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DIMENSION SPECTRA 
FOR MULTIFRACTAL MEASURES 

WITH CONNECTIONS 
TO NONPARAMETRIC DENSITY 

ESTIMATION* 

ATTILA FRIGYESI~ and OLA HOSSJER 

Lund University, Sweden 

(Received 22 December 1998; In final form 16 May 2000) 

We consider relations between Rtnyi's and Hentschel-Procaccia's definitions of 
generalized dimensions of a probability measure p, and give conditions under which the 
two concepts are quivalent/different. Estimators of the dimension spectrum are devel- 
oped, and strong consistency is established. Particular cases of our estimators are meth- 
ods based on the sample correlation integral and box counting. 

Then we discuss the relation between generalized dimensions and kernel density 
estimatonj. It was shown in Frigyesi and HZissjer (1998), that ~] '" (x)dx diverges with 
increasing sample size and decreasing bandwidth if the marginal distribution p has a 
singular part and q > 0. In this paper, we show that the rate of divergence depends on 
the qth generalized Rtnyi dimension of p. 

Keywordr und Phrmes Kernel density estimates; Fractal dimension estimation; 
Generalized dimensions; R h y i  dimension; Hentschel - Proccacia dimension; Correlation 
integral; Box counting 

1. INTRODUCTION 

Let p be a probability measure on the Bore1 subsets B(RP) on RP. The 
concepts of generalized RCnyi dimension and dimension spectrum of p 

'were introduced by Rhyi  (1970). The dimension spectrum measures 

Research sponsored in part by Office of Naval Research Grant NO0014 93 1 0043. 
' ~ o r r e s ~ o n d i n ~  author. 
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352 A. FRIGYESI AND 0. HOSSJER 

not only the fractal dimension of suppb), but also the extent to which 
p has mass concentrations on sets of smaller dimension. 

Rinyi's definition (often referred to as the information-theoretic 
approach) is as follows: Define, for each i=  (il,. . . , i,) E ZP and 
h E (0, oo), the hypercube Xhi= (ilh, (il + l)h] x . . . x (i2, (ip+ l)h] of 
side length h. Thus rh = (Ahi),, zr is a partition of Rp. With I(A) the 
indicator of the set A, let rh(x,y) = CiI((x, y) E Xhi x Xhi) signify 
whether x and y belong to the same hypercube.' F e n  introduce the 
functional2 

Using this functional, which, viewed as a function of q, measures 
how the probability mass on scale h varies with location, we amve at: 

DEFINITION 1 The 9th generalized RCnyi dimension of p is defined as 

d, (q; I?) = lim 1% A,(!?; rh) 
h 4 +  logh 1 4 E R  

whenever the limit exists. If the limit does not exist we instead consider 
lim inf and lim sup and thus define d;(q; r )  and I?). 

Here r represents the sequence of kernels {rhIh, 0. If the dimension 
spectrum exists and is nonconstant, p is called a multifractal measure. 

A somewhat different formulation of these ideas was given in 
Hentschel and Procaccia (1983). First define the functional AJq; qh) 
as in (I), replacing rh with the kernel *Ax ,  y)= I(llx-yll 5 h).3 Then, 
in analogy with Definition 1, we get: 

DE~NITION 2 The 4th Hentschel and Procaccia (HP) dimension is 
defined by 

'we use rh to denote both the grid defined by the hypercubes and the associated kernel 
function. Since there is a one-to-one correspondence between the two conapts, we hope 
this will cause no confusion. 

'we use the convention log 0 = 0 and OQ = 0, Vq € R. 
%oughout the paper, llxll= rnax(lx,l,. . . , lx,l) denotes the supremum norm of a 

vector. 
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DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 353 

whenever the limit exists. If the limits do not exist we instead consider 
lim inf and lim sup and thus define d; (q; 9 )  and d: (q; 9 ) .  

An advantage of the HP dimension spectrum is that no grid needs 
to be specified. In Section 2, we examine the relation. between the 
R h y i  and HP definitions of generalized dimensions. It turns out that 
the two concepts are identical when q > - 1, but for q 5 - 1, this is 
not the case. 

How do we interpret the dimension spectrum? Letting B(x, h) = 
b; Ily - xl l5  h) denote the closed hypercube with 
lengths 2h, and ph(x) = p(B(x, h)), we find that 

and consequently, 

E(ph ( X ) q )  M hqdw(q;@', 

where X is a random variable with distribution 

center x and side 

p. The exponent 
d,(q; 9 )  E [0, oo] characterizes a measure in different ways when q is 
varied. When q < 0, d,(q) is affected by the more rarified regions of the 
measure (ph(x) ~rnall) .~ In particular, d,(- oo) is determined by the 
most rarifed region of p and d,(- I) is closely related to the fractal 
dimension of the support of p. 

Analogously, d,(q) is determined by the denser regions of the 
measure when q > 0 (ph(x) large). In particular d&) is affected by the 
densest region and d,(l) gives the well known correlation dimension 

d,(l) = lim log P(lIX - YII 5 h) 
log h h-0 

> 

where X and Y are two independent random variables with 
distribution p, and A,(l; gh) = P(II X- 5 h) = C(h) is referred to 
as the correlation integral. Finally, dJO) is most easily described by 
introducing 

a,(x) = lirn 1% ~h (x) 
h-0 logh ' 

'when discussing generalized dimensions in general, we will often omit the second 
argument of d,, which, in view of the results in Section 2, is no restriction when q > - 1 .  
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354 A. FRIGYESI AND 0. H ~ S U E R  

the pointwise dimension of p at x. Then, under certain regularity 
conditions, 

cf: Cutler (1 993), Theorem 3.3.10. That is, d,(O) equals the average 
point-wise dimension, which has contributions from both rariiied and 
dense regions of p. 

One has, as a simple consequence of Jensen's inequality, that 

Beck (1990) proved that multifractak cannot be arbitrarily non- 
uniform, in that 

for r > s > 0 and - 1 > r > s. Multifractals with dimension spectra 
obeying d,(q) = d,(q') are termed maximum unronn, whereas a scaling 
sd,(s)/(s+ 1) = rd,(r)/(r+ 1) is termed minimum uniform. 

According to the mult$actal formalism, dimension spectra are 
intimately related with the widely used singularity spectra in physics 
through the Legendre transform (under certain regularity conditions). 
This has increased the importance of having good estimates of dim&- 
sion spectra from data. Suppose we have observations XI,. . . , X, E 
IWP from a stationary and ergodic stochastic process with marginal 
distribution p. Based on {Xi): ,  we will develop estimates of the 
dimension spectra. Natural 'plug-in' estimators of A,(q;rh) and 
A,(q; qh) are presented in Section 4, essentially replacing p with the 
empirical distribution. We prove consistency of these estimators, and 
the accompanying dimension estimators are treated in Section 5. 

Somewhat surprisingly, there is a link between the abovementioned 
estimators and kernel density estimators, defined as 

with K is a non-negative kernel function integrating to one and h the 
bandwidth. ~ s u a l l ~ ,  3 is regarded as an estimator of a density f, when 
dp= fdx is absolutely continuous (cJ e.g., Wand and Jones, 1995 for 
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DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 355 

an introduction to kernel methods applied to density estimation). 
However, it was found in Frigyesi and Hossjer (1998), that j makes 
sense even when p has a singular part.5 For instance, if q > 0, the 
functional ~ ] ' + ~ ( x ) d ,  increases to inbi ty  as n - m and h 3 0, when 
p has a singular part. On the other hand, ~ j ~ + ~ ( x ) d r  converges to 
Jf'+q(x)dx for absolutely continuous p. This was used by Frigyesi 
and Hossjer (1998) to devise a test, which discriminates between 
measures having a singular part and a large class of absolutely conti- 
nuous measures (i.e., those with Jf l + q ( ~ ) d r  5 C < m). Using some 
properties of a new functional A; (closely related to A$, we find in 
Section 6 that the speed of divergence of ~ j ' + ~ ( x ) d r  is determined 
by the 9th generalized Rtnyi dimension. Similarly, one can replace 
kernel estimates with histogram estimators. The corresponding func- 
tional will diverge at the same speed. 

We classify our estimator of Ah(q; \kh) as a kernel method, whereas 
the estimator of Ah(q; rh)  can be viewed as a histogram method. Well 
known estimators fall into our framework, e.g., box counting is a 
histogram method with q = - 1, and the sample correlation integral a 
kernel method with q = 1. 

We advocate the kernel methods, since they do not depend on the 
choice of a grid. When dealing with convergence rates of the esti- 
mators, the kernel methods seem to yield more suitable expressions for 
asymptotic distributions and confidence bands. We hope to explore 
this in a forthcoming paper. CJ Denker and Keller (1986), who used 
U-statistics theory for dependent data as a tool for obtaining the 
asymptotic distribution of the sample correlation integral. 

Other nonparametric techniques have also been used in connection 
with fractal dimension estimation, such as wavelets (cf: e.g., Muzy 
et al., 1994) and nearest neighbour methods (van de Water and Scram, 
1988). 

Fractal dimensions (specifically the correlation dimension) have 
been used to estimate the embedding dimension of nonlinear time 
series (cf. e.g., Cutler, 1994). On the other hand, Cheng and Tong 
(1992) argue that the embedding dimension should be estimated before 
the fractal dimension of the attractor. They propose a method 

p having a singular part we mean the existence of a set A E B(W) such that 
A A )  > 0 and X(A) = 0, with dA(x) = dx the Lebcsguc measure. 
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356 A. FRIGYESI AND 0. HaSJER 

involving nonparametric regression kernel smoothing and cross vali- 
dation for estimating the embedding dimension. 

For an overview of fractal dimension estimation, we refer to Cutler 
(1993), whereas much of the mathematical theory of fractals can be 
found in Falconer (1997). 

2. PARTIAL EQUIVALENCE OF HP 
AND RkNYI DEFINITIONS 

In this section, we will investigate under which circumstances the 
generalized HP and Rbyi dimensi~ns agree. As a preparation for 
this, we need to introduce some regularity concepts of probability 
measures. The first such concept, introduced by Federcr (1969), is 
frequently used as a regularity condition on measures in multifractal 
analysis: 

DEFINITION 3 (Diametric regularity.) A measure p is diametrically 
regular or a Federer measure if, for each A > 1, there exists a constant 
c > 0, such that for all sufficiently small h > 0 and every x we have 

It is easily seen that it suffices to verify (6) for one particular value 
of A > 1. However, diametrically regularity is not well suited for 
measures defined on (RP, B(Rp)), as the following result shows: 

P ~ o ~ o s r n o ~  1 Any compactly supported meantre on (RP, B(RP)) is not 
diametrically regular. 

The proof of Proposition 1 is based on finding points x slightly 
outside supp(,u) for which (6) fails. We will find below (Example 2) 
measures violating (6) even if we consider points x E suppb) only. 

Let us now introduce weaker versions of diametric regularity that 
will be of interest for our subsequent comparison between generalized 
Rinyi and HP dimensions. Given A > 1 and c > 0, define 

Clearly, diametric regularity means that for some c > 0 and all h > 0 
sufficiently small, qh F Rp. 
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DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 357 

DEFINITION 4 (Weak diametric regularity in HP sense.) Given q < 0 
and A > 1, a measure is referred to as weakly diametrically regular in 
the (q, A)th HP sense if 

for some function c = c(h) > 0 such that log cllog h 4 0 as h -+ 0. 

Definition 4 applies to a constant function c(h) = c > 0, but it also 
allows for c- 0 (slowly) as h- 0. For technical reasons, a Rknyi 
variant of Definition 4 will be more useful for us. To begin with, it is 
straightforward to check that an equivalent formulation of the Rdnyi 
type functional is 

To each 7 E rh we may associate a vector j= ( j , ,  . . . , j,) E ZP, 
with (ji,ji+l]h being the projection of 7 onto the ith coordinate 
axis. We may hence define a distance between two cubes in rh as 
117 - yil = maxl 5 i I, I ji - j;l, i ff  = (j;, . . . , ji) is the vector corre- 
sponding to f. Given any positive integer m, we associate a 
neighbourhood 

of all cubes in rh with distance at most m from 7. In particular, for 
m = 1, we will write U1(7) = U(7). Then, for any c > 0, we introduce 

In particular we write r:h = rch when m = I.  Thus all hypercubes in 
r , h  have neighbours to which p assign probability at most of the same 
order as to 7. 

DEFMITION 5 (Weak diametric regularity in Rknyi sense.) Given 
q < 0 and a positive integer m, a measure is referred to as weakly 
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358 A. FRIGYESI AND 0. HOSSJER 

diametrically regular in the (q, m)th Rhyi s h e  if 

for some function c = c(h) > 0 such that log c/log h + 0 as h -, 0. 

The next lemma shows that the concept of weak diamettic regularity 
is meaningful only for q 5 - 1: 

LEMMA 1 (Weak diametric regularity for - 1 < q < 0.) Suppose 
- 1 < q < 0. Then all measures are weakly diametrically regular in both 
the (q, m)th R h y i  (with m 2 1 an integer) and (q, A)th HP sense (with 
A > 1). 

The relation between the various versions of diametric regularity 
when q < - 1 is furnished in the next proposition. We use the ab- 
breviated notation DR for diametric regularity, D R ~ ~ )  for weak 
diametric regularity in the (q, A)th HP sense and so on. 

PROPOS~ON 2 (Relations between various types of diametric regular- 
ity.) The following implications hold between the various types of 
diametric regularity when q 5 - 1 : 

where [A1 denotes the smallest integer greater than or equal to A. 

We are now ready to formulate the main result of this section: 

THEOREM 1 (Relation between Rtnyi and HP dimensions.) It  holds 
that 
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DIMENSION SPE(3TRA FOR MULTTFRACTAL MEASURES 359 

We have equality in (1 1) for measures that are weakly diametrically 
regular in the (q, 1)th Rknyi sense. 

Remark 1 (Choice of norm.) In the proof of Theorem 1 we use 
the max norm. However, since any two norms in W are strongly 
equivalent, there exist numbers 0 < at 5 a2 such that 

for all x E W, where 11 11 is the max norm and 11 . 1 1 1  any other norm. 
For instance, the Euclidean norm has a, = 1 and a* = 4. It follows 
that6 

Phfs ( 4  5 Pi ( 4  I Ph/'7,(4 

and di' (q; Q) = d,f (q; Q). In Proposition 2, only the last condition of 
(9) has to be changed to [Aadall 5 m. 

Remark 2 Since the original version of this paper Frigyesi and 
Hossjer (1996) was written, results related to Theorem 1 have ap- 
peared. Pesin (1997) proves (10) when q > 0 and, for diametrically 
regular measures, even when q > - 1. Pesin, as well as Guerin (1998), 
also consider other functionals than A,( . ; rh) and A,( ; Qh), all of 
which give equivalent generalized dimensions when q > 0. 

For computational purposes, it is convenient to treat sequences of 
r-adic grids for some r E {2,3,4,. . . }, with cubes of the form 

The following result gives conditions which allow restriction to 
r-adic grids; when computing HP-dimensions: 

COROLLARY 1 For q > - 1, 

d i  (q; Q) = lim inf log (A,(% r r m )  ) 
m-m I ~ g r - ~ .  

' ~ u ~ e r s c r i ~ t  I indicates that 11. 1 1 1  is being used. 
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360 A. FRIGYESI AND 0. H~SSJER 

for some function c = ~ ( r - ~ )  > 0 such that log c/m 4 0 as m -+ oo, then 
(12) holh for q _< - l as well. 

We illustrate, with three examples, how to use r-adic grids for 
computing HP dimensions. Although the examples are well known, 
Corollary 1 allows us to find the 4th generalized HP dimension for 
any q~ R. The RCnyi grids I?,- are just introduced to facilitate 
computations. 

Example 1 (Uniform Measure on the Cantor Set.) Let p be the 
uniform Cantor measure on [O,l] and { ~ i ) ; : ~  the intervals of r3- that 
intersect (0, 11. Then, using (7), we get 

Since l?,3-m = r3-- for small enough c, Corollary 1 implies, 
d,(q; Ik) = log 2/log 3, Vq E R. The uniform measure on the Cantor set 
is thus maximum uniform. 

Example 2 (Generalized Cantor Distributions (GCD).) Consider a 
vector w = ( v ~ ,  . . . , v*), vi 2 0 with EL, vi = 1. Define p, on [O,lY 
by recursively choosing cubes in I"+, r,2, . . . according to the 
Mult(1; v l ,  . . . , v,) multinomial distribution. By varying w we get a 
large class of measures, the Generalized Cantor Distributions. For 
p = 1, r = 3, w = (1/2,0,1/2) we get the classic Cantor Distribution on 
[0, 11. The case p = 1, r = 2 and w = (p, 1 -p) ,  is investigated in Cutler 
(1993), Example 3.3.16. In general, it is easily shown that 

D
ow

nl
oa

de
d 

by
 [

St
oc

kh
ol

m
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
8:

58
 0

8 
Ja

nu
ar

y 
20

14
 



DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 361 

In the chapter containing the proofs, we show that (13) holds. Thus 
d,(q; 9) is given by the RHS of (15) for all q E R. 

Assuming p = 1, r = 2, w = (p, 1 - p), with 0 < p < 112, there exists an 
interval y belonging to (O,1] n l?2-m such that p(7) = (1 - p)pm- and 
f ~ U ( 7 )  with p ( . y ' ) = ( l - ~ ) ~ - l ~ .  Thus, with h=2-"'-' and x the 
midpoint of y we have 

Since c can be made arbitrarily small by letting m d  m and 
supp(p) = [O, 11, we have found that p is not DR even if we restrict 
consideration in (6) to points x E suppb). 

Example 3 (Absolutely Continuous Measures with Nontrivial Dimen- 
sion Spectrum.) Consider the following density: Op/dX(x) = 
(1 +P)A?, x E 10, I], for some constant /3 E (- 1, m). Partitioning (0, 11 
into cells yi=((i- 1)r-", ir-m] for i =  1,. . . , r"', we get 

Clearly, = r,-, for small enough c, so dJq; Q) can be obtained 
from (12). Notice first that 

for any q E R. This gives 

where am: bm means that both am/bm and bm/am are bounded 
sequences as m + m. We thus have 

d,(q; Q) = lim 
(q+  l ) (P+  1)logr-"'+ logs 

m-+w q log rm , 4 # 0 ,  
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362 A. FRIGYESI AND 0. H ~ S S J E R  

and the case q = 0 is handled similarly. Depending on the value of P, 
we get three cases (cf. also Beck, 1990) 

and 

We thus have a minimum uniform absolutely continuous measure. 
From Example 3 we find that the dimension spectrum may be 

non-trivial, i.e., non-maximum uniform, for absolutely continuous 
distributions. In Cutler (1993), it is proved that absolutely continuous 
probability measures that are bounded from above and from zero are 
maximum uniform with d,,(q) s p .  

Are there any measures for which the Rinyi and HP dimensions are 
different when q < - I? The answer is yes, for certain measures that 
are not weakly DR in the (q, 1)th Rtnyi sense. We will exemplify two 
such measures on W, one continuous and one discrete: 

Example 4 We will construct a continuous measure on [O,l] related 
to the GCD measures of Example 2 which is not D R ~ ~ ~ ~ ~ .  Given 
r E {2,3,. . . ), a rapidly increasing sequence mk -+ oo and another 
sequence ck \ 0 with log ck/ log rrnk = E and 0 < < I, we proceed as 
follows: First choose cube of r,-m, according to Mult(1; w,), where 
w1 = const- (1, e l 1 , .  . . , c ;~ ' '~ )  and const assures that wl is a prob- 
ability vector. Then proceed recursively, so that given an interval 
7 E I?,&., subintervals I?,-m. 3 c/ c 7 are chosen according to a 

-,.-F"U-lf 1 Mult(1; wk) distribution, where wk = const. (1, c;', . . . , ck 1. 
With 

we notice that N: := = rl/h], so that d,(-1;r) = limh,o 
(log~:/logh-') = 1. 
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DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 363 

Given yEI',-, we let right (7) denote the interval in r,-, 
immediately to the right of y. Then introduce (k 2 2) 

r:-, = {r E C - r n  n (0,1]; 7 and right (7) belong to 
different intervals of r,,,). 

Assume y el?>, and let hk = 2rrnk.  Since B(x, hk) > y U right(?) if 
x E 7 and ~ ( 7 )  = ckdright(7>>, we get 

with ak - bk meaning that ak/bk -, 1 as k + oo, and the last step follows 
by our definition of {mk} and {ck}. Thus 

d; (- 1 ; q )  = lim inf log lIphII-I lim inf log lbhk 111; 
h+O logh k+co loghi' 

< lim inf - log ( J " c ~ k )  = 1 - c <  1 
k-co log (Pk/2) 

In conclusion, we have verified that d;(- 1; Q) < d,(- I ;  I?). 
According to Theorem 1, p cannot be a DR~-?) measure. This can 
also be seen directly, since rjkr, c I?:-, . 
Example 5 Let us now construct a discrete measure on [- 1,O] which 
is not DR~:? for q < - I.  We put 

where 6, is a one point distribution at x, pk=2-k- '  and sk= 
3k-2n-2so thatp[-1/4,0]= I .  Notethat -4-I,. . . ,  -4-", -4-!+ 

- 8-', .  . . , 4-"'+'+8-"'+' all lie in different y E F ~ - W ,  whereas all 
remaining atoms of p belong to the same interval y=(-4-",0]. 
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364 A. FRIGYESI AND 0. HdsSJER 

Thus, since q < - 1, 

giving d: (9; I') 2 limm+m ( log Ap (q; r4-.)/ log 4-") = (q  + 1 )  / (29). 
Turning to dp(q; Q),  we notice that 

where 

and 

k = 1 , .  . . , [(m - 1)/2] ,  
p4-m (-4-k + 8-k) = k =  [ ( m -  1 ) / 2 ] + 1 ,  ..., m- 1, 

C a P l  + s f ) ,  k > m. 

combining the last three displays we find 

Now, use (38) to deduce d,(q; $) =(q+l)/(+) .  Thus we have 
d,(q; Q )  < d:(q; I'). In view of Theorem 1,  this implies that p is not a 
D R ~ & *  ( a l )  measure. 

The last two examples can be summarized as follows: 
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DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 365 

THEOREM 2 It is possible to construct measures p such that 

We close this section by considering the box dimension: 

D E F ~ I O N  6 The box dimension of a set A is defined as 

A(A) = lim log Nh(A) 
m--.a, logh-' ' 

whenever the limit exists. Here Nh(A) is the number of elements from 
rh needed to cover A. 

Using Theorem 1, we may find measures for which the box dimen- 
sion of supp(p) differs from the q=  - 1 HP dimension. 

COROLLARY 2 For any measure p we have 

A ( ~ P P ( P ) )  = d,(- 1; r ) '  (19) 

and in particular, we can find a measure p such that 

3. A NON-GRID &NYI TYPE FUNCTIONAL 

We now define a new functional, that will be further discussed in the 
next section in connection with density estimation, but it is also of 
independent interest. It has the form 
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366 A. FRIGYESI AND 0. H~sSTER 

Now AL(q; !Ph) is closely related to the R h y i  functional AJq; Fa). 
In fact, 

where y(x) is the midpoint of the unique cube y ( x ) ~ l ? ~  such that 
x E ~ ( x ) .  Except for the unimportant scaling factor YP, AJq; ru) 
differs from AL(q; Qh) through the replacement of x by y(x) in the 
integrals. Thus, AL(q; !3h) can be viewed as a non-grid version of 
the Rinyi functional AJq; I'Zh). Moreover, AL(q; \kh) has links to 
the HP-functional, since we obtain AL(q; 9 h )  by replacing dp(x) with 
a smoothed version h-Pph(~)& in the definition of A,(q; !Ph). Guefin 
(1998, Section 1.2) also considers AL(q; !Ph) when q > 0. 

The fractal dimension corresponding to AL(q; Qh) is 

if the limit exists. Similarly, we define dL* (q;*) as the liminf 
or limsup of the RHS. The relation between this dimension con- 
cept and the Rinyi and HP dimension is treated in the following 
theorem: 

THEOREM 3 For any probability measure p on B(7ZP), the relation 
between dL* (q; 9 )  and the Rinyi dimension is such that 

whereas for q < - 1 ,  there exist measures with dL+ (q; Q )  < d,f(q; r )  us 
well as those with dhf (q; 9)  > d: (q; r). 

The dimension dLi (q; Q) is further related to the HP dimension as 

and there exist measures with strict inequality in (21). 

Combining Corollary 2 and Theorem 3 (with q= - l), we get the 
following alternative characterization of box dimension: 
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DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 367 

P R O P O ~ I ~ O N  3 (Another Characterization of box dimension.) The 
box dimension of a measure p is obtained through 

as soon as the RHS limit exists and = Cy E W; inf,, - yll 5 h).  

This result, originally due to Minkowski, is well known (cf, e.g., 
Falconer, 1997, p. 20). To illustrate its connection with Corollary 2 
and Theorem 3, we give a separate proof of Proposition 3 in Section 7. 

4. ESTIMATION OF FUNCTIONALS 

Define the empirical distribution based on {Xi);=,; 

As estimators of the Rinyi and HP functionals we take Ap(q;rh) 
and 

respectively. The first estimator is simply a 'plug-in' version of the 
Rinyi type functional (replacing p with ji). The second estimator re- 
places p with p in the outer integral appearing in the definition of A, 
whereas in the inner integral, p is replaced with the ith leave-out 
measure7 

'~lternativel~, we could use Afi(q; @ L )  for estimating the HP functional, since A(q; qh) 
and Afi(q; 9h) are asymptotiolly quivalent. However, the version given in (22) more 
naturally generalizes the sample comelation integral. as will be seen from the examples. 
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368 A. FRIGYESI AND 0. HdSSJER 

The following result can be stated concerning almost sure (as.) 
convergence of the two estimators of the Rhyi and HP functionals: 

THEOREM 4 Suppose {Xr) is a stationary and ergodic stochastic pro- 
cess with marginal distribution p. I f q  5 - 1 we also require p to have 
compact support. 

Then, 

as n -+ oo. 

Example 6 (Sample Correlation Integral.) Serinko (1996) has proved 
(24) when q = 1. Notice that 

This quantity, frequently referred to as the sample correlation 
integral, is a well known estimator of the correlation integral C(h), 
defined in Section 1. It was introduced by Grassberger and Procaccia 
(1983). Thus, the family of estimators qh), q~ R, incorporates 
t(h) as a special case. 

Another generalization of the sample correlation integral is 

which is an estimator of A,(q; qh), q = 1,2,3, . . . . This is a U-statistic 
of order q + 1, and was proposed by Grassberger and Procaccia (1 983) 
and further considered by Pesin (1993). 

Example 7 (Box Counting.) When q = - 1, the estimate of the Rinyi 
type functional reduces to 

frequently referred to as box counting. 
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DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 369 

Let us now consider estimation of the functional AL(q; Ph) 
introduced in Section 3. As an estimator, we take 

with A ( x )  = fi(B(x, h)) .  Thus AL(q; Ph) is obtained by replacing p 
with the empirical measure ji in the definition of A;. 

When investigating the asymptotic properties of Ai(q; Ph), we will 
need an extra regularity condition when q < - 1. For all h > 0 such 
that ph(x) > 0 we assume 

~ ( f i ~ ( x ) l + ~ )  5 c ~ ~ ( x ) ~ + '  for some constant C > 1, 

liIIln+&(fih (x )  = ph (x)"' . 
(25) 

Now (25) is a rather mild restriction on {Xi} ,  satisfied (for instance) 
by all i.i.d. processes, since then nfih(x) has a binomial distribution 
(nfih(x) E Bin(& ~ h ( x ) ) ) .  

We now prove the analogue of Theorem 4; uniform consistency of 
Ab(q; Ph) w.r.t. h: 

THEOREM 5 Suppose {Xi) is a stationary and ergodic stochastic process 
with marginal distribution p. I f q  < - 1 ,  we also impose (25) and assume 
that p has compact support. Then 

sup A P )  - A ;  P )  o us n - m, (26) 
O < h < w  

for any q E R. 

Example 8 (Volume of Overlapping Boxes.) Notice that 

The union V=,B(Xi, h)  of balls of radius h is called a Minkowski 
sausage. Its volume is an estimate of X ( {x ;  ph(x) > o}), which is closely 
related to ~ ( s u ~ ~ ( p ) h ) - ' .  In view of Proposition 3, box dimension can 
be expressed in terms of X(supp(ji)h). Box dimension is frequently 
estimated using box counting, where the number of disjoint boxes over 
a grid is of interest. The advantage of the Minkowski sausage over box 
counting is that it requires no choice of grid. 
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370 A. FRIGYESI AND 0. H~SSJER 

Example 9 (The Henon Attractor.) The Henon mapping is a 
dynamical system {Xi=  (Xi,, X*)), known to have a fractal invariant 
measure p. The mapping is defined through Xi+lZ) = (Xn + 1 - 
1 . 4 ~ $ ,  0.3Xil). Figure 1  shows a plot of q,lB(Xi, h) for different values 
of h, for the Henon mapping. These plots give successively finer ap- 
proximations of the attractor supph). 

Exmnple 10 (Estimating the Correlation Dimension.) Let Km(x) = 
I(llxll 5 1) denote a rectangular kernel function. After some computa- 
tions, one finds 

with K(x) = (K, * K,)(x) = X(B(0, I) n B(x, 1)). When p = 1, we get 
the triangular kernel K(x) = (2 - [XI)+. Thus Ai(1; gh) differs from 
the sample correlation integral e(h) in two ways. First, K, has been 
replaced by K. Secondly, there is a contribution 2P/n from the diagonal 
terms, which is asymptotically negligible if h > n-  ' I P .  

FIGURE 1 The set q=,B(X,, h) for the ~ c m n  mapping and different values of h. 
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DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 371 

5. ESTIMATION OF FRACTAL DIMENSIONS 

The existence of the 9th generalized HP-dimension dJq; Qh), can be 
expressed as 

10ga(h) 4 0 as h -* Ar (q; \Eh) = ~ ( h ) h ~ & ( @ ~ ) ~  - 
log h (27) 

or, if we take logarithms, 

logA,(q; Qh) = log a(h) + d,(q; Qh)log h. 

A natural estimator J(q; 9 )  of d,(q;9) is therefore the slope 
of a least squares regression line, computed from 'data' (loghi, 
logAp(q; \Eh,));, .*Here 0 < hl < -.  < h,,, are some fixed real numbers. 

The quality of d(q; 9) depends not only on the sample size, but also 
on how much the 'intercept term' log a(h) varies with h. The oscillating 
behaviour of log a(h) has been named lamarity by Mandelbrot 
(1982). The most regular case is referred to as exact scaling, and it 
occurs when 

a(h) iz a for some h < b. (28) 

As a direct consequence of Theorem 4, we have the following result: 

COROLLARY 3 (Consistency of Dimension Estimates.) Suppose (Xi}  
is a stationary and ergodic stochastic process with marginal distribution 
p. If q < - 1, we require p to have compact support. Suppose further, 
that d,(q; Q) (d,(q; I?)) exists, with the exact scaling property (28) 
fulfilled. Consider the least squares estimator d(q; \E) (d(q;I?)) based 
on fixed numbers 0 < h, < - .  . < h,, that are independent of n and 
h, < ho. Then >(q; 9 )  (>(q; I?)) is a strongly consistent estimator of 
d , k  *) (dp(9; m. 

Corollary 3 is quite weak, since exact scaling is in general not 
satisfied. In fact, Serinko (1996) has shown that the least squares 
estimators of the correlation dimension is typically inconsistent when 
exact scaling fails and hl,. . . , h, are fixed (independent of n). 
Consistent estimators can be obtained by letting hl, . . . , h, tend to 
zero with increasing n, cf. Cutler (1991) and Serinko (1994). In our 
setting, this entails a sharpening of Theorem 4, taking simultaneous 
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372 A. FRIGYESI AND 0. HdSSJER 

limits h -+ 0 and n -. oa. Such a result requires further mixing 
conditions on the process {Xi ) ,  and is an interesting topic for future 
research. 

Example I 1  (The Henon Attractor, revisited.) In Figure 2, the 
estimated dimension spectrum Y( . ,q )  is displayed based on a 
sequence {Xi):, from the Henon mapping. We used n = 212 for the 
dashed line and n = 213 for the solid line. By property (4), the R h y  
dimension is monotonic, and thus any non-monotonic region is 
essentially bogus. In this example however, the larger sample size gives 
a non-monotonic estimate. The bandwidths were h = 0.0125,0.006. As 
a comparison, Cutler (1993) reports 1.28 when q = - 1 and 1.21 when 
q = 1. Because of the fairly moderate sample size, we do not expect the 
estimates to be accurate for negative q. To be able to characterize 
the more rarified regions of the measure we need large samples. The 
difficulty of estimating fractal dimensions when q is negative 
(especially q < - I)  has been addressed by Roberts (1996). 

Estimated Dimension Spectrum 

- - -  

FIGURE 2 The estimated dimension spectrum for the Hmon mapping, for 'two 
different sample sizes. 

D
ow

nl
oa

de
d 

by
 [

St
oc

kh
ol

m
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
8:

58
 0

8 
Ja

nu
ar

y 
20

14
 



DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 373 

Equipped with Theorem 5, it is easy to establish a dimension esti- 
mation result for ( i t ( . ,  !P) corresponding to Corollary 4. We refrain 
fromthis and give an example instead: 

Exmnple 12 (Estimating Dimension Spectrum for a GCD.) The 
estimated dimension spectrum I(., Q), for a GCD with parameters 
p= 1, r =2 and w = (p, 1 -p)  = (115,415) is shown in Figure 3. The 
estimates are marked as circles. The solid line indicates the theoretical 
dimension spectrum given by dJq; Q )  = - l / q  log(pq+ ' + (1 - p)q+')/  
log 2. In the log-log plot, we used n = 2'' and h = 0.025, 0.0125. As 
in Example 11, we notice how difficult it is to estimate the dimen- 
sion for small q, since there are few data points in the more rarified 
regions of the measure. The estimates may be improved by choosing a 
larger n.' 

Dimension Spectrum 
2 1 

FIGURE 3 The true and estimated dimension spectrum y(., 9) for a GCD (solid line 
and circles respectively). 

&TO be precise, we have not established dh* (., rk) for the GCD distributions. In view 
of Theorem 3, we know that d;(., 9) 2 - l l q  log (p"' + (1 - p)qC')/log2. 
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374 A. FRIGYESI AND 0. H~sSJER 

6. CONNECTIONS TO DENSITY ESTIMATION 

Suppose H: [0, oo) + [0, oo) is a convex function with H(0) = 0, and 
put H(x) = H(x)/x. Thus k(x)  is monotone and continuous, and we 
also require 

lim ~ ( x )  = oo. 
X-+OO 

(29) 

For any probability density function g on W, define the functional 

where Y is a random variable with density f y = g .  Thus J(g; H) 
measures how large g(Y) is in a weighted sense. For instance, if 
H(x) = 2, we get J(g; H) = E(g(Y)). 

Consider now the kernel density estimator 3 defined in (9, with a 
bandwidth h = h, tending to zero with increasing sample size. It was 
proved in Frigyesi and Hijssjer (1998), (cf. also Frigyesi, 1994) under 
some mild regularity conditions on H, {Xi), {h,) and K, that 

~ ( 3 ;  H) % oo, if p  has a singular part, 
(30) 

J L J H ,  if dp = f d ~ .  

This was used to device a test for descriminating probability meas- 
ures having a singular part from absolutely continuous ones with 
J (  f ;  H) 5 C < The first part of (30) is a consequence of (29). When 
p  has a singular part, .? will have a spikes on a set with small Lebesgue 
measure, and these are 'magnified' by H, causing J ~ ( h d x  to diverge. 

Consider in particular the functions 

H,(x) = 4 # 0 ,  
x logx, q = 0. logx, q = 0. 

PThis subset of all a!xolutcly continuous probability measures can be made arbitrarily 
large, by choosing a H that increases slowly enough to infinity. 
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DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 375 

Then H, is convex for q 2 0, but we will allow any value of q in 
the present context. Assume Y is a random variable with density g. 
Then 

Now J ( . ,  H ~ )  is intimately related to A : ( ~ ;  qh). Introduce 

as a smoothed version off. If h does not depend on n we get, by the law 
of large numbers for ergodic processes (cf. e.g., Billingsley, 1965), 
f(x) fh (x), and moreover, 

with Kh(x, y) = K((y  -x)/h). We will allow the following class of 
kernels K: 

DEFINITION 7 Let K: be the class of kernels K that are non-negative, 
bounded, have compact support and are bounded away from zero in a 
neighbourhood of (0,. . . , O).1° 

Notice that K: includes many of the standard kernels used in 
univariate density estimation, e.g., the rectangular (I((x1 _< 1)/2), tri- 
angular, Epanechnikov and biweight kernels. For 'any K E K, we can 
find nonnegative reals c,, cl, MI and M2 such that 

'%ven though JK(x)dx= 1 is imposed for density estimation, this restriction is not 
essential when estimating fractal dimensions. Thus we do not impose $K(x)rfx= 1 for 
elements of K. 

D
ow

nl
oa

de
d 

by
 [

St
oc

kh
ol

m
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
8:

58
 0

8 
Ja

nu
ar

y 
20

14
 



376 A. FRIGYESI AND 0. H~sSJER 

Using this, it is not difficult to prove that 

with K representing the sequence of kernels {KJ,). In particular, 

for large n and small h, when dL(q; 9) exists. Thus, dL(q; 9) determines 
the rate at which J ( ] ;  &) tends to infinity. 

Example 13 (GCD, revisited.) We computed a log-log plot of 
~(f,,; f i l )  versus h -  ' in Figure 4, using the same GCD distribution as 
considered in Example 2 and a rectangular kernel. From the central 
linear region, in which the slope 0.44 approximates 1 - dL(1; Q ) ,  the 
dimension was estimated to 0.56. 

Example 14 (The Henon Attractor, revisited.) Using ~rop'osition 3, 
(3 1) and (32), we plotted log ~(f,,; H -~) versus -log h in Figure 5, for 
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DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 377 

5s 

FIGURE 5 A plot of log ~ ( j ; n - I )  versus -log h, for the Henon mapping. The slope 
in the central region was 0.77, giving A(suppOl)) = 2-0.771 1.23. 

a rectangular kernel. We obtained A(supp(p)) = 1.23. In Cutler 
(1993), this quantity is estimated to 1.28, and in Falconer (1990), the 
value 1.26 is reported. The number of sample points was n = 8192, and 
the sequence qf bandwidths h = 1, 0.5, 0.25, 0.125, 0.06, 0.03, 0.015, 
0.006, 0.003, 0.0015, 0.0006, of which 0.125, 0.06, 0.03, 0.015 were 
used in the regression. 

We close this section with a remark concerning the histogram esti- 
mator. Suppose X(x) is the unique element of rh such that X E  X(x). 
Then, the histogram density estimator at x ,  is defined as 

and it is closely related to the RCnyi type functional. In fact, one has 

which means that ~ ( j ; i ! ? ~ )  = hd@(cr)-p for small h and large n, 
provided d,,(q; I?) exists. 
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378 A. FRIGYESI AND 0. HOSSIER 

7. PROOFS 

Proof of Proposition I Let R = suppb) and fix A > 1. Pick an 
arbitrary h > 0. Then any x 4 R with dist(x, R) := inf())x - 
yll; y E R) = fib has j&) = 0 and pAh(x) > 0 and thus (6) fails. H 

Proof of Lemma 1 Let us first verify that any probability measure 
is weakly diametrically regular in the (q,m)th RCnyi sense when 
- 1 < q < 0. In fact, we will establish the following, stronger, result: 
Given any 0 < c < (2m + I) -P and q > - 1, there exists a positive 
constant C1 = C1(p, q, c,m) such that 

with Cl(p, q, . , m) bounded in a neighbourhood of 0. In order to prove 
this, we define a map n : rt -r I?; (cf. (16) for the definition of r;) 
with the following properties. Given 70  ~ r h f ,  we form a chain yo, 
yl, . . . ,yrv with 0 < N < 00. If .yi E r;, terminate the chain, and ' 

put N =  i. If yi is not in rz let 7i+l = argmaxy, ",(,)p(f) (In case 
several of the p(-f) are equal, choose for uniqueness the f whose 
center coordinates has the greatest first coordinate, then the greatest 
second coordinate and so forth). Finally put ~ ( 7 ~ ) = 7 ~ ,  and let 
L(yo) = N be the number of edges in the chain. (Tightness of p assures 
that N < 00.) Writing 

it suffices to show that p(7)1+q > Cl x,, rlh) ~ ( - / ) l + ~  for all 7 € rs. 
Notice that 1-44?)) 2 ((2mf 1Yc) - L(7)p(7) and Il.lr(r) - rll 5 mL(71, 
with 1lnf-y) - 711 as defined in Section 2. Thus 
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DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 379 

with No = 1 and NI= (a+ l)P-(U- for 12 1. Formula (33) fol- 
lows if we choose C1 = (CI"O,N,((2m + l )~c) ' ( '+~) '~ ) -~ ,  and clearly 
Cl(p, q, . , m) is bounded for small c. 

Let us now verify that any measure is weakly diametrically regular 
also in the (q, A)th sense when - 1 < q < 0. Conditioning on which 
cube X belongs to we have 

Let y(x) be the unique cube in r h  such that x ~ y ( x ) .  Then 
$x) E B(x, h). Since q < 0, this implies 

Suppose now that ?\qh is nonempty and that x€-y\PA,. Then 
7 c B(x, h). If m is chosen so large that [ A ]  4 m we also have 

B(x,Ah) c uy , ,(,)T'. l-llus 

i.e., 7 $rz whenever ?\qh is nonempty. But this in turn implies 

To complete the proof, take logarithms of (35) and (36), divide by 
log h, let h-+ 0 and use the fact (just proved) that any measure p is 
D R R ~ Y ~ .  

( 4 P )  
I 

'Proofof Proposition 2 The first part of (9) follows easily from the 
fact that ath = W for DR measures and sufficiently small h > 0, 
provided c > 0 is chosen as in Definition 3. The second part follows 
similarly by noticing that for DR measures we have rch = J?h+ for some 
c > 0 and all h > 0 small enough. (Here rh+ is defined as in (16).) The 
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380 A. FRlGYESI AND 0. H~SSJER 

third and fourth parts follow immediately from the facts that @; c 
gi and c respectively. Finally, the last part of (9) follows 
from (35) and (36) (recall that rA) _< m was assumed in the proof of 
Lemma I), since the argument leading to these equations is equally 

' valid for q < - 1 as for - 1 < q < 0. 

Before proving Theorem 1, we will establish two lemmas: 

Proof Put C2(N, r) = 1 and C2(N, r) = IT- ' when 0 < r < 1 and r 2 1 
respectively. 

LEMMA 3 Assume 0 < c < 3 - P ,  and ma+ rr p(7) 5 e < 1. Then there 
exists 0 < C3@, e, c)  < 1 mch that 

and lirn,, oC3(p, E,  c) = 1. 

Proof The idea is in principle the same as in Lemma 1 (with rn = I). 
Let f ( x )  = x log x.  It suffices to show that for each 7 E I?,,, we have 

with C3 chosen appropriately. Assume 0 < x  < e and 0 < 6  5 1 .  We 
then get 

( log 6 ) f ( ~ )  2 6 ( l  + E ) f  ( x )  t ~ ( & ) 6 ' " f  ( x ) ,  f (6x)  = 6  1 +- 
log x  

with C(E) = sup0 < 6 161'2(1 +log 6/log E). From this it follows D
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DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 381 

with N, as in the proof of Lemma 1 and p(l/)/p(cy) 5 (Yc)! We may 
112 -1 

thus put C3(p, E, C) = (1 + C(E) CZl N@c) ) , and it follows that 
lime, &(p, E,  c) = 1 .  

Proof of Theorem 1 Consider first q  > 0. Let y(x) be the unique cube 
in I?,, such that x ~ y ( x ) .  Then ~ ( x )  2 B(x,h) G UYEU(y(x))f. AS a 
consequence, for any 7 E I?h, 

Use (34) and (37) to obtain 

where the last inequality follows from Lemma 2 and the fact that 
#U(-f) = Y. Letting h -+ 0 we obtain (10). 

When q<O we fix O < ~ = c ( h ) < 3 - ~  as in the proof of Lemma 1 
(with rn = 1). Then 

The first inequality proves (1 1). What remains to show for q  < 0 
is, in view of Lemma 1, the identity d: (q; 9) = d: (q; I?) for any 
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382 A. FRIGYESI AND 0. HOSSIER 

measure. But the last displayed inequalities imply (if h < 1) 
('7') 

and this yields (10) when h -, 0 since by assumption log c/log h -, 0. 
It remains to consider the case q = 0. Write 

and assume without loss of generality that p is not a one point 
distribution. Then there exists 0 < E < 1 such that max p(7) 5 E for all 
h small enough and 7 E rh. This argument and Lemma 3 yield 

= log c-' C ~ ( 7 )  + C ~ ( 7 )  log (~(7)) 
7 E rch 7 E r d  

as lim,,oC3(p, E, c) = 1 ,  (10) will follow by letting h + 0 and c + 0 
so that log cllog h -, 0. 

Proof of Corollary I Suppose we can prove 

d,, (q; !P) = lim A,'(q; %-m) 

m-oo log r-" ' 

and similarly for d: (q; @), with Iim replaced by Iiminf or lim sup. 
Then the rest of the corollary follows as in the proof of Theorem 1, 
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DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 383 

taking h = r -"'. To prove (38), assume .r-"- < h 5 r-". If q > 0, 
we get 

m log (x) q, 'Iq < log ( ~ p ~  (x)') 'Iq - 
m + 1 ' log rrn - log h 

m + 1 log (E~+--I ( ~ ) ~ ) l / q  
5- m log r-rn-1 

Let h - 0  and m- oo simultaneously, so that r-"-' < h 5 r-" is 
fulfilled. Then (38) follows. The case q 5 0 is similar. 

Proof of ( N )  from Example 2 For ease of notation, let hl = r-" and 
h~ = r-rn+mo, with mo a fixed positive integer, not depending on m. It 
suffices to establish (1 3)  for some constant c = c(h) > 0. This we will do 
by showing that for small enough c,  

K 5 log 

with K independent of m. Write CTE ", p(')liq = E j r  r, 
&i p(-y)liq, and note. that for any 4 E r h ,  wth p(7) > 0, 

Thus 
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384 A. FRIGYESI AND 0. HOSSJER 

This sum is independent of m as Er r; ;Xs r(7)1W/ CrCs p(7) ltq 

does not depend on m and 7 as soon as p(7) > 0. It only depends 
on that is kept constant, and large enough for the quotient to be 
positive. 

The following proof is due to Colleen Cutler (personal commu- 
nication): 

Proof of Corollary 2 Let Nh be the number of cubes that 
intersect suppb). Write Nh = Nz +I$, where consists of sets with 
measure zero and = 8rh+. Every set in I$ must have at least one 
neighbour in Nh+. But any 7 h  in Rp has at most 3"- 1 neighbours. It 
follows that $ 9  ( 3 p  - 1 ) q  so that N; and Nh grow at the same rate. 
This proves (19), and the second part then follows from (17). 

Proof of Theorem 3 We first prove (20) when q E [- 1,O) U (0,oo). 
Let ~ ( x )  be the unique element of rh such that x ~ y ( x ) .  Since 
~ ( x )  C B(x, h) c ufE u(,(x))-/, it follows that p ( 7 ( ~ ) ) ' + ~  5 ~ ( x ) ' "  9 
(xfif 6 y(llx)))l+q. Integrating w.r.t. x, we get 

As in the proof of Theorem 1, we may use Lemma 1 to deduce that the 
RHS and LHS are of the same order, and this proves (20). Assume 
next q = 0. Define the measure jih through jih(A) = (2h)-' JA ph(x)&. 
Then 

From the definition of w( ., - ), one has (since JI(llxll < 1)dx = 29 
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DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 385 

Use (39) - (40) to obtain 

where U2(f) = (7 6 rh; 1I-y' -711 121, and 11 . (1 is defined as in the 
proof of Lemma 1. Now (making use of Lemma 3, as in the proof 
of Theorem 1) &,,p(f)log(U2(f)) is of the same order as 
C,, rh p(f) log (f). Thus, the last two displays imply, letting h + 0, 
d; * (0, !#) 2 d z  (0, I?). For the reversed inequality, notice that 

where we used Jensen's inequality and the convexity of x log x in the 
first and last step. This proves dJ, * (0, \E) 5 d,f (0, F). 

Next, we turn to (21). Since q < - 1 ,  we have 
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386 A. FRlGYESl A N D  0. H6SSiER 

In the last step, we used the fact that if dp(y)  > 0 and X E  B(y, h), 
then 0 < ph(x) 5 ~ ( y ) .  Letting h -r 0, we obtain (21). 

To find a measure p with dh(q; $) > dJq; 9)  = dp  (q; I') when 
q <  -1, we consider the absolutely continuous measures from 
Example 3. Suppose P > 0 is chosen so that P(q+ 1) < - 1. We know 
already that dJq; Q) = (q+ l ) @ +  l ) /q ,  and it is not difficult to show 
that d,(q;I') exists and has the same value. On the other hand, 
J ph(x)l+qdx > f h ( x  + h)(p+l)('+l)dr = m, i.a., dh(q; 9)  = m. 

Finally, we construct a measure p on [O,l] with dA+ (q;  9)  < d,+(q; I') 
when q < - 1. Define 

Let further - 1 < P < 0 and - 1 < @+ l)(q+ 1 )  < 0, and put 
ji(-m, X ]  = pe(x) + sG(x/6) .  We then get rm jih(x)liqdx = 0(s1+q6 
(h/6)Iiq),  with jih(x) = fi(B(x, h ) ) ,  assuming that h = O(6). Notice 
that we can make this last estimate independent of p, by our choice 
of G. Let 2-" 5 h < 2-'"+' and put 6 k = 2 - k - 2  . We then get 

where the last step follows if sk\O slowly enough. It follows that 
dL+(q; Q) 5 1 .  Now, if 2 - k ~ 7  and yEI'2-m, it follows that p(y)=pk 

m-2 I+', 
- ~ ~ ~ . I f n o w p k l  

0 fast enough, so that log pk/k -. - m we have d,+(q; I?) = oo. rn 

Proof of Theorem 4 Notice first that 
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DIMENSION SPECTR4 FOR MULTIFRACTAL MEASURES 387 

Clearly, fi(7) p(7), V 7  E rh, by the strong law of large numbers 
for ergodic sequences. We will need a stronger version, uniform in 
h and 7. Put fih(x) = fi(B(x, h)), and (-00, x] =(-m, xl] x . - x 
(-m,xp], if x=(xl, . .  . ,x,,). Then 

8.S < 2 P  sup Jfi(-w, X] - p(-00, XI/  := 6 2 0. - 
X 

(42) 

We used the fact that fih,,(x) - ph12(x) is a linear combination of 
fi(-oo,y] - p(-cqy], with y ranging over the 2P comers of B(x, h/2). 
The last step in (42) is a Glivenko-Cantelli type result for ergodic 
empirical processes. 

Let us start introducing some notation needed for the proof of (23). 
Order the atoms of p (if there are any) according to their probabilities, 
i.e., p({xl)) 2 p({x2)) > - - . . Given 6 > 0, we choose N = N(E) as the 
smallest number such that C&+, p ( { ~ i ) ) ~ ~ ( l + ~ )  I E. (If p is con- 
tinuous, then N=O.) Subdivide the cubes of into two groups 
according to ph = q=, 7(xi), = I'h\r;l, with 7(xi) the element of rh 
containing xi. Further, let M =  M(c,h) be the smallest number 
satisfying Z7 rr;7c(l-u,My)c ~ (7 ) ' " ( '+~ )  5 &, and put 

If q > 0, we split rh  into two subsets, according to whether 7 E J ? ~  
or not; 
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388 A. FRIGYESI AND 0. H~SSIER 

using that fact that C ,Epp( r )  S E .  By definition of M, 
p(((- M, 1 E, SO M(E, - ) ;s a bounded function, and the RHS 
of (43) is small simultaneously for all h 2 ho > 0 (where ho will be 
chosen below), if E and 6 are small. 

suppose now ho is chosen as the largest number satisfying 
sup,, r; p(7) 5 2 ~ .  Then, if 0 c h 5 ho, we get 

Notice that (43) and (44) give upper bounds for 
1A8(q; rh)' - Ap(q; rh)'l. Since 6,(q; rh)q < 1 for all h > 0, we obtain 
(23) when q >  0 by first choosing E small end then letting n+ oo 
(6 = 0). 

~f - I < q < o we have ~ , ( q ;  rh)q:fi,(q; qhlq and A,(q; rh)' 
A(q;*h)q. This is proved as in Theorem 1, using Lemma 1. Fur- 
ther A,(q; qh) is a noodecreasing function of h. Thus, we get two 
cases, 

We will show below that ~ ~ ( 9 ;  rh)q:fi(q; qhlq,  SO (23) will follow 
for Case 1 if we establish (24) for Case 1, and this will be done below. 
Turning to Case 2, we first assume that p is discrete. Then, splitting 
rh into and I?;, as in (49, we get 
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DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 389 

Since ${xi)   xi)^ Vi  and E(fi{xi))  = pixi) ,  it follows from 
Fatou's Lemma and Jensen7s inequality that 

m m 

lim C f i { ~ i ) ' + ~  = C p{xi)'+q a s ,  
n-+m i=N+ I i=N+l 

Combining (45) and (46), we obtain (23) for Case 2 when p is 
discrete. Next, we consider Case 2 when p is not discrete, i.e., the 
decomposition p = h + p c  into a discrete and continuous part is such 
that p c ( W  > 0. If h 3 hO (with hO chosen below), we get 

using the concavity of x -, x' + q  and the fact that there are at most 2P 
cubes y that intersect a fixed -/. Similarly 

uniformly for h 2 ho. The a s  convergence in (48) is 
same way as in (46). Thus, from (47) and (48) we get 

h_>ho  n-m 7 E rh 

derived in the 
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390 A. FRIGYESI AND 0. H~SSJER 

Since we assume pc(6P) >O, it follows that P(h) := sup,,rh 
pc(7) > 0, and moreover, @(h) )-.* 0 when h + 0. Thus, using the 
concavity of x ' + ~ ,  we get 

But since AJq; I?,,) ,U AJq; qh) and Aj(q; r h )  # K(q; 9h), it will follow 
from the proof of (24) below that suph h, &(q; rh )  - A,(q; rh) 1 can 
be made arbitrarily small if ho is small enough and n large enough. In 
conjunction with (49), we obtain (23) for Case 2 when p is not discrete. 

The case q = 0 is anaIogous to - 1 < q < 0. ~nsteadl of concavity of 
x ' + ~ ,  one uses the convexity of x log x. 

If q - 1, (23) is easy to prove if p has finite support. We thus 
assume that p has infinite and compact support. Then there exists 
L > 0 such that suppk) c [- L, Lr. Introduce a(h) = min{p(c(); 7 E rh ,  
p(7) >O}, 3-11 = {h;cr(h) < E )  and 3.12 = (O,oo)\FLl. If hE3.11, then 

and similarly AJq; rh) 5 E(' +4)19. Thus 

If h € N2, then 

Since p has infinite support, (0, ho) c 3.1' for some ho > 0, so the 
RHS of (51) is small when e and 6 are small. Further, A4,(q; rh) 2 1 for 
any h~3.12, so (51) implies that lAp(q;rh) - A,(q;rh)l is uniformly 
small for h E N2- Thus (50) and (51) together imply (23). 

Next, we turn to the HP functional. Since 9h) and A(q; Qh) are 
monotone functions of h and 0 5 A(q; Qh), A(q; 91) 5 1 Vh E (0, oo), 
pointwise convergence 
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DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES . 391 

will imply uniform convergence (24). Put ihi(x) = j T i ( ~ ( x ,  h)). Then 

and 

If q > 0, (42) and (53) imply that for any < > 0, 

1/57 
< n-m ~m ('e(Ph(xi) + <Y) " i=1 

holds as .  To obtain (52), we first use the ergodicity of {Xi} and then 
let < 4 0. 

If q 5 - 1, we assume that suppb) is compact. Define Uh = {x; ph/2 
(x) > 0) and d h )  = inf{ph(x); x E Uh}. Note that if x E Uh and 
119 - X I [  5 h/2, then ph12(d) 5 ph(x). The compact support of p implies 
that Uh is _totally bounded, so there exists an integer 8 =8(h) and a 
chain {xi}? c Uh such that sup,, ,,, min, I < 5 Ilx - xill 5 h/2, and so 
d h )  2 min, I #phI2(xi) > 0. Since P ( { X I ,  . . . , Xn) G Uh) = 1, (54) 
holds for any 0 < < < dh).  Again, we prove (52) by first letting 
n --+ rn and then < -r 0. 

When - 1 < q < 0, we only prove (52) when A,(q; h) > 0 (the case 
AJq; h) = 0 is easier and omitted). Given E > 0, choose M = M(E, h) as 
previously in the proof and put R = [- M- h, M+h]P. Similarly as for 
the case q 5 - 1, one proves that q(h; E )  7 inf{ph(x); x E Uh n Q} > 0. 
Thus, for any 0 < < c d h ;  E) ,  one gets 

1/11 c (ph(xi) - + 1 c jj;i(~i)q) n-cu n x i ~ n  n 
X i e  n  
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392 A. FRIGYESI AND 0. H ~ S I E R  

almost surely, and in view of (53), 

with I?; = rr(M) defined as above, and the as. convergence in the last 
step is established as in (46). Combining (55) and (56), we obtain (52) 
by first using ergodicity, then letting [ + 0, and finally E -, 0. 

The case q = 0 is similar to - 1 < q < 0, so we only highlight the 
differences. Assume A,@; qh)  > 0 (which is the more difficult case). 
Then, if 0 < f < q(h, E) ,  

holds a.s., and 

1 1 
- C log (fiii(xi)) Z - C log (&(&)/2) Z - #{Xi  e a) log 2 
n "xien n xi$ !I 

and the RHS of (58) goes to 0 as E -+O. Equation (52) now follows 
from (57) and (58), by first using ergodicity of {Xi} when n -t oo, then 
letting f 4 0, and finally E - 0. W 

Proof of Theorem 5 We start proving that AL(q; ah) and A>(q; Gh) 
are non-decreasing and bounded functions of h. If q # 0, 

D
ow

nl
oa

de
d 

by
 [

St
oc

kh
ol

m
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
8:

58
 0

8 
Ja

nu
ar

y 
20

14
 



DIMENSION SPECTRA FOR MULTIFRACTAL MEASURES 393 

using Fubini's Theorem and changing variables x = y + vh. For fixed y 
and v, the sets B(y+ vh, h) = y+hB(v, 1) increase with h, so ph ,  (y + 
vhl) 5 ph(y + vhz) if hl < hl, and therefore AL(q; qh)  is a nondecre- 
asing function of h. Since also ph(y+vh,h) 5 1, it follows that 
AL(q; Qh) 5 2~14 for all h. A completely analogous computation for 
q = 0 proves that AL(0; Qh) is a non-decreasing function of h, bounded 
by 1. Since p can be replaced by f i  in all calculations, Ah(q; Qh) must be 
a non-decreasing and bounded function as well. 

It remains to establish pointwise convergence Ah(q; Qh) -% 
AL(q; Qh). If q > 0, we let M =  M(E) be the smallest number such that 
SII~II r Md~(x) 5 E. 

Put also 0 = [- M- h, M+ hf'. Then 

The first term on the RHS of (59) tends to 0 a.s. by dominated 
convergence, and the sum of the other two terms is upper bounded by 

Letting E +O, we obtain pointwise convergence of Ab(q; *h). 
, 

When - 1 < q < 0, use jih(x) 3 ph(x) for all x and Fatou's Lemma 
to deduce lim inf,,,Ab(q; \Eh)q 2 AL(q; \kh)q. On the other hand, the 
concavity of x -, x' +q and Jensen's Inequality implies E ( ~ ~ ( X ) ' + ~ )  5 
ph(x) lCq for all x and whence E%(q; Qh)q 5 AL(q; Qh)q. Combining 
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394 A. FRIGYESI AND 0 .  H6SSJER 

'this with the a.s. lower bound for lim infAL(q; 9h)i, we get pointwise 
convergence. 

The case q=O is competely analogous to - 1 < q < 0, combining 
Fatou's Lemma and Jensen's Inequality (the convexity of x -t x log x 
is used). 

Finally, when q l  - 1, Fatau's Lemma implies lim inf,,At 
(q; 9h)q 2 AL(q; !l!h)q, and this proves pointwise convergence when 
AL(q; Qh)' = w. If AL(q; !l!h)q < w ,  the compact support of p, (25) 
and dominated convergence imply limn,, EAb(q; !l!h)q = A;($ Qh)'. 
Combining this with the as .  lower bound for lim infAk(q; Qh)' we 
get pointwise convergence. I 

Proof of Proposition 3 Combining Corollary 2 and Theorem 3, we 
get A(supp(p)) = limh,o(log A'(- 1; Qh)/log h). But A'(- 1; Qh) = 
WA(Rh)- I ,  where ah = {x; ph(x) > 0). The result follows since 
s ~ p p w ~ ' ~  C o h  C S U ~ ~ G ) ~ .  

Proof of Corollary 4 Notice that 

where xi = log hi, ~i = log Ap(q; 9h,) - log A,(q; Qh,) and S, = 
x2 (x. - x)~. Since a(hi) = a  the bias term vanishes, and further 

'a.4 . ' 
Ei 2 0, i= I , .  . . , rn by Theorem 4. The expansion for A(q; I?) is 
completely analogous. I 
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