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SUMMARY 
The LIDAR technique is an efficient tool in monitoring the distribution of atmospheric species of impor- 
tance. We study the concentration of atmospheric atomic mercury in an Italian geothermal field and discuss 
the possibility of using recent results from local polynomial kernel regression theory for the evaluation ofthe 
derivative of the DIAL curve. A MISE-optimal bandwidth selector, which takes account of the hetero- 
scedasticity in the regression is suggested. Further, we estimate the integrated amount of mercury in a certain 
area. 

K E Y  woms locally weighted least squares regression; LIDAR measurements; air pollution; atmospheric 
atomic mercury; geothermal field 

1. INTRODUCTION 

Optical remote-sensing techniques are of increasing interest in the area of air pollution 
monitoring due to their many advantages compared to conventional point-monitoring tech- 
niques (Killinger and Mooradian 1983; Grant and Menzies 1983; Sigrist 1994; Ragnarson 1994). 

In this paper we estimate the emission of mercury from the geothermal power plant Bella Vista 
in Italy using recently developed statistical techniques. These air pollution measurements have 
already been presented and extensively discussed in Edner et al. (1992) from a physical point of 
view. 

Today the concentration is often straightforwardly estimated by differentiating the DIAL 
curve with no corresponding estimates of bias and variance for the concentration curve. Further, 
often the integrated amount of air pollution in a certain area is of special interest, an integral 
which of course also needs estimates of bias and variance. 

Nonparametric regression has become a very important research field as researchers realized 
that parametric regression is not suitable when fitting curves to data sets in many applications; 
see the books by Wahba (1990) and Hardle (1990). The local polynomial kernel regression 
methods are extensively discussed in the book by Wand and Jones (1995). 

A different and interesting approach would be to model the regression function stochastically. 
A physically based model for the concentration field, a random field in time and space, where also 
the wind field is considered, is a real challenge for future research. 
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However, in this paper we assume that the regression function is unknown and deterministic 
and we want to point out the advantages of using local polynomial kernel regression theory for 
the evaluation of LIDAR measurements (LIght Detection And Ranging). In two papers, 
Ruppert et al. (1994, 1995a) have developed the theory, and the proposed statistical technique 
in this paper is much inspired by these two theoretical papers. However, there are a couple of 
differences. We have to deal with bandwidth selection in a heteroscedastic regression situation 
and we also consider bandwidth selectors that are optimal for estimating the derivative of the 
regression function. Further, our design is fixed and regular, while the basic papers treat a 
random design. 

We really want to emphasize the benefits of the proposed statistical method of evaluating 
LIDAR measurements. Below follows a summary of the advantages: 

The bandwidth selection procedure gives an automatic adaptation to the curvature of the 
concentration profile and thus calculates the optimal amount of smoothing. 
The variance of the concentration curve is easily calculated since the concentration 
estimator is a weighted least squares estimator. 
An approximate estimate of bias of the concentration curve can be appropriately 
calculated based on the estimate of the third derivative of the regression function. 
The concentration curve is easily estimated in arbitrarily chosen points, not necessarily the 
points of measurements. The method automatically handles non-equispaced data, due to 
missing values etc. 
The variance and the approximate bias of the integrated concentration surface is possible 
to estimate through straightforward summation. Further, it is possible to prove that the 
method renders a bias which is negligible, a fact that undoubtedly is of great importance 
for the application. 
The procedure estimates the variance function in the regression model. 

Section 2 deals shortly with the physical background and in Section 3 the statistical model is 
specified. Section 4 gives a short summary of the local least squares kernel regression method and 
the used bandwidth selection procedures are presented. Section 5 contains the results for the 
environmental application. 

2. PHYSICAL BACKGROUND 

The LIDAR (LIght Detection And Ranging) technique has proven to be an efficient tool in 
monitoring the distribution of meteorological parameters and several atmospheric species of 
importance (Measures 1988; Zanzottera 1990; Ragnarson 1994). 

The received signal power P(X, r )  as function of range r and wavelength X is described by the 
single-scattering LIDAR equation 

P ( X , r )  = W @ ( X , r ) e x p {  - 2 r ( a ( X ) N ( s )  +cu(X,s))ds 
r2 0 

where k(X, r )  is an instrument factor, @(A, I )  the backscattering coefficient, N ( s )  the concentra- 
tion of the studied species at distance s, u(X) the absorption cross-section for wavelength X and 
a(& s) the attenuation due to general scattering and absorption of the aerosol. 

The system factor k(X, r )  includes parameters such as power and duration of the transmitted 
laser pulse, telescope area, spectral efficiency, overlap function etc. The temporal profile of the 
laser pulse is not considered and the influence of the noise has been omitted in the equation. 
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Furthermore, the effective range resolution is assumed to be small compared with the measure- 
ment range. A more detailed physical description is given in Measures (1984). 

The DIAL technique (DIfferential Absorption Lidar) employs two different wavelengths, one 
in resonance with an absorption line of the species of interest and the other off resonance, 
denoted A,, and XOr, respectively. After differentiating the logarithm of the ratio between the two 
signals we get 

where Aa = Ji(a(Xon,s) - a(X,,,s)) ds is the differential attenuation due to the general scatter- 
ing and absorption in the atmosphere and Aa = .(A,,) - .(Aoff) is the differential absorption 
cross-section. The instrument factors for the two wavelengths are assumed to be the same. 

The basic idea of the DIAL concept is that the second and third term can be neglected if the 
two wavelengths are close together. In its simplest form the DIAL equation is reduced to 

The concentration is usually evaluated by differentiating the DIAL curve 

One restriction with the DIAL technique is that the return signals are quite often weak, which 
makes a concentration profile from a single-pulse pair very noisy. Temporal averaging with up to 
several hundred shots is therefore generally used to improve the signal-to-noise ratio. 

3. STATISTICAL MODEL 

Laser pulses are emitted and the shots alternate between the two wavelengths A,, and X,r. The 
available observations corresponding to the different measuring distances, rl , . . . , r,, are averages 
of a number of shots M 

where M is approximately 100. Let 

In Figure 1 the variance function v(r) seems to be increasing with the range r .  We have chosen 
to work with the following stochastic model: 

~ ( r , )  = m(ri) + v(ri)”2E(ri), i = I , .  . . , n ( 5 )  

where v(ri) = V (  Y ( r i ) )  and E ( r i )  is a sequence of independent stochastic variables with expecta- 
tion zero and variance one. 
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-1' ' 

range (m) 

Figure 1. The observations, Vista 186 (direction 2), y ( r , )  = In ~ ( & , , , r l ) / ~ ( k ,  r , )  

The regression function, m(r)  = E (  Y ( r ) ) ,  is 

m(r) = -2Ao .[' n(s) ds 
0 

where ACT = a(&,) - a(XOff) and n(s)  is the concentration at distance s. (Note that we have 
chosen to work with different notations for the concentration in the deterministic and the 
stochastic model, N ( r )  and n(r) ,  respectively.) Hence we get the derivative 

= -2Aan(r) (7) dr 
and finally the concentration curve 

1 dm(r) 
n ( r )  = -- ~ 

2Aa dr ' 

As a parametric model for the variance we will use 

(9) 2 v(r) = exp{ao + alr  + a2r }. 

4. LOCALLY-WEIGHTED LEAST-SQUARES KERNEL REGRESSION 

This section is closely related to the papers by Ruppert et al. (1994, 1995a). They treat the case 
when the ri  are random variables with a common density f ( r ) ,  while the LIDAR measurements 
follow a regular fixed design with 1.5 metres between the measurements. However, it is possible to 
treatf(r) as a regular distribution over the measurement interval, and for the expression rzf'(r) in 
the asymptotic formulas in Ruppert et al. (1994, 1995a) to use n(1.5(n - 1))-' GZ 2/3. 

Much of our attention will be devoted to the local polynomial kernel regression estimators of 
m(r), and its derivative dm(r ) /dr .  Minimize 
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with respect to (PO,. . . , PP) to get estimates of the regression function and its derivatives in the 
point r .  Here K ( u )  is a kernel function and & ( u )  = (l/h)K(u/h), where h > 0 is a bandwidth. 
Further J??? K ( u )  du = 1 and JYK uK(u)  du = 0. This may be repeated over a grid of r-values, not 
necessarily the measuring points Ti. However, in all computations and illustrations below, we will 
use the grid of equally spaced measuring points ri as the grid of r-values. 

In the literature several choices of kernel functions are proposed; see the books by Hardle 
( 1990) or Wand and Jones (1995). The properties of the regression estimates depend critically on 
the bandwidth selector and less on the actual choice of the kernel function as long as it satisfies 
some regularity conditions. Computational aspects are more important and throughout this 
paper we will use the standard normal density function as kernel function. 

The minimization above is a straightforward weighted least squares problem with solution 

1 ( r ]  - r )  . . .  (rl - r ) p  

[ 1 ( r ,  - r )  . . .  ( r ,  - r)" 

= (X~rWrXp,r)YIX~,WrY, where XP, ,  = : j 

: ]  

0 

[~~ 
Y = ( Y I , .  . . , Y,)T and Wr = diag{Kh(rl - r ) ,  . . . , &(r ,  - r ) } .  

The local least squares estimator of the regression function is 

& ( r , h , p )  = & = eT(Xp:r~~rXp.r)Y'xpTrWrY ( 1  1)  

where P ,  is a ( p  + 1) x 1 vector having 1 in thejth entry and all other entries 0. In the same way 
the derivative is estimated with 

h 

dr = & l ( r , h , p )  = 81 = ~ : ( X , ' , W , ~ , ~ , ) - ~ X ~ , W , Y .  (12) 

Below we use p = 1 when estimating the regression function and p = 2 for the derivative. More 
generally, a polynomial degree one unit greater than the order of the derivative gives a simple 
expression for the bias (Ruppert and Wand 1994). 

4.1. Bandwidth selection 

Remember that 
k ( r , h ,  1) = j& = e T ( ~ ~ r ~ , ~ ~ . r ) Y ' x ~ r w r Y  (13) 

(14) - 1  T j ~ l ( r , h , 2 )  = jl = ~ ( x Z ~ W ~ X ~ , ~ )  X ,  w r y .  

The variances follow straightforwardly as 

~ ( & ( r y h !  1)) = eT(x;rrwrxl,r)Y1x;rrwrV~wrx,.r(X~rwrx,,r)~-'e, (15) 

~(kl(r9 h .2 ) )  = (16) 

where V,. = diag{v(rl), . . . , ~ ( r , ~ ) } .  
Ruppert and Wand (1994) (Theorem 4.1 and 4.2) have derived formulas for the asymptotic 

bias and variance. When h i 0 and nh -+ ca we get for the estimate of the regression function 
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Further, for the estimate of the derivate of the regression function, we have when h + 0 and 
nh3 + ca 

E(h1 ( r ,  h, 2)) - m(r) M - m(3)(r)  6 h2 u4K(u) du * (r -00 u2K(u) d u ) '  (19) 

V(hl (r, h, 2)) x - Jrn u2K2(u)du. (1" u2K(u)du)2. 
nh3f(r) -00 

Hence, with the standard normal kernel function, MISE (mean integrated square error) with 
weight function f (  r )  can be approximated by 

1 1  h4 O0 
MISE(h(r, h, 1)) M - -1 v(r )  dr + - J (m(2'(r))2f(r) dr 

nh2J7r s 4 -ca 

nh3 4J7r s 4 -ca 
MISE(hl(r, h, 2)) M - 1 1  -1 v(r )  dr + -1 h4 ( w ~ ( ~ ) ( r ) ) Z f ( r )  dr 

where S is the measuring interval. The two bandwidths, which we are using, hMISE and hMISEI, are 
chosen to minimize the approximative mean integrated square errors 

However, the integrals (m(2) ( r ) )2 f ( r )  dr, JFrn (w~(~)( r ) )~f ( r )  dr and Js v(r) dr are unknown 
and need to be estimated. The first two integrals can be expressed in a general form, see Ruppert 
et al. (1995a) 

00 

Oq,$ = 1 m(q'(r)m(s)(r)f(r) dr, q,s > 0 and q + s even (25) 
-m 

which can be estimated straightforwardly as 

(26) 

(27) 

1 "  
bq, s ( g )  = - C hq(ri ,  g ,p )hs ( r i ,  gyp) 

hq( r ,  g ,  P) = q!e:+ 1 (x;r W J p ,  r ) - l x : r  W r y  

where 

and W, = diag{Kg(rl - r ) ,  . . . , Kg(rn - r ) } .  In our cases q = s = 2 or q = s = 3 and we will use 
p = 3 and p = 4, respectively. The MSE-optimal bandwidth for &(g) and 833(g) are found by 
minimizing the squared bias, see Ruppert et al. (1995a) for details, to obtain 
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and 

where 

and 

407 

(29) 

The bandwidths g M S E  and gMSE, depend on 024 and 635,  which, if estimated in the same way as 
Oz2 ,  require a new bandwidth etc., and theoretically the procedure never ends. Hence we use an 
ad hoc procedure when estimating 024 and 1 9 ~ ~ .  A fifth-order polynomial is fitted, i.e. 

me( , )  = 40 + qlr  + q2r2 + q3r3 + q4r4 + q5rS. (30) 
Assuming that { & ( T i ) }  is a sequence of Gaussian distributed stochastic variables, the maximum 
likelihood method provides estimates of qo, . . . , qs and a0, a ' ,  a2, so that 

1 "  
= - n .  x(6q3 + 24q4ri + 60q5$) 120& 

1 = 1  

2 and ; ( r )  = exp{ho + hlr + h2r }. 

Js C ( r )  dr and finally the estimates of gMSE and g M s E ,  are 
The other unknown quantity in (28) and (29) is Js u(r) dr, which now can be estimated as 
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Summarizing, the bandwidths we are using for the estimate of the regression function and its 
derivative are 

1 / 5  
C ( r )  dr 

LMISE = 1 1 (35) 
2 f i 8 2 2  (gMSE) 1 3JyD(r)dr 1’’’ (36) 

Finally, for classification of the fairly involved bandwidth selection technique above, we 
summarize the procedure in a couple of steps below. The theoretical background is extensively 
treated in the paper by Ruppert et al. (1995a): 

(i) Compute preliminary maximum likelihood estimates of qo, . . . , q5 and ao, a l ,  a2 
followed by 0$, e$ and C ( r )  (equations (31) and (32)). 

(ii) Compute gMsE and gMSE,  (equations (33) and (34)). 
(iii) Compute &(gMSE)  and &(gMSE,)  (equation (26) with q = s = 2, p = 3 and q = s = 3 ,  

p = 4, respectively). 
(iv) Compute I;MISE and LMISEI (equations (35) and (36)). 

~ M I S E ,  = 
4@33 (gMSEI 

5. RESULTS 

5.1. The measurements 

The observations we are dealing with come from measurements of atmospheric atomic mercury 
at the geothermal power plant Bella Vista in Italy. The measurements are obtained for different 
angles in a vertical plane through the mercury plume from the cooling tower. The number of 
observations in each direction is 1000 which corresponds to 1500m. The mercury plume is 
located between 300 m and 700 m from the measuring equipment. 

Here we will study the same vertical plane at three timepoints, Vista 186- 188, see Table I. A 
more extensive presentation of the results is given in Bjorklund (1994). 

5.2. The concentration curve 

In this section we discuss the estimate of the concentration curve and its properties. As an 
example we use the second line in the first plane, see Figure 10 and Table I. The estimate of the 
concentration is, using (8) and (12) 

where for mercury 

As an estimate of bias and variance for the concentration curve we will use 
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Table 1 .  The mercury flux at three adjacent time points 

390- 720m (221 observations) Interval 405--675 m 

(d  9, &IISE. m ~ M I S E , ,  m ~ ^ M I S E ? ,  m f, mg/m d(Z), mg/m Bias, mg/m 

Vista 186 1 0 
( 1422) 2 1.06 

3 2.12 
4 3.18 
5 4.24 
6 5.30 
7 6.36 
8 7.42 
9 8.48 

10 9.54 

Vista 187 1 0 
(1454) 2 1.06 

3 2.12 
4 3.18 
5 4.24 
6 5.30 
7 6.36 
8 1.42 
9 8.48 

10 9.54 

Vista 188 1 0 
( 1 5 9 )  2 0.742 

3 1,484 
4 2.226 
5 2.968 
6 3.710 
7 4.452 
8 5.194 
9 5.936 

10 6.678 

25.5 
15.7 
10.2 
6.1 

18.5 
16.9 
8.5 

20.4 
10.3 
21.5 

35.6 
12.5 
6.7 

16.2 
13.3 
21.3 
9.4 

12.0 
7.0 
6.6 

15.1 
16.5 
13.1 
16.8 
15.2 
19.5 
10.8 
14.6 
14.1 
21.1 

28.5 
19.6 
12.6 
8.9 

18.3 
16.9 
12.3 
17.4 
13.2 
26.6 

42.7 
15.5 
9.6 

22.6 
14.8 
21.6 
12.9 
14.4 
9.8 
9.8 

16.5 
23.8 
15.7 
19.5 
18.7 
20.5 
14.4 
16.7 
14.5 
25.8 

48.9 2.47 0.38 ~ 0.01 1 
37-9 
36.3 
34.2 
40.5 
40.3 
44.2 
48.7 
38.4 
64.7 

85.6 
36.1 
31.6 
64.7 
44.3 
53.4 
42.8 
38.5 
40.6 
40.1 

44.9 
55.2 
42.3 
47.4 
40.6 
40.7 
44.1 
47. I 
40.4 
59.8 

2.43 0.5 1 0.053 

2.55 0.41 0.007 

+( i l ( r ) )  = c2 P(Gl(r,  iMISE, 2)) 

= c 2e; (x; r WJ,, r -’ xz r wr P y  wrx,, r (xl r wrx,, r 1- ez (38) 

where P, = diag(C(r,), . . . , C(rB)). The estimate of bias of the concentration curve depends on 
the estimate of the third derivative of the regression function, &(r ,  h. 4), where the bandwidth It 
has to be determined. We have chosen to use the bandwidth which minimizes MISE(riz3(r, 12,4)), 
which in turn can be approximated by 

MISE(G3(rlh,4)) =--I 1 15 v(r)dr+-/  h4 (m(”(r))*f(r)dr 
nh’ 16Jrr s 4 -m 

(39) 
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-0.5 

- I  

400 450 500 550 600 650 700 
range (m) 

400 450 500 550 600 650 700 
-1oL I 

range (m) 

Figure 2. (a) The estimated regression function and the observations. Optimal bandwidth 15.7m. (b) The estimated 
derivative of the regression function. Optimal bandwidth 19.6 m 

which is minimized by 

J --oo 

where as above (rizQ)(’)(r) = 1204’. 
Figure 2 shows the regression function ( p  = l , h ^ M I S E  = 15.7) and the derivative of the 

regression function ( p  = 2, LMISE, = 19.6) and Figure 3 the fitted fifth-order polynomial and 
the estimated variance C ( r ) .  The normalized residuals 

(Y i  - r i z ( r i ,  hMISE,  l )) /d{D(ri))  
and the corresponding estimated correlation function are shown in Figure 4. Conveniently, the 
normalized residuals seem to behave almost as a sequence of white noise. 

The concentration curve with its estimates of bias and variance is shown in Figure 5 .  As 
expected, bias is negligible when the concentration curve is almost linear, while the variance is 
increasing with range. 

The estimate of the concentration curve is dependent on the bandwidth selection, which 
determines the optimal amount of smoothing. For comparison the concentration curves for a 
smaller and a larger value of h, h = 10 and h = 40, respectively, are calculated and shown in 
Figures 6 and 7. The corresponding bias and variance curves are also displayed. Note that too 
small bandwidths give rise to an extremely large variance curve, while too large bandwidths render a 
disastrous bias. 

Further, in Figure 8 MISE( (hil (r ,  h,  2)) is calculated as a function of h and the minimum is not 
especially distinct, which shows that the bandwidth selection procedure is fairly insensitive as 
long as the bandwidth is kept inside the interval 15-25. 



EVALUATION OF LIDAR MEASUREMENTS 41 1 

0 

-0.5 

I 
400 450 500 550 600 650 700 

-1' ' 

range (m) 
(b) 

0.03r I I 

0.01 

o.02:: range (m) 
'400 450 500 550 600 650 700 

Figure 3. (a) The fitted fifth-order polynomial and the observations. (b) The estimated variance function, C ( r )  

5.3. The mercury flux 

So far in Section 5 we have separately considered measurements along single lines. More 
interesting of course is to estimate the concentration in different planes through the mercury 
plume; see Edner et al. (1992) for a detailed description of the LIDAR system and the geothermal 
power plant. 

Here the measurements n(ri ,  p j )  are obtained for ten different angles pi through the mercury 
plume, see Table I, and hence the grid of measurement points in the vertical plane can be 

1 

0 
-1 

-2 

I 
5 10 15 20 -0.5' 

0 
lag 

Figure 4. (a) The normalized residuals. (b) The estimated correlation function 
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400 450 500 550 600 650 700 
-200' I 

range (m) 
(b) 

50001 1 7 1  

2000 

1000 
. ,  .. * - - .  - - -  

0 -- - 
400 450 500 550 600 650 700 

(m) 

"' _ c /  ;I 
range 

Figure 5. (a)  The concentration (ng/m3) with bias (- - -) (b)  Variance and squared bias (- - -) (ng2/m6). Optimal 
bandwidth 19.6 m 

described by polar co-ordinates, i.e. 

x , ~  = r jcosp,  

y j j  = r j  sin pi. 

The directions along which measurements are made are shown in Figure 9 and the estimated and 
interpolated concentration surface in Figure 10. 

400 450 500 550 600 650 700 
-200' 

range (m) 

/ 7 
(b) 

_ _  - 
400 450 500 550 600 650 700 

0 '  

range (m) 

Figure 6. (a)  The concentration (ng/m3) with bias (- - -) (b)  Variance and squared bias (- - -) (ng2/m6). Bandwidth too 
small (lorn) 
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400} 

400 450 500 550 600 650 700 
-200' ' 

range (m) 

range 

Figure 7 (0) The concentration (ng/m3) with bias (- - -) (b) Variance and squared bias (- - -) (ng2im6) Bandwidth too 
large (40m) 

5.4. The mercury flux 

Of great interest is the volume under the concentration surface, since, after multiplication by the 
wind speed, it is possible to estimate the total flux of mercury passing the plane of measurements. 

Assume that the concentration in x/y co-ordinates is given byf(x,y) with the integral 

f (x ,y)dxdy = f(rcoscp,rsincp)rdrdcp = n(r,cp)rdrdcp. (41) Jr S, 
, 

0.9 1 

5 10 I5 20 25 30 35 40 45 50 

Figure 8. The mean integrated square error as a function of h 

0' 

h (m) 
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100- 
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60 - 
E m ._ 
0 IT 

40 - 

20 - 

400 450 500 550 600 650 700 
distance (m) 

Figure 9. The area where measurements are obtained 

Figure 10. The concentration surface 
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As an approximation of the integral we will use 

where Ari  = ri+ - ri = A r ,  Acp, = (p i+ ]  - pi = A p  and qj is a weight function with values 

t in corners i 1 otherwise 
tJ f on boundaries (not corners) 

The estimates of the concentration from the different measurement directions are independent, 

'u.. = 

which makes the variance easy to calculate: 

n, n. n.  

where d 3 ) ( r i 1  c p j )  = h , ( r i l  kMISEI1 4) is estimated as in the preceding section for the different 
directions 'pi. The numerical results are presented in Table I. Note that bias seems to be negligible 
for the integrated concentration. 

Ths effect has been studied theoretically in a slightly different context in two papers by Hardle 
et al. (1992) and Hardle and Stoker (1989) and it is our conjecture that it can be thoroughly 
proved here that we can regard our estimate of the integrated concentration surface as 
approximately normally distributed with expectation zero and variance V ( f ) ,  i.e. confidence 
intervals can be straightforwardly constructed as (f f AaI2b(f)). 

6 .  FUTURE RESEARCH 

We strongly believe that the local least-squares kernel regression methods have a potential to 
improve the evaluation of LIDAR measurements. As far as the authors know, this is the first 
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such investigation and much research remains to  be done: 

(i) This paper concentrates on bandwidth selection procedures which are MISE-optimal. 
Other bandwidth selection procedures need investigation. 

(ii) This paper treats the variance function parametrically. Next we plan to consider a 
generalization of the technique which handles the variance function non-parametrically. 
In  fact, during the revising procedure of this paper, we have studied different methods to  
estimate also the variance function V ( T )  through a similar local smoothing technique, see 
Ruppert et al. (1995b). 

(iii) On-line (in time) efficient versions of the estimation procedure should be considered 
especially in situations with large numbers of rapid measurements. Also some robust 
modifications of the method might be useful. In  a paper by Fan  et al. (1994) robust 
versions of the local polynomial kernel regression methods are discussed. 
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