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TAYLOR SERIES APPROXIMATIONS OF 
TRANSFORMATION KERNEL DENSITY 

ESTIMATORS 

OLA HOSSJER'" and DAVID RUPPERT~~ 

'Department of Mathematical Statistics, Lund Institute of Technology, Box 118, 
$221 00 Lund, Sweden, 'School of Operations Research and Industrial 

Engineering, Cornell University, Ithaca, NY 14853-3801, USA 

(Received: May 11, 1993; Revised: November 13, 1993; Accepted January 4, 1994) 

We examine the behaviour of a certain kind of transformation based kernel density estimator 
(TKDE). The transformation is a Taylor series approximation to a smoothed empirical cumulative 
distribution function computed from a pilot estimate. In this way a whole class of estimators is 
introduced, with a different number of terms rn in the Taylor series. The case rn = 1 corresponds to a 
standard varying bandwidth estimator, while the case rn = m corresponds to a TKDE with the 
smoothed empirical c.d.f. as transformation. We give an asymptotic expansion for any number of rn. 
When rn = 1,2, the rate of convergence is the same as for an ordinary kernel density estimator using a 
second order kernel, and when rn 2 3 the rate of a fourth order kernel is obtained. 

KEYWORDS: Bias reduction, higher order kernels, smoothed empirical distribution, Taylor series 
approximations, transformation of data, variable bandwidths. 

1. INTRODUCTION 

Suppose that we have an independent sample X I , .  . . , X,, from a density f. A 
popular method of estimating f is the kernel density estimator (KDE) 

x - xi f (x; h) = (nh)-' 2 K ( ~ ) ,  
i = l  

where K is a symmetric kernel function that integrates to one. Let pj(K) = 
J uJK(u) du and define k as the smallest positive integer j with h ( K )  # 0. Then k 
is referred to as the order of K. Iff is k times continuously differentiable at x, the 
bias of f(x; h) is asymptotically equivalent to p k ( ~ ) f ( k ) ( ~ ) h k / k !  (Parzen, 1962; 
Bartlett, 1963; Singh, 1977, 1979). One way of reducing the bias is to use a higher 
order kernel (k > 2). However, it is easy to see that this forces K to take on 
negative vaues. As a result, the density estimate f itself may take on negative 
values. Even though the problem of negative values may be corrected (Gajek, 
1986), the higher order KDE:s have a tendency to have an oscillating appearance, 
which is undesirable from the practitioners point of view. 

Another way of reducing the bias was introduced by Ruppert and Cline (1992) 

* Supported by the Swedish Natural Science Research Council, contract F-DP 6689-300. 
?Partially supported by NSF Grant DMS-9002791. 
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166 0. HOSSJER and D. RUPPERT 

and further considered by Hossjer and Ruppert (1993a). Let g be a smooth and 
increasing function. Transform the data to = g(Xi), i = 1, . . . , n, and estimate 
the transformed density 

by means of a KDE 

with a second order kernel. Proceed by transforming back using change-of- 
variables for probability density functions (p.d.f:s): 

Note that this automatically produces a bona fide density, that is 

m 

f(x; g, h)  2 0 and j(x;  ,g, h) dr = 1. (1-3) 

(When using a higher order KDE, only the second relation in (1.3) is 
guaranteed.) If g is non-stochastic, the asymptotic behaviour of f(x;g, h) can 
easily be determined using standard methods for KDE:s. However, in order for 
f(x;g, h) to have a small bias, it is crucial that g be close to F, the cumulative 
distribution function (c.d.f.) of the data. (More precisely, the derivatives of g must 
be close to those of F.) 

Suppose g is chosen as a KDE of F, that is 

for some bandwidth hl. Then the transformation depends on the data, and the 
asymptotic analysis is significantly complicated. It turns out that h(x) = 
f(x; Fl, h2) has the same rate of convergence as a 4th order KDE (Ruppert and 
Cline, 1992) when hl and h, are of the same order. A complete asymptotic 
expansion for f(x; R1, h2) is obtained by Hossjer and Ruppert (1993a). In both of 
these papers, further iterates of the TKDE are also considered, and it is shown 
that the optimal rate of convergence is improved for each transformation 
performed. However, in this paper we will confine ourselves to one 
transformation. 

We will investigate what happens when the transformation is chosen as 

m (x' - xy 
&') = &,,(xl):= C/ $Y)(x)-, 

j=1 j !  

a Taylor series approximation of - &(x) with rn terms. (Actually, g depends 
on x, but this will not be made explicit in the notation.) The motivation for this is 
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TRANSFORMATION KERNEL DENSITY ESTIMATORS 167 

twofold: 

To introduce a new class of density estimators (indexed by m) with bias 
reduction, that are hybrids between well known estimators. 
An exact asymptotic expansion for m = m was given by Hossjer and Ruppert 
(1993a) by methods completely different than those used here. In this paper 
we use similar techniques as in Ruppert and Cline (1992). We believe that 
the expansions obtained here shed further light on the results in Hossjer and 
Ruppert (1993a), by letting m -, w (cf. Remark 4). 

If m = 1 we obtain the local bandwidth KDE (cf. Jones (1991)) 

In fact, f(x; PI,, ha) is essentially a nearest neighbour density estimator (cf. e.g. 
Silverman, 1986, Section 5.2). Even though the Taylor series in (1.4) is not 
necessarily convergent when m + a ,  we may say formally that m = w corresponds 
to the TKDE with g =PI.  (The density estimate is unaffected by adding a 
constant to the transformation g, so we may choose g(.) = PI(.) as well as 
g(.) = PI(.) - &(x), the formal limit of (1.4) as m -, m.) By letting m = 2,3, . . . , 
we obtain a whole class of TKDE:s that can be viewed as hybrids between the 
cases m = 1 and m = m. 

There is one minor problem, however, that needs adjustment. When 1 < m < m, 
we have no guarantee that the transformation g is monotone. Assuming that K is 
supported on [- 1,1], we define 

as an estimate off  (x).* In this way, if g(Xi) is close to g(x) for values of Xi far 
away from x, Xi will not contribute to f(x; g, h). Since K is supported on [-I, 11, 
f ( ~ ; ~ ,  h) =y(x; g, h) when g = fill, whereas if g = PI, the two estimators off  (x) 
are asymptotically equivalent. 

In this paper we will give an asymptotic expansion of 

for m = 1,2, . . . . One might expect that the asymptotic behaviour of f2, gradually 
approaches that of f2(x) as m increases. This is indeed so (see Remark 4). Quite 
surprisingly, however, the leading terms in the asymptotic expansion are identical 
for m = 1 and m = 2, so nothing is gained by just ,appending one new term in 
(1.4). The rate of convergence is the same as for a KDE with a 2nd order kernel 
when m = 1,2. For higher values of m the convergence rate changes abruptly to 
that of a 4th order kernel. After that, when increasing m beyond 3 the rate of 
convergence is unaffected. However, the exact form (but not the rate) of the 
leading bias terms change until m = 5, but from then on it is unchanged. The 

*Actually we may replace the factor 2 inside the indicator function in (1.5) by any other constant 
exceeding 1. Likewise, if K is supported on [-B, B], we may choose any constant greater than B. 
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168 0. H ~ S S J E R  and D. RUPPERT 

exact form of the stochastic term changes gradually, and it differs from the 
leading stochastic term off&) for all finite values of m. 

Notice that the transformation film(.) depends on x when 1 5 m < m, as 
opposed to the TKDE transformation fil. One might argue that this is a 
computational drawback, since the transformation has to be recomputed at each 
X. However, only fiV)(.), j = 1, . . . , m have to be computed, so the computational 
burden is not large for small values of m. 

The paper is organized as follows. The regularity conditions and some notation 
is introduced in Section 2, whereas the main result is given in Section 3, together 
with some remarks. Finally, the more technical parts of the results are collected in 
the appendix. 

2. REGULARITY CONDITIONS AND SOME NOTATION 

The following assumptions will be used in Sections 3-5: 

(Al)  XI,  . . . , Xn is an i.i.d. sample with common density f, x is in the interior 
of the support off, f (x) > 0, f is 1 times differentiable in a neighbourhood 
of x, 1 = l(m) (with m as defined in (1.4)) and l(1) = l(2) = 2, l(3) = 1(4) = 
4 and l(m) = m - 1 for m 2 5. If l(m) = m - 1, f("-l) exists and is 
bounded in a neighbourhood of x. 

(A2) The kernel function K is non-negative, symmetric, supported on [-I, 11, 
integrates to one and is m - 1 + E times continuously differentiable, 
where E is an arbitrarily small positive number.* 

(A3) The bandwidths h1 and h, depend on n, in such a way that h2 = O(hl) 
(but not necessarily hl = O(h2)), hl -* 0 and nh2+ as n 03. 

Let Z(x, r) denote the closed real interval [x - r, x + r]. Introduce then the zero 
mean stochastic processes 

and 

for any function k. The function K will always denote the actual kernel function 
used in the definition of the TKDE whereas Z? may denote an arbitrary function. 
Let 

* For non-inte er r r + 4 0  < S < 1, we say that K is r times continuously differentiable provided 
hnU+.,,+,,, lKJ)(u) 1 k d r " ( t ) ~ / l t  - ul' is a continuous function of r 
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TRANSFORMATION KERNEL DENSITY ESTIMATORS 169 

The dependence of a on x (and possibly also on n )  will not be made explicit in 
the notation. Let also 

KT(.) = K('177)17) (2.4) 
for any q > 0. 

3. THE MAIN RESULT 

The main result may now be stated as follows: 

THEOREM 1 .  Let x be a fixed real number. Given the regularity conditions 
(A1)-(A3),  the density estimators defined in (1.6) satisfy 

j \ 2 m ( ~ )  =f ( x )  + b(x;  h i ,  h2)  + (nhl)-lnW,(x; k, h l )  + R(x),  (3.1) 

with 

and 

Before proving the theorem, let us make some remarks: 

Remark 1. For m = 1, 2 we may express (3.1) in the following alternative way, 

by using (2.3), (2.4) and (3.4). This corresponds to a KDE with bandwidth 
h2lf (x) .  

Remark 2. Since h, = O(hl)  it follows that the leading bias term in (3.1) is O(h$) 
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170 0. HOSSJER and D. RUPPERT 

for m = 1, 2 and O(h:h$) for m 2 3 .  At a first glance, it looks like the main 
stochastic term (nhl)-lnWn(x; I?, h l )  in (3.1) only depends on hl. However, it also 
depends on h2, since I? contains (Y in its definition. In fact, it follows from (2.3), 
(2.4) and (3.4) that the main stochastic term is Op((nh2)-In) for all m. For 
instance, for m = 1,2, the main stochastic term (nh,)-'nWn(x;I?, h,) equals 
(nh2lf (x))-lI2Wn (x;  K9 h2lf (x)) .  

Remark 3. Assume that hi = cih with ci > 0, i = 1,'2 and h = n-8 for some 
O < p < l .  Then 

fZm(x) - f ( x )  = Op(h2 + (nh)-ln) for m = 1,2 

= Op(h4 + (nh)-In) for m 1 3 .  

Hence, the optimal choice of P is 

Remark 4. The case m = w was treated by Hossjer and Ruppert (1993a). A 
special case of Theorem 3.1 in that paper is that the expansion (3.1) holds for f2,  

with 

and * denoting the convolution operator. If we make a formal Taylor expansion 
of K around t we obtain 

which leads to 

Hence, we see that the leading bias term for f2 is the same as for f2, when m r 5 
and that the kernel is the formal asymptotic limit of (3.4). 

Proof of Theorem 1. To use the methods of Ruppert and Cline (1992), we define 
the following class of transformations: 

%& = (g; g is an mth order polynomial with g(x)  = 0, g l (x )  r 0 and 

I g ( k ) ( ~ )  - f ( k - l ) ( ~ ) ~  I C,  + ~ ; ' ( n h ~ ) - ~ ~ h ; ( ~ - l ) ,  k = 1, 2, . . . , m}, (3.6) 

where c, + 0 as n + w, so slowly that 
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TRANSFORMATION KERNEL DENSITY ESTIMATORS 171 

with 

o , ( x ;  h )  := ,sup I f ( ' ) (x l )  - f"'(x)l, 
x ~ l ( x ; h )  

and 1 = l ( m )  is defined in ( A . 1 ) .  The class gm actually depends on x, but this will 
not be made explicit in the notation. 

We will tacitly assume that any function g mentioned in the proof belongs to 
gm. Suppose that n is so large that ( A . 4 )  and ( A S )  in the appendix hold. Then 
( A . 4 )  implies that we can define a local inverse of each g E gm. Let 

Because of (A.6) we may also assume that g l ( x )  > 0 for each g E gm. Then by the 
definition of R,, in (2.2)  and a change of variables 7 = g ( x 1 ) l h 2  we have 

From now on, we will consider different values of m separately. 

m = 1 , 2  
We may expand (3 .9)  as follows: 

with b defined in (3 .2)  

By using (3 .8)  and the identity 

it is possible to simplify (3.13) to 
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172 0. HOSSJER and D. RUPPERT 

By standard results for KDEs (cf. the proof of Lemma A.1), 

The theorem for m = 1 , 2  now follows from (3.10), (3.15), Lemma A.l and 
Lemma A.3-A.4. 

m =3 ,4 ,5  
It follows from (3.9) that 

with b, R, R1 and R2 defined in (3.2), (3.4), (3.11) and (3.12) respectively, 

- (f (x) + b(x)h:h$) - 9 a2(nhl)-1"~n(x; K"', hl) (3.17) 

and 

Inserting (3.3) and (3.14) into (3.17) yields 
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TRANSFORMATION KERNEL DENSITY ESTIMATORS 

Since f is 4 times continuously differentiable around x we have (cf. (A.2) )  

By using (3.19) one finds after some calculations that 

We now turn our attention to R4. We will need the expansion 

- lO5f ' ( X ) ~ ( ~ ) ( X ) ~  + 10f (x)g")(x)' + 15f ( ~ ) g ( ~ ' ( x ) g ( ~ ) ( x )  
g W 8  g W 7  g W 7  

- 

Let 

It follows then from (3.21) that 

In order to prove that 
lR,(x; film)] = oJh; + (nh2)-'I2) 

it thus suffices to establish 

Fr,(x)f P(0;  Rm) - Firn(x)f L4'(0; 4,) 

mL33,4 op( l  + (nh2)-1'2h;4) 
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174 0. HOSSJER and D. RUPPERT 

But formula (3.23) follows, after some computation, from (3.19), (3.21) and the 
identity 

Now the theorem follows for m =3,4,5  from (3.14), Lemma A.l, Lemma 
A.3-A.4, (3.20) and (3.22). 

m r 6  
The theorem may be proved similarly for higher values of m. For instance, when 
m = 6 (3.16) still holds, with the same remainder terms. Notice however, since 
l(6) = 5, Rl(x;g)  in (3.11) is different compared to m = 3, 4,5. When m = 7, we 
have to add 

~ 6 ( ~ )  6 ( 6 )  R5(x; g )  = - h2(f  (0; g )  - f ( ~ ) - ~ ( n h l ) - l ~ h ; ~ ~ ~ ( x ;  K@), hi)) ,  
720 

to the sum on the RHS of (3.16). 0 

APPENDIX 

Throughout the appendix, x is a fixed number, whereas x' varies in a 
neighbourhood of x. The following lemma states that the data-based transforma- 
tion stays within 9$,, with probability tending to 1. 

LEMMA A.1. Let Rim be the transformation defined in (1.4). Then, 

Proof: Since I(m) 2 m - 1, we have for k = 1, . . . , m, 

Hence, because of (3.7), 

LEMMA A.2. For large enough n, each g E gm is strictly monotone increasing in a 
local neighbourhood of x and has a local inverse on [-h2, h2]. More precisely: 

g is strictly monotone on the interval 
[X  - 2 max(gl(x)-l, f (x)-')h2, x + 2 max(gl(x)-', f (x)-')h2] (A.4) 
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TRANSFORMATION KERNEL DENSITY ESTIMATORS 

and 

g(xt) > h2 for x + 2 min(gt(x)-', f (x)-')h2 
< x' < x + 2 max(gt(x)-', f (x)-')h2 

g(xt) < -h2 for x - 2 max(gt(x)-l, f (x)-')h2 
< x '  < x  - 2 min(gl(x)-', f (x)-')h2 

Proof. By definition of 3, and (3.7), 

lim sup Ig ' (x) - f (x)l= 0. 
n-m g s  '4, 

We may therefore assume that n is so large that 

$f(x)<g1(x)<$f(x), V g ~ g m .  

Hence it suffices to show that for all g E %&, and n large enough 

g is strictly monotone on [x - 3f (x)-'h,, x + 3f(x)-'hz] := I, (A.7) 

and 

g(xt) > hZ when x + sf (x)-lh2 < X '  < x + 3f (x)-'hz 
g(xt) < -hz when x - 3f (x)-'h, < x' < x  - qf(x)-'h,. (A@ 

Suppose we can show that 

lim sup Ig1(x') - f(x)J = 0. 
n-m g s  '4, 

x ' s I X  

Then (A.7) follows from (A.9) since f(x) > 0. Even (A.8) follows from (A.9) 
since the latter equation implies that 

inf g'(xl) > $f (x), 
g=% 
x ' E I ~  

provided n is large enough. Thus, it remains to prove (A.9). According to (A.l), 
there exists a neighbourhood U, of x and number Tm < m such that I f("-')l is 
bounded by Tm on U,. Therefore, if n is so large that I, is contained in U,, the 
following holds uniformly for any x' E I, and g E %&,; 

since h2 = O(hl) for all m. 
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176 0. H ~ S S J E R  and D. RUPPERT 

LEMMA A.3. Let Rl(x; g)  be defined as in (3.11). Then 

Proof. By the definition of Rl(x; g), it suffices to show that 

o ( l  + h;'(m)(nh2)-1R), l s m 5 5  
sup 1 f ym"(y ;g)  - f$(""(~;g)l = 
g=% {o(h:-") + h;1(m)(nh2)-1"), m 2 5. 
lylSh2 

(A.ll) 

We confine ourselves to m =5. The lemma may be proved similarly for other 
values of m. Formula (A.ll) then reduces to 

sup l f  V)(y;  g )  - f p'(0; g)l = o ( l  + h;4(nh2)-1"). (A.12) 
g=($i 
lylSh2 

By (3.21) we may write 

where Qj is a polynomial in g', g('), . . . , g(5-0. Let J, = [x  - 2f (x)-'h,, x + 
2f (x)-'h,]. From the definition of g4 we obtain by Taylor expanding g around x 
that 

SUP I ~ ( ~ ) ( x ' ) J  = 0 ( 1 +  c,l(nhl)-lnh;(k-l)), k = 1, 2, 3, 4, (A.14) 
X '  E J ~  
g = %  

and 
O(h2 + c;'(nhl)-l"h;(k-l)), k = 1,2, 3 

sup ~ g ( ~ ' ( x ' )  - g ( k ) ( ~ ) ~  = 
x  E J ~  k = 4 .  

(A.15) 

We also have 

sup if (k'(x')l = O(l ) ,  k = 1, 2, 3, 4, 
x r € J X  

(A.16) 

g = %  

and 

sup 1 f ( k ) (x l )  - f(k)(x)l = o(c,), k = 1, 2, 3, 4. 
x ' E J ~  

(A. 17) 

gs'cb 

We see from (3.21) that Qj(xl ;  g)  is a linear combination of terms of the form 

where 

By expanding f ?)(y; g)  - f V)(0; g), making use of (A.13), one sees that formula 
(A.12) will follow from (AS), (A.9) and (A.14)-(A.17), if we also show that 
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TRANSFORMATION KERNEL DENSITY ESTIMATORS 177 

each function P of the form (A.18) satisfies 

sup IP(xr)( = O(1 + ~;'(nh,)-~'~h;~) 
x ' E J ~  

and 

sup IP(xl) - P(x)( = o ( l  + h ~ ~ ( n h , ) - ' ~ ) .  
X ' S / ,  

(A.21) 

Hence, it remains to prove (A.20)-(A.21). Starting with (A.20), we see from 
(A.14) and (A.19) that 

5 - j  

sup IP(xf)l = 0(n (1 + ~;'(nh,)- '~h-(~-')  I 
x'EJ* k = l  

since c, >> (nhl)-In. This and the relation h2 = O(hl) implies (A.20) for j = 
0,1,2,3,4.  Formula (A.21) may be proved in a similar, but more complicated 
way. 0 

LEMMA A.4. Let R2(x; g) be defined as in (3.12). Then 

Proof. The proof, which makes use of some multiparameter stochastic process 
results in Bickel and Wichura (1971), can be found in HiSssjer and Ruppert 
(1993b). 

Acknowledgement 
We want to thank M.C. Jones and a referee for valuable comments on the 
manuscript. 

References 
Bartlett, M. S. (1963). Statistical estimation of density functions. Sankhya Ser. A 25,245-254. 
Bickel, P. J. and Wichura, M. J. (1971). Convergence criteria for multiparameter stochastic processes 

and some applications. Ann. Math. Statist. 42, 1656-1670. 
Gajek, L. (1986). On improving density estimators which are not bona fide functions. Ann. Statist. 14, 

1612-1618. 
Hossjer, 0. and Ruppert, D. (1993a). Asymptotics for the transformation kernel density estimator. 

Report 1993:10, Dept. of Mathematical Statistics, Lund Institute of Technology. 
Hossjer, 0. and Ruppert, D. (1993b). Taylor series approximations of transformation kernel density 

estimators. Report 1993:12, Dept. of Mathematical Statistics, Lund Institute of Technology. 
Jones, M. C. (1991). Variable kernel density estimates and variable kernel density estimates. 

Australian J. of Statist. 32, 361-371. 
Parzen, E. (1962). On estimation of a probability density function and mode. Ann. Math. Statist. 33, 

1065-1076. 
Ruppert, D. and Cline, D. (1992). Bias reduction in kernel density estimation by smoothed empirical 

transformations. To appear in the Annals of Statistics. 
Serfling, R. (1980). Approximation theorems of mathematical statistics. Wiley, New York. 
Silverman, B. (1986). Density estimation for statistics and data analysis. Chapman and Hall, London 

and New York. 
Singh, R. S. (1977). Estimation of derivatives of a density. Ann. Statist. 5,400-404. 
Singh, R. S. (1979). Mean squared errors of estimates of a density and its derivatives. Biometrika 66, 

177-180. 

D
ow

nl
oa

de
d 

by
 [

St
oc

kh
ol

m
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
2:

42
 2

1 
A

pr
il 

20
16

 


