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The conditional variance function in a heteroscedastic, nonparametric regression model is estimated 
by linear smoothing of squared residuals. Attention is focused on local polynomial smoothers. 
Both the mean and variance functions are assumed to be smooth, but neither is assumed to be 
in a parametric family. The biasing effect of preliminary estimation of the mean is studied, and a 
degrees-of-freedom correction of bias is proposed. The corrected method is shown to be adaptive in 
the sense that the variance function can be estimated with the same asymptotic mean and variance 
as if the mean function were known. A proposal is made for using standard bandwidth selectors 
for estimating both the mean and variance functions. The proposal is illustrated with data from the 
LIDAR method of measuring atmospheric pollutants and from turbulence-model computations. 

KEY WORDS: Bandwidth; Heteroscedasticity; Kernel smoothing; Nonparametric regression; 
Smoother matrix. 

In regression analysis, it is often the case that the homo- 
scedasticity assumption is violated. An example of this is 
given in Figure l(a). The data are taken from Holst, Hiissjer, 
Bjorklund, Ragnarson, and Edner (1996), who used local 
polynomial regression for evaluation of the concentration of 
atmospheric atomic mercury measured with LIDAR tech- 
nique (Light Detection And Ranging; see Sigrist 1994). The 
concentration is proportional to the derivative of the mean 
function, but because of the severe heteroscedasticity, the 
variance function must be estimated to obtain a satisfac- 
tory bandwidth for the derivative and further to estimate 
the variance of the total amount of pollutants in a certain 
area. Holst et al. (1996) used a parametric model for the 
variance function. 

In other examples, the variance function itself is of inter- 
est in its own right. For example, one of the authors (DR) is 
collaborating with mechanical engineers at Cornell on the 
analysis of data from the Monte Carlo simulation of tur- 
bulence by the pdf (probability density function) method 
(Pope 1985). In this work, one has available the spatial 
position, velocity, and other properties of simulated parti- 
cles. One, of course, needs to estimate conditional expecta- 
tions such as mean velocity as a function of position. When 
studying turbulence, however, the variance of velocity and 
its derivatives as functions of position are also essential; see 
Section 4.4. 

In this article we extend local polynomial regression 
to estimation of the variance function. As we show in 
Section 1, our proposal can be generalized to any linear 
smoother (e.g., smoothing splines, running means). Nev- 
ertheless, we focus on local polynomials because of their 

intuitiveness and simplicity. Our theoretical analyses show 
that the attractive properties of odd-degree local polynomial 
smoothers, such as design adaptivity and automatic bound- 
ary correction, carry over to variance-function estimation. 
“Design adaptivity” (Fan 1992) refers to local polynomial 
estimation’s elimination of bias and extra variability due to 
unequally spaced predictor variables. 

The literature on nonparametric variance-function es- 
timation is rather sparse. Carroll (1982) developed ker- 
nel estimators in the context of linear regression, and 
Miiller and Stadtmiiller (1987) and Hall and Carroll (1989) 
proposed and analyzed kernel-type variance-function es- 
timators assuming a nonparametric mean function. Fan 
and Gijbels (1995) proposed a type of local polynomial 
variance-function estimator as part of their bandwidth- 
selection procedure. These works and several others are 
discussed in more detail in Section 1 S. 

Our main theoretical contributions are deeper results on 
the bias and variance of the estimated variance function. 
These results are important because they address the ma- 
jor practical problem of choosing bandwidths for estimat- 
ing the mean and variance functions. Moreover, to the best 
of our knowledge, we are the first to consider estimating 
derivatives of the variance function, a topic with applica- 
tions in engineering. 

In Section 1, we formulate a general class of nonpara- 
metric variance-function estimators, with local polynomial 
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Figure 1. L/DAR Da&: (a) Raw Data (221 observations); (b) Squared 
Residuals From a Preliminary Local Quadratic Estimate of the Mean 
Function With a Span of 5%; (c) Local Linear Estimate of the Variance 
Function v, Corrected for Estimation of the Mean (solid) and Uncor- 
rected (dotted and dashed); (d) Local Quadratic Estimate of the Mean 
Function m; (e) Local Quadratic Estimate of Concentration = Cm’; (f) 
Bandwidths for Estimation of m (solid), Estimation of v (doffed and 
dashed), and Estimation of m’ (dashed); (g) Standardized Residuals 
= { V, - fi(X,)} P # ‘/’ (X,); (h) Absolute Standardized Residuals. 

variance estimators as a special case. Section 2 investigates 
the theoretical properties of these estimators and applies 
these results to bandwidth selection. Computational meth- 
ods are in Section 3. Section 4 illustrates the methodology. 

The variance-function estimator in Section 1 was pro- 
posed independently by Mathur (1995), but the asymptotic 
theory, computational implementation, and bandwidth se- 
lectors proposed here were not given by Mathur. 

1. FORMULATION 

1 .l A General Class of Variance-Function Estimators 

The local polynomial estimates of variance that we 
consider in this article can be defined for general linear 
smoothers, so we start at this level of generality. 

Let (Xl, Y1), . . (X,,, Y, ) be a sample of random pairs 
that are assumed to satisfy the heteroscedastic nonparamet- 
ric regression model 

Y, = ,772(X,) + Ei: var(zi) = 71(Xi), i = 1;. . ,n, (1) 

where the errors Ed ~ . . E,, are independent zero-mean ran- 
dom variables satisfying Ed < cx). We call m the mean 
function and ‘u the variance function. We will also let m and 

v denote the column vectors containing values of 771(X%) and 
u(X,), 1 5 i < 7~, respectively. Finally, Y will be used to 
denote the n x 1 vector of Y, values. 

Suppose that ti = [ri,(Xl). >r;l(X,,)]’ is a linear 
smooth of the (X,, YL)‘s. By this, we mean that r?l = SY 
for some n x n matrix S, often referred to as the smoother 
matrix. Examples of linear smoothers include smoothing 
splines, regression splines, and local polynomials (e.g., see 
Hastie and Tibshirani 1990). It is assumed that S preserves 
constant vectors in the sense that Sl = 1, where 1 denotes 
a vector of ones. 

Let S1 be the smoother matrix corresponding to an ini- 
tial smooth of the data, and put T = (I - S1)Y, the 
vector of residuals. Then a natural means of estimating 
v = [v(X,), . . w(X,)]’ is to smooth the squared residuals 
to obtain S2r2. Here Sz is another smoother matrix and ? 
contains the squares of the entries of 7’. It seems reasonable 
that our estimator should be unbiased when the errors are 
homoscedastic-that is, TI = rr21 for CJ~ > O-and the bias 
of ,riz from the initial smoother S1 can be ignored. Under 
homoscedasticity, 

= &[{E(S1Y~X~, ,X7,) - 7rL}2 + a”(1 + a)]. 

where a = diag(SlSi - 2S1) and diag(A) denotes the col- 
umn vector containing the diagonal entries of the square 
matrix A. Because E(,‘!&T~/X~, . ,X7,) = a*(1 + SPA) 
when &Y is conditionally unbiased, this motivates the es- 
timator 

6 = (S&(1 + &a). (2) 

The convention here and throughout is that the vector 
multiplication and division are elementwise. 

As a referee has pointed out, an alternative to (2) is to 
“studentize” pi by dividing by dm. This eliminates the 
bias due to estimating the mean. The squared studentized 
residual vector, call it f2, can then be smoothed so that 

6 = s2p = S2(T2/(1 + a)). (3) 

In examples, we found little difference between (2) and (3). 
The advantage of (3) is a savings in computational effort in 
that one need not smooth & We have found, however, that 
most of the computational effort is in bandwidth selection, 
not the subsequent smoothing, so this advantage is minimal. 
We decided to use (2) because of some analogies between it 
and estimators for parametric models. These analogies are 
discussed next. 

1.2 Relationships With Parametric Modeling 

One can view variance-function estimators given by (2) as 
generalizations of those commonly used when the mean or 
variance function is modeled parametrically. For example, 
if the mean is modeled linearly, Y, = (X/j), + F,, var(E?) = 
w(Xi),i = l,.. .:n,whereXisannxpdesignmatrixandD 
is a p x 1 matrix of coefficients, then one should replace 5’1 
by the “hat” matrix R = X(X’X) -lx’. Using the symme- 
try and idempotency of R, we obtain the variance-function 
estimator li = S2{(R - 1)Y}2/[1 - Ss{diag(fi)}j. 
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264 DAVID RUPPERT, M. P. WAND, ULLA HOLST, AND OLA HikSJER 

On the other hand, if the homoscedastic nonparamet- 
ric regression model Y, = m(Xi) + E, var(Ei) = 02,i = 
1, n, is assumed, then one should simply average the 
squared residuals by taking S2 = ~‘11’. This results in 
6’ = {Y’(S1 - I)‘(& ~ I)Y}/{n + tr(SiS~ - aSi)>, which 
includes variance estimators for nonparametric regression 
considered by, for example, Buckley, Eagleson, and Silver- 
man (1988) and Cleveland and Devlin (1988). 

For the homoscedastic linear regression model, the esti- 
mator reduces to the familiar 6’ = Y’(1 - R)Y/(n - p). 

1.3 Local Polynomial Variance-Function Estimation 

The class of linear smoothers that we concentrate on is 
made up of those commonly referred to as local polynomial 
smoothers; for example, see Wand and Jones (1995) or Fan 
and Gijbels (1996) for an introduction. These smoothers 
were introduced into modern statistical practice in an im- 
portant article by Cleveland (1979), and they became an im- 
portant modern theoretical tool starting with Stone (1977). 
Local polynomial regression, however, has a long history 
(Cleveland and Loader 1996). Interesting examples of local 
polynomial regression in applied statistics were given by 
Cleveland and Devlin (1988). 

To estimate m(z) at a fixed 5, we fit a @h-degree polyno- 
mial to the data by weighted least squares, with the weight 
given to (Xi, Yz) decreasing to 0 as the distance from Xi to 
z increases. As usual in the literature, we will use the weight 
K{(X, - x)/h}, h w ere K is a pdf and h is a bandwidth. 
Then riz(z) is the predicted value at z of this weighted least 
squares fit. For both notational and computational reasons, 
we work with deviations from x-that is, (Xi - z). Then 
e(x) is the intercept of the fit. Thus, using the matrix so- 
lution to a weighted least squares problem, the (i, j) entry 
of the #h-degree local polynomial smoother matrix, Sp,h, 
is 

(‘%,h)v 

= ~‘l{x,(xi)‘wh(x.l)x,(x,)}-‘x,(x,)’wh(X,)ej, (4) 

where ei is the column vector with 1 in the ith position and 
zeros elsewhere, 

and 

where diagl<l<71ui denotes the n x n diagonal matrix with 
Ul....,U, on the diagonal. The premultiplication by ei 
picks off the estimated intercept from the weighted least 
squares estimate. 

Using this notation, one can define the local polynomial 
estimate of <U(Z) to be 

C(x) = qx;pl>h,1.1)‘, h2) 

Ed{&, (x)‘wh, (x)x,, (x)}-‘x,, (x)‘bvh2 (x)r’ 
= 1+ e~{Xp2(x)‘Wh2(x)Xp2(x)}-1XpZ(x)‘Wh2(x)A’ 

where r = (I - S,,,r,,)Y and a = diag(S ,,,, ,,) Sbl,,ll - 
2% ,hl). 

For estimation of ‘~1 at the observations, this definition is 
easily seen to be a member of the class of variance estima 
tors described by (2), with Si = S,,, .h, and S2 = S,], ,lLa. 

1.4 Estimation of Derivatives of the Variance Function 

As mentioned in the introduction, some applications re- 
quire that derivatives of ‘II be estimated. For example, the 
first two derivatives of v are used in the study of turbu- 
lence; see Section 4.4. As discussed by Ruppert and Wand 
(1994), local polynomial estimation of the &h derivative of 
m is straightforward in principle, and there is no problem 
extending derivative estimation to 71. In practice, however, 
accurate estimation of a derivative may require large sam- 
ple sizes, especially if iF > 1, and appropriate values of the 
degree of the polynomial and the bandwidth depend on k 
and must be chosen carefully. One needs to use pa > k, 
and then for the second smoother matrix, S2, one merely 
replaces ei in (4) by Ic!e’,+,. The theory in the next section 
extends easily to derivative estimation, but for simplicity 
we only consider the case of estimating 71 itself. 

1.5 Other Work on Nonparametric Variance-Function 
Estimation 

Works on nonparametric variance estimation can be cat- 
egorized according to the following criteria: 

1. The mean function may be parametrically or nonpara- 
metrically modeled. 

2. The variance function may be considered constant 
(homoscedastic) or nonconstant (heteroscedastic). 

3. In a first stage of estimation, the variance at Xi: rj(Xi), 
may be estimated by a residual from a preliminary fit. Al- 
ternatively, one may use a squared “pseudo-residual,” which 
is a weighted average of a fixed (independent of n) num- 
ber of the Yi’s. The weights sum to 0 to eliminate a con- 
stant mean and the squared weights sum to 1 so that the 
squared pseudo-residual estimates the local variance. The 
term “pseudo-residual” comes from Miiller and Stadtmiiller 
(1987). 

4. In a second estimation stage, the squared residuals or 
pseudo-residuals may be kernel-smoothed or smoothed by 
local polynomial regression. 

5. The bandwidth for smoothing the residuals or pseudo- 
residuals may be chosen subjectively or by a data-based 
method. 

Regarding Criterion 1, an important early article by Car- 
roll (1982) used a parametric model for rn. Hall and Carroll 
(1989) considered both parametric and nonparametric mod- 
els for VII. All other works that we are aware of model m 
nonparametrically. 

Buckley et al. (1988) modeled homoscedastic data and 
Silverman (1985) modeled heteroscedastic data by smooth- 
ing squared residuals from a spline fit. Rice (1984) assumed 
homoscedasticity and used the simplest pseudo-residual 
(Yi - y,-1)/d% h w ere the (Xi: YZ) pairs have been sorted 
by the X?‘s. Gasser, Sroka, and Jennen-Steinmetz (19861, 
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LOCAL POLYNOMIAL VARIANCE-FUNCTION ESTIMATION 265 

who concentrated on homoscedasticity but also considered 
heteroscedasticity, fitted a straight line to (Xi-l, J!-1) and 
(Xi+l, Yz+l) and used as a pseudo-residual the deviation, 
suitably normalized, between Y; and the line at X,. Miiller 
and Stadtmiiller (1987) discussed more general pseudo- 
residuals. 

Assuming homoscedasticity, Hall, Kay, and Titterington 
(1990) found asymptotically optimal estimators based on 
pseudo-residuals, which they called “difference-based” es- 
timators. These authors mentioned that estimators based on 
residuals are more efficient than those based on pseudo- 
residuals, but they argued for using pseudo-residuals be- 
cause using residuals requires choosing a bandwidth for es- 
timation of the mean. This requirement of a bandwidth for 
the mean is not a serious problem, however, as we shall 
show. Moreover, because pseudo-residuals are based on a 
fixed number of Xi’s, they are correlated, even asymptot- 
ically, which complicates their analysis. In contrast, if ,riz 
is consistent, then the residuals are asymptotically uncor- 
related. As we shall argue in Section 2.3, standard band- 
width selectors developed for independent observations can 
be used for smoothing squared residuals. This is not true of 
squared pseudo-residuals. 

Most works suggest smoothing the squared residuals or 
pseudo-residuals by kernel smoothing. We advocate local 
polynomial methods because of their automatic boundary 
bias correction and adaptivity to unequally spaced designs. 
The general class of variance-function estimation intro- 
duced in Section 1.1 includes smoothing squared residuals 
by kernels, local polynomial regression, smoothing splines, 
or any other linear smoother, but this class does not include 
estimators that smooth pseudo-residuals. 

As far as we are aware, there have been no prior pro- 
posals for bandwidth selection when estimating a variance 
function. Based on the theory developed in Section 2.2, in 
Section 2.3 we make a broad proposal: Take a favorite band- 
width selector for estimating the mean function and apply 
it to smoothing the squared residuals. Thus, in regard to 
Criterion 5, this is the only work that we are aware of with 
a data-based method. 

2. THEORY 

In this section we first obtain exact matrix algebraic ex- 
pressions for the conditional mean and covariance of 6 for 
the general class of variance-function estimators introduced 
in Section 1.1. With local polynomials, these results yield 
meaningful asymptotic approximations, which are useful 
for choosing bandwidths or assessing the variability of the 
estimates. 

We retain the convention that multiplication and division 
of column vectors is elementwise. For square matrices A 
and B we avoid confusion between usual matrix multiplica- 
tion and element-wise multiplication by using the notation 
A @ B for the latter (this is sometimes called the Hadumard 
product of A and B). We let x = {X1.. , X,} to abbre- 
viate expectations that are conditional on the predictors. 
Moreover, cov(U(W) denotes the conditional covariance 
matrix of U given I/t’ whenever U and T/v are random vec- 
tors. 

2.1 General Variance-Function Estimators 

The following matrices are useful for a concise represen- 
tation of the bias and covariance of il: 

V = diag(7:). G = diag,,,,,{E(F~)}. 

T = diagl,,,JW% 

Theorem 1. Let bl = (5’1 - I)m denote the bias vector 
of the smooth S1. Then 

E(i2 - VI)0 

= (5’2 - 1)~ + S{bf + diag(SlVSi - 2SlV)) - (S~LI)‘!~ 
1+s,a 

(5) 

and 

cov(~l)o = S2[{(Sl - I) a (Sl ~ I)}(T - 3V2) 

x {(Sl - I)a(S1 -I)}' 

+ 2(diag D1)(5’1 - I) 
x G{(Sl - I) o (S, - I)}’ 
+ 2{(Sl - I) 0 (As, - I)} 
x G(S1 - I)‘(diag bl) 
+ 2{(S1 - I)V(Sl - I)‘} 

0 {(Sl - I)V(Sl - I)‘} 
+ 4{(S1 - I)V(Sl - I)‘} 
a (blb:)]S:/{(l+ SzA)(1+ S,A)'>. 

The proof is given in the Appendix. 
The expression for cov(7^11~) simplifies considerably if 

normality of the errors can be assumed. 
Corollary 1.1. If the errors E, are normally distributed, 

then 

2S2[{($ - I)V(Sl - I)‘} 

cov(?i(x) = 
0 {(Sl - I)V(Sl - I)’ + ab,&}]s; 

(1 + &a)(1 + &A)’ 

Remark 1. The conditional mean average squared error 
(MASE) of 6 is defined as 

MASE@) = n-l E 2 {“(X,) - ‘7t(x;)}2/x 
cl 1 

Noting that MASE(6) = n,-1{IIE(6ix) -7111"+ tr COV(~~X)}, 
where (lx/l2 = Z’X, one can use the preceding results to find 
exact expressions for MASE(6) for any pair of smoother 
matrices S1 and S2. 

2.2 Asymptotics for Local Polynomial Variance-Function 
Estimators 

In practice, the Xi’s can be either fixed or random, and 
in the latter case they need be neither independent nor 
identically distributed. In fact, all the results in Section 
2.1 are conditional on the XI’s and so do not depend on 
their distribution. Asymptotics, however, require some as- 
sumptions about the behavior of the X,i’s as 11 + DJ. 
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The simplest assumption, and the one we will use in this 
section, is that the Xi’s are iid. Let f denote the com- 
mon density of Xi, ~ X, and the function 7 be given 
by n(Xi) = var(&f), i = 1,. ,n. Define the function 
K(,)(u) = {lMp(~)I/I~pl}~(u), where Np is the (P + 1) x 
(p + 1) matrix having (i, j) entry equal to s ,u”+~-%(u) du 
and Mp(u) is the same as NP with the first column replaced 
by (l,u:...,rP). K(,) is a @h-order kernel (Ruppert and 
Wand 1994). 

Theorem 2. Suppose that 2 is an interior point of the 
support of f, m has pl + 2 continuous derivatives, v 
has pa + 2 continuous derivatives, and f and n are dif- 
ferentiable in a neighborhood of 2, and that hl, h2 --f 
0, nhI, nh2 + o;), and 

{h;(“l+l) + (nhl)-‘} = o(h;“+‘) 

as n, + 00. Then, for p2 odd, 

E((2z) - w(z)lx} = { p~+9qp2)(u)du} 

(6) 

x { ‘;;:‘:)i;;‘} h;‘+l + op(h;2+1) 

and, for p2 even, 

E((z) - WAX} = { J’u”+vq,,)(u) du} 

X 

{ 

w’““+“b4f’b4 + @2+2)(2) 

f(5)(P2 + l)! (P2 + 2)! I 

h;2+2 + op(h;2+2), 

In either case 

x {n-1h;1v(4/f(4) + w{(h-l). 
Once again, we defer the proof to the Appendix. 

Remark 2. The leading terms depend only on the band- 
width h2, indicating that the initial bandwidth hl has only a 
second-order effect on the asymptotic performance of C(Z). 
If pl = p2 and if hl and h2 are chosen optimally for esti- 
mation of m and vu, then hf(“+‘) and (nhl)-’ will be of 
the same order as n, + 00 and both will be op(hg*+l) so 

that (6) is satisfied. 
Remark 3. Comparison with theorem 4.1 of Ruppert 

and Wand (1994) shows that the leading bias and variance 
terms for our local polynomial variance estimator are anal- 
ogous to those for the local polynomial estimator of the 
mean function. The only difference is that the asymptotic 
bias depends on derivatives of v rather than m, and the 
asymptotic variance of C(Z) is proportional to the variance 
of the squared errors, rather than the Yi’s. 

Here is an important result: Asymptotically, fi behaves 
like a local polynomial smooth of the (unobservable) E~‘s; 
that is, v can be estimated as well as if m were known so 
that there is no loss in asymptotic efficiency due to esti- 
mating m. This result tells us that the estimate of the vari- 
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ante function based on squared residuals is “adaptive” in 
the sense of Bickel (1982). The result also has important 
implications for bandwidth selection because it justifies ap- 
plying standard bandwidth selectors developed to estimate 
the mean function to smoothing the squared residuals to 
estimate the variance function. Thus, new bandwidth selec- 
tors for the variance function are not needed; see the next 
section. 

Remark 4. One could also rework the steps used to 
prove Theorem 2 for the situation in which 5 is converging 
to the boundary of the support of f to show that, for odd 
p, the local polynomial variance estimator induces an au- 
tomatic “boundary kernel-type” correction. This attractive 
feature has been pointed out in the mean estimation context 
by, for example, Fan and Gijbels (1992), Hastie and Loader 
(1993), and Ruppert and Wand (1994). 

Remark 5. The automatic boundary correction and de- 
sign adaptivity of odd-degree p has led some authors-for 
example, Fan and Gijbels (199.5)-to state that p should 
be taken to be odd. We do not make such a general rec- 
ommendation. As Cleveland and Loader (1996, sec. 10) 
pointed out, the superior boundary bias correction and de- 
sign adaptivity of odd-degree p compared to even-degree 
are asymptotic properties, so their relevance to statistical 
practice must be assessed by finite-sample results. As both 
Ruppert and Wand (1994) and Cleveland and Loader (1996) 
argued, increasing an even-degree p by 1 to get an odd de- 
gree will substantially increase variance at the boundaries, 
even though there is no increase in asymptotic variance in 
the interior. Our experience with real and simulated data is 
that local linear regression (p = 1) is, in fact, usually su- 
perior to kernel regression (p = 0). When p > 1, however, 
the case for odd-degree p is not so clear. Cleveland and 
Devlin (1988) used p = 2 quite successfully in some ex- 
amples. Ruppert (1995) had a detailed simulation study of 
m(z) = z + exp(-16x2) with the Xi’s iid Uniform(-2: 2). 
This function has substantial curvature changing from con- 
vex to concave and then back to convex. One might ex- 
pect a local cubic fit to outperform a local quadratic fit be- 
cause a quadratic polynomial has constant curvature. Local 
quadratic fitting, however, performs as well in the interior 
as local cubits and outperforms local cubits near the bound- 
aries, where the higher boundary variance of local cubits 
becomes a serious problem. 

2.3 Bandwidth Choice and Choosing the Degrees of 
the Local Polynomial Fits 

An important practical problem is the choice of the band- 
widths. One may use either local bandwidths, where hl and 
h2 are functions of 2, or global bandwidths that do not 
depend on Z. For concreteness, let us assume that the band- 
widths are local. Ideally, one would choose both hi and 
h2 to minimize the mean squared error (MSE) of fi at the 
point Z. This is difficult to do in practice, however, because 
the effects of hl on the MSE of 6 are of second order and 
therefore difficult to estimate. 

Using Theorem 2 and Remark 3, we suggest an alterna- 
tive strategy that will produce asymptotically optimal band- 
widths. First, use a local bandwidth selector to find asymp- 
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totically optimal hl for estimation of m(z). One could, for 
example, use the bandwidth selector of Fan and Gijbels 
(1995), though in the example of Section 4 we use the em- 
pirical bias bandwidth selection (EBBS) method of Ruppert 
(1995). Next, treat the squared residuals as if they were the 
squared E’S, and apply the same bandwidth selector used for 
estimation of the mean function to the squared residuals. If 
one uses p1 > ~2, then (6) will be satisfied. 

As a rule of thumb, when estimating m and V, not their 
higher derivatives, we recommend pl = 2 (or perhaps 3) 
and p2 = 1. Generally, II does not have strong curvature, 
and a local linear fit for ci suffices. Often m has sufficient 
curvature that a local linear fit to m will have enough bias 
to significantly inflate the squared residuals, resulting in 
upward bias in vu. This bias can even overwhelm 6 if w is 
small; that is, 6 might be mostly an estimate of squared bias 
in regions where m has strong curvature if fi is local linear. 
Using a local quadratic fit to m can be a big help in such 
cases. 

2.4 Extension to Multivariate Predictors 

As Cleveland and Devlin (1988) demonstrated in their 
examples, local polynomial regression can be quite success- 
ful with two or more predictors. In principle, extension of 
the formulation and theory of the general class of variance 
estimators to multivariate predictor variables is straightfor- 
ward. The expressions for 6 at (2) are the same except that 
the rows of the smoother matrices S1 and S2 correspond to 
Xi’s that live in higher-dimensional space rather than on the 
real line. Theorem 1 continues to hold in the multivariate 
case. 

3. PIECEWISE POLYNOMIAL BINNING 

This section contains a computational method that is par- 
ticularly well suited for larger datasets-for example, the 
turbulence dataset of Section 4.4, which has 20,000 ob- 
servations. We only describe the implementation for uni- 
variate X,. 

3oo‘ 

“0 200 400 600 600 1000 120 1400 1600 
Number of bins 

Figure 2. Binning Times (circles) and Smoothing Times (asterisks) 
as a Function of the Number of Bins, With Linear Regression Fits. 

First, the data are binned according to their z values into 
nbin disjoint subsets with roughly equal number of observa- 
tions per subset. (Alternatively, one could use equal length 
bins.) For the jth bin, j = 1,. . . r?,hirl, let Zj be the mean 
of the Xi’s in that bin. Fit a pbth-degree polynomial to 
the data in the jth bin. Let ?/J be the fitted value of this 
model at %j, and let ti~j be the residual mean square from the 
model. Using the residual mean square induces the proper 
degrees-of-freedom correction of the bias induced by using 
fi in place of VL when computing the residuals. Therefore, 
if rn, is a pbth-degree polynomial and if II is constant on the 
jth bin, then ~j and cj are unbiased estimators of nL(Zj) 
and ~(5~). 

Because the bins are nonoverlapping, {Go, . ( &,,,,} are 
mutually independent, as are ‘ul, . . , v~,,, }. To estimate m, 
apply any linear smoother and bandwidth selector combi- 
nation desired to the data (?i$, &) and do the same to (zi. &) 
to estimate V. No degrees-of-freedom correction of bias due 
to estimation of the mean is needed here, because the cor- 
rection was made at the binning stage. 

The idea is to choose nbin and PC, so that & and Vi from the 
binning stage are very undersmoothed estimators of rn(&) 

and v(&), respectively. Thus, the number of observations 
per bin should be small, though it must of course be at 
least pb + 2 so that the residual degrees of freedom are 
positive and should be at least twice this minimum for good 
efficiency of C. The correct degree of smoothing is done at 
the smoothing stage that follows binning. 

Using pb = 1 will give accuracy similar to the popular 
linear binning technique, but pb > 1 will be more accu- 
rate than binning techniques now in the literature and will 
allow a smaller value of nbin. Piecewise polynomial bin- 
ning has the attractive property of reproducing polynomials. 
More precisely, if the (Xz, yL) fall exactly on a pth-degree 
polynomial and pb > p, then the (ZJ, 1Jj) fall on the same 
polynomial. Therefore, if one smooths the binned data by 
local polynomial regression of degree at least p, then the 
smoothed fit will also fall on the same polynomial as the 
original data. 

Binning is needed if one uses a computationally inten- 
sive bandwidth selector such as EBBS (Ruppert 1995) used 
in our examples or cross-validation that requires that the 
smoothing be done for many values of the bandwidth. The 
binning is done only once, and then all calculations needed 
to compute the bandwidth need only be done with the much 
smaller binned dataset. For example, in the dataset of Sec- 
tion 4.4, there are 20,000 observations. Using a SPARC 20 
and a MATLAB program written by the authors, binning 
takes 2.5, 5.8, 13.1, 25.5, and 34.0 seconds (clock, not cen- 
tral processing unit time) with nbi, equal to 200, 400, 800, 
1,200, and 1,600, respectively: that is, the time is roughly 
proportional Rhin. The remaining calculations needed to ob- 
tain ti and fi on an 80-point grid, including calculating their 
bandwidths, used 45,74, 151, 223, and 300 seconds for the 
same values of nbin. These times are plotted in Figure 2 
with linear regression fits. Extrapolating the linear fit to the 
smoothing times gives a time of 3,670 seconds (about 61 
minutes) for 20,000 bins or, equivalently in computational 
effort, the raw data. Thus, binning 20,000 raw data points 
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to 200 binned data points converts a computation time from 
about one hour to one of less than a minute. 

Piecewise polynomial binning requires little additional 
programming and seems well worth the extra effort for 
large datasets, say n > 1,000. We do not use binning in 
our example (LIDAR) with 221 observations. 

An alternative form of binning presented by Turlach and 
Wand (1996) requires equally spaced bin centers and, at 
the expense of somewhat more programming effort, further 
reduces computational time. 

4. EXAMPLES 

4.1 Bandwidths 

As we have argued, the theory in Section 2 suggests that 
any bandwidth suitable for estimating m or its derivatives is 
suitable for smoothing the squared residuals to estimate 21 or 
its derivatives. In our examples we use the EBBS bandwidth 
selector proposed by Ruppert (1995). EBBS (empirical bias 
bandwidth selection) has the following advantages: 

1. The bandwidth is local-that is, can depend on 2. 
EBBS minimizes an estimate of MSE at 2. The estimate 
of MSE takes into account boundary effects. 

2. Estimation of derivatives can be accommodated. 
3. Both odd- and even-degree polynomials can be used. 

In contrast, plug-in bandwidths such as those of Ruppert, 
Sheather, and Wand (1995) and Fan and Gijbels (1995) re- 
strict to odd-degree because the bias of even-degree local 
polynomial fitting is more complex. 

4. Exact formulas rather than asymptotic approximations 
are used as much as possible. In particular, there is no as- 
sumption that the Xi’s have a probability density-exact 
formulas use only their sample values. 

Suppose that for some T > 0 we wish to estimate m(‘)(x) 
for all 5 on some grid. Let MSE(h; Z) be the MSE of 
r^n(“) (z) using bandwidth h. MSE, bias, and variance are 
taken to mean conditional given Xi, . . . , X,. To estimate 
MSE(h; z), we estimate the variance and bias separately. 
These are denoted by var( h; Z) and bias( h; z). An exact for- 
mula for var(h; Z) exists (Ruppert and Wand 1994), and we 
substitute an estimate C(Z) for ‘u in this formula. Asymp- 
totics (Ruppert and Wand 1994) suggest modeling the bias 
with the equation 

Efi~(~) (2; h) 

= bo + bp+l--rhP+l-r + . . + bp+l--r+thP+t-r (7) 

for some t > 1, with t = 1 or 2 recommended. Here we 
write ‘I^IL(T)(~; h) instead of liz(‘)(z) to denote dependence 
on the bandwidth h. To estimate bias(h,o; Z) at some ho, we 
calculate &(“)(z; h) for values {hj},E,, M > t + 1, in a 
neighborhood of ho. Then we fit model (7) by least squares 
to the “data” {(hi, r?~(~)(x:; /Q))}::, and use ia, . : i)p+t--r 
to estimate bias(ha;x). Using MSE(ha;z) = G(ha;x) + 
bias’(ha; r), we can estimate MSE at any fixed values of 
h and 2. Model (7) is our only use of asymptotics, and 
we estimate the coefficients in (7) directly rather than by 
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plugging estimates into formulas for the asymptotic values 
of these coefficients. 

For fixed z we estimate MSE at a grid of h values, say 12 
values between span(z, .l) and span(z, 1). Here span(z, q) 
is the smallest value of h such that at least 1004% of 
X1, , X, are with h units of Z. [The idea of a span is 
borrowed from Ckveland’s (1979) LOWESS.] We then let 
h(z) minimize MSE(h; Z) over this grid of h values. Thus, 
h(z) is a local bandwidth that attempts to minimize MSE 
at each z on a grid. In many, if not most, datasets, h(z) 
will be rather variable, so we suggest kernel smoothing 
of h(z) over 2. In our examples, we use a triangular ker- 
nel with bandwidth giving a span equal to a user-chosen 
tuning parameter, BANDSPAN, on the grid of II: values, 
where h(z) has been calculated. Experimentation by Rup- 
pert (1995) suggested that the value of BANDSPAN is not 
too critical, and BANDSPAN of 4 to 8 when using a 50- to 
loo-point grid of z values can be recommended. Let L(Z) 
be the smooth of h(h). We compute h(T)(~;@~)) on the 
same grid of z values as where i(x) has been found. For 
calculation of residuals, we use cubic spline interpolation 
of riz(‘)(z; L(Z)) from the z grid to Xi, . . , X,. Unless n is 
small, say less than 100, direct computation of fi(r)(x; L(Z)) 
for z = X1, , X, would be quite slow because computa- 
tion of L(Z) is moderately intensive. Interpolation is another 
technique borrowed from Cleveland (1979). 

To estimate both m and w using EBBS, we recommend a 
three-step algorithm: 

1. Estimate m using a “small” fixed span. 
2. Estimate v by smoothing squared residuals. Assume 

that the errors have a constant kurtosis so that the variance 
of the squared errors is proportional to their mean squared. 
This assumption allows one to avoid estimating the variance 
function of the squared errors. 

3. Estimate m using EBBS and the estimated variance 
function. 

Steps 2 and 3 could be iterated, though we have found that 
this is generally not necessary. One can check that the span 
in Step 1 is sufficiently small by seeing whether it is smaller 
than the span chosen in Step 3 for &. For more details of 
the EBBS method, see Ruppert (1995). 

There are many other possible bandwidth selectors-for 
example, generalized cross-validation and related estima- 
tors; see Hastie and Tibshirani (1990). Many of these band- 
width selectors are somewhat simpler than EBBS and could 
be used with the local polynomial variance-function esti- 
mators we are proposing. We certainly do not recommend 
against them, especially if simplicity is of primary concern. 
Most of the simpler bandwidth selectors produce a global 
smoothing parameter, however, rather than a locally adap- 
tive bandwidth. Moreover, most selectors target the band- 
width optimal for estimating m (or (1’1, not a derivative. For 
these two reasons, we have focused attention on EBBS. 

4.2 A Simulation Study 

We performed a small simulation to assess the sensitivity 
of 3; to the initial bandwidth used to estimate m. Asymp- 
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Figure 3. Simulation: (a) Typical Dataset; (b) Bias of ti When Initial 
Estimate of m Uses Span = .05 (solid), Span = .15 (dashed), Span = .45 
(dot and dashed), and EBBS (dotted with asterisks) (the solid, dashed, 
and dotted lines are virtually indistinguishable); (c) Standard Deviation 
of C With Line Types as in (b). 

totics suggest that the sensitivity will be small unless the 
initial bandwidth is too large, causing bias. This is precisely 
what we found in this finite-sample study. 

There were 500 replicate datasets, each of n = 200 ob- 
servations with the Xi’s equally spaced on [0, 11. Given Xi, 
we generated Y; by Y, = 25 exp{ -lOO(Xi - .5)2} + E% with 
&i standard normal. Note that w = 1. The reason for this 
choice of u is that we are studying bias in 6 due to bias in 
&, not bias in 6 due to curvature in V. The later type of 
bias is analogous to bias in fi, which has been well studied. 
Figure 3(a) shows a typical dataset. 

There were four choices of the initial bandwidth for es- 
timating m, span = .05, span = .15, span = .45, and the 
EBBS bandwidth using the algorithm of the previous sec- 
tion with span = .05 in Step 1. The EBBS bandwidth for riz 
minimized the estimated MSE over the range corresponding 
to span = .05 to span = 1. In all four cases, the preliminary 
estimator of m was local quadratic, and the estimator of v 
was local linear smoothing of squared residuals with cor- 
rection for bias due to estimation of the mean as discussed 
in Section 1.1. EBBS was used in all cases to choose the 
bandwidth for the squared residuals, with the bandwidth 
restricted to the range span = .05 to span = 1. 

The estimate 8 was calculated at 25 grid points equally 
spaced between 0 and 1. Bias and standard deviation of 6 

were estimated at each of these grid points using the 500 
replicates. These are plotted in Figure 3, (b) and (c). The 
dotted curves of the EBBS estimates have asterisks at the 
25 grid points. 

From (b) and (c) we see that bias is very small compared 
to the standard deviation of the estimate unless the band- 
width for estimation of m is too large, say span = .45. In 
that case, the bias in fi inflates the squared residuals and 
masquerades as extra variability. The standard deviation of 
6 is smaller using an EBBS bandwidth for m than for any 
of the fixed-span estimates used in the study. 

4.3 LIDAR Data 

The LIDAR technique has proven to be an efficient tool 
in monitoring the distribution of meteorological parameters 
and several atmospheric species of importance; see Sigrist 
(1994). 

The received signal power P(X, Z) as function of range z 
and wavelength X is described by the deterministic single- 
scattering LIDAR equation 

P(A,cr) = Y,(A, cc) 

x exp -2 
{ ./’ 

z(o(x)w(s) + fW(X. s)) ds , 
0 I 

where 7c(X, Z) is an instrument factor, /J(X, Z) the backscat- 
tering coefficient, N(s) the concentration of the studied 
species at distance s, c(X) the absorption cross-section for 
wavelength X, and cy(X: s) the attenuation due to general 
scattering and absorption of the aerosol. 

The DIAL technique (Differential Absorption Lidar) em- 
ploys two different wavelengths, one in resonance with an 
absorption line of the species of interest and the other off 
resonance, denoted X,,, and Xon, respectively. After differ- 
entiating the logarithm of the ratio between the two signals, 
we get 

s 

P(A,,, cc) 

0 
z N(s) ds = - & ln p(x ff x) 

0 > 

where adiff = J~(N(&,, s) - o(X,ff, s)): ds is the differen- 
tial attenuation due to the general scattering and absorption 
in the atmosphere, and odiff = 0(X,,) -~(&,a) is the differ- 
ential absorption cross-section. The instrument factors for 
the two wavelengths are assumed to be the same. 

The basic idea of the DIAL concept is that the second 
and third term can be neglected if the two wavelengths are 
close together. In its simplest form, the DIAL equation is 
reduced to 

One restriction with the DIAL technique is that the return 
signals are quite often weak, which makes a concentration 
profile from a single-pulse pair very noisy. Temporal aver- 
aging with up to several hundred shots is therefore generally 
used to improve the signal-to-noise ratio. 
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The available observations corresponding to the different 
measuring distances, x1, , z,, are averages of a number 
of shots n/l,, 

where iVs is approximately 100. Now let 

This means that the concentration of mercury at range IC is 
proportional to the first derivative of the regression function 
with proportional constant C = -1/2adiR = -(1/16)106 
ng/m2. 

The results are illustrated in Figure 1. In (a) we have 
the raw data. First we used a local quadratic estimate of 
the mean with a fixed span of .05. In this example and the 
next, we use the Epanechnikov kernel, which is K(z) = 
(3/4)(1- x2)1{ 121 < l}. Squared residuals from this fit are 
in (b). 

In (c) we have a local linear smooth of these squared 
residuals using EBBS and computed on a 50-point equally 
spaced grid with BANDSPAN = 4. In EBBS, the tuning 
parameters (see Sec. 5.1) were BANDSPAN = 4, t = 2, and 
M = 5. The solid curve in (cl is the corrected estimate, and 
the dotted curve is the uncorrected estimate. The correction 
is not sizable, but it does increase the estimated variance as 
expected. 

In (d) and (e) we have a local quadratic estimate of m and 
concentration (= Cm’) on a 50-point 5 grid, respectively, 
using EBBS with the estimate d in (c). The bandwidths for 
estimating m (solid), ‘u (dotted), and m’ (dashed) are shown 
in (f). 

The squared residuals in Figure l(b) suggest that u might 
be bimodal. Our local bandwidth selector, however, chooses 
bandwidths large enough to smooth away the bimodality, 
perhaps suggesting that the apparent bimodality is merely 
a chance phenomenon and, in fact, v is monotonically in- 
creasing. Of course, our methodology is not designed to 
test for bimodality, and if bimodality were an important 
issue here, we would want to use a technique specifically 
designed to test for it. 

Finally, in (g) and (h) we have the standardized resid- 
uals and their absolute values, respectively, where the ith 
standardized residual is {Yi - fi(X,)}G-1/2(Xi). Plotting 
absolute residuals is useful for detecting heteroscedasticity 
(Carroll and Ruppert 1988). Neither plot shows any appar- 
ent pattern, suggesting that the residuals have a constant 
mean of 0 and a constant variance so that the estimates of 
m and II are satisfactory. 

4.4 Turbulence Data 

In this example we look at an especially difficult problem 
because v” must be estimated at the boundary. In this study, 
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spatial position is reduced to one dimension because the 
quantities of interest depend on space in only one direction. 
We have bivariate data (Xi. Y,), where X, is position and 
x is velocity of a particle. 

These data are part of a “feasibility study” by mechan- 
ical engineers at Cornell to see whether certain quantities 
of interest can be accurately estimated by the Monte Carlo 
pdf model of velocity. The data do not come from an actual 
simulation of the pdf model. Instead, the mean and variance 
functions, m and vu, were found by Taylor series approxi- 
mations to the deterministic Reynolds-stress model. 

The Lagrangian pdf, f~(y, X; t), is the joint density func- 
tion of velocity and position at time t. This pdf evolves ac- 
cording to a partial differential equation; see equation (46) 
of Dreeben and Pope (1995). Taking first and second mo- 
ments with respect to velocity or position of all terms in 
this equation gives equations for the first two moments of 
velocity and position. These equations can be solved, at 
least approximately, though not in closed form. Numerical 
solutions give m and IJ, which are shown in Figure 4. 

To generate data, 20,000 values, {Xi: i = 1, ,20,000}, 
were taken uniformly distributed on [0, .I] and at each 
Xi, Y, were generated from Model (1) with Q normally dis- 
tributed. 

The idea is that these data will be similar to what would 
be obtained if a stochastic simulation of the turbulence 
model were programmed and run. 

The engineers wanted to know if the second derivative 
of ‘u at the left boundary-for example, w”(O), could be 
estimated accurately in the pdf method. This quantity is 
of special interest because it is a boundary condition on 
turbulent dissipation. The pdf method of simulations steps 
through time, with the boundary condition at one time step 
being estimated with data from the previous time step. The 
left boundary corresponds to a real physical boundary, so 
it is not possible to have z negative; this makes estimation 
of v”(O) difficult. Although w is only an approximation to 
the “true” variance function, it is the “population” variance 
function that generated these data. If ~“(0) can be estimated 
accurately here, the engineers feel that the second derivative 
of the “true” w can be accurately estimated later with data 
from a stochastic simulation of the pdf model. 

We implemented the piecewise polynomial binning de- 
scribed in Section 3 with nbin = 200 (100 observations/bin) 
and pb = 2 (piecewise quadratic binning). The residual mean 
squares are plotted in Figure 4(a) as a function of 2. Figure 
4(b) is a plot of a local quadratic smooth of the data in (a) 
(solid) and the w (dashed). 

In (d) we have 6” (solid) using local cubic smoothing 
as discussed in Section 1.4 and with the EBBS bandwidth 
shown in (e). Because only w”(O) is of interest, we restrict 
z to the range [0, .003], which includes 0 and the two IL’ grid 
points to the right of 0. At this scale, the piecewise linear 
nature of the plot is obvious. If desired, the estimate of 71” 
on the go-point grid could be cubicly interpolated to a finer 
grid before plotting. The true su” (dashed) is also shown 
in (d). 

As can be seen in Figure 4, <U(O) = 0. In fact, ~‘(0) is 
also 0. As a referee has mentioned, the prior knowledge 
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(b) 

x 
xd 

x x lo- 

Figure 4. Turbulence Data: (a) Residual Mean Squares Plotted 
Against Bin Means of x; (b) Local Quadratic Smooth of Data in (a) 
(solid) and True v (dashed); (c) Local EBBS Bandwidth Used in (b); 
(d) Local Cubic Estimate of v” Without Constraints (solid), With Inter- 
cept and Linear Coefficient Constrained to Be 0 (asterisk), and True v” 
(dashed) [also, constrained estimate plus and minus two standard errors 
(open circles)]; (e) Local EBBS Bandwidths Used in (d), Unconstrained 
Estimation (solid) and Constrained Estimation (asterisk). 

that <u(O) = <u’(O) = 0 can be used to improve the accu- 
racy of G”(O) by dropping the intercept and linear term 
of the local polynomial fit at 0 to the squared residuals. 
Because dropping these terms simply changes one linear 
model into another, the EBBS bandwidth selector applies 
with the appropriate modification of the exact formula for 
var(#‘(O: h)}. In (d) the asterisk is 6”(O) from a local fit 
with only the quadratic and cubic terms, which we will 
call the constrained estimator. Using the constrained esti- 
mator can considerably improve 6”(O) because the standard 
error decreases by a factor of 2.25. In this particular sam- 
ple, however, the constrained estimate did not change much 
from the usual estimator. We experimented somewhat with 
the tuning parameters and found that the constrained esti- 
mator was much more stable when the tuning parameters 
were varied. The constrained estimator plus and minus two 
standard deviations is shown in (d) as open circles. The bias 
in the constrained estimator is evident; bias, of course, is 
unavoidable in nonparametric estimation. The EBBS band- 
width for the constrained estimator is shown as an asterisk 
in (e). This bandwidth is a bit too large because a some- 
what smaller bandwidth will have less bias without increas- 

ing the standard error too much. Thus, EBBS has chosen a 
reasonably good bandwidth but not the best possible. Be- 
cause EBBS is the only bandwidth proposal applicable to 
this situation, however, by default it is the best available 
technology. Moreover, estimation of a best local bandwidth 
for estimating a second derivative is an inherently difficult 
problem, so EBBS might be doing about as well as possible 
here. 
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APPENDIX: PROOFS OF THEOREMS 

A.1 Proof of Theorem 1 

First note that 

fj= SZ diag{(Si - I)YY’(Si - I)‘} 
1ts2n 

For the bias we have 

E(iq~) = SZ diag{ (Sl - I)( m,rrL’ + V) (S1 - I)‘} 
1+s2a 

= SZ{ diag(bib’,) + w + diag(SiVSi ~ 2S1V)} 
1+s,a 

Direct algebra then leads to the stated result. 
The result for cov(61x) depends heavily on the following 

lemma. 
Lemma I. Let Y be a random vector having all en- 

tries independent. Define m = E(Y):V = diag[E{(Y - 
m)2}],G = diag[E{(Y - m)“}], and T = diag[E{(Y 
- m)“}]. Then for any square constant matrix A having 
the same number of rows as Y, 

COV{(AY)~} = (A o A)(T - 3V2)(A o A)’ 
+ 2{diag(Am)AG(A 0 A)’ 
+ (A 0 A)GA’ diag(Am)} + 2(AVA’) 
0 (AVA’) + 4(AVA’) 0 {(Arn)(Am)‘}. 

ProoJ: We will use the tensor notation and results of 
McCullagh (1987). Let aij denote the (i, j) entry of A. 
A generalized cumulant of the set of random variables 
(Yl, , Y,) is an ordinary cumulant of random variables 
formed by taking products from this set. Generalized cumu- 
lants will be denoted using partitioned superscript notation. 
For example, ~~ = cum(x) = E(Y,),K!,~ = cum(k;,Y,) = 
cov(Y,, Y,), and K ‘,jN = cum(Y,. Yj, YkY[). There are many 
formulas relating generalized cumulants to ordinary cumu- 
lants and to moments; see McCullagh (1987). 

The (m,, 71) entry of cov{ (AY)‘} is easily shown to be 

One of the fundamental identities for generalized cumu- 
lants, given on page 58 of McCullagh (1987), stares that 
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Kzj.kl = K i,j,kJ + Ki,&k,l + ,$,&k,l + ,$,&j,l + KIKi.j,k + 

,&kK~J +,$,# +K~KkK~>~ +r;~K~K.++K~KkKG~ +,,g,z$,,$,k~ 

This implies that, because of the mutual independence of 
the Yi’s, 

shows that the dominating term of (5) is (S2 - 1)~. Because 
the location of the Xi is arbitrary, the required result follows 
immediately. 

cov{ (AY)2},, = c &&&++ 

The conditional variance result requires a little more al- 
gebra but is otherwise just as straightforward to derive. 
When the numerator of (6) is expanded out, the dominat- 
ing terms are seen to be Sz{(T - 3V2) + 2V2}Si = S2 
diag(n)Si, where 7 = [q(Xl), ,71(X,)]‘. Application of 
(2) of Lemma 3 then leads to the desired result. 

[Received September 1995. Revised January 1997.1 

+4ccc i j k,k 
amtamkanjank~ 6 6 

i j k 
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