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Relative Risks and Effective Number of Meioses: A
Unified Approach for General Genetic Models and
Phenotypes

A. Kurbasic∗ and O. Hössjer†

Summary

Many common diseases are known to have genetic components, but since they are non-Mendelian, i.e. a large

number of genetic factors affect the phenotype, these components are difficult to localize. These traits are often

called complex and analysis of siblings is a valuable tool for mapping them. It has been shown that the power of the

affected relative pairs method to detect linkage of a disease susceptibility locus depends on the locus contribution

to increased risk of relatives compared with population prevalence (Risch, 1990a,b). In this paper we generalize

calculation of relative risk to arbitrary phenotypes and genetic models, but also show that the relative risk can be

split into the relative risk at the main locus and the relative risk due to interaction between the main locus and loci at

other chromosomes. We demonstrate how the main locus contribution to the relative risk is related to probabilities

of allele sharing identical by descent at the main locus, as well as power to detect linkage. To this end we use

the effective number of meioses, introduced by Hössjer (2005a) as a convenient tool. Relative risks and effective

number of meioses are computed for several genetic models with binary or quantitative phenotypes, with or without

polygenic effects.
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Introduction

An important class of traits for study in humans are those

caused by multiple loci which, in general, have a chronic

and highly prevalent nature. Some examples are cancer,

epilepsy and psychiatric disorders. They are often called

quantitative traits since the disease phenotype is typi-

cally measured on a continuous scale or it is defined

by thresholds to a continuous variable. Classical linkage

analysis has low power in analyzing complex diseases,

since there is no one-to-one correspondence between

the genotype and disease phenotype which is typical

for Mendelian diseases. To be able to detect linkage to

a disease susceptibility locus large samples of pedigrees

are needed, since each disease gene typically has a small
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effect by itself. For this reason relative pair families, most

notably sib pairs, have proved a valuable tool, since they

are relatively easy to collect in large quantities.

Before undertaking a linkage study one must have

some understanding of how many relatives are needed

to obtain evidence for linkage. The fundamental as-

sumption is that the linkage information in pairs can be

studied through the relationship between their identity-

by-descent sharing (IBD) at the putative locus (loci) and

their phenotypes. In a series of papers Risch (1990a,b)

studied relative risk ratios for binary traits. He showed

that these risk ratios are the essential parameters for de-

termining probabilities of IBD-sharing, given pheno-

types.

In this paper we study relative risk for arbitrary

phenotypes and genetic models. We assume that the

trait/phenotype is a result of one so called main locus,

but also of other sources of covariation, i.e. polygenes

unlinked to the main locus and shared environment. The

relative risk is split into two terms, the risk at the main

locus and the risk due to other sources of variation. We
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generalize Risch’s results by showing that relative risks

at the main locus determine IBD-sharing probabilities

given phenotypes at the main locus.

It turns out that the relationship between IBD-sharing

probabilities and power can be formalized using the ef-

fective number of meioses for testing, m test, a concept in-

troduced by Hössjer (2005a) for general pedigrees. This

can be interpreted as the amount of information inher-

ent in the pedigrees for testing linkage, given phenotypes

and the genetic model. In this paper we apply mtest to

affected relative pairs. For a single pair it depends on

IBD-sharing probabilities through a very explicit for-

mula, and for a whole dataset it is simply added over all

the families.

We believe relative risks and effective number of

meioses are two complementary quantities. The former

has a natural epidemiological interpretation, whereas the

latter is more relevant for quantifying the information

inherent in the data set to detect linkage. We compute

relative risks and effective number of meioses for several

types of genetic models, including binary and quanti-

tative traits, with or without polygenes. In this way we

are able to determine which phenotypes and genetic

models a relative pair is informative for. In particular,

for quantitative phenotypes we find that extreme pairs

of phenotypes are most informative for linkage, thereby

supporting the previous results of Carey & Williamson

(1991), Cardon & Fulker (1994) and Risch & Zhang

(1995, 1996).

Conditional Variances and Covariances

Consider a trait which is influenced by a polymorphism

within a gene having two possible alleles. If the trait is

related to a certain disease we think of the two alleles as

the normal (0) and disease (1) alleles, respectively, hav-

ing probabilities q and p, q + p = 1. Let Y1 and Y2 be

the observed phenotypes for two individuals, and f (Yk)

and f (Y1, Y2) the marginal and joint probability (den-

sity) functions, respectively, of Y1 and Y2. Each Yk may

be scalar or vector-valued, and may include covariates.

The three possible genotypes (00), (01) and (11) give rise

to three penetrance values ψ
(k)
0 = f (Yk|(00)), ψ

(k)
1 =

f (Yk|(01)) and ψ
(k)
2 = f (Yk|(11)) for each individual

k, k = 1, 2. Under Hardy-Weinberg equilibrium,

f (Yk) = E( f (Yk|Gk)) = q 2ψ
(k)
0 + 2pq ψ

(k)
1 + p2ψ

(k)
2 ,

where Yk is kept fixed and expectation is with respect

to Gk, the genotype of k. Similarly,

σ (k)
g := Var( f (Yk|Gk))

= q 2
(
ψ

(k)
0 − f (Yk)

)2 + 2pq
(
ψ

(k)
1 − f (Yk)

)2

+ p2
(
ψ

(k)
2 − f (Yk)

)2

for k = 1, 2, which we refer to as the conditional ge-

netic variance of the penetrance for k. It can be split

into conditional additive and dominance genetic vari-

ance components σ (k)
g = σ (k)

a + σ
(k)
d , where

σ (k)
a = 2pq

(
p
(
ψ

(k)
2 − ψ

(k)
1

)
+ q

(
ψ

(k)
1 − ψ

(k)
0

))2

σ
(k)
d = (pq )2

(
ψ

(k)
2 − 2ψ

(k)
1 + ψ

(k)
0

)2

for k = 1, 2, c.f. Elston et al. (2002).

Introduce the 3 × 3 matrix ψ = {ψ j l}2
j,l=0 of joint

penetrances, i.e. ψ j l is the value of f (Y1, Y2|G1, G2)

when G1, 1’s genotype, has j disease alleles and G2, 2’s

genotype, has l disease alleles. Define

σ (12)
g := E( f (Y1, Y2|G, G)) − E( f (Y1, Y2|G, G′ )), (1)

where Y1 and Y2 are fixed and expectation is with re-

spect to two independent genotypes G and G′ . It repre-

sents the difference in joint probability of phenotypes

for two individuals having different and identical geno-

types, respectively. We refer to σ (12)
g as the conditional

genetic covariance of the joint penetrances. This name

is motivated by considering the special case where there

is no contribution to the trait from other genes, poly-

genes or shared environment, i.e. ψ j l = ψ
(1)
j ψ

(2)
l . Then

σ (12)
g = Cov( f (Y1|G1), f (Y2|G2)) for a monozygotic

twin pair (1,2) and σ (kk)
g = σ (k)

g . It is shown in the Ap-

pendix that a decomposition σ (12)
g = σ (12)

a + σ
(12)
d into

additive and dominant conditional genetic covariances

is possible, with

σ (12)
a = 2pq · ua ψu ′

a ,

σ
(12)
d = (pq )2 · ud ψu ′

d ,
(2)

ua = (−q , q − p, p ), ud = (1,−2, 1) and u ′
a and u ′

d

the transpose of ua and ud, respectively.
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Relative Risks

We indicate the type of relationship between 1 and 2

with R. For a pair R, the relative risk ratio

λR =
f R(Y1|Y2)

f (Y1)
=

f R(Y2|Y1)

f (Y2)
=

f R(Y1, Y2)

f (Y1) f (Y2)
,

quantifies the relative change in density for Y1 after

observing Y2 or vice versa. Let I ∈ {0, 1, 2} be the

number of alleles shared identical by descent by (1,2) at

the trait locus and put fRi(Y1, Y2) = fR(Y1, Y2| I = i )1.

Then decompose the relative risk as

λR = λother
R · λmain

R ,

where λmain
R = fR(Y1, Y2)/ f R0(Y1, Y2) is the contribu-

tion to relative risk because of allele sharing iden-

tical by descent at the trait locus and λother
R =

f R0(Y1, Y2)/( f (Y1) f (Y2)) represents relative risk due to

other sources of covariation, such as other genes, poly-

genes and shared environment. Notice that

f R0(Y1, Y2) = uψu ′, (3)

with u = (q 2, 2pq, p2), equals the second term on the

RHS of (1).

Let αRi = P (I = i ) be the prior probability that the

pair R shares i alleles IBD and r R = 0.5αR1 + αR2 the

coefficient of relationship, (Haseman & Elston, 1972).

It is shown in the Appendix that

λmain
R = 1 +

r Rσ (1,2)
a + αR2σ

(1,2)
d

f R0(Y1, Y2)
, (4)

which generalizes expressions obtained by James (1971)

and Risch (1990a) for binary trait recurrence and relative

risks. In fact, consider a binary trait without polygenic

and shared environmental effects, where phenotypes one

and zero mean affected and unaffected, respectively. Let

Y1 = Y2 = 1 be the phenotypes of an affected relative

pair R. Drop superscript k for penetrance, so that ψi is

the probability that an individual with i copies of the

disease causing allele becomes affected. Then σ (k)
a =

1When R is a monozygotic twin pair or a parent-offspring pair

the event ‘I = 0’ has probability zero and f R0(Y1, Y2| I = 0) is

not defined, but we can still use formula (3). For the monozygotic

twin pair, when ‘I = 1’ the probability is zero and f R1(Y1, Y2)

is defined as for an ordinary sib pair. For a unilineal relationship

‘I = 2’ has probability zero, and then f R2(Y1, Y2) need not be

defined.

σ (1,2)
a = σ 2

a and σ
(k)
d = σ

(1,2)
d = σ 2

d are the additive and

dominant variance of the trait. Let Kp = P (Yk = 1) be

the prevalence. Since f R0(Y1, Y2) = K2
p , (4) becomes

λmain
R = 1 +

r Rσ 2
a + αR2σ

2
d

K2
p

,

in agreement with Risch (1990a).

When f R0(Y1, Y2), σ
(1,2)
a and σ

(1,2)
d are independent

of R, λmain
R will depend on the degree of relation-

ship R only through r R and αR2, as shown by Risch

(1990a). This happens when the penetrance matrix ψ

is independent of R, as for one-locus models with

no shared environmental or polygenic effects, but also

for multiplicative multilocus models, since then the

common R-dependent factor in f R0(Y1, Y2), σ
(1,2)
a and

σ
(1,2)
d cancels out in (4). For instance, if there are

no dominance effects (p small) and R = n denotes

a relationship of degree n, (n = 0: MZ twins, n =
1: parent-offspring, siblings, n = 2: half-sibs, uncle-

nephew, grandparent-grandchild, n = 3: first cousins),

then λn − 1 = 2−n (λ0 − 1).

Linkage Analysis for Relative Pairs

IBD Probabilities and Effective Number of

Meioses

Let zRi = P (I = i |Y1, Y2) be the posterior prob-

ability that R shares i alleles IBD. Put λmain
Ri =

fRi(Y1, Y2)/ f R0(Y1, Y2). Then, applying Bayes’ rule, as

in Risch (1990b), we get

zRi =
αRi f Ri (Y1, Y2)

f R(Y1, Y2)
=

αRi λ
main
Ri

λmain
R

, i = 0, 1, 2. (5)

The amount of information contained in (Y1, Y2) for

testing linkage between the trait locus and genetic

markers is to a large extent determined by how much

{zRi}2
i=0 depart from {αRi}2

i=0. The effective num-

ber of meioses mtest for testing is introduced in Hössjer

(2005a) for general pedigrees, phenotypes and genetic

models. It quantifies the equivalent number of fully ob-

served meiotic events contained in (Y1, Y2). It is shown

in the Appendix that

mtest
R = log2

(
z2

R0

αR0

+
z2

R1

αR1

+
z2

R2

αR2

)
, (6)
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with the convention 0/0 = 0 whenever αRi = 0. For

a data set with several relative pairs (of the same or

a different kind), mtest is obtained by simply adding

(6) over all pairs. For a unilineal relationship of degree

n(αR1 = 2− (n−1), αR2 = 0), the maximal possible value

m test
R = n − 1 is obtained when the genetic model and

(Y1, Y2) is such that zR1 = 1. In other words, when the

genetic component at the main locus is strong, distant

relationships are more informative than close ones.

Power Approximation

We will now motivate the relevance of m test to linkage

analysis. Suppose we wish to test

H0 : τ /∈ �

H1 : τ ∈ �,

where � is the genomic region of interest, consisting

of n� chromosomes of total length L� Morgans, and

τ is the unknown position of the disease gene. Con-

sider a set of N unrelated relative pairs, i = 1, . . . , N,

whose relationships Ri and phenotypes Yi = (Yi1, Yi2)

may vary. Let mi be the number of meiosis in the pedi-

gree corresponding to Ri and vi(t ) the inheritance vector

of Pedigree i at locus t. This is a binary vector of length

mi, each bit of which corresponds to a meioses, with

value 0 or 1 depending on whether a grandpaternal or

grandmaternal allele was transmitted (Donnelly, 1983).

Let Y = (Y1, . . . , YN) be the collection of all pheno-

types and v (t ) = (v1(t ), . . . , vN (t )) the collection of in-

heritance vectors at locus t. The latter is a binary vec-

tor of length m total = m 1 + · · · + mN . With complete

marker information, a wide class of test statistics for test-

ing H0 against the pointwise alternative τ = t, t ∈ �,

is

Z(t ) = S(v (t )), (7)

where S(w ) = S(w ; Y) is a score function defined for

all binary vectors w = (w 1, . . . , wN ) of length m total.

We assume that S is standardized so that
∑

w S(w ) =
0 and 2−m total

∑
w S2(w ) = 1, ensuring EH0

(Z(t )) = 0

and VarH0
Z(t )) = 1 under complete marker informa-

tion. Notice that (7) contains as special case

Z(t ) =
N∑

i=1

γi Si (vi (t )), (8)

which is a linear combinations of family scores Si(vi(t ))

with weights γi satisfying
∑N

i=1 γ 2
i = 1, and with Si a

standardized score function of Pedigree i. The class (8)

includes the affected pedigree method, see e.g. Weeks

& Lange (1988), Fimmers et al. (1989), Whittemore

& Halpern (1994) and Kruglyak et al. (1996). As test

statistics for testing H0 against H1 we use

Zmax = sup
t∈�

Z(t ),

and H0 is rejected as soon as Zmax exceeds a given thresh-

old z. Since Z(t) can be seen as a stationary process we

can use results from extreme value theory to approx-

imate power and significance level; see Appendix for

details. The power approximation (A.5) is an increasing

function of the noncentrality parameter

η = E(Z(τ )) =
∑

w

S(w )P (w ), (9)

where P (w ) = P (v (τ ) = w |Y) =
∏N

i=1 P (vi(τ ) =
w i|Yi ) is the joint conditional distribution of all

inheritance vectors at the trait locus. The maximal

noncentrality parameter for the class (7) of test statistics

ηmax =
√

2m test
total − 1 (10)

is attained for a score function Sopt(w ) = (P (w ) −
μ)/σ , where μ and σ are standardization constants,

see Hössjer (2005a) for details. Notice that Sopt re-

quires knowledge of the genetic model, i.e. penetrance

parameters and disease allele frequency. Since the ge-

netic model is rarely known for complex diseases, ηmax

is an upper bound of the noncentrality parameter,

and m test
total = m test

R1
+ · · · + m test

RN
is related to this up-

per bound through a strictly monotone transformation.

But since the power to detect linkage is approximately a

monotone function of η (cf. (A.4)), the maximal power,

obtained by putting η = ηmax in (A.4), depends (approx-

imately) monotonically on m test
total as well.

From the above discussion we can interpret m test
total as

quantifying the amount of information in the data set for

detecting linkage. It is ideal, since it requires knowledge

of the genetic model. In particular, for affected relative

pairs m test
total depends on the genetic model through rela-

tive risks at the main locus, see (5) and (6). In practice,

when the genetic model is unknown we may choose a

suboptimal score function S and achieve lower power
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than predicted by m test
total for the true genetic model. A

possibility in this case is to compute the noncentrality

parameter η in (9) and the associated power in (A.5) for

a number of possible P, each one corresponding to a hy-

pothesized genetic model. Then, the sample size should

be chosen to be so large that a summary statistic of all

power values (e.g. the mean) exceeds a predetermined

lower bound. Such an approach would then be robust

against model misspecification.

Figure 1 shows the power β of detecting the signif-

icant linkage on a chromosome of length 2.985 Mor-

gans. In calculation we used the crossover rate ρZ = 2

and normalized slope d = 1 (both defined in the Ap-

pendix), although they can vary a little depending on

the genetic model and the pedigree structure (Lander &

Kruglyak, 1995; Hössjer, 2005c). We calculated thresh-

olds required to reach three ‘standard’ significance levels

of 0.05, 0.01 and 0.001. In all three cases we needed a

value of m test
total between four and five to achieve a power

of 0.9. As we will show below, the number of relative

pairs required to reach a high power depends on the

genetic model and the phenotypes. In Figure 2, when

the threshold z is the one required for genomewide sig-

nificance the values of m test
total needed for reaching power

0.9 increase, but not remarkably.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mtest
total

β

Figure 1 Approximation of the power to detect linkage β as a

function of the effective number of meioses m test
total for one

chromosome of length L� = 2.985 Morgans. The threshold z

and significance level α are chosen as z = 3.375 and α = 0.05

(solid), z = 3.863 and α = 0.01(−− ), z = 4.455 and

α = 0.001(· · ·).
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1

mtest
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β

Figure 2 Approximation of the power to detect linkage β as a

function of the effective number of meioses m test
total. The threshold

z is calculated for a genomewide significance level α, i.e.

n� = 22 and L� = 33.5 Morgans. In the Figure z = 4.1 and

α = 0.05 (solid), z = 4.5 and α = 0.01(−− ), z = 5.02 and

α = 0.001(· · ·).

Genetic Models

Gaussian Phenotypes

We studied relative risks for a class of genetic models

where the genetic influence is a mixture of a major

gene and a number of polygenes but the major gene

and polygenes are unlinked. The goal of the analysis is

to map the major gene, and to increase statistical effi-

ciency we take the polygenes into account. If Gk is the

major gene’s genotype for individual k and Yk the phe-

notype, we assume Yk|Gk ∈ N(μ|Gk |, σ
2). Here |Gk| is

the number of disease alleles of Gk and μ0, μ1 and μ2

are the mean phenotype values for an individual with 0,

1, and 2 disease alleles, respectively. Residual variance

σ 2 is the variance caused by polygenic and/or environ-

mental effects. If large values of the phenotype indi-

cate disease a natural constraint is μ0 ≤ μ1 ≤ μ2. For

a relative pair we have (Y1, Y2)|(G1, G2) ∈ N(μ, σ 2�),

where μ = (μ|G1|, μ|G2|), � is a 2 × 2 correlation ma-

trix with ones on the diagonal and correlation coeffi-

cient ρY = rRh2
a + αR2h

2
d with h2

a and h2
d additive and

dominant polygenic heritability, respectively (i.e. the

fraction of σ 2 due to additive and dominance effects).

Then we have that

f (Yk|Gk) = φ((Yk − μ|Gk |)/σ )/σ

C© 2006 The Authors Annals of Human Genetics (2006) 70,907–922 911
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Table 1 Overview of the parameters in

the study with Gaussian phenotypes.

Note that E(Yk) = 0, Var(Yk) = 1, and

h2 is the main locus heritability, i.e.

Var(μ|Gk|)/Var(Y k).

Model Disp Dom h2 h2
a p μ0 μ1 μ2 σ

1 2 0 0.1525 0 0.1 −0.1841 0.7365 1.6570 0.9206

2 2 0 0.1525 0.1 0.1 0.1841 0.7365 1.6570 0.9206

3 2 0 0.1525 0.5 0.1 0.1841 0.7365 1.6570 0.9206

4 2 0 0.1525 0.8 0.1 0.1841 0.7365 1.6570 0.9206

5 2 0 0.0020 0.5 0.001 −0.0020 0.9970 1.9960 0.9990

6 2 0 0.1525 0.5 0.1 −0.1841 0.7365 1.6570 0.9206

7 2 0 0.3334 0.5 0.5 −0.81656 0 0.8165 0.8165

8 2 1 0.3810 0.5 0.1 −0.2990 1.2745 1.2745 0.7867

9 2 −1 0.0381 0.5 0.1 −0.0196 −0.0196 1.9419 0.9808

10 2 0.5 0.2652 0.5 0.1 −0.2486 1.0372 1.4658 0.8572

11 2 −0.5 0.0679 0.5 0.1 −0.1062 0.3765 1.8247 0.9654

12 1 0 0.0432 0.5 0.1 −0.0978 0.3913 0.8804 0.9782

13 3 0 0.2883 0.5 0.1 −0.2531 1.0124 2.2779 0.8436

14 4 0 0.4186 0.5 0.1 −0.3050 1.2200 2.7450 0.7625

and

f (Y1, Y2|G1, G2) =

φ2((Y1 − μ|G1|)/σ, ((Y2 − μ|G2|)/σ ; ρY )/σ 2,

where φ and φ2(., ., ρY ) are the univariate and bi-

variate standard normal densities, the latter with cor-

relation coefficient ρY . See Lynch & Walsh (1998)

and Hössjer (2005b) for more details about Gaussian

phenotypes.

Liability Threshold Model

In the liability threshold model the observed phenotypes

are binary (Yk = 1 affected and Yk = 0 unaffected) but

there is no simple Mendelian inheritance pattern, and

the probability of expressing the disorder i.e. the distri-

bution of Yk is modelled as a function of an underly-

ing quantitative variable Xk, the same kind of variable

as in Section 5.1. The phenotype is then defined as

Yk = 1{Xk≥T} where T is a given threshold. For more

details about liability threshold models see Todorov &

Suarez (2002).

We assume Xk|Gk ∈ N(μ|Gk |, 1) and hence X|G ∈
N(μ, �). We then have penetrance parameters

ψi = P (Yk = 1||Gk| = i ) = 1 − �(T − μi ),

for i = 0, 1, 2, where � is the distribution function of

a standard normal variable. This yields

f (Yk|Gk) = ψ
Yi

|Gk | · (1 − ψ|Gk |)
1−Yi

and

f (Y1, Y2|G1, G2) =
∫

A

φ2(x1, x2; ρX)d x

where A = (T − μ|G1|,∞ ) × (T − μ|G2|,∞ ) if Y1 =
Y2 = 1, A = (T − μ|G1|,∞ ) × (−∞ , T − μ|G2|) if

Y1 = 1 and Y2 = 0, A = (−∞ , T − μ|G1|) × (T −
μ|G2|,∞ ) if Y1 = 0 and Y2 = 1, and A = (−∞ , T −
μ|G1|) × (−∞ , T − μ|G2|) if Y1 = Y2 = 0. When

there are no polygenic effects, i.e. when h2
a = h2

d =
0, � is diagonal. Then we obtain an ordinary one-

locus model for binary traits, with f (Y1, Y2|G1, G2) =
f (Y1|G1) f (Y2|G2).

Results

For the Gaussian mixed model we have standardized

phenotypes, so that E(Yk) = q 2μ0 + 2pqμ1 + p2μ2 =
0 and Var(Yk) = 1. In practice both E(Yk) and V(Yk)

have to be estimated, for instance as the sample mean and

sample variance of a randomly drawn subset of the popu-

lation. Alternatively one could use the given data set, but

then a more sophisticated estimation procedure that in-

cludes modelling of the ascertainment scheme is neces-

sary. After standardization there are four essential genetic

parameters when h2
d = 0, namely p, h2

a , the displace-

ment Disp = (μ2 − μ0)/σ that quantifies the strength,

and Dom = (2μ1 − μ0 − μ2)/(μ1 − μ0) that quanti-

fies the degree of dominance of the main locus genetic

component. We studied the relation between the relative

risk and different parameters, but also investigated the

informativity of the different relative pairs by looking at
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=2Figure 3 Relative risk λS as a function

of the values of the trait, Y 1 and Y 2. The

reference model is Gaussian with no

dominant polygenic effects (h2
d = 0).

Disease allele frequency p = 0.1,

displacement Disp = 2 and dominance of

the main locus genetic component

Dom = 0. Relative risk is calculated for

four different values of additive polygenic

heritability; h2
a = 0 (solid),

h2
a = 0.1(· · ·), h2

a = 0.5(−− ), and

h2
a = 0.8, (− · − ).
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=2Figure 4 Relative risk due to trait locus

λmain
S as a function of the values of the

trait, Y 1 and Y 2. The reference model is

Gaussian with no dominant polygenic

effects (h2
d = 0). Disease allele frequency

p = 0.1, displacement Disp = 2 and

dominance of the main locus genetic

component Dom = 0. Relative risk is

calculated for four different values of

additive polygenic heritability; h2
a = 0

(solid), h2
a = 0.1(· · ·), h2

a = 0.5(−− ),

and h2
a = 0.8, (− · − ).

the value of m test
R . A list of genetic models is provided in

Table 1.

We have that λR = λmain
R when h2

a = 0, see for ex-

ample Figures 3 and 4, which is a result of no interaction

between the main locus and the other loci. We define

the pairs as being concordant if they have the same or

similar phenotypes and discordant when they have op-

posite phenotypes. The informativity increases with h2
a

for discordant pairs and decreases with h2
a for concordant

pairs, see Figure 5. The most informative are discordant

sib pairs with extreme phenotype values, large h2
a , and

large h2 (main locus heritability). Relatives with pheno-

types close or equal to zero are non-informative. These

are the same kind of conclusions as in Risch & Zhang
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m test
S as a function of the values of the trait,

Y 1 and Y 2. The reference model is

Gaussian with no dominant polygenic

effects (h2
d = 0). Disease allele frequency

p = 0.1, displacement Disp = 2 and

dominance of the main locus genetic

component Dom = 0. Relative risk is

calculated for four different values of

additive polygenic heritability; h2
a = 0

(solid), h2
a = 0.1(· · ·), h2

a = 0.5(−− ),

and h2
a = 0.8, (− · − ).
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Figure 6 Effective number of meioses

m test
S as a function of the values of the

relative risk due to the trait locus λmain
S .

The reference model is Gaussian with no

dominant polygenic effects (h2
d = 0).

Disease allele frequency p = 0.1,

displacement Disp = 2 and dominance of

the main locus genetic component

Dom = 0. Relative risk is calculated for

four different values of additive polygenic

heritability; h2
a = 0 (solid),

h2
a = 0.1(· · ·), h2

a = 0.5(−− ), and

h2
a = 0.8, (− · − ).

(1995, 1996). Concordant pairs for high positive and

low negative values are also informative. If p < 0.5 the

concordant positive phenotypes are more informative

than the concordant negative phenotypes, see Figures

5-10. For discordant phenotypes the close relatives are

most informative, but for concordant positive pheno-

types the distant relatives are more informative, since

αR1
is small, see Figure 7. Further, the parent-offspring

pair is not informative since αR1
= zR1

= 1. Informa-

tivity increases also with p (0 < p ≤ 0.5). When p is

small, often the dominant model (Dom = 1) is most

informative and the recessive one (Dom = −1) least in-

formative. Informativity increases with Disp, even when

h2
a increases. Figure 6 displays the relationship between
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Figure 7 Effective number of meioses

m test
R as a function of the values of the trait,

Y 1 and Y 2. The reference model is

Gaussian with no dominant polygenic

effects (h2
d = 0). Disease allele frequency

p = 0.1, additive polygenic heritability

h2
a = 0.5, displacement Disp = 2 and

dominance of the main locus genetic

component Dom = 0. Relative risk is

calculated for three different relative pairs:

sib pair (solid), grandparent-offspring (- -),

and first cousins (· · ·). Note: For a

parent-offspring pair m test = 0 since

αR1 = zR1 .
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Figure 8 Effective number of meioses

m test
S as a function of the values of the trait,

Y 1 and Y 2. The reference model is

Gaussian with no dominant polygenic

effects (h2
d = 0). Additive polygenic

heritability h2
a = 0.5, displacement

Disp = 2 and dominance of the main

locus genetic component Dom = 0.

Relative risk is calculated for three

different values of disease allele

frequencies, p = 0.001 (solid),

p = 0.1(−− ), and p = 0.5(· · ·). When

p = 0.5 the curve for Y1 = 2 is just a

mirror image of the curve when Y1 = −2

because of symmetry.

the relative risk due to trait locus λmain
S and the effective

number of meioses m test
S . It can be seen as a compo-

sition of Figures 4 and 5, where both λmain
S and m test

S

vary as functions of the same phenotypes and genetic

models (h2
a ). Interestingly, m test

S is almost the same func-

tion of λmain
S for different genetic models and phenotype

combinations, although the range of admissible values

differs. Large values of |log10λ
main
S | indicate high infor-

mativity (large m test
S ), although negative values of λmain

S

are slightly more informative than positive ones.

For the liability threshold model we studied risk for

different pairs of relatives and different values of h2
a , p ,

and (ψ0, ψ1, ψ2). Figures 11-15 show some examples

from which we can see that both the relative risk and
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m test
S as a function of the values of the trait,

Y 1 and Y 2. The reference model is

Gaussian with no dominant polygenic

effects (h2
d = 0). Disease allele frequency

p = 0.1, additive polygenic heritability

h2
a = 0.5, and displacement Disp = 2.

Relative risk is calculated for four different

values of dominance of the main locus

genetic component; Dom = −1 (solid),

Dom = 1(−− ), Dom = 0.5(−− ), and

Dom = −0.5(· · ·).
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m test
S as a function of the values of the trait,

Y 1 and Y 2. The reference model is

Gaussian with no dominant polygenic

effects (h2
d = 0). Disease allele frequency

p = 0.1, additive polygenic heritability

h2
a = 0.5, and dominance of the main

locus genetic component Dom = 0.

Relative risk is calculated for four different

values of displacement;

Disp = 1(−− ), Disp = 2 (solid),

Disp = 3(− · − ), and Disp = 4(· · ·).

the effective number of meioses are almost independent

of h2
a . Only when the disease allele frequency p is low

in relation to ψ0 can we observe some dependence. The

relative risk increases (slightly) with h2
a when Y1 = Y2

and decreases with h2
a when Y1 	= Y2. In the case where

Y1 = Y2 = 0 the relative risk is zero or very close to

zero. On the other hand, the relative risk at the main

locus decreases with h2
a in the case where Y1 	= Y2 and

Y1 = Y2 = 1. Again, when Y1 = Y2 = 0 it is very close

to zero. From the Figures with the effective number

of meioses we can observe that m test
R slightly increases

when Y1 	= Y2 (discordant pair) and decreases when
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Figure 11 Relative risk λR for different

relative pairs as a function of the additive

polygenic heritability h2
a and values of the

trait, Y 1 and Y 2. It is calculated for three

different combinations of Y 1 and Y 2;

Y1 = Y2 = 1 (solid), Y1 = 0 and

Y2 = 1(−− ), and Y1 = Y2 = 0(· · ·).
Disease allele frequency p = 0.1. The

reference model is the liability threshold

model with

(ψ0, ψ1, ψ2) = (0.01, 0.5, 0.8).
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Figure 12 Relative risk at the main

locus λmain
R for different relative pairs as a

function of the additive polygenic

heritability h2
a and values of the trait, Y 1

and Y 2. It is calculated for three different

combinations of Y 1 and Y 2; Y1 = Y2 = 1

(solid), Y1 = 0 and Y2 = 1(−− ), and

Y1 = Y2 = 0(· · ·). Disease allele

frequency p = 0.1. The reference model

is the liability threshold model with

(ψ0, ψ1, ψ2) = (0.01, 0.5, 0.8).

Y1 = Y2 = 1 (concordant pair). The MZ twin pair is

noninformative, since αR2 = zR2
= 1, as well as a rel-

ative pair with Y1 = Y2 = 0. Distant relationships are

more informative than close ones when Y1 = Y2 = 1,

and vice versa when Y1 	= Y2. We can also observe that

the values of ψ1 and ψ2 affect m test
R , but not as much as

the value of ψ0.

Discussion

In this paper we have generalized relative risk ratios to

arbitrary genetic models and shown how to split it into

two terms, one due to effects at the main locus and

one due to polygenic and shared environmental effects.

We further extended the results of Risch (1990a,b) and

showed that IBD-sharing probabilities given phenotypes
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Figure 13 Effective number of meioses

m test
R for different relative pairs as a

function of the values of the additive

polygenic heritability h2
a and values of the

trait, Y 1 and Y 2. It is calculated for three

different combinations of Y 1 and Y 2;

Y1 = Y2 = 1 (solid), Y1 = 0 and

Y2 = 1(−− ), and Y1 = Y2 = 0(· · ·).
Disease allele frequency p = 0.1. The

reference model is the liability threshold

model with

(ψ0, ψ1, ψ2) = (0.01, 0.5, 0.8).
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Figure 14 Effective number of meioses

m test
R for different relative pairs as a

function of the values of the additive

polygenic heritability h2
a when

Y1 = Y2 = 1. It is calculated for four

different values of disease allele frequency,

p = 0.001(· · ·), p = 0.05(− · − ), p =
0.1 (solid) and p = 0.5(−− ). The

reference model is the liability threshold

model with

(ψ0, ψ1, ψ2) = (0.01, 0.5, 0.8).

depend on relative risks at the main locus. Finally, we

showed that the power to detect linkage of an opti-

mal test statistic is closely related to these probabilities,

by summing the effective number of meioses for test-

ing over all relative pairs. We have shown numerically

how relative risks and effective number of meioses (and

hence also the number of relative pairs needed for de-

tecting linkage) depend on phenotypes for two classes of

genetic models: Gaussian and liability threshold models.

For Gaussian phenotypes extreme discordant sib pairs

are most powerful. This is because these pairs are un-

likely to share alleles IBD for any genetic model. Sib

pairs concordant for extreme values can also be use-

ful, whereas sib pairs with intermediate values are only

informative when the genetic component at the dis-

ease locus is strong. The two major determinants of the
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Figure 15 Effective number of meioses

m test
S for a sib pair as a function of the

values of the additive polygenic

heritability h2
a when Y1 = Y2 = 1. It is

calculated for four different values of

disease allele frequency, p =
0.001(· · ·), p = 0.05(− · − ), p = 0.1

(solid) and p = 0.5(−− ) and four

different penetrance vectors (ψ0, ψ1, ψ2).

power to detect linkage for a locus contributing to a

quantitative trait are the heritability at that locus and

the additive polygenic heritability. Additive polygenic

heritability also increases statistical efficiency and com-

pensates for power loss when the heritability at the main

locus is low.

The liability threshold model seems intuitively rea-

sonable for complex diseases, including one major gene

and polygenes. However, we have shown that polygenic

heritability affects the effective number of meioses and

power very little when the penetrance parameters ψi are

kept fixed. This indicates that the penetrance param-

eters themselves (without any polygenic components)

provide a good description of a wide range of genetic

models for binary traits. Another possibility is to con-

sider relative risks and effective number of meioses for

oligogenic multilocus models, as in Risch (1990a).

Our approach is conditional on observed phenotypes.

Many authors have realized that treating the number of

alleles shared IBD at the marker locus (loci) as depen-

dent, and the sib trait values as an independent variable

has several advantages, since sample selection is often

through trait values but almost never through marker

genotypes (see (Risch & Zhang 1995, 1996; Dudoit &

Speed 2000; Kraft & Thomas, 2000; Sham et al. 2002).

However, conditioning on phenotypes is relevant to

most linkage analyses. Although the classical lod score of

Morton (1955) is formulated as the tenth logarithm of

a likelihood ratio of the joint probability of marker data

and phenotypes, this likelihood ratio is essentially equiv-

alent to the conditional probability of marker data given

phenotypes. Likewise, the mod score of Risch (1984)

and Clerget-Darpoux et al. (1986) is equivalent to max-

imizing (the tenth logarithm of) the conditional proba-

bility of marker data given genotypes with respect to

genetic model parameters. Ewens & Shute (1986)

demonstrated the equivalence of an LR-statistic to a

mod score adjusted for ascertainment. On the other

hand, Vieland & Hodge (1995, 1996) found that, in

general, conditioning on phenotypes only gives an ap-

proximate correction for ascertainment. The method of

Haseman & Elston (1972) is based on regressing squared

phenotype difference on IBD-sharing. However, by

standardizing with a nonparametric variance estimator

this statistic can be regarded as quantifying IBD-sharing

given phenotypes, and hence is robust against ascertain-

ment. Variance components techniques (Amos, 1994;

Almasy & Blangero, 1998) are less robust against ascer-

tainment, in that parameters are maximized separately

in the numerator and denominator of the likelihood ra-

tio. Likelihood score statistics, on the other hand, can be

formulated in terms of marker data given phenotypes,
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see Whittemore (1996), Tang & Siegmund (2001) and

Hössjer (2005b) for details.

We have assumed complete marker data throughout

this paper. Since the cost of genotyping very dense

marker maps constantly decreases, it suffices that all rel-

ative pairs Ri are genotyped to make this assumption

a reasonable theoretical simplification. The fact that we

only considered relative pairs in this paper does not mean

that we necessarily advocate such a design. In fact, nu-

clear families with more than two children are often

much more informative for linkage than sib pairs (Tang

& Siegmund, 2001; Hössjer, 2005a). Nevertheless, sib

pair studies are commonly used, and we hope that our

results will be useful when designing such studies. An-

other important aspect of this paper is the usefulness of

generalizing relative risk ratios to a larger class of genetic

models.

Appendix

Derivation of (3) and (4). Conditioning on I we have

f R(Y1, Y2) =
2∑

i=0

P (I = i ) f R(Y1, Y2| I = i )

=
2∑

i=0

αRi f Ri (Y1, Y2). (A.1)

Notice that (4) follows from (A.1) if we establish

f R1(Y1, Y2) = f R0(Y1, Y2) + 0.5σ (1,2)
a ,

f R2(Y1, Y2) = f R0(Y1, Y2) + σ (1,2)
a + σ

(1,2)
d . (A.2)

Assume there are f founders in the pedigree to which

the relative pair (1,2) belongs, and let (a1, . . . , a2 f )

be a binary vector of length 2f containing the

founder alleles. Under random mating {a i} are in-

dependent random variables with P (a i = 1) = p and

P (a i = 0) = q . Write G1 = (ajak) and G2 = (alan)

for the two genotypes of the relative pair, where

j, k, l , n ∈ {1, . . . , 2 f } and I = 1{ j=l} + 1{ j=n} +
1{k=l} + 1{k=n} . Let a = (a j, ak, a l, an) and write

f R(Y1, Y2|G1, G2) = h (a ), (A.3)

regarding (Y1, Y2) as fixed and (G1, G2) as varying. As-

suming no imprinting, the order of the alleles within

each genotype is immaterial, and hence h is determined

by the 3 × 3 joint penetrance matrix

⎛⎜⎝h (0, 0, 0, 0) h (0, 0, 0, 1) h (0, 0, 1, 1)

h (0, 1, 0, 0) h (0, 1, 0, 1) h (0, 1, 1, 1)

h (1, 1, 0, 0) h (1, 1, 0, 1) h (1, 1, 1, 1)

⎞⎟⎠ =

⎛⎜⎝ψ00 ψ01 ψ02

ψ10 ψ11 ψ12

ψ20 ψ21 ψ22

⎞⎟⎠ = ψ.

Let U = 
 3 and V = U × U be the spaces of 1 × 3

vectors and 3 × 3 matrices respectively. Introduce the

scalar product < u, w >= q 2 · u0w 0 + 2pq · u1w 1 +
p2 · u2w 2 on U and

(ψ, θ ) = q 2 · q 2 · ψ00θ00 + q 2 · 2pq · ψ01θ01

+ q 2 · p2 · ψ02θ02 + 2pq · q 2 · ψ10θ10

+ 2pq · 2pq · ψ11θ11 + 2pq · p2 · ψ12θ12

+ p2 · q 2 · ψ20θ20 + p2 · 2pq · ψ21θ21

+ p2 · p2 · ψ22θ22

on V , respectively. An orthonormal basis on U is

e 1 = (1, 1, 1),

e 2 =
1√
2pq

(−2p, q − p, 2q ),

e 3 = (1/q − 1,−1, 1/p − 1),

see Hössjer (2003). Similarly, an orthonormal basis

on V consists of the nine matrices {e ij = e ′i e j; i, j =
1, 2, 3}, so that for instance

e 12 =
1√
2pq

⎛⎜⎝−2p q − p 2q

−2p q − p 2q

−2p q − p 2q

⎞⎟⎠

Let ξi = (a i − p )/
√

pq , so that {ξi} are i.i.d. random

variables with zero mean and unit variance. The RHS
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of (A.3) can be expanded into a sum of uncorrelated

terms

h (a ) = (ψ, e 11) +
1√
2

(ψ, e 12)(ξl + ξn ) + (ψ, e 13)ξlξn

+
1√
2

(ψ, e 21)(ξ j + ξk)

+
1

2
(ψ, e 22)(ξ j + ξk)(ξl + ξn )

+
1√
2

(ψ, e 23)(ξ j + ξk)ξlξn + (ψ, e 31)ξ j ξk

+ 1√
2
(ψ, e 32)ξ j ξk(ξl + ξn ) + (ψ, e 33)ξ j ξkξlξn

generalizing the corresponding expansion for U in

Hössjer (2003, Lemma 1). See also the supplementary

material of Hössjer (2005b) for expansions involving

more than two individuals.

When I = 0, the indices j, k, l and n are all different.

Using the zero mean, unit variance and independence

of {ξi},

f R0(Y1, Y2) = E(h (a )| I = 0) = E(h (a j , ak, al , an ))

= (ψ, e 11) = uψu ′,

proving (3). If I = 1 we may without loss of generality

assume j = l and j 	= k 	= n 	= j . Hence

f R1(Y1, Y2) = E(h (a )| I = 1) = E(h (a j , ak, a j , an ))

= (ψ, e 11) + 0.5(ψ, e 22)

= f R0(Y1, Y2) + 0.5ua ψu ′
a

= f R0(Y1, Y2) + 0.5σ (1,2)
a .

Similarly, if I = 2 we assume j = l , k = n and j 	= k

and obtain

f R2(Y1, Y2) = E(h (a )| I = 2) = E(h (a j , ak, a j , ak))

= (ψ, e 11) + (ψ, e 22) + (ψ, e 33)

= f R0(Y1, Y2) + ua ψu ′
a + ud ψu ′

d

= f R0(Y1, Y2) + σ (1,2)
a + σ

(1,2)
d .

The last two displayed equations prove (A.2). Finally no-

tice that σ (1,2)
g = f R2(Y1, Y2) − f R0(Y1, Y2) = σ (1,2)

a +
σ

(1,2)
d .

Derivation of (6). Let m be the number of meioses

in the pedigree to which the relative pair (1,2) be-

longs and v = (v1, . . . , vm) the corresponding binary

inheritance vector at the disease trait locus. Define

P (w ) = P (v = w |Y1, Y2) for all 2m binary vectors w

of length m. This gives the posterior distribution, given

phenotypes of the inheritance vector at the trait lo-

cus. The general expression for the effective number

of meioses for testing in Hössjer (2005a) is

mtest = log2

(
2m

∑
w

P 2(w )

)
(A.4)

for one pedigree. We will show that this expression co-

incides with (6) for a relative pair R. Let ni be the num-

ber of inheritance vectors that give I = i alleles IBD

for the relative pair (1,2), so that αRi = ni/2m , since the

total number of possible inheritance vectors is 2m . Fur-

ther, let Ci be the set inheritance vectors corresponding

to I = i (hence |Ci| = ni). Then P (w ) = 2−m zRi/αRi

when w ∈ Ci, so that∑
w P 2(w ) = 2−2m

(
n0(zR0/αR0)

2 + n1(zR1/αR1)
2

+ n2(zR2/αR2)
2

)
= 2−m

(
z2

R0/αR0 + z2
R1/αR1 + z2

R2/αR2

)
,

Insertion of this expression into (A.4) gives (6).

Power Approximation Formula. According to

Feingold et al. (1993) and Hössjer (2005c), the power

β = PH1
(Zmax ≥ z) can be approximated as a function

of the noncentrality parameter η = E(Z(τ )) by

β ≈ 1 − �(z− η) + φ(z− η)(
2

ηd
− 1

η(2d − 1) + z
),

(A.5)

where d = (−E ′ (Z(x)|x=τ )/(2ρzη) is a normalized

mean slope at the disease locus and ρZ is the crossover

rate that measures the amount of fluctuations in the pro-

cess Z. The threshold z is calculated so that the signifi-

cance level α = PH0
(Zmax ≥ z) attains a given value. To

this end, we use the approximation

α ≈ 1 − exp
(
− (1 − �(z))

(
n� + 2ρZL�z2

))
. (A.6)

defined by Lander & Kruglyak (1995).
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