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with respect to the noncentrality parameter (NCP), and how 
to calculate adequate p values and perform power calcula-
tions. We also discuss issues related to multiple tests which 
arise from the two-step procedure with several conditioning 
loci as well as from the genome-wide tests. 
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 1 Introduction 

  Nonparametric linkage analysis  is commonly used in 
studies with binary traits for which the genetic model is 
unknown or hard to estimate, such as for complex dis-
eases. This can be done in several ways. One possibility 
is to use MLS scores, where the likelihood of data is max-
imized jointly over disease locus and allele sharing prob-
abilities  [2, 3] . Alternatively, for MOD scores, the LOD 
score may be maximized jointly over disease locus and 
genetic model parameters, as suggested by  [4–6] . A third 
approach is to choose an allele sharing statistic, here re-
ferred to as  score function , which quantifies compatibility 
between the inheritance pattern of a pedigree with its 
phenotypes  [7–15] .

   Two-locus linkage analysis  is motivated by the possi-
bility to take advantage of  gene-gene interaction   [16–18] . 
This is a challenging task, since the collection of genetic 
models increases dramatically, see e.g.  [19]  for a complete 
list of distinct two-locus fully penetrant models for bi-
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 Abstract 

 In this article we deal with two-locus nonparametric linkage 
(NPL) analysis, mainly in the context of conditional analysis. 
This means that one incorporates single-locus analysis infor-
mation through conditioning when performing a two-locus 
analysis. Here we describe different strategies for using this 
approach. Cox et al. [Nat Genet 1999;21:213–215] implement-
ed this as follows: (i) Calculate the one-locus NPL process 
over the included genome region(s). (ii) Weight the individ-
ual pedigree NPL scores using a weighting function depend-
ing on the NPL scores for the corresponding pedigrees at 
specific conditioning loci. We generalize this by condition-
ing with respect to the inheritance vector rather than the 
NPL score and by separating between the case of known 
(predefined) and unknown (estimated) conditioning loci. In 
the latter case we choose conditioning locus, or loci, accord-
ing to predefined criteria. The most general approach results 
in a random number of selected loci, depending on the re-
sults from the previous one-locus analysis. Major topics in 
this article include discussions on optimal score functions 
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nary (biallelic disease loci) traits. In addition to this 
comes the increased amount of  multiple testing  inherent 
in searching for two rather than one disease locus. In 
spite of this, two-locus linkage analysis can often be 
worthwile; see the review articles  [20–22] .

  When conducting nonparametric two-locus linkage 
analysis, one possibility is to perform a search for the two 
disease loci simultaneously or unconditionally. This can 
be done for the MLS approach  [23–25] , the score function 
approach  [26, 27] , by means of regression analysis  [28]  or 
by specifying the allele-sharing probabilities for affected 
relative pairs in advance  [29] . Computation of the rele-
vant NPL scores is facilitated by joint specification of the 
inheritance vector given marker data at two (unlinked) 
loci, as implemented in the GENEHUNTER-TWOLO-
CUS program  [27] . Simultaneous search for two loci may 
also be achieved for quantitative traits using variance 
components methods, either exactly  [30]  or by means of 
Markov Chain Monte Carlo approximation  [31] .

  An alternative strategy, which has greatest potential if 
one of the two disease loci has a strong marginal effect, is 
to proceed sequentially and first detect one disease locus 
 y  by one-locus linkage analysis, and then perform a con-
ditional two-locus NPL search, where  y  is kept fixed and 
a second locus  x  is varied. This strategy was first proposed 
by  [16]  for heterogeneous traits, and has later been inves-
tigated in  [29]  for allele sharing statistics, in  [1]  for gen-
eral multiplicative nonparametric score functions and in 
 [32, 33]  for linkage analysis based on generalized estimat-
ing equations. It is also possible to proceed sequentially 
for MLS scores  [34]  as well as for variance components 
models  [30, 31] . Applications of the conditional method 
can be found e.g. in  [35–37] .

  The work  [1]  aimed at detecting epistasis or heteroge-
neity when two disease loci are nonsyntenic, i.e. located 
on different chromosomes. In this paper we generalize 
their conditional NPL approach, based on score func-
tions, in various ways. Firstly, we condition on the in-
heritance vector rather than the one-locus NPL score, so 
that more general score functions are allowed for. Sec-
ondly, we consider conditional search both when the con-
ditional locus is fixed in advance or determined by an 
initial one-locus scan (the sequential method referred to 
above). To distinguish these two cases, the relevant null 
hypotheses  H  0  of no linkage and alternative hypotheses 
 H  1  of linkage are defined rigorously. In the sequential 
case,  H  0  is the same as for one-locus and unconditional 
two-locus NPL analysis; enabling power comparisons. 
Thirdly, we derive optimal score functions that maxi-
mize the noncentrality parameter. This has previously 

been done for one-locus analysis  [38–40] . We generalize 
these findings and obtain optimal two-locus score func-
tions for conditional as well as for unconditional analy-
ses. This provides a very general way of comparing one-
locus, conditional and unconditional two-locus analyses 
analytically for general pedigree structures. See also  [41, 
42]  for related approaches. Since noncentrality parame-
ters are related to, but still distinct from, power (multliple 
testing is ignored), we also perform power comparisons 
between different score functions for various genetic 
models based on Monte Carlo simulations.

  The paper is organized as follows: In  Section 2  we 
 present some basic theory and introduce basic notation, 
including a description of two-locus genetic disease mod-
els.  Section 3  is devoted to nonparametric linkage analy-
sis in the form of one-locus analysis, general (uncondi-
tional) two-locus analysis and various versions of condi-
tional two-locus analysis. Subsequently, in  Section 4  the 
attention is brought to noncentrality parameters and its 
implication in the form of NCP-optimal score functions. 
In  Section 5  actual NCP-and power calculations are per-
formed, whereas a concluding discussion is given in  Sec-
tion 6 . Finally, technical details are referred to the four 
appendices  A–D .

  2 Two-Locus Genetic Disease Models 

 Each NPL investigation is done in relation to a predefined au-
tosomal genomic region  � . 1  If  C  is the total number of chromo-
somes we define  �  =   �   C  i   = 1   c  i , where  c  i    is the  i -th chromosome 
which is of genetic map length  �  c  i  � . The total length of  �  is there-
fore  �  �  �  =  �  C  i   = 1   �  c  i  � . Given a specific locus  x  the corresponding 
chromosome where it is located is denoted  c ( x ). We assume bi-al-
lelic disease loci, i.e. only the disease and normal allelic variants, 
 D  and  d  respectively, are possible.

  A two-locus genetic model consists of three parts: (i) The dis-
ease allele-frequencies  p  1  =  P ( D  1 ) and  p  2  =  P ( D  2 ), where  p  i    is the 
probability of the disease allelic variant with respect to the  i- th 
disease locus ( i  = 1 or 2). (ii) The penetrance matrix,

00 01 02

10 11 12

20 21 22

,
f f f

f f f f
f f f

=                                                                          (1)

  where  f  ij    refers to the probability of being affected if the corre-
sponding genotypes contain  i  and  j  copies of  D  1  and  D  2  respec-
tively. (iii) The two disease loci,  l  1  and  l  2 . Usually, they are as-
sumed to be located on different chromosomes, i.e.  c ( l  1 )  0   c ( l  2 ). 

 We will briefly describe four classes of two-locus genetic dis-
ease models. For 0  ̂    i ,  j   ̂   2: (i) If the one-locus penetrances are 

  1     This is subsequently referred to as our genome. 
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combined in an additive fashion,  f  ij  =  g  i  +  h  j , we speak of an  addi-
tive  two-locus genetic disease model. (ii) If the two-locus pene-
trances instead are defined through products,  f  ij  =  g  i  h  j , we speak 
of a  multiplicative  two-locus genetic disease model. (iii) If we 
 consider a dual version of the multiplicative model, i.e. where 
(1 –  f  ij ) = (1 –  g  i ) (1 –  h  j ), we end up with  f  ij  =  g  i  +  h  j    –  g  i  h  j , which is 
a  heterogeneity  two-locus genetic disease model. (iv) If the two-
locus penetrances depend only on the total number of disease al-
leles,  f  ij  =  k   i+j  , for some function  k  l , we speak of a  threshold  two-
locus genetic disease model.

  3 Nonparametric Linkage Analysis 

 3.1 One-Locus Analysis 
 Assume a pedigree set consisting of  N  pedigrees. The inheri-

tance pattern of the  k -th pedigree at locus  x  is determined by 
means of the  inheritance vector ,

   v  k ( x ) = [ p  1 ( x ), m  1 ( x ), p  2 ( x ), m  2 ( x ), ...,  p  (  n  k   –   f  k  ) ( x ), m  (  n  k   –   f  k  ) ( x )],         (2)

  see  [43] . In (2)  n  k  is the number of individuals,  f  k  the number of 
founders and ( n  k  –  f  k ) the number of nonfounders of pedigree  k . 
Moreover,  p  i ( x ) and  m  i ( x ) equal 0 if the  i -th nonfounder’s paternal 
and maternal allele respectively, at locus  x , originate from a 
grandfather and 1 if they originate from a grandmother. The 
number of vector positions equals the number of meioses  m  k  = 
2( n  k  –  f  k ). 

 Define the  pedigree-specific NPL score  for the  k -th pedigree at 
locus  x  as

( ) ( )[ ]( ) ( )( ) ( ) ,k
k

k k k v x k
w

Z x E S v x P w S w= =                              (3)

  where  E ( X ) denotes the expected value taken with respect to the 
stochastic variable  X ,  P    v  k ( x )   ( w ) =  P ( v  k ( x ) =  w   �  MD) is the condi-
tional probability of  v  k ( x ) given marker data MD, V k    is the full set 
of 2 m   k   inheritance vectors and  S  k    is the one-locus score function 
for pedigree  k . 

 We assume that the score function  S  is a priori standardized 
to have zero mean and unit variance under the null hypothesis of 
no linkage, i.e. given that  w  is uniformly distributed over V k , we 
have

( ) ( ) ( ) ( )
0 0

2 0 and 2 1,k k

k k

m m 2
H k H k

w w
E S S w V S S w= = = =   (4)

  where  E  H  0  and  V  H  0  correspond to the expected value and variance 
of  S  k    under the null hypothesis  H  0 . This leads to  V  H  0  [ Z  k ( x )]  ̂   1, 
i.e. an upper bound 1 for the variance of the family score  [44] . 

 The  NPL score   [44]  for the pedigree set is then a weighted lin-
ear combination,

( ) ( )
1

,
N

k k
k

Z x Z xH
=

=                                                                       (5)

  of the pedigree-specific NPL scores with weights  �  k  satisfying 
 

2

1
1,  

N

k
k

H
=
=                                                                                        (6)

  so that  V  H  0  [ Z ( x )]  ̂   1. The weights may be chosen to depend on 
pedigree structure, size and phenotypes. A different maximum 

likelihood-based NPL score was introduced by  [45] . It coincides 
with (5) for perfect marker data. 

 Using the maximum of the  NPL score process  along  � ,

( )max sup  
x

Z Z x=                                                                            (7)

  as a test statistic makes it possible to test for the presence of any 
disease locus. The natural test hypotheses are 

 
0

1

: No disease locus on ,
: At least one disease locus on ,

H
H

                                    (8)

  which leads to the genome-wide significance level and power 
 
( ) ( )
( ) ( )

0

1

max

max

,

,
H

H

z P Z z

z P Z z

B

C

=

=

�

�

  for a test that rejects  H  0  when  Z  max   6   z . 

 3.2 Two-Locus Analysis 
 In the two-locus case we define an  unconditional  two-locus 

score function  S  k ( w  1 , w  2 ) for the  k -th pedigree, which depends on 
inheritance vectors  w  1 , w  2   D  V k . In analogy with the one-locus case 
above, the scores are normalized using a two-locus generalization 
of (4) leading to

( ) ( )
1 2 1 2

2 2
1 2 1 2

, ,
, 0 and 2 , 1. km

k k
w w w w

S w w S w w= =                        (9)

  Moreover, the pedigree-specific NPL score (3) is now general-
ized, being defined with respect to pairs of loci ( x , y )  D   � , as

( ) ( )( ) ( )
1 2

1 2 1 2,
,

, , , , 
kk v kx y

w w
Z x y P w w S w w=                                    (10)

  where  P  v  k ( x , y ) ( w  1 , w  2 ) =  P ( v  k ( x ) =  w  1 , v  k ( y ) =  w  2   �  MD) is the joint in-
heritance distribution at loci  x  and  y . We will restrict ourselves to 
unlinked loci,  c ( x )  0   c ( y ), and then inheritance at  x  and  y  is inde-
pendent, i.e. the product of the one-dimensional inheritance dis-
tributions appearing in (3)  [27] . 2  Note that the same restriction is 
used in the following sections as well. Moreover, the generaliza-
tion to linked loci can be found in  [46] . 

 Now, the next step is to combine pedigree-specific scores (10) 
into a total NPL score

( ) ( ) ( ) ( )
1

, , ; ,
N

k k
k

Z x y Z x y c x c yH
=

=                                     (11)

  where  �  k  are pedigree weights satisfying (6), so that  V  H  0  [ Z ( x )]  ̂   
1. As in the one-locus case, they may depend on, for instance, 
pedigree structure and phenotypes. 

 Using the null hypothesis in (8) we may, in analogy with (7), 
present the two-locus maximum NPL score by maximizing  Z ( x , y ) 
over all loci  x  and  y  from different chromosomes, i.e.

( ) ( )

( )max,tl
,
sup , ,  

x y
c x c y

Z Z x y=                                                              (12)

  which leads to genome-wide significance level and power, 

  2     Formally, Pvk     (  x  ,  y  )  (w 1 ,w 2 ) = P( v  k (x) = w 1   �  MD)P( v  k (y) = w 2   �  MD) = Pvk     (  x     ) 
(w 1 ) Pvk     (  y     ) (w 2 ). 
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( ) ( )
( ) ( )

0

1

tl max,tl

tl max,tl

,

,
H

H

z P Z z

z P Z z

B

C

=

=

�

�

                                                         

  where ‘tl’ is an abbreviation for ‘two-locus’. 

 3.3 Conditional Two-Locus Analysis: Known Conditioning 
Locus 
 If we fix a  conditioning locus y  on chromosome  c ( y ) and use 

(10) and (11) with  x  varying through  �  c  (  y  )  =  � \ c ( y ), we have a  con-
ditional two-locus NPL analysis . In order to later on define appro-
priate significance levels, we split our null hypothesis (8) into two 
parts as

( ) ( )
( ) ( )

0

0

: No disease locus on Chromosome ,

: No disease locus outside Chromosome .

c y

c y

H c y

H c y

        (13)

  This setting leads to a more complicated and involved version 
of the normalization procedure in (9). Firstly, for the  k -th pedi-
gree, the centering is performed using the conditional con-
straints,

( ) ( )
1

1 2 2, 0 , k
w

S w w w=                                                           (14)

  where  w  2  is associated with the conditioning locus  y . Defining 
 ( ) ( )

1

2 2
2 1 22 ,km

k k
w

S w S w w=

  we get, instead of (6), the constraint 
 

( )( ) ( )
2

2 2
2 2

1
1  

k

N

k kv y
k w

P w S wH
=

=

  for the pedigree weights  �  k . A reasonable approach is to set  �  k   
 identical for pedigrees with equal structure and phenotypes. The 
conditional variance  S  2  k  ( w  2 ) quantifies how variable  S  k    is at the 
first locus given inheritance vector  w  2  at the second locus. Notice 
that  Pvk      (  y  ) ( w  2 ) allows for imperfect data at  y . It can be shown that 
(15) implies 

 
( ) ( ) ( )

0

, 1,c y
c y

H
V Z x y | MD �                                                          (15)

  where MD c  is marker data from chromosome  c . 
 Assuming perfect marker data, the conditional procedure de-

scribed in  [1]  may be recognized as a special case of the general 
approach. (We refer to it as the  Cox-approach .) The major differ-
ence is that in  [1]  conditioning is on the one-locus score  S  k [ v  k (y)] 
at  y , whereas we condition on  v  k ( y ). Thus the multiplicative Cox-
approach corresponds to a two-locus score function  S  k ( w  1 , w  2 ) = 
 S  k ( w  1 ) f  [ S  k ( w  2 )], for which (11) can be written

( ) ( ) ( )
1

, ,
N

k k k
k

Z x y Z x f Z yH
=

=                                                 (16)

  with normalization 
 

( ) 22

1
1 .

N

k k
k

f Z yH
=

=

  This is a multiplicative two-locus score which is analogous to a 
one-locus NPL score process along  �  c  (  y  ) , weighting pedigrees ac-

cording to a combination of pedigree-specific weights  �  k    and a 
function  f ( Z ) of one-locus NPL scores  Z  at locus  y . 3  The function 
 f  in (16) may be chosen in different ways, depending on the as-
sumed genetic model, see e.g.  [1, 47, 48] . 

 The maximum conditional two-locus NPL score is based on 
maximizing  Z ( x , y ), keeping the conditioning locus  y  fixed and 
varying  x  over all chromosomes but  c ( y ). This corresponds to

( )
( )max, sup , . 

c y
y

x

Z Z x y=                                                                 (17)

  The conditional significance level and power, given marker 
data MD c  (  y  )  on chromosome  c ( y ), are

( ) ( )
( )

( ) ( )
( )

0

1

max,

max,

,

,

c y

c y

c y
y yH

c y
y yH

z P Z z | MD

z P Z z | MD

B

C

=

=

�

�
                                          (18)

  where  H  –  c 1  (  y  )    is the alternative hypothesis, 

   H  –  c 1  (  y )    : At least one disease locus outside Chromosome  c ( y ),

  corresponding to the lower part of (13). 
 In (13), we have replaced  H  0  by the less restrictive null hypoth-

esis   H  –  c 0  (  y )   . In this setting  y  is allowed to be, or being linked to, a 
disease locus. The underlying assumption for this argument can 
be formalized as:

  Assumption 1 
  MD  c(y)   is independent of phenotypes under H     c 0  (  y )     and MD  c(y1)  , 

MD  c(y2)  , ..., MD  c(yk)   are conditionally independent given pheno-
types if k  6  2, all c(y  j  ) are different, and at most one H  c(y j )   is not 
valid. 

  If H     c 0  (x   )   holds, but not necessarily H     c 0  (  y )    , it follows from  As-
sumption 1  that the conditional distribution of MD c  (  x  )  given phe-
notypes and MD c  (  y  )  equals the unconditional distribution of 
MD c  (  x  ) . As a consequence,  �  y ( z ) above can be calculated in the 
same way as a one-locus significance level  � ( z ) along  �  c  (  y  ) .

  3.4 Conditional Two-Locus Analysis: Unknown 
Conditioning Loci 
 When we do not have, or assume, explicit knowledge of an ob-

vious conditioning locus, such as a known disease locus, we may 
randomly select interesting loci according to some predefined 
one-locus criterion. This is the motivation for the two-step pro-
cedure described below.

  Since we possibly deal with multiple conditioning loci, we re-
place the less restrictive null hypothesis (13) by (8).

  Selecting Conditioning Loci 
 Define the chromosome-wise NPL score maximum,

( )max sup ,c

x c
Z Z x=

  and the corresponding chromosomal significance level, 
 
( ) ( )

0 max ,c
cc

H
z P Z zB = �

  3     For imperfect data, (16) is not directly equivalent to using (11) with 
S k (w 1 ,w 2 ) = S k (w 1 )f [S k (w 2 )]. 
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  where   H     c 0    is the upper part of (13). A general one-locus NPL score-
dependent selection criterion for conditioning chromosomes is 

 { }max; ,c cc Z z= �
                                                                     

(19)

  where  z  c  is a given threshold for chromosome  c . 
 Further, denote the random positions of the chromosome-

wise NPL score maxima as
( )arg max . c

x c
y Z x=

                                                                    (20)

  Using (19) and (20) the conditioning loci are selected as the 
members of the set 4  

 { }; ,cy c=

  which guarantees that they are all located on different chromo-
somes. 5  

 We will mostly assume  equal  thresholds  z  c  =  z  in (19). The tun-
ing constant  z  reflects the number of conditioning loci that the 
investigator is willing to use. The choice is a compromise between 
finding true interactions on one hand and avoiding severe mul-
tiple testing on the other hand. One may note that an alternative 
may be to use  genetic length-dependent  thresholds, e.g.  z  c  = 
( �  c ) –1 ( � ). This may be motivated by giving each chromosome the 
same probability  �  under  H  0  of producing a conditioning locus.

  Combining Conditional NPL Scores 
 The most straightforward generalization of (17) to several 

conditioning loci is to consider a test statistic which maximizes 
 Z ( x,y ) over all pairs of loci such that  y   D  Y is a conditioning locus 
and  x  varies freely over all chromosomes outside  c ( y ), i.e.

( )
( )max, max,

max max , max . c
c y yy cx

Z Z x y Z= =                                (21)

  However, we will use a more refined approach based on condi-
tional two-locus p values, 

    p  c  =  �  y   c   ( Z  max  ,yc     ),                                                                          (22)

  with  �  y    and  y  c  as defined in (18) and (20). Instead of (21), we then 
use the minimum p value  [49] , 

 

min

if 0min
if 01

c
c p

p =
= �

                                                     (23)

  as test statistic and reject  H  0  whenever  p  min  is smaller than or 
equal to a given threshold  u . In words,  p  c  is the p value associated 
with a conditional maximal NPL score with conditioning locus 
from chromosome  c  and  p  min  is the minimum p value obtained 
from all conditioning loci in C. As opposed to (21), (23) takes into 
account varying chromosome lengths and the actual inheritance 
vectors at  y   D  Y. 6  

 Using (23) we get a genome-wide, or global, significance level 
and power as

( ) ( )
( ) ( )

0

1

min

min

. H

H

u P p u

u P p u

B

C

=

=

�

�

                                                          (24)

  Under  H  0 , the probability of including a conditioning locus from 
chromosome  c  in Y is  	  c  =  �  c ( z  c ). Since each  p  c  has a uniform dis-
tribution on (0 , 1), ignoring discreteness effects of the null distri-
bution of  Z  max  ,c , a simple Bonferroni upper bound for the 
significance level is 

 
( )

1
.

C
c

c
u uB M

=
�

  Hence,  �  c  	  c  can be viewed as a crude measure of the  effective 
number  of conditioning loci used. In particular, if  z  c  = ( �  c ) –1 ( � ), 
each chromosome has the same probability  �  of being included as 
conditioning locus, and the effective number of conditioning loci 
is  C   *   � . 

 The null hypothesis in (24) is  H  0 , i.e. no disease locus at all. 
This does not imply that single disease loci are easily detected by 
this test. On the contrary,  p  min  is designed to take advantage of 
interaction between disease loci from different chromosomes and 
has high power primarily if there are at least two disease loci, of 
which at least one has strong marginal effect.

  4 Noncentrality Parameters 

 A quantity of great importance is the  noncentrality parameter 
(NCP)  which measures the expected NPL score, at the disease lo-
cus or loci, under an alternative hypothesis. For one-, two- and 
conditional two-locus NPL scores we define,

  NCP l  1  =  E  H  1  [ Z ( l  1 )],
  NCP l  1  ,  l  2  =  E  H  1  [ Z ( l  1 , l  2 )],                                                               (25)
  NCP l  1      �      l  2  =  E  H  1  [ Z ( l  1 , l  2 )  �  MD c  (  l  2  ) ].

  where  l  1  and  l  2  are the two disease loci. Notice that the first two 
quantities in (25) are constants, whereas the third is a random 
variable since we condition on marker data from chromosome 
 c ( l  2 ). 

 We define a  homogeneous  pedigree set as a genotypes-pheno-
types data set constituted only of information on pedigrees with 
equivalent pedigree structure and phenotypes. For a homoge-
neous pedigree set consisting of  N  pedigrees, perfect data, and 
equal pedigree weights (�k = 1/�N),

 
1

1 2

1 2

,

 NCP ,

NCP ,       
1 NCP ,

l

l l

l | l

A N

B N

D as N
N

=

=
                                         

(26)

 where  A  and  B  are the NCPs for a single pedigree and  ]  P   denotes 
convergence in probability. A natural interpretation of  D  is an 
average NCP per family for conditional two-locus analysis. 

 To derive expressions for the NCPs in (26) we define the joint 
inheritance vector distribution  P ( w  1 , w  2 ) =  P ( v ( l  1 ) =  w  1 , v ( l  2 ) = 
 w  2  �  Y , H  1 ) at the two disease loci, with corresponding marginal dis-
tributions,  P  1 ( w  1 ) and  P  2 ( w  2 ), and common phenotype vector  Y . 

  4     If there is prior evidence that a disease locus exists somewhere along 
chromosome c one may use Y = arg max x    D    c Z (x), and H 0  may in this case 
be replaced by the weaker  H    c  0       . 
  5     This restriction may be relaxed, requiring only a certain minimum map 
distance L between all pairs of syntenic conditioning loci. 
  6     Given a pedigree set, for each single case the collection of inheritance 
vectors at the corresponding conditioning locus gives rise to, possibly and 
probably, different NPL score distributions and hence significance distri-
butions. 
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(For a corresponding computational algorithm, see Appendix A 
of  [48] .) The following theorem presents maximal NCPs and cor-
responding optimal score functions. A proof is given in Appen-
dix A.

  Theorem 1 (NCP-Optimal Score Functions) 
 For a homogeneous pedigree set, the maximum NCPs are

( )

( )

( )
( )

1

1 2

1 2

2 2
1 1

2 2 2
1 2

,
2

1 22

, 2 2

2 1 ,

2 , 1 ,  

,
2 1 .

m

w

m

w w

m

w w

A P w

B P w w

P w w
D

P w

=

=

=

                                                        
(27)

   The maxima in (27) are attained for the NCP-optimal score func-
tions, 

   S ( w  1 ) ∝  P  1 ( w  1 ) – 2 –  m ,
   S ( w  1 , w  2 )  ∝   P ( w  1 , w  2 ) – 2 –2  m ,                                                       (28)
   S ( w  1 , w  2 )  ∝   P ( w  1  �  w  2 ) – 2 –  m .

  Evidently  A   ̂    B  and  A   ̂    D , but there is no simple order rela-
tion between  B  and  D . Often  B   6   D .

  We emphasize that all three optimal noncentrality parameters 
 A ,  B  and  D  require knowledge of the genetic model. They should 
be interpreted as the best possible values of the NCP that the in-
vestigator might expect when the genetic model is correctly 
specified. In practice though, the genetic model is often un-
known. Then the relevant NCPs may be computed, once a score 
function  S  has been chosen, for a range of different genetic mod-
els. By comparing these with the optimal NCPs, the loss of infor-
mation is quantified. Here the quantification might come from 
either one or both of (i) choosing the wrong genetic model or (ii) 
using a non-optimal score function.

  5 Results 

 Note that the score functions  S  =  S  opt  in (28) which 
maximize NCPs do not have to maximize power, since 
NPL score distributions deviate from the standard nor-
mal and multiple testing is ignored in the NCP criterion. 
However, the score function that actually maximizes 
power should in most cases be close to  S  opt . See for in-
stance  [53]  on how the NCP is related to an analytical ap-
proximation of the power in the one-locus case. For this 
reason we discuss both NCPs and power in this section. 
A more direct way of comparing optimal power would be 
to generalize the optimal unconditional tests of  [26]  to 
(i) more general pedigrees than affected sib-pairs and 
(ii) conditional linkage analysis.

  Moreover, throughout this section, we will use homo-
geneous pedigree sets taken from  figure 1 . To reduce the 
computational complexity and increase interpretability 
we also assume perfect data throughout all calculations. 

Some comments on imperfect data are given at the end of 
Section 5.

  5.1 NCP Calculations 
 We calculate maximal NCP parameters in (27) for sev-

eral distinct genetic models under the constraint of a con-
stant disease prevalence  K  = 0.01. For more details on our 
selection of genetic models, see Appendix B. In  figures 
2–5 , and later on, all the results are displayed for these 
various types of disease models.

  In all simulations we report NCP as function of the 
 displacement ,

22 00,,
max min ,ij iji ji j

d f f f f= =

  which quantifies the strength of the genetic model. We 
have  d = d ( x ), where  x  is the penetrance parameter defined 
in Appendix B. 

 From  figures 2–5 , we notice that: (i) In all cases, 
 B   6   D   6   A  in (27). (ii) For multiplicative models, as ex-
pected,  A  =  D . (iii) For additive and heterogeneity models, 
 D  is consistently larger than  A , though closer to  A  than 
to  B . (iv) For threshold models,  D  tends to be closer to  B 
 than to  A .

  This implies that among our set of models the thresh-
old-type (followed by the additive- and heterogeneity-
type) seems to be most suitable for conditional two-locus 
analyses. One may also note that in this setting the per-
formance of our additive and heterogeneity models is 
quite similar; see  [50]  for a motivation. Further, the NCPs 
seem to be heavily dependent on the prevalence  K . We 
have performed similar analyses using  K  = 0.1 showing, 
for instance, that for additive and heterogeneity models 
 A   ;   D . (Results not shown; see  [48] .) For further discus-
sion, see Section 6.

  Exploring the influence of allele frequencies, setting  
p  =  p  1  =  p  2  we have noticed that the NCPs are increasing 

1

3

2 − Male

− Female

− Affected

− Unaffected

− Unknown phenotype 

  Fig. 1.  The pedigrees used in NCP and power calculations. 
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0.8

1.0
Pedigree 2 

0 0.5
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1
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0.2

0.4

0.6

0.8
Pedigree 3 

N
C

P
N

C
P

One-locus
Two-locus
Conditional two-locus

  Fig. 2.  Maximum one-, two- and condi-
tional two-locus NCP calculations using 
pedigrees 1–3, equal disease allele fre-
quency at both disease loci ( p = p  1  =  p  2  = 
0 . 01), a constant disease prevalence  K  = 
0.01 and symmetric  additive  two-locus 
disease penetrance models ( f   1 ) and dis-
placement  d  =  d ( x ) with  x  = 0:   0.024:   0.24. 
 N  = 1, i.e. NCP =  A ,  B  and  D  in (26) respec-
tively. 

0 0.5

d

1

0 0.5

d

10 0.5 1

0

0.1

0.2

0.3

0.4

0.5

One-locus
Two-locus
Conditional two-locus

0

0.05

0.10

0.15

0.20
Pedigree 1

0

0.02

0.04

0.06

0.08

0.10
Pedigree 2

Pedigree 3 

N
C

P
N

C
P

  Fig. 3.  Maximum one-, two- and condi-
tional two-locus NCP calculations using 
symmetric  multiplicative  two-locus dis-
ease penetrance models ( f                 2 ) and displace-
ment  d  =  d ( x ) with  x =  0.20:   0.0295:   0.495. 
For details, see figure 2.         
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One-locus
Two-locus
Conditional two-locus

0 0.5 1
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×10−3 ×10−5Pedigree 1
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  Fig. 4.  Maximum one-, two- and condi-
tional two-locus NCP calculations using 
symmetric  heterogeneity  two-locus dis-
ease penetrance models ( f                 3 ) and displace-
ment  d  =  d ( x ) with  x  = 0:   0.024:   0.24. For 
details, see figure 2.         

  Fig. 5.  Maximum one-, two- and condi-
tional two-locus NCP calculations using 
symmetric  threshold  two-locus disease 
penetrance models ( f                 4 ) displacement  d  = 
 d ( x ) with  x  = 0:   0.0495:   0.495. For details, 
see figure 2.         
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functions of  p  for most choices of prevalence  K  and pene-
trance parameter  x , when the latter two are kept fixed. (Re-
sults not graphically displayed; see  [48] .) Note that, since  K 
 and  x  are held constant and  y  in Appendix B must be great-
er than 0,  p  is in each case restricted to a certain interval.

  The average conditional noncentrality parameter for a 
homogeneous pedigree set with perfect marker data and 
uniform weights  �  k  =  �  can be written as

( ) ( ) ( )
( ) ( )

1 22

2

2 2 2 2

2
2 2 2

NCP
,

l |lw

w

w S w P w
D

S w P w
=                                        (29)

  where  S  –2 ( w  2 ) = 2 –  m   �  w  1   S  2 ( w  1 , w  2 ) is the conditional vari-
ance and 

 ( ) ( ) ( ) ( )
1 2

1

2 1 2 1 2 2NCP , /l |l
w

w S w w P w | w S w=

  the conditional noncentrality parameter for one pedigree 
when  v ( l  2 ) =  w  2 . Notice that any multiplicative constant 

of  S  cancels in (29). This does not violate (15), since  �  can 
be varied freely. For the optimal score function (28) (with 
proportionality constant removed), we get an optimal 
conditional noncentrality parameter 

 
( ) ( )

1 2
1

2/2
2 1 2NCP 2 2  m m

l |l
w

w P w | w=                              (30)

  and 
 

( ) ( )
1 2

2

2 2
2 2 2NCP .l | l

w
D w P w=

  Hence the conditional noncentrality parameter quantifies 
how much  P ( �  �  w  2 ) deviates from a uniform distribution 
and  D  2  averages the squared conditional noncentrality 
parameter with respect to (corresponding probability 
weights)  P  2 . 

 Next, recall pedigree 1 from  figure 1 . This common 
pedigree structure refers to an  affected sib-pair (ASP) 

N
C

P l
1/
l 2

 (w
2)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0

0.5

1.0
Additive model

0

0.2

0.4
(Zooming) p = 0.001

IBD(w2) = 0; p = 0.01
IBD(w2) = 0; p = 0.001

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2
Multiplicative model

0

0.005

0.010

0.015
IBD(w2) = 0, 1, 2; p = 0.01

IBD(w2) = 0, 1, 2; p = 0.001

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0

0.5

1.0

Heterogeneity model

IBD(w2) = 0; p = 0.01 IBD(w2) = 0; p = 0.001

0 0.2 0.4 0.6 0.8 10 0.2 0.4

d d

0.6 0.8 1
0

2

4

Threshold model

0

2

4
×10−6×10−3

IBD(w2) = 2; p = 0.01 IBD(w2) = 2; p = 0.001

  Fig. 6.  Optimal conditional noncentrality 
parameters NCP l  1   � l  2 ( w    2 ) for pedigree 1. We 
assume a fixed conditioning locus  l  2 ,  p  = 
 p  1  =  p  2   D  {0.001,0.01} (dotted and dashed 
lines), disease prevalence  K  = 0.01, four 
symmetric two-locus penetrance models 
( f   1 – f   4 ) and displacements  d = d ( x ). Note 
that the right-hand side panels are zoomed 
versions of the left-hand side ones, in order 
to clearly display the results correspond-
ing to  p =  0 . 001.             
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 pedigree.  Figure 6  displays (30) for an ASP when IBD( w  2 ), 
the number of alleles shared identical-by-descent by the 
affected siblings, equals 0, 1 or 2. For additive and hetero-
geneity models, NCP l  1    �    l  2 ( w  2 ) decreases with IBD( w  2 ), 
whereas the opposite is true for threshold models. For 
multiplicative models,

   P ( w  1 , w  2 ) =  P  1 ( w  1 ) P  2 ( w  2 )

  when there are no unaffecteds in the pedigree. Hence 
 P ( w  1  �  w  2 ) =  P ( w  1 ) and NCP l  1    �    l  2 ( w  2 ) is independent of  w  2 . 
Note that the conditional NCP, given fixed prevalence  K , 
is increasing with allele frequency  p  (from  p  = 0 . 001 to 
 p  = 0 . 01), which is consistent with the previous discus-
sion. 

 5.2 Power and Significance 
 Methods of Calculation 
 The significance level and power can be calculated us-

ing either: (i)  Analytical approximations  based on Gauss-
ian extreme value theory  [51–54] . (ii)  Monte Carlo simu-
lations   [55–58] .

  The advantage of (i) is fast computations and available 
explicit expressions. However, it is still only an approxi-
mative procedure which, even in the modified versions 
correcting for nonnormality, for instance  [59, 60] , may 
give biased results. Related approaches are, for example, 
described in  [61, 62] . On the other hand, (ii) is more ad-
justable to complicated situations and do not give biased 
results in the limit of large Monte Carlo samples. Its 
drawback is rather the computational burden. Modified 
simulation algorithms have been suggested in order to 
deal with this problem, such as importance sampling  [63, 
64]  and the fast but slightly biased replicate-pool method 
 [65, 66] .

  For conditional two-locus analysis with known condi-
tioning locus, another possibility is to use  permutation 
testing  when marker data from the pedigrees are fully, or 
close to, exchangeable. One may note that the procedure 
outlined in  [1] , using our general two-locus score func-
tion framework, may be generalized to permuting inher-
itance vectors rather than one-locus NPL scores at the 
conditioning loci. 7 

  With unknown conditioning loci, there is an addition-
al level of uncertainty regarding the actual set of condi-
tioning loci and their inheritance vectors. It seems 

difficult to adjust analytical approximations, permuta-
tion testing and fast simulation procedures to this in 
proper and convenient ways. Hence we use direct Monte 
Carlo simulation based on  J  replicates in all simulations. 
For instance, estimates  �  ̂   Y ( u ) and  
  ̂   Y ( u ) of the significance 
level and power in Section 3.4 are

( )min
1

1 ,
J

j

j
I p u

J =
�

  where  p   j  min  is the minimum p value for the  j -th replicate. 
For all  J  replicates we simulate marker data along all chro-
mosomes conditional on phenotypes under  H  0  and  H  1  
respectively. 

 We present calculations using so called  receiver oper-
ating characteristic (ROC)  curves  [67, 68]  by plotting 
power against significance level for various thresholds.

  Monte Carlo Simulations 
 The power calculations below are performed using 

score functions  S  pairs   [69]  in the one-locus case, and 
  S2l

pa
oc
irs(see Appendix C) and  SC

pai
ox

rs  with epistatic weights 
 f ( Z ) =  I ( Z   6  0), see (16), in the conditional two-locus 
case. In addition we also included the NCP-optimal score 
function  S  opt  of (28), in the one-and conditional two-lo-
cus simulations.

  We consider homogeneous pedigree sets with equal 
pedigree weights

�k = 1/�N

  and four chromosomes of equal length 1.5 Morgans (M) 
with disease loci  l  1  and  l  2  located in the middle of the first 
two chromosomes. 

 Further, we use symmetric additive (  f   1 ), multiplica-
tive ( f   2 ), heterogeneity ( f   3 ) and threshold ( f   4 ) models, 
setting the prevalence to  K  = 0.01, the maximum pene-
trance to  f  22  = 0.99 and the disease-allele frequencies  p  = 
 p  1  =  p  2  so that  f  00  attains its minimum value 0.

  Our simulated one-locus results give that the perfor-
mance of  S  opt  and  S  pairs  is close to identical which may, to 
a large extent, follow since these examples involve small 
pedigrees only, where  S  opt  and  S  pairs  usually should be 
quite similar. (Results not shown; see  [48] .) Generally, for 
small pedigrees  S  pairs  is often close to optimal. For larger 
pedigrees,  S  opt  often outperforms  S  pairs  to an extent de-
pending on the genetic model.

  Next, we compare conditional two-locus power calcu-
lations based on a  single known  conditioning locus  y  =  l  2  
in (17) with using a  single estimated  counterpart  y  =  l  ̂  2  = 
arg max x    D    c  (  l  2  )   Z ( x ). The results are displayed in  figures 
7–10 .

  7     Explicitly, the original set of inheritance vectors v k (y) at the condition-
ing loci y is being replaced by the permuted counterpart v  �    k   (y), where  �  = 
( �  1 , �  2 , ...,  �  N ) is a permutation of (1,2, ..., N). 
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  Fig. 7.  Conditional two-locus ROC-curves, 
using pedigrees 1 and 3, under the additive 
disease model (           f                           1 ;    d  = 0.99,  x  = 0.2425) 
with  K =  0.01,  p  =  p  1  =    p  2  = 0.0075 and three 
score functions (SC

pai
ox

rs  ,  S2l
pa

oc
irs    and  S  opt ; 

dashed, dashed-dotted and dotted lines re-
spectively). The number of pedigrees is 
     N  = 25, the thresholds  T  = 2.0, 2.1, ..., 6.0 
and the number of simulations  J  = 10000.   
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  Fig. 8.  Conditional two-locus ROC curves, 
using the multiplicative disease model (           f                           2 ; 
   d  = 0.99,  x  = 0.4925) with  p  =  p    1  =    p  2  = 0.08. 
For more details, see figure 7.                                         
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  Fig. 9.  Conditional two-locus ROC curves, 
using the heterogeneity disease model (           f                           3 ; 
   d  = 0.99,  x  = 0.4450) with  p  =  p    1  =    p  2  = 
0.005. For more details, see figure 7.                                         
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  Fig. 10.  Conditional two-locus ROC 
curves, using the threshold disease model 
(           f                           4 ;    d  = 0.99,  x  = 0.4900) with  p = p      1  =    p  2  = 
0.15. For more details, see figure 7.                                         
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  Let  l  ̂    1  = arg max x    D   �   \     c  (  l  2  )  Z ( x , y ) be the estimated disease 
locus using the conditional NPL score. In  table 1  the pro-
portions

   r   =  P̂  [ c (  l  ̂     1 ) =  c ( l  1 )]

  of chromosome-wise correctly estimated disease loci are 
displayed, including only those simulations for which 
 Z  max,  y   6  3. Note that this informally corresponds to es-
timating the first disease locus given the second (known 
or estimated) one, conditioning on some strength of evi-
dence of linkage. 

 Further, we consider a  random number  of condition-
ing loci. We select these loci by setting  z  c  = 2.5 in (19) for 
all  C  = 4 chromosomes in  �  and all three choices of score 
functions, see  figures 11 and 12 , where also the estimated 
probabilities of being selected as a conditioning locus is 
shown, i.e.

( ) ( )max,
1

1
2.5 ; 1,2,3,4.

i

J
j

i c
j

P̂ c I Z i
J =

= =�

  Since this case is simulation-wise more complex than the 
previous cases, we make some comments on the simula-
tion procedure in Appendix D. 

 The interpretation of power with one mandatory con-
ditioning locus versus a random number of loci is some-
what different. The latter case refers to the power to de-
tect any disease locus ( H  1 ), whereas in the former case 
power is restricted to detection of disease loci outside 
the conditioning chromosome  c  ( H    c  1 ). Hence, the corre-

sponding ROC-curves are not directly comparable. 
Moreover, the methods of Sections 3.2 and 3.4 include 
more multiple testing than those of Sections 3.1 and 3.3. 
For instance, this implies that a two-locus ROC-curve 
might be dominated by a one-locus ROC-curve, even 
though  
  tl ( z )  6   
 ( z ) for each threshold  z .

  6 Discussion 

 We have outlined and discussed procedures of condi-
tional two-locus NPL analysis. Our primary focus has 
been approaches that facilitate the calculations of signifi-
cance levels, power and noncentrality parameters.

  Conditional Two-Locus Power Calculations 
 Given the situation, one may note that in all investi-

gated cases  S  opt  turned out to be the most powerful score 
function, followed by  S2l

pa
oc
irs    and   SC

pai
ox

rs    . A general observa-
tion is that, in many cases, the performances of the first 
two are quite similar, whereas the second one is far more 
powerful than the third procedure. This behaviour seems 
to be quite consistent with respect to disease models.

  The main implication of this is that  S2l
pa

oc
irs    clearly out-

performs the well-known  SC
pai

ox
rs   . In addition, the perfor-

mance of S2l
pa

oc
irs   may be improved on, and optimized, by 

adapting  k  (see Appendix C) to the genetic model. This is 
a topic deserving further study.

Gen. mod. Sc. func. Pedigree 1 Pedigree 3

fixed estimated fixed estimated

f 1 (addi.)  SC
pai

ox
rs   0.5226 0.5789 0.5287 0.5798

S2l
pa

oc
irs 0.5725 0.5879 0.7553 0.7579

Sopt 0.6453 0.6134 0.8702 0.8422
f 2 (mult.)  SC

pai
ox

rs   0.6568 0.6684 0.8073 0.8181
S2l

pa
oc
irs 0.7140 0.7282 0.8967 0.8938

Sopt 0.7325 0.7480 0.9176 0.9185
f 3 (hete.)  SC

pai
ox

rs   0.5258 0.5586 0.5552 0.5918
S2l

pa
oc
irs 0.5689 0.6038 0.7843 0.7886

Sopt 0.6572 0.6243 0.9162 0.8886
f 4 (thre.)  SC

pai
ox

rs   0.7456 0.7609 0.8501 0.8636
S2l

pa
oc
irs 0.8421 0.8611 0.9507 0.9545

Sopt 0.8596 0.8609 0.9573 0.9542

For more details, see figure 7.

Table 1. Proportions of estimated disease 
loci that are located on c(l1), given 
 knowledge that the other disease locus is 
located on c(l2) at either a fixed or 
 estimated position
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Pedigree 3, additive model
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  Fig. 11.  [Left] Conditional two-locus ROC 
curves, with a random number of condi-
tioning loci, for pedigree 3 and the additive 
(           f                           1 ) and multiplicative (   f             2 ) disease models, 
using three two-locus score functions, 
thresholds  u  = 0, 0.0025, ..., 0.25 and  J  = 
2500 simulations. The one-locus ROC 
curves based on  S  opt  is also displayed (low-
er dotted line). For further details, see fig-
ure 7. [Right] Estimated probabilities for 
each chromosome of being selected as con-
ditioning locus. Note that conditioning 
loci are selected through one-locus scores 
(       S pairs for analysis based on      SC

pai
ox

rs    or S2l
pa

oc
irs  ; 

one-locus      S  opt  for analysis based on two-
locus  S  opt ).     

Pedigree 3, heterogeneity model
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  Fig. 12.  [Left] Conditional two-locus ROC 
curves with a random number of condi-
tioning loci, using the heterogeneity (           f    3 ) 
and threshold ( f  4 ) disease models. [Right] 
Estimated probabilities for each chromo-
some of being selected as conditioning lo-
cus. For further details, see figures 7 and 
11.                                                                                               
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  Choice of Score Function 
 The score function  S  opt  requires a known genetic dis-

ease model. However, for most real cases, the underlying 
disease model is, at least to some extent, unknown. 
Though this is a severe limitation, information from pre-
vious  segregation analyses   [70, 71]  may be helpful in the 
sense of suggesting, or at least narrowing down the set of 
plausible, disease models. Alternatively, genetic model 
parameters may be estimated simultaneously with the 
disease locus by means of a mod score analysis  [34] . If the 
model uncertainty is low,  S  opt  might be used directly, 
whereas a higher degree of model uncertainty calls for 
adjusted approaches. Either a single robust score func-
tion, which performs well under a wide range of genetic 
models, may be used, or several distinct score functions. 
For more details on choosing score functions in NPL 
analysis, see  [7, 11, 13, 15, 72] .

  Comparisons between Methods 
 Using the four families of disease models derived as in 

Appendix B, we calculated one-locus and conditional 
two-locus NCPs and powers. This was done (mainly) on 
prevalence level  K  = 0.01.

  Among our genetic disease models, the threshold 
model-class is the only one where conditional two-locus 
NCPs are closer to unconditional two-locus NCPs than 
to one-locus NCPs. Though, both the additive and het-
erogeneity classes show considerably higher NCPs for 
conditional two-locus than for one-locus analyses ( fig. 2–
5 ). Further discussion on heterogeneity models and their 
use in conditional two-locus search is to be found in  [29, 
42] . Generally, these discussions seem to be consistent 
with our observations.

  For the most informative pedigree structure, pedigree 
3, one sees that conditional two-locus power is generally 
much higher than corresponding one-locus power ( fig. 11, 
12 ). The results seem to be consistent between model 
classes. With respect to our families of disease models, 
the multiplicative and threshold models   S2l

pa
oc
irs       are closest 

in performance (power) to  S  opt , and in these cases the 
relative possibility of real findings is largest. Generally, 
conditional two-locus  S  opt  and   S2l

pa
oc
irs       perform much better 

than   SC
pai

ox
rs     ( fig. 11, 12 ). For our models,  SC

pai
ox

rs    rarely out-
performs the one-locus  S  opt .

  Note that NCP and power performance seems to be 
highly dependent on  K . For instance, for our threshold 
models, if  p  is not very large,  y  in (32, 33) of Appendix B 
is close to zero. In this case, for large  K , most affecteds 
carry few copies of  D , leading to low NCPs and power.

  In  figures 7–10  we compare conditional two-locus 
power to the contrasting behaviour of using a condition-
ing locus of known or unknown location, where in the 
latter case the conditioning chromosome is known. The 
proportions  r  fix  and  r  est  of correctly estimated second dis-
ease loci are given in  table 1 . Generally  r  fix   ;   r  est , which 
seems surprising at first. The explanation is that, using an 
estimated conditioning locus, we condition on an inher-
itance vector corresponding to a high one-locus score, i.e. 
in many cases consistent with the disease model. Though 
the differences are small,  r  fix  /r  est  seems largest and small-
est for  S  opt  and  SC

pai
ox

rs    respectively.

  Comments on Imperfect Data 
 In all simulations, we have assumed complete marker 

data, for which inheritance vectors (up to founder phase 
uncertainty) is known for all pedigrees at all loci. This is 
in order to (i) facilitate Monte Carlo simulations and 
avoid computationally complex algorithms for extracting 
inheritance vector distributions from data 8 , and (ii) com-
pute the maximal possible power that an investigator 
might expect before genotyping  [76] . The complete mark-
er data assumption is fairly realistic when all pedigree 
members are genotyped with an SNPs density at least, 
say, 0.1 cM. For larger multigenerational pedigrees, the 
founder generations are often not genotyped, and hence 
knowledge of the inheritance vector is less common. 
However, for marker data to be complete, it actually 
suffices to know  S  k [ v  k ( x )] in the one-locus case and 
 S  k [ v  k ( x ), v  k ( y )] in the (conditional) two-locus cases. De-
pending on the score function, this may not require all 
pedigree members to be genotyped. For instance, for 
pedigree 2, the  S  pairs  and   S2l

pa
oc
irs       score functions only de-

pend on IBD-sharing between the two affected first cous-
ins and hence, in principle, it sufficies that these two are 
genotyped at a sufficiently dense set of markers. This fol-
lows since then sets of neighbouring markers might be 
combined into highly polymorphic ones facilitating the 
equality of IBS (identical-by-state) and IBD sharing and 
hence (close to) perfect marker information. More gener-
ally, in the same sense, if suffices to genotype the affected 
pedigree members when the score function only involves 
IBD-sharing between these.

  As a final comment one may also note that all methods 
based on (7), (12), (17) and (23) are designed to be gen-
eral enough to allow for imperfect data.

  8     For instance, by implementing the well-known Lander-Green-Krug-
lyak algorithm  [73–75] . 
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  Other Approaches 
 A major current trend in gene localization is to employ 

genomewide association (GWA) studies. They may be 
preferable over genomewide linkage studies when the 
disease allelic variants are common and the effect of the 
disease gene(s) small  [77] . This is related to the  common 
disease-common variant  hypothesis, which is a strong 
motivation for the HapMap project. Indeed, the GWA ap-
proach has shown recent promise for a number of com-
plex dieseases  [78] . Still, other approaches such as ge-
nomewide one- or two-locus linkage analysis seem to re-
main important  [79] . Of course, a third possibility is to 
use combined linkage and association analysis; see e.g. 
 [80]  and references therein.
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  A Proof of Theorem 1 

 Let  m  be the common number of meioses of the homogeneous 
pedigree set. For a given score function, with weights

�k = 1/�N

  and standardization (15), the NCP parameters in (26) are defined 
through 

 ( ) ( )

( ) ( )

( ) ( )

1

1 2

2

1 1 1

1 2 1 2

2 2 2

,

, , ,

,

w

w ,w

w

A P w S w

B P w w S w w

D w P wμ

=

=

=

  where  � ( w  2 ) =  �  w  1   S ( w  1 , w  2 ) P ( w  1  �  w  2 ). 
 Using the relevant methods in  [12] ,  A ,  B  and  D  are maximized 

with respect to  S  under the constraints (4), (9) and (14, 15) respec-
tively. Following an analogous version of Proposition 1 therein, 
the maximum NCPs turn out to be as in (27) and the correspond-
ing NCP-optimal score functions as in (28). Maximization of  D  is 
done in two steps. First,

   S ( w  1 , w  2 ) =  C ( w  2 )[ P ( w  1  �  w  2 ) – 2 –  m ]

  is derived by maximizing  � ( w  2 ) for each  w  2  subject to a constraint 
on  S  2 ( w  2 ). Then  �  w  2   � ( w  2 ) P  2 ( w  2 ) is maximized with respect to 
 C ( w  2 ) subject to (15), which for large samples can be written as 

 

( ) ( )
2

2
2 2 2 1 .

w
S w P w =

    The optimal choice  C ( w ) =  c  gives the desired solution. 

 B One-Parameter Families of Genetic Models 

 For simplicity, we assume that both disease allele frequencies 
are equal, i.e.  p  =  p  1  =  p  2 , and that the penetrance matrix  f  in (1) is 
symmetric. The last two properties imply that the marginal one-
locus genetic models are equal. The disease  prevalence  is then 
defined as

   K  =  P (affected) =  f  22  p  4  + 2( f  21  +  f  12 ) p  3  q  + ( f  20  +  f  02 ) p  2  q  2 
                           + 4  f  11  p  2  q  2  + 2( f  10  +  f  01 ) pq  3  +  f  00  q  4 ,                 (31)

  where  q  = 1 –  p  is the normal allele frequency at both loci and 
 f  ij  =  f  ji . 

 Taking advantage of (31) we calculate a  one-parameter family 
 of penetrance matrices for the four distinct two-locus disease 
model types defined in Section 2 as follows: Define penetrance 
matrices  f   1 – f   3  through setting  g  =  h  = ( y , K  +  x , K  + 2 x ) for the  ad-
ditive ,  multiplicative  and  heterogeneity  model-classes respective-
ly, i.e. let 

( )
( )

1

2 2
2 2 3 ,

2 2 3 2 2

y K y x K y x
f K y x K x K x

K y x K x K x

+ + + +
= + + + +

+ + + +

( ) ( )

( ) ( ) ( )( )

( ) ( )( ) ( )

2

22

2

2

2

2 2 2

y y K x y K x

f y K x K x K x K x

y K x K x K x K x

+ +

= + + + +

+ + + +

  and 
 

( ) ( )( )

( )( ) ( ) ( )

( )( ) ( )( )

( )( )

( )( )

( )( )

2

3

2

2 1

1 2

1 2 2 3 2

1 2

2 3 2

2 2 2

y y y y K x

y y K x K x K x

y y K x K x K x K x
f

y y K x

K x K x K x

K x K x

+ +

+ + + +

+ + + + +
=

+ +

+ + +

+ +

.

  Given  K ,  p  and  x  these classes are then well-defined through 
 

( ) ( ) ( )
( ) ( )
( ) ( )

22

22

22

4 1 2 2 1 (additive)

2 1 (multiplicative),

2 1 1 1 (heterogeneity).

/
/

/

p K x K p p

y Kp p K x K p

Kp p K x K p

+ +

= + +

+ +

  Moreover, define

{ }4

2
. 

2
i j

K y K y K
f k K y K K x

K K x K x
+= = +

+ +
                      (32)
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  directly for the  threshold  model class, which then becomes well-
defined through 

    y  = –  [p  3 ( p  – 2) x ]/[( p  + 1)( p  – 1) 3 ].                                            (33)

  For each of the one-parameter families above, in addition to 
our initial assumptions, the constraints 0  ̂    f  ij     ̂   1 define a set of 
valid models  x  1   ̂    x   ̂    x  2 . The larger  x  is within this interval, the 
stronger is the genetic component of the model.

  C The Generalized Two-Locus Version of  S  pairs  

 The unstandardized one-locus version of  S  pairs  is defined as

( ) ( )pairs ,IBD ,i j
i j

S w w
<




  where summation is over all pairs of affected individuals and 
IBD i  ,  j ( w ) equals the number of alleles shared IBD by the  i -th and 
 j -th individual given  w . 

 One may generalize this into a two-locus score function in 
several ways. We consider

( ) ( ) ( )pairs 1 2 , 1 , 2IBD IBD ,
k

i j i j
i j

S w ,w w w
<

= +

  which for  k   1  1 may be thought of as capturing epistatic joint pair-
wise IBD-sharing within a pedigree. The case  k  = 1 corresponds 
to the additive score function in  [27] ,  S  pairs ( w  1 , w  2 ) =  S  pairs ( w  1 ) + 
 S  pairs ( w  2 ). Throughout all the relevant analyses we use  k  = 2. 

  9     Basically, this corresponds to the inheritance vectors at all the condi-
tioning loci and their corresponding simulation-wise and chromosome-
wise locations. 

 D The Random Multiple Conditioning Loci 

Simulation Procedure 

 This case is computationally more demanding since  p  c  in (22) 
must be computed for all conditioning loci. Each  p  c  essentially 
corresponds to a one-locus p value, hence any of the methods de-
scribed in Section 5.2 can be used.

  Defining the original number of genome-wide one-locus sim-
ulations as  J  1  and the additional number of simulations with re-
spect to  p  c  in (22) as  J  2 , one has the following possibilities: (i) Es-
timate all  p  c s  separately  through  J  2  simulations using  inner  loops. 
This occupies less memory, but is computationally demanding. 
(ii) Save all single-test specific information 9  and estimate p values 
( p  c s) with respect to all the  � C 1  �  +  � C 2  �  + ... +  � C J  1  �  selected condi-
tioning loci of the  J  1  original simulations  simultaneously  using the 
 same  set of  J  2  genome-wide simulated inheritance matrices in the 
additional (second) run. This occupies significantly more memo-
ry, but avoids the need for inner loops.

  In our case, we have adopted (ii) and chosen  J  2  = 2500 when 
using  SC

pai
ox

rs    and  J  2  = 1000 for   S2l
pa

oc
irs       and  S  opt . Further,  J  1  = 2500 in 

all three cases. 
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