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Summary. The infinitesimal stability of the asymptotic variance is considered 
for M-estimators of a location parameter when the nominal sample with i.i.d. 
data is contaminated by a possibly dependent process. It is shown that the 
resulting change-of-variance function can be expressed as a sum of two terms, 
one corresponding contamination of the univariate distribution, and one to 
contamination of the bivariate distributions. A change-of-variance sensitivity 
is introduced, the form of which is closely related to the average patch length 
of the outliers. Finally, optimal V-robust and most V-robust score functions 
are derived. The resulting family of estimators is the same as for independent 
data in the general case, but the truncation point approaches zero when depen- 
dency is accounted for. For  redescending score-functions, the family of estimators 
is changed. 

1 Introduction 

M-estimators of location for independent and identically distributed (i.i.d.) data 
were introduced by Huber (1964), where he studied their minimax robustness 
properties. The infinitesimal robustness of the asymptotic value was investigated 
by Hampel (1974) by means of the influence curve and later on Rousseeuw 
(1981) introduced the change-of-variance curve, describing the robustness of 
the asymptotic variance. 

The independence assumption in statistical data is often violated. 
Robustness against serial correlation is therefore a desirable property of a 
statistical procedure. However, generalizations of infinitesimal robustness 
concepts to time series impose difficulties since the functionals describing the 
estimates do no longer depend on the one-dimensional marginal distribution 
of the data only. Kfinsch (1984) generalized Hampel's influence curve to M- 
estimates of AR-parameters,  where the functional depends on a finite- 
dimensional marginal distribution of the underlying process. An even more gen- 
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eral notion of influence curve for estimates depending on the marginal distribu- 
tions of all orders (such as M-estimates of MA-parameters) was introduced 
by Martin and Yohai (1986a). In that paper they also described the outlier 
configuration in a rather general way through a replacement model. This model 
makes it possible to distinguish between outliers occuring individually and in 
patches. 

The purpose of this paper is to use Martin and Yohai's uncertainty model 
(in a somewhat more general form) in order to generalize Rousseeuw's change-of- 
variance curve CVF (Sect. 3) and change-of-variance ~* (Sect. 5) to dependent 
data. We restrict ourselves to M-estimators of a single location parameter and 
the data are assumed to be nominally independent. Both CVF and ~c* contain 
additional terms compared to the independent case, and these terms can be 
related to the distribution of the patch length of the outliers in a rather simple 
way. A quantity e, which we call the infinitesimal average patch length, is of 
fundamental importance here. In Sect. 6 we derive optimal V-robust M-estima- 
tors by minimizing the asymptotic variance subject to an upper bound constraint 
k on ~:*. In the general case (Subsect. 6.1), the resulting family of M-estimators 
is the same as for independent data, whereas for redescending M-estimators 
(Subsect. 6.2) it is different. However, given a fixed value of k, the resulting 
optimal V-robust estimator depends on the amount of dependency allowed for, 
even in the general case. Finally, in Sect. 7 we outline some possible generaliza- 
tions of the studied model. 

The special case of nominal independence treated here is important, since 
serial correlations is often an unsuspected (or at least unwanted) feature of 
the data, and should be regarded as a deviation from the assumed parametric 
model. 

Moustakides and Thomas (1984), Sadowsky (1986) and Zamar (1990) have 
investigated the stability of the asymptotic variance against dependence for M- 
estimators of location. They use minimax techniques, and their uncertainty class- 
es are based on ~-contamination for the univariate marginal distribution and 
various mixing conditions for the bivariate distributions. Portnoy (1977, 1979) 
considers M-estimators of location with moving average type errors having 
a weak correlation structure, and he obtains (approximate) minimax solutions 
for the asymptotic variance. Lee and Martin (1986) treat the A R M A  model 
and compare (ordinary) M-estimators of location with proper M-estimators 
(i.e., joint estimation of the location parameter and the ARMA-parameters), 
and show that the ordinary estimator can be quite inefficient compared to the 
proper one, when the correlation structure is moderate to large. As mentioned 
above, only infinitesimal robustness of the bias has been studied so far in the 
time series setting. However, there are situations when the asymptotic variance 
is a more relevant performance criterion. For instance, the Pitman efficacy is 
a useful quantity in testing situations (cf. Noether 1955) which is closely related 
to (for M-estimators just the inverse of) the asymptotic variance. Let us also 
mention that with our contamination model, the variance of the estimator always 
tends to zero as 1In (at least formally) with increasing sample size n. In some 
cases, 1/n ~, 0 < e <  1 is a more realistic convergence rate (i.e., when so called 
semi-systematic errors occur). One way of modelling such data is by means 
of self-similar processes (cf. Mandelbrot 1977). Parameter estimation in such 
long-range dependence processes is treated by e.g. Beran and Kiinsch (1985), 
Fox and Taqqu (1986) and Kfinsch (1987). 
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2 Preliminaries 

2.1 M-estimators. 
y~ 00 0o Let y~,.. . ,  Yn be observations of a stationary ergodic process { i}i=- with 

associated measure #y on (R- o0, ~, N -  ~, ~) and let Fy be the univariate distribu- 
tion of the process. The location parameter 0 is defined as the solution of the 
equation 

(2.1) S~(~-- 0) dF,(~) =0, 

given some function 0. We define the functional T: #y ~ T(#y) by putting T(#y) 
= 0. An M-estimate T, of the location parameter 0 is a solution of the equation 

(2.2) ~ ~ ( y , -  T,) = 0. 
i = l  

Suppose from now on that T(#y)=0. (This will be the case for all processes 
whose asymptotic variance we consider.) Under suitable regularity conditions 

p 
we then have T,----~0 (consistency) and that ]/~T, is asymptotically normal 
with zero mean and variance 

I0(~)2dFy(~)+ 2 ~ ~0(~1) O(~2)dF(k)(~l, ~2) 
k = l  

(2.3) V(0, #,)= (I 0'(r d Fy(r 2 

where Fr *) is the bivariate distribution of the pair (I:1, I:1 +k). Regularity condi- 
tions for consistency and asymptotic normality are given by Huber (1967) for 
i.i.d, data and by Portnoy (1977) and Bustos (1982) for dependent data. In 
order to prove asymptotic normality, some mixing condition is needed, e.g. 

that {Y~} is qS-mixing with ~, 41/2 < oo, cf. Billingsley (1968, Sect. 21). 
i = 1  

2.2 Uncertainty model. 

The contaminated process is constructed according to the following general 
replacement model: 

(2.4) Y~ = (1 - Z'[) X i + Z• W~, 

where 0 <7 < 1, Xi is the nominal i.i.d, process, W~ the contaminating process 
and Z~ a 0-1 process with 

(2.5) P(Z'[ = 1) = go (7) = 7 + o(y). 

This uncertainty model has been used by Martin and Yohai (1986a). We denote 
by #x, #w, #~ and #~ the measures on (R-~~176 N-~ ,~)  corresponding to the 
processes above. 

According to (2.4), the measure #~ is determined by the joint measure #x~wz. 
When Z~ and W~ are i.i.d, processes, we obtain the ordinary contamination 
model for independent data. By introducing dependency in the Zy- and 
W~-processes, it is possible to model patchy outliers. Zamar (1990, Lemma 1) 
also considers a contamination model of the kind (2.4), with Z[ an i.i.d, process. 
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2.3 Notation and regularity conditions. 
First some notation: We let F x and F] denote the univariate distribution of 
the X,- and Y~-processes and F~ the distribution of W~ conditioned on the 
event {Z~ = 1}. The bivariate distribution of the pair (Y~, Yi~+k) will be written 
Fy ~'(k) and that of (Wi, W~+k), conditioned on the event {Z{=Z[+k= 1}, we denote 
by F~'(k). We also write F]'~ g) and F~'~ k) for the bivariate distributions of (X~, Wi + k) 
and (W~, Xi+k), conditioned on the events {Z~ =0, Z~+k = 1} and {Z~ = 1, Z~+k =0} 
respectively. In cases when the conditional W-distributions are the same for 
all values of 7 (which will be assumed throughout the paper except for Sub- 
sect. 7.1), we will drop ? as superscript and simply write F~ and F~ *). 

The nominal univariate distribution Fx is kept fixed and satisfies: 

(A1) F~ has a twice continuously differentiable density fx which is symmetric 
and strictly positive. 

(A2) The maximum likelihood function A = - f ' / f x  satisfies A'(~)> 0 for all ~, 
and ~A'(0 f~(0 d~ = - ~ A ( 0  f~(0 d~ < oo. 

(A1)-(A2) imply that F~ has finite Fisher information and that f~ is unimodal. 
Moreover, all regularity conditions on the nominal distribution in the minimax 
asymptotic variance theorem in (Huber 1964, p. 80) are satisfied. 

The class ku of all admissible functions ~ is specified through 

(B1) ~ is continuous on R\C(~), where C(0) is finite. In each point of C(~9), 
there exist finite left and right limits of ~9 which are different. Furthermore, 
tp ( -  ~) = - ~ (0  if { ~, - ~) ~ R \ C  (0) and 0 (0 > 0 if ~ > 0 and ~ e R \ C  (0)- 

(B2) The set of points D(O) where ~ is continuous but ~' is not defined or 
not continuous, is finite. 
(B3) ~O(~)adFx(~)< oo. 

(B4) 0 < ~9'(Q dF~(~) = - - ~ ( ~ ) f ' ( 0  d~ =~A(~) ~k(~) dFx(~) < oo. 

By allowing ~ to have a finite number of discontinuities, a large class of 
M-estimators will be contained in the class ~P, including the median, the Huber- 
type skipped median and the median-type tanh-estimator. Since ~ may have 
discontinuity points, r is to be interpreted as a Schwarz distribution, as 
described by Rousseeuw (1982), so that 

(2.6) ~ ' ( O d F ( O =  ~ O'(~)dF(~)+ ~ (~(c,+)--tp(c~-))f(c~), 
R\(C ( # )  u D ( O ) )  i = 1 

where the first term is the classical integral, c 1< . . .  <C m are the points of C(O) 
and f is the density (assumed to be continuous in a neighbourhood of C(O)) 
of an arbitrary distribution F. Conditions (A1)-(A2) and (B1)-(B4) are the same 
as those given by Rousseeuw (1982). 

Next, we make the following assumptions about the outlier generating pro- 
cesses Z~ and the contamination process Wi : 

(C1) The Z~-processes are independent of the nominal process and P(Z~ 

=Z~+k = 1)=gk(?)=C~k ?+rk(?), k=0,  1, 2 . . . . .  with rk(7)=O(?) and ~ C~k< oe. 
k = 0  
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(C 2) X i and ~ are conditionally independent on the event {Z~ = 0, Z~-- 1} when 
i+j. (However, when i=j  the two random variables may be dependent and 
consequently, the processes may be dependent.) 

(C3) The conditional distributions F~ and F~ "(k) are independent of y (and hence 
will be written Fw and F(~ k) respectively). 

(C4) F~ has a symmetric density f~,, ~ r (4) 2 d F,~(4) < oo and 

1If0(4,) 0(42)dF~k)(4,, 42)] < oo. 
k = l  

(C 5) The integral ~ r (4) d Fw(0 exists in the sense of (2.6) and is finite. 

Condition (C1) expresses the bivariate dependency structure of the outlier 
generating process Zy. Comparing (C1) with (2.5), we observe that % =  1. We 
will see in Sect. 4, that the constants a k are closely related to the distribution 
of the outlier patch length. In particular, for i.i.d, data (with isolated outliers) 
we have C~k=0 when k:~0, since ek= lim P(Z~ +k = 1 I Z~ = 1). Condition (C2) 

7 ~ 0  

guarantees that all mixed terms of the kind E(r162  (Vr =0,  Z~= 1) vanish 
in the expression for the asymptotic variance. Intuitively, this condition can 
be interpreted by the statement that the distribution of an outlier occuring 
at time j which is not present at time i is independent of what happens at 
time i. (C2) is valid for additive outlier models such as in Subsect. 7.1. Condition 
(C 3) obviously includes the case when the Z[-  and W~-processes are independent. 
In general, when the two processes are dependent, it is clear that the conditional 
W-distributions may vary with 7. In that case one could assume that F~ and 
F~ '(k) converge weakly to some limiting distributions Fw and F~ k) as 7 ~ 0. Such 
a convergence is established for the additive outlier model in Subsect. 7.1. It 
turns out then that formula (3.2) for the change-of-variance function still holds 
true. However, this requires more regularity on r (see Theorem 7.1), leaving 
out many important estimators. We therefore prefer to work with (C 3) in the 
following. It is also important to observe that in general the one-dimensional 
marginal distributions of F~ k) need not equal Fw, since the two distributions 
are conditioned on different events (see Subsect. 7.1). Conditions (C4)-(C 5) guar- 
antee the existence of the change-of-variance function in (3.1). Furthermore, 
the symmetry of f~ and fw together with the antisymmetry of 0 imply that 
0 = 0  is a solution of (2.1) for the contaminated process Y#. 
Finally, we introduce the notation 

(2.7) 

and 

A(r 

(2.8) B (0) = ~ 0'(4) d F x (4) 

so that the nominal asymptotic variance is given by 

(2.9) v(o, ~,):  A(r162 2. 

2.4 Infinitesimal bias. According to (2.2), the infinitesimal variations of the 
asymptotic value of the M-estimator only depends on the univariate distribution 
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of the contaminating process. By differentiating (2.1) with respect to y one obtains 
(Hampel 1974; Martin and Yohai 1986a) 

0 
(2.10) 07- [T(#~)]~: ~ =SIF(O' F~,, 4) dF,(~), 

where IF is the influence function, which is given by 

(2.11) IF(O, Fx, 4) = ~ (~)/B(O), 

on R\C(0) .  The maximal infinitesimal bias is described by the gross-error sensi- 
tivity 

(2.12) 7*(0, Fx)= sup IIF(O, Fx,~)[. 
r 

It is sometimes more convenient to work with the standardized gross-error 
sensitivity 

* F (2.13) 7s (0, ~) = 7" (~b, F~,)/V]/V(~, F~,) 

which is invariant with respect to affine transformations of the parameter space. 

3 Change-of-variance function 

Having defined the uncertainty model, we are now ready to introduce the 
change-of-variance function (CVF), which we define in the following way: 

(3.1) c v F ( 0 ,  [log v(o, o. 

Note that according to this definition, the CVF does not only depend on ~,, 
#x and the contaminating measure #w, but also on the trajectory of contaminated 
measures {/~,0<?__< 1}. By differentiating formula (2.3) with respect to ~ we 
obtain the following expression for the CVF: 

Theorem 3.1 Assume that the regularity conditions of Subsect. 2.3 hold. The CVF 
defined in (3.1) is then given by 

(3.2) 

~O(~)2dF~(~) +2  L ek ~0({~)~(~2)dFff)(~,  ~2) 

CVV( , A(r 

2 S0'(~) dF~(~) 
B(0) 
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For  i.i.d, data, with ~k = 0 when k 4= 0, (3.2) reduces to the expression 

(3.3) CVF(@, {#y~})= 1-1 S~/(~)2dFw(~) 
A(O) 

2 Sg,'(~)dFw(~) 
B(O) ' 

derived by Rousseeuw (1981). 

4 Interpretation of the outlier generating process 

In this section, we will motivate and interpret the regularity conditions imposed 
on the ZT-process in (C1) of the previous section. Given that an outlier occurs 
at a certain time, let T be a positive, integer-valued random variable describing 
the duration of the outliers, with 

(4.1) P(T>j)=Oj,  j = 0 ,  1, 2 . . . .  

Assume that the probability of a (first) occurence of an outlier at a certain 
time is p, 0=<p< 1 and let the random variable ZP~, j < i  be the indicator for 
the event that an outlier first occuring at t imej  is still present at time i. According 
to (4.1), we then have 

(4.2) P(2P~ = 1) = p01_j. 

Since Z[ (where 7 will be related to p below) is the indicator of the event that 
an outlier occurs at time i we have 

(4.3) Z~ = 1 - ~I (1 - 2;,i). 
j_-<i 

We will also assume that 

(D1) E (T2)<  oo. 

(D2) The random variables Zf, i, j < i  are jointly independent of the Xi-process 
and all sequences - ;  oo {Zj, i~}j= _ 00 of random variables are independent. 

Condition (D2) simply says that the time durations of outliers occuring 
(first) at different times are independent and furthermore, they are independent 
of the nominal process. It is now possible to show that the regularity conditions 
imposed on the Z~-process in Subsect. 2.3 are satisfied for the particular 
Z[-process generated here: 

Theorem 4.1 Suppose that the family of outlier generating processes Z~, 0 < 7 < 1, 
satisfies (4.3) for each 7 and that (D1)-(D2) hold. Then condition (C1) of Sect. 2 
holds with parameters ~ and ~k, k =0,  1, 2, ... given by 

(4.4) 7=P  ~ Oj=pE(T) 
j=O 

and 

(4.5) O~k =j~=kOj/j~=O0 J. 
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Remark. In order to show that conditions (C2)-(C5) are satisfied, we have to 
choose a specific contamination process W~. 

As an alternative description of the configuration of the outliers, we introduce 
T,~ as the total length of the (possible) patch of outliers at time i. If Z~ =0, 
we let L~ = 0, and if Z~ = 1, put 

(4.6) L]=max(Ik-j+lt;j<=i<=k,Z~=Z~+l . . . . .  Z~=I} .  

Furthermore, let 

(4.7) L] = L~ I Z)' = 1 

describe the patch length of outliers conditioned on the event that an outlier 
is present. We then have the following result: 

Theorem 4.2 Given the same assumptions as in Theorem 4.1, there exists a positive, 
d 

integer valued random variable L such that Ui ~ L for all i, 

jP (T  =j)  
(4.8) P(L = j ) -  , j =  1, 2, ..., 

E(T) 

s 

L >-T (i.e., is stocastically larger than), with equality iff T = 6l for some l, and 
finally, 

(4.9) E(L) E T 2 = ~ = 1 + 2 ~  ~ .  
ET 

k = l  

The quantity a, which we call the "infinitesimal average patch length", turns 
out to be of great importance as a measure of dependence when calculating 
the change-of-variance sensitivity in Sect. 5 and deriving V-robust estimators 
in Sect. 6. 

Example 4.I As an illustration, assume that all outliers have patch length l, 
i.e. T = bz. In this case the Z~-process is given by 

i 

(4.10) Z ~ = l -  [ l  ( 1 - 2 f ,  i), 
j = i - l +  l 

with 7=lp, ek=l--k/1 when O<k<l and ak=O when k>l. Moreover, L=bt 
and a=l. This uncertainty model was used by Martin and Yohai (1986a) for 
constructing patchy outliers. 

Example 4.2 If T has a geometric distribution with parameter r, then 7=p/r 
and ak=(1--r) k. Furthermore, L +  1 has a negative binomial distribution with 

parameters 2 and r, and a =_2_ 1. 
r 
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5 Change-of-variance sensitivity 

In this section we give an upper bound for the CVF given by (3.2) when the 
trajectory of contamination measures is allowed to vary. This is achieved by 
keeping #~ and { /~ ,0<~<1}  fixed and letting #~ vary. In order to obtain a 
simple expression for the upper bound of CVF, the supremum will be taken 
over a class ~K of contamination measures #~ whose members satisfy (C 2)-(C 5) 
of Sect. 3, and furthermore, the one-dimensional marginals of F~ k) equal F~ for 
each k. The latter constraint is satisfied for all contamination processes that 
are independent of the Z[-processes for all ~. Note that in particular, formula 
(3.2) is valid for each element of ~ .  

For a fixed #w, we may apply Cauchy-Schwarz inequality on each term 
of the infinite series in (3.2) to obtain an upper bound for CVF: 

20'(r (5.1) CVF(0 , {/.t~})__<5 1 4 a0(~)2 dF~(r 

where e is the infinitesimal average patch length defined in (4.9). Now taking 
the supremum in (5.1) over ~K and remembering the interpretation (2.6) of the 
integration of ~b', we have 

(5.2) sup CVF (0, {#~}) = ~c* (0, F~) 

where we define the change-of-variance sensitivity ~* (~b, F~) as follows: 

Definition. The change-of-variance sensitivity ~*(~, F~) is defined as + oe if a 
delta function with negative factor occurs in ~', and otherwise as 

(5.3) ~c*(0, F~)=sup{1-~ c@(~)z 20'(4) ~R\(C(O)wD(O))}  
A(~b) B(O) ' 

This definition generalizes that of Rousseeuw (1982) for independent data, which 
corresponds to the case c~ = 1. 

In order to show that ~:*(~b, Fx) is a tight upper bound for the supremum 
in (5.2) we give the following example. Let U~ and Vii be processes jointly indepen- 
dent of the X~- and Z~-processes. The U~- and Vi-processes are also mutually 
independent i.i.d, processes with univariate distribution Be(p) and Fv respectively. 
The contamination process is now defined as a Markov process: 

(5.4) 
(V~, if U~=0 

W~=J.W~_I, if U~=I. 

This process has univariate distribution F~ = Fv and bivariate distributions F~ k) 
= (1 __pk)Fv x F~ + pk3F~ , where 6v~ is a diagonal measure, defined in such a way 
that ~Sh(~l, ~2)d6F~(r r r162 for any bounded and continuous 
function h. If now F~ has a symmetric density satisfying ~b(~)ZdF~(~)< oo and 
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[~O'(~) d F.(~)[ < oo it follows that conditions (C2)-(C 5) of Subsect. 2.3 are sat- 
isfied with change-of-variance function 

(5.5) 

where 

CVF(O, {#~})= 1 + a(p) ~(~)2 dF~(r 
A(O) 

2 j'@'(~) dF,~(~) 
B($)  

(5.6) e(p)= 1 +2  ~ pke k. 
k = l  

By letting p ~ 1 and varying F~ we see that the supremum in (5.2) must equal 
~* (0, <). 

Remark. In view of (5.1) and (5.3), it is natural to introduce a change-of-variance 
curve (CVC) in the following way: 

~$({)2 20,(r ) 
(5.7) CVC($, ~)= 1-t A(0) BOP) ' 

where the last term may contain delta functions as in (2.6). Let ( =  ( .... 4, r r . . . .  ) 
be a constant sequence in R -~176 Then formally, CVC(O, r corresponds to 

- 1  - 1 in (3.2), with independent of Unfortunately, choosing #w-  2 3r "-~ ~ 3 _ ~ #w ]gz ~" 

this process does not satisfy (C4), so the CVF does not exist. To remedy this, 
- - 1  1 we can let #~ be the Markov process above with F~-~6~+~6_~. Letting 

{#~"~, 0 < 7 < 1 } be the corresponding family of contaminated measures we obtain 

(5.8) CVC(O, r lira CVF(~, {#P'~}). 
p ~ l  

6 V-Robustness 

6.1 General case. 

In this section, we will state a number of optimality properties related to 
~*($, F J ,  given a fixed ~. Unless otherwise stated, the results are straight- 
forward generalizations of the case ~--1 and proved in the same way (see 
Rousseeuw 1982). 

Following the notation of Rousseeuw (1981) we say that an M-estimator 
with corresponding 0-function is B-robust if 7"($, Fx)< oQ (which is equivalent 
to 7"(~, F J <  ~ ,  since 0 <  V(~, F J <  oo). Given a fixed c~, we call the M-estimator 
V~-robust if ~c*(O, FJ  < o9. Putting II g' l[ = sup g,(r we then have: 

Theorem 6.1 For all ~ in ~P, V~-robustness implies B-robustness, and 

(6.1) 1 + ~7" (~p, Fx) 2 = 1 + ~ I[ ~P ]12 ~ ~c. 0p ' Fx), 
A(~,) 
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with equality if ~ is nondecreasing. Moreover, V~-robustness is equivalent to 
Vl-robustness, with 

(6.2) to* (~, Fx)__< to* (~, Vx)_< e(tr (0, Fx)-- 1)+  1, 

and the last inequality can be replaced by equality if ~ is nondecreasing. 

A frequent ly  used class of  robus t  es t imators  are the t runcated  m a x i m u m -  
l ikel ihood es t imators ,  co r responding  to 

(6.3) 0b(~) = [A (4)3~b, 

where  0 < b < ]l A ]1 = sup ]A (4)1. The  limiting case b ~ 0 cor responds  to the sample  
CsR 

median,  with score funct ion 

(6.4) Omed (4) = sgn (4). 

We say tha t  two es t imators  cor responding  to ~1 and ffl2 a r e  equivalent  if C ( O 0  
= C ( ~ 2 )  and  ~1(~)=ct)2(4) ,  for all 4 ~ R \ C ( ~ 1 ) ,  with c a fixed constant .  An  
es t imator  will be called op t imal  V~-robust if it minimizes  V(O, #x) a m o n g  all 
O E 7 j satisfying the cons t ra in t  ~*(~,  #x)<  k for some fixed n u m b e r  k < oo and  
mos t  V~-robust if it minimizes  ~:* (~, #~) in the whole class 7 ~. These definitions 
generalize the not ions  op t imal  V-robust  and  mos t  V-robust  es t imators  
(Rousseeuw 1981), for the case e =  1. The  next  t heo rem states tha t  the op t ima l  
V,-robust  and  mos t  V~-robust es t imators  are the same for all values of  e. 

Theorem 6.2 Up to equivalence, the median is the unique most V~-robust estimator 
in 7 j with ~c*(~m~a,#~)=~+ 1 and the only optimal V~-robust estimators are 
(depending on k) 0m~d, {0b, 0 < b < II A II } and A if II A II < ~ .  

We  see f rom T h e o r e m  6.2 tha t  the family of  op t imal  V,-robust  es t imators  
is the same for all values of  e, and  hence the same as for independent  da ta  
(c~=l). However ,  given a fixed cons t ra in t  ~c*<k (with k > c ~ +  1) the t runca t ion  
point  b=b(c~, k) clearly depends  on e, and it is easy to see tha t  with k fixed, 
b(~, k) is a strictly decreasing funct ion of e (since tC*([0]b_b, #~) is a strictly 
increasing funct ion of b, cf. Rousseeuw 1981). Hence,  for large values of  the 
infinitesimal average  pa tch  length ~, the op t imal  V~-robust score funct ions 
a p p r o a c h  the sample  median.  This is i l lustrated in Table  1, when F~ equals  
the s t andard  n o r m a l  dis t r ibut ion and  0b(4)=[~]b_b cor responds  to a H u b e r  
es t imator .  A similar conclusion is derived by Z a m a r  (1990, T h e o r e m  1 and  
Table  2) for min imax  robustness .  

Table 1. Optimal choices of truncation point b for various values of ~ and k, the upper bound 
constraint on ~c* 

k=2 k=3 k=5 k=10 k=20 

1 0.00 1.04 1.90 2.99 4.36 
2 - 0.00 1.04 2.04 3.08 
3 - - 0.48 1.55 2.49 
4 - 0.00 1.19 2.11 
5 - - - 0.90 1.83 
8 - - - 0.21 1.26 

15 - - 0.40 
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Optimal V~-robustness is a compromise between low values of V(0, #x) (nominal 
performance) and K* (0, Fx). As e becomes large, the second quantity becomes 
more important  in this trade-off and the optimal V~-robust choice of 
approaches the most V~-robust score function. This explains heuristically why 
a more dependent contamination requires a more V-robust estimator. 

6.2 Redescending M-estimators. 
As we saw in the preceding subsection, the V-robustness properties for the whole 
class ~ of M-estimators extended directly from the case c~--1. However, if we 
restrict ourselves to the subclass of M-estimators with rejection point r, 

(6.5) ~ = { r e ~, ~ (4) = 0, for all 141 > r}, 

the situation is slightly different. It turns out that the most V~-robust and the 
family of optimal V~-robust estimators r depends on e. The case e = 1 is treated 
by Rousseeuw (1982). In general, the optimal V~-robust estimators within the 
subclass (6.5) are estimators with score functions of the form 

A(~) ,0<I~I<p  

(6.6) Zr,~,k(~)= ] ~ l )  tanh(1B~Al)(r-I~l))sgn(~),p<l~l<r 

0,1r 

whenever k, the upper bound constraint on x*, exceeds a certain lower bound 
~cr, ~. In (6.6), A=A()~r,~,,k ), B=B(zr,~,,k) and p are chosen so that )~ .... k becomes 
continuous. The family {)~ .... k)k~,,(r,~,) corresponds to the tanh-estimators derived 
by Rousseeuw (1982) when c~ = 1, and to the family of optimal B-robust estima- 
tors as ~= ~ .  The latter one consists of skipped Huber estimators y,/, ~A(~) t t l J r ,bSb=O,  

where 

(6.7) O~, b (4) = [-A (4)] b_ b 1 t- ~, ~] (~), 

b = 0 corresponds to the skipped median and b = A (r) to the Huber-type skipped 
mean (cf. Rousseeuw 1982). As c~ --* 0% the last term in (5.3) becomes negligible, 
and the corresponding minimization problem approaches that for optimal B- 
robustness. For  details, cf. H6ssjer (1989). 

7 Generalizations 

7.I Generalized uncertainty model. 
Consider the following additive outlier model, proposed by Franke and Hannan  
(1986): 

1--1 

(7.1) Y~7=XI+ Y',/~j V~v-j, 
j = 0  

where {Vf}~~ are i.i.d, random variables jointly independent of the nominal 
process, with distribution (1 -p) 6o + pH, 0 < p  < 1 (the value of 7 will be specified 
below), H is a symmetric distribution with point mass zero at the origin and 
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flo, ..., flz-1 are nonzero constants. This family of processes can be described 
by a replacement model that is slightly more general than (2.4) (see also Martin 
and Yohai 1986b): 

(7.2) V=(1 -z~) x~ + zr w{. 

The meaning of the 0-1 process Zy becomes clear when comparing (7.1) with 
(7.2), we simply put 

l - 1  

(7.3) { Z y = l } =  Q) {ViSj#O }. 
j = O  

By defining 

-__ ( I ( V f  #O), i- l<j<=i 
(7.4) Z~'~=lO, j<-_i--l, 

we see that (7.3) can be rewritten as 

i 

(7.5) Z ~ = I -  [ I  (1--2~,i). 
j = i - - l +  l 

Since conditions (D1) and (D2) hold, this Z~-process can be obtained as in 
Example 4.1, with the duration random variable T and the infinitesimal average 
patch length L equal to 6~. 

Since the Wf-process now depends on ?, we have to take some care when 
computing the CVF according to (3.1). However, the explicit formula for CVF 
given in Theorem 3.1 still holds true with these limiting distributions. Let F~ 
be the univariate distribution of WZ conditioned on the event {Z~ = 1} and 
F~ "(k) the bivariate distribution of the pair (W(, W(+k) conditioned on the event 
{Z~ = Z~ +k = 1}. It turns out that F~ and F~ "(k) converge weakly to some limiting 
distributions Fw and F(~ ) respectively as ? ~ 0 (When k > l, the latter case follows 
easily from the former, since then F~'(k)= F~ x F~. However, only k < l  is interest- 
ing in the limit ? ~ 0.) Introduce ~ as the restriction of Vf to the set { Vf + 0}. 
Hence, ~ has distribution H. Let cp(.) and ~ ( . , - )  denote the one- and two- 
dimensional distributions of the random variables in brackets and �9 the convolu- 
tion operator. Finally, put H p = ~ ~  H,~.p~=~(fla ~,f12 ~). We then 
have: 

Theorem 7.1 Suppose an additive outlier model of the form (7.1) for the observed 
process Yi ~, 0 <= 7 < 1. Then F~w converges weakly to 

(7.6) 
1 / - 1  ~ 1 / - 1  v~_)=~ ~ Fx,H~j 

L=lj~o~(X~)* ~(/~J ~=o 
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as 7--*0 and F~ '(k), k=  1, ..., l - 1  converge weakly to 

1 l-1 
(7.7) F(wk) =l-- k 2 ~~ (X1 -k, X1)* ~ ) ( f l j - k ,  ~'rl - j ,  flj ~'rl - j )  

j=k 
1 1-1 

- l _ k j ~ ( G  • Fx),Hr 

Suppose in addition that we have a location M-estimator with a bounded, differenti- 
able score function ~b whose derivative is also bounded. Then formula (3.2) for 
the CVF holds with values of 7 and O~k~ k ~ O, 1, 2, ... as specified above and distribu- 
tions Fw, F~ k), k = 1, ..., l -  1 as given in (7.6)-(7.7). 

The forms of F~ ) in (7.6)-(7.7) reflect the fact that only the event when at 
most one of l consecutive Vp is nonzero is important in the limit 7-~ 0. Note 
that according to Theorem 7.1, the one-dimensional marginal distributions of 
F~ k), k = 1, ..., l -  1, do not equal Fw. Therefore, the change-of-variance sensitivity 
given in Sect. 5 is not applicable in general for the contamination model (7.1). 
To remedy this, we can take the supremum of CVF(~9, {#~}) over a larger class 
~/~ of W~-processes with arbitrary marginal distributions except that formula 
(3.2) remains valid. An upper bound (which is not tight) for this supremum 
is obtained by bounding each term in the series of formula (3.2) by 
O~ k N~t[I2/A(~I)~-~k(7*s) 2 and the sum of the remaining three terms by ~c*(t), Fx). 
We denote this upper bound by 

(7.8) ~* = ~:~ + (c~- 1)(7") 2 . 

~* is a more general sensitivity than G*, since it is a bound for a larger class 
of W-processes. On the other hand, it is a quantity that is more difficult to 
use when computing optimal or most V~-robust estimators as in Sect. 6. In 
principal, one can find the score functions of these estimators by minimizing 
V(~, ~y) subject to a simultaneous upper bound constraint on ~c* and 7* and 
then minimize these minima over all pairs (~:*, 7*) such that the right-hand 
side of (7.8) equals a fixed value. The estimators corresponding to the first mini- 
mization can be found in about the same way as optimal V-robust estimators 
are found. In the general case, these estimators are the same as in Subsect. 6.1, 
whereas for redescending estimators they are different. (Typically, the redescend- 
ing score function 0(~) will be identical to A(~) for small [~1, tanh-shaped for 
large I~](<r) and constant in a region in between.) The second minimization 
is more involved, since the minimal value of V(O, #y) will depend on (~c*, 7*) 
in a rather messy way, and it probably has to be carried out numerically. 

7.2 Other extensions. 
Throughout the paper, we have assumed nominally independent data. Removing 
this restriction will impose difficulties, since it is then no longer realistic to 
assume independence between different samples of the X~- and W~-processes 
(condition (C2) of Subsect. 2.3). In order to have a convergent series expressing 
the asymptotic variance, one has to impose conditions on how fast the depen- 
dence between Xi and VVj decreases as l i - j [  ~ ce. 

In order to simplify the exposition, we have confined ourselves to analyse 
one-dimensional location estimators. By allowing the observed process (2.4) to 
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contain several unknown parameters, one may study the robustness properties 
of the asymptotic covariance matrix for multidimensional estimators of these 
parameters. This has been done for independent data by Ronchetti and Rous- 
seeuw (1985). 

8 Proofs of theorems 

Proof  o f  Theorem 3.1 

First some notation: Given an arbitrary process with univariate distribution 
F and bivariate distributions F (k), k= 1, 2 . . . . .  let us introduce 

(8.1) 

(8.2) 

and 

(8.3) 

A(0, F)= [0(~)2 dF((), 

B(O, F)= j'O'(~) dF(~). 

Within regularity, the asymptotic variance is given by (2.3), which in our notation 
may be written 

(8.4) 

A(0, FyV)+ 2 ~ A(O,F]  '(k)) 
k = l  

V(0, /~)-  B(0, Fy ~) 

for the contaminated process y7 in (2.4). Each term in the series of the numerator 
equals 

(8.5) (0, F[' (k)) = p (Z~ = Z~ + k = O) A (0, F(~ k)) 

+ P ( Z [  =0, Z~ +k = 1) J~(0, F ~  k)) 

+ P (Z i = 1, Z i + k = O) .4 (0, FVd (f)) 

+ P (Z i = Z'~ + k = 1) ~ (0, ~(- J)). 

Since 0 is skew-symmetric, fx is symmetric and the nominal process is i.i.d., 
the first term in (8.5) vanishes for all k>0. Similarly, the second and third 
terms vanish because of (C2) and the symmetry of fw. Summing (8.5) over k 
and using (B 3), (C1) and (C4) therefore yields (observe that A(0)= A(0, Fx)): 

(8.6) A(r ~, J.(r Fy y'(k)) 
k = l  

= (1 -- go (7)) A (0) + go (7) A (0, Fw) + 2 ~ gk (7) -'4 (0, F(k)) 
k = l  

=(1 --7) A ( O I + y A ( O ,  Fw)+2 ~ ct, 7/~(0, F(k))+o(y). 
k = l  
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(The convergence of the series in (8.6) follows from (C4) and dominated conver- 
gence.) For the denominator in (8.4) we obtain (observe that B(O)= B(O, Fx) ) 

(8.7) B (~, F~')= (1 - g o  (7))B(~9)+ go (7)B (0, Fw) 
= (1 - y) B (~) + y B (0, Fw) + o (y), 

where the last equality follows from (B4), (2.5) and (C 5). 
Formula (3.2) now follows by differentiating log V(~,, #~) with respect to 7, 

using (8.4), (8.6) and (8.7). [] 

Proof of Theorem 4.1 
Clearly, condition (D 2) implies that the Zy-process is independent of the nominal 
process. In order to prove the remaining relations, put 

7=p  0 i and ~g= Oa Oj, k=O, 1,2,. . .  
j = 0  j 

Then, since E(T 2) < oo according to (D1), it follows that 

Oj<oo and ~ c~ k<oo. 
j=O k=O 

It remains to show that gk(7)= ek7 + rk(y), with rk (7)= O (7), k = 0, 1, 2 . . . . .  Accord- 
ing to (4.2), (4.3) and (D 2) we have that 

(8.8) go(y) = P(ZI  = 1)= 1 - I ]  (1 - e ( 2 ~  _j,~ = 1))= 1 - f i  (1 -pOj). 
j = 0  j = 0  

Since the series ~ p Oj has nonnegative terms, it holds that 
j = 0  

(8.9) l - -  ~ pO,< f i  (1-pO,)<=e-,~ pO' 
j = o  j = o  

and consequently 

(8.10) 1 -e-~<go(7)=<7, 

which yields the desired conclusion for k = 0. For k > 0, put 

(8.11) D~ "k= ~ {2~-j ,x+k=l},  
j=O 

D{ "k=- ~J { 2 { - j , I = I } \ D ~  'k 
j = 0  

(8.12) 

and 

(8.13) 

so that 

(8.14) 

k - 1  

D~ 'k= U {ZPl+k-J,l+k=l} ' 
j = 0  

{Z~ =Z~ +k= 1} =D~'ku(D{'kc~D~'k}. 
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By similar arguments  as for k = 0 we obtain 

(8.15) I~I co P(D~'k)= 1 - (1--pOj)=p ~, Oj+o(7)=YC~k+O(7), 
j=k j=k 

(8.16) P(D~'k)<= i - I~ (1 --pOj)<=7 
j=o 

and 

k - 1  k - 1  

(8.17) P(D~'k) = 1 -  H (1--pOj)<p ~ Oj<7. 
j = 0  j = 0  

D~ 'k and o~'k~D~ 'k a r e  disjoint events and by (D2), D~ 'k and O~ 'k a r e  indepen- 
dent. Hence,  

(8.18) gk(7)=P(D~'k)+ p(D~ "k) P(Dp'k)=o~k T+o(?). [ ]  

Proof of Theorem 4.2 
Because of stationarity,  the distr ibution of L~ is clearly independent  of i, and 
hence we may  assume i = 0. Not ice  that  if Z~ = 1, 

( 8 . 1 9 )  LVo = L~6 + - L~6-  + 1,  

where 

and 
L~d + = m a x { j > 0 ;  Z~) . . . . .  Z~=  I} 

L~- = rain {j__<0; Z~ . . . . .  Z~)= 1}. 

Again, because of stationarity,  

P(I56 + =k ,  L~6 - = 1)=qk_t, k>O, l<O, 

and hence by (8.19), 

(8.20) P (LVo =J) =J  q j -  1. 

In order  to calculate q j, observe that  

(8.21) qj = P (L,~d- = 0, L,V 6 + = j )  

~' - -  Z ~  + 1 = O) = P(Z~o . . . . .  Z~ = 1, Z _  1 - 

= P  { 2 ~ _ 1 = 0 } , 0  - '  - {z~,j+l-0}, {2~,j= 1} +0(7) 
k= 1 k=O 

=TP(T=j+I) 
E(T) + o(~), 
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where the last two equalities follows by similar (but slightly more complicated) 
arguments as in the proof of Theorem 4.1. It then follows from (8.20)-(8.21) 
that 

P(L~o=j)= P ( L ~ ~  t-o(1), j = l ,  2, ..., 
go(Y) E(T)  

d s 
which proves that Uo , L as ? ~ 0. In order to show that L=> T, it follows 
from (4.4)-(4.5), (4.8) and partial summation that 

(8.22) P ( L > j ) =  
( j - I -  1) O j - l - ~ j +  1 E(T)  ~ ,~ ( J + l ) O j + e - i + t g ( r ) >  - - - - -  . . ' e t j=P(r>j ) ,  

i "= fq-- l+c~j+lE(T ) = 
O~ +~ I E(T) 

k=O 

with equality iff 0j = 0 or 1. In order for T and L to have the same distribution, 
0j must equal 0 or 1 for all j, and hence T =  (~l for some l=> 1. Finally, (4.9) 
follows easily from the definitions of L and T. []  

Proof of Theorem 63 

The first part of the theorem (V~-robustness versus B-robustness) is proved in 
the same way as for the case ~=  1 (Hampel et al. 1986, Theorems 2.5.1-2.5.2). 
For  the second part, the first inequality in (6.2) is obvious while the second 

<~ * ~_ one follows, since ~c* (0, Fx) = ~:1 (0, Fx) + ( ~ -  1) ~/* (0, Fx) 2 < K~ (0, F~) + 
(c~-1)(~:*(tp, F~)-1) by (6.1). Finally, it follows that the last inequality of (6.2) 
can be replaced by equality for nondecreasing @, since (6.1) then holds with 
equality for both ~c~(~9, F~) and ~c*( 0, Fx). []  

Proof of Theorem 7.1 

We start by proving weak convergence of F~ and F~ "(k), k = 1 . . . .  , l -  1. Actually, 
we will prove the stronger relations 

(8.23) 

and 

(8.24) 

F$ = (1 - eo (7)) F~ + eo (7) P~ 

FJw" (k) = t'l -- ek (7)) -f(k)~ + ek(7) F~ '(~) , k = 1, ..., l-- 1, 

where ek('/)=O(1), k = 0  . . . .  , l--1 and P,~ and p~.(k), k =  1, ..., l - 1  are distribu- 
tions that will be specified below. 
Define 

(8.25) E~=(Vf_k*O}~ V f _ j = O  , 
J 

\ i : ~ k  / 

and let/~P be the event that at least two of the random variables V• . . . . .  Vf_ 
are nonzero. Then according to (7.5) we have 

1 - 1  
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Since the Vf's are independent, (8.25) gives 

(8.27) P(ED =p(1 -p)~-  1 

when 0_< k_< I - 1  and consequently (remember that ? = Ip) 

(8.28) p(1 - Y) _-_ P(E~) <__ p. 

The events El, k = 0  . . . .  , l -  1 and/~P are clearly disjoint. (2.5) and (8.28) therefore 
imply 

l-1 
(8.29) P(/~P) = go (7)-- ~ P (E~) = o (y). 

k=0 

Since Vii p is an i.i.d, process, independent of the nominal process, the conditional 
distribution of W( under E~ is F~, H ~ .  Let P~ be the conditional distribution 
of WI '~ under EP. Then we have 

(8.30) 

which implies (8.23). In order to prove (8.24), we proceed in an analogous man- 
ner, using the partition 

(8.31) 
l-l) 

where the "remaining" event /~  is negligible in the limit 7 ~ 0 .  The bivariate 
distribution of (WZ-k ,W( ) ,  conditioned on the event El,  equals 
~'P(Xl -k, Xl)*  =~"~(flj-k ~'rl - j ,  flj ~-Zl --j) =(Fx  x Fx),Hp~_~.a ' when k_~ j<  l -  1. Let- 
ting p~,(k) be the conditional distribution of (W(_ , ,  W[) under E~, we obtain 
from (8.31) 

(8.32) Fd ''(k)= z~l P(Ey) p -v j~, g~(v)(Fx x , Ix) 17flj ,,,flj-t- g ~ r ~  , 

which implies (8.24). 
We proceed by proving the validity of formula (3.2) for the CVF. Remember- 

ing the notation in the proof  of Theorem 3.1, the asymptotic variance is given 
by (8.4). Each term in the series of that formula can be expanded as 

(8.33) 7~(~,, F7 ,(~)) = P ( Z l  = Z l  +~= 0) ~(~, F~ (~)) 
+ P(Z~ =O,Z~ +k= I ) A- (tfi, F]~,- (%, 

~ ~ ( k ) )  + P(ZYa = 1, Z~ +k = O) A(~ ,  F~;; , 
)'__ y -- + P ( Z 1  - - Z l  +k -- 1)/~ (I/1, F~i(k)). 

The first three terms in (8.33) vanish for the same reason as in Theorem 3.1. 
(Condition (C2) of Subsect. 2.3 is obviously satisfied for the process (7.1).) Sum- 
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ming  over  k therefore yields (the extra  7's in the superscripts  c o m p a r e d  to (8.5) 
indicate tha t  the W]-process  now depends on W) 

(8.34) A (0, e;') + 2 ~ A(O,- ~,~ (~)~, 
k = l  

=(1-g0(7)) A(O)+ g0(Y) A(O, F~)+2 ~ g~(7) A(g', Fi~'% 
k = l  

= ( I  --y)  A(O)+TA( O, F~)+2  ~ gk(7) A(tp, Fw~'(k)) + o(7), 
k = l  

where the last equali ty follows f rom (2.5), the fact that  A(O) and  A(O, F~) are 
bounded  (since t~ is bounded)  and  f rom (8.23) (which implies A(O, F~)-+ A(O, Fw) 
as 7 -+ 0). Next  we show that  

(8.35) 
oo 

gk(w) a(~,, F~,%= Y~ c~k W~(4,, F2))+o(w). 
k = l  k = l  

W h e n  k>l, W( and W(+ k are condi t ional ly  independent  under  the event {Z] 
= Z~ +k = 1} and  hence A(~9, F~ '(k)) =0 .  W h e n  k < l, the boundedness  of  ~ together  
with (8.24) imply tha t  .4(tp, F~'(k))--+ A(O, F~ (k)) as 7 ~ 0 .  F o r m u l a  (8.35) then fol- 
lows by domina ted  convergence.  The  d e n o m i n a t o r  of  (8.4) m a y  be wri t ten 

(8.36) B (0 ,  Fff) = (1 - go (7) B (tp) + go (7) B (0,  F,~) 
=(1  --7) B ( 0 ) +  ?B(t), F~,)+o(7 ). 

The  last equali ty follows since B(0,  F~)< [I 0 '  It uni formly in y and since B(~9, F~) 
---, B(O, Fw) as 7 + 0, which in turn  is a consequence of (8.23) and  the boundedness  
of 0 ' .  The  desired conclusion now follows by differentiating log V(tp, #~) with 
respect  to 7, using (8.4), (8.34), (8.35) and  (8.36). [ ]  
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