiranks ,r(/3) (still computed from {ri(/3)}inl ) is then 
piecewise constant on the intervals I k = (~3k-X, /3k), k = 1 . . . .  ,N.  Denote  this 
constant value by -r k =  (~-~,..., r~). (We use the same notation as in Section 4 
and hope that this causes no confusion.) 

The LTS-estimate, if it exists, is still given by (1.3)-(1.4), but with ri(O) = Yi - 
g (a ,  /3, xi). Moreover, Proposition 2 carries over (even though the proof is 
changed a little), and this means that we only have to compute the nonlinear 
LS-estimate 0h~( 'r / ' )  of 0 = ( a ,  /3) from the h-sample (x~?, y.rik),...,(X~.ik+h_l , 
y,p+h_ ), for all 1 ~< k ~< N, 1 ~< i ~< n - h + 1. (And as in Section 4, given k this 
only has to be done for some values of i.) The algorithm in Section 4 carries 

^ " h i  k over with only the change that Oki = 8N~(~" ), and #ki may be found by 
Newton-Raphson ' s  algorithm in O(n) steps, if the number  of iterations is no 
larger than a fixed predefined number.  On the other hand Dki is derived as 
before from {r~(Oki)}]+=i h-1 in O(n) steps. If also the number  of solutions of (6.2) 
is upper  bounded by some constant C, we obtain N ~< C(~) + 1 = O(n2). Let N k, 
M k and N~z have the same meaning as in Section 4. The number  of pairs (k, i) 

O(E~ = 1 Ark) = O(n2). Hence, for which 0ki and Dki have to be computed is then N-a 
the total number  of operations required for computing all 0k~ and Dki is O(n3). 
Since the computat ion time of Step 2 is O(n 3 log n) as in Section 4, the overall 
computation time is O(n 3 log n). 

The refined algorithm for linear regression in Section 5 may also be extended 
to the nonlinear case, with the following modifications: 

• The calculation of 'T 1 depends on how g(0,/3, x) varies with x when 
3 - - - )  - - O 0  
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Ok+l, i c a n n o t  be found recursively from Oki, but has to computed "from 
scratch". 

• We also need to compute Dk+l,g from scratch. 

This means that the computation time is still O(n 3) in Step 3. On the other 
hand, the recursive computation of "r ~+a from -r k may be carried over to the 
nonlinear case. Since this requires only O(n 2 log n) operations, the overall 
computation time becomes O(n3). 

7. Concluding remarks 

In principle, it is possible to use dual plots in multiple linear regression for 
computing the LTS-estimate. This would subdivide the parameter  space into 
polygon-shaped regions (generalizing I [ , . . . ,  I~+ and I1, . . . ,  I N) for each of 
which LS-estimates are computed. For the model including an intercept, these 
regions are formed by the O(n  2) ( p  -- 1)-dimensional hyperplanes in ~P defined 
by ri(O) = rj(O), where 0 is now the p-dimensional vector of slope parameters. 
For models without intercept, 0 is the vector of regression parameters, and we 
also have to include the hyperplanes ri(O)=-rj(O).  It can be shown by 
combinatorial geometry (cf. e.g. Edelsbrunner,  1987), that the number of regions 
formed by the hyperplanes is O(n2P), which grows quickly with n for p > 1. It is 
also difficult to define the partition properly, since we can no longer order the 
regions as in the one-dimensional case. 

We formulated the improved algorithm in Section 5 recursively, in order to 
reduce the order number of computations. (Rousseeuw and Leroy, 1987, Chap- 
ter 4, also formulated their exact LTS location algorithm recursively.) Apart  
from the increased complexity of the algorithm, there is also a problem with 
unstability. First, roundoff errors propagate in the recursive computations of Oki 
(or/3~) and Dki (or D~) in Step 3, so it is important to have high accuracy in the 
computations. An even more crucial point is the recursive computation of the 
antirank vectors -r k (or ~r k) in Step 2. If a mistake is done in this step for some 
k, the whole algorithm sidetracks. The important thing is to order all the 
intersection points flij (or/3ij) correctly, in order to get the true values of N k, 
M~, i l , . . . , jM k. The risk of a numerical mistake is greatest when several 
intersection points are very close or equal (N k >/3 for some k). Since the 
number of intersection points is of the order O(n2), the situation quickly 
becomes worse when the sample size increases. A way out of this dilemma is to 
represent all the data points (x i, Yi) and intersection points /3ij by rational 
numbers instead of floating point numbers, so that all calculations and compar- 
isons can be made exactly. If a floating point mode is used, it is still possible to 
correct all possible mistakes made in the calculation of "r k (~rk). We simply 
check that {r~k(/3)}?=l is an ordered sequence for some fl Gig. However, this 
requires O(n)' operations for each k, and the total number of calculations 
becomes O(n3). 
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Another issue is the generalization of the exact LTS algorithm to computa- 
tion of other estimates• In principle, any estimator of the form (1.3) can be 
computed in the same way, if the objective function has the form 

D ( r ) = / 5 ( l r l ~ , , . . . ,  ] r I~h), (7.1) 

a function of the h smallest absolute values that is increasing in each argument. 
In the rest of this section we confine ourselves to discussing how the algorithm 
in Section 4 for the model (1.1) with intercept may be extended. We only have to 
modify the computation of Oki in the LTS algorithm, so that 

Oki := arg min/5( I r~(0)  I , . - . ,  I r~Lh_,(0) l). (7.2) 
0 

First, we see that the LTS-estimator corresponds to 
h 

/5( rl l,. .., Irhl)= E r  2, 
i=1  

so that 0ki in (7.2) is the LS-estimator of i+h-1 0 computed from {x~k, yrk)}i_i . The 
• J . i ~ . - -  . 

main reason why we have concentrated on the LTS-est~mator m thls paper is 
that the LS-estimator is easy to compute, both from scratch and recursively. 
Another example is the R-estimator considered by H6ssjer (1994), where 

h 

D ( r ) =  Y ' ~ a n ( i ) l r < l ,  

and an(l) . . . .  , an(h)  are nonnegative scores (with an(h) > 0). In this case 
h 

/ 5 ( [ q  I , . . . ,  [rh[) = Y ' . a n ( R , ) [ r i [ ,  (7.3) 
i = l  

where R i is the rank of I rel among Jr1 I , . . . ,  I rh I. The function 
15( I r l (0 ) I , . . . ,  I rh(O)]) is convex in 0 if 0 ~< al(1) ~< --" ~< an(h) (McKean and 
Schrader, 1980, Theorem 1), and 0k~ may be computed by iterating the 
reweighted least-squares algorithm described by Cheng and Hettmansperger 
(1983). Observe also that the gradient of /5 is a signed rank statistic (cf. e.g. 
Hettmansperger and McKean, 1983). 

The LMS-estimator is (essentially) a special case of the least quantile of 
squares (LQS) estimator, which has an objective function D ( r ) =  Ir~hl 2. The 
square is unimportant for the minimization, so we may as well put D ( r )  = I r~h l, 
and 

/ 5 ( r  1 . . . .  , rh) = m a x  I r i I. (7.4) 
l ~i <~h 

In this c a s e  Oki becomes a Chebyshev (or minimax) estimator. Hence, the exact 
LQS-estimate may be found by means of the algorithm in Section 4. Note that 
(7.4) is a special case of (7.3), with an(l) . . . . .  a~(h - 1) = 0 and an(h) = 1. 
Exact algorithms for the LQS-estimate have been found by Steele and Steiger 
(1986), Souvaine and Steele (1986) and Stromberg (1993a). 



282 0. H6ssjer / Least trimmed squares estimate 

Acknowledgement 

T h e  a u t h o r  wishes  to t h a n k  P e t e r  R o u s s e e u w ,  A r n o l d  S t r o m b e r g  and  two 
r e f e r e e s  for  va luab le  c o m m e n t s .  All  p r o g r a m s  w e r e  wr i t t en  in M A T L A B  code.  

References 

Afifi, A.A. and S.P. Azen, Statistical analysis, a computer oriented approach, 2nd ed. (Academic 
Press, New York, 1979). 

Atkinson, A.C. and S. Weisberg, Simulated annealing for the detection of multiple outliers using 
least squares and least median of squares fitting, in: W. Stahel and S. Weisberg (Eds.), 
Directions in robust statistics and diagnostics (New York, Springer-Verlag, 1991). 

Cheng, K-S. and T.P. Hettmansperger, Weighted least squares estimates, Commun. Statist.-Theor. 
Meth. 12(9) (1983) 1069-1086. 

Donoho, D.L and P.J. Huber, The notion of breakdown point, in: P. Bickel, K. Doksum and J.L. 
Hodges, Jr. (Eds.), A festschrift for Erich Lehmann (Wadsworth, Belmont, CA, 1983). 

Hettmansperger, T.P. and J.W. McKean, A geometric interpretation of inferences based on ranks 
in the linear model, J. Amer. Statist. Assoc. 78 (1983) 885-893. 

Hawkins, D.M., The feasible set algorithm for least trimmed squares regression, to appear in 
Comput. Statist. Data Anal. (1993). 

H6ssjer, O., Rank-based estimates in the linear model with high breakdown point, to appear in J. 
Amer. Statist. Assoc. (1994). 

Johnstone, I.M. and P.F. Velleman, The resistant line and related regression methods, J. Amer. 
Stat. Assoc. 80 (1985) 1041-1054. 

McKean, J.W. and R.M. Schrader, The geometry of robust procedures in linear models, J. Roy. 
Statist. Soc. B 42 (1990) 366-371. 

Mount, D.M. and N.S. Netanyahu, Computationally efficient algorithms for a highly robust line 
estimator, Technical Report (Center for Automation Research, University of Maryland, 1992). 

Rosenqvist, A., Robust simple regression using the Hough transform, Technical Report (Dept. of 
Mathematical Statistics, Lunds University, Sweden, 1992). 

Rousseeuw, P.J., Least median of squares regression, J. Amer. Star. Assoc. 79 (1984) 871-880. 
Rousseeuw, P.J., Multivariate estimation with high breakdown point, in: W. Grossmann, G. Pflug, 

I. Vincze and W. Wertz (Eds.), Mathematical statistics and applications, Vol. B, (Reidel, 
Dordrecht, The Netherlands, 1985) 283-297. 

Rousseeuw, P.J. and A. Leroy, Robust regression and outlier detection (Wiley, New York, 1987). 
Rousseeuw, P.J. and V.Y. Yohai, Robust regression by means of S-estimators, in: J. Franke, W. 

H[irdle and R.D. Martin (Eds.), Robust and Nonlinear Time Series Analysis, Lecture Notes in 
Statistics No. 26 (Springer Verlag, New York, 1984) pp. 256-272. 

Ruppert, D., Computing S-estimators for regression and multivariate location/dispersion, J. 
Comput. Graph. Statist. 1(3) (1992) 253-270. 

Souvaine, D.L. and J.M. Steele, Time and space efficient algorithms for least median of squares 
regression (Technical Report, Princeton University, 1986). 

Steele, J.M. and W.L. Steiger, Algorithms and complexity for least median of squares regression, 
Discrete Appl. Math. 14 (1986) 93-100. 

Stromberg, A.J., Computing the exact least median of squares estimate and stability diagnostics in 
multiple linear regression, SIAMJ. Scient. Statist. Comput. 14 (1993a) 1289-1299. 

Stromberg, A.J., High breakdown estimators in nonlinear regression, in: Y. Dodge. (Ed.), 
Ll-statistical analysis and related methods (Elsevier Science Publishers, 1993b) pp. 103-112. 


