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Abstract 

Suppose we have a function h twit!; 71: argnxvnte and i.i.d. rar!dnrn w r i a t ~ l ~ s  {X,)?, wit11 rnargini~l 

distribution F. Let H r  be the distribution of h ( S 1 , .  . .,.Y,), 11% > 2. We consider on-line sr11~111es 

for estimating quantiles of IIF. Such an estimator is bascd on a design D,,, whicbt is a small subset of 

all n ! / ( n -  m)! possible index vectors I = ( i , : .  . . i,) havir~g distinct entries not exceeding n. When 

a new observation X, arrives, y = ID,, \ D,-ll new vectors (.Y,,, . . .,S,,) with I D, \ D,-, 

are used to modify the  current estimate. When y + m, the asymptotic relative efficiency of 

the  recursive estimator compared to the off-line estimator (U-quantile) tends to one. The on-line 

estimator is closely related to incomplete 1:-quantiles (Hossjer, 1996). and it generailzes a recursive 

quantile estirnator considered by Holst (1987) for m = 1. 

1 Introduction 

Assume we have a sequence {Xi}z l  of (.I'.F)-measurable random variables that  are independent 

and identically distributed (i.i.d.) with conunon distribution F. Let I r  : Xm - W be n measurable 

function, and define anotlter distribution function Hf(l)  = Y(h(X1,.  . ., S,) < I),  which depencis 

on F and h. We consider estimating the quantile 

0 = II;l(p) = inf{t; Np(I) > p}, 

given some fixed 0 < p < 1. For each I - ( i , ,  . . ..i,), introduce the sllort-hand notation /I(.\-,) 

/(Xi,, . . ., X,_). Let also S,(m) = { I  = ( i , ,  . . . . i,); 1 < i, I n, i, f i,, if j # j ' )  be the collectiol~ 

of all t ~ ! / ( n -  m)! possible multi-indices I wit11 entries not exceeding n. For any design U,, c S,(m) 

of multi-indices, wc may define the  distribution function 
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which is an empirical analog~le (11 IIy. IIere $(n) is the numhrr of elemenrs ~mr;r r r~wl  I I I  11.; ,A 
natural estimator of 0 is 

8,, - 1 I ~ l ( ~ j ) .  

If D, = S,(m),  8,, is a Kquantilt. jl!Q). The most vi.t4 k1ios.n UQ is the Hotlgcs-Lcl~nin~~n 

estimator, which is the median o f d l  0, ? .!.,)/2 in the Ioca!ion model (Hedges : ~ ! l r i  I , r l~rnanr~,  196.I) 

The U Q  based on the kernel h(rI,zZ) - CJI] - r2) results in a measure of spread, with c : c(p) 

a constant that  ensures consistency if w r  want t o  estimate the standard deviation, interquar~ile 

range or some other acale functional ( c l .  Bickel and Lehmann, 1979, Choudluiry and Serfling, l9SS 

and Rousseeuw and Cror~x,  1993). Anotller IJQ is the Theil-Sen estimator of slope in simple linear 

regression (Theil, 1950 and Sen, 1968) 

If D, # S,(m), 8, is an incomplete 11-quantile (IUQ). This notion was introduced in Hassjer 

(1996), but an IUQ estimator w= already considered by Brown and Kildea (1978) for the Hodges- 

Lehmann kernel. By generalizing quantiles to arbitrary L-functionals weobtain so called generalized 

L-statistics (Serfling, 1984) when D, = S,(m) and incomplete generalized L.-statistics (Hiissjer, 

1996) for general D.. 

There are  several advantages of using an  incomplete design D.. Since IS,(m)/ = O(nm),  the 

computation of 8, may be intractable for large n and m > 2. On the  other hand, it is possible 

to choose designs with ?V(n) = O ( n )  and asymptotic relative efficiency (ARE) arbitrarily close to  

one w.r.t. the  corresponding UQ. This phenomenon was first noted by Blom (1976) for incomplete 

(I-statistics (defined as JzdH,(z)) .  Certain IUQ can be used for estimating the  scale parameter 

in nonparametric regression with homoscedastic errors, and they can also be used in time series 

applications (Hassjer, 1996). 

In this paper, we will focus on another application of incomplete designs: On-line estimation of 

8.  Following Hbssjer (1996), we refer t o  a design as recursive and on-line (RO) if 

D,-, C D, for all n > 2 

This means that D,  is generated from D,-I by simply adding a number of multi-indices, and this 

number doesn't increase with n. The two designs considered here are (cf. Hiissjer, 1996, Section 2)  

( D l )  R O  des ign  b a s e d  o n  cyclic p e r m u t a t i o n s :  Gwen a posltive integer y E Z+, define vectors 

i = ( i  ,..., i ) ,  d l  = (dl1 ,... , d l m )  ,..., d, = (d71, .,d7,) of length m,  so that  all dJk - 
d,k.,k # k' are different, 0 5 d,1 < . . . < dJ, and dl, < . . . < d,,. T l~en  put D, = 

{i + d,; 1 < j 5 y, 1 5 i 5 n - d,,)}. Examples are: 

m = 3, y = 1 and d l  = (0,1,3).  

m = 4 , ~ =  1 and d ,  = (0 ,1 ,4 ,6) .  

m = 3, y = 2, d l  = (O,1,3) and d ,  = (0 ,4 ,9)  

(D2)  R O  design,  m = 2: D,  - {(i, j ) ;  1 < i < j < n. j - i < I} for some y E Z' 

In fact, both ( D l )  and (D2) satisfy 
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with m - 1 : d,,,, for ( D l )  and 171 = 1 + 7 for (D2)  Ilcnce. the numbel of added 1:s remain, fixed 

for large n. We imposed that  all d,t - d , t ,  are difTcrc11t for ( D l )  t o  ensure that estimators bascd on 

this design have a tractable asyrnptoiic variance. A detailed n ~ c o u ~ i t  of vaiioiis dt.sigii~ that  have 

been used in the incomplete U.statistics literature may hc found in Lec (1990. Chapter 4 )  

Before introducing our recursive estimator, notice that 0, may be wi i t tm as  an Xcs:~:::ator 

with score function 

To define a recursive es t in~ator  of 8, let and h,-I be fixed numbers, and put 

for n 2 m, with 
u 10s n 

h. = lh"lp,lopn. 

Here v ,p  > 0 are fixed numbers, [z]: = max(a,min(z, b)) and hn is a recursive density estimator of 

hF(0). Finally, I( is a non-negative function that  integrates t o  one and r a fixed positive number. 

If m = 1 and  D, = S,(l), 8, is essentially the  recursive estimator of 0 considered by Holst (1987). 

In Section 2, we first review some asymptotic theory for (incomplete) U-quantiles and then, in 

Section 3, we consider the asymptotic behaviour of in. Our main result (Theorem I )  is that  8, is 

zsymptoticdly equiva!en! to an IGTQ based on the same design ( ( D l )  and (D2) respectively). The 
(ARE) of 8, w.r.1. the corresponding U-quantile approaches 1 as 7 + co. Hence, we have found an 

on-line estimator of 0 with negligible loss in asymptotic efficiency. Finally, the proof of Theorem 1 

is given Section 4. 

2 Asymptotics results for incomplete U-quantiles 

Serfling (1984) considered generalized L-statistics (and in particular (I-quantiles) as  statistical 

functionals, operating on the U-process It,. This approach was also adopted by Hossjer (1996) for 

incomplete generalized L-statistics. The linear, first order von Mises expansion of en is 

with A(z r )  = $(h(zr) - B)/hF(B). Here R, is a remainder term of Bahadur type. It has been 

analyzed by Choudhury and Serfling (1988) and Arcones (199.5) for U-quantiles. 'The linear 

main term in (2.1) is an  incomplete U-statistic. Asymptotic normality of 8, is established using 

asymptotic theory of incornplcte U-statistics and proving that  R, is negligible. To this cnd we need 

some notation: 
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with I, i s  .r ryclic rearrangement of (1,.  . ., m )  \vit!l I In position i ,  and .I, is a ryclic ri,arr;ingement 

of (1, t r ~  i 1, . , 2m - 1) will1 1 in position 1 Let also 

and 

O: = E A ( x , ) ~  

The follnwing result is a special case of Theorem 4.1 in H8ssjer (1996): 

Theorem 1 Suppose a2 > 0 and that H F  has a positive derivative hF(0) at 0. Then, an  IUQ 

based on design ( D l )  o r  (02) has a n  asymptotically normal distribution, 

with asymptotic variance given by 

Notice that  02(7)  + a2 as  7 + oo, which is the asymptotic variance for U-quantiles (Serfling, 

1984). By choosing 7 sufficiently large, we obtain an asymptotic relative efficiency arbitrarily close 

to  one. 

If h is symmetric w.1.t. permutation of indices, the asymptotic variance simplifies t o  

with o2 = m 2 E  (A(Xi ,Xi , .  . ., .JC,,,).4(X:,X,,+:, , Xz=-:)), 

3 On-line estimator 

Consider now the recursive estimator e, defined in Section 1. We will prove below that  6,  5 6' and 

h, 5 hF(0). In fact, h, is a recursive kernel density estimator of hF(0). Heuristically, this means 

In view of (2.1), this motivates why en is asy~rlp~otically equivalent to an I U Q  based on the same 

recursive dcsign. 

We will impose the  following regularity coudirions: 

(A) el, .  . . h l , .  . . , h,,-l are  arbitrary finite numbers. 

(B) In some neighbourhood U of B and for some 0 < E O  < 1, If; = hF exists and is H8lder 

continuous of order E O ,  i.e. for some L  < m, IhF(y) - hF(z) I  5 LIZ - yIco whenever I, y E U. 

(C) HF is Halder continuous of order 11, 112 < p < 1, i.e. IHF(y) - NF( t ) l  5 Llx - yJ1 for all 

z , y E R ,  with L <  cu. 
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RECURSIVE U-QLIANTILES 1 ~ 3  , . -  

(D) For some > 0, 0 < < T < 112. 

(E) T h e  lternel function Ii  satisfies J Ii(i)dt = 1, has rnmpart support,  is non-negative. bounded 

and Lipschitz continuous, i.e. for some L < m we have I K ( x )  - I i (y) l  5 LIT - yl. 

Theorem 2 Assume a design oJ type ( D l )  or (D2) ,  that HF. has a positive derivatirre a1 8, urld 

that ( A ) - ( E )  hold. Then 8, has an asymptotically normal distribution, 

with a'(?) as deJned in Theorem I .  

4 Proof of Theorem 2 

Throughout this section, C wilI refer t o  a constant whose value may change from line to line. 

Unless otherwise stated all convergence - means "4, i.e. convergence almost surely. To sirrlplify 

the notation, introduce Y, = ., X, ) ,  y, = ( x , - , + ~ ,  . . ..I,) and 

so tha t  - > 1 
0,  = en- ,  + -M@ n-,, Y,)  

&-I  
(4.1) 

for n 2 %. Notice that  {Y,},>, is an m-dependent sequence. Lpt also 3, be the cr-algebra 

generated by XI,. . ., X,. \Vith 

i t  mav be shown that  

This relation will be useful later on in the proof. \Ire will s tar t  by proving a series of 1.emmas. The 

proof of the first lemma is s~mple  and thereforr omitted. The  proof< of Lemmas 2 and 3 a re  similar 

t o  the  proofs of Theorem 3.1 and Theorem 3.2 in IIolst (1987). 

Lemma 1 Assume n 2 2% and 0 < k 5 m. Then 

and 

Lemma 2 

Proof. Assume n 2 2n. After some manipulations, using (4.1) and E ( ~ ( 8 , , - ~ .  y n ) l ~ " - m ) )  = 

P - ~p(e,-rn), we get 
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for any E > 0 ,  so 5:. converges. Since S,+ is a non-decreasing sequence, ( 4 . 1 4 )  follows. Pu t  now 

6, = R ,  + V , / ( n b , - , )  + w,. Then, by (4 .10) ,  (4 .11)  and (4 .13) ,  

2 6, converges. 
k=Zm 

Choose now a, -+ 0  s.t. 
m 

This is possible since b,-i < ~ l o g ( n  - 1) .  Define P, = Can, with C so large that  Ix - 01 2 p, 
implies Ip - H F ( x ) J  2 a,  for all but finitely many n .  Then 

Also, find y ,  - 0  s.t. lx - 01 5 p, implies lx - 0  t ( p  - H p ( x ) ) / ( n b , - ~ )  t 6,1 5 7,. Then, for large 

enough n, 

- 0 ) +  - t 6" 

The lemma now follows from (4 .17) ,  (4.18) and Lemma 1  in Derman and Sacks (1959) .  0 

Lemma 3 
h,  3 h p ( 8 )  as n - co. 

Proof. Let, for x E U (cf. ( B ) ) ,  

and 

Conditions ( B ) ,  (D)  and ( E )  imply l irnh,(x) = h(B) as  n + co and x - 0 .  Hence, by Lemma 2, 

Now 

with 

and ' c Y ( K  (k'(h,(x,)  - ik - , ) )  - K ( k r ( h , ( x l )  - ek-rn))) . Rk = - ' I E D ~ \ D * - X  

Observe tha t  E ( U k ( F k - m )  = 0, so {Uk] are mixingale differences. McLeish (1975, Corollary ( 1 . 8 ) )  

and Kronecker's Lemma gives 
1  ; f: u. - 0 .  
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126 I~OSSJER 

using the fact that  r < 112 Finally, (E)  and (4 .4 )  imply lRtl I. Ckzr-I logk, which results in 

Lemma 4 For any 6 < 112, 

Proof .  In view of ( B )  and ( 4 . 6 ) ,  

with &,Vn and w, as in Lemma 2. It follows as in Lemma 2 that the three sums C;, k s R t ,  
zn k6-IV t / b ~ - A  and C ; ,  k h t  converge as n - co. (For the second sum, use Mc1,cish (1975, 

Corollary (1 .8))  since xz, ",6-2(logk)2 < CO.) The lemma now follows from Lemma 1 in Venter 

(1967) and the fact that. 
h ~ ( @ )  lim inf(- - 6 )  > 0 

n-m 6,-I 

by Lemma 3. 

P roof .  We will see below that  the choice 

will do, where 6 is any admissible number in Lemma 4. Choose now I& > 0 so that  supp(1C) C 

[-Ifo, Ifo]. Then, if [z f Icon-'1 c U, if follows from Assumption ( B )  that  

Hence, by (D)  and Lemma 4 ,  
n" (vn - hF(E))  - 0. 

Next, by Kronecker's Lemma, 
d a ( h n  - ",,) -+ 0,  

provided ( C ; = , ,  U t )  /ncl-I and (C;=,, R t )  /n''-L converge. This follows as  in the proof of Lemma 

3, since 17, kZr+"'-' < co and 
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P r o o f  o f  T h e o r e m  2 Define the sequence {0,,]~'2,-, throrlgh 02,_, = 02,n-l and 

with b:, = ~ n a x ( p ,  b . , )  \ire will first shou Ih.rt 0. is asymptotically equivalent to Q,,, that 1s 

with 6, - fi(& - 8, ). Observe that  {6,):;, satisfy the recursion 

with 

As in the proof of Lemma 2, one shows that 

and 

1 L a w t  converges 
k=3, 

5 Jilnkl < m. 
k=2i,, 

By Lemma 3, 6, = b:, for all but finitely many n. Hence, 

- converges. 

Lemma 2-3 and Condition ( 5 )  imp!y 

According to  Lemma 4-5 this yields n((1 - A,)(& - 8 )  -. 0 for some ( > 112. Therefore, 

Now (4.21)-(4.24) and Lemma 1 of Venter (1967) imply (4.20). By Slutsky's Lemma, it remains to  

prove asymptotic normality of 0,. Observe that  

Hence, it suffices to prove that 
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! 2P HOSSJER 

Ac!ually, (4.25) bllows from a Central Limit Theorem for niixinqalcs i l l  \Irl.eisl~ (1977), ici~ll  

,Yn8 = \',/(fib: -,,, ~ ( 7 ) )  if 2m 5 i 5 n3  Xn, = 0 if 1  5 i 5 21n - 1- k , , ( i j  [ I L L ] ,  u i , ,  = 1 / 1 1 .  

- F,. = .11[Mllm/(pu(7)) for 0 5 k 5 m and +, = 0 for 6 > I ~ J  ( r f  (4.2). I!MI!, = _I n,, 

sup,,, IM(x, y)l). Notice that  {X,, , , /U, ,~} are uniformly b o ~ l ~ ~ d e d  in n and I .  because of the choice 

of {bn}En',. Conditions (2.2)-(2.5) in McLeish (1977) are easily checked. It remains to  check (2.6),  

wl~irh requires that for any s < t < u 5 1 

where ( ( . ( / I  denotes the Ll-norm. Assume that n is so large that k,(t) > 3m and l;,,(t) - k,(s) > 2m.  
In view of (4.3). 

since &(O,B) = 0 for lkJ 1 rT1 and Cov(X,,i(&-(,), Xnj/Ft-(,I) = 0 for J i  - jJ 2 Ifi. To proceed 

further from (4.27), we will show below that  

for some E > 0, and with the  0 - t e rm holding uniformly for k.(t) < i ,  j < k,(u), li - jl < m. 

Now (z1,zz ,z3,z4)  -+ Gk(z3, z,)/(max(zlrP) max(z2,p)) is a continuous and bounded function for 

llil < fi. This is because p > 0 and since Condition (C) implies continuity of the Ck-factor. Put t ing - - 
( z ~ , z ~ , z ~ , z ~ )  = (5i-zm,bj-zmrOi-2mrBj-2m) implies, via Lsmma 2 3 and (4.23), t ha t  the  RHS of 

(4.27) tends to  zero as n -+ w. Finally, (4.28) is deduced by introducing 

Then, because the A-depencence of the sequence {Y,}, and since k , ( s )  < min(i, j )  - 2 A ,  

when li - jl < m. Finally, the proof is completed by noting that  

for any E < min(1 - r, q ) ,  which follows from Lemma 1 and Condition (C) ,  nsing estimates similar 

to (4.12). 0 
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