Sequential Analysis

Recursive U-quantiles

Ola Hössjer

To cite this article: Ola Hössjer (1997) Recursive U-quantiles, Sequential Analysis, 16:1, 119-129, DOI: 10.1080/07474949708836376

To link to this article: http://dx.doi.org/10.1080/07474949708836376

Published online: 29 Mar 2007.

Article views: 27

View related articles

Recursive U-quantiles

Ola Hössjer
Lund University
Department of Mathematical Statistics

Key words and phrases. Asymptotic normality, incomplete designs, on-line estimator, recursive designs, U-statistics.
AMS 1991 subject classifications. Primary 62L20; secondary 62E20

Abstract

Suppose we have a function h with m argun!ents and i.i.d. random variables $\left\{X_{i}\right\}_{i-1}^{\infty}$ with marginal distribution F. Let H_{F} be the distribution of $h\left(X_{1}, \ldots, X_{m}\right), m \geq 2$. We consider on-line srhemes for estimating quantiles of H_{F}. Such an estimator is based on a design D_{n}, which is a small subset of all $n!/(n-m)$! possible index vectors $I=\left(i_{1}, \ldots, i_{m}\right)$ having distinct entries not exceeding n. When a new observation X_{n} arrives, $\gamma=\left|D_{n} \backslash D_{n-1}\right|$ new vectors $\left(X_{i_{1}}, \ldots, X_{1_{m}}\right)$ with $I \in D_{n} \backslash D_{n-1}$ are used to modify the current estimate. When $\gamma \rightarrow \infty$, the asymptotic relative efficiency of the recursive estimator compared to the off-line estimator (U-quantile) tends to one. The on-line estimator is closely related to incomplete U-quantiles (Hössjer, 1996), and it generalizes a recursive quantile estimator considered by Holst (1987) for $m=1$.

1 Introduction

Assume we have a sequence $\left\{X_{i}\right\}_{i=1}^{\infty}$ of (X, \mathcal{F})-measurable random variables that are independent and identically distributed (i.i.d.) with common distribution F. Let $h: X^{m} \rightarrow \mathbb{R}$ be a measurable function, and define another distribution function $H_{F}(t)=P\left(h\left(X_{1}, \ldots, X_{m}\right) \leq t\right)$, which depends on F and h. We consider estimating the quantile

$$
\theta=H_{F}^{-1}(p)=\inf \left\{t ; H_{F}(t)>p\right\},
$$

given some fixed $0<p<1$. For each $I-\left(i_{1}, \ldots, i_{m}\right)$, introduce the short-hand notation $h\left(X_{1}\right)$ $h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)$. Let also $S_{n}(m)=\left\{I=\left(i_{1}, \ldots, i_{m}\right) ; 1 \leq i_{j} \leq n, i, \neq i\right.$, if $\left.j \neq j^{\prime}\right\}$ be the collection of all $n!/(n-m)$! possible multi-indices I with entries not exceeding n. For any design $D_{n} \subset S_{n}(m)$ of multi-indices, we may define the distribution function

$$
H_{n}(t)=\frac{1}{N(n)} \sum_{I \in D_{n}} 1_{h\left(x_{1}\right) \leq t}
$$

which is an empirical analogue of H_{F}. Here $N(n)$ is the number of elements iontained in $D_{\text {: }}$ A natural estimator of θ is

$$
\tilde{\theta}_{n}-I_{n}^{-1}(\tilde{p}) .
$$

If $D_{n}=S_{n}(m), \bar{\theta}_{n}$ is a U-quantile (UQ). The most well known UQ is the Hodges-Lehmam estimator, which is the median of all $\left(X_{1}+X_{j}\right) / 2$ in the location model (Hodges and Lohmann, 196.3) The UQ based on the kernel $h\left(x_{1}, x_{2}\right)=c\left|x_{1}-x_{2}\right|$ results in a measure of spread, with $c=c(p)$ a constant that ensures consistency if we want to estimate the standard deviation, interquartile range or some other scale functional (cf. Bickel and Lehmann, 1979, Choudhury and Serfling, 1988 and Rousseeuw and Croux, 1993). Another UQ is the Theil-Sen estimator of slope in simple linear regression (Theil, 1950 and Sen, 1968)

If $D_{n} \neq S_{n}(m), \bar{\theta}_{n}$ is an incomplete U-quantile (IUQ). This notion was introduced in Hössjer (1996), but an IUQ estimator was already considered by Brown and Kildea (1978) for the HodgesLehmann kernel. By generalizing quantiles to arbitrary L-functionals we obtain so called generalized L-statistics (Serfling, 1984) when $D_{n}=S_{n}(m)$ and incomplete generalized L-statistics (Hössjer, 1996) for general D_{n}.

There are several advantages of using an incomplete design D_{n}. Since $\left|S_{n}(m)\right|=O\left(n^{m}\right)$, the computation of $\bar{\theta}_{n}$ may be intractable for large n and $m \geq 2$. On the other hand, it is possible to choose designs with $N(n)=O(n)$ and asymptotic relative efficiency (ARE) arbitrarily close to one w.r.t. the corresponding UQ. This phenomenon was first noted by Blom (1976) for incomplete U-statistics (defined as $\int x d H_{n}(x)$). Certain IUQ can be used for estimating the scale parameter in nonparametric regression with homoscedastic errors, and they can also be used in time series applications (Hössjer, 1996).

In this paper, we will focus on another application of incomplete designs: On-line estimation of θ. Following Hössjer (1996), we refer to a design as recursive and on-line (RO) if

$$
\begin{aligned}
& D_{n-1} \subset D_{n} \text { for all } n \geq 2 \\
& \left|D_{n} \backslash D_{n-1}\right|=O(1) .
\end{aligned}
$$

This means that D_{n} is generated from D_{n-1} by simply adding a number of multi-indices, and this number doesn't increase with n. The two designs considered here are (cf. Hössjer, 1996, Section 2)
(D1) RO design based on cyclic permutations: Given a positive integer $\gamma \in \mathbb{Z}^{+}$, define vectors $i=(i, \ldots, i), d_{1}=\left(d_{11}, \ldots, d_{1 m}\right), \ldots, \boldsymbol{d}_{\gamma}=\left(d_{\gamma 1}, ., d_{\gamma m}\right)$ of length m, so that all $d_{j k}-$ $d_{j k^{\prime}}, k \neq k^{\prime}$ are different, $0 \leq d_{j 1}<\ldots<d_{j m}$ and $d_{1 m}<\ldots<d_{\gamma m}$. Then put $D_{n}=$ $\left.\left\{i+\boldsymbol{d}_{j} ; 1 \leq j \leq \gamma, 1 \leq i \leq n-d_{j m}\right\}\right\}$. Examples are:
$m=2, \boldsymbol{d}_{k}=(0, k), k=1, \ldots, \gamma$.
$m=3, \gamma=1$ and $d_{1}=(0,1,3)$.
$m=4, \gamma=1$ and $d_{1}=(0,1,4,6)$.
$m=3, \gamma=2, d_{1}=(0,1,3)$ and $d_{2}=(0,4,9)$
(D2) RO design, $m=2$: $D_{n}=\{(i, j) ; 1 \leq i<j \leq n, j-i \leq \gamma\}$ for some $\gamma \in \mathbb{Z}^{+}$
In fact, both (D1) and (D2) satisfy
with $\bar{m}-1: d_{2}$ for (D1) and $\bar{m}=1+\gamma$ for (D2) Hence, the number of added I :s remains fixed for large n. We imposed that all $d_{j k}-d_{k^{\prime}}$ are different for (D1) to ensure that estimators based on this design have a tractable asymptotic variance. A detailed account of various designs that have been used in the incomplete U-statistics literature may be found in Lee (1990, Clapter 4)

Before introducing our recursive estimator, notice that $\tilde{\theta}_{n}$ may be witten as an M-estimator

$$
\sum_{I \in D_{n}} \psi\left(h\left(X_{l}\right)-\bar{\theta}_{n}\right)-0
$$

with score function

$$
\psi(x)= \begin{cases}p, & x>0 \\ p-1, & x \leq 0\end{cases}
$$

To define a recursive estimator of θ, let $\hat{\theta}_{\bar{m}-1}$ and $h_{\bar{m}-1}$ be fixed numbers, and put

$$
\begin{align*}
\hat{\theta}_{n} & =\hat{\theta}_{n-1}+\frac{1}{n \gamma b_{n-1}} \sum_{I \in D_{n} \backslash D_{n-1}} \psi\left(h\left(X_{I}\right)-\hat{\theta}_{n-1}\right) \tag{1.2}\\
h_{n} & =h_{n-1}+\frac{1}{n \gamma} \sum_{I \in D_{n} \backslash D_{n-1}}\left(n^{r} K\left(n^{r}\left(h\left(X_{I}\right)-\hat{\theta}_{n}\right)\right)-h_{n-1}\right) \tag{1.3}
\end{align*}
$$

for $n \geq \bar{m}$, with

$$
b_{n}=\left[h_{n}\right]_{\rho / \log n}^{\nu \log n}
$$

Here $\nu, \rho>0$ are fixed numbers, $[x]_{a}^{b}=\max (a, \min (x, b))$ and h_{n} is a recursive density estimator of $h_{F}(\theta)$. Finally, K is a non-negative function that integrates to one and r a fixed positive number. If $m=1$ and $D_{n}=S_{n}(1), \hat{\theta}_{n}$ is essentially the recursive estimator of θ considered by Holst (1987).

In Section 2, we first review some asymptotic theory for (incomplete) U-quantiles and then, in Section 3 , we consider the asymptotic behaviour of $\hat{\theta}_{n}$. Our main result (Theorem 1) is that $\hat{\theta}_{n}$ is asymptotically equivalent to an IUQ based on the same design ((D1) and (D2) respectively). The (ARE) of $\hat{\theta}_{n}$ w.r.t. the corresponding U-quantile approaches 1 as $\gamma \rightarrow \infty$. Hence, we have found an on-line estimator of θ with negligible loss in asymptotic efficiency. Finally, the proof of Theorem 1 is given Section 4.

2 Asymptotics results for incomplete U-quantiles

Serfling (1984) considered generalized L-statistics (and in particular U-quantiles) as statistical functionals, operating on the U-process H_{n}. This approach was also adopted by Hössjer (1996) for incomplete generalized L-statistics. The linear, first order von Mises expansion of $\tilde{\theta}_{n}$ is

$$
\begin{equation*}
\bar{\theta}_{n}=\theta+\frac{1}{N(n)} \sum_{I \in D_{n}} A\left(X_{I}\right)+R_{n} \tag{2.1}
\end{equation*}
$$

with $A\left(x_{I}\right)=\psi\left(h\left(x_{I}\right)-\theta\right) / h_{F}(\theta)$. Here R_{n} is a remainder term of Bahadur type. It has been analyzed by Choudhury and Serfling (1988) and Arcones (1995) for U-quantiles. The linear main term in (2.1) is an incomplete U-statistic. Asymptotic normality of $\tilde{\theta}_{n}$ is established using asymptotic theory of incomplete U-statistics and proving that R_{n} is negligible. To this end we need some notation:
with I_{1} is a cyclic rearrangement of $(1, \ldots, m)$ with 1 in position i, and J, is a cyclic rearrangement of $(1, m+1, ., 2 m-1)$ with 1 in position j Let also

$$
\sigma^{2}-\sum_{i, j=1}^{m} \sigma_{1, j}^{2}
$$

and

$$
\left.\sigma_{m}^{2}=E A_{(} X_{I}\right)^{2}
$$

The follnwing result is a special case of Theorem 4.1 in Hössjer (1996):

Theorem 1 Suppose $\sigma^{2}>0$ and that H_{F} has a positive derivative $h_{F}(\theta)$ at θ. Then, an IUQ based on design (D1) or (D2) has an asymptotically normal distribution,

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \stackrel{c}{\hookrightarrow} N\left(0, \sigma^{2}(\gamma)\right),
$$

with asymptotic variance given by

$$
\sigma^{2}(\gamma)=\sigma^{2}+\frac{\sigma_{m}^{2}-\sum_{i=1}^{m} \sigma_{1 i i}^{2}}{\gamma}
$$

Notice that $\sigma^{2}(\gamma) \rightarrow \sigma^{2}$ as $\gamma \rightarrow \infty$, which is the asymptotic variance for U-quantiles (Serfling, 1984). By choosing γ sufficiently large, we obtain an asymptotic relative efficiency arbitrarily close to one.

If h is symmetric w.r.t. permutation of indices, the asymptotic variance simplifies to

$$
\sigma^{2}(\gamma)=\sigma^{2}+\frac{\sigma_{m}^{2}-\sigma^{2} / m}{\gamma}
$$

with $\sigma^{2}=m^{2} E\left(A\left(X_{1}, X_{2}, \ldots, X_{m}\right) A\left(X_{1}, X_{\cdots+1}, \quad, X_{2 m-1}\right)\right)$.

3 On-line estimator

Consider now the recursive estimator $\hat{\theta}_{n}$ defined in Section 1 . We will prove below that $\hat{\theta}_{n} \xrightarrow{p} \theta$ and $h_{\mathrm{n}} \xrightarrow{p} h_{F}(\theta)$. In fact, h_{n} is a recursive kernel density estimator of $h_{F}(\theta)$. Heuristically, this means

$$
\hat{\theta}_{n} \approx \dot{\theta}_{n-1}+\frac{1}{n \gamma} \sum_{I \in D_{n} \backslash D_{n-1}} A\left(X_{I}\right)
$$

In view of (2.1), this motivates why $\hat{\theta}_{n}$ is asymptotically equivalent to an IUQ based on the same recursive design.

We will impose the following regularity condtions:
(A) $\hat{\theta}_{1}, \ldots, \hat{\theta}_{m-1}, h_{1}, \ldots, h_{n-1}$ are arbitrary finite numbers.
(B) In some neighbourhood U of θ and for some $0<\varepsilon_{0}<1, H_{F}^{\prime}=h_{F}$ exists and is Hölder continuous of order ε_{0}, i.e. for some $L<\infty,\left|h_{F}(y)-h_{F}(x)\right| \leq L|x-y|^{\varepsilon_{0}}$ whenever $x, y \in U$.
(C) H_{F} is Hölder continuous of order $\eta, 1 / 2<\eta<1$, i.e. $\left|H_{F}(y)-H_{F}(x)\right| \leq L|x-y|^{\eta}$ for all $x, y \in \Re$, with $L<\infty$.
(D) For some $\varepsilon_{1}>0,0<\varepsilon_{1}<r<1 / 2$.
(E) The kernel function K satisfies $\int K(t) d t=1$, has compart support, is non-negative. bounded and Lipschitz continuous, i.e. for some $L<\infty$ we have $|K(x)-K(y)| \leq L|x-y|$.

Theorem 2 Assume a design of type (D1) or (D2), that H_{F} has a positive derivative at θ, and that (A)-(E) hold. Then $\hat{\theta}_{n}$ has an asymptotically normal distribution,

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \stackrel{C}{\hookrightarrow} N\left(0, \sigma^{2}(\gamma)\right),
$$

with $\sigma^{2}(\gamma)$ as defined in Theorem 1.

4 Proof of Theorem 2

Throughout this section, C will refer to a constant whose value may change from line to line. Unless otherwise stated all convergence \rightarrow means $\stackrel{a \rightarrow}{\rightarrow}$, i.e. convergence almost surely. To simplify the notation, introduce $Y_{n}=\left(X_{n-m_{+1}}, \ldots, X_{n}\right), y_{n}=\left(x_{n-\bar{m}+1}, \ldots, x_{n}\right)$ and

$$
M\left(\theta, y_{n}\right)=\frac{1}{\gamma} \sum_{I \in D_{n} \backslash D_{n-1}} \psi\left(h\left(x_{I}\right)-\theta\right),
$$

so that

$$
\begin{equation*}
\hat{\theta}_{n}=\hat{\theta}_{n-1}+\frac{1}{n b_{n-1}} M\left(\hat{\theta}_{n-1}, Y_{n}\right) \tag{4.1}
\end{equation*}
$$

for $n \geq \bar{m}$. Notice that $\left\{Y_{n}\right\}_{n \geq m}$ is an \bar{m}-dependent sequence. Let also \mathcal{F}_{n} be the σ-algebra generated by X_{1}, \ldots, X_{n}. With

$$
\begin{equation*}
\tilde{C}_{k}\left(\theta_{1}, \theta_{2}\right)=\operatorname{Cov}\left(M\left(\theta_{1}, Y_{n}\right), M\left(\theta_{1}, Y_{n+k}\right)\right), \tag{4.2}
\end{equation*}
$$

it may be shown that

$$
\begin{equation*}
\sigma^{2}(\gamma)=\frac{1}{h_{F}(\theta)^{2}} \sum_{k=-\bar{m}+1}^{\bar{m}-1} \tilde{C}_{k}(\theta, \theta) \tag{4.3}
\end{equation*}
$$

This relation will be useful later on in the proof. We will start by proving a series of Lemmas. The proof of the first lemma is simple and therefore omitted. The proofs of Lemmas 2 and 3 are similar to the proofs of Theorem 3.1 and Theorem 3.2 in Holst (1987).

Lemma 1 Assume $n \geq 2 \bar{m}$ and $0<k \leq \bar{m}$. Then

$$
\begin{equation*}
\left|\hat{\theta}_{n}-\hat{\theta}_{n-k}\right| \leq C n^{-1} \log n \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{1}{b_{n}}-\frac{1}{b_{n-k}}\right| \leq C n^{r-1}(\log n)^{2} \tag{4.5}
\end{equation*}
$$

Lemma 2

$$
\hat{\theta}_{n} \rightarrow \theta \text { as } n \rightarrow \infty .
$$

Proof. Assume $n \geq 2 \bar{m}$. After some manipulations, using (4.1) and $\left.E\left(M\left(\hat{\theta}_{n-\dot{m}}, Y_{n}\right) \mid \mathcal{F}_{n-\dot{m}}\right)\right)=$ $p-H_{F}\left(\hat{\theta}_{n-\dot{m}}\right)$, we get

$$
\left({ }^{\mathrm{L}} X^{r-u} \theta\right) L V-\frac{\mathrm{r}-\mathrm{u} q}{\mathrm{I}}+\theta-{ }^{\mathrm{r}-u} \theta \cdots \theta-{ }^{u} \theta
$$

$$
\begin{aligned}
& \text { and } \\
& \qquad \begin{aligned}
R_{n} & =\frac{H_{F}\left(\hat{\theta}_{n-1}\right)-H_{F}\left(\hat{\theta}_{n-\bar{m}}\right)}{n \hat{b}_{n-1}} \\
& \left.+\left(\frac{1}{b_{n-1}}-\frac{1}{b_{n-\bar{m}}}\right) \frac{1}{n}\left(M\left(\hat{\theta}_{n-\bar{m}}, Y_{n}^{\prime}\right)-E\left(M\left(\hat{\theta}_{n-\bar{n}}, Y_{n}\right) \mid \mathcal{F}_{n-\bar{m}}\right)\right)\right)
\end{aligned} \\
& \text { By Lemma } 1 \text { and (C), }\left|R_{n}\right| \leq C n^{-\zeta} \text { for some }\langle>3 / 2 \text {, so }
\end{aligned}
$$

Since V_{n} is adapted to \mathcal{F}_{n} and $E\left(V_{n} \mid F_{n-m}\right)=0,\left\{V_{n}\right\}_{2 m}^{\infty}$ is a uniformly bounded sequence of mixingale differences．By McLeish（1975，Corollary（1．8）），

$$
\sum_{k=2 \pi}^{\infty}\left|R_{k}\right|<\infty
$$

$$
\sum_{k=2 m}^{n} \frac{V_{k}}{k b_{k-m}} \text { converges, }
$$

[^0]（zI＇も）
$(8[\cdot v)$
 that
uso $1_{1}-\left.u_{3} \supset\right|^{4} m \mid$

Actually, (4.12) implies that
 because of（4．12），so

（4．15）
for any $\varepsilon>0$, so $S_{2^{\star}}^{+}$converges. Since S_{n}^{+}is a non-decreasing sequence, (4.14) follows. Put now $\delta_{n}=R_{n}+V_{n} /\left(n b_{n-m}\right)+w_{n}$. Then, by (4.10), (4.11) and (4.13),

$$
\begin{equation*}
\sum_{k=2 \hbar}^{n} \delta_{k} \text { converges. } \tag{4.17}
\end{equation*}
$$

Choose now $\alpha_{n} \rightarrow 0$ s.t.

$$
\begin{equation*}
\sum_{n=2 \bar{m}}^{\infty} \alpha_{n} /\left(n b_{n-1}\right)=\infty . \tag{4.18}
\end{equation*}
$$

This is possible since $b_{n-1} \leq \nu \log (n-1)$. Define $\beta_{n}=C \alpha_{n}$, with C so large that $|x-\theta| \geq \beta_{n}$ implies $\left|p-H_{F}(x)\right| \geq \alpha_{n}$ for all but finitely many n. Then

$$
\left\{\begin{array}{l}
\hat{\theta}_{n}-\theta \geq \beta_{n} \Longrightarrow \hat{\theta}_{n}-\theta \leq \hat{\theta}_{n-1}-\theta-\frac{\alpha_{n}}{n b_{n-1}}+\delta_{n} \\
\hat{\theta}_{n}-\theta \leq-\beta_{n} \Longrightarrow \hat{\theta}_{n}-\theta \geq \hat{\theta}_{n-1}-\theta+\frac{\alpha_{n}}{n b_{n-1}}+\delta_{n} .
\end{array}\right.
$$

Also, find $\gamma_{n} \rightarrow 0$ s.t. $|x-\theta| \leq \beta_{n}$ implies $\left|x-\theta+\left(p-H_{F}(x)\right) /\left(n b_{n-1}\right)+\delta_{n}\right| \leq \gamma_{n}$. Then, for large enough n,

$$
\left\{\begin{array}{l}
\left(\hat{\theta}_{n}-\theta\right)_{+} \leq \max \left(\gamma_{n},\left(\hat{\theta}_{n-1}-\theta\right)_{+}-\frac{\alpha_{n}}{n b_{n-1}}+\delta_{n}\right) \\
\left(\hat{\theta}_{n}-\theta\right)_{-} \leq \max \left(\gamma_{n},\left(\hat{\theta}_{n-1}-\theta\right)_{-}-\frac{\alpha_{n}}{n b_{n-1}}-\delta_{n}\right) .
\end{array}\right.
$$

The lemma now follows from (4.17), (4.18) and Lemma 1 in Derman and Sacks (1959).

Lemma 3

$$
h_{n} \rightarrow h_{F}(\theta) \text { as } n-\infty .
$$

Proof. Let, for $x \in U$ (cf. (B)),

$$
\bar{h}_{\bar{n}}(x)=n^{r} \int K\left(n^{r}(y-x)\right) d H_{F}(y)
$$

and

$$
v_{n}=\frac{2 \bar{m}-1}{n} h_{2 \bar{m}-1}+\frac{1}{n} \sum_{k=2 \bar{m}}^{n} \bar{h}_{n}\left(\hat{\theta}_{k-m}\right) .
$$

Conditions (B), (D) and (E) imply $\lim \bar{h}_{n}(x)=h(\theta)$ as $n \rightarrow \infty$ and $x \rightarrow \theta$. Hence, by Lemma 2,

$$
\begin{equation*}
v_{n} \rightarrow h_{F}(\theta) \tag{4.19}
\end{equation*}
$$

Now

$$
h_{n}-v_{\mathrm{n}}=\frac{1}{n} \sum_{k=2 \bar{m}}^{n} U_{k}+\frac{1}{n} \sum_{k=2 \bar{m}}^{n} R_{k},
$$

with

$$
U_{k}=\frac{1}{\gamma} \sum_{I \in D_{k} \mid D_{k-1}}\left(k^{r} K\left(k^{r}\left(h_{F}\left(X_{I}\right)-\hat{\theta}_{k-\bar{m}}\right)\right)-E\left(k^{r} K\left(k^{r}\left(h_{F}\left(X_{I}\right)-\hat{\theta}_{k-\bar{m}}\right)\right) \mid \mathcal{F}_{k-\bar{m}}\right)\right)
$$

and

$$
R_{k}=\frac{1}{\gamma} \sum_{I \in D_{k} \backslash D_{k-1}} k^{r}\left(K\left(k^{r}\left(h_{F}\left(x_{I}\right)-\hat{\theta}_{k-1}\right)\right)-K\left(k^{r}\left(h_{F}\left(x_{I}\right)-\hat{\theta}_{k-\dot{m}}\right)\right)\right) .
$$

Observe that $E\left(U_{k} \mid \mathcal{F}_{k-m}\right)=0$, so $\left\{U_{k}\right\}$ are mixingale differences. McLeish (1975, Corollary (1.8)) and Kronecker's Lemma gives

$$
\frac{1}{n} \sum^{n} U_{k} \rightarrow 0
$$

using the fact that $r<1 / 2$ Finally, (E) and (4.4) imply $\left|R_{k}\right| \leq C k^{2 r-1} \log k$, which results in

$$
\frac{1}{n} \sum_{k=2 m}^{n} R_{k} \rightarrow 0
$$

Lemma 4 For any $\delta<1 / 2$,

$$
n^{\delta}\left(\hat{\theta}_{n}-\theta\right)-0 .
$$

Proof. In view of (B) and (4.6),

$$
\begin{aligned}
n^{\delta}\left(\hat{\theta}_{n}-\theta\right) & =(n-1)^{\delta}\left(\left(\hat{\theta}_{n-1}-\theta\right)\left(1-\frac{h_{F}(\theta)}{n b_{n-1}}+\frac{\delta}{n}+o\left(n^{-1}\right)\right)\right. \\
& +n^{\delta}\left(R_{n}+\frac{V_{n}}{n b_{n-m}}+w_{n}\right),
\end{aligned}
$$

with R_{n}, V_{n} and w_{n} as in Lemma 2. It follows as in Lemma 2 that the three sums $\sum_{2 \bar{m}}^{n} k^{\delta} R_{k}$, $\sum_{2 \bar{m}}^{n} k^{\delta-1} V_{k}^{\prime} / b_{k-\bar{m}}$ and $\sum_{2 \bar{m} \bar{i}}^{n} k^{\delta} w_{k}$ converge as $n-\infty$. (For the second sum, use McLeish (1975, Corollary (1.8)) since $\sum_{2 \bar{m}}^{\infty} 2^{26-2}(\log k)^{2}<\infty$.) The lemma now follows from Lemma 1 in Venter (1967) and the fact that

$$
\liminf _{n \rightarrow \infty}\left(\frac{h_{F}(\theta)}{b_{n-1}}-\delta\right)>0
$$

by Lemma 3 .

Lemma 5 For some $\varepsilon_{2}>0$,

$$
n^{t_{2}}\left(h_{n}-h_{F}(\theta)\right) \rightarrow 0 .
$$

Proof. We will see below that the choice

$$
\varepsilon_{2}<\min \left(\varepsilon_{0} \varepsilon_{1}, \varepsilon_{0} \delta, \frac{1}{2}-r\right)
$$

will do, where δ is any admissible number in Lemma 4. Choose now $K_{0}>0$ so that $\operatorname{supp}(K) \subset$ $\left[-K_{0}, K_{0}\right]$. Then, if $\left[x \pm K_{0} n^{-r}\right] \subset U$, if follows from Assumption (B) that

$$
\left|\bar{h}_{n}(x)-h_{F}(\theta)\right| \leq C\left(|x-\theta|^{\varepsilon_{0}}+n^{-r c_{0}}\right) .
$$

Hence, by (D) and Lemma 4,

$$
n^{\varepsilon_{2}}\left(v_{n}-h_{F}(\theta)\right) \rightarrow 0 .
$$

Next, by Kronecker's Lemma,

$$
n^{c_{2}}\left(h_{n}-v_{n}\right) \rightarrow 0
$$

provided $\left(\sum_{k=2 \bar{m}}^{n} U_{k}\right) / n^{c_{2}-1}$ and $\left(\sum_{k=2 \bar{m}}^{n} R_{k}\right) / n^{c_{2}-1}$ converge. This follows as in the proof of Lemma 3 , since $\sum_{2 \dot{m}}^{\infty} k^{2 r+2 \epsilon_{2}-2}<\infty$ and

$$
\frac{1}{n^{1-\epsilon_{2}}} \sum_{k=2 \dot{m}}^{n}\left|R_{k}\right| \leq C n^{2 r-1+\epsilon_{2}} \log n \rightarrow 0
$$

Proof of Theorem 2 Define the sequence $\left\{\tilde{\theta}_{n}\right\}_{n=2 \bar{m}-1}^{\infty}$ through $\tilde{\theta}_{2 \bar{m}-1}=\hat{\theta}_{2 n_{n-1}}$ and

$$
\tilde{\theta}_{n}-\theta=\left(\tilde{\theta}_{n-i}-\theta\right)\left(1-\frac{1}{n}\right)+\frac{V_{n}}{n b_{n-\bar{m}}^{\prime}}, \quad n \geq 2 \bar{m}
$$

with $b_{n}^{\prime}=\max \left(\rho, b_{n}\right)$. We will first show that $\bar{\theta}_{n}$ is asymptotically equivalent to $\dot{\theta}_{n}$, that is

$$
\begin{equation*}
\delta_{n} \rightarrow 0 \tag{4.20}
\end{equation*}
$$

with $\delta_{n}=\sqrt{n}\left(\dot{\theta}_{n}-\dot{\theta}_{n}\right)$. Observe that $\left\{\delta_{n}\right\}_{\text {2rỉ }}^{\infty}$ satisfy the recursion

$$
\delta_{n}=\sqrt{1-\frac{1}{n}} \delta_{n-1}+\sqrt{n} R_{n}+\sqrt{n} w_{n}+\left(\frac{1}{b_{n-\bar{m}}}-\frac{1}{b_{n-n}^{\prime}}\right) \frac{V_{n}}{n},+\frac{1-A_{n}}{\sqrt{n}}\left(\dot{\theta}_{n-1}-\theta\right)
$$

with

$$
A_{n}=\frac{H\left(\hat{\theta}_{n-1}\right)-p}{b_{n-1}\left(\hat{\theta}_{n-1}-\theta\right)}
$$

As in the proof of Lemma 2, one shows that

$$
\begin{equation*}
\sum_{k=2 \pi}^{n} \sqrt{k} w_{k} \text { converges } \tag{4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=2 \dot{m}}^{\infty} \sqrt{k}\left|R_{k}\right|<\infty \tag{4.22}
\end{equation*}
$$

By Lemma $3, b_{n}=b_{n}^{\prime}$ for all but finitely many n. Hence,

$$
\begin{equation*}
\sum_{k=2 \bar{m}}^{n}\left(\frac{1}{b_{k-\bar{m}}}-\frac{1}{b_{k-\bar{m}}^{\prime}}\right) \frac{V_{k}}{k} \text { converges. } \tag{4.23}
\end{equation*}
$$

Lemma 2-3 and Condition (B) imply

$$
\left|A_{n}-1\right| \leq C\left(\left|b_{n-1}-h_{F}(\theta)\right|+\left|\hat{\theta}_{n-1}-\theta\right|^{\varepsilon_{0}}\right)
$$

According to Lemma 4-5 this yields $n^{\varsigma}\left(1-A_{n}\right)\left(\hat{\theta}_{n}-\theta\right) \rightarrow 0$ for some $\zeta>1 / 2$. Therefore,

$$
\begin{equation*}
\sum_{k=2 \bar{m}}^{\infty} \frac{\left|\left(1-A_{k}\right)\left(\hat{\theta}_{k}-\theta\right)\right|}{\sqrt{k}}<\infty \tag{4.24}
\end{equation*}
$$

Now (4.21)-(4.24) and Lemma 1 of Venter (1967) imply (4.20). By Slutsky's Lemma, it remains to prove asymptotic normality of $\tilde{\theta}_{n}$. Observe that

$$
\begin{aligned}
\tilde{\theta}_{n}-\theta & =\frac{2 \bar{m}-1}{n}\left(\hat{\theta}_{2 \bar{m}-1}-\theta\right)+\frac{1}{n} \sum_{k=2 \bar{m}}^{n} \frac{V_{k}}{b_{k-\bar{n}_{2}}^{\prime}} \\
& =O\left(n^{-1}\right)+\frac{1}{n} \sum_{k=2 \dot{m}}^{n} \frac{V_{k}}{b_{k-\bar{m}}^{\prime}}
\end{aligned}
$$

Hence, it suffices to prove that

$$
\begin{equation*}
\frac{1}{\sqrt{n}} \sum_{k=2 \dot{m}}^{n} \frac{V_{k}}{b_{k-\bar{m}}^{\prime}} \stackrel{\mathcal{c}}{\rightarrow} N\left(0, \sigma^{2}(\gamma)\right) \tag{4.25}
\end{equation*}
$$

Actually, (4.25) follows from a Central Limit Theorem for mixingales in Mcleish (1977), with $X_{n t}=V_{1} /\left(\sqrt{n} b_{t-m}^{\prime} \sigma(\gamma)\right)$ if $2 \bar{m} \leq i \leq n, X_{n i}=0$ if $1 \leq i \leq 2 \bar{m}-1, k_{n}(i) \quad|n t|, \sigma_{n, 1}^{2}=1 / n$. $\mathcal{I}_{n, 1}-\mathcal{I}_{n}, \psi_{k}=1\|M\|_{\infty} /(\rho \sigma(\gamma))$ for $0 \leq k \leq \bar{m}$ and $\psi_{i}=0$ for $k \geq \bar{m}\left(c f(4.2),\|M\|_{\infty}=\right.$ $\left.\sup _{r, y}|M(x, y)|\right)$. Notice that $\left\{X_{n, i} / \sigma_{n, i}\right\}$ are uniformly bounded in n and 1 , because of the choice of $\left\{b_{n}^{\prime}\right\}_{2 \dot{m}}^{\infty}$. Conditions (2.2)-(2.5) in McLeish (1977) are easily checked. It remains to check (2.6), which requires that for any $s<t<u \leq 1$

$$
\begin{equation*}
\left\|E\left(\left(\sum_{i=k_{n}(t)}^{k_{n}(u)} X_{n_{t}}\right)^{2} \mid \mathcal{F}_{k_{n}(s)}\right)-(u-t)\right\|_{1} \rightarrow 0 \quad \text { as } n-x \tag{4.26}
\end{equation*}
$$

where $\|\cdot\|_{1}$ denotes the L_{1}-norm. Assume that n is so large that $k_{n}(t) \geq 3 \bar{m}$ and $k_{n}(t)-k_{n}(s) \geq 2 \bar{m}$. In view of (4.3),

$$
\begin{align*}
& \left\|E\left(\left(\sum_{i=k_{n}(t)}^{k_{n}(u)} X_{n i}\right)^{2} \mid \mathcal{F}_{k_{n}(s)}\right)-(u-t)\right\|_{1} \\
& =\left\|\sum_{i, j=k_{n}(t)}^{k_{n}(u)}\left(\operatorname{Cov}\left(X_{n i}\left|\mathcal{F}_{k_{n}(s)}, X_{n j}\right| \mathcal{F}_{k_{n}(s)}\right)-\frac{\dot{C}_{i-}(\theta, \theta)}{n_{F}(\theta)^{2} \sigma^{2}(\lambda)}\right)\right\|_{1}+O\left(\frac{1}{n}\right) \tag{4.27}\\
& \leq \sum_{\substack{1,=k n(1) \\
j i-j \mid \leq \bar{m}}}^{\substack{k_{n}(u)}}\left\|\operatorname{Cov}\left(X_{n i}\left|\mathcal{F}_{k_{n}(s)}, X_{n j}\right| \mathcal{F}_{k_{n}(s)}\right)-\frac{\bar{c}_{-1},(\theta, \theta)}{n h_{F}(\theta)^{2} \sigma^{2}(\lambda)}\right\|_{1}+O\left(\frac{1}{n}\right),
\end{align*}
$$

since $\tilde{C}_{k}(\theta, \theta)=0$ for $|k| \geq \bar{m}$ and $\operatorname{Cov}\left(X_{n i}\left|\mathcal{F}_{k_{n}(\boldsymbol{s})}, X_{n j}\right| \mathcal{F}_{k_{n}(s)}\right)=0$ for $|i-j| \geq \bar{m}$. To proceed further from (4.27), we will show below that

$$
\begin{equation*}
\operatorname{Cov}\left(X_{n i}\left|\mathcal{F}_{k_{n}(s)}, X_{n j}\right| \mathcal{F}_{k_{n}(s)}\right)=E\left(\left.\frac{\tilde{C}_{i-j}\left(\hat{\theta}_{i-2 \bar{m}}, \hat{\theta}_{j-2 \bar{m}}\right)}{n \sigma^{2}(\gamma) b_{i-2 \dot{m}}^{\prime} b_{j-2 \dot{m}}^{\prime}} \right\rvert\, \mathcal{F}_{k_{n}(s)}\right)+n^{-1} O\left(i^{-\epsilon}+j^{-\epsilon}\right) \tag{4.28}
\end{equation*}
$$

for some $\varepsilon>0$, and with the O-term holding uniformly for $k_{n}(t) \leq i, j \leq k_{n}(u),|i-j|<\bar{m}$. Now $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \rightarrow \bar{C}_{k}\left(x_{3}, x_{4}\right) /\left(\max \left(x_{1}, \rho\right) \max \left(x_{2}, \rho\right)\right)$ is a continuous and bounded function for $|k|<\bar{m}$. This is because $\rho>0$ and since Condition (C) implies continuity of the \tilde{C}_{k}-factor. Putting $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(b_{i-2 \bar{m}}, b_{j-2 \bar{m}}, \hat{\theta}_{i-2 \bar{m}}, \hat{\theta}_{j-2 \bar{m}}\right)$ implies, via Lemma 23 and (4.28), that the RHS of (4.27) tends to zero as $n \rightarrow \infty$. Finally, (4.28) is deduced by introducing

$$
X_{n i}^{\prime}=\frac{V_{i}^{\prime}}{\sqrt{n} b_{n-2 \bar{m}}^{\prime} \sigma(\gamma)}
$$

if $2 \bar{m} \leq i \leq n$, with

$$
V_{i}^{\prime}=M\left(\hat{\theta}_{1-2 \bar{m}}, Y_{n}\right)-E\left(M\left(\hat{\theta}_{i-2 \bar{m}} \mid \mathcal{F}_{i-2 \bar{m}}\right)\right)
$$

Then, because the \bar{m}-depencence of the sequence $\left\{Y_{n}\right\}$, and since $k_{n}(s) \leq \min (i, j)-2 \bar{m}$,

$$
\operatorname{Cov}\left(X_{n i}^{\prime}\left|\mathcal{F}_{k_{n}(s)}, X_{n j}^{\prime}\right| \mathcal{F}_{k_{n}(s)}\right)=E\left(\left.\frac{\dot{C}_{i-\jmath}\left(\hat{\theta}_{1-2 \bar{m}}, \hat{\theta}_{j-2 \bar{m}}\right)}{n \sigma^{2}(\gamma) b_{\mathbf{1}-2 \bar{m}}^{\prime} b_{j-2 \bar{m}}^{\prime}} \right\rvert\, \mathcal{F}_{k_{n}(s)}\right)
$$

when $|i-j|<\bar{m}$. Finally, the proof is completed by noting that

$$
\left|\operatorname{Cov}\left(X_{n i}\left|\mathcal{F}_{k_{n}(s)}, X_{n},\right| \mathcal{F}_{k_{n}(s)}\right)-\operatorname{Cov}\left(X_{n i}^{\prime}\left|\mathcal{F}_{k_{n}(s)}, X_{n j}^{\prime}\right| \mathcal{F}_{k_{n}(s)}\right)\right| \leq C n^{-1}\left(i^{-\varepsilon}+j^{-\varepsilon}\right)
$$

for any $\varepsilon<\min (1-r, \eta)$, which follows from Lemma 1 and Condition (C), using estimates similar to (4.12).

References

Arcones, M.A. (1995). The Bahadur Kicfer representation for U-quantiles. Manuscript
Bickel, P.J. and Lehmann, E.L. (1979). Decriptive statistıcs for nonparametric models. IV Spread In Contributions in Statistics. Hajek Memorial Wolume, ed. J Jurechovi, Academia, Pıague, 33-40.

Blom, G. (1976). Some properties of incomplete U-statistics. Biometrika 63, 573-580.
Brown, B.M. and Kildea, D.G. (1978). Reduced U-statistics and the Hodges-Lehmann estimator. Ann. Statist. 6, 828-835.

Choudhury, J. and Serfling, R.J. (1988). Generalized order statistics, Bahadur representations, and sequential nonparametric fixed-width confidence intervals, J. Statist. Planning and Inference 19, 269-282.

Derman, C. and Sacks, J. (1959). On Dvoretzky's stochastic approximation theorem, Ann. Math. Statist. 30, 601-605.

Hodges, J.L., Jr. and Lehmann, E. (1963). Estimates of location based on rank tests. Ann. Math. Statist. 34 598-611.

Holst, U. (1987). Recursive estimation of quantiles using recursive kernel density estimators, Seq. Anal. 6, 219-237.

Hössjer, O. (1996). Incomplete generalized L-statistics. To appear in Annals of Statistics.
Lee, A.J. (1990). U-statistics, Theory and Practice. Statistics, Textbooks and Monographs, Vol. 110: Marcel Dekker, Inc. New York and Basel.

McLeish, D.L. (1975). A maximal inequality and dependent strong laws, Ann. Probab. 3, 829-839.
McLeish, D.L. (1977). On the invariance principle for nonstationary martingales, Ann. Probab. 5, 616-621.

Rousseeuw, P.J. and Croux, C. (1993). Alternatives to the median absolute deviation, J. Amer. Statist. Assoc. 88, 1273-1283.

Sen, P.K. (1968). Estimates of the regression coefficient based on Kendall's tau, J. Amer. Statist. Assoc. 63, 1379-1389.

Serfling, R.J. (1984). Generalized L^{-}, M - and R-statistics. Ann. Statist. 12, 76-86.
Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis, I, II and III, Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings 53, 386-392, 521-525, 1397-1412.

Venter, J.H. (1967). An extension of the Robbins-Monro procedure, Ann. Math. Statist. 38, 181-190.

[^0]: （Itモ）

