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a b s t r a c t

Genetic fine mapping can be performed by exploiting the notion that haplotypes that are
structurally similar in the neighbourhood of a disease predisposing locus aremore likely to
harbour the same susceptibility allele. Within the framework of Generalized Linear Mixed
Models this can be formalized using spatial smoothing models, i.e. inducing a covariance
structure for the haplotype risk parameters, such that risks associated with structurally
similar haplotypes are dependent. In a Bayesian procedure a local similarity measure
is calculated for each update of the presumed disease locus. Thus, the disease locus is
searched as the placewhere the similarity structure produces risk parameters that can best
discriminate between cases and controls.
From a population genetic perspective the use of an identity-by-descent based

similarity metric is theoretically motivated. This approach is then compared to other more
intuitively motivated models and other similarity measures based on identity-by-state,
suggested in the literature.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In genetic studies with dense markers, the dependence between markers due to high linkage disequilibrium has
simultaneously been both the major tool for fine-mapping as well as an obstacle for the analysis. Analyses based on
haplotypes, i.e. a collection of alleles at closely linked loci on the same chromosome, utilize the increased polymorphism
obtained when simultaneously studying several loci. The biological importance of haplotypes is at least twofold. Firstly,
proteins consist of a linear sequence of amino acids, which is read off from the DNA content on a chromatid, as captured in
the haplotypes. Thus haplotypes may capture the interaction of several cis-acting susceptibility variants found within the
gene, that can be hard to detect when markers are studied one at a time. Secondly, and what is important in this article,
the genetic variation in the population is inherently structured in haplotypes, and thus the haplotype structure mirrors the
population history of genetic drift, recombination, mutation, selection etc. A review of conditions for when haplotype based
analyses aremore powerful than analyses based on singlemarkers, or thanmulti-locus analyseswithout regard to haplotype
phase is found in Schaid (2004).
We will in this article concentrate on case-control studies, where information on haplotypes is collected. The methods

and algorithms we present are intended for diseases with moderate genetic effects, but with a caution that the algorithms
can be prone to numerical difficulties if the number of sampled individuals is large.
To use haplotypes for genemapping,wewill utilize a local similaritymeasure, that is calculated for eachpair of haplotypes

at putative disease loci. The disease locus is searched for as the chromosomal position where the local similarity measure
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best discriminates between cases and controls. Just as inMolitor et al. (2003a)weuse a likelihood based on spatial smoothing
to determine where this discrimination is optimal. The term spatial is used here to refer to a multidimensional space, on
which a distance metric is constructed, such that similar haplotypes are separated by a short distance. This in turn implies a
large dependence, just as in two-dimensional spatial statistics. A spatial smoothing model based on a local similarity metric
directly exploits the increased polymorphism, obtained when several linked loci are studied together, for the purpose of
fine mapping, and simultaneously handles the problems that might arise if there are many rare haplotypes. Molitor et al.
(2003a) used a spatial smoothing model with a conditional auto-regression (CAR) formulation, where the weights in the
auto-regression are determined by the similarity measure based on alleles shared identical by state (IBS). Other spatial
models suggested in the literature include Bayesian clustering (Molitor et al., 2003b; Waldron et al., 2006) or cladistic
analysis (Durrant et al., 2004; Durrant and Morris, 2005). These models also use IBS measures for defining haplotype
similarity.
Using spatial models for genetic mapping is thus not a new idea, but as pointed out in Schaid (2004), further research

is required to construct a dependence structure allowing for covariances determined by shared ancestry. In this article we
suggest a similarity metric based on identity-by-descent (IBD) instead of IBS relationships. In population based samples
(such as the type we focus on), no pedigree data is available, but information on IBD sharing is captured solely from multi-
marker data. Utilizing the ideas and likelihood ratio calculations of Hartman and Hössjer (2007), we show how haplotype
IBD probabilities can be calculated either strictly pairwise, ignoring all other haplotypes in the sample, or pairwise but
utilizing the full haplotype sample. In general the IBDprobabilitiesmust be calculated through simulation. Under a simplified
model based on a star-topology for cases the IBD probabilities can be calculated analytically, still allowing for mutation,
recombination and varying allele frequency. Alternative calculations of strictly pairwise IBD probabilities used for QTL for
unrelated individuals in animal genetics can be found in Meuwissen and Goddard (2001), with a recent extension to longer
haplotypes in Meuwissen and Goddard (2007).
In this article we show how to use a CAR proposal for risk parameters, together with an IBD metric. We also suggest a

spatialmodel thatwe derive from a population genetic perspective— this places an even stronger emphasis on dependences
being due to shared ancestry than the CARmodel with IBDmetric. In this lattermodel it turns out that the covariancematrix
for the haplotype risk parameters consist of IBD probabilities for each pair of haplotypes.

2. Spatial smoothing models for gene mapping

The idea of spatial smoothing models for gene mapping is to use a model where a covariance structure is imposed on
the haplotype risk parameters, such that risk parameters corresponding to haplotypes with a high structural similarity get
assigned high dependence. By defining a local similarity metric, that is calculated around a putative disease locus x, and
letting this putative disease locus be updated in the estimation procedure, the methods are well suited for mapping of
disease genes. Thus, the disease locus is searched as the place where the similarity structure produces risk parameters that
can best discriminate between cases and controls. The general idea of spatial smoothing for gene mapping was introduced
in Thomas et al. (2001) and has been elaborated on inMolitor et al. (2003a), whosemethodologywe follow to a large extent.
The main differences between our work and Molitor’s are that we use a covariance matrix based on population genetic
reasoning, see Section 2.3, and a less ad hoc similarity metric based on Identity-by-descent, see Section 3.1.

2.1. Notation and Bayesian framework

Assume data that consist of observed phenotypes yv , and single nucleotide polymorphism (SNP) marker genotypes gv ,
v = 1, . . . ,m, of m investigated individuals. The genotypes are measured at K marker loci, i.e. gv = (gv1, . . . , gvK ). The
region of interest is normalized as a unit interval [0, 1] in terms of genetic or physical map distance, with marker positions
0 ≤ x1 < x2 < · · · < xK ≤ 1. We assume that the genotype phase, i.e. which alleles belong to the same chromosome, is
known. Thus, for each individual the genotype can be separated into two haplotypes, gv = (h2v−1, h2v). Each haplotype hi
thus comprises K markers, hi = (hi1, . . . , hiK ), where the two possible alleles for each hik are coded as 0 and 1.
We consider models where each of a person’s two haplotypes contribute additively to the total risk, i.e.

g(P(Yv = 1)) = µ+ b2v−1 + b2v, (1)

where g is a link function, typically a logit link, i.e g(p) = ln(p/(1− p)).
Written in vector form we obtain

g(E(Y )) = µ1+ b Z, (2)

where Y = (Y1, . . . , Ym) is a random vector of (binary) phenotypes, 1 = (1, . . . , 1), b = (b1, . . . , b2m) and Z = (Ziv)
is a 2m × m design matrix with non-zero elements Z2v−1,v = Z2v,v = 1. More generally, environmental covariates can be
incorporated into (1) and (2), by lettingµ depend on v. For haplotype data h = (h1, . . . , h2m), and Gaussian risk parameters,

b|h ∼ N(0, σ 2bΣ), (3)

(2) becomes a Generalized Linear Mixed Model (GLMM), (McCulloch and Searle, 2001; Breslow and Clayton, 1993).
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Fig. 1. DAG for model with known phase. Circles represent parameters whereas squares represent observed quantities.

The covariance matrix σ 2bΣ, is specified to depend on the putative disease locus x, and is defined such that structurally
similar haplotypes get positively dependent parameter values. Introducing a covariance structure based on structural
similarity is a way to mimic the notion that haplotypes that are structurally similar in the neighbourhood of a disease
predisposing locus are more likely to harbour the same susceptibility allele and hence should have similar risks. Further,
this approach implicitly deals with rare haplotypes in an elegant manner.
We adopt a Bayesian approach, with unknown parameter vector (µ, b, x, σb, ξ), where ξ contains the parameters used in

the calculation of the local similaritymetric. For y = (y1, . . . , ym), i.e. the observed value ofY , the joint posterior distribution
is

π(µ, b, x, ξ, σb|y, h) ∝ π(y|µ, b)π(µ)π(b|Σ(x, ξ, h), σb)π(x)π(ξ)π(σb), (4)
whereπ(y|µ, b) andπ(b|Σ(x, ξ, h), σb) are defined in (1), (2) and (3) respectively. Fig. 1 contains a graphical interpretation
of the model as a directed acyclic graph (DAG). To estimate the model parameters, of which x is of particular interest,
the parameters are updated in an MCMC algorithm, which we describe in detail in Appendix A, where the computational
complexity of the algorithm is also discussed.

2.2. Conditional auto regression (CAR) model

A popular way to model dependence between parameters, is through a Conditional Auto Regression (CAR)model. A CAR
model for spatial smoothing was first implemented for gene mapping by Molitor et al. (2003a).
The model is defined through its conditional distributions:

bi|b(−i), σ 2b ∈ N(b̄i, σ
2
b /
∑
j6=i

wij), (5)

wherewij quantifies similarity between haplotypes i and j, b(−i) denotes for the vector of all bjs except bi, and b̄i is the average
of the other risk parameters, weighted by their similarity with i, i.e. b̄i =

∑
j6=iwijbj/

∑
j6=iwij. From a similarity matrix

W = (wij)2mi,j=1 (withwii set to 0), letM
−1
= diag(

∑
j6=iwij) and C = diag(1/

∑
j6=iwij)W . For a given σ

2
b , which here denotes

the conditional variance, the joint distribution (3) then has precision (i.e. inverse covariance)matrix σ−2b Q = σ−2b Σ−1where

Q = M−1(I2m − C). (6)
In many practical applications, it is not sure that the CAR definition leads to proper distributions for b, but since the

covariance matrix is updated in the MCMC procedure, it is important that it does so here. By definition, (6) leads to an
intrinsic distribution, but addition of (a small) ε > 0 on the diagonal of Q , makes Q diagonal dominant, and thus positive
definite, as long aswij are all non-negative. The CARmodel thus allows great flexibility in defining the similarity metric. The
resulting distribution has covariance matrix σ 2bΣ = σ

2
b

(
M−1(I2m − C)+ εI2m

)−1.
2.3. Population genetic model

A CAR model produces spatially smoothed parameters, where each haplotype risk is a weighted mean of the other
haplotype risks. The weights are determined by the similarities between the haplotypes. The CAR model is not defined
from a population genetic perspective, but is an ‘‘all-purpose’’ algorithm to obtain correlated parameters.
As an alternative, assume that the studied sample of today’s chromosomes have been inherited from N ′ founder

haplotypes h′1, . . . , h
′

N ′ , and that a disease gene existed in one of the founder chromosomes, h
′

Imut , at position x in the studied
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interval. The material of h′Imut at and around x has since then segregated down to some of today’s haplotypes, through the
process of recombination andmutation, causing an increased risk of disease in carriers of those haplotypes. The disease risk
of each of today’s haplotypes, is thus determined by which founder haplotype has segregated its material at the disease
locus x. Let b′I be the random penetrance effect of founder chromosome I . One possibility is to let b

′

I be binary, with a value
depending on whether I is mutated or not, see Appendix D for further details.
However, following a traditional simplification in quantitative genetics, we assume for the Bayesian analysis (4) that

b′I ∼ N(0, σ
2
b ) are i.i.d., I = 1, . . . ,N

′. (7)

Let Ii denote the founder chromosome that is passed to Chromosome i of today’s generation, so that bi = b′Ii for i =
1, . . . , 2m. We assume that

b′ = (b′I)
N ′
I=1 is independent of (I, h), (8)

where I = (I1, . . . , I2m). Formula (8) corresponds to no genetic drift of the disease allele frequency (independence of b′ and
I), that x is not a marker locus and that the founder generation is in linkage equilibrium (see Appendix D for a motivation
when b′I is binary). It implies

Cov(bi, bj|h) = Cov(b′Ii , b
′

Ij |h)

= E
(
Cov(b′Ii , b

′

Ij |I, h)
)
+ Cov

(
E(b′Ii |I, h), E(b

′

Ij |I, h)
)

= σ 2b P(Ii = Ij|h)+ 0

= σ 2b P(i, j IBD at x|h), (9)

where the inner expectation/covariance is with respect to b′ and the outer onewith respect to I . Since all b′I are Gaussian, the
marginal distributions of b|h is N(0, σ 2b ). We simplify further and assume that b|h is multivariate Gaussian with covariance
matrix as in (9). This implies that (3) holds withΣ = (P(i, j IBD at x|h))2mi,j=1.
As an approximation of (9),

Cov(bi, bj|hi, hj) = σ 2b P(i, j IBD at x|hi, hj), (10)

could be used. As noted in the discussion, it is then important to confirm that the approximate covariance matrix is still
positive definite.
The idea of the spatial models was that structurally similar haplotypes should have dependent risk parameters, as they

are likely to harbour the same susceptibility gene. The above population genetic argument shows that if similarities are
measured as IBD probabilities, these enter directly as the elements of the covariance matrix. Hence it is intuitive to specify
Σ = W = (wij)2mi,j=1 with similarity metrics

wij = P(i, j IBD at x|h) (11)

and

wij = P(i, j IBD at x|hi, hj), (12)

which we calculate in Sections 3.1.1 and 3.1.2, respectively. For QTL linkage analysis with an additive genetic variance
component, (2), (3) and (9) could be combined, with a linear link function g . The major difference from what we present
here is that h has to be redefined, to contain not only marker data but also the known pedigree structure of all m family
members see Amos (1994); Almasy and Blangero (1998); Sham et al. (2002). See also Meuwissen et al. (2002), where the
approximation (10) is used for association analysis in animal genetics.

3. Haplotype similarity measures

As described in the previous section, a local similarity metric wij is calculated between all pairs of haplotypes i and j for
each putative disease locus x. Whereas the population genetic model of Section 2.3 suggests a very specific similarity matrix
W = (wij)

2m
i,j=1 based on (11) (or its approximation (12)), the CAR model of Section 2.2 allows a wide range of similarity

matrices.

3.1. Similarity measures based on IBD

The IBD similarities (11) and (12) directly estimate the probability that two haplotypes are descendants from the
same founder, and thus share the same susceptibility allele. IBD is at the basis of many gene mapping strategies, such as
linkage analysis. IBD calculations typically rely onmarker data from several generations from families with known pedigree
structures. In population based studies, such that we consider here, onlymarker data of the present generation are available,
so pedigree structure is unknown. Meuwissen and Goddard (2001) estimate pairwise IBD-probabilities frommarker data in
a region with strong LD, by modelling the coalescence of all markers, for one pair of chromosomes at a time. The algorithms
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presume known phase, that haplotypes were randomly sampled and that no mutations have occurred, and require known
effective population size and time since the most recent mutation. Recently Meuwissen and Goddard (2007) published
a new algorithm allowing for mutations, which estimates the effective population size as part of the algorithm. Due to
computational constraints, haplotypes are only compared pairwise, i.e. the coalescence trees are not built simultaneously
for all haplotypes in the sample.
In Hartman and Hössjer (2007) an Ancestral Recombination Graph (ARG), for retrospectively sampled data was developed,

and a likelihood ratio (LR) test for gene mapping suggested. Under general population genetic conditions, extensive
simulations of the ARGmust be performed in order to estimate the likelihood ratios. However, assuming linkage equilibrium
(LE) in founder haplotypes, different founders for unmutated chromosomes, and a star topology for the ancestral tree of the
mutated chromosomes, analytic expressions for the LR-test can be obtained.
In the followingwewill use the approach of Hartman andHössjer (2007) to calculate IBD-probabilities, both pairwise, i.e.

only accounting for the two haplotypes in the pair, and pairwise but conditional on the full sample. The genealogical model
used for the IBD calculations assumes that all or many of the diseased individuals carry the same disease allele (which is
presumed to be rare) together with a small chromosome segment from the founder.

3.1.1. Pairwise IBD calculations
Strictly pairwise IBD calculations imply utilising only the two haplotypes hi and hj in the calculation of the IBD-

probability, just as in the proposed IBS similarity metrics of Section 3.2 or the IBD similarity metric of Meuwissen and
Goddard (2007). Let

α = P(i, j IBD at x) (13)
be the prior probability that two arbitrary chromosomes in the sample are IBD. Under a star topology this is identical to the
probability that both chromosomes carry the mutated disease chromosome. The value of α is affected by the ascertainment
scheme, which is an issue we discuss further in Section 3.1.3.
The pairwise IBD probabilities can be calculated as
wij = P(i, j IBD at x|hi, hj)

=
P(hi, hj|i, j IBD at x)α

P(hi, hj|i, j IBD at x)α + P(hi, hj|i, j not IBD at x)(1− α)

=
LRij

LRij + (1− α)/α
, (14)

where

LRij =
P(hi, hj|i, j IBD at x)
P(hi, hj|i, j not IBD at x)

.

Analytical expressions for the likelihood ratio Lij can be found in Appendix B.

3.1.2. IBD calculations conditional on the full sample
Using the ARG of Hartman and Hössjer (2007) under the star-topology we can however not only calculate IBD

probabilities pairwise, but also conditional on the full haplotype sample h.
To this end, define C = (C1, . . . , C2m), where Ci = 1 if chromosome i is mutated at x and Ci = 0 otherwise. Further let

Cij = {C; Ci = Cj = 1} represent all C for which i and j are IBD at x (according to the star topology). Then
wij = P(i, j IBD at x|h)
= P(C ∈ Cij|h)
= P(h|C ∈ Cij)P(C ∈ Cij)/P(h)

=
αP(h|C ∈ Cij)/P0(h)

P(h)/P0(h)
, (15)

P(C ∈ Cij) = P(i, j IBD at x) = α. P0(h) is the probability of h under the null hypothesis of no disease locus, thus
P0(h) =

∏2m
q=1

∏K
k=1 f̃ (hqk), where f̃ (·) are the allele frequencies of today’s generation.

In Appendix C, L̃R = P(h)/P0(h) and L̃Rij = P(h|C ∈ Cij)/P0(h) are calculated by summation over all possible mutated
founder haplotypes h′.

3.1.3. Choice of α
The prior probability that two haplotypes in the sample are IBD,α, is central to the calculations of IBD probabilities. Under

random samplingα = p2, where p is the disease allele frequency. Under non-random sampling, such as a case-control study,
α can be greatly increased.
We have used a simple approach to address non-random sampling, which incorporates information on the number of

cases and controls (together with penetrance and disease allele frequency).
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For m0 controls and m1 = m − m0 cases, we use the Empirical Bayes choice α = P(i, j IBD|m0,m1) of prior probability
in (13). The IBD similarity metrics in (14) and (15) should more correctly be written as wij = P(i, j IBD at x|hi, hj,m0,m1)
andwij = P(i, j IBD at x|h,m0,m1). To find a general expression for α we letψ0, ψ1 andψ2 denote penetrance parameters,
i.e. the probabilities of being affected when having 0, 1 and 2 disease alleles respectively. Assume i ∈ (2v− 1, 2v), is one of
the two chromosomes of Individual v. Under Hardy–Weinberg equilibrium we define

pctrl = P(imutated|Yv = 0) =
p2(1− ψ2)+ p(1− p)(1− ψ1)

1− S
and

pcase = P(imutated|Yv = 1) =
p2ψ2 + p(1− p)ψ1

S
,

where S = ψ0(1− p)2 +ψ12p(1− p)+ψ2p2 is the prevalence. Then, assuming i and j are drawn randomly from a pool of
cases of controls of relative sizesm1/m andm0/m, we get

α =
(m0
m

)2
p2ctrl + 2

m0
m
m1
m
pctrlpcase +

(m1
m

)2
p2case. (16)

Notice that for a recessive disease we obtain α = (m1/m)2, in the limit when p→ 0.
Another approach for handling non-random sampling would be to include α in the MCMC algorithm, e.g. by assigning a

prior on [0, 1], and updating α in each step of the chain. Forwij = P(i, j IBD|hi, hj), this is possible since α enters only in the
quotient of likelihood ratios in (14). Thus the computationally demanding likelihood ratios could still be calculated only once,
at the beginning of the algorithm. Forwij = P(i, j IBD|h), α enters already in the prior probability P(Ci) that a chromosome
is mutated, c.f. (C.1) and (C.2) in the appendix. Thus each update of α would require calculation of new likelihood ratios,
which is not computationally feasible except for with very small data sets. We have specified α as fixed, but have explored
the influence of choice of value for α through a sensitivity analysis.

3.2. Similarity measures based on IBS

Similarity metrics for spatial smoothing, suggested in the literature on fine-mapping, have typically been based on the
notion of Identity-by-state (IBS). The IBS similarity metrics are approximately monotone functions of the probability that
two haplotypes are descendants of the same founder at the disease locus, and thus share the properties determined at the
disease locus. IBS similaritymetrics have been used also for clusteringmodels, where each haplotype is comparedwith each
cluster-centre haplotype, and a clustering is sought that can best discriminate between cases and controls.
As a simple IBS measure Molitor et al. (2003b) suggest the length shared IBS around x between the two haplotypes, in

connection with the CARmodel. We have implemented their approach to fine mapping for comparison with ours. Although
x could vary continuously in the measured region, for computational reasons we have only calculated the IBS (and later the
IBD) similarity metrics at a discrete set of locations, chosen as the midpoint of each marker interval. In this case,

wij = Rij(x)− Lij(x) (17)

where Rij(x) =
xr′+xr
2 where r is the the first marker to the right of xwhere a difference is encountered between haplotypes

hi and hj, and r ′ = r−1. (If no difference is encountered to the right let r ′ = r = K .) Lij(x) is defined similarly to the left of x.
If a difference is encountered at the closest marker to the right or left of x (but not both), this algorithm includes half of the
interval [xk0 , xk0+1] in the shared length, where k0 is the closest marker to the left, i.e. xk0 < x < xk0+1. The above algorithm
could also be extended to allow for mismatch due to mutations, by letting intervals after an encountered difference be
included in the IBS-measure, but assess a penalty to the shared length after such a difference. Waldron et al. (2006) define
an alternative IBS-measure that sums up similarity scores over all possible windows around the putative locus, and uses
the maximum window score as the overall similarity score. In order to assign higher scores to matches of rare alleles, than
matches of more common alleles, and allow for mutation, the SNP similarity score is defined from the odds against a match
if the haplotypes are unrelated. Thus the score is

(1− p)/p if the alleles match
0 if any allele is missing
−γ p(1− p) if the alleles do not match,

where γ is a mismatch penalty parameter and p is allele frequency. Durrant et al. (2004) used a similar score for cladistic
analysis, with 1− p as matching score and no mismatches allowed for, thus in effect γ = ∞.

4. Simulations

As an example of the performance, we show results from analysing a simulated data set. The simulated data consisted of
11markers for 100 cases and 100 controls (thus 400 haplotypes in total) and the disease allele frequencywas 0.1. In order for
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Fig. 2. MCMC output and estimated posterior density for disease locus x for a CAR model with IBS similarity metric (17). True disease locus is at 0.65.

this small sample size to be sufficient for detecting associationwe used a fully recessive penetrancemodel, i.e.ψ = [0, 0, 1].
Thus, we tried our gene mapping algorithms for a data set generated from a different (stronger) penetrance model to that
assumed in (1). In Appendix D a connection between binary penetrance effects and the logit-model for continuous risk
parameters is described.
We simulated the case-control sample, using the retrospective ARG of Hartman and Hössjer (2007), with a star topology.

Thus, for each individual themutational status for each of the two alleles at the disease locus is simulated conditional on the
disease status. Each unmutated chromosomehasmarkers in LE,whereas eachmutated chromosome carries the alleles of the
(simulated) mutated founder, up to a simulated recombination point to the left and right of the disease locus, respectively.
Outside of the recombination points, marker alleles are in linkage equilibrium. Neutral mutations were then superimposed
independently at all chromosomes and markers.
The 11 markers were equidistantly spread, with x1 = 0, x2 = 0.1, . . . , x11 = 1, and we used marker allele frequencies

fk(0) = fk(1) = 0.5, k = 1, . . . , 11. The disease location is at 0.65, i.e. in betweenmarkers 7 and 8, and the expected number
of recombinations since the foundermutationwithin the chromosomal region,ρ = 4. Themarkermutationprobability since
the founder generation was set to qk = 0.01 at all markers, k = 1, . . . , 11.
We fitted five models to the simulated data

• CAR with IBS similarity
• CAR with IBD (full)
• CAR with IBD (pairwise)
• Population genetic model with IBD (full)
• Population genetic model with IBD (pairwise).

Results from fitting these models are displayed in Figs. 2–6, respectively. In the gene mapping analyses, marker allele
frequencies were estimated from the (simulated) control haplotypes. To calculate IBD probabilities the correct values of ρ,
andψ = (ψ0, ψ1, ψ2)were assumed known. Using (16), withψ0 = ψ1 = 0 andψ2 = 1, we obtained α = 0.30. This value
of α was used in the IBD similarity metrics, except in Fig. 6 where we used α = 0.1 in order to obtain a positive definite
covariance matrix, see discussion below. The density estimations to the right in the figures were produced by a normal
density kernel smoother with automatic bandwidth (Matlab’s function ksdensity.m). For all analyses with CAR models
we obtained a positive definite covariance matrix by adding a fixed ε = 0.0001 on the diagonal of the precision matrix, see
Section 5 for further discussion.
All models gave reasonable results, in terms of their ability to point out the correct marker interval. The IBD based

similarity metrics (used in both CAR and the population genetic model) gave for this dataset slightly better results than
the IBS based similarity metric (which can be used only with the CAR model).
These analyses were sometimes hampered by numerical difficulties. As the population genetic model of Section 2.3 uses

the similarity matrix W directly as covariance matrix, it demands a positive definite covariance matrix. For this data set
the approximation wij = P(i, j IBD|hi, hj) did not produce a positive definite matrix. In the IBD calculations the parameter
α is central, both when conditioning on the full sample h or just the pair of haplotypes hi, hj. A small α amounts to low
prior probability that two haplotypes are IBD, and will thus make the posterior probabilities wij = P(i, j IBD|h), or the
approximation wij = P(i, j IBD|hi, hj), smaller. As the corresponding similarity matricesW will always have unit diagonal
(a haplotype is by definition IBD with itself), a smaller α will thus produce a similarity matrix that is further from the limit
of singularity. Thus, for the approximate versionwij = P(i, j IBD|hi, hj) the chance thatW will be positive definite increases
if a small α is used. For the population genetic model we have therefore tried analyses with α < 0.30. In Fig. 6 we used



L. Hartman et al. / Computational Statistics and Data Analysis 53 (2009) 1802–1817 1809

Fig. 3. MCMC output and estimated posterior density for disease locus x for a CAR model with IBD similarity metricwij = P(i, j IBD|h). True disease locus
is at 0.65.

Fig. 4. MCMC output and estimated posterior density for disease locus x for a CAR model with IBD similarity metric wij = P(i, j IBD|hi, hj). True disease
locus is at 0.65.

Fig. 5. MCMCoutput and estimated posterior density for disease locus x, for the population genetic covariancematrixwithwij = P(i, j IBD|h). True disease
locus is at 0.65.

α = 0.1, as this gave a positive definite W for the approximation wij = P(i, j IBD|hi, hj) (we discuss this issue further
in Section 5).
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Fig. 6. MCMC output for disease locus x, for the population genetic covariance matrix with wij = P(i, j IBD|hi, hj), with α = 0.1. For this case-control
study we obtained α = 0.30 in (16), but the covariance matrixW was then not positive definite. True disease locus is at 0.65.

For some of the analyses where the covariance matrix was positive definite, numerical difficulties still occurred. The
seemingly accurate result of Fig. 3, is probably an artifact of bad mixing. The results for this model in the sensitivity analysis
in Section 4.1 corroborates this suspicion. For this particular data set all proposed models and similarity metrics gave
reasonable results. If the CAR model with wij = P(i, j IBD|h) (Fig. 3) is excluded due to bad mixing, the best results were
obtainedwithwij = P(i, j IBD|hi, hj) in the population genetic motivatedmodel (Fig. 6), where α = 0.1was used in order to
get a positive definiteΣ. The CARmodelwithwij = P(i, j IBD|hi, hj) (Fig. 4) and thepopulation geneticmotivatedmodelwith
wij = P(i, j IBD|h) (Fig. 5) also gave better results than the CARmodelwith IBS based similaritymetric (Fig. 2) for this data set.

4.1. Sensitivity analysis

To examine how sensitive the IBD calculations are to misspecified parameter values we performed a sensitivity analysis.
The results when the dataset analysed above was analysed for (mis-)specified parameter values α, ρ and q (qk = q, k =
1, . . . , K ) is displayed in Fig. 7. The marker allele frequencies were in all analyses estimated from the control haplotypes.
The credibility intervals are calculated fromMCMC runs with 500000 iterations (dismissing the first 200000 as burn-in). In
each plot, one parameter has been updated, while the others are kept fixed at their true values (α = 0.30, ρ = 4, q = 0.01).
Exceptions, where these default values are not used, are the analyses with the population genetic model using P(IBD|hi, hj)
as similarity metric. For this model α = 0.1 was used for ρ = 4 and q = 0, 0.01, since α = 0.30 did not produce positive
definite covariance matrices. For this model results are absent for ρ = 1 and q = 0.05, since even α = 0.1 did not produce
a positive definite covariance matrix.
Sensitivity analysis shows that for this data set, the IBD calculations are not too sensitive to the parameter values,

although using e.g. the very high mutation probability q = 0.05 the IBD similarity metric did in general not outperform
the IBS similarity metric.
Notable from the sensitivity analysis, is that the CAR model with wij = P(i, j IBD|h) in several of the analyses totally

misses the target. The sample plots of the MCMC runs (not displayed here) with this model all exhibit badmixing. The other
models seem not to share this problem, since all analyses carried out in the sensitivity analysis the MCMC chains reached
the neighbourhood of the true disease locus. Another remark is that using the population genetic model with the strictly
pairwise similarity metric, wij = P(i, j IBD|hi, hj), sometimes necessitated α lower that 0.30 to obtain a positive definite
covariance matrix. When this condition is fulfilled, however, this model has shown the best results of the studied ones.
We expected that the theoretically motivated model of Section 2.3 with wij = P(i, j IBD|h) would give the best results,

since we evaluate data simulated from the same genealogies that are assumed in the analysis. We believe that the above
mentioned numerical difficulties might at least partially explain why this model did not outperform the others. In the
population genetic models, the similarity matrix W enters directly as the covariance matrix Σ = W . For the IBD based
similarity metrics,W gets close to singular for tightly linked markers (see Section 5 for details). Numerical problems may
then arise, e.g. when the density of b is calculated as part of the MCMC algorithm.
Problemswith badmixing also increasewith the size of the data set. Apart fromproblemswith close to singularmatrices,

the large dependencebetweenvariables updated in different blocks in theMCMCalgorithmmight also be an issue formixing,
as discussed briefly in Section 5.
We believe that in this setting, where bad mixing sometimes shows up as the algorithm getting stuck in one marker

interval (Fig. 3), the best way to diagnose bad mixing is by running several chains with different starting values. The results
that we present here are based on only one run of the MCMC chain (started far from the (known) disease locus). The
sensitivity analysis however gives us several runs for each model, but with different parameter values. It is evident from
these runs that CAR with IBD conditional on h fails to give reliable results, but that the other models do.
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Fig. 7. 95% credibility intervals for the disease locus x calculated using the same dataset that was analyzed in Figs. 2–6. For each parameter value, the
vertical lines (with endpoints andmedian specified) show the credibility intervals for the four models using IBD similarity metrics. The credibility intervals
are separated horizontally, drawn within a vertical wedge emanating from the actual parameter value. The IBS credibility interval is displayed with dotted
horizontal lines, with endpoints and median specified with circles at the endpoints (the median is in this analysis hidden by the line displaying the true
disease locus). The full horizontal line displays the true disease locus x = 0.65. In each plot one parameter has been updated, while the others are kept
fixed at their true values (α = 0.30, ρ = 4, q = 0.01). Exceptions are the analyses with the population genetic model using P(IBD|hi, hj) as similarity
metric. For this model α = 0.1 was used for ρ = 4 and q = 0, 0.01, since α = 0.30 did not produce positive definite covariance matrices. For this model
results are absent for ρ = 1 and q = 0.05, since even α = 0.1 did not produce a positive definite covariance matrix.

5. Discussion

In this paper we have studied two different spatial smoothing models for haplotype risk parameters, in an algorithm
for genetic fine mapping using population based data. The CAR model has been suggested for fine mapping in earlier
articles. It has the advantage that it can be used with a wide range of similarity metrics, but lacks population genetic
interpretation. We have derived an alternative model from a population genetic perspective, which results in a covariance
matrix consisting of pairwise IBDprobabilities.Wehave studied how IBDprobabilities can be calculated for population based
data with tightly linked markers. Under a star shaped topology we retrieve analytical formulas for P(i and j IBD at x|h),
and P(i and j IBD at x|hi, hj), where the latter can be regarded as an approximation utilizing only the markers of the
two respective haplotypes. Whereas IBS similarity metrics can be calculated without much background knowledge, the
suggested IBD probabilities require (and adapt to) estimates of marker allele frequencies, marker mutation frequencies, and
the (possibly varying) recombination rate. When used for gene mapping (on simulated data), the more advanced similarity
metrics based on IBD probabilities gave slightly higher quality.
The CAR model, which explicitly smooths parameter estimates by writing the conditional mean of each parameter as a

weighted average of all other parameters, has been extensively used e.g. in image analysis, geostatistical applications, spatial
epidemiology and environmental statistics. Rue and Held (2005) and Banerjee et al. (2004) give a wealth of references and
examples. The model has great numerical advantages in settings where the induced precision matrix Q is sparse, in which
case b is a so called Markov Random field. From the definition in (6), the precision matrix and thus the covariance matrix is
positive semi-definite (as long as the similarity matrix has only non-negative entries). In applications where the precision
matrix is fixed, it is often not crucial that the precision matrix be positive definite. Since the disease locus x, and thus the
precision matrix is here updated as part of the MCMC algorithm it is important that the parameters have a density, i.e. that
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the covariance matrices are all positive definite. To get a proper distribution with the CAR formulation a popular approach,
discussed by Banerjee et al. (2004) and used byMolitor et al. (2003a), is to introduce λ, 0 < λ < 1 in Q = (M−1(I2m−λC)).
The ‘‘propriety parameter’’ λ is then updated in theMCMC procedure alongwith the other parameters. To get non-negligible
spatial dependence λmust be very close to 1.We have instead added (a small) ε > 0 on the diagonal of the precisionmatrix.
In earlier simulations we updated λ or ε within the MCMC algorithm, but in the final algorithm we have instead added a
fixed ε of size 10−4, which gave a more effective MCMC algorithm, without impaired quality of the rest of the estimators.
For the population genetic model of Section 2.3, the issue of positive definiteness is an even greater concern. As the

covariance matrix is here taken as the (IBD) similarity matrix, it is required that the similarity matrix is in itself positive
definite. This is ensured forwij = P(i, j IBD at x|h), whereas the approximationwij = P(i, j IBD at x|hi, hj)will often require
an adaptation, especially for tightly linked markers. The reason why this matrix sometimes ends up being non-positive
definite is that we condition on different variables in all elements (different i and j amounts to conditioning on different
hi, hj). When the IBD similarity matrix in (9) is close to the singularity limit, the pairwise conditioning approximation is
enough to cross the border of singularity and the matrix thus sometimes ends up not being positive definite. To avoid this,
one possibility is to add a positive number on the diagonal, but the larger addition that is needed, the further the model will
depart from the derived one.
Althoughwij = P(i, j IBD at x|h)will always produce a positive definite similaritymatrix, itmay be so close to singularity,

that numerical problems occur. These problems are accentuated for large datasetswith tightly linkedmarkers. The reason for
this is that the denser themarkers are, themore dependent are case haplotypes around the disease locus. Thus, the resulting
similarity matrix, and due to this also the covariance matrix, will be closer to singular. Mixing problems also increase with
the size of the data set since more haplotypes will produce covariance matrices of larger dimensions, and for large matrices
(inverse) Cholesky factorisation is more sensitive to ill-conditioning than for small ones. Addition of a small positive ε on
the diagonal might thus be needed here too, to get good mixing.
The IBS-based similarity metrics of Section 3.2 in general produce a similarity matrix that is far from positive definite,

and could thus not be used to directly define a covariance matrix.
Apart from close to singular covariance or precision matrices, another reason for badmixing in anMCMC analysis is high

dependence in the posterior distribution between parameters in different blocks. An improvement of our algorithm would
thus be to update b in a block togetherwith σ 2b , and possibly alsoµ. Rue andHeld (2005, Ch. 4) describe how such block-wise
updates could be achieved, which for a logit link, requires auxiliary variables with Kolmogorov–Smirnov distribution, for
which the distribution function is only known as an infinite series.
Both CAR and the population geneticmodel require one risk parameter for each haplotype. If the number of individualsm

and haplotypes 2m is large, the model dimensionality gets very high. A computationally tractable alternative could then be
to assign a risk parameter to each unique haplotype, β = (β1, . . . βH)where H is the number of unique haplotypes present
in the sample. This is what Molitor et al. (2003a) did in their CAR model. For an area of very strong Linkage Disequilibrium
(LD), H is typically much smaller than 2m, giving this setup computational advantages. For an IBS based analysis this could
be an alternative. The population genetic interpretation of this setup must however be that equal haplotypes in today’s
sample implies the same founder haplotype at x. This is not granted, and would thus produce problems with interpretation
for the risk parameters for an IBD based analysis. Furthermore, with the parameter values we have used in the simulations
the difference between H and 2mwas negligible, which means that not much is to be gained computationally.
An alternative that will probably scale better to data sets with very many haplotypes is to use a clustering approach just

as in Molitor et al. (2003b) andWaldron et al. (2006), etc. The IBD based similarity metrics could be used in these models as
well, to split the haplotypes in clusters.
The methods presented were developed for data with known genotype phase, which appears e.g. in data from case-

parent triads. The methods will also work well when the phase can be inferred with little uncertainty. If the phase must
be inferred, the uncertainty must be handled in the estimation procedure, as discussed e.g. by Thomas et al. (2003). This
could be accomplished by treating haplotypes as unobserved data which is updated in the MCMC procedure. For genotypes
where phase cannot be unambiguously resolved, the unobserved haplotypes can alternate between the possible states, or
at least between these with an estimated frequency above a minimal threshold. If the possible haplotype pairs are found in
a pre-analysis, together with an estimated probability for each of the states, these probabilities can be used when the phase
is updated in the MCMC algorithm, see e.g. Morris (2005), where this is done in a clustering algorithm.
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Appendix A. MCMC algorithm

We fit the model using MCMC, where ξ = (fk, qk, ρ, . . .) and h are considered fixed and are therefore left out in the
notation. The algorithm is close to that of Molitor et al. (2003a), although the parameters are updated here in larger blocks
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to obtain faster mixing. Due to the conditional independence relations that are illustrated in the DAG of Fig. 1, the involved
steps are comparably easily calculated. Notation θ = (µ, b, σb, x) is for the collection of all model parameters and θ−z is
used for all parameters except z, e.g. θ−µ = (b, σb, x). The algorithm works with both model types presented in Section 2,
although σ 2b has different interpretation. For identifiability reasons, the risk parameters in the vector b = (b1, · · · , b2m) are
constrained to sum to 0, and thus (4) becomes

π(θ|y) ∝ L(y; θ)π(µ)π(b|1Tb = 0, x, σ 2b )π(x)π(σb),

where L(y; θ) = π(y|θ) is the likelihood. The distribution π(b|
∑
bi = 0) = π(b|1Tb = 0) (where other parameters are

omitted in the notation) fulfils

π(b|1Tb) =
π(b)π(1Tb|b)
π(1Tb)

.

Thus we obtain

π(b|1Tb = 0) =
π(b)|1T1|−1/2

(2π)−1/2|1Tσ−2b Q−11|−1/2
=

π(b)(2m)−1/2

(2πσ 2b )−1/2|1
TQ−11|−1/2

,

where π(b) is as in Section 2. (For the simplified model described in Section 5, 2m is exchanged with H .) This constraint is
accounted for in the proposal of b, and in the acceptance probabilities of σb and x, that influence the covariance matrix for
b. The term 1TQ−11 is to be calculated and saved once and for all, for each possible Q , i.e. for each marker interval.

A.1. Likelihood

For the logit link model the likelihood is

L(y; θ) =
n∏
v=1

(exp(µ+ b2v−1 + b2v))yv

1+ exp(µ+ b2v−1 + b2v)
.

A.2. Update of µ

We use a MH-step to update µ. With prior density π(µ) ∼ N(0, σ 2µ0) and a normal random-walk (RW) proposal
µnew = µold + zµ where zµ ∈ N(0, σ 2mRW )we obtain an acceptance probability

pacc = min
(
1,
L(y;µnew, θ−µ)π(µnew)
L(y;µold, θ−µ)π(µold)

)
.

A.3. Update of b

To gain computational speed and better mixing we update b in one block with a RW-proposal, and sample bnew =
bold + z − z̄ where z ∈ N(0, σ 2bRW I2m)where I2m is the identity matrix of dimension 2m. Accept bnew with probability

pacc = min
(
1,
L(y; bnew, θ−b)π(bnew|Q , σ 2b )
L(y; bold, θ−b)π(bold|Q , σ 2b )

)
,

where π(b|Q , σ 2b ) ∼ N(0, σ
2
b Q
−1), i.e. the unconstrained density for b.

A.4. Update of σb

The standard deviation, σb, of the risk parameters is updated in a Gibbs sampling step. Inverse gamma distribution is
used as prior for σ 2b , i.e. σ

−2
b ∈ 0(as, bs) resulting in conditional distribution

π(σ−2b |θ−σb , y) ∼ 0
(
as + (2m− 1)/2− 0.5,

2bs
2+ bsbTQb

)
.

The restriction
∑
bi = 0 enters as a subtraction of−1/2 in the shape parameter of the resulting gamma-distribution.

A.5. Update of x

For disease locus x we use a flat prior over the measured area. For better utilisation of information in the more densely
marked regions we use a two step procedure to sample proposal values xnew. First sample a marker location k from the
discrete uniform distribution on {1, . . . , K}, then sample xnew uniformly from the interval

(
xk−1+xk
2 ,

xk+xk+1
2

)
. When k is an

end marker (k = 1 or k = K ) xnew is sampled uniformly from
(
x1,

x1+x2
2

)
and

(
xK−1+xK

2 , xK
)
respectively.
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Table A.1
Computational complexity for the MCMC algorithm, form individuals, 2m risk parameters, K markers and I iterations in the MCMC chain

Sim. metric W L MCMC chain

IBS Km2 Km3 Im2

IBD|h K2Km Km3 Im2

IBD|hi, hj K 2m2 Km3 Im2

The stated total complexity requires thatW and L (the Cholesky factor of6) is calculated only once (for each marker interval) and is stored. The algorithm
is thus also quite demanding on computer memory.

Accept xnew with probability

pacc = min

(
1,
π(b|Q (xnew), σb, 1Tb = 0)(xnewk+1 − x

new
k−1)

π(b|Q (xold), σb, 1Tb = 0)(xoldk+1 − x
old
k−1)

)
,

where

π(b|Q (x), σb, 1Tb = 0) ∝ (1TQ−1(x)1)1/2|Q (x)|1/2 exp(−0.5σ−2b bTQ (x)b).

A.6. Computational complexity of the algorithm

For large data sets, the MCMC algorithm described above is computationally rather demanding. The computational
complexity is similar for the population genetic and the CAR model. To make the MCMC analysis computationally tractable
we have only calculated the similarity matrix at the K −1mid-marker locations. The same similarity matrix is then used for
all xwithin the correspondingmarker interval. Calculation of theK−1 similaritymatrices requiresO(Km2) operations for the
IBS metric, O(K2Km2) operations for the IBD metric (11) where we condition on all haplotypes and O(K 2m2) operations for
the strictly pairwise approximation (12). These calculations are done once, at the start of the algorithm. For computational
reasons we calculate and store the Cholesky factor L for the covariance matrix (Σ = LLT ), at the beginning of the algorithm.
For the CAR model calculation of L amounts to calculation of the Cholesky factor for the precision matrix, which is then
inverted. In both cases calculation of L requires O(m3) operations, but is only carried out K − 1 times (before the MCMC
chain starts). Running the MCMC chain, the most demanding step is when the risk parameter vector b is updated. In this
step b is multiplied with L, which requires O(m2) operations per iteration (remember that L is calculated and stored), and
thus O(Im2) operations for a chain with I iterations. The computational complexity is summarized in Table A.1 (with the
ordo-notation suppressed).

Appendix B. Calculation of likelihood ratios conditional on hi and hj under the star topology

Following the notation of Hartman and Hössjer (2007), putΩ = {i, j}× {1, . . . , K}, and letMs denote the set of mutated
chromosomes, and D ⊆ Ω the set of mutated sites. Further let fk denote the allele frequency at marker k in the founder
generation, and qk denote the probability of a mutation at marker k between the founder generation and today’s sample, so
that today’s allele frequency is f̃k(a) = (1 − qk)fk(a) + qk(1 − fk(a)), a = 0, 1. Apply Hartman and Hössjer (2007, Eq. 21),
adapted to known phase, to subsample {i, j} and sum over all possible D to obtain

LRij =
∑
D

LR(D)Px(D|i, j ∈ Ms), (B.1)

where LR(D) = P(g |D)/
∏
(i,k)∈Ω f̃k(hik). Let nk0(nk1) be the number of 0(1) alleles at marker k, that belong to the area D, see

Fig. B.1. Since the phase is known, Hartman and Hössjer (2007, Eq. 22) implies

LR(D) =
P(hi, hj|D)

K∏
k=1
f̃k(hik)f̃k(hjk)

=

K∏
k=1

LRk, (B.2)

where

LRk =
(1− qk)nk0q

nk1
k fk(0)+ q

nk0
k (1− qk)

nk1 fk(1)

f̃k(0)nk0 f̃k(1)nk1
.

Let further nk = nk0 + nk1 be the number of mutated sites at locus xk. We notice that 0 ≤ nk ≤ 2 and that LRk = 1 when
nk < 2. Hence we can rewrite (B.2) as

LR(D) =
∏
k;nk=2

LRk. (B.3)
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Fig. B.1. Illustration of the setΩ for two example haplotypes, i and j, with K = 11 markers. The dashed vertical line displays the position of the disease
mutation, and the shaded area shows D, the set of mutated sites. Thus, in this example k0 = 4, K− = 4 and K+ = 7. Further n1 = 0 = n10 = n11, n3 = 1,
n30 = 1, n31 = 0, n4 = 2 = n40, n41 = 0, n8 = 1 = n80, n81 = 0, etc.

Assume xk0 ≤ x < xk0+1 and letX
− andX+ denote the crossovers closest to the left and right of x. DefineK− ∈ {1, . . . , k0+1}

and K+ ∈ {k0, . . . , K} by

xK−−1 < X
−
≤ xK− ,

xK+ ≤ X
+ < xK++1.

(B.4)

We can now rewrite (B.3) as

LR(D) =
k0∏
k=K−

LRk ·
K+∏

k=k0+1

LRk, (B.5)

where the products are interpreted as 1 when K− = k0 + 1 and K+ = k0 respectively. By construction of the retrospective
ARG, K− and K+ are independent random variables.
Hence, combining (B.1) and (B.5) we get

LRij =

(
k0+1∑
k=1

P(K− = k)
k0∏
l=k

LRl

)
·

(
K∑
k=k0

P(K+ = k)
k∏

l=k0+1

LRl

)
. (B.6)

Let ρ be the expected number of recombinations within the chromosomal region since founder generation. Given that
a recombination occurs, it has density π on [0, 1]. To calculate the distributions of K− and K+ note that recombinations
occur along different mutated i-lineages as independent Poisson processes with rate ρπ(·). Thus {X−i }i∈Ms and {X

+

i }i∈Ms are
independent random variables with

Px(X−i < x
′) = exp

(
−ρ

∫ x

x′
π(s)ds

)
, 0 ≤ x′ ≤ x,

Px(X+i > x
′) = exp

(
−ρ

∫ x′

x
π(s)ds

)
, x ≤ x′ ≤ 1.

(B.7)

If the recombination rate is uniform along the chromosome, i.e. π(s) ≡ 1, 0 ≤ s ≤ 1 then

Px(X−i < x
′) = exp(−ρ(x− x′)), 0 ≤ x′ ≤ x,

Px(X+i > x
′) = exp(−ρ(x′ − x)), x ≤ x′ ≤ 1.

(B.8)

Due to the star-topology of mutated chromosomes, the closest recombinations X− = max(X−i , X
−

j ) and X
+
= min(X+i , X

+

j )
(to the left or right) between two different i-lineages are independent, and thus

Px(X− < x′) = exp(−2ρ(x− x′)), 0 ≤ x′ ≤ x,

Px(X+ > x′) = exp(−2ρ(x′ − x)), x ≤ x′ ≤ 1.
(B.9)

Thus

P(K− = k) =

{exp(−2ρx) k = 1
exp(−2ρ(x− xk))(1− exp(−2ρ(xk − xk−1))) 2 ≤ k ≤ k0
1− exp(−2ρ(x− xk0)) k = k0 + 1,

(B.10)

and similarly for the recombinations to the right of x.
Thus LR, and hence alsowij, can be computed in O(K) time, and thus the full similarity matrixW is calculated in O(Km2)

time. Notice that this is true also when neutral mutations are allowed for, i.e. qk > 0, or when the recombinations do not
appear uniformly.
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Appendix C. Calculation of likelihood ratios conditional on h under the star topology

To calculate Eq. (15), first note that L̃R = P(h)/P0(h) could be found by modifying Hartman and Hössjer (2007,
Eqn. 19–20) to known phase, i.e.

L̃R =
∑
h′
f (h′)

2m∏
i=1

1∑
Ci=0

L̃R(h′, i, Ci)P(Ci). (C.1)

Here P(Ci = 1) = P(Chromosome imutated). Since we condition on neither marker data nor disease status, P(Ci)
is the same for all i. Thus we can utilize P(Ci = 1) =

√
P(C ∈ Cij) =

√
α, where the star-topology gives

the last identity. For non-mutated chromosomes L̃R(h′, i, 0) = 1, while for mutated chromosomes L̃R(h′, i, 1) =∑
Ri

(∏
k∈Ri
P(hik|h′k)/f̃k(hik)

)
Px(Ri|Ci = 1), where Ri ⊆ {1, . . . , K} denotes the set of all mutated marker loci for

Chromosome i.
Similarly L̃Rij = P(h|C ∈ Cij)/P0(h) is

L̃Rij =
∑
h′
f (h′)L̃R(h′, i, 1)L̃R(h′, j, 1)

∏
q6=i,j

1∑
Cq=0

L̃R(h′, q, Cq)Px(Cq). (C.2)

The calculation is O(2Km2) in time, where the main effort is calculation of 2K2m likelihood ratios L̃R(h′, i, 1). Calculating
P(i, j IBD at x|h) is thus more computationally intense than calculating P(i, j IBD at x|hi, hj), but still feasible for reasonably
small K andm.

Appendix D. Binary penetrance effects in the population genetic model

In Section 2.3 we derived (3) for a population genetic model with covariance matrix (9). It is more realistic though to
assume that bi is binary, with the larger value attained when Ii is mutated, and the lower value when it is not. Assume that
only one founder allele Imut is mutated and has uniform distribution on 1, . . . ,N ′. It follows then from (8) that the disease
allele frequency

p = P(Ii = Imut) = E(P(Imut = I|Ii = I)) = 1/N ′.

In order to retain E(bi|h) = 0 and Var(bi|h) = σ 2b from (3), a simple calculation reveals that the two levels of bi have to
be chosen according to

bi =
{√
q/pσb, Ii = Imut
−
√
p/qσb, Ii 6= Imut,

(D.1)

where q = 1 − p. It can be verified that (9) only holds in the limit p → 0 for the binary model. The reason is that {b′I} are
otherwise not i.i.d. but negatively correlated.
Letψl denote the probability that an individual with l copies of the disease causing allele becomes affected. In view of (1)

we thus have
ψ0 = g−1

(
µ− 2

√
p/qσb

)
ψ1 = g−1

(
µ+

(√
q/p−

√
p/q

)
σb

)
ψ2 = g−1

(
µ+ 2

√
q/pσb

)
.

(D.2)

For the binary case we now motivate why (8) requires linkage equilibrium in the founder generation and that x is not a
marker locus.
For instance, suppose x = xk, so that the disease locus is at xk and write h′I = (h

′

I1, . . . , h
′

IK ), so that h
′

Ik is the allele at xk
of founder haplotype h′I . Then, by (D.1), we have

b′I = −
√
p/qσb + (

√
q/p+

√
p/q)σbh′Ik,

provided we encode h′Ik to have value 1 if I is mutated, i.e. I = Imut. If there are no other mutations than the disease
causing one, h′Ik equals the common value of {hik; Ii = I}. If x is close to xk, b

′

I and h
′

Ik are still correlated if there is linkage
disequilibrium in the founder generation.
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