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 Generalized S-Estimators

 Christophe CROUX, Peter J. ROUSSEEUW, and Ola HOSSJER*

 In this article we introduce a new type of positive-breakdown regression method, called a generalized S-estimator (or GS-estimator),
 based on the minimization of a generalized M-estimator of residual scale. We compare the class of GS-estimators with the usual S-
 estimators, including least median of squares. It turns out that GS-estimators attain a much higher efficiency than S-estimators, at
 the cost of a slightly increased worst-case bias. We investigate the breakdown point, the maxbias curve, and the influence function
 of GS-estimators. We also give an algorithm for computing GS-estimators and apply it to real and simulated data.

 KEY WORDS: Breakdown point; Influence function; Maxbias curve; Regression analysis; Robustness.

 1. INTRODUCTION

 In the linear model one often has to cope with outliers,
 which can make the classical least squares (LS) estimator
 highly unreliable. In fact, even a single outlier can destroy
 the LS estimate. Many alternative methods have been pro-
 posed. Commonly used are M- and GM-estimators (see, for
 example, Hampel, Ronchetti, Rousseeuw, and Stahel 1986),
 but their breakdown point goes down to zero when the di-
 mension increases. The least median of squares (LMS) and
 least trimmed squares (LTS) estimators (Rousseeuw 1984)
 have a 50% breakdown point but a low asymptotic efficiency.
 A generalization is given by S-estimators (Rousseeuw and
 Yohai 1984), which can attain an efficiency up to 33%
 (Hossjer 1992). Both MM-estimators (Yohai 1987) and T-
 estimators (Yohai and Zamar 1988) can attain arbitrarily
 high efficiency without losing their 50% breakdown point,
 but they pay for this with an increased bias. Note that MM-
 estimators need a high-breakdown start, for which we can
 use one of the estimators discussed herein.

 In this article we introduce a new class of regression es-
 timators, called generalized S- estimators (or GS-estimators),
 which can have a 50% breakdown point like S-estimators,
 but attain a much higher efficiency. As a special case of GS-
 estimators, we propose the least quartile difference (LQD)
 estimator, which we define as

 = argmin Qn(ri, . .. , rn), (1)

 where ri is the residual of the ith case and

 Qn= { ri - rj; i (1,) (n) (2)

 is a scale estimator proposed by Rousseeuw and Croux
 (1993). Expression (2) means that Qn is the (hp)th order sta-
 tistic among the (2) elements of the set { I ri - rj I; i < j}.
 Here hp = [(n + p + 1)/2], where p is the number of regres-
 sion parameters. It turns out that the objective function (2)

 can be computed very quickly using an efficient algorithm.,
 Therefore, the LQD can be easily implemented by adapting
 an existing LMS program. The Gaussian efficiency of the
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 LQD regression is shown to be 67.1%, which is more than
 twice the efficiency of any S-estimator with a 50% breakdown
 point. Moreover, the LQD does not require the choice of
 tuning constants.

 An important property of GS-estimators is that their ob-
 jective function does not depend on the intercept term. (The
 intercept can be estimated afterwards, with high statistical
 efficiency and consuming negligible computation time.) An-
 other advantage of GS-estimators is that they are well suited
 for models with an asymmetric error distribution, unlike the
 usual S-estimators of which the objective function depends

 only on ri through I ri I; hence positive residuals are attached
 the same importance as negative residuals of the same size.
 Therefore, GS-estimators are more generally applicable. Note

 that the pairwise differences ri - rj have a symmetric distri-
 bution even when the r, themselves do not.

 2. ROBUSTNESS AT FINITE SAMPLES

 We will work with a linear model denoted by

 yi = ,1x1, + + +p_1xi,p_1 + a + error,

 for i = 1,.. ., n. (3)

 The parameter to be estimated is 0 = (,B, a) E lRP, where f,
 E Rtp-1 is the slope and a is the intercept. Our observations
 are of the form z, = (xi, yi) = (ui, 1, yi) E IP+1. This means
 that the actual explanatory variables are combined in a vec-

 tor, ui E RlP-1. (We require of course that p 2 2.) As usual,
 we assume that nlp > 5 to avoid the curse of dimensionality.

 We define a generalized S-estimator ,B as

 f, = argmin Sn(,B), (4)
 '3

 where sn(fl) is based on the residuals ri = yi - fltui - a
 through the equation

 (2) ,<,s (f /nO
 2 l<J M

 To avoid having multiple solutions (or no solutions), it is
 better to define

 Sn(fl) =supt s>0;(2 n pri( j) >kn,p} (6)
 { (2 ) <j (s)
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 Note that s,(fl) does not depend on a because ri - rj does
 not. We will require the following condition:

 (R) The function p is even, nondecreasing on the positive
 numbers, and continuous at 0 with p(O) = 0. There

 are only a finite number of points where p is not con-

 tinuous or nondifferentiable. Furthermore, 0 < p(oo)
 < oo and p(c) = p(oo) for some c > 0.

 We will denote lim,noOk,p = k.
 Because s,(,f) is independent of the intercept, the latter

 must be estimated afterwards. We can estimate a by a lo-
 cation estimate based on the numbers ri (A, 0) = y
 - ,'ui; for instance, by using the median or a more efficient
 50% breakdown estimator.

 We will pay particular attention to the GS-estimator given
 by

 p(x) = I(IxI 2 1) and knp ((2) (2i) + 2

 with hp = [(n + p + 1)/2]. Then we have that sn(fl) = Qn(f3)

 = { ri - rjIl; i < I} hpMn (One should multiply QW(Ml) with

 a certain constant factor to make it consistent as a scale
 estimator, but that is immaterial to our current goal of es-
 timating ,.) Note that k = 4. The scale estimator Qn was
 discussed by Rousseeuw and Croux (1993). We will denote
 the corresponding regression estimator (1) by LQD, because
 the objective function is approximately the first quartile of
 the pairwise differences of the residuals. It is instructive to
 compare this with the LMS objective function, which is
 given by

 {Iri; 1 < i < n} . (7)

 We will prove that the LQD regression always exists and
 has the exact fit property and maximal breakdown point.
 Using these facts, we will show the existence, exact fit prop-
 erty, and maximal breakdown point for a whole class of gen-
 eralized S-estimators.

 Throughout this section we will assume the following
 property:

 (H) No ('hP) of the differences (ui - uj, yi - yj) lie on the
 same vertical hyperplane in lRP.

 By "vertical hyperplane," we mean a hyperplane containing
 (0, 0) and (0, 1). Note that this condition is stronger than

 requiring that there are no hp observations (xi, Yi) lying on
 a vertical hyperplane in WRP+. In Figure la we see that no

 hp observations (ui, yi) are lying on the same affine hyper-
 plane, but nevertheless condition (H) is not satisfied. If the
 observations follow a continuous distribution, then (H) has
 probability 1.

 Theorem 1. Under condition (H), there always exists a

 solution to argmin,8Qn (O6 )

 (All proofs are given in the Appendix.) To establish the
 breakdown point, we need another regularity condition.

 Definition. We say that the differences of the u1 are in

 general position if no (P2) of the u1 -U uwith i <jbelong to
 the same hyperplane in DaP-1.

 (a) (b)

 p=2 ', , p=3 *

 hp=4 = 4

 - -, .+
 U1 U1

 (c) D (d)

 p=3 p=1
 LQD

 n=10

 - . -, hp=6

 Ut x

 Figure 1. Examples Where (a) Condition (H) is not Satisfied; (b) Neither
 the u; nor Their Differences are in General Position; (c) the u, are in General
 Position but Their Differences are not; and (d) a Zero-Intercept Model is
 Inappropriate.

 If the differences of the ui are in general position, then the
 ui themselves also are in general position. The latter means
 that no p of the ui lie on the same affine hyperplane in RP- ,
 which is equivalent to saying that no p of the xi lie on the
 same hyperplane in lRP. In Figure lb we have a situation
 where neither the ui nor their differences are in general po-
 sition, whereas in Figure 1 c we see that it can happen that

 the ui themselves are in general position but their differences
 are not.

 Note that this condition on the differences ui - uj is more
 stringent than the condition on the individual ui, but not
 much more. If the ui have a continuous distribution, then
 both conditions hold almost surely. From a semantic view-

 point, the ui being in "general" position also precludes such
 linear relations between the ui - uj. (Actually, in compu-
 tational geometry the phrase "general position" is often in-
 terpreted in this stronger sense.) When a data set contains a

 few exceptions to general position, this does not mean that

 GS-estimators can no longer be used, but merely that the
 expression in Theorem 2 will be slightly reduced.

 Let us now look at the finite-sample breakdown point

 (Donoho and Huber 1983). The breakdown point of an es-
 timator T at a sample Z is defined as

 e*(T, Z) = min{m/n; supl T(Z) -T(Z')I = oo}, (8)

 where Z' is obtained by replacing any m observations by

 arbitrary points. (We will use the euclidean norm for I * 1.)

 Theorem 2. If the differences of the u1 are in general
 position, then the breakdown point of the LQD estimator is

 given by e*'(fl, Z) = ([(n -p)/2] + 1)/n, which is the
 maximal value for any regression equivariant estimator.
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 From the proof, it follows that we obtain the maximal

 breakdown point for any objective function {ri - rj I;
 i< jq(n),where

 ([(n+p)/2]- 1) 1 <q

 ?([(n + p + 1)/2] 9
 2 /

 We have chosen to define the LQD based on the largest rank

 (hp), where hp = [(n + p + 1)/ 2], which is also in accordance
 with the rank hp used in the LMS objective (7).

 From the general relation between the breakdown point

 and the exact fit property (Rousseeuw and Leroy 1987, p.
 123), the next result immediately follows.

 Corollary. If at least hp = [(n + p + 1)/2] of the obser-
 vations satisfy yi = #'ui + ao exactly and the differences of
 their u, are in general position, then f, = fio no matter what
 the other observations are.

 Remark 1. It is easy to see that if we take a high-
 breakdown estimator 'a for the intercept, with en*(a', Y)
 > ([n - p)/2] + 1)/n for any univariate sample Y, then we
 also have the maximal breakdown point and the exact fit
 property for 0 = (,B, a-).

 Remark 2. It is not advisable to use GS-estimators for
 fitting a zero-intercept model to data that were actually gen-
 erated with an intercept, because they estimate the slope of
 a point cloud regardless of the position of the origin. For
 instance, let us look at Figure 1d. Applying LQD yields an
 acceptable slope estimate, indicated by the dotted line, but
 because of the zero-intercept model the actual LQD regres-
 sion (solid line) does not fit the data points. Note, however,
 that a study of the LQD-based residuals, all having the same
 sign and size, does reveal immediately that a zero-intercept
 model is inappropriate for these data (i.e., model misspeci-
 fication).

 Now we return to GS-estimators of the type (4) with gen-
 eral p-function.

 Theorem 3. The existence, the maximal breakdown
 point, and the exact fit property hold for GS-estimators under
 the same conditions as for the LQD when

 p(c) ((2) 2(h2) 2

 which implies that k/p(c) 34
 The most popular choice for a p-function is the biweight,

 p(x) = min(3x2/c2 -3X4/C4 + X6/C6, 1). If we choose c
 = .9958 (and thus k = .75), we obtain a 50% breakdown
 regression estimator, which we will call the biweight GS-
 estimator. This estimator is consistent (H6ssjer, Croux, and
 Rousseeuw 1994).

 The usual S-estimators, which can be defined by the ob-
 jective function

 n= suP{S > 0;- p( ^ (-) 2 knP} ' (10)

 have maximal breakdown point if knplp(c) = (n - hp + 1)/
 n. Therefore, we obtain the maximal breakdown point if kl
 p(c) = 2, where k = limn1 knp. The S-estimator with bi-
 weight p-function and 50% breakdown point (hence c
 = 1.547) will herein be called the biweight S-estimator.

 3. MAXBIAS CURVES

 In this section we follow the approach of Martin, Yohai,

 and Zamar (1989). Because the maxbias curve is an asymp-
 totic notion, we first must determine the functional corre-
 sponding to a GS-estimator. We will add to condition (R)
 that p(oo ) = 1 (this is only a normalization) and drop the
 condition that "p is constant for large x." For any distribution
 F, we define the scale functional

 s(F) = sup{s > O;EFp(r1 -) 2 k}, (11)

 where r1 and r2 are iid according to F and 0 < k < 1. We
 denote by s(fl, K), where K is the joint distribution of (u,
 y), the same scale functional evaluated at the distribution

 of the residuals r(fl) = y - f'u - a, where we note that this
 scale does not depend on a. The corresponding GS-estimator
 then has the functional version T given by s(T(K), K)
 = inf,3s ( f, K); hence T is regression and affine equivariant.

 Suppose that our model distribution Ko of(u, y) is elliptical
 about the origin. We may assume without loss of generality
 that T(KO) = 0 due to regression equivariance. Denote the
 distribution of the ui by Go and that of the errors by Fo.
 Consider the contamination neighborhood Ve = {K; K = (1
 - e)Ko + eK* }, where K* can be any distribution. Then
 the maxbias curve is given by

 BJ(T) = sup {I T(K) l; K E Ve (12)

 The asymptotic breakdown point may then be defined as e*

 = inf{ e; B,( T) = oo }. Suppose that the following conditions
 hold

 (G) Go is spherical, PG,((U'f) = 0 for all ,B 0 0 in lRP, and
 for all ,B the distribution of fl'u is unimodal

 (F) Fo has a unimodal, continuous, and symmetric den-
 sity.

 Define the functions

 g(s, fl) = EKOXKOP( Y Y2 - '(ul - U2)) and

 g(s, f,) = EKOP( ) (13)

 Because Go is spherical, g and g depend only on I ,B I and s.
 It holds that g and g are continuous, strictly increasing in

 I# I and strictly decreasing in s (for s > 0). This can be
 proven as in lemma 3.1 of Martin et al. (1989) by using the
 fact that the distributions of ul - u2 and Y1 - Y2 also satisfy
 (G) and (F). Therefore, we may define gy (*, 1/ I) as the
 inverse of g with respect to s, and g2-1 (e, s) as the solution
 I .d of h(e, s, flu 1) = k, where k = limnokn p was defined
 following (6) and

This content downloaded from 130.237.198.64 on Wed, 20 Apr 2016 14:46:06 UTC
All use subject to http://about.jstor.org/terms



 1274 Journal of the American Statistical Association, December 1994

 h(e, s, fl) = (1 - e)2 g(s, flu) + 2e(1 - e)g(s, flu)

 (O < e < 1). (14)

 By means of two lemmas, given in the Appendix, we now

 obtain the maxbias curve.

 Theorem 4. Under conditions (G) and (F), we have

 Bj(T) = g-I( g '(9 I )2e vo))

 for e< min( lk, 1 - 1-k)

 = oo elsewhere.

 In the case where (u, y) is multivariate normal N(0, Ip),
 we obtain

 g(s, y) = h( lY and g(s, y) = h( 2(+Y2

 where h(X) = Ep(Xu) for u - N(O, 1). Note that h(X) is
 increasing and continuous for X > 0, so that h - is well de-
 fined. We can compute Be( T) for any e < e* by first com-
 puting

 SI = V/h-1 (I - )2

 Then Be( T) is given by the solution of the following equation
 in y:

 (-e)2h ( ) + 2e(1 - e)h( 1 ) .

 In the special case where p is a step function p(x) = If(l xl

 > c), we find that h(X) = 2(1 - '1(c/X)) and thus h-1 (tf)
 = c/cIY1( - t/2).

 Remark 1 . Theorem 4 implies that the breakdown point

 becomes

 e*'=min( 1 k,1- 1k). (15)

 So for the step function p(x) = f I xx > c) with PFO(Y1-Y2
 > c) = 1f-ik/2, yielding the ( - k)th quantile ofthe pairwise
 differences of residuals, we obtain (15) . This gives the max-
 imal breakdown point e* = 50% when k = 4,which corre-
 sponds to the LQD.

 Remark 2. The derivative of the maxbias curve at 0 is
 infinite; hence the gross-error sensitivity of GS-estimators is

 infinite. This is a property of all regression estimators with
 dimension-free maxbias curve (He and Simpson 1993). But
 as Yohai and Zamar (1992) have proposed, one could define

 a modified gross-error sensitivity as G* = limeoBe( T)/
 n. In the case of a multivariate normal distribution, we

 obtainsi e = (2X(1 -ch(1))/he ad))1/2. Forstepsfunctions
 p(x) =I(I anxl > c), we obtain oe = (2cl(2e(c)
 - 1)/(cm(c/ g2)))1e2,where c = iit1ya 1- k/2). In par-
 ticular, for k = .75, we obtain a *(LQD) = 2.399. One can
 compare this with - *(LMS) = 2.160. For the biweight GS,
 we obtain y* = 2.412; for the biweight S-estimator 2 *
 = 2.267.

 Go

 (a) { I'QD0 )

 .~~ ~~~~ ~~~~~~~~~~~~~~~~ I I

 I~~~~~~~~~~ I

 Cf)~~~~~~~~~~~~~I

 n~ ~~~~~~~~~~~~~~~~~~~~~~~ / I

 /~~~~~~~~~~ /

 (fl0 / /

 N0 /

 E ~~~~~~biweight Cs, eight S

 _~~~~~~~~~~~ _,

 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

 (b) LQD(O.5)

 LaD(O.9 )

 Figure 2a Mlt h axbias C urves of(a the LMS QDeih - etAU67o, LD

 together with those of the LMS and the biweight S- and GS-
 estimators. We see that the bias of the LQD estimator is only
 slightly larger than that of the biweight S, whereas we will
 see that its efficiency is much better (67% instead of 28% ).
 Switching from LQD to the biweight GS, which has a smooth
 p-function, again increases the bias only a little (but the ef-
 ficiency gain will also be small). In Figure 2a we also see the
 maxbias curve of the TAU67-estimator (Yohai and Zamar
 1988). The latter estimator is based on two biweight p-
 functions, the first with c = 1.547 to obtain a 50% breakdown
 point, and the second with c = 3.26 to obtain a Gaussian
 efficiency of 6 7. 1%. (We use the TAU6 7 estimator here for
 comparison with the LQD, which has the same efficiency.)
 We see that the maxbias curve of TAU67 is very close to

 that of the LQD. Furthermore, y* *(TAU67) = 2.442. Thus
 for small e the LQD behaves slightly better. (Note that the
 maxbias curve of a -r-estimator with 95% efficiency is some-
 what higher.)

 In view of Remark I1, we note that there are often two
 different step functions p that yield GS-estimators with the
 same breakdown point. For example, k, = .5 (corresponding

 wit /h meinitron istne n =1-(
 _~~~~~~~~~~ ,i LO9 ohyel 9 radonetmorIti

 ineetn oseta hi mxiscre eaerte

 Figuerent2. Maxbea Ciurveso (a); the Msmale Balwegh S-, TAk7 LQD,c
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 corresponds with the higher quantile) is preferable. Note that
 the maxbias curve of the LQD(.5)-estimator is very close to

 the LQD for up to about 25% of contamination. Afterward,
 the LQD(.5) bias increases rapidly, whereas the LQD bias
 increases more slowly.

 A referee asked to compute the breakdown rate (BR), as
 defined by Mazzi (1991) and Zamar (1992). For a 50%

 breakdown estimator T, the BR is given by

 BR(T) =lim B,(T) ( t.5 B,(LMS) (16)

 Following the proofs and computations of Mazzi (1991), we

 obtain that BR(LQD) = .5 + V2 in the Gaussian case. The
 breakdown rate of the biweight S- and GS-estimators, and
 also of TAU67, equals infinity. Therefore, the maxbias of
 the LQD is lower than that of the biweight S and TAU67 in
 a neighborhood of the breakdown point.

 4. INFLUENCE FUNCTION AND EFFICIENCY

 The influence function (see Hampel et -al. 1986) describes

 the (standardized) effect of a single outlier on the estimator.
 It is an asymptotic notion, based on the same vector-valued

 functional T(K) as in the previous section. Let Ko be a fixed
 distribution representing the central model, and let K, = (1
 - e)Ko + eAy, where A.,y is the distribution that puts all its
 mass at the point (u, y). Then the influence function is de-
 fined as

 IF(u, y) = lim (KT)_(Ko) (17)

 Another definition is given by a von Mises expansion: If
 there exists a function IF: RP-I lX R --* IRI` (which depends
 on the estimator and underlying distribution Ko) such that

 Vn On - flo - - 2: IF(uj, Y))) = op(l), (18)
 i= I

 then we call IF the influence function. Under regularity con-
 ditions, both definitions coincide. The latter definition has

 the advantage in that it readily implies that if E[IF(u, y)]
 - 0 and EIIF(u, y)12 < oc, the estimator OBn is consistent
 and asymptotically normal with asymptotic covariance ma-
 trix

 V = E[IF(u, y)IF(u, Y)Y] (19)

 Hdssjer, Croux, and Rousseeuw (1993) proved the asymp-
 totic normality of GS-estimators, with the function IF spec-
 ified in Theorem 5, under the following conditions:

 (G') The distribution of the ui satisfies EG[uJ = 0 and
 EGO Iu13 < oo, and EG0 [uutl is positive definite.

 (F') The error distribution Fo has a unimodal densityf,
 which is twice differentiable with a bounded second

 derivative.

 We may assume (due to equivariance) that T(K0) = /% = 0
 and that s(O, K0) = 1, in which case the influence function
 is given by the following theorem.

 Theorem 5. If the model distribution Ko satisfies con-
 ditions (G ')and (F), and if p satisfies (R), then the influence
 function of the generalized S-functional is given by

 IF(u y) = EF[(y) I (EGjuut])'u,

 where i(y) = EFO[1(y-Y)I and 4=pt. (20)

 From Equation (19), we can then compute asymptotic
 covariances. The efficiency of a GS-estimator at the Gaussian

 model is thus e = (f W(y) d4(y))2/f x(y)2 d+(y). If f is
 symmetric, then the influence function of the LQD estimator
 becomes

 IF(u, f) = (y-c ) -f(y + c) (EGjuu'])-'u, (21) IF(u ~ - 2 f f'(c + y)f(y) dy(E [u)', 21

 where PF0(yl - Y2< c) -. In Figure 3a we made a plot of
 this influence function when (u, y) - N(O, 12). We see that
 for fixed u, the influence function is redescending (in fact,
 it goes exponentially to zero for y tending to infinity). On
 the other hand, the function IF(-, y) is unbounded in u;
 hence the overall influence function is not bounded. From
 (21), it follows that the total influence is small when I y I is
 large, except when I u I is exponentially large compared to
 I y I. In the latter situation, the influence function is large at
 a point (u, y) lying in a direction with a very small incli-
 nation, whose effect on the actual estimated slope is thus
 negligible.

 For the biweight GS-estimator, we obtain a very similar
 plot (see Fig. 3b). This illustrates that the LQD estimator,
 with its nonsmooth p function, does have an influence func-
 tion very similar to that obtained with a smooth p-function.
 There is also hardly any gain in efficiency: 68.4% for the
 biweight GS compared to 67.1% for LQD. This is very dif-

 (a) (b)

 LQD 9~weight $ and LTS miwigtGS
 LOD '

 (c) (d)

 obiweight SLT - 0~~~~~~~~~~~~~~Lq
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 ferent from the situation for usual S-estimators, where the
 quantile objective functions (like LMS) yield estimators

 converging at a lower rate.

 In Figure 3c we see the influence function of the usual

 biweight S-estimator. It has the same shape as the GS-

 estimator but is steeper. That is the reason why its efficiency

 is lower (28.7%). In Figure 3d we plotted the influence func-

 tion of the LTS, which is still steeper and corresponds to an

 even lower efficiency.

 One might argue that the generalized S-estimator should

 be compared to an S-estimator with p(y) = Ep(y - Y)

 - Ep(Y) for its p-function. This indeed yields an S-estimator

 with high efficiency, but with a lower breakdown point and

 a higher maxbias curve.

 Formula (20) also holds for some unbounded p-functions.

 If we take, for example, p(y) = y2, then we obtain the LS
 estimator (the objective function is the standard deviation).
 This estimator is extremely sensitive to outliers in u and in

 y. If we take p(y) = I y 1, then we obtain Gini's average
 difference as objective function, corresponding to Wilcoxon
 scores. From Figure 4a we see that this estimator protects
 against vertical outliers but not at all against bad leverage

 points. The latter estimator can be seen as a smoothed version
 of the least absolute deviations estimator (L1 estimator),
 which corresponds to a plain S-estimate with the same p-

 function. Its influence function is plotted in Figure 4b. Again,
 the efficiency increases (from 63.6% to 95.5%) when working
 on the pairwise differences instead of the individual residuals.
 Finally, in Figure 4c we see the influence function of the

 optimal robust 95% efficient Mallows estimator (see Hampel
 et al. 1986), which is bounded. Analogously, Figure 4d gives
 the IF of the 95% efficient Schweppe estimator.

 5. COMPUTATION AND SIMULATION

 To compute a GS-estimator, we must minimize the ob-

 jective function s(f,), where # is a p-dimensional vector.
 There has been a substantial amount of research on algo-
 rithms for S-estimators, especially the LMS. The same kind

 of techniques can be used for computing GS-estimators, in-
 cluding the LQD estimator.

 The basic scheme for computing S-estimators is the p-

 subset algorithm (Rousseeuw and Leroy 1987), which min-

 imizes the objective function over all f3j that correspond to
 fitting a subset J with p observations (out of the n available

 points). Note that the p-subset version of the LMS is itself

 a high-breakdown regression estimator (Rousseeuw and
 Bassett 1991), which is also true for the LQD. Therefore, we
 can use

 = argmin Qn(Yi - fljui) (22)

 where As is determined by the p-subset J. If we use the ef-

 ficient algorithm of Croux and Rousseeuw (1992) to compute

 Qn, then this objective function merely needs O(n log n)
 operations, yielding an overall computation time of
 O( nP+llog n) if allp-subsets are considered. In comparison,
 the exhaustive p-subset algorithm for LMS needs Q(nP+l )

 time, and also needs O( njP+l log n) if the intercept is adjusted
 in every step. Therefore, the LQD needs no more compu-

 (a) (b)

 2

 ,,Joeckel

 M(cn) (d) Schweppe
 Mallows

 4 ~~~~~~~~~~~~~~~~~~4

 C4 C.4

 tation time than the LMS, while achieving a much better
 statistical efficiency.

 Note that the p-subset algorithm can be modified to run

 much faster. (This holds for all estimators of this type, in-
 cluding LMS, LQD, S- and GS-estimators.) The idea is not
 to consider all (p) = 0(nP) possible p-subsets, but rather to
 use only 0(n) such subsets according to a particular design
 (Rousseeuw 1993), which ensures that the regression esti-
 mator still has the deterministic 50% breakdown point. The
 resulting LQD algorithm needs only 0( n2log n) operations.

 Computing the objective function of the biweight GS takes
 0(n2) operations (using a fixed number of iterations to solve
 equation (5)), which is more time-consuming than the LQD.
 One can reduce the actual computation time, although it
 remains 0(n2), in the following way. When considering m
 trial values ,BJ, we do not need to compute S(13j) each time.
 Indeed, suppose that s is the currently best scale. Generalizing
 an observation of Yohai and Zamar (1991), we then have

 S(f3j) < S = p( 5 ) < knp() (23)

 Therefore, we have to compute a new scale estimate only
 when (23) holds. This happens 0(log m) times. At each new

 best estimate Id, it is possible to carry out some local im-
 provement, as was done by Ruppert (1992) for S-estimators.
 The smoothness of our objective function indicates that

 Newton steps can be useful. For this, we compute

 sG3) rir
 = A` X VI (ui - ui), (24)

 where Ak,, = S2<j (u1,, - Ug)(U,k - U1,k) and d = E Y

 - Y2) = E4,i,t(y/ V) . We search for the smallest value of k
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 Table 1. Nitrogen Data Set With Robust Distances of (xi,, x,2, x,3) Based
 on the MVE, as Well as Standardized Residuals r1/5

 From the LQD Regression

 i Xii Xj2 Xj3 Yi RD; r1/J

 1 .00 61.45 .00 12.18 .72 .46
 2 .00 58.11 .01 6.57 .63 -.50
 3 .00 65.35 .01 6.99 .84 -.29
 4 1.00 47.94 .22 10.69 .46 -.07
 5 1.00 57.85 .13 13.75 .63 .60
 6 1.00 35.23 .28 10.84 .61 -.29
 7 4.00 44.12 .40 15.94 .41 .54
 8 4.00 33.19 .39 9.41 .52 -.71
 9 4.00 24.18 .40 17.81 .77 .46
 10 19.00 25.03 2.40 17.46 .84 -.25
 11 19.00 30.61 3.43 23.78 .46 .92
 12 19.00 23.28 3.67 18.84 .84 .00
 13 49.00 2.76 29.67 57.08 23.00 5.43
 14 49.00 1.87 26.75 48.11 19.88 3.84
 15 49.00 1.04 23.59 23.26 16.52 -.29
 16 80.00 .87 26.08 35.37 13.38 .17
 17 80.00 .44 31.00 28.82 18.64 -.64
 18 80.00 .20 23.92 30.45 11.08 -.73
 19 111.00 .42 18.99 44.63 .84 -.29
 20 111.00 .63 23.73 51.75 5.14 1.08
 21 111.00 .38 22.02 51.21 3.35 .90

 (?10) for which s(/. + 2-kA(13)) < s, if any exists. An ad-
 ditional trick is to use

 (ri - rj)(/8 + 2-(k+l)A(I8))

 1 1 k#) = (r ri)(,8) + - (r, - rj)(/. + 2-kA(13)) (25)

 to speed up the computation. Some experiments with this
 algorithm show that the objective function will be computed
 only a few times. The number m is obtained by a trade-off
 between robustness and computation speed. When com-

 putation time permits, carrying out the Newton steps at each
 /3J is even more accurate.

 Remark. Stromberg (1993) has given an exact 0(nP+2)
 algorithm for the LMS, which can be generalized to the LQD
 estimator because

 minlri-rjlh min min max ri-rj
 j ( 2 ) J6 JE@-h (I'J)E=

 =min min max rI-r I,
 JE@h E (i,j)E J

 where h = {JC {1, ., n 12; for all (i, j) E J: i < j and
 #J ( P) } Thus we must compute Chebyshev fits f, on
 {(ui- uj, Yi - yj); (i, j) E J} for all possible J. Only at
 these values 3,d must we compute the objective function,
 which needs O(n log n) operations. Now using a theorem
 of Cheney (1966, p. 36), it is sufficient to look at Chebyshev
 fits on collections of p observations (ui - uJ, y, - yj) with i
 < j. Because the computation time for such a fit depends
 only on p, we obtain a total time of O(n2p+llog n), which
 of course is practical only for small values of n and p.

 The data in Table 1 were obtained from T. Vos of the

 EPFL in Lausanne, Switzerland. The experiment went as

 follows. Labeled nitrogen (nitrogen-i15) was administered to
 barley plants in the form of fertilizer (NH4NO3), to study

 the nitrogen cycle. The nitrogen is taken up by the plants

 and converted, after a certain time, to organic material in

 the soil. The purpose of the study was to explain the organic

 nitrogen by means of other variables. The variables included

 in the study are time (in days) after addition of nitrogen

 (xl), nitrogen content in mineral form in the soil (x2), ni-
 trogen content in the plants (X3), and nitrogen content in

 organic form in the soil (y).

 Following Rousseeuw and van Zomeren (1 990), we made

 a diagnostic plot (Fig. 5a) of the standardized robust residuals

 ri / Q(r,, . . , rn) obtained by the LQD method versus robust
 distances RDi obtained with the Minimum Volume Ellipsoid
 (MVE) estimator. In this plot we can identify six good le-

 verage points and two bad leverage points. The latter (cases

 13 and 14) stand out considerably. (Note that also a designed

 experiment can yield leverage points!) A diagnostic plot of

 LS residuals versus Mahalanobis distances (see Fig. 5b) does

 not reveal outliers or leverage points. It would be possible

 to apply LS regression to this data without cases 13 and 14
 (while keeping the good leverage points, because they aug-

 ment the efficiency).
 We also performed a small simulation study based on

 1,000 samples {(ui, yi); i = 1, ..., n} from a bivariate
 Gaussian distribution with unit covariance matrix, for var-
 ious sample sizes n. For each sample, we computed the LMS,

 (a) >

 cn

 o ~~~~~~~~~~ ~~13
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 Figure 5. Diagnostic Plots of Nitrogen Data. (a) Standardized robust

 residuals obtained by the LQD method versus robust distances RD; based
 on the MVE; (b) standardized LS residuals versus Mahalanobis distances.
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 LTS, LQD, S-, GS-, and TAU67 estimators by means of the

 exhaustive p-subset algorithm. Table 2 lists the resulting
 finite-sample efficiencies of these estimators, where those of

 the scale estimators were normalized as was done by Rous-
 seeuw and Croux (1993).

 For the slope, we note that LQD outperforms both LMS

 and LTS, the gain being larger for increasing n. The finite-

 sample efficiencies of LMS, LTS, and LQD all converge quite
 slowly to their asymptotic limits. (Also note that the LMS
 is more efficient than the LTS for a large range of sample

 sizes!) The finite-sample efficiencies of the biweight S are
 quite stable but are below those of LQD. The GS- and
 TAU67 estimators have the best performance overall.

 For the corresponding estimators of the error scale, we see

 that the efficiencies of LMS and LTS are rather stable,
 whereas those of the others converge more slowly. Also here,
 the LQD, GS-, and TAU67 estimators outperform the plain
 S-estimator, both asymptotically and for finite samples.

 6. OUTLOOK

 Similarly to GS-estimators, we may construct other classes
 of high-breakdown estimators. For example, we can define

 a generalized R-estimator (or GR-estimator) as On = arg-
 min,6Dn(r1, . .. , rn), where

 Dn(rl, . . . , rn) = z a(R+(ri - rj))I ri -rj. (26)
 i<j

 Here R+(ri - rj) stands for the rank of ri - rj among the
 (n) differences { ri - rj; i < j } We assume that the scores
 are generated by a function h+: [0, 1] -S R+ using

 r2
 a(i) = I h+(t) dt.

 (i- )(2

 (When h+ = 1, we obtain Wilcoxon scores.) Because the
 objective (26) is location invariant, we can estimate the in-
 tercept afterward.

 If h+(u) = O for all u > 1 and h+(1/4) > 0 then we obtain
 a 50% breakdown regression estimator. For instance, if h+

 = 61/4, we obtain the LQD. When h+(u) = I(IuI < 1/4),
 we obtain the estimator

 (/2 )

 On = argmin I { ri - ril; i < I}k:(n). (27)
 0 k=1

 Note that this estimator cannot be written as a GS-estimator.
 An advantage of GR-estimators is that their objective func-

 tion (26) is explicit, so one need not solve an equation. But
 in most cases (26) requires O(n2) computation time. We
 think that the maximal efficiency of a GR-estimator would
 not be much higher than that of the LQD (in fact, the effi-
 ciency of (27) is 66.04%), and that the LQD can be seen as
 a prototype of this class of estimators.

 If we put h(t) = h+(2t - 1) for t E [2, 1] and h(t) =-h+(l
 -2t) for t E [0, 2], then the influence function at the model
 distribution F will be given by

 IF(u, y) = EFh(F(y - Y)) (E[uut])-1u, (28)
 B(h, F)

 where F is the distribution of Y - Y2 when the yi are iid
 according to F, and B(h, F) = -f h(F(y))F"(y)dy. If we
 further denote A(h, F) = f (EFh(F(y - y)))2 dF(y), then
 we obtain the asymptotic normality n 12 (3 n-,) - N(O,
 (E[uut])-1A(h, F)/B2(h, F)).

 Instead of working with GS-estimators based on a kernel

 t( ri, rj) = I ri-rj I of order two, one could also use higher-
 order kernels. If we use a generalized M-estimator (Serfling
 1984) as objective function, then s(,B) is defined as the so-
 lution of the equation

 (n) ((ril,., ri,)) knp

 We want t to be scale equivariant and location invariant. If

 we take t(ri1, . . . , ri,) = sdv(ri,, . . . , ri,), where sdv stands
 for the standard deviation, then we obtain a 50% breakdown
 estimator if k/p(oo) = 1 - 2-1. A prototype of this class is

 O3n = argmin{sdv(ri,, . . . , ri,); iI < . . < ill hh:n
 10 (I

 These higher-order estimators will have a higher efficiency
 but also a higher sensitivity to gross errors. We do not rec-
 ommend these estimators in practice, because their com-
 putation time becomes too great.

 Looking in a different direction, we note that GS-
 estimators can also be extended to high-breakdown esti-
 mation of scatter matrices. Consider a data set xl, . . ., xn
 of points in RlP. Then a GS-estimator of its scatter can be
 defined as a symmetric positive definite matrix C that min-
 imizes det(C) subject to

 (2) z p(llxi - xjllc) ? kn,, (29)
 i<j

 Table 2. Finite-Sample Efficiencies of the LMS, LTS, LQD, Biweight S, Biweight GS, and TAU67 Estimators

 Slope Scale

 n LMS LTS LQD S GS T LMS LTS LQD S GS T

 10 20.8 23.1 30.2 28.1 35.2 37.2 36.1 35.0 45.3 42.5 50.0 59.2
 20 19.9 20.0 30.7 26.9 36.5 50.8 36.6 33.0 54.2 45.7 57.9 72.2
 40 16.9 14.9 36.0 25.5 43.5 54.3 38.5 34.0 65.2 49.2 69.4 73.8
 60 16.0 13.9 36.8 28.1 47.0 60.5 37.2 32.5 68.5 48.4 71.3 83.5
 80 15.3 12.8 36.9 28.3 52.2 63.2 40.2 33.1 75.2 51.7 77.8 83.5
 100 13.4 13.4 38.6 26.8 52.1 63.9 38.2 32.1 72.1 49.4 74.1 80.9
 200 12.8 11.6 45.3 28.5 58.5 66.4 38.7 31.9 77.0 50.4 78.3 81.0
 oo 0 7.1 67.1 28.7 68.4 67.1 36.7 30.7 82.3 53.9 82.9 82.7
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 where 11 xi-xj 1I c stands for ((xi -x) tC-(1 - ))112 . Note
 that the constraint (29) is location invariant, unlike the usual

 S-estimators (Rousseeuw and Leroy 1987, p. 263), where it
 is necessary to estimate a location vector T simultaneously.

 A special case of (29) is the constraint

 { lx - Xj11C; i < }():() k k, (30)

 yielding an analog to LQD regression. For the computation

 of the scatter matrices given by (29) and (30), one can adapt

 existing algorithms for the MVE and S-estimators.

 APPENDIX: PROOFS

 Proof of Theorem 1

 Denote M = maxi<j I yi- I . Due to condition (H), we have

 inf { (ui -uj)# I@; i < i I =(n 6 > ?.

 For 18 I > 2M/6, we obtain Iri - rjI 2 II(ui - uj)' -y1y - yj
 J 1(uj-uj)'fl |-M 26101 -M > Mfor at least (n2) 2P+1

 differences I ri-rj I . Thus for all I,8 I > 2 M/ 6, it is true that Q, (f)
 > M ? Qn(O). Because 8 Qn(O3) is continuous, Qn(O3) will attain
 its minimum value inside the compact ball B (0, 2M/6).

 Proof of Theorem 2

 Denote en* = e *(LQD, Z). For any regression equivariant esti-
 mator, we have that e* ? ([(n - p)/2] + 1)/n (Rousseeuw and
 Leroy 1987, p. 125), so it is sufficient to prove the reverse inequality.
 We can assume without loss of generality that T(Z) = 0. Denote

 the contaminated sample obtained by replacing k = [(n -p)2]
 observations from Z by { (u', y'); i = 1, . . ., n } and denote the
 corresponding estimate by 81. Denote M = maxi yi I and ri
 -= -,'u'. We will prove that 1I,I I < C, where C depends only
 on the original sample.

 Note that I ri (0) - rj(O) = yj < 2M for all "good" points
 (ui, yi). Because (n2k) = ([(n+P (h))/2]) ? (''), we have that Qn(0)
 ? 2M. So it is sufficient to prove that for all I. I ? C, it holds that

 Qn(f3 > 2M, because then it is clear that 1,1 I < C. Define

 r = I inf{ IL> 0; there is a (p - 2) dimensional subspace V in

 (y = 0) such that Vz contains (2) differences ui-uj(i < j)},

 where VI consists of the points with distance to Vless than or equal
 to ,u. Due to our condition of general position, we have r > 0.
 Denote p = i-/n and take C = 10M/p. Take 18 I ? C and denote
 by H the hyperplane in RP with equation y = Wl'u. Then L = H
 n (y = 0) has dimension (p - 2) in RP-'.

 We will partition the good observations into classes, induced by
 the following equivalence relation:

 (ui, yi) - (Uj, yj) 4- 3 k k(O < k < n - 2)

 different observations ui,, . .. , uik such that

 U -Uil E LP Ui2-Ui3 E LP, . . . , Uik-uj E LP.

 Denote the classes with more than one element by B, . . . , Bm and
 denote the union of the other classes by Bo. One can see that

 ui,ujEB x=ui-u ELT for 1? 1.

 Due to the definition of i, we have zlI= (?2Z) < (2)-
 Now we will divide the "bad" points into subclasses. Denote by

 C1 ( 1 ? / ? m) the collection of bad points (UJ, yJ') for which there
 exists an element (ui, yi)in Bisuch that r' i- rj I ? ( pI 1- 2M)/

 4. For earh element (ui, yi) in Bo, we denote the collection of bad
 points (u', yj) for which r' - rJ I ? (PII - 2M)/4 by Ci+m (I
 < i < m' = #Bo). Note that some of the Ci+m can be empty. The
 bad points that do not belong to any C1 (1 < / < m + mi') are put

 in CO.

 If u 9 LP, then I u',8 I > p 18 1. Therefore, if two good observations

 (u,, yi) and (uj, yj) do not belong to the same class B1 (12 0) or
 both belong to Bo (and thus u, - u LP), then

 r -rJ' I = I - ( yJ) /-'(Ui -uj)I

 2 11 yi -Y y- I /'(ui - uj) 11 > P I ,1 - -2M,

 where we have used that I , I? 2 M/ p and I yi- yj I < 2M. Now
 we can see that the collections C1 (O < / < m + m') are disjoint

 (using the triangular inequality).

 From the foregoing, it follows that I r' - rj < (Ip 2I -2M)/
 4 for at most

 ~ #Bl) + (#B1)(#C1) + (#Ci+m) + ( /=O #Cl)
 l=(2 ) =l( 2 )

 couples i < j. Using the fact that each B1 (1 2 1) contains at most
 p - 1 elements, we find that the preceding expression is less than

 or equal to

 1 +k(p- 1) +(k) (k -)+ - 2.

 Hence Ir' - rJI > (Ip 18I- 2M)/4 > 2M at least

 (n)([(n+ p)/21 - I') 2
 (2 ) ( 2 )P

 times. Because, if we assume the natural condition n > p,

 ([(n + p)/2] - I + p-1 [(n + p)/2] - I

 + ([(n + p)/2] - 1) = ([(n + p)/2]) < hp

 we have that Q,(f3 > 2M.

 Proof of Theorem 3

 Looking at the proofs of the preceding propositions for the special
 case where , is the LQD, it is sufficient to prove that there exist
 constants y > 0 and 6 > 0 such that

 ,yQ(ri, * * * , r,) < s(ri, * . . , rn) < 6Q(ri, r , r), (A. 1)

 where Q(rl, . . ., rf) = { Iri-rJI; i <j}(h")(n

 We can take y = 1 /c. Indeed, suppose that Q > cs. Then there

 will be (hf) - (hf) + 1 differences I ri-rj I greater than cs. For an e
 > 0 small enough, we will have that

 (n) r - ri n_ h

 (2) ,<j s + e 2) (2) 2) )

 but then s no longer satisfies (6).
 For 6, we can take 6 = 1/p-'(p(c)/(Q') + 1)). (We define p -'( u)

 = sup { t > 0; p(t) < u}, and then we have that p(p'- ( u)) < u for
 all u.) It holds that p-'(p(c)/((hP) + 1)) > 0, because otherwise
 p(t) > p(c)/((Q') + 1) for all t > 0. Due to the continuity of p at
 zero, this would yield p(c) = 0, which is a contradiction. Now sup-

 pose that s p -'(p(c) /((hP ) + 1)) > Q; then (hP ) differences I ri -rj/
 s are less than p-' (p(c)/((hP)+ 1)) and thus, for an e small enough,

 (n)= J (r,-rj
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 which is contradictory to (6).

 To prove Theorem 4, we need the following two lemmas.

 Lemma 1. Let (u,, y,) - Ko and (u2, Y2) - K*, where K* can
 be any distribution. Then for all s > 0 and for all 8 > 0,

 EKXK*[P(Y - Y2 - PUlu U2))]EKO[P( Y X)]-

 (A.2)

 Proof of Lemma 1. Using symmetry and unimodality of y, and
 ,8'u, we find that z = (y, - f'ui)/s is unimodal and symmetric.
 Therefore, Ep(z - z*) 2 Ep(z), where z* can be any stochastic
 variable. This proves (A.2).

 Lemma 2. Let (u, y) - Ko, u* be uniformly distributed on
 the line segment [ Xn,8*, 2 Xns,*], and put Yn = un:* and K*

 - (u*, yn*). Suppose that Xn -? co, fn -8 and 1I8I < 1* 1.
 Then

 lim EKOXK"4P( IY- )] = 1 vs>O (A.3)

 and

 lim EKnXK4P(Y Y))] = 1 Vs>O. (A.4)

 Proof of Lemma 2. Take e > 0. We have that

 EKOXK"[P(Y1 - Y2 - ( (U ) - U2) 1

 I +1J EO[p( Y U U t( I 2 _ n:))] dt -1

 = |EKO[P( P 1 |,

 where Xn < tn < 2Xn . (In the last step we used the mean value
 theorem for integrals of positive continuous functions.) Denote Hn,
 the distribution of (y - tu)/s; because A3n is a bounded sequence,
 we can find a compact set C for which Hn { C }> V77. Denote
 further xn = tn(I1s*12 - 3tf3*)/s; then xn oo (using that
 limn- I 1 n - 2-n* > 0). So for n large enough, we have for all
 x E C that p(x - xn) > 1-e. We can rewrite (A.5) as

 1 - p(x-xn) dHn(x)- p(x-xn) dHn(x)
 C R~~~~~P\ C

 <1 I- p(x-xn) dHn(x) < 1- inf p(x-xn)Hn{C}

 ? 1- (1- e) = e.

 This proves (A.3). We continue with the proof of (A.4):

 EKnXKn4P(Y - Y2 - 1t(Ui - U2) 1

 = EKnXKn 4P( ( )t - ))] - l

 lxfnJo( t)I(( * ) *t)dt 1, (A.6)

 where we worked out the distribution of u,-u2. Denote Xn = (I 12
 - AtiA* )/s. Then x,,> 6 > 0 for n large. Choose L such that p(xnt)
 ? p(t6) > 1 -e/4 for all t > L. For n large enough, we have that

 X,,> L and 2L/Xkn < e/2. Then (A.6) equals

 2 L 2 2 2L

 < - +- GXn SUP IP(Xnt) - 1 1 <-( e4 /
 Xn Xn t>L Xn

 2L
 - + e/2 < e/2 + e/2 = e.

 Xn

 This proves (A.4).

 Proof of Theorem 4

 Let c = g-'(e, sl), where s k = - 2e + e2)/(1 - e)2, 0).
 Suppose that e < min(1 - 7- k, Vl- k).

 We will first prove that Bc( T) ? c. Take any distribution K of
 the form K = (1 - c)Ko + eK* and consider a slope I .I > c. It is
 sufficient to prove that

 s(:, K) > s(O, K). (A.7)

 Because h(e, s1, c) = k, we have that h(e, s5, Ii1) > k. Using
 continuity, there must exist an s2 > sI such that h(e, S2, I I) > k.
 Using this last inequality, Lemma 1, and the positivity of p, we find

 EKX [PYI - Y2 -W(Ul - U2))]

 = (1 - e)2g(s2, /8) + 2e(1 - e)

 X EKOXK*[ PYI - Y2 - Ot(Ul - U2))]

 + C 2EK*XK*[P(Y1 - Y2 t(Ul - U2))]

 > (1-e)2g(S2, 0) + 2e(1 - e)g(s2, 0) = h(, S2, 0) > k.
 Therefore,

 52 ' s(fl, K) * (A.8)
 Now for any s > s,, we have that

 EKXK.[P(YY Y)] < (1 _ e)2g(S, 0) + 2e(1 - e) + X2

 < (1- e)2g(s1, 0) + 2e(1 - e) + e2 = k.

 We can conclude that s 2 s(0, K) and thus

 SI 2 s(0, K). (A.9)

 Combining (A.8) and (A.9) yields (A.7).
 Now we will prove the other inequality,

 BcJT) 2 C. (A.1I0)

 Take any 0 < c, < c and If* I = cl. Let K* be a contaminating
 distribution corresponding to (u*, y*), where yn* - / *tuj* and
 u* is uniformly distributed on the line segment [ Xn* 2XA,#*I and
 Xn oo. (In fact, we want both the location and spread of u* to
 go beyond all bounds when n increases.) To prove (A.10), it is
 enough to show that

 sup IT(Kn)l I Cl, (A.I1)
 n

 where Kn = (1 - e) + cKn*. Suppose that (A. 1 1) is not true; then
 we can construct a subsequence, which we shall still call Kn, for
 which limn--j,n = ,, where T(Kn) = On and I . < I * I = cl.
 Now we have

 EKnxKn[P Yi - Y2 - Otn(Ul U2))

 = 1-)2g(S, lflnl)

 + 2e ( 1 - ?)EI6oxK4P(Y1 - - )m, -

 +eX4p ( Y1 - Y2- /' (Ui - U2 )]
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 Using Lemma 2 and the definition of s, yields, for all s < s,, that

 lim EK,XK, [p( - Y2 - n(Ul U2) llm EKnXKn tS ,I
 > (1 - e)2g(S, 0) + 2e(l - e) + e2

 > (1- E)2g(s1, 0) + 2e(l - c) + C2 = k.

 Therefore, limn-aDS(6n, Kn) 2 s and thus

 lim S(fn Kn) 2 SI (A.12)
 n- oo

 On the other hand, h(e, s,, cl) < h(e, s,, c) = k. Due to the con-
 tinuity of h, we can find an s2 < sI such that h(e, s2, cO) < k. Using
 the fact that y* = 8* 'u* exactly, we have that

 EKflXKf [P Y1 - Y2 - #*'(u, - U2))]

 = (1 - e)2g(s2, cO) + 2e(1 - e)g(s2, c) = h(e, s2, cl) < k.

 Therefore,

 s(,B*, Kn) ? s2 . (A. 13)

 Combining (A. 12) and (A. 13) shows that for n large enough, f3n
 does not minimize s( *, Kn), which gives a contradiction. Therefore,
 (A.I 1) must be true.

 To complete the proof, we show that if e min( y7 k,
 1- 1-k),then

 _,( _,(k -2c + e 0)) 0

 This follows from k - 2e + e 2 0 e ? 1 - -k and (1 -)2
 + 2e(1 -e) < k 4-e? < lV7.

 Proof of Theorem 5

 Combining equations (11), (15), and (17) of theorem 1 of
 H6ssjer et al. (1994) yields (20) according to definition (18). Here
 we give a proof using definition (17). The functional T is given by

 T(K) = argminos(fl, K), where s(A, K) satisfies EKXK[P((Y1 - Y2
 - #t(U1 - U2))/s(f, K)] and (u,, yi) and (U2, Y2) are two inde-
 pendent variables drawn from K. Because T(K) minimizes s(f,
 K), we have

 EKX,A' y1 - Y2 - T(K)t(u1 - U2) (l-U)=O
 EKXA['\ s(T(K), K) ) (U1-u2)] = 0.

 Also, the contaminated distribution K, = (1 - e)Ko + cAu,Y must
 satisfy

 EKXKC, V y- s- T(K,)t(u1 - U2) (u, - u2)1 = O. -IXK, Yk s(T(K,,), K,,) I

 Working this out yields

 (1 _ e)2EKOxKO.[ V( y s - - T(K,)t(u1 - U2) (u ]
 s(T(K,,), K,,) )(

 + 2(l c)KO I y -y - T(K,,)t(u1 u) (u1 - .
 + 2e(1 - e)EKO[1I1(Y - s(T(K,), K,) )( u)J = 0.

 Differentiating with respect to e and evaluating in 0 gives

 EKOXKO[14 V(Y1 - Y2){-z IFI(u, y, KO)(u1,1 -U2,I)

 -(Y1 -Y2 dTK) K, (U, -l kU2k) ]

 + 2EK0[1/'(Yl - Y)(U1,k -Uk)] = 0

 for all 1 < k < p - 1. Because y and u are independent at Ko and
 EGO(Ul,k - U2,k) = 0, we find that

 -EFOx FO [ 41'(y1 -Y2) ] IF (u, Y)tEGOXGO[(U1 - U2)(U1,k - U2,k)I

 + 2EFO[41/(yl - y)]E[ul,k -Uk] = 0

 for all 1 < k < p - 1. Because E(u1) = 0 and EGOXGO[( ( U2 (U1
 -U2Yl = 2EGO[uIuI], we obtain Equation (20).

 [Received January 1993. Revised December 1993.]
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