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Abstract 

The LP-norm and other functionals of the kernel estimate of density functions (as functions of the bandwidth) are 
studied as means to test singularity. Given an absolutely continuous distribution function, the LP-norm, and the other 
studied functionals, will converge under some mild side-constraints as the bandwidth decreases. In the singular case, the 
functionals will diverge. These properties may be used to test whether data comes from an arbitrarily large class of 
absolutely continuous distributions or not. (~) 1998 Elsevier Science B.V. All rights reserved 
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1. Introduction 

In this paper we aim to test whether a given set o f  data ( =  {XI . . . . .  X,}) ,  with a marginal distribution #, 
stems from an absolutely continuous distribution function or from a singular one. A reference to this problem 
is by Donoho (1988). 

Consider a probability measure # on (g~P,~(~P)), where ~ ( ~ P )  is the Borel a-algebra on R p. The measure 
tt is said to be singular with respect to the Lebesgue measure 2 if  there exists a measurable set A such that 
/~(AC)=0 and 2 ( A ) = 0 .  I f  we only require # ( A ) > 0  and 2 ( A ) = 0 ,  then /~ is said to have a singular part. I f  
tt does not have a singular part, then it is absolutely continuous with respect to 2. 

When # is absolutely continuous the density f -- d/~/d2 is a well-defined function. An estimate of  f is 

1 K X / - x  
f"(X)=n-h--~.P _ ~ ' 
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the kernel density estimator. The bandwidth h, is a sequence of positive numbers, and K is a Borel measurable 
function (kernel), satisfying f K(t)dt = 1. A good reference on kernel density estimation is Wand and Jones 
(1995). 

We will also make use of f , ,  when /~ has a singular part. In this ease f ,  is an absolutely continuous 
estimate of a generalized function. 

Suppose H : [0, c¢) ---, [0, o~) is a function such that 

FI(x) = 14(x)/x 

is continuous and non-decreasing on the positive real line, tending to infinity as x does. We will study the 
following family of functionals: 

J(/n)=~-I-1 (/H(/n(x))dx), 
where ~ - 1  is the inverse of H. (In case H is not strictly increasing, we le t /~-1  denote, say, the fight 
continuous inverse.) If  Y is a random variable with density function 0, then 

J(o) =9-~(E(FI(o(r)))), 

SO J(9) measures the size of 9(Y). Possible choices of H(x) are x 2 (or more generally x l+~, e>0)  and 
x(logx)+. 

In Section 3, we prove (under some mild side constraints) that as n ~ o0, 

J(fn) p J ( f )  < o~, 

when the data that f ,  is based on comes from an absolutely continuous distribution with density f such that 
J ( f )  is finite. In Section 2, we prove (under some other mild side constraints) that as n ~ ~ ,  

^ a , s .  

J ( f , )  ~ oo, 

when the data that f ,  is based on comes from a distribution with a singular part. (see Fig. 1). 
Using these results we may devise a "test for singularity" by investigating the behavior of J(fn) (or 

equivalently fH( fn )dx )  as n ~ oo and hn ~ 0. If J(fn) diverges we may say that the data that f ,  is based 
on comes from either a singular distribution or an absolutely continuous distribution with J ( f ) =  oc. Given 
any #<<2, we may find an H such that J ( f ) < o o ,  so the class of absolutely continuous distributions for 
which J( f , )  diverges can be made arbitrarily small. 

The basic idea is to let H magnify the "spikes" of f , ,  that occur when the distribution is singular and the 
number of observations grows. 

2. Singular distribution functions: the case J(fn) ~a's" c¢ 

We need the following lemma for the main result in this section, and B ~ will denote 

{x; infy~e Ix - yl ~<6}. 

Lemma 2.1. Assume #(A)>0 for some A C_ Rp with 2(.4)=0. Then there exists BC_.4 such that g(B)>0  
and 2(B6)-*0 as 6---~0. 
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Fig. 1. The behavior of J ( ~ )  for different values of n. In the absolutely continuous case (uniform distribution of data on[O, 1]) J ( ~ )  

converges, while in the singular case (uniform distribution on the rational numbers 1/100 . . . . .  99/100) J ( ~ )  diverges. H ( £ ) =  J~ and 
h, = 8In. Note that we resample for every value of n. 

Proof. It is sufficient to find a set B with the following property: 

(~) To every ~>0 there is a set G~ _~B, such that 2(G~.)<~ and G~ is a finite union of (closed) boxes. 

Provided ~ ~< 1, all boxes in G~ must have sides ~< 1. Let N~, denote the number of boxes in G~. We then 
have 

2(Ba) ~<2(G,~)~<e + No[(1 + 2 6 )  p - 1] ~<2e, 

provided that 6 is small enough. As e was chosen arbitrarily, the lemma will follow from (t). 
To prove (t), we may, without loss of generality, assume /~(A)= 1. Construct A _~A1 _A2 _~... induc- 

tively according to the following: A =A0, Ak = Ak-l N Ok, k >~ 1, where Ok is a finite union of (closed) boxes 
with 2(O~)~<2 -~ and /~(Ak_l\Ok)-~<2-(k+l). Put B =  Nk~lAk. Then #(Ak_l\Ak)-..<2-(k+l)~ 

1 Since B C Ok, Vk, we can choose G, = Ok if 2 -4 < e. #(Ak )/> 1 - Ekl 2 -(i+1 ) > 1 :=~/2(9) ~ ~. 

It now remains to construct f2k given Ak-1. We can find an open set Uk DAk-i with 2(Uk)<2 -k since 
2(Ak) = 0. According to Vitali's covering theorem (see Cohn, 1980) there exists a sequence of (closed) disjoint 

/~(Ak-, \ U,=l C,k) ~<2 boxes such that/~(Ak-l\ U ~ I  c , k ) =  0 and C,k c Uk Vn. Now choose Nk so that Uk --(k+l) 
Nk 

and put Ok = ~,=l  C,k. [] 

Let 
(2.i) {Xi}/~z be a stationary ergodic process with a marginal distribution #, 

(2.ii) H>~0, 
(2.iii) /~ (x )=H(x) /x  be nondecreasing and tending to infinity as x ~ o~, 
(2.iv) K ~> 0, 
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(2.v) f K dx= 1. 

Theorem 2.1. Under (2.i)-(2.v), / f  # has a singular part, then 

f s ( / . ) d  as X ---~ O0 

as n ~ oo and h, ~ O, or equivalently (because of (2.iii)) 

"--+00. 

Remark. We have not excluded the possibility of J( f , )= oo, for some n. The requirement f K (Ix = 1 can 
be omitted. It is included here as it guarantees f f ,  dx = 1. 

Proo£ Assume supp(K) C_ [-1,1] p. According to our lemma there exists BC_ Rp such that # (B)>0 and 
2 (B~ )~0  as 6 4 0 .  Let N=I{X~;XiEB}I. Put 

n X~EB 

We then have fn >/fn I> 0, supp(]~) C_ B h~ and f 97n dx = N/n ~ I~(B). Let D, = {x E Bh~; •(x) <<.N/(2n2(B h~ ))} 
and Din = B h° \Dn. We then have 

fD fndx <<" ~ 2 ( D ' ) < ~ N / n  
n 22(B ) 2 

=> fo, X dx>>.N/n 2"  

If x E D', then f,(x) >>. f~(x) > (g /n) /22(B h" ). NOW, 

f H(f,)dX ~ fD, H(f,)dx 

(NIn  f L >>. H dx 
\ 22(Bh~) ] JD; 

( 
>I H k 22( Bh° ) ~ co, 

where H(x)  = infy>~x H(y)/y for x > O, and H(x)  ~ oc as x ---* oc. 
If  supp(K) ~ [-1,  l] p, then choose C>O such that f[_c, cFKdx>O. Put I~=KZ[-c.c]p and 

- 1 ~ ( ~ - x ~  
L ( x ) = g 

. \ h, / 

The rest of the proof is similar to the case supp(K)C_ [-1,  1] p. [] 

3. Absolutely continuous distribution functions: the case J(f~) ~ J ( f )  < 

We begin with the main theorem of this section, followed by some lemmas that are necessary to the proof. 
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We will need the concept of p-mixing. A stationary process {X/}i~z is p-mixing if the p-mixing coefficients 

Pn = sup 
XEJr°o~, YE.~ ~ 

f,,q 

Corr[(f(X), 9(Y)] --~ 0, 

as n--~ oo, for n E ~. Here f , g  range over all measurable functions with Ef (X)2< c~ and gg(g)2 < 0(3, and 
i f )  denotes the a-field induced by {X~}~= a (see Hall and Heyde, 1980). 

We will also be using the following assumptions: 
(3.i) {Xk}keZ is a stationary process with an absolutely continuous marginal distribution # on (Rp, ~(Rp))  

(3.ii) 

(3.iii) 
(3.iv) 
(3.v) 

(3.vi) 
(3.vii) 

(3.viii) 

with compact support and a density f ,  
supp(K) is compact, K>~O, f KE dt <c~, and f K dt= 1, 

n--1 h~ ~ O, nh p ~ cx~, and ~k=o Pk/(nhp) --~ O, when n ~ 0% 
H~>0, n (0 )  = 0, 
n is convex, 
H(x)/x 2 <<.Co, Vx E [1,c~), 
BC1 >0  s.t. H(2x)<~CiH(x), Vx>>.O, 
J ( f ) =  fRpH(f(x))dx <cx~. 

Theorem 3.1. Under (3.i)-(3.viii): 

f H(f.)dx ~ f H(f)dx, 

and if lYt is strictly increasing at f i I - l ( f  H( f )dx) ,  

J(fn) p J( f ) -  

Proof. Write J ( f )  = f H ( f ) d x .  We may assume supp (/z) c_ [e, l-e] p, for some e>0  so that supp (fn) C_ [0, 1] p 
for n large enough. Let J~(x)= E[fn(x)]. Now, 

Y(f,) - l(f)=[J(f.) - J(L)] + [/(L)-/(S)], 
so that 

flJ(f.) - :(f)[ ~<flJ(f.) - J(~)l + [J(:~) - J(f)l = TI "~- T2" 

Lemma 3.1-3.3 give that 

~r, ~< C 2 ~ E I I f ~  - ~112 + C3EIIf~ - J~ll~ + C4EIIf~ - J~ll2 

~< C2 ~ '~-~EIIfn  - J~[12 + C3EI[f~ - AII~ + C4E[If~ - All2 --,0, 

as n --* cx~. Given a L > 0 let 

fL(x) = f ( x )  A L 

and 

x - y  .<x,_- :..,.. 
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We then get 

/'2 ~< ] J ( J ~ ) -  J(J~L)I + [ j ( j ~ t ) _  j ( f L ) [  + [ j ( f ~ ) _  j ( f ) [  = T21 + T22 + T23. 

From Lemma 3.2 it follows that 

T 2 2 < ~ C 2 ~ [ [ f n L  _ fL[[  2 + C3 [[j~L _ fc[[2 + C4[[j~L _ fz[[ 2 --,0, 

as n ~ oc, as a consequence o f  L2-continuity (.~r, fc E L2(ff~p)). Let AL = {x; H(f(x))>L}, giving that 

/'23 = f [n(f(x))- H(fr(x))]dx<~ fLI4(f(x))dx-+O, 

as L --+ cxz, using Lebesgue's Dominated Convergence Theorem. For a fixed x E [0, 1] p, put 

1 x - y  

and 

~IL(x) = f(x) -- fL(x). 

We then get 

<. f: f.L(x) + 

1 x - y  x - y  

using 0~</¢~< 1 and the convexity of  H.  Integration with respect to x gives 

r2~ = f (~(fAx)) - H(f~L(x))) dx 

x - - y  
<<- -I~ fALK (---~n ) [H(fL(Y) + ~L(Y)) -- H(fL(Y))]dY dx 

= [ [H(fL(y) + ~Z(y)) _ H(ft(y))] dy = 1"23. 
dA L 

That /'2 ~ 0 when n ~ c~ follows by letting n ~ ~ and then L ~ ee. 
Now assume /-) is strictly increasing a t / _ ) - l ( j ( f ) ) .  T h e n / ~ - 1  is continuous at J(f) ,  so the second half 

of  the theorem easily follows from what we have just proved combined with Markov's inequality. [] 
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Lemma 3.1. EIIL - f]ll~ ~ 0 as  n ~ oo. 

Proof. For n large enough supp (f.)C_ [0, 1] p, and supp (f])C_ [0, 1] p. Notice first that 

ellL - LIF =/0.,a,, Var ( f . )  dx, 

but 

n 

Var[fn(x) ] = (nhn)2-------~Var K + (nh.)2" Z ( n - [ i [ ) C o v  K \ - - - - ~ . . ]  ,K \ ~- ./ 
i=1 

[ K l ~ n X l ] (  n-. ) ~< 1 _ Var n + 2 Z ( n - i ) p i  
(nhn)2P i=1 

= nh~---~Var k ~ / j  ! + 2 ~  1 -  p, 
i=1 

, '+'E" ' nhn i=l 

and 

Var[ K (X'\ hn-X~J] <~E[K \--~-)(XI -X~ 2]j =hP~ SK(t)Zf(x +thn)dt. 
Using Fubini's theorem we get 

J "-"'iS Var[f.(x)] dx ~< 1 + .L.~i=i Pi K(t)2 nh ff f ( x  + th.) dx dt 

1 + 2 ~_,in-11 p,  
-- nh p IIKII~ ~ 0 ,  

as n ~ oo, because of (3.iii). [] 

Lemma 3.2. For 91,92>/0, with compact support in [-1,  1] p there exist constants C2, C3 and C4 such that 

1i (02)  - - Y ( g l ) l  < ~ C 2 ~ l l g z  - g, [[2 + c31102 - gl I1~ + c4[[g2 -- 01 ll2. 

Proof. Write 

]H(y) - H(x)l <.% [H'(x+) + H' (y+ )]ly - x I, 

giving 

)1 ~< f [H'(o2(x)+ ) + H'(ol(x)+ )][g.(x) - ol(x)l dx lY(g2) , ] (g l  

(1) 
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i.e. 

A. Frigyesi. O. H~ssjer / Statistics & Probability Letters 40 (1998) 215-226 

H(2x) >>. H(x) + xH'(x+ ) >>.xH'(x+ ), (2) 

using Jensen's inequality and the convexity of H. [] 

H'(x+) <~ H(2x) ~<4C0, (3) 
----;--  - - 7 -  

when x~> 1 by (3.vi). This entails 

H'(x+) 2 ~< 4CoH'(x+)XZ{x>. 1) + H'(I+)2X{x< l} 

~< 4c0n(2x) + H ' ( I+ )  2 

<<. 4CoCIH(x) + n ' ( l + )  2, (4) 

where the last two inequalities follow from (2) and (3.vii). Now, as supp(01)C_ [-1, 1] p, 

~/fH'(gl(x)+)2dx~v/4CoC, fH(gl(X))dx+2PH'(l+)2 

4V/~'~oC1J~I) + 2P/2H'(I+). (5) 

Additionally, 

H(g2(x)) <<. Cl(H(gl(x)) + H(lg2(x)- g,(x)l)) 
<~ Ci(H(gl(x)) -t- CoCl(g2(x) - gl(X)) 2 + CIH(1), 

using (3.vii). That is, 

v / / H ' ( g 2 ( x ) + ) 2 d x ~ ~ v / ] ( g 2 ) + 2 P / 2 H ' ( I + )  

<~ ~ v / C j ( g l  ) + CoQ 11o2 - g, 1122 + 2eCIH(1) + 2p/2H'(I+) 

<<. ~ ]~I)+2CoClHg2-g, H2+~CoC22p+2H(1)+2p/2H'(l+). (6) 

Using (1), (5) and (6) we get the theorem, with C2= 4Cv/~7-~ + ~ ,  C3=2COC1 and C4= 
2p/2+lH'(1 +) + x/CoC~2p+2H(1 ). [] 

Lemma 3.3. J(f.)<.J(f). 

Proof. Write 

"-(x)= f H(~-~n f K(TnY) dy)dx 
<~f f ~--~nK(TY) H(f(Y"dY dx 
= fH( f (y ) )dy=J( f ) ,  (7) 
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4. Testing 

Let ~- be the collection of probability measures on R p with compact support. In order to test whether the 
marginal distribution of/~ of {X/} has a singular part or not, introduce 

= {/~ E ~-; /~ has a singular part}, 

<< 

as a disjoint decomposition of ~ .  It is impossible to distinguish ~ from 4 ,  since there are elements/t on 
the border between ~ss and ~a (cf. Donoho, 1988). However, if we define ( f  = d/t/d),) 

we get a subset of ~ that can be asymptotically distinguished from ~ss. The testing procedure can be 
formalized as 

H0: /~E~/~'c 

and 

H~: # ~ .  

Then introduce a sequence of decision rules O = {O.} where ~.  : R "p --, [0, 1] and define the power function 

= E4, . (X1 . . . .  , X . ) ,  

and the asymptotic power function 

/~(#,q~)= lim /~,(#,~b,). 
?~----* OC 

Our test will be based on the theory of Sections 2 and 3. Given H and a sequence of thresholds t = {t,},= l, 
put 

q~n(Xl . . . .  ,X,) = X{f H(f~(x))dx>,,}" 

The corresponding sequence of decision will be denoted ~bM, t. The main testing result may be formulated as: 

Corollary 4.1. Let {X,}~ be a stationary stochastic process with marginal distribution it such that (2.i) is 
satisfied if  I~ E ~ and (3.i) if/~ E 4 .  Given any function H satisfying (2.iii), (3.iv)-(3.vii) and a constant 
C > 0 we Oct 

1 i f  IJe~s,  

¢M,,) = 0 i f  u 

provided C < lira inft, ~< lira sup t, < ~ ,  the kernel K satisfies (3.ii) and the sequence o f  bandwidths (3.iii). 

Proof. If # E ~-, 4), ~ 1 a.s. by Theorem 2.1. Since q~, is a 0-1 variable, we obtain 

1 ~>/~,(#; ~b.) = P(~b, = 1 ) / "  1, 
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which means ]~(it; q~H,t)= 1. Let t =  liminf,~o~ t,. If It C~/4,c we get, for large enough n, 

t - C  

~< E I L ( f . )  - J ( f ) l  + 0 
(t - c)12 

by Theorem 3.1 and Markov's Inequality. [] 

Typical examples of ~a H'c are L l+~ balls (e>0),  

{itEo~a;Sf(x)l+~dx<~C } • 

For small e, the L l+~ balls are quite large. There exist however # E ~a that do not belong to any L l+~ ball. 
The set 

{ i tc~; i f (x ) ( log f (x ) )+dx~C } , 

is larger than any L l+' ball, since x(logx)+ increases more slowly to infinity than x l÷~. In fact, the following 
proposition states that we may always find an H so that It E O~an'C: 

Proposition 4.1. Given It C ~a, there exists a function H satisfying the conditions of Corollary 4.1 and a 
constant C > 0  such that It E ~a n'c. 

Proof. Choose any version of f C dit/d2 and put An = {x E I~P; n - 1 <~f(x)<~n}, n E ~. Then 

/ i  O~3 

1 = / f ( x ) d x ~  Z ( n -  1)2(An) 
J n = l  

so that with ~, =n2(An), 

OO OQ 

S =  ~ n ~ < 2 ( A l ) + 2 y ~ ( n - 1 ) X ( A n ) ~ < l + 2 . 1 = 3 .  
1 I 

Pick an increasing sequence ~, S oo such that C = E l  ~n~n < C~. (This is always possible. Put, for example, 
• k = n  if S(1 - 2-("-1))-...< ~"~-11 ~j <S(1 - 2i").  Then E 1  ~,~,~< E l  n(S2-(n-l)) <cx~.) Then construct H, 
first at the natural numbers through 

H(n) = ~ ~k, 
k = 0  

with ~0 = 0 and then through linear interpolation, so that H becomes piecewise linear. This makes H non- 
decreasing and, thus, 

S H(f(x))dx<~ H(n)2(An)= ~k n2(A.)~< ZO~nnJL(A,)=C, 
n = l  n = l  k = l  n = l  
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where the last inequality follows since {~n} is increasing. It remains to verify all regularity conditions of H. 
Assume x E (n - 1, n]. Then 

H(x) _ ~ I  ak + ( x -  n + 1)an 

x n - l + ( x - n + l )  

n - I  
1 

>I- ~-~'~ ~k/~, 
n - - I  

k=l 

as x and n S oc, which proves (2.iii). Condition (3.v) also follows since {~,} is increasing. Condition (3.iv) 
is obvious and (3.vi)-(3.vii) follow if we let ct,/z cc no faster than linearly. [] 

A limitation of Corollary 4.1 is that we cannot guarantee that fin('; ~b,,) converge uniformly to 1 over ~ or 
to 0 over ~a H'c. To get a practically more useful decision rule we restrict ourselves to independent data and 
choose a subset of ~,~. Loosely speaking, the singular part of p has to be large enough in order to distinguish 
it from ~a H'C for a fixed n. 

One possibility is: Test H0 against 

H'i: p E ~ ' ~ ' ~ = { p E , ~ ;  3B such that #(B)>~6, 2(Bh)<~(h), Vh>0}, 

with ~:  ~ + ~  ~+, ~(h)".~0 as h",~0. If for example 6 =  l, ~(h)=Ah a and 0<d~<p,  then # E ~  ~,~ means 
that supp(#) has Box dimension ~< p -  d (cf. Frigyesi and Hossjer, 1996). 

Corollary 4.2. Assume the same conditions as in Corollary 4.1, except that {X,}~ is a sequence of inde- 
pendent and identically distributed random variables. Then 

inf fl.(p,¢,)>~fl, /Z l, 

sup fl.(p, qS,)<fl_, ",~ O 
pE~ H.c 

as n ---+ oo, where explicit formulas for -ft, and fl_, are given below. 

Proof. Note that, by the proof of Theorem 2.1, 

~ N/n ~N/n  
J(L)~>H--- \2c~(hn)/ 2 ' 

if supp(K)C [ - I ,  1]e (otherwise, the lower bound is slightly different). Since we have independent observa- 
tions, 

N EBin(n,p(B)) >s> N~ EBin(n,6), 

where >s> means "stochastically larger than". Thus 

inf fl,(p,~b,)>~P ( H  ( N,/n ~ N~>2t,)---~,---~ 1, 

when n---+oo, as N~/n P-~ 6, h,"~O and H(x ) /Zoo  as x T o o .  If /XE~a H'c, we get from the proof of 
Theorem 3.1 and Lemma 3.1, 

EIJ ( f , )  - J(]~)l  ~< (C2x/C q- C4)(Elif ~ - L[[a) '/z + C3El l f ,  - L I I  2 

<_. ( q v ~  + C4)11KII2 + C311gll_____~22 
nb'2hp/2 nh p , 
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using the fact that J(f)<~C. Since ,~f~)<~J(f)<~C (Lemma 3.3), Markov's inequality yields, for all n large 
enough, 

ElY(L) - J ( L ) l  
sup sup 

~ , ~  ~e~,~ ( i -  C)/2 

2(C2 v/-C + C4)IIKII2 ~< + 
nl/2hP/2(t - C)  

as n---,o¢. [] 

2C311KI1  
nhP(i - C)  

",,o, 

Remark. We may choose tn "~ C with such a speed that ~ = ~0 for some fixed level ~0, replacing (~ - C)/2 
by t~-C. 

5. Conclusion 

We have seen how certain functionals, notably the LP-norm, of kernel density estimators can be used to test 
whether data come from a singular or an absolutely continuous distribution function. The functionals diverge 
as the sample size is increased in the singular case, and converge for a wide class of absolutely continuous 
distributions. 

This work resulted in another paper by the authors, where the velocity of divergence of J ( f , )  was investi- 
gated when H(x)=xl+L It turned out that this velocity depends on the geometrical properties of the measure, 
namely the eth generalized R~nyi dimension. These ideas, and how to use them to estimate fractal dimensions 
are investigated in Frigyesi and Htssjer (1996). 
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