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The Least Trimmed Differences Regression 
Estimator and Alternatives 

Arnold J. STROMBERG, Ola HOSSJER, and Douglas M. HAWKINS 

This article proposes and studies the performance in theory and practice of the least trimmed differences (LTD) linear regression 
estimator. The estimator minimizes the sum of the smallest quartile of the squares of the differences in each pair of residuals. 
We obtain the breakdown point, maxbias curve, and large-sample properties of a class of estimators including the LTD as special 
case. The LTD estimator has a 50% breakdown point and Gaussian efficiency of 66%-substantially higher than other common 
high-breakdown estimators such as least median of squares and least trimmed squares. The LTD estimator is difficult to compute, 
but can be performed using a “feasible solution” algorithm. Half-sample jackknifing is effective in producing standard errors. In 
simulations we find the LTD to be more stable than other high-breakdown estimators. In an example, the LTD still shows instability 
like other high-breakdown estimators when there are small changes in the data. 

KEY WORDS: Robust high breakdown efficient estimation. 

1 .  INTRODUCTION 

We consider the linear regression model given by 

yz = a0 + pTxC, + E i  1 5 i 5 12, 

where a. is the intercept parameter and PO is the p - 1- 
dimensional slope parameter. The zi are random with dis- 
tribution G and independent of the E ~ ,  which are indepen- 
dent and identically distributed with distribution F that is 
not necessarily symmetric. The residuals are denoted by 
ri(a, 0) = yi - a - PTxi. The classical least squares (LS) 
estimator minimizes the sum of the squared residuals. It is 
not robust in the sense that it is heavily influenced by out- 
liers. In fact, it has a breakdown point (Donoho and Huber 
1983) of 1/12, meaning that altering one point can drive the 
estimator to infinity. One way to robustify the LS estimate 
is to use an M estimate (Huber 1964), which minimizes 

n c p(rz(a, PI ) ,  
i=l 

where p is a symmetric continuously differentiable func- 
tion for which p(0) = 0. With a suitable choice of p , M  
estimators and related estimators can be effective in reduc- 
ing or eliminating the influence of outliers. One drawback 
of A4 estimators is that p must be chosen by the practitioner. 
As an alternative without that drawback, Rousseeuw (1983, 
1984) introduced the least median of squares (LMS) estima- 
tor, which minimizes the median of the squared residuals, 
and the least trimmed squares (LTS) estimator, which mini- 
mizes the sum of the smallest half of the squared residuals. 
These estimators have a breakdown point of almost 50% 
in most situations. Thus they handle outliers well but have 
drawbacks; in particular, poor efficiencies for Gaussian data. 
LMS has asymptotic efficiency of 0%, and LTS has asymp- 
totic efficiency of only 8%. Croux, Rousseeuw, and Hossjer 
(1994) overcame this difficulty by proposing the least quar- 
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tile difference (LQD) estimator, which minimizes the lower 
quartile of the ordered absolute differences in residual pairs; 
that is, 

where h, = [(n + p  + l)/2], p is the number of regression 
parameters, and the notation (2) : (g) means minimize the 
the (2) th  order statistic among the ( z )  elements of the set 

The LQD is a 50% breakdown estimator with Gaussian 
efficiency of 67%. Note that the LQD does not involve the 
intercept parameter a, and so it must be estimated sep- 
arately. We propose instead the least trimmed difference 
(LTD) estimator, which minimizes the sum of the smallest 
quartile of the squared differences of residual pairs; that is, 

{ l r i - r j l ; i < j } .  

Section 2 studies the theoretical properties of the LTD es- 
timator. We prove that the LTD estimator has a 50% break- 
down point and is asymptotically normal with Gaussian effi- 
ciency of 66%. Section 3 discusses methods for computing 
the LTD estimator as well as the LQD, LMS, and LTS es- 
timators and some simulation results. Section 4 presents an 
example and provides some closing remarks. 

2. 

2.1 Breakdown Point 

We use the finite-sample version of the breakdown point 
introduced by Donoho and Huber (1983). Let Z denote the 
original sample {zi = (z2, yi)} of data points and let I . I 
denote the Euclidean norm. 

THEORETICAL PROPERTIES OF THE ESTIMATOR 
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DeJinition. The breakdown point of the estimator T at 
sample Z is defined as 

IT(Z') - T(Z)I = 00 

where the supremum is taken over all samples Z', defined 
by replacing m observations in Z .  

Notice that T,  - rJ = (y, - yj) - pT(z ,  - zJ )  can be 
interpreted as a residual when the pairwise y differences 
are regressed against the corresponding IC differences. The 
breakdown point of &TD can be affected if many IC, - x2 
are linearly dependent. To this end, we impose the follow- 
ing. 

We say that the differences of the z, are in 
general position if no (;-') + 1 of them belong to the same 
hyperplane in R P - '  through the origin. 

This definition is slightly stronger than the one given by 
Croux et al. (1994), that only required that no set of (;) 
differences belong to the same hyperplane. Both definitions 
imply that no set of p 2, lies in the same affine hyperplane. 

Definition. 

Consider now the objective function 

with trimming point k = k,, and let 

q ( j )  = min { i; ( ) 2 j }  

be the inverse function of the binomial coefficients. The 
following theorem states how E: depends on k.  

Theorem 1. The breakdown point of the LTD estimator 
is given by 

This is a slightly larger range of k values than that given 
by Croux et al. (1994), due to the fact that our definition of 
general position is stronger. 

Remark 3. Theorem 1 is an analog of a result of Hossjer 
(1994), who proved that E: = min(k - p + 1, n + 1 - k ) / n  
for objective functions with gl(lr.lk:,) I D, i g2(lr.lk:,) 
and Ir.Ik:, = {Iril, 1 6 i 5 n}k:,. 

2.2 Maximum Bias Curves 

We first develop a functional version of a class of estima- 
tors including the LTD estimator. We refer to work of Mar- 
tin, Yohai, and Zamar (1989) and Croux et al. (1994), where 
the maxbias 
functions of S and generalized S (GS) estimators are com- 
puted. Define the kernel function h(z l , z2;  P )  = ( T ~ ( Q ,  P )  - 
~ ~ ( a , p ) ) ~  = ( ~ 1  - ~2 - (0 - /?o)T(xl - ~ 2 ) ) ~ .  Let K = 
L( ( X ,  @X+E))  be the distribution of each zz and define the 
distribution function H K ( ~ ;  P )  = P K ~ K ( ~ ( Z I , Z ~ ; P )  L t ) .  
Consider then (a functional version of) the objective func- 
tion 

1 

D(P; K )  = 1 J ( W ; l ( u ;  P )  du,  (4) 

with H&'(u;P)  = inf{t;HK(t;P) 2 u}. Here J ( u )  is the 
density (which may contain, e.g., delta functions) of a pos- 
itive measure p on [O, 11, so that J(u)du  = dp(u) .  Let 
y = inf{u E (0,1]; p ( u ,  11 = 0). For instance, the LTD esti- 
mator corresponds to J ( u )  = I (0  5 u 5 y), and the LQD 
estimator corresponds to J ( u )  = d7(u), a delta function lo- 
cated at y. Minimizing D yields (a functional version of) 
our estimator, 

T ( K )  = argminD(P; K ) .  
P 

E X P L T D ,  Z )  = min(q(k) - P + 1772 + 1 - q ( k ) ) / n ,  

if the differences IC, - 2j are in general position. ln partic- 
ular, if kn / ( ; )  -+ y E [0,1] as n -+ 00, then 

E* = lim EL = min(fi, 1 - fi). 

Let KO be the nominal distribution of z ,  and let Go and 
Fo be the corresponding nominal distributions of z and E .  

Consider the &-contamination neighborhood V, = { K ;  K = 
(1 -&)KO +&IT*}, where K* is arbitrary. The maxbias func- 
tion is defined as 

n+Co 

Remark 1. Let rij = ri - rj and put J T . , J ~ : ( ~ )  = 
{ Irijl; i < j } k : ( ; l .  Theorem 1 applies to any objective2func- 
tion such that gl(lr..lk:(;)) I D, i g 2 ( J ~ . . l l ~ : ( ; ) ) ,  where g1 

and 92 are strictly increasing with gl (0)  = g2(0) = 0 and 
g l ( o 0 )  = g2(00)  = 00. This includes the LQD estimator 
D, = Ir..Jk:(;), the LS estimator D, = Ci< j (~ i  - T ? ) ~ ,  k = ( z ) ,  and the rank-based estimators considered by Croux et 
al. (1994), D, = Ci a(i)Ir.. li:(;), with a a nonnegative func- 
tion and k = max{i; a( i )  > O}. 

BE(T) = SUP{lT(K) - Pol; K E V E I  

with asymptotic breakdown point E* = inf{&; B,(T) = 00}. 
Suppose that the following conditions hold: 

A. Fo has a continuous and symmetric density, which is 
strictly decreasing on the positive real line. 

B. Go is spherical, P G ~  ( p T X  = 0) = 0 for all P # 
0 in R P - l  and for all P the distribution of PTX is 
unimodal. 

Remark 2. For q ( k )  = [(n + p ) / 2 ]  or [(n + p + 1)/2]&: Put 

gl(E) := SUP D(P0; K )  = J ( ~ ) H l l ( u ;  E )  du I attains the maximal value ( [ (n  - p ) / 2 ]  + l)/n, which is also 
the maximal breakdown point among all regression equiv- 
ariant estimators (Rousseeuw and Leroy 1987). The maxi- 
mum is attained for and 

KEV, 
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with H I ( ~ ; E )  = (1 - E ) ~ H K , ( ~ ; P o ) , H ~ ( ~ ; E , P )  = (1 - 

PK( ( ~ 1  - ,BTX)2 5 t) .  Loosely speaking, H1 describes the 
(stochastically) largest possible choice of HK (.; Po) within 
V,, whereas H2 is the (stochastically) smallest choice of 
H K ( . ; ~ ) .  Note that HI  is substochastic, whereas H2 is a 
proper distribution function. Because Go is spherically sym- 
metric, g2 is only a function of IP - Pol, and this function 
is continuous and strictly increasing (provided that E~ < y). 
This follows because L ( E ~  - E Z )  satisfies A and L(X1-  X 2 )  

satisfies B. Thus we may define b = gT1 ( E ,  a) as the inverse 
of 9 2 ,  in the sense that ~ z ( E ,  P)  = a when 1P - Pol = b. 

Then the maxbias function is given by 

E ) ~ H K ~ ( ~ ; P )  + 2 ~ ( 1  - E ) I ; K ( ~ ; P )  + E ~ ,  and I ; ~ ( t ; p )  = 

Theorem 2. Suppose that conditions A and B hold. 

B E  (TI 

(5 )  
9;1(E,91(4), 0 I E I 1 - fi) 

= {a, min(fi, 1 - 8) < E 5 1. 

In particular, E* = min(fi, 1 - fi). 
Consider the multivariate Gaussian case ( X , E )  N 

Np(O,I). Put HO N x2(1) and gO(t) = so Ho ( t )  J (u)H; l (u)  
du. Then 

"0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Figure 1. Bias Curves, for Multivariate Gaussian Data, of the LTD 
Estimator With E* = .5 (Solid Line) and E* = .25 (Dashed-Dotted Line), 
and the LQD Estimator With E* = .5 (Dashed Line) and E* = .25 (Dotted 
Line). The x-axis is E;  the y-axis is BE(T). 

Figure 1 plots the maxbias curve of the LTD and LQD 
estimators for multivariate Gaussian data and E* = .25, .5. 
Note that the LQD bias explodes when E + E* = .25, but 
this is not the case for the LTD estimator. 

The modified gross error sensitivity, (Yohai and Zamar 
1992), is given by 

with gh the derivative of g2 with respect to its first argument. 
For the last equality, we used gl(0) = g2(0, PO). Specializ- 
ing to LTD estimators, we get 

(c2 - 1)(2@(c) - 1) + 2c4(c) 
y - f i C d ( C / f i )  

y** = J 
with the cdf of a standard normal distribution and c = 
fi@-l((l + y)/2). In particular, with E* = .5, we have 
y** = 2.3907. This is almost the same as the value of 2.3992 
found by Croux et al. (1994) for the LQD. 

Remark 4. Instead of A and B, we may simply assume 
that P G ~ ( P ~ X  = 0) = 0 when P # 0. The definitions 
of g1 and 92 are the same, but the infimum of D ( P ; K )  
over V, may not be attained at HK = H2. Moreover, 
9 2  ( E ,  .) is generally not an (increasing) function of IP - Po 1 .  
However, Theorem 2 still holds with g; l (E,a) = sup{b; 
there exists ,f3 such that g 2 ( ~ ,  P )  5 a and IP - Pol = b}. 

A GS estimator has an implicit objective 
function D(P;  K )  = S(HK( . ;  P)) .  Here S ( H )  is the solu- 
tion of J i j ( t /S )  d H ( t )  = ko, with i j  an even and bounded 
function that is increasing on the positive real line. The 
constant ko is usually chosen so that S ( H K ( . ; P ~ ) )  = 0 

for Gaussian errors E, N N(0,02). Using our notation, the 
maxbias function of GS estimators is given by (5) ,  with 

4 in Croux et al. 1994). In fact, (5 )  holds for other scale 
functionals S as well, provided that they satisfy some mild 
regularity conditions. 

Remark 5. 

g l ( E )  = S(HI(.;E)) and 9 2 ( ~ , P )  = S( fh( . ;& ,P) )  (cf. thm. 

Remark 6. Note that B,. ( T )  = limEp,* B,(T) is finite 
for the LTD estimator and multivariate Gaussian data, as 
soon as y > .25 (Fig. 1). This is not the case for the LQD 
estimator (and GS estimators in general). Depending on the 
error distribution and how much mass p puts around y, the 
integral g1 ( E * )  = Jt Hi1 (u; Po)J (u /y )  du may converge or 
diverge. If y 5 .25, then g 2 ( ~ * ,  .) = 0, so that BE* (T)  = 00. 
If y > .25, then g;l(E*,gl(E*)) exists finitely as soon as 
gl(E*)  is finite. 

Remark 7. Consider for a moment a regression model 
y, = PTx,  + E, with no intercept (or with an intercept 
included in the P parameter). The LTS estimator has an 
objective function (4), with J ( u )  = I (0  5 u 5 y) and 
H ~ ( t ; p )  = PK((Y - ,BTX)z  I t ) .  Theorem 2 also holds 
for the LTS estimator (and its generalizations with other 
choices of p), if we put H l ( t ;  E )  = (1 - E ) H K ~ ( ~ ;  0) and 
H z ( t ; ~ , p )  = (1 - & ) H K o ( t ; P )  + E. In particular, E* = 
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min(y, 1 - y), as is well known. The phenomenon described 
in Remark 6 occurs here as well; B,*(T) < co for y > .5 
as soon as p puts little mass around y. 

2.3 Asymptotic Normality and Efficiency 

Define the distribution function H,(t; 0) = Ca<3 I(h(z,,  
k J ;  P )  5 t) / ( ; ) ,  which is an empirical version of H K .  For 
simplicity, we first consider the LTD case J ( u )  = I (0  5 
u 5 y). The (empirical) objective function (3) then takes 
the form 

&(PI = lT P )  du, (7) 

with k,  = [y(;)]. We impose the following regularity con- 
ditions on F and G: 

C. The carrier distribution G satisfies E G J X J ~ + ~  < co for 
some 6 > 0, and X1 - X2 is not concentrated on hy- 
perplanes in the sense that supPfo P(PT(X1 - X 2 )  = 
0) < y. Thus C = cov(X) is nonsingular, because 

D. The error distribution F has a unimodal and strictly 
positive density j C ,  and f' is continuous and bounded. 

As D, is a linear combination of the ordered h(z,, z3) ,  it is a 
generalized L (GL) statistic, introduced by Serfling (1984). 
As n + co, 

(8) 

cov(X1 - X,) = 2c. 

D,(P) -3 D(P; K )  = W).  
The linear expansion 

will be useful, with 

= Hi1(% P )  A t2 - (1 - Y)H;T-'(Y; P) ,  
and h ~ ( t ; P )  = a H ~ ( t ; P ) / d t .  Equation (9) expresses D, 
as a sum of a U statistic of order 2 (e.g., Lee 1990) and a 
remainder term R,. After some manipulations, one finds 

(10) E P ( E i  - E j  - (P - PO)*(& - xj); P )  = D(P) 

and 

Rn (0) 

where we have dropped P in the notation for convenience. 
The integrand in the last integral is a remainder term of 
Bahadur type for each u. Now 

so the asymptotic behavior of the process {D,(P) - 
D,(Po); P E RP-'} determines the large-sample proper- 
ties of &TD. We call this process a GL process. By (9), it 
can be decomposed as a sum of a U process and a remain- 
der process {R,(P) - R,(Po)}. Ignore for a moment the 
remainder, and approximate the U process locally around 
PO by a quadratic function, 

, \ -1 

1 = -(P - Po)TV, + 2 (P - 
x D"(Po>(P - Po), (12) 

with V, = ,7&(xi - x j ) $ ( ~ i  - E ~ ) / ( ; )  and $(t)  = 

dp(t;Po)/at = 2tI(ltl 5 4- y PO)). The first term 
in (12) approximates the stochastic variation of Dn(.) - 
&(Po), and the second term approximates the mean value 
function D(.)  - D(Po) (because D'(Po) = 0). Introduce 
$(t)  = E$(t - E ) .  By the asymptotic theory of nondegen- 
erate U statistics (Lee 1990, p. 761, 

+ op(l) 3 Np-1(0,4E?j(~)2C). (13) 

Differentiating twice with respect to P in (10) gives 
D"(P0) = 2CE$'(&) (see also Lem. C.l in Appendix C). 
Hence (12) leads us to the following. 

Theorem 3. Assume that C and D hold. Then 

f i ( b L T D  - P O )  = hD"(PO)-lVn 

a s n + c o .  
The argument outlined earlier is made strict in Appendix 

C. Technically, we first need to establish consistency of 
~ L T D  (with a certain rate of convergence). Then we use 
empirical process theory (Pollard 1984) and U process the- 
ory (Nolan and Pollard 1987) to prove that two processes 
are uniformly small over local neighborhoods of Po. These 
processes, of which R,(.) - &(PO) is one, correspond to 
the two approximations made in (12). 

The Gaussian efficiency of &,TD is given by 

(J $'(t>W d q 2  
= J4(t)"(t) d t  ' 

and the cutoff point for $ is 2/H;;1(y;P~) = d @ - l ( ( l  + 
y)/2). Table 1 lists efficiencies, asymptotic variances V = 
l/e, and breakdown points. b L T D  = argminD,(P) = argmin(D,(P) - ~ n ( ~ o ) ) ,  

P P 
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Table 1. Breakdown Points and Gaussian Efficiencies 
and Asymptotic Variances for the LTD Estimator 

€* Y e V 

.50 

.45 

.40 
. 35 

.30 

.25 

.20 

.I5 

. I 0  

.05 

.2500 
,3025 
,3600 
,4225 
,4900 
,5625 
,6400 
.7225 
.8100 
,9025 

,6626 
.6688 
.6773 
,6885 
.7033 
.7228 
.7484 
.7826 
.8291 
.8956 

1.5092 
1.4952 
1.4765 
1.4524 
1.421 9 
1.3835 
1.3362 
1.2778 
1.2061 
1.1166 

According to (1 3 )4  14), the influence function (IF) of 
b L T D ( Z 1 , .  . . , Z n )  is 

in the sense that ~ L T D  = PO + C2, IF(z,, K , ~ L T D ) / ~  + 
~ ~ ( n - l / ~ ) .  Figure 2 depicts the IF for standard normal er- 
rors for various values of E*. Note that the IF is unbounded 
in the 2-direction and bounded in the residual direction 
for each fixed x. This fact is more clear from the three- 
dimensional plot of the influence function given in Fig- 
ure 3. As pointed out by the associate editor, the fact that 
the IF is unbounded in z may suggest instability in the 
LTD estimator (see Davies 1993; Sheather, McKean, and 
Hettmansperger 1997). This is further investigated in the 
example in Section 5. 

Remark 5 (continued). The (empirical) objective func- 
tion of the GS estimator is defined as the solution of 

cording to Hossjer, Croux, and Rousseeuw (1994, thm. 3.1) 
P L T D  is asymptotically equivalent to a GS estimator with 

c2<3 P ( ( E 2  - E3 - (P - PO)T(Z, - Z J ) ) / D n ) / ( ; )  = ko. Ac- 

4.; Po) = P ( . / S ( H d . ;  P o ) ) ) .  

Remark 7 (continued). The LTS estimator, PLTS, has 
an objective function of the form (7), if we let H,(.;P) 
denote the edf computed from { ( E ,  - (P - P o ) ~ I c , ) ~ } > .  
Heuristically, the argument to establish asymptotic nor- 
mality goes through with V, = C,  z ,$ (~ , ) /n ,   PO) = 
E E ( ~ ’ ( E ) ) ,  X = E ( X T X )  and asymptotic covariance ma- 
trix E($2(~))X-1/(E($’(~)))2 (see also Rousseeuw 1985; 
Yohai and Maronna 1976). However, it is much more dif- 
ficult to prove that the remainder processes are asymptoti- 
cally negligible, because they oscillate more for the LTS. 
This is because empirical processes oscillate more than 
U processes. In this case, it is probably easier to use the 
method of proof of Hossjer (1994) and establish asymp- 
totic linearity of Di( . )  locally around PO. 

The objective function of LTD could be 
generalized to D, = SJ(u)H;l(u) du, with J(u)du  a 
finite measure on [0, 11. Then p(t;p) = Jf J ( H K ( s ) )  

2 t J ( H ~ ( t ~ ; P o ) ) .  The functions 4 and 4’ are defined as 
earlier in terms of $. If J is a Dirac function, then we ob- 

Remark 8. 

ds + J ( H K ( s )  - 1 + s ~ K ( s ) ) J ( H K ( s ) )  ds and $(t)  = 

tain the LQD estimator. The proof in Appendix C could be 
extended to cover smooth J functions. 

Remark 9. Rank-type estimators with objective func- 
tion D, = J J(u)H;l(u) du were considered by Croux et 
al. (1994), where the influence function of these estimators 
was derived. Here H;l = e; that is, f in( . ,  P )  is the edf 
of { JE, - (z, - x3) I ; i < j } .  (This is the same 
estimator as in Remark 1, if we put a ( i )  = J(,-l)/(;l J ( u )  
du.) Among other things, it was found that y = .25 and 
J ( u )  = I (0  I u 5 y) result in a Gaussian efficiency of 
.6604. Asymptotic normality can be proved using the meth- 
ods in Appendix C. 

- (P - 
2/(;) 

3. COMPUTATION AND SIMULATIONS 

3.1 Computing the Estimator 

Computing high-breakdown estimators is notoriously dif- 
ficult, as the objective functions usually have many local 
minima. The case of the LTD and LQD estimators is even 
worse than most, as we need to minimize a function of (;) 
residuals. But both criteria can be fitted using more famil- 
iar estimators as the LTD estimate turns out to be the LTS 
estimate (and the LQD estimate is the LMS estimate) of a 
modified dataset. 

From Section 1, 

-2 ‘ 
-6 -4 -2 0 2 4 6 

r 

Figure 2. Influence Function (Residual Part) of the LTD Estimator for 
Gaussian Errors, Corresponding to E* = .05, .25, and .5. A higher break- 
down point is indicated by a larger derivative of the influence function at 
the origin. 
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r -5 -5 
X 

Figure 3. Influence Function for Standard Normal Errors When E* = .5, P = 2, E(X) = 0, and C = 1. 

Thus the LTD fit for any dataset is the LTS fit for the 
data points 

while (as shown in Croux et al. 1994) the LQD fit is the 
LMS fit for the same pairs of points. 

The computational approach chosen by Croux et al. 
(1994) for the LQD estimator is based on the Hawkins and 
Simonoff (1993) refinement of the original “elemental set” 
PROGRESS (e.g., Rousseeuw and Leroy 1987) LMS algo- 
rithm. In it, the LQD is estimated by computing the exact 
fit to all p point subsets of the data and then choosing the fit 
with the smallest value of the LQD objective function as the 
estimate of the LQD fit. This algorithm cannot find the ex- 
act LQD fit except in very special circumstances, although 
in most cases it can find a close approximation. 

Hawkins’s (1994) feasible solution algorithm (FSA) for 
LTS uses a different approach. It selects a random half of 
the data and makes pairwise swaps between the selected 
and unselected cases until it finds the half whose residual 
sum of squares cannot be further improved with pairwise 
swaps. This is done repeatedly using different random start- 
ing points. The method is guaranteed to find the global op- 
timum if it is repeated with enough random starts, and has 
generally been found to produce much better approxima- 
tions in a given amount of computing time than does the 
elemental set approach. The LTD can then be fitted using 
the FSA applied to the dataset of differences. A parallel 
FSA for LMS (Hawkins 1993) can be used for LQD. 

Initial simulations for this article used an improved ver- 
sion of the FSA. It used a preliminary necessary condition 
to reduce the number of pairwise swaps studied, and typi- 
cally ran one or more orders of magnitude faster than the 

original FSA on large datasets. Unfortunately, computation 
times were still excessive. Using an HP 715-75 worksta- 
tion, it took about 2 hours to compute the LTD estimator 
for one dataset when n = 30 and p = 5. 

Currently, we compute the LTD (and LQD) using a ver- 
sion of the SURREAL algorithm (Ruppert 1992). An initial 
search is done in the parameter space for the LTD estimate. 
The second step calls the improved version of the FSA dis- 
cussed earlier to locate a local minimum of the objective 
function. The resulting algorithm reduced the computation 
time for the LTD estimator for one dataset when n = 10 
and p = 2 to less than 2 seconds. For n = 30 and p = 5, the 
LTD estimator took about 10 minutes to compute. Using a 
newer HP C-110 workstation, the n = 30 and p = 5 LTD 
estimate takes about 5 minutes to compute. These compu- 
tation times are clearly greater than for the LMS or LTS 
estimates, but a substantial gain in efficiency is achieved. 

3.2 Simulation Study 

3.2.1 Gaussian Data. LMS and LTS are popular with 
practitioners but they suffer from low asymptotic efficiency 
for Gaussian data. Further, as Hettmansperger and Sheather 
(1992) and Sheather et al. (1997) showed, the LMS (and 
LTS) fits may shift substantially when there are minor shifts 
in the data. LQD and LTD have much higher asymptotic 
efficiency, and thus they overcome, at least asymptotically, 
that problem with the LMS and LTS estimators. 

Table 2 shows results of a simulation study comparing the 
LMS, LTS, LQD, and LTD estimators for various sample 
sizes (n) and numbers of explanatory variables (p) .  Datasets 
for n = 10,15,20,25,30 and p = 2,3,4,5,6 using standard 
normal data were randomly generated and then all five es- 
timators were computed for each dataset. n was limited to 
at most 30 because of the computation time. All the Monte 
Car10 means were close to 0, as would be expected for un- 
biased estimators. The LMS and LTS estimators are quite 
a bit less efficient than either the LQD or LTD estimators. 
Neither LMS nor LTS has a clear efficiency advantage over 
the other. For normal data, it appears that the LTD performs 
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Table 2. Means of Monte Carlo Standard Errors and Efficiencies for the LS, LMS, LTS, LQD, and LTD Estimators and Standard Normal Data 

P 

n Estimator 2 3 4 5 6 

LS 
LMS 

10 LTS 
LQD 
LTD 
LS 
LMS 

15 LTS 
LQD 
LTD 
LS 
LMS 

20 LTS 
LQD 
LTD 
LS 
LMS 

25 LTS 
LQD 
LTD 
LS 
LMS 

30 LTS 
LQD 
LTD 

,3909 
,7082 (30%) 
,6907 (32%) 
,561 6 (48%) 
,5909 (44%) 

,2597 
,8519 (9%) 
,8237 (1 0%) 
,4994 (27%) 
,4766 (30%) 

.2556 
.4625 (31 Yo) 
,5174 (24%) 
,3794 (45%) 
,3744 (47%) 

,2181 
,5046 (1 9%) 
,5369 (1 6%) 
,4187 (27%) 
,3597 (37%) 

,2069 
.4106 (25%) 
.4440 (22%) 
.3470 (36%) 
.2972 (48%) 

,4373 
,7850 (31%) 
.8261 (28%) 
1.012 (19%) 
,7588 (33%) 

,2699 
,5581 (23%) 
3792 (22%) 
,4822 (31%) 
,4385 (38%) 

.2501 
,4621 (29%) 
.4313 (34%) 
.3628 (48%) 
,3410 (54%) 

.2108 
.4967 (1 8%) 
5024 (1 8%) 
.4009 (28%) 
,3495 (36%) 

,1821 
,4224 (1 9%) 
,4391 (1 7%) 
.3239 (32%) 
.2989 (37%) 

,4497 
1.314 (12%) 
1.089 (1 7%) 

.7798 (33%) 
1.019 (19%) 

.3275 
,6951 (22%) 
,6828 (23%) 
5739 (33%) 
,5349 (37%) 

,5549 (1 9%) 
,531 7 (21 Yo) 
,4576 (28%) 
.4046 (36%) 

.2429 

,2341 
S244 (20%) 
,5149 (21%) 
.4108 (32%) 
,3470 (46%) 

,1907 
,3987 (23%) 
.3932 (24%) 
,3006 (40%) 
,2975 (41%) 

,491 0 
,9626 (26%) 
,9197 (28%) 

,8141 (36%) 
,3039 

1.269 (1 5%) 

,7029 (1 9%) 
,7010 (19%) 
,7506 (16%) 
,4804 (40%) 

,5707 (20%) 
5722 (20%) 
SO92 (26%) 
.4296 (36%) 

.2579 

,2358 
5540 (1 8%) 
,5651 (17%) 
,4305 (30%) 
,3472 (46%) 

,1931 
,4346 (20%) 
,4302 (20%) 
,3528 (30%) 
,3134 (38%) 

,571 1 
1.448 (1 6%) 
1.428 (1 6%) 
1.437 (1 6%) 
,9518 (36%) 

.3491 

.7637 (21%) 
,7692 (21%) 

.7390 (22%) 

.5317 (43%) 
,2887 

,6276 (21%) 
,6581 (19%) 
,5381 (29%) 
,4755 (37%) 

,2387 
,5046 (22%) 
,5034 (22%) 
,4020 (35%) 
,3720 (41%) 

,2131 
,4525 (22%) 
.4822 (20%) 

,3208 (44%) 
,3809 (31%) 

somewhat better than the LQD. The average percent reduc- 
tion in the LTD Monte Carlo standard errors over the LQD 
Monte Carlo standard errors was 20%. Both the LTD and 
LQD finite-sample efficiencies were substantially less than 
their asymptotic efficiencies. 

3.2.2 Heavy-Tailed Distributions. In Table 3, both the 
explanatory and response variables are randomly generated 
from a t-distribution with one df. This results in both influ- 
ential points and outliers. For each estimator, n and p ,  100 
datasets were randomly generated. The mean of the means 
of the 100 parameter estimates is reported along with the 
mean of the Monte Carlo standard error estimates in paren- 
theses. Because of the superiority of LTD and LQD for 
Gaussian data, LMS and LTS results are not included in 
the tables here. In Table 4 the explanatory variables are 
again generated from a t distribution with 1 df to create 
influential points, then the response variable is from a stan- 
dard normal with 20% of the responses increased by 50 to 
generate outliers. As would be expected, the LS estimator 

Table 3. Monte Carlo Means of Means and MC Standard Errors for 
the LS, LQD, and LTD Estimators and t Distribution Data 

P 

does poorly in these situations. Neither LTD nor LQD has 
a clear advantage over the other in these situations. It is 
interesting that the LQD estimates for n = 20 and p = 5 
appear somewhat unstable. This is investigated further in 
Section 4. 

4. STANDARD ERRORS 

Standard errors are another vital aspect of estimation. 
Asymptotic standard errors were not reliable for the mod- 
erate sample sizes considered here, because the weak con- 
vergence of Theorem 3 is very slow. First, we tried ap- 
proximating the asymptotic variance in (14), both for nor- 
mal errors and for a general unknown residual distribution. 
Because these approximations were poor for moderate n, 
we then tried a second-order correction of the numerator 
E ~ ( E ) ~  based on an exact expression of n var(V,) for nor- 
mal errors. Even this method gave poor estimates of the 
standard error. 

We then considered standard errors based on resampling 
methods. Stromberg (1997) argued that jackknife, rather 

Table 4. Monte Carlo Means of Means and MC Standard Errors 
for the LS, LQD, and LTD Estimators and 20% Outlier Data 

P 
n Estimator 2 4 6 n Estimator 2 4 6 

LS 
10 LQD 

LTD 
LS 

20 LQD 
LTD 
LS 

30 LQD 
LTD 

,6822 (4.1 75) 
-.0013 (.4519) 
,0174 (.4349) 

-.1279 (5846) 
-.0093 (.1542) 
-.0049 (.1688) 
-.1632 (1.4137) 
-.0065 (.1116) 
,0077 (.1403) 

-2.396 (40.47) 
-.0510 (.7692) 
-.0632 (.7170) 
-.5108 (5.01 9) 
,0192 (.2861) 
,0032 (.2802) 
,1925 (2.1715) 

,0002 (.1626) 
-.0054 (.1340) 

-.2474 (5.322) 
-.2690 (2.760) 
-.2947 (2.960) 
-.lo57 (2.890) 
-.4045 (4.254) 
,0279 (.3200) 
,0825 (1.2181) 

,0087 (.1980) 
-.0070 (.1554) 

LS 
10 LQD 

LTD 
LS 

20 LQD 
LTD 
LS 

30 LQD 
LTD 

,0845 (2.697) 
,0365 (.3165) 
,0204 (.3860) 

,0079 (.1484) 

,0754 (.7187) 
.0107 (.0719) 
,0042 (.0548) 

-.0645 (1.21 8) 

-.0200 (.1958) 

-.0989 (3.935) 
-.0228 (5180) 
-.0235 (5177) 
-.0886 (1.470) 
,0041 (.1773) 
.0045 (.2021) 
,0314 (.8893) 

-.0019 (.1038) 
-.0020 (.1191) 

,2082 (5.275) 
.0780 (1.205) 
,0750 (1.266) 

,6296 (9.883) 

,0227 (.9914) 
,0021 (.0908) 
,0060 (.1097) 

-.0128 (1.545) 

-.0014 (.2361) 
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Table 5. Standard Error Estimates for LTD and LQD Estimates 

n lP  

Type of data SE estimate 1 0/2 20/2 20/4 30/2 30/4 30/6 

x - N(0, 1) 

Y - Y O ,  1) 

X -  t (1 df) 
y - t (1 df) 

x - t (1 df) 
Y - Y O ,  1) 
20% outliers 

LTD MC 
LTD dnl2 
LQD MC 
LQD dnl2 
LTD MC 
LTD dnl2 
LQD MC 
LQD dnl2 
LTD MC 
LTD dnl2 
LQD MC 
LQD dnl2 

,6079 
,4132 
,561 6 

,4349 
,5104 
,451 9 

,3860 
,551 5 
,3165 

1.041 

1.922 

7.446 

,3929 
,2130 
,3794 
,6599 
. I  688 
. 1 784 
. 1 542 
,9758 
. 1 958 
,1418 
,1484 
,6051 

,4557 
,3248 
,4576 
,8625 
,2802 
,2962 
,2861 

,2021 
,1938 
,1773 
1.499 

1.077 

,3590 
. 1 809 
,3470 
,6676 
,1403 
,1239 
,1116 
,8881 
,0548 
,0772 
,071 9 
,4433 

,2943 
,2156 
,3158 
,6630 
,1626 
,1516 
. 1 340 
,7628 
,1191 
. 1 094 
,1038 
,881 0 

,3607 
,2972 
,3809 
,7081 
. I  980 
,1408 
. 1 554 

. 1 097 
,1553 
.0908 
2.322 

1.051 

than bootstrap, standard errors are more appropriate for ro- 
bust estimators because jackknifed standard errors have a 
higher breakdown point. In the case of LQD and LTD, boot- 
strap standard errors have another disadvantage in that they 
are based on differences in pairs of residuals, and so if a 
bootstrap-resampled dataset contained replicates, then the 
LQD or LTD objective function for these pairs of points 
would be 0 regardless of the estimate. The result would 
be lower efficiency for bootstrap standard errors. In all 
simulations the jackknife standard errors performed much 
more reasonably than the bootstrap standard errors; thus we 
present results only for the jackknife. Clearly, just as the 
delete-one jackknife fails for the median, we must expect 
the delete-one jackknife to underestimate standard errors 
for LQD and LTD. Breakdown point considerations suggest 
the delete-n/3 jackknife would perform well (breakdown 
point 1/3). Although it has a breakdown point of only 1/4, 
Wu suggested the delete- 1/2 jackknife. Extensive simula- 
tions showed that the delete- 1/3 jackknife underestimated 
standard errors for LTD, so we present results for only the 
delete- 1/2 jackknife. Because of the computational load, 
the smallest number of resampled datasets is desirable. For 

Table 6. LMS Residuals for Several 15-Point Subsets 
of the Engine Knock Data 

Deleted point 

the simulations considered here, n resampled datasets ap- 
peared to be adequate. 

We consider the cases of the previous sections: standard 
normal data for both the explanatory and response vari- 
ables, t distribution with 1 df for both the explanatory and 
response variables, and t distribution with 1 df for the ex- 
planatory variables and a standard normal response with 50 
added to 20% of the responses to generate outliers. 

Table 5 presents means of Monte Carlo and delete-n/2 
jackknife standard error estimates for the LQD and LTD 
estimators. The Monte Carlo estimates are ideal but are not 
available in practice. Good performance can be measured 
by how close the standard errors are to the Monte Carlo 
results. The table shows that the delete-1/2 jackknife stan- 
dard errors for LTD, but not those for LQD, are close to 
the Monte Carlo standard errors. The LTD standard errors 
appear to be quite a bit more stable than the LQD standard 
errors. 

5. EXAMPLE 

5.1 Engine Knock Data 

An interesting data set that has received considerable 
attention in the robustness literature is the engine knock 
data initially studied by Mason, Gunst, and Hess (1989, 

Table 7. LTS Residuals for Several 15-Point Subsets 
of the Engine Knock Data 

Deleted point 

I 3 5 10 I 2 4 5 

.I6 
-4.02 
-.34 
-.45 
6.66 
.45 

-.45 
.45 

1.72 
-.02 

.26 
-.07 
3.48 
-.45 
3.98 

.45 

-.23 
-.23 

.22 
4.1 8 
5.02 

.10 
-4.1 9 

.22 

.22 
-.14 
-.85 

-2.42 
-.12 
5.69 
-.17 
-.23 

.19 -.23 
-3.42 3 -.23 
-.19 .22 
-.07 4.18 
6.05 5.02 
.10 .10 

-1.24 -4.19 
-.01 .22 
1.60 .22 
.19 -34 
.17 -35 

-.19 -2.42 
3.14 -.12 
-.19 5.69 
3.55 -.17 
.19 -.23 

- .24 
-.I6 

.23 
4.44 
4.82 
- . lo  

-4.45 
.11 
.49 
.12 

-.57 
-2.1 3 
-.04 
6.1 1 
-.11 

.02 

.13 

-.17 
-.03 
5.95 

.05 
-1.39 
-.08 
1.50 
.17 
.08 

-.29 
3.03 
-.03 
3.41 

.17 

-3.31 
-.23 
-.I 1 

.34 
4.03 
4.87 

0 
-4.28 

.06 

.24 
-.02 
-.83 

-2.35 
0 

5.63 
-.09 
-.18 

.13 
-3.31 

-.17 
-.03 
5.95 

.05 
-1.39 

-.08 
1.50 
. I7  
.08 

-.29 
3.03 
-.03 
3.41 
.17 
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Table 8. LQD Residuals for Several 15-Point Subsets 
of the Engine Knock Data 

Deleted point 

1 2 4 15 

-.68 
-4.32 
-1.12 
-.25 
4.45 

-1.57 
-2.96 
-1.42 
1.81 
.31 
.40 
.I 7 
2.71 
-.I2 
3.13 
.I2 

.04 
-3.55 
-.37 
-.04 
5.90 
-.06 
-1.46 
-.I2 
1.48 
.06 
.06 

-.33 
2.92 
-.I3 
3.33 
.08 

- .40 
-4.65 
-1.19 

0 
5.58 
-.70 
-1.83 
-.39 
1.91 
0 

.47 

.08 
2.83 
-.09 
3.37 
.25 

-4.55 
-37.76 
-25.86 
9.54 
7.57 

-9.84 
-2.92 
2.25 
17.45 
-2.85 
14.46 
12.58 
- .55 
-6.81 
6.1 1 
.55 

p. 529). Hettmansperger and Sheather (1992) discussed the 
instability of the LMS estimate using the PROGRESS (e.g., 
Rousseeuw and Leroy 1987) computational algorithm due 
to a minor change shift in one of the data points. Further 
discussion of this issue was given by Sheather et al. (1997). 
Stromberg (1993) presented an exact algorithm for comput- 
ing the LMS estimate, as well as two methods for detecting 
instability in the LMS estimate and showed that this insta- 
bility remains when the exact algorithm is used and so is 
inherent to the estimator, not to the computational approx- 
imation. 

It is of interest to check whether LQD and LTD are also 
susceptible to this instability. Tables 6-9 present the resid- 
uals for selected 15-point (1-point-deleted) subsets of the 
data from LMS, LTS, LQD, and LTD using 500 random 
starts of the FSA algorithm. All four estimates yield vastly 
different residuals depending on what point is deleted. At 
least in this case, it appears that despite the higher efficiency 
of LTS, LQD, and LTD, they are no more stable than LMS. 

Table 9. LTD Residuals for Several 15-Point Subsets 
of the Engine Knock Data 

Deleted point 

I 3 8 15 

.I2 
-3.28 
-.I8 
-.06 
5.87 

0 
-1.48 
-.I6 
1.42 

.I 3 
0 

-.37 
2.96 
-.I4 
3.33 
0.05 

-.26 
.02 
.47 
3.81 
4.82 

.01 
-4.26 
-.01 

. I0 
- .04 
- .97 
-2.44 
.05 
5.55 
-.08 
-.I9 

-.01 
-.30 
.05 
5.08 
5.02 
-.01 
-4.41 

.37 

.85 

.25 
-.23 
-1.89 
-.I3 
6.23 
-.I0 

.01 

.06 
-3.22 
-.I7 
-.06 
5.88 
.05 

-1.49 
-.I2 
1.27 
.02 

-.I3 
-.54 
2.84 
-.01 
3.20 

.01 

As discussed in Section 2.3, this instability could be due 
to the fact that LTD influence function is unbounded in 
the II: space. As pointed out by the associate editor, it 
also suggests that the residuals from the LTD fit may per- 
form poorly in model identification as discussed by Cook, 
Hawkins, and Wiesburg (1992) and McKean, Sheather, and 
Hettmansperger (1993). 

5.2 Conclusions 

The LTD (and LQD) estimators have strong intuitive ap- 
peal based on their desirable breakdown and asymptotic 
properties. Like other high-breakdown estimators, they can 
be unstable under minor shifts in the data, but their higher 
Gaussian efficiency is likely to make them less sensitive 
than LMS and LTS to such shifts. The simulation results 
for both Gaussian and nowGaussian data support using the 
LTD over the LQD. 

APPENDIX A: PROOF OF THEOREM 1 

Throughout the proof, we assume that m data points of Z are 
replaced. Denote the new sample by Z’ = {zd = (x:, yi)}. Let G 
be set of indices of the unchanged, “good,” data points, and let B 
be the indices of the changed, “bad,” points. Put also zij = (xij, 

y” 23 - ,BTx.. 2 3 3  r ! . ( p )  a3 = ylj - pTxij, and Hp = { z  = (x, y); 
y = P’x}. The proof comprises three steps. 

Step 1. m 2 q ( k )  - p + 1 + breakdown. It suffices to prove 
that (“y-’) 2 k implies breakdown. Choose an arbitrary set 
Go c G with = p - 1. Let B denote the set of ,&vectors for 
which there exists and a = a(P) such that yi = PTxi + a, for 
all i E Go. Fix ,8 E B, and let a be the corresponding intercept. 
For all i E B, let z; E H = { z  = (x,y);y = P’x + a}. But 
then zij E H p  for all i < j with i,j E GO U B. Hence we have 
at least = (my-’) 2 k pairs zlj that belong to Hp; 
that is, Dn(P) = 0. Because {xi} are in general position, B is 
a one-dimensional affine hyperplane, and thus p can be chosen 
arbitrarily large. 

Step 2. m 2 n + l  - q ( k )  + breakdown. It suffices to prove that 
( ) 5 k - 1 implies breakdown. Place all new points zd, i E B 
in Hp,, where p’ is chosen later. Then (i # j ) ,  

i , j  E B 

yij - (@)‘zij; i , j  E G. 

y-) = (Xi - xj, yi - y3) = zi - z j ,  z ! .  = zi - z . ,  V ( p )  = 23 23 3 23 

n-m 

- (fl’)Txi; i E G, j E B 

Hence 

lr!.(kJ’)lh:(;) I 2(max lyil + IP’I y x I x i l ) ,  (-4.1) 

using the same notation as in Remark 1, with r’ referring to the 
new sample. On the other hand, for an arbitrary p, we have 

(0’ - pyx!. . 

y . .  - pTx. 23 .. , 

i , j  E B 

i , j  E G. 
rtj(p) = (p’ - ,B)TX:~ yi - p’Xi; i c G, j E B { 23 

Let $ be the old minimum of Dn(.) and fix b > 0 as a large 
number. Because ( I f 1 )  5 k - 1, it follows that 

inflr!.(p)lh:(;) 2 ipf I(/?’ - P ) T x ’ ~  
P 2 9p 

- (m:x lYil  + (IPI + b) max 14) 
= 7 - (max Iyil+ (la1 + b )  max Ixil), (A.2) 
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where the infima are taken over B(8 ,  b)  = { P ;  IP - Dl I b} and 
z’ E {xi; i E B }  U {xij, i < j , i , j  E B}.  Because z’ ranges over 
a finite set, we can always choose 0’ outside B(B,  b) in such a 
way that r > 0. If now z; + Mz: for all i E B, then the upper 
bound in (A.l) is unchanged, whereas r may be replaced by M r  in 
(A.2). Hence, for M large enough, we have infpEB(P,*) Dn(P) > 
Dn(p’) for the objective function based on the new data points. 
Because b was arbitrarily chosen, we have a breakdown. 

Step 3. m I min(n + 1 - q ( k ) ,  q ( k )  - p + 1) - 1 =+ no break- 
down. It suffices to prove that (%.-’) < k - 1 and (”,”) > k 
imply no breakdown. Because (I:’) > k ,  it follows that 

:= k ( 2 M ) 2 /  ( ) < 00. 

Because the pairs {xij} are in general position, infip,,l 
{IPTzijl;i < j}(~~i)+~:( ; )  = T > 0. Let p = r / n  and fix 0. 
As in the proof of theorem 2 of Croux et al. (19941, divide G into 
classes Go,. . . , G, (depending on p) such that 

i , j  E Gil l  2 1 * IP’zi3I I TIPI, 
i , j  E Go =+ IPT.i,I > PIPI, 

and 

In the latter two cases, Irij(P)I = lrij(P)I = lyij - PTzijI > 
plpl-2M. Next, subdivide B into disjoint sets Bo, , . . , B,+l, with 
Bj = {i; there exists I E Gj  such that lril(p)l 5 (pip1 - 2 M ) / 4 }  
for j = 0, .  . . , s and Bs+l = B \ (Bo u . . . u Bs). Consequently, 
Irij(P)I 5 (pip1 - 2 M ) / 4  for at most 

i E Gi, j  E Git,l # I ‘  =+ lPTzij/ > plPI. 

pairs. We have used x121(’G2) 5 (pi1), and hence lGll 5 p - 1 
for each I > 1. This follows because {zij} are in general position. 
Hence l r ! , (P) lk:p)  > (pIPI - 2M) /4 ,  which implies Dn(P)  2 
k l r ! . (P) l i : ( ; ) / (T)  > Dn(O) for all sufficiently large 101. 

APPENDIX B: PROOF OF THEOREM 2 

The basic ideas of the proof are similar to the proof of theorem 
4 of Croux et al. (1994), so we are rather brief here. Put c = 
g2-l ( E ,  g1 ( E ) ) .  We divide the proof into three steps. We assume 
E < m i n ( f i ,  1 - a) throughout the first two steps. 

Step 1. B,(T) I c. It suffices to prove 

IP - Pol > c =+ D ( P ;  K )  > g1(&) D(0; K )  (B.l) 

for any K E V,. Given two nonnegative distribution functions H” 
and H’, let H” $ H‘ mean “H” is strictly stochastically larger 
than H’,” in the sense that H”(t) < H’(t) for all t > 0. Note that 

H K ( . ; ~ )  = (1 - E ) ~ H K ~ ( . ; P )  + 2 ~ ( 1 -  E ) L K ~ ~ K *  

x ( E l  - E2 - (P - - X 2 ) )  

+ E ~ H K * ( . ; P )  5 H z ( . ; P )  H 2 ( . ; p ’ )  

with 10’ - ,601 = c. The second-last relation follows from condi- 
tions A and B (cf. lemma 1 in Croux et al. 1994). By the definition 
of c, J(u)H;’(u; p’) du = g1(&), so the first inequality in (B.l) 
follows. The second inequality is immediate. 

Step 2. B,(T) > c. Take any 0 < c1 < c and pick P‘ so that 
ID’ - ,801 = c1. Define a sequence Kn = (1 - €)KO + EK; E V,. 
The contaminating distribution K;, corresponds to (z:, y;), with 
y: = (p’)TzE and z;”, uniformly distributed on the line segment 
[X,~’,2Xn,B’]. Because c1 is arbitrary, it suffices to prove 

SUP IT(%) -Pol L c1. 03.2) 

If (B.2) fails, then we may construct a subsequence of Kn (which 
we still call Kn) such that T(K,) = Pn and Pn + p, with 

- Pol < el. AS done by Croux et al. (1994, lem. 2), one 
proves liminfn+, D(&; Kn) gi(E), with An + 00 as a key 
ingredient in the proof. Moreover, because y: = (p’)Tzz holds 
exactly under K:, it is clear that D(p’; Kn)  = g 2 ( ~ ;  p’) < gl(E). 
Thus T(Kn) = pn leads to a contradiction, and (B.2) must hold. 

n 

Step 3. Breakdown. Note that 

Further, for any 0 < a < co ,g; ’ (~ ,a)  < 00 if E < fi and 
g;l(E, a)  = 00 if E > fi. 

APPENDIX C: PROOF OF THEOREM 3 

For brevity, put PLTD = Pn and assume without loss of gener- 
ality that ,f30 = cro = 0, so that zz = (zz,yz) = ( X % , E ~ ) .  Put also 
zzj = zz - z,, zz, = 2% - x, , czj  = E% - E,, and let C denote a 
positive constant whose value may change from line to line. To 
prove Theorem 3, we first need a series of preliminary lemmas. 

Lemma C.I. The limiting objective function D( . )  satisfies 

D(tP)  2 D ( P )  if t > 1, (C.1) 

D’(0) = 0, (C.2) 
D”(.) is continuous with 

= 2XE(4’ (€ ) ) ,  (C.3) 

which is positive definite, where HG1 (u) = d m  and f * 
is the density of ~ i j .  

Proot Formula (C.l) is derived as was done by Hossjer et 
al. (1994, lem. B.l), using the fact that unimodality of f implies 
unimodality of f *. The rest of the proof follows after some ma- 
nipulations; for example, differentiation twice with respect to p 
in (8) (see Stromberg, Hawkins, and Hossjer 1995 for details. 

Lemma C.2. For some r > 0, we have P(Bn E K )  + 1, with 
K = {p; 101 5 r } .  For any r > 0, on = ~ , ( n - ~ / ~ + ~ ) .  

Pro05 For the proof of the first part, we refer to work of 
Stromberg et al. (1995). The second part has two main ingredients. 
First, 

is proved using empirical process theory (see Stromberg et al. 
1995 for details). Second, by (C.l)-(C.3) there exists a positive 
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constant X (take, e.g., one-quarter of the smallest eigenvalue of 
D”(0)) such that 

for all c small enough. The lemma now follows by combining the 
last two displays with P(& E K )  4 1. 

For the next two lemmas, introduce the neighborhoods Un = 
{p; IpI 5 &}, with 6, 4 0 a given sequence of positive numbers. 

for any T > 0, with 6 as defined in Condition C. 

Prooj By construction, Eq(Z1,Zz; p) = 0. We start by mak- 
ing a Hoeffding decomposition of Sn, 

imply that 

2 Dn(0) + XIPnI2(1 + O p ( 1 ) )  + l&10p(n-1’2) 

+ op(n-l + n-E(1+6/2)-1/2+7 1 
+ o p ( ( n - € / 2 - 1  + n-2€-1/2 + n-5/4 In7 ) 

for some positive X and any r > 0. The quantity 6 > 0 is the same 
number as in condition C. Because Dn(Bn) 5 Dn(0),  we obtain 
b n  = O p ( K S ’ ) ,  with 

for any T > 0. Starting with Lemma C.2, we may now iterate and 
obtain bn = Op(n-<k), with 1/4 - T = Eo < El < . . . < E N  = 
l/2, so that after a finite number of steps, we reach 1/2. Hence on = Op(n-1/2)  and 

1 ^ T  / I  on(bn) = Dn(0) + ZPnD (O)& + bZVn + op(n-’), 

which implies 

o n  = -D”(o)-’v~ + o p ( ~ l / ~ ) .  

The theorem now follows from (13) and (C.3). 

[Received August 1995. Revised September 1999.1 

:= Snl(P)  + Sn2(P), 

with q l ( z ;  P )  = E(v(z ,  Z ;  P ) )  and ~ Z ( Z I , Z Z ;  0) = q(z1, Z Z ;  P )  - 
q1(~1;p) - q l ( z2 ;p ) .  Thus S, is written as a sum of an em- 
pirical process Snl and a U process Sn2 with a degenerate ker- 
nel 7 2 .  Stromberg et al. (1995) proved that suppEu, ISnl(p)I = 

6~+6’20p(n-1/2+1) for any 7 > 0, using empirical process 
theory, and suppEu, \Sn2(p)\  = S,O,(n-l), using U process 
theory. 

Lemma C.4. 

sup I R ~ ( P )  - R,(O)I = 0,((6;/~n-’ + 6;n-lI2 +n-5/4)n7), 

Let Rn be as defined in (11). Then 

PEUn 

for any T > 0. 

Prooj Put R,(u;p) = ~ ; l ( u ; p )  - ~ ; l ( u ; p )  - (u - 
Hn(H;’(u; p); p ) ) / h ~ ( H ; ~ ( u ;  p); p), which is a Bahadur rep- 
resentation remainder term. Then, according to (1 l), 

Rn(P) - Rn(0) = ( R n ( ~ ; p )  - Rn(u; 0 ) )  du. l7 
Stromberg et al. (1995) proved that Rn(u; P )  is uniformly small 
for (u, 0) E ( 0 ,  y) x K ,  with a rate that implies the lemma. 

Proof of Theorem 3 

We specify the expansion (12). Using (9), (C.4), and the continuity 
of D”(.), we obtain 

- P’vn + Sn(P) + (Rn(P) - Rn(0)).  (C.5) 

Suppose we know that f i n  = O,(n-E) for some E E (0,1/2]. 
Recall that IVnl = Op(n-1/2)  according to (13) and that D”(0) is 
positive definite by (C.3). These facts and Lemmas C.3 and C.4 
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