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INCOMPLETE GENERALIZED L-STATISTICS

BY OLA HOSSJER¨
Lund University

Given data X , . . . , X and a kernel h with m arguments, Serfling1 n
Ž .introduced the class of generalized L-statistics GL-statistics , which is

Ž .defined by taking linear combinations of the ordered h X , . . . , X ,i i1 m
Ž . Ž .where i , . . . , i ranges over all n!r n y m ! distinct m-tuples of1 m

Ž .1, . . . , n . In this paper we derive a class of incomplete generalized
Ž .L-statistics IGL-statistics by taking linear combinations of the ordered

� Ž .4 Ž .elements from a subset of h X , . . . , X with size N n . A special casei i1 m

is the class of incomplete U-statistics, introduced by Blom. Under very
general conditions, the IGL-statistic is asymptotically equivalent to the

Ž .GL-statistic as soon as N n rn ª ` as n ª `, which makes the IGL
much more computationally feasible. We also discuss various ways of

� Ž .4selecting the subset of h X , . . . , X . Several examples are discussed.i i1 m

In particular, some new estimates of the scale parameter in nonparamet-
ric regression are introduced. It is shown that these estimates are asymp-
totically equivalent to an IGL-statistic. Some extensions, for example,
functionals other than L and multivariate kernels, are also addressed.

1. Introduction. Let X , . . . , X be independent random variables tak-1 n
ing values in R q, with a common probability distribution F, and let h:R m q ª R

Ž .be a Borel measurable function. For each I s i , . . . , i with i / i if1 m j j9
Ž . Ž .j / j9, define h X s h X , . . . , X . We will assume that I takes values inI i i1 m

Ž . Ž .S m , the set of all n s n!r n y m ! m-tuples with distinct elements. Letn Žm.
� 4 Ž .D s I , . . . , I be a subset of S m , called the design of the experiment,n 1 N n

Ž . Ž . < <where some I g S m may occur several times in D and N s N n s D .n n n
� Ž . 4Assume now that h F ??? F h are the order statistics of h X ; I g D .1: N N : N I n

� 4Given a triangular array of weights c ; N G 1, 1 F i F N , we will considerN i
statistics of the form

N

1.1 c h .Ž . Ý N i i : N
is1

Ž . Ž .It will be convenient to put a subclass of the statistics in 1.1 into a
functional form. In doing so, consider first the statistical L-functional

d
1 y1 y1T G s J t G t dt q a G p ,Ž . Ž . Ž . Ž .ÝH j j

0 js1
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y1Ž . � Ž . 4with G t s inf x; G x ) t the right-continuous inverse of G and 0 -
Ž .p - 1. Let H be the distribution of h X , . . . , X , and consider estimatingj F 1 m

Ž .T H byF

d
1 y1 y11.2 T H s J t H t dt q a H p ,Ž . Ž . Ž . Ž . Ž .ÝHn n j n j

0 js1

� Ž . 4where H is the empirical distribution formed by h X ; I g D . Note thatn I n
Ž . Ž .T H may be put into the form 1.1 , withn

d
irN

1.3 c s J t dt q a 1 ,Ž . Ž . ÝHN i j �isw N p xq14jŽ .iy1 rN js1

w xwhere x is the largest integer smaller than or equal to x and 1 is theA
Ž .indicator function for the event A. Special cases of 1.2 include the following:

w Ž .x Ž .1. U-statistics Hoeffding 1948 ; D s S m , J ' 1, d s 0, so thatn n

1
T H s h X .Ž . Ž .Ýn InŽm. Ž .IgS mn

w Ž .x2. Incomplete U-statistics Blom 1976 ; J ' 1, d s 0, D arbitrary, so thatn

1
T H s h X .Ž . Ž .Ýn IN IgDn

Ž . Ž . w3. Generalized L-statistics GL-statistics introduced by Serfling 1984 . See
Ž .also Janssen, Serfling and Veraverbeke 1984 and Choudhury and

Ž . x Ž . � 4d � 4dSerfling 1988 . Here D s S m , and J, d, p and a are arbitrary.n n j 1 j 1
For the special case when J ' 0, d s 1, p s p and a s 1, we have1 1
Ž . y1Ž .T H s H p . This statistic is frequently referred to as a U-quantile inn n

the literature.

Ž . Ž .We will call the statistics in 1.1 and 1.2 incomplete generalized L-
Ž .statistics IGL-statistics , in that they combine cases 2 and 3 as generaliza-

Ž .tions of U-statistics. Further, we say incomplete U-quantile IUQ when
J ' 0, d s 1 and a s 1. Actually, an IUQ was considered by Brown and1

Ž . wKildea 1978 for the well-known Hodges]Lehmann kernel q s 1, m s 2,
Ž . Ž . xh x , x s x q x r2 .1 2 1 2

One motivation for introducing IGL-statistics is to obtain estimators which
are faster to compute than the corresponding GL-statistic. Note that the

Ž m . wgeneral GL-statistic requires O n log n operations due to the sorting of all
Ž .x Ž m.h X , whereas the U-quantiles can be computed in O n time, since orderI

Ž . wstatistics of M observations can be found in O M steps Blum, Floyd, Pratt,
Ž .xRivest and Tarjan 1973 . The corresponding numbers for the IGL-estimators

Ž Ž . Ž .. Ž Ž .. Ž . mand IUQs are O N n log N n and O N n , respectively. If N n < n , we
have obtained a more easily computed estimator. In fact, we will show in

Ž . Ž .Section 3 that it is possible to have N n s O n and efficiency arbitrarily
close to 1 for the IGL-estimator w.r.t. the corresponding GL-estimator. Also,

Ž .as soon as N n rn ª `, the efficiency becomes 1.
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Having said this, we must also mention that, for some kernels of special
Ž .form, faster O n log n algorithms have been found for the corresponding

Ž . Ž .U-quantile. For instance, Shamos 1976 and Johnson and Mizoguchi 1978
Žconsider such algorithms for the Hodges]Lehmann location kernel Example

. Ž . Ž .1 , Croux and Rousseeuw 1992 for the spread kernel Example 2 and Cole,
Ž . Ž .Salowe, Steiger and Szemeredi 1987 , Matousek 1991 and Dillencourt,

Ž .Mount and Netanyahu 1992 treat the Theil]Sen kernel for the slope in
Ž .simple linear regression Example 3 . However, each kernel requires a sepa-

rate algorithm. The IGL-statistics provide an alternative and general way of
Ž .finding easily computable estimators of T H .F

The paper is organized as follows. In Section 2 we define three types of
designs that will be used in the following discussion. An invariance principle

' Ž .for the process n H y H is proved in Section 3 and asymptotic normalityn F
Ž .for T H in Section 4. In Section 5 we discuss how the results in Sections 2n

to 4 reduce for symmetric kernels. Some examples are given in Section 6. In
particular, we give a semiparametric example: robust estimation of the scale
parameter in nonparametric regression with homoscedastic errors. The finite
sample efficiencies of the proposed scale estimators are compared with theo-

Ž .retical asymptotic limits in a Monte Carlo simulation Section 7 . Generaliza-
tions to functionals other than L, multivariate kernels, robustness of designs,
dependent data and recursive estimation are discussed in Section 8. Finally,
the proofs are gathered in the Appendix.

2. Designs. We call a design balanced if each 1 F i F n occurs in equally
many I g D , symmetric if I g D « p I g D for all m! permutations p ofn n n
the elements in I and asymmetric if I g D « p I f D for all p differentn n

Žfrom the identity permutation. Note that a design may be neither symmetric
.nor asymmetric. For scalars in N, the symbols [ and ] will denote addition

and subtraction modulus n, and for vectors, these operations are interpreted
elementwise. The following five designs will be considered in the paper.

D1. Random sampling with replacement. This means that the number of
Ž .occurrences of different I g S m follows a multinomial distribution withn

parameters N and 1rn , . . . , 1rn .Žm. Žm.
D2. Designs based on cyclic permutations. Given a positive integer g ,n

Ž . Ž . Ž .define vectors i s i, . . . , i , d s d , . . . , d , . . . , d s d , . . . , d of1 11 1m g g 1 g mn n n

length m, so that all d ] d , k / k9, are different, 0 F d - ??? - djk jk 9 j1 jm
� 4and d - ??? - d . Then put D s i [ d ; 1 F i F n, 1 F j F g . Notice1m g m n j nn

Ž .that g s N n rn. Examples are:n

Ž .m s 2, d s 0, k , k s 1, . . . , g ;k n
Ž .m s 3, g s 1 and d s 0, 1, 3 ;n 1
Ž .m s 4, g s 1 and d s 0, 1, 4, 6 ;n 1

Ž . Ž .m s 3, g s 2, d s 0, 1, 3 and d s 0, 4, 9 .n 1 2

D3. Balanced asymmetric designs, m s 2. Let g be a positive integer.n
Ž .Each 1 F i F n occurs in 2g distinct I g D . Given i, j g D , we haven n n
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Ž .j, i f D and for each i there are g distinct elements in D of the formn n n
Ž . Ž . Ž .i, k and g distinct elements of the form k, i . Notice that g s N n rn. Asn n
a special case, we have the design

� . 4a. D s i, j ; 0 - j ] i F g .n n

�D4. Recursive design based on cyclic permutations. Here D s i q d ;n j
41 F j F g , 1 F i F n y d .ñ jm

�Ž .D5. Recursive design, m s 2. In this design D s i, j ; 1 F i - j F n,n
4j y i F g .ñ

These three and many other designs have been considered in the U-statis-
Ž .tics literature, for instance, random designs by Janson 1984 and balanced

Ž . Ž .designs for m s 2 by Blom 1976 and Brown and Kildea 1978 . See also Lee
Ž .1990 , Section 4.3, for an overview and further references. However, the
designs presented here slightly generalize those considered in the incomplete
U-statistics literature, in that we let I range over all n possible m-tuplesŽm.

nŽ .of elements, not only all subsets with m elements. For instance, them
distinction between symmetric and asymmetric designs is important in our
setting.

The random design D1 will in general be unbalanced, whereas both D2 and
Ž .D3 are balanced and asymmetric if n ) 2 d . Actually, design D2 is ag mn

special case of design D3 when m s 2. The reason for restricting ourselves to
asymmetric designs in D2 and D3 is that they have fewer elements than the

Žcorresponding symmetric design obtained by given any I g D adding alln
. Ž .other p I . Another important feature of D2 is that each pair i, j with i - j

is contained in at most one I g D .n
Designs D4 and D5 have several important properties. They are obtained

by removing some multi-indices from D2 and D3a, respectively. This means
Ž .that g [ N n rn / g , but lim g s lim g s g , whenever either limit exists.˜ ˜n n n n

If g is a nondecreasing function of n, both D4 and D5 are recursive, whichñ
means that D ; D . If, in addition, g ' g , designs D4 and D5 are also on˜n nq1 n

< < Ž .line, in that D _ D s O 1 , so that the number of multi-indices added fornq1 n
< <each new observation does not increase with n. Actually, D _ D s g fornq1 n

w Ž .all n sufficiently large. Notice that S m is recursive but not on line, sincen
< Ž . Ž . < my 1 xS m _ S m ; mn . We refer to a design as local ifnq1 n

< <sup i y i ; j / j9, i , i g I for some I g D < n.� 4j j9 j j9 n

Notice that design D5 is local if g < n. Similarly, design D4 is local as soonñ
as d < n. We could have dropped the assumption i - j in D5, stillg m˜n

obtaining a recursive, on-line and local design. In fact, such a definition might
be more natural in some applications. However, the present formulation

Žmakes D5 almost asymmetric apart from those I with entries close to the
.boundaries 1 and n . In applications where i represents time, all three

concepts, recursive, on-line and local, are very useful. For nonparametric
applications, local designs are important. For further discussion on this, see
Sections 6 and 8.
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3. An invariance principle. In this section we will prove weak conver-
gence of the process

'3.1 W y s n H y y H yŽ . Ž . Ž . Ž .Ž .n n F

Ž w x . w xon D y`, ` , BB , the space of right-continuous functions on y`, ` with0
5 5left-hand limits, endowed with supremum norm ? and the s-algebra BB is` 0

Ž .generated by all open balls. Notice that W is a U-process when D s S m .n n n
Ž .This case has been treated by Silverman 1976, 1983 and Ruymgaart and

Ž .van Zuijlen 1992 . Weak convergence theory for more general U-processes
indexed by functions instead of real numbers has been considered by Nolan

Ž . Ž .and Pollard 1988 for m s 2 and Arcones and Gine 1993 for arbitrary m.´
We will assume that

3.2 N n rn s g ª g as n ª `, 0 - g F `.Ž . Ž . n

If g - `, g can be any positive real number for the random design, but it has
w Ž .to be a positive integer for designs D2 and D3. However, when h ? is

symmetric, it suffices that 2g is a positive integer for design D3; cf. Section
x5. The case g s 0 could also be treated, but is less interesting from the

statistical point of view, since it results in estimators with efficiency 0.
Ž . Ž .Define h ? s 1 y H y and notice thaty �hŽ?.F y4 F

'n
W y s h XŽ . Ž .Ýn y IN IgDn

is an incomplete U-statistic. We will also introduce

3.3 s 2 x , y s E h X h X , 1 F i , j F m,Ž . Ž . Ž . Ž .ž /1 i j x I y Ji j

Ž .where I s i, i q 1, . . . , m, 1, . . . , i y 1 is an i y 1 times shifted cyclic rear-i
Ž .rangement of 1, . . . , m and J a j y 1 times shifted cyclic rearrangement ofj

Ž .1, m q 1, . . . , 2m y 1 . Put also

3.4 s 2 x , y s E h X h X s H x n H y y H x H yŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .m x I y I F F F F

and
m

2 23.5 s x , y s s x , y .Ž . Ž . Ž .Ý 1 i j
i , js1

Ž . Ž .THEOREM 3.1. The process W ? defined in 3.1 converges weakly onn
w x U Ž .D y`, ` to a zero-mean Gaussian process W ? with covariance function
Ž . 2Ž . Ž .C x, y s s x, y if g s ` in 3.2 and

s 2 x , yŽ .m2C x , y s s x , y q design D1Ž . Ž .
g

m1
2 2 2s s x , y q s x , y y s x , y design D2Ž . Ž . Ž .Ým 1 i iž /g is1

3.6Ž .

21
2 2 2s s x , y q s x , y y s x , y design D3Ž . Ž . Ž .Ý2 1 i iž /g is1
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when g - `. The weak convergence also holds for designs D4 and D5 with
Ž .the same covariance function C ?, ? as for D2 and D3, respectively. In par-

ticular,
5 5 y1r23.7 H y H s O nŽ . Ž .`n F p

for all designs.

U Ž .REMARK 3.1. Note that W ? is a.s. continuous outside the countable set
of discontinuities of H .F

Ž . Ž .REMARK 3.2. The proof of weak convergence of W ? when D s S m isn n n
Ž . Ž .based on writing W ? as an average of dependent empirical processes, eachn

w Ž .xof which is based on i.i.d. samples with distribution H cf. Hoeffding 1963 .F
The proof of Theorem 3.1 does not make use of such a representation, which
is difficult to define, at least for the random design D1.

( )4. Asymptotics for T H . The L-statistic T is first-order Gateauxn
differentiable with derivative

d
<d T F ; G y F s T F q « G y FŽ . Ž .Ž . «s01 d«

`

s y G y y F y J F y dyŽ . Ž . Ž .Ž . Ž .H
y`

d y1p y G F pŽ .Ž .j jq a ;Ý j y1f F pŽ .Ž .js1 j

Ž .see Serfling 1984 for details. A Taylor expansion of T around H yieldsF

T H s T H q d T H , H y H q DŽ . Ž . Ž .n F 1 F n F n

1
s T H q A X q D ,Ž . Ž .ÝF I nN IgDn

4.1Ž .

where

A x , . . . , x s d T H , d y HŽ . Ž .1 m 1 F hŽ x , . . . , x . F1 m

`

s y 1 y H y J H y dyŽ . Ž .Ž .Ž .H �hŽ x , . . . , x .F y4 F F1 my`

d y1p y 1j �hŽ x , . . . , x .F H Ž p .41 m F jq a ,Ý j y1h H pŽ .Ž .js1 F F j

X Ž . Ž .h s H and d is the one-point distribution at x. Note that T H y T HF F x n F
is an incomplete U-statistic plus D . In Theorems 4.1 and 4.2, we will shown

Ž .that D is asymptotically negligible. Following Serfling 1984 , we define then
influence function

I x , T , F s EA x , X , . . . , X q ??? qEA X , . . . , X , xŽ . Ž . Ž .2 m 1 my1
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and the variance

2 22s s EI X , T , F s I x , T , F dF x .Ž . Ž . Ž .H1

Ž . Ž .Put also, in analogy with 3.3 and 3.4 ,

s 2 s E A X A X ,Ž . Ž .ž /1 i j I Ji j

where I and J are defined as in Section 3, andi j

22s s EA X , . . . , X .Ž .m 1 m

Note that s 2 s Ým s 2 . We will assume thati, js1 1 i j

4.2 s 2 ) 0,Ž .
4.3 s 2 - `.Ž . m

For H and the score function J, introduce the following conditions:F

Ž . y1Ž .A H has positive derivative at H p , j s 1, . . . , d.F F j

Ž . Ž Ž .Ž Ž ...1r2B H H y 1 y H y dy - `.F F

Ž . w xC J ' 0 outside a , b , where 0 - a - b - 1, and J is bounded and
continuous a.e. Lebesgue and Hy1.F

Ž . w xD J is continuous on 0, 1 .

Ž .The asymptotic behavior of T H is resolved by the following two theo-n
rems.

Ž . Ž . Ž . Ž . Ž .THEOREM 4.1. Assume that 3.2 , 4.2 , 4.3 , A and C hold. Then
Ž y1r2 . Ž . Ž .D s o n in 4.1 and T H is an asymptotically normal estimator ofn p n

Ž .T H , in the sense thatF

2'n T H y T H ª N 0, s g ,Ž . Ž . Ž .Ž . Ž .n F LL

2Ž . 2with s ` s s for all three designs D1]D3 defined in Section 2, and

s 2
m2 2s g s s q design D1Ž .
g

s 2 y Ým s 2
m is1 1 i i2s s q design D2

g

s 2 y Ý2 s 2
2 is1 1 i i2s s q design D3

g

for g - `. Finally, the recursive designs D4 and D5 have the same asymp-
totics as designs D2 and D3, respectively.
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Ž . Ž .THEOREM 4.2. The conclusions of Theorem 4.1 hold under 3.2 , 4.2 ,
Ž . Ž . Ž . Ž .4.3 , A , B and D .

Ž .REMARK 4.1. The conditions of Theorem 4.1 Theorem 4.2 are very simi-
Ž . Ž .lar to those of Theorem 3.1 Theorem 3.2 in Serfling 1984 . We have replaced

2 Ž . Ž .the requirement 0 - s - ` by the slightly stronger 4.2 } 4.3 and also
Ž .added 3.2 .

2Ž . 2Ž . 2REMARK 4.2. As g ª `, s g ª s ` s s , the asymptotic variance of
Ž .the corresponding GL-statistic with D s S m . Hence, it suffices thatn n

Ž .N n rn ª ` arbitrarily slowly, in order for the IGL-statistic to have relative
efficiency 1 w.r.t. the corresponding GL-statistic. Also, by choosing g ' gn

Ž . Ž .sufficiently large, we may have N n s O n and relative efficiency arbitrar-
ily close to 1.

REMARK 4.3. Given g , the random design has higher asymptotic variance
than designs D2 and D3.

Ž . Ž . Ž Ž . < .REMARK 4.4. Let I s 1, . . . , m and put A x s E A X X s x , i si I i
˜ n 2 2Ž . Ž . Ž . Ž .1, . . . , m, and A x s A x y Ý A x . Then EA X s s andI I is1 i i i i 1 i i
m m m

22 2 2˜ ˜s s s q EA X q 2 E A X A X G s ,Ž . Ž . Ž .Ž .Ý Ý Ým 1 i i I i i I 1 i i
is1 is1 is1

˜ 2 2Ž Ž . < . Ž . Ž .since E A X X s x s 0 a.e. F . However, this implies that s g G s ,I i i
Ž̃ .with equality iff A x s 0 a.e. F = ??? = F.I

REMARK 4.5. Note that s 2 is the same as the asymptotic variance of anm
Ž .ordinary ‘‘complete’’ L-statistic with m s 1 based on an i.i.d. sample with

marginal distribution H . Hence,F
` 22s s A y dH y ,Ž . Ž .Hm F

y`

with
d y1p y 1` j � y F H Ž p .4F jA y s y 1 y H z J H z dz q aŽ . Ž . Ž .Ž .Ž . ÝH � y F z4 F F j y1h H pŽ .y` Ž .js1 F F j

the ‘‘influence function’’ for the L-statistic. For U-quantiles,
y22 y1s s p 1 y p h H p .Ž . Ž .Ž .Ž .m F F

2 � 2 4The other quantities s and s are more difficult to compute.1 i j

Ž .5. Symmetric kernels. Many kernels are symmetric; that is, h x s
Ž .h xP for all m = m permutation matrices P. For U-statistics we may

always assume this, since otherwise h may be replaced by the symmetric
kernel

1
h̃ x s h xP ,Ž . Ž .Ým! P

˜Ž .without changing T H . For incomplete U-statistics, h may be replaced by hn
as soon as the design D is symmetric.n
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˜Typically, the IGL-statistic changes as we replace h by h, even for sym-
metric designs. However, when the kernel is symmetric, much of the previous

Ž . Ž .simplifies. First note that A ? is symmetric if h ? is, so the influence
function becomes

I x , T , F s mEA x , X , . . . , XŽ . Ž .2 m

and s 2 ' s 2 s s 2rm2. For symmetric kernels, it is more convenient to1 i j 1
consider the reduced class of multi-indices

S̃ m s I s i , . . . , i g S m ; i - ??? - i ,� 4Ž . Ž . Ž .n 1 n n 1 m

with
n˜< <S m s .Ž .n ž /m

� 4 Ž .Notice that, for any design D s I , . . . , I ; S m , there exists a corre-n 1 n n
˜ ˜ Ž .sponding design D ; S m defined throughn n

D̃ s I , . . . , I ,� 4Ž . Ž .n 1 N

Ž .where I has the components of I listed in ascending order. Observe that
˜< < < <D s D for any asymmetric design D , and the empirical distributionsn n n

˜� Ž . 4 � Ž . 4formed by h X ; I g D and h X ; I g D are the same. For the threeI n I n
designs in Section 2 we obtain the following characterizations:

˜1. The design D is obtained by random sampling with replacement fromn
˜ Ž .S m .n
˜ �Ž . 42. D s I ; I s i [ d , 1 F i F n, 1 F j F g .n j n

˜ ˜3. Each index i occurs in 2g different I g D ; that is, D is balanced. Itn n n
suffices that 2g is a positive integer in this case, and hence that 2g is an
positive integer if g - `.

The asymptotic variances for designs D1]D3 become

s 2
m2 2s g s s q design D1Ž .
g

s 2 y s 2rmm2s s q design D2
g

5.1Ž .

s 2 y s 2r222s s q design D3.
g

Similarly, the covariance function of the limiting Gaussian process W U in
Theorem 3.1 simplifies to

s 2 x , yŽ .m2C x , y s s x , y q design D1Ž . Ž .
g

1 s 2 x , yŽ .
2 2s s x , y q s x , y y design D2Ž . Ž .mž /g m

1 s 2 x , yŽ .
2 2s s x , y q s x , y y design D3,Ž . Ž .2ž /g 2
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2Ž . Ž . Ž . Ž . Ž . Ž . 2Ž .with s x, y s H x n H y y H x H y as before and s x, y sm F F F F
Ž Ž . Ž .. < <Cov h X , h X , with I l J s 1.x I y J

There is a nice interpretation of W U for the random design D1. Then

1
U U UW y s W y q W y ,Ž . Ž . Ž .1 2'g

where W U and W U are independent Gaussian processes with covariance1 2
2Ž . 2Ž . w U Ž . xfunctions s ?, ? and s ?, ? i.e., W is a transformed Brownian bridge .m 2

Here W U is the weak limit of W when g s `, for example, the U-process1 n
Ž . Ucase D s S m . On the other hand, the Brownian bridge W is the weakn n 2

wlimit when g s 0. Then W is essentially an empirical process which corre-n
Ž . xsponds to all I g D being disjoint and the quantities h X i.i.d. . Typically,n I

for ‘‘well-behaved’’ h and F,

2 2U UE W y y W x F C y y x ,Ž . Ž . Ž .Ž .1 1

2U U < <E W y y W x F C y y xŽ . Ž .Ž .2 2

for some constant C. This means that W U is smoother than W U. Intuitively,1 2
this phenomenon can be explained by the fact that W U is the weak limit of1

Ž .W when the latter process has a large number N n 4 n of jumps of sizen
U Ž .1rN. By contrast, W is the limit when W has few < n jumps of larger2 n

order.

6. Examples. The following examples treat estimation of location, scale
and regression functions. There are many other kernels of statistical interest;

Ž .see Lee 1990 .

ŽEXAMPLE 1 Extended Hodges]Lehmann location estimator in the loca-
.tion]scale model . Assume that the common distribution of X isi

ŽŽ . .F ?y m rt , where m and t are unknown location and scale parameters and0
Ž . mF is a known distribution. Here q s 1, and h x , . . . , x s Ý l x can be0 1 m is1 i i

used as a location kernel for any nonnegative l with Ý l s 1. The choicei i i
l s 1rm seems most natural and results in the sample mean if J ' 1,i

w Ž .d s 0, and the generalized Hodges]Lehmann estimator Serfling 1984 and
Ž .xChoudhury and Serfling 1988 when J ' 0, d s 1 and p s 0.5.

Ž .EXAMPLE 2 Scale estimation in location]scale models . A quite general
class of kernels for estimating the scale in the previous example has the form
Ž .q s 1

rm

6.1 h x , . . . , x s c l x ,Ž . Ž . Ý1 m i i
is1

w Ž . Ž .xwith Ý l s 0, r G 1 cf. also Example ii in Choudhury and Serfling 1988 .i i
Ž . r ŽHere c is a multiplicative constant chosen so that T H s t . For instance,F

.if F is the standard normal distribution, t equals the standard deviation.0
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Ž .2The U-statistic based on the symmetric kernel x y x r2 gives the sample1 2
< <variance. Generalized L-statistics based on this kernel and c x y x are1 2

Ž . Ž .discussed by Bickel and Lehmann 1979 and Rousseeuw and Croux 1993 .
Other choices of kernels for m ) 2 are treated by Rousseeuw and Croux
Ž .1992 .

Ž .EXAMPLE 3 Slope and intercept estimation in simple linear regression .
Assume that Y s a q bU q e , i s 1, . . . , n, with a and b the intercept andi i i

� 4 � 4 � 4slope, U i.i.d. explanatory variables, Y response variables and e i.i.d.i i i
Ž . Ž .error terms with common distribution F ?rt . We put X s U , Y , so that0 i i i

Ž Ž . Ž .. Ž .q s 2. Let h x , . . . , x , h x , . . . , x be the LS-estimate of a , b com-1 1 m 2 1 m
Ž .puted from x s u , y , i s 1, . . . , m. When m s 2 we havei i i

u y y u y y y y1 2 2 1 1 2
h x , x , h x , x s , .Ž . Ž .Ž .1 1 2 2 1 2 ž /u y u u y u1 2 1 2

Ž . Ž . wThe median of all Y y Y r U y U , i - j is the Theil]Sen estimator Theili j i j
Ž . Ž .x Ž .1950 and Sen 1968 . Various kinds of trimmed means based on h ?, ? are2

Ž .reviewed and analyzed by Frees 1991 .

Ž .EXAMPLE 4 Scale estimation in simple linear regression . Given three
observations X , X , X with U F U F U and U - U . Define1 2 3 1 2 3 1 3
Ž .« X , X , X as the difference between Y and the point at U on the1 2 3 2 2

Ž .straight line joining X and X . One finds that « x , x , x has the form1 3 1 2 3

u y u u y u3 2 2 1
« x , x , x s y q y y yŽ .1 2 3 1 3 2u y u u y u3 1 3 1

u y u u y u3 2 2 1s e q e y e ,1 3 2u y u u y u3 1 3 1

6.2Ž .

w Ž .and it is independent of a and b. If u s u we can put « x , x , x s1 2 1 2 3
xy r2 q y r2 y y . Assume that the data are relabeled so that U F ??? F U .1 3 2 1 n

Ž .Rousseeuw and Hubert 1993 consider an IUQ based on the kernel
Ž . < Ž . <h x , x , x s c « x , x , x for defining regression-free estimators of t . Thei j k i j k

Ž . Ž .constant c is chosen so that T H s t . Note that h X , X , X sF 1 2 3
˜ ˜Ž . Ž . Ž .h e , e , e , where h ?, ? , ? has the form 6.1 , with r s 1, m s 3 and con-1 2 3

Ž .stants l depending on U , U , U . Several designs are considered byi 1 2 3
˜Ž . Ž .Rousseeuw and Hubert 1993 , among others D s S m andn n

6.3 D s 1, 2, 3 , 2, 3, 4 , . . . , n y 2, n y 1, n ,� 4Ž . Ž . Ž . Ž .n

which is related to design D4. The asymptotic theory of Section 4 is not
directly applicable to these designs, since the explanatory variables are

� 4ordered, and therefore D depends on X .n i
By contrast, for fixed explanatory variables satisfying U F ??? F U , we1 n

� 4 Ž .put X s Y , and then D is independent of X . Now, the kernel h X doesi i n i I
not depend on X alone, but also on U , in all but special cases. One exceptionI I
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� 4is equispaced U and a designi

6.4 D s 1, 2, 4 , 2, 3, 5 , . . . , n y 3, n y 2, n� 4Ž . Ž . Ž . Ž .n

Ž . < <of type D4 with g s 1. Then h X , X , X s c 2 e r3 q e r3 y e .i iq1 iq3 i iq3 iq1
Application of Theorems 4.1 and 4.2 gives

3
2 2 2'n T H y t ª N 0, s q s y s .Ž .Ž . Ýn LL 3 1 i iž /

is1

Ž .EXAMPLE 5 Scale estimation in nonparametric regression . Suppose that
Ž . � 4q s 1 and X s m U q e , i s 1, . . . , n, where e are i.i.d. with commoni i i i

Ž . Ž . Ždistribution F ? s F ?rt , 0 F U F ??? F U F 1, are design points non-0 1 n
. w xrandom or random and m: 0, 1 ª R is an unknown regression function.

Ž .Rice 1984 considers estimating t through

2n1 X y XŽ .i iy1
t s ,˜ Ý)n n y 1 2Ž . is2

which is actually an incomplete version of the sample standard deviation
w Ž . xusing design D5, with g s g s 1 and g s n y 1 rn . It has asymptoticñ n

efficiency 0.667 compared to the sample standard deviation in the
location]scale model for normal errors. By increasing g , the efficiency quickly
approaches 1. Note that a local design is appropriate here, since we want to

Ž .include only points h X , X for which U and U are close; otherwise thei j i j
regression function m may cause a large bias.

We will now treat L-functionals other than the mean. Consider an IGL-
Ž . < <estimate of t based on the kernel h x , x s c x y x . Let H be the e.d.f.1 2 1 2 n

� Ž . 4of h X ; I g D , and defineI n
n

t s T H s c h ,Ž .ˆ Ýn n N i i : N
is1

Ž . Ž .with weights c as defined in 1.3 . The constant c s c T, F is chosen soN i
Ž . Ž . y1Ž .that T H s t . For instance, choosing T G s G p , we obtain the IUQ:F

t s t p s Hy1 p s h .Ž . Ž .ˆ ˆn n n w N p xq1: N

� 4What about the asymptotic properties of t ? Since X are not identicallyn̂ i
Ž .distributed, we cannot apply Theorems 4.1 and 4.2 directly to t s T H .n̂ n

˜ � Ž . 4 � 4Introduce H as the e.d.f. of h e ; I g D . Since the error terms e aren I n i
˜Ž .i.i.d., the asymptotics from Section 4 is applicable to T H . Under certainn

Ž . Ž .assumptions, h X is close to h e . PutI I

M s max U y UŽ .n i iy1
2FiFn

5 5for the maximal spacing of the design points. Suppose also that m - ` for«

some 0.5 - « F 1, where
< <m t y m sŽ . Ž .

5 5m s sup .« «< <t y s0Fs-tF1
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< Ž . Ž . < < Ž . Ž . < 5 5 Ž .«Then h X , X y h e , e F c m U y m U F c m g M for any˜«i j i j j i n n
Ž . Ž . Ž .i, j g D . Suppose also that the nonnegative weights c sum to 1 in 1.3n N i
w Ž . d xi.e. HJ t dt q Ý a s 1 . This implies1 j

« y1r2˜< < 5 56.5 t y T H F c m g M s o n a.s.Ž . Ž .Ž .ˆ ˜Ž . «n n n n

as long as
6.6 g M s o ny1rŽ2 « . a.s.Ž . Ž .ñ n

˜Ž . Ž .In other words, if 6.6 holds, t is asymptotically equivalent to T H , son̂ n
that

2 2s y s r222'n t y t ª N 0, s qŽ .n̂ LL ž /g

w Ž .xcf. 5.1 , with g s lim g s lim g , 0 - g F `. When g s `, the asymptotic˜n n
variance s 2 is the same as for the corresponding GL-estimator of t in the
location]scale model. For instance suppose F is the standard normal distri-0

Ž .bution and t the standard deviation of e . If g s `, t 0.25 has asymptoticˆi n
Ž .efficiency 0.827 compared to the sample standard deviation, and t 0.91 hasn̂

w Ž .x Ž .efficiency 0.99 cf. Rousseeuw and Croux 1993 . Another advantage of t pn̂
is that it is robust for low values of p, not only against large error terms ei

Ž .but also against discontinuities in m ? .
Ž . Ž .For equispaced points, U s i y 1r2 rn, we have M s 1rn, so 6.6 isi n

Ž 1y1rŽ2 « .. � 4valid provided g s o n . If U are the order statistics of an i.i.d.ñ i
w x Ž . Ž .sample from a distribution on 0, 1 that has a density w ? with inf w t st

Ž Ž .Ž . Ž . .w) 0, then P M ) 1 q d log n r wn i.o. s 0 for any d ) 0, under somen
w Ž .xregularity conditions on w cf. Deheuvels 1984 .

Ž .An estimator of t based on the residual kernel « ?, ? , ? in Example 4 and
Ž . Ž .design 6.3 is considered by Gasser, Stroka and Jenner 1986 . As mentioned

� 4in Example 4, this kernel in general depends on U . However, assumei
Ž . Ž . Ž . <U s i y 1r2 rn, design 6.4 and kernel h x , x , x s c 2 x r3 q x r3 yi 1 2 3 1 3

˜<x . Let H and H be defined as above, and put2 n n

t s T HŽ .n̆ n

Ž . � 4and m s m U . Since U are equispaced and « ) 0.5,i i i

< <h X , X , X y h e , e , eŽ . Ž .i iq1 iq3 i iq1 iq3

< <F c max 2m r3 q m r3 y mi i iq3 iq1

s O M « s O ny« s o ny1r2 .Ž . Ž .Ž .n

For an L-functional T with weights summing to 1, we therefore have a bias
˜ y1r2Ž . Ž .t y T H s o n . Again, the asymptotic behavior of t now followsˇ ˇn n n

from Theorems 4.1 and 4.2:
3

2 2 2'n t y t ª N 0, s q s y s .Ž .ˇ Ýn LL 3 1 i iž /
is1

Notice that the bias is much smaller if m is twice differentiable with
Y ˜5 5 < Ž . < < <m - `. Then t y T H F c max 2m r3 q m r3 y m sˇL w0,1x n n i i iq3 iq1`

Ž y2 .O n . Further, t is unchanged if any linear function is added to m.ň
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7. A simulation example. The performance of IGL-statistics was tested
for scale estimators from Examples 2 and 5 of the previous section. We

Ž .considered t and t p with design D5 and g ' g . Two regression functions˜ ˆ ˜n n n
Ž . Ž .were used: m ? ' 0 which corresponds to Example 2 and1

u , 0 F u - 1r2,
m u sŽ . 22 ½ 9r2 q u y 1r2 q 2 u y 1r2 , 1r2 F u F 1,Ž . Ž .

having a jump of height 4 at u s 1r2. The error distribution F was the0
Ž . Ž .standard normal distribution F so that t s 1 . The kernel of t p thenn̂

y1 y1'Ž . Ž . < < Ž . Ž ŽŽ . ..takes the form h x , x s c p x y x with c p s 2 F 1 q p r2 .1 2 1 2
Table 1 displays Monte Carlo estimates of finite sample efficiencies for t ,ñ
Ž . Ž .t 0.5 and t 0.9 for sample sizes n s 30, 100 and g s 3, 10, `. Since theˆ ˆn n

Cramer]Rao lower bound for the asymptotic efficiency is 1r2,´
y1NMC2$ 2eff s t y 1Ž .Ýn niž /NMC is1

was used as an estimate of finite sample efficiency. Here N is the numberMC
Ž . w Ž .xof Monte Carlo iterates s 100,000 and t st or t p is an estimate of˜ ˆni n n

Ž .t s 1 in the ith Monte Carlo trial. The theoretical asymptotic limits n s `
are also included in Table 1, for comparison.

w Ž .xAs expected, t and also t 0.9 has high efficiency when m s m , be-˜ ˆn n 1
cause of the Gaussian error distribution. However, both of these two estima-

Ž .tors are very sensitive to the jump in m , whereas t 0.5 is more robust. Theˆ2 n
finite sample efficiencies converge quickly to the asymptotic limits for m .1
The convergence for m is much slower, mainly because of the jump, but also2
since m is nonconstant outside the jump.2

The simulations could also be extended to cover more heavy-tailed distri-
butions. In this case we expect the good efficiency properties of t to breakñ

Ž .down, whereas the more robust IUQ t p is less affected by outliers.n̂

TABLE 1
Estimated finite sample efficiencies using 100,000 Monte Carlo replicates for IGL scale

estimates with design D5. The last column g s ` means g s n y 1 for regressionñ
1r3w Ž .x w x Ž .function m D s S 2 and g s 5n for m local design˜1 n n n 2

( ) ( )t t 0.5 t 0.9˜ ˆ ˆn n n

m n g s 3 g s 10 g s ` g s 3 g s 10 g s ` g s 3 g s 10 g s `

m 30 0.835 0.914 0.974 0.524 0.679 0.774 0.727 0.850 0.9401
100 0.849 0.935 0.991 0.533 0.712 0.836 0.732 0.887 0.967
` 0.857 0.952 1.000 0.534 0.729 0.864 0.735 0.898 0.992

m 30 0.190 0.028 0.012 0.368 0.087 0.024 0.234 0.018 0.0102
100 0.414 0.095 0.021 0.479 0.357 0.102 0.522 0.145 0.016
` 0.857 0.952 1.000 0.534 0.729 0.864 0.735 0.898 0.992
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8. Outlook.

8.1. Other functionals. In this paper we have only treated L-functionals.
Ž .It is clear that other functionals e.g., M- and R-functionals could also be

investigated in a similar way. Suppose now that T is a measurable functional
Ž w x . w Ž .on D y`, ` , BB which is compactly differentiable cf. Rieder 1991 , page0 'x � Ž .42 . From the proof of Theorem 3.1 it follows that the sequence n H y Hn F

Ž .is tight, so Theorem 1.3.3 of Rieder 1991 implies
y1r2' 'n T H y T H s n d T H , H y H q o nŽ . Ž . Ž . Ž .Ž .n F 1 F n F p

'n
y1r2s d T H , d y H q o n .Ž .Ž .Ý 1 F hŽ X . F pIN IgDn

Ž . Ž .Here d is the one-point distribution at h X . Hence, T H is asymptoti-hŽ X . I nI

cally equivalent to an incomplete U-statistic for any compactly differentiable
functional, and asymptotic normality may be deduced from the asymptotic
theory of incomplete U-statistics. Alternatively, we may use Theorem 3.1 and
the continuous mapping theorem to deduce

U'n d T H , H y H ª d T H , W ,Ž . Ž .1 F n F LL 1 F

Ž .since d T H , ? is a continuous linear functional, by the definition of com-1 F
pact differentiability.

8.2. Multivariate kernels. Multivariate kernels are of interest, for exam-
Ž .ple, for multivariate location estimation. Chaudhuri 1992a has constructed

a multivariate extension of the Hodges]Lehmann estimator. Given data
1 m q q Ž .X , . . . , X g R , let h: R ª R be defined by h X s Ý X rm, and let1 n I ig I i

< < q? denote the Euclidean norm in R . Then the statistic

< <8.1 m s arg min h X y m9Ž . Ž .ˆ Ýn Iqm9gR ˜ Ž .IgS mn

< Ž . X < Žqis an estimator of m s arg min E h X y m . It reduces to the m-argu-m9g R I
.ment extension of the Hodges]Lehmann estimator for q s 1, and it has been

shown that m y m is asymptotically equivalent to a U-statistic having aˆ n
w Ž .xcertain multivariate kernel A Theorem 3.2 in Chaudhuri 1992a . Replacing

˜ ˜Ž . Ž .S m by some design D in 8.1 results in a more tractable estimator thatn n
we conjecture is asymptotically equivalent to an incomplete U-statistic with

˜ w Ž .xkernel A and design D . The Oja median Oja 1983 and the simplicialn
w Ž .xmedian Liu 1990 are two other multivariate location estimates that are

Ž .asymptotically equivalent to U-statistics; see Arcones, Chen and Gine 1993 .´
Again, we conjecture that the corresponding incomplete versions of these
estimators are asymptotically equivalent to incomplete U-statistics with the
same kernels as the ‘‘complete’’ ones.

Consider next a multiple linear regression model with explanatory vectors
U of dimension p, response variables Y and an unknown vector of regres-i i

Ž .sion parameters b. Chaudhuri 1992b considers certain estimators of the
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regression parameters that generalize the Hodges]Lehmann estimator.
Ž .Croux, Rousseeuw and Hossjer 1994 and Hossjer, Croux and Rousseeuw¨ ¨

Ž . Ž .1994 introduce the class of generalized S-estimators GS-estimators and
Ž .Stromberg, Hawkins and Hossjer 1995 a related least trimmed differences¨

Ž .estimator LTD-estimator . For instance, the LTD-estimator is defined by
minimizing the objective function

ln
2X Xr b y r b ; i - j nŽ . Ž .Ž .Ý ½ 5i j k : ž /2ks1

X Ž . Tw.r.t. b . Here r b s Y y bU is the ith residual using b as the regressioni i i
nŽ . Ž .parameter and 1 F l F . T is the transpose of a vector. Both the GS-,n 2

Ž .LTD- and Chaudhuri 1992b estimators are asymptotically equivalent to
multivariate U-statistics, and reduced versions of them can be obtained by
considering incomplete designs. For the LTD-estimator, this corresponds to
minimizing

ln
2X Xr b y r b ; i , j g DŽ . Ž . Ž .Ž .Ý ½ 5i j n Ž .k : N n

ks1

w.r.t. bX.

8.3. Robustness. As seen in Sections 6 and 7.2, incomplete designs can be
used to construct computationally more tractable robust estimators. A word

Ž . U Žof caution though; the asymptotic breakdown point « the smallest propor-
.tion of data that is able to carry the estimate over all bounds may decrease

using a reduced design. Consider, for instance, the Hodges]Lehmann estima-
U ' w Ž .xtor, for which « s 1 y 1r 2 f 0.293 Hodges 1967 . If design D5 is used

U U 'Žwith g ' g s 1, it may be shown that « s 0.25. However, « ª 1 y 1r 2˜
. Uas g ª `. Random design D1 gives « s 0.

U n' 'Ž . Ž .The LTD-estimator has « s min l , 1 y l if l r ª l as n ª `, son 2
wthe maximal breakdown point 0.50 is achieved with l s 0.25 cf. Croux,

Ž .Rousseeuw and Hossjer 1994 , Theorem 2, and Stromberg, Hawkins and¨
Ž . xHossjer 1997 , Theorem 2.1 . If design D5 is used with g ' g s 1 and¨ ñ

Ž . U Ž Ž . .l rN n ª l, a similar proof shows that « s min l, 1 y l r2 which at-n
tains the maximal value «U s 1r3 for l s 1r3. Similar results hold for
reduced versions of GS-estimators.

A more systematic study of reduced designs D that result in goodn
robustness and efficiency is an interesting topic for future research.

Ž .8.4. Time series. Consider the AR p model

Y s a q b Y q ??? qb Y q e ,i 1 iy1 p iyp i
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Ž .where e are i.i.d. innovations with distribution F ?rt . The kernels ofi 0
Ž .Examples 1]4 and their multivariate extensions may be used for estimating

Ž .a , b s b , . . . , b and t . A regression-free IGL-estimator of t may be1 p
Ž .constructed, using X s Y , . . . , Y , m s p q 2 andi iyp i

� 4h X s vertical height of simplex formed by X ; i g I .Ž .I i

Ž .This kernel was proposed by Rousseeuw and Hubert 1993 in the multivari-
ate regression setup. The design for the IGL-estimator does not have to be

� 4local in terms of X , even though each X is a local block of Y ’s. It would bei i i
interesting with an asymptotic theory for dependent data, which is needed for
this example.

8.5. Recursive estimation of M-functionals. Consider an M-functional,
implicitly defined by

c y y T G dG y s 0,Ž . Ž .Ž .H
given some odd function c : R ª R. The recursive designs D4 and D5 with

Ž .g ' g may be used to construct on-line estimators of u s T H . Notice thatñ F
< <D _ D s g for n large enough. Hence, we propose the recursive schemen ny1

1ˆ ˆ ˆu s u q c h X y uŽ .Ž .Ýn ny1 I ny1ng bny1 IgD _Dn ny1

XŽ . Ž .for estimating u , with b a recursive estimator of Hc y y u dH y . Undern F
the appropriate assumptions, we conjecture that this estimator is asymptoti-

Ž .cally equivalent to T H with H computed from the same design D4 or D5.n n
Ž .In fact, this is proved in Hossjer 1997 for the special case of quantiles¨

w Ž . y1Ž . Ž . xT G s G p and c x s p y 1 .� x F 04

APPENDIX

We now give the proofs of the results from Sections 3 and 4.

PROOF OF THEOREM 3.1. We first treat designs D1]D3. The convergence of
� Ž .4finite-dimensional distributions of W ? follows from the Cramer]Woldn

device and the asymptotic theory for incomplete U-statistics; see Janson
Ž . Ž .1984 for design D1, Lee 1990 , pages 212]213, for D2 and Brown and

Ž .Kildea 1978 for D3. Even though these results are formulated for symmetic
kernels only, the generalization to nonsymmetric kernels is straightforward.
w l Ž . xNotice that Ý l W y is an incomplete U-statistic.1 i n i

For proving weak convergence, it remains to establish tightness. For any
Ž . w xfunction Z ? g D y`, ` we define the modulus of contunuity:

< <v d s sup Z y y Z x .Ž . Ž . Ž .Z
< Ž . Ž . <x , y ; H y yH x FdF F

We will prove that

A.1 lim lim sup P v d G 3« s 0.Ž . Ž .Ž .Wndª0 nª`
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Ž .Tightness then follows from A.1 ; see the proof of Theorem A in Silverman
Ž . � 4 w x1983 . Let J s j , j , . . . , j be a grid in y`, ` with j s y`, j s `n 0 1 L 0 Ln n

and

1
H j y y H j F ,Ž . Ž .F i F iy1 n

A.2Ž .
1

H j y H j GŽ . Ž .F i F iy1 n

Ž .for i s 1, . . . , L . The dependence of j on n is suppressed in the notation. Itn i
follows that L F n. Introduce nextn

H s H j y y H j , i s 1, . . . , L .Ž . Ž .in n i n iy1 n

Ž .Given any x, y g R, we may find j , j g J such that 0 F H x yiy1 jy1 n F
Ž . Ž . Ž . Ž . Ž .H j F 1rn, 0 F H x y H j F H , 0 F H y y H j F 1rnF iy1 n n iy1 in F F jy1

Ž . Ž .and 0 F H y y H j F H . Hence,n n jy1 jn

2'< < < <W y y W x F W j y W j q n H q H q .Ž . Ž . Ž .Ž . Ž .n n n jy1 n iy1 jn in 'n

< Ž . Ž . < < Ž . Ž . <Observe also that H y y H x F d implies H j y H j F 2d ,F F F jy1 F iy1
provided n is so large that 1rn F d . This implies

2'A.3 v d F v 2d q 2 n max H q ,Ž . Ž . Ž .˜W W inn n '1FiFL nn

where

< <v d s sup Z y y Z x .Ž . Ž . Ž .˜Z
< Ž . Ž . <x , y ; H y yH x FdF F

x , ygJ n

We will prove below that

C14 < <E W y y W x F H y y H xŽ . Ž . Ž . Ž .Ž .n n F FnA.4Ž .
2qC H y y H xŽ . Ž .Ž .2 F F

Ž .for some constants C and C not depending on x, y or n , which in turn1 2
implies

14 2 < <A.5 E W y y W x F C H y y H x , H y y H x G ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .n n F F F F n

Ž . Ž .with C s C q C . Put W s W j y y W j . Then, if n is so large that1 2 ni n i n iy1'2r n F «r2,
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Ln

' 'P 2 n max H G « F P 2 n H G «Ž .Ýni niž /1FiFLn is1

Ln

's P 2W G « y 2 n H j y y H jŽ . Ž .Ž .Ž .Ý ni F i F iy1
is1

Ln 2
F P 2W G « yÝ niž /'nis1

A.6Ž .

2Ln « C 1rnŽ .
F P W G F n ª 0Ý ni 4ž /4 «r4Ž .is1

Ž .as n ª `, where C is the same constant as in A.5 . Next, we will prove that

A.7 lim lim sup P v 2d G « s 0.Ž . Ž .˜Ž .Wndª0 nª`

� 4To this end, let Q s u , u , . . . , u be a subset of J with u s y`,nd 0 1 L n 0nd

u s ` andLnd

H u y y H u F 3d ,Ž . Ž .F i F iy1

H u y H u G 3dŽ . Ž .F i F iy1

Ž .for i s 1, . . . , L . Observe that L F 1r 3d . Then define sets K , . . . , Knd nd 1 Lnd

w x Ž . Ž . w .by K s u , u l J if H u y H u y F 2d and K s u , u l Ji iy1 i n F i F i i iy1 i n
Ž . Ž . < Ž . Ž . <if H u y H u y ) 2d . Suppose x / y g J and H y y H x F 2d .F i F i n F F

< < < <Then x g K and y g K for some i, j with i y j F 1. Moreover, if i y j s 1,i j
then K l K / B. It follows thati j

Lnd «
< <P v 2d G « F P sup W y y W x G .Ž . Ž . Ž .˜Ž . ÝW n nn ž /3x , ygKis1 i

< Ž . Ž . < Ž . Ž .If x, y g K , then H y y H x F 5d . Therefore, A.2 , A.5 and Theoremi F F
Ž . w Ž . x12.2 in Billingsley 1968 with g s 4, a s 2 and u s H j in that theoremi F i

imply that, for some constant C,

2
« C 5dŽ .

< <P sup W y y W x G F ,Ž . Ž .n n 4ž /3 «r3Ž .x , ygK i

Ž .which implies A.7 , since

2C 5d C25dŽ .
P v 2d G « F L F .Ž .˜Ž .W nd 4 4n «r3 3 «r3Ž . Ž .

Ž . Ž . Ž . Ž .Formula A.1 now follows from A.3 , A.6 and A.7 . It remains to prove
Ž .A.4 to establish tightness. We will indicate how this is done for the random
design D1, the other cases being similar. Assume x - y and put, for ease of

Ž . Ž . Ž .notation, h x s h x y h x . Assume that I , . . . , I are i.i.d. multi-I y I x I 1 N
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Ž .indices, uniformly distributed over S m , and writen

N'n
W y y W x s h X .Ž . Ž . Ž .Ýn n IjN js1

Then
2 N 4n4

E W y y W x s E h XŽ . Ž .Ž . Ž .Ý Łn n I4 jž /kN ks1j , . . . , j s11 4

n2

s Na q 3N N y 1 aŽ .Ž 1 24N
A.8Ž .

q4N N y 1 a q 6N N y 1 N y 2 aŽ . Ž . Ž .3 4

qN N y 1 N y 2 N y 3 a ,Ž . Ž . Ž . .5

where
4

A.9 a s E h X F H y y H x ,Ž . Ž . Ž .Ž .Ž .1 I F F1

2 2
a s E h X h XŽ . Ž .ž /2 I I1 2

C21 2F H y y H x q H y y H x ,Ž . Ž . Ž . Ž .Ž . Ž .F F F Fn

A.10Ž .

3
a s E h X h XŽ . Ž .ž /3 I I1 2

C31F H y y H x ,Ž . Ž .Ž .F Fn

A.11Ž .

2
a s E h X h X h XŽ . Ž . Ž .ž /4 I I I1 2 3

C C41 42 2F H y y H x q H y y H xŽ . Ž . Ž . Ž .Ž . Ž .F F F F2 nn

A.12Ž .

and

a s E h X h X h X h XŽ . Ž . Ž . Ž .Ž .5 I I I I1 2 3 3

C C51 52 2F H y y H x q H y y H x .Ž . Ž . Ž . Ž .Ž . Ž .F F F F3 2n n

A.13Ž .

Ž . Ž . Ž . Ž .Formula A.4 follows now from A.8 ] A.13 and the fact that g ) 0 in 3.2 .
Ž . Ž . � 4The estimates in A.8 ] A.13 are deduced from the i.i.d. assumption on I .j

For instance,

1 2 2
a s E h X h XŽ . Ž .Ž .Ý2 I J2nŽm. Ž .I , JgS mn

n2 y n n y m n n y mŽ . Ž . 2Ž . Ž .m mŽm. Žm. Žm.4 2F E h X q Eh X .Ž . Ž .Ž . Ž .I I2 2n nŽm. Žm.
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Ž . Ž .Here n n y m is the number of pairs I, J with I l J s B andŽm. Žm.
Ž . Ž 2 my1.n y n n y m s O n the number of pairs with I l J / B. For-Žm. Žm. Žm.

Ž . Ž Ž ..2 Ž . Ž . Ž Ž ..4mula A.10 follows since E h X F H y y H x and E h X FI F F I
Ž . Ž .H y y H x .F F

5 ŽD2. ŽD4. 5Consider now designs D4 and D5. Observe first that W y W and`n n
ŽD3a . ŽD5. '5 5 Ž .W y W are both O 1r n if g - `, so the result then follows from`n n

what we have already proved. If g s `, it is easy to see that, for each y g R,
Ž ŽD4.Ž . SnŽm.Ž ..2 Ž ŽD5.Ž . SnŽm.Ž ..2E W y y W y ª 0 and E W y y W y ª 0, wheren n n n

SnŽm.Ž . Ž .W ? is the process corresponding to D s S m . This proves conver-n n n
gence of finite-dimensional distributions, using the asymptotic theory of
U-statistics and the Cramer]Wold device for the finite-dimensional distribu-´

SnŽm.Ž . Ž . ŽD4.Ž .tions of W ? . The inequality A.4 is established analogously for W ?n n
ŽD5.Ž .and W ? , and this proves tightness.n

Ž . UFinally, 3.7 follows from the weak convergence of W to W and then
continuous mapping theorem:

U' 5 5 5 5 5 5n H y H s W ª W s O 1 . IŽ .` ` `n F n LL p

Ž y1r2 .PROOFS OF THEOREMS 4.1 AND 4.2. We will show that D s o n , byn p
Ž . Ž . Ž .adapting the proof of Serfling 1984 . This implies that T H y T H isn F

Ž .asymptotically equivalent to an incomplete U-statistic according to 4.1 , and
Ž .the rest of the theorem s will follow by the asymptotic theory for incomplete

U-statistics, as in the proof of Theorem 3.1.
Ž . Ž . Ž . Ž . 1 Ž . y1Ž .Write T H s T H q T H , where T H s H J t H t dt,F 1 F 2 F 1 F 0 F

Ž . d y1Ž .T H s Ý a H p . Decompose the remainder into two terms, D s2 F js1 j F j n
Ž . Ž . Ž .D q D , where D s T H y T H y d T H ; H y H . Then1n 2 n in i n i F 1 i F n F

`

A.14 D s y V y H y y H y dy ,Ž . Ž . Ž . Ž .Ž .H1n H , H n Fn Fy`

where

¡K G y y K G yŽ . Ž .Ž . Ž .2 1 y J G y , G y / G y ,Ž . Ž . Ž .Ž .2 1 2~ G y y G yŽ . Ž .V y sŽ . 1 2G , G1 2 ¢0, G y s G y ,Ž . Ž .1 2

Ž . u Ž . Ž .and K u s H J t dt. Now A.14 implies0

< < 5 5 5 5A.15 D F V H y HŽ . 1 `1n H , H n Fn F

and
< < 5 5 5 5A.16 D F V H y H ,Ž . ` 11n H , H n Fn F

5 5 Ž .where ? denotes the L -norm on R. It follows from 3.7 and Lemma 8.2.4A1 1
Ž . 5 5 Ž .in Serfling 1980 that V s o 1 under the assumptions of Theorem1H , H pn F

Ž .4.1. Another application of 3.7 proves that

< < y1r2A.17 D s o nŽ . Ž .1n p



¨O. HOSSJER2652

under the assumptions of Theorem 4.1. Similarly, under the assumptions of
Ž . Ž .Theorem 4.2, it is a consequence of 3.7 and Lemma 8.2.4E in Serfling 1980

5 5 Ž . Ž .that V s o 1 . In conjunction with Lemma A.1, this proves A.17`H , H pn F
Ž .under the assumptions of Theorem 4.2. Finally, A implies

< < y1r2D s o n ,Ž .2 n p

Ž .by extending the argument in Ghosh 1971 from i.i.d. sequences to the set
� Ž . 4h X ; I g D . II n

Ž . Ž5 5 . Ž y1r2 .LEMMA A.1. Assume B . Then E H y H s O n for all designs1n F
in Section 2.

PROOF. By Holder’s inequality,¨
1r22' 5 5 < <n E H y H s E W y dy F EW y dy,Ž . Ž .Ž . Ž .1 H Hn F n n

˜ 'Ž . Ž . Ž . Ž .where W ? is defined in 3.1 . Let W t s n Ý h X rn be then n I g S Žm. y I Žm.n
Ž .complete U-statistic corresponding to W . After some calculations one finds,n
for each of the three designs of Section 2,

2E W y s Var W yŽ . Ž .Ž .Ž .n n

1 s 2 y , yŽ .m˜s 1 y Var W y q design D1Ž .Ž .nž /N g

m1
2 2 2s s y , y q s y , y y s y , y design D2Ž . Ž . Ž .Ým 1 i iž /g is1

21
2 2 2s s y , y q s y , y y s y , y design D3,Ž . Ž . Ž .Ý2 1 i iž /g is1

2Ž . 2 Ž . 2Ž . Ž . Ž .with s ?, ? , s ?, ? and s ?, ? defined in 3.3 ] 3.5 . Observe that1 i j m
2 Ž . Ž 2 Ž .. 2 Ž ..s y, y F s y, y q s y, y r2. In conjunction with Remark 4.4,1 i j 1 i i 1 j j

2Ž . 2 Ž . 2Ž .this implies s y, y s Ý s y, y F ms y, y . Note further thati, j 1 i j m
˜ 2Ž Ž .. Ž .Var W y F ms y, y . The lemma now follows for designs D1]D3 becausen m

Ž . 2Ž . Ž .Ž Ž ..of B and the identity s y, y s H y 1 y H y . Designs D4 and D5 arem F F
handled similarly. I
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