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SUMMARY

Calculations of the significance of results from linkage analysis can be performed by simulation or by
theoretical approximation, with or without the assumption of perfect marker information. Here we
concentrate on theoretical approximation. Our starting point is the asymptotic approximation formula
presented by Lander and Kruglyak (1995, Nature Genetics, 11, 241-247), incorporating the effect of
finite marker spacing as suggested by Feingold et al. (1993, American Journal of Human Genetics, 53,
234-251). We consider two distinct ways in which this formula can be improved. Firstly, we present a
formula for calculating the crossover rate p for a pedigree of general structure. For a pedigree set, these
values may then be weighted into an overall crossover rate which can be used as input to the original ap-
proximation formula. Secondly, the unadjusted p-value formula is based on the assumption of a Normally
distributed nonparametric linkage (NPL) score. This leads to conservative or anticonservative p-values of
varying magnitude depending on the pedigree set structure. We adjust for non-Normality by calculating
the marginal distribution of the NPL score under the null hypothesis of no linkage with an arbitrarily
small error. The NPL score is then transformed to have a marginal standard Normal distribution and the
transformed maximal NPL score, together with a slightly corrected value of the overall crossover rate, is
inserted into the original formula in order to calculate the p-value. We use pedigrees of seven different
structures to compare the performance of our suggested approximation formula to the original approxi-
mation formula, with and without skewness correction, and to results found by simulation. We also apply
the suggested formula to two real pedigree set structure examples. Our method generally seems to provide
improved behavior, especially for pedigree sets which show clear departure from Normality, in relation to
the competing approximations.
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1. INTRODUCTION

The techniques of linkage analysis are usually used to identify possible chromosomal regions that are
linked to a given phenotype (disease). This article will deal with nonparametric linkage (NPL) analysis
(cf. e.g. Kruglyak and Lander, 1995; Kruglyak ef al., 1996) and the issue of calculating the statistical sig-
nificance (or p-value) of the maximal NPL score when performing a genome-wide scan. For an overview
of different approaches to gene mapping, see Ott (1999).

When calculating appropriate p-values, it is possible to use two distinctly different approaches—
simulation or theoretical approximation. In this work we use the latter approach. Our aim is to improve
the performance of the asymptotic approximation formula given in Lander and Kruglyak (1995), with the
adjustment of finite marker spacing as suggested by Feingold e al. (1993). This formula is based on
extreme value theory and Normal approximation of stochastic processes, a method originally applied to
p-value calculation in linkage analysis by Lander and Botstein (1989). We suggest two different improve-
ments. Firstly, we give a formula for calculating the crossover rate p for a general collection of pedigrees
based on the theory presented in Hossjer (2003a). Secondly, we approximate the marginal distribution
F of the NPL score by F¢, with arbitrarily good accuracy, and transform F, to the standard Normal
distribution function @ to improve performance of the p-value approximation.

Methods of p-value calculation based on permutation tests are described for quantitative traits and
animal breeding models by Doerge and Churchill (1996) and Abney et al. (2002).

2. BASIC LINKAGE ANALYSIS
2.1  Definitions

A pedigree is a set of relatives. The members of a pedigree may be divided into two subgroups—yfounders
and nonfounders. The distinction between these groups is based on the fact that the parents of the
founders are not included in the pedigree. An individual’s genotype at a specific marker locus consists
of two alleles. One allele is inherited from the mother (maternal allele) and the second from the father
(paternal allele). The process leading to the formation of gametes (egg or sperm cells), i.e. the mixing of
grandpaternal and grandmaternal DNA segments, is called meiosis. Further, n is the number of individuals
in the pedigree, f the number of founders, n — f the number of nonfounders, and m = 2(n — f) the
number of meioses.

The alleles of the founders may be described as g = (g1, g2, . . ., &2) and inheritance in the pedigree
may then be seen as the distribution of the founder alleles to the nonfounders. Two individuals are said to
share an allele /IBD (identical-by-descent) if they have inherited exactly the same founder allele (g; € g).
When performing linkage analysis, one is ordinarily using information from a whole pedigree set con-
sisting of N distinct pedigrees.

At each marker locus, x, the whole inheritance process for a given pedigree may be described by the
inheritance vector, v(x) = (p1,my, p2, M2, ..., pa—f, Muy—f), Where p; and m; equal 0 if, at position x,
the ith nonfounder’s paternal and maternal alleles, respectively, originate from a grandfather and 1 if they
originate from a grandmother.

In NPL analysis, one defines genetic linkage to a locus as deviation from random inheritance of the
founder alleles among the subset of pedigree members with a certain phenotype (e.g. the affecteds). To
discover possible linkage to a locus within a specific chromosomal region, one tests for linkage against a
collection of markers covering the region of interest.

Usually there is incomplete information in the data set. Data may be lost, only a subset of the pedigree
members may be genotyped and the markers may be nonpolymorphic with a large map distance between
adjacent loci. Measures of the information contained in the data set at a locus, usually ranging from
0 (no information) to 1 (full information), include the widely used entropy-based information measure
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introduced in Kruglyak er al. (1996), a variance-based measure (cf. e.g. Kruglyak and Lander, 1995)
which may be thought of as an estimate of the variance of the NPL score, and measures based on Fisher
information or LOD scores (log-odds statistic). Recommended references are Nicolae ef al. (1998) and
Nicolae (1999).

A single-point linkage analysis uses only the information contained in the data set at each marker
locus separately. The natural extension, where one uses information from several neighboring markers
(on the same chromosome), is called multipoint linkage analysis (Kruglyak and Lander, 1995). Available
software packages for analyses of this kind include GENEHUNTER (Kruglyak et al., 1996), ALLEGRO
(Gudbjartsson et al., 2000), or MERLIN (Abecasis et al., 2002).

2.2 Score functions and the NPL score

To show evidence of linkage at a marker locus, we introduce a score function. In general, for a given
pedigree, a score function S is a function of the inheritance vector » that quantifies compatibility between
v and the phenotypes of the pedigree members. However, in many cases it can also be interpreted in the
usual statistical sense as the derivative, with respect to genetic model parameters, of the log-likelihood of
marker data given phenotypes (Whittemore, 1996; McPeek, 1999; Hossjer, 2003b, 2005).

If the genetic model is known, it may be possible to find a function that is optimal in terms of power
to detect linkage. For example, when considering complex diseases with unknown mode of inheritance,
it may be preferable to choose among score functions that are robust with respect to variations in the
genetic model. Throughout this work we use the well-known S, function (Whittemore and Halpern,
1994), defined for binary phenotypes as the degree of /BD sharing among the affected pedigree members.
The literature discussing and evaluating the performance of score functions applied to different models of
inheritance is rich and the performance of Sy is usually robust, especially when the information content
of the data is reasonably high (Whittemore and Halpern, 1994; Kruglyak et al., 1996; Davis and Weeks,
1997; McPeek, 1999; Feingold et al., 2000; Sengul et al., 2001).

From now on we assume that the score function S is standardized, i.e. © =2, S(w)p,(w) = 0 and
o2 = DI ()% py(w) — u* = 1, where p,(w) = 27™ is the probability distribution of the inheritance
vector under the null hypothesis, Hy: no linkage.

The NPL score for pedigree k can be written as

Zi(x) = D Pk (x) = w)Si(w), @1

where Sj is the score function and vk (x) is the inheritance vector at locus x for the kth pedigree, and
P(vr(x) = w) the corresponding probability function for the inheritance vector given the marker data.
With perfect marker information at locus x, we get Z(x) = Sk (v(x)).

For a collection of N pedigrees, the NPL score process (Kruglyak et al., 1996; Kong and Cox, 1997
Teng and Siegmund, 1998) is defined as

N
Z(x) =Dy Zi(), 22)
k=1

where Zj (x) is given in (2.1), yi is the weight assigned to the kth pedigree, and ZIJCVII y k2 = 1. With full
information from the markers, E(Z(x)) = 0 and V(Z(x)) = 1 under Hy. If the number of pedigrees
is large, then Z(x) will be marginally approximately N (0, 1) distributed. This property is extensively
used in the existing theory of linkage analysis. The weighting of the pedigree scores might be related
to the pedigree size, information, structure, or the corresponding scores at different loci located on other
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chromosomes. This last conditional multilocus approach has been used for the two-locus case by, for

instance, Cox et al. (1999), Angquist (2001), and Chiu and Liang (2004). The adequacy of the Normal

approximation depends on the variability among the present pedigree structures and the set of weights.
Let Q be the collection of markers at all chromosomes and define

Zmax = sup{Z(x), x € Q}, (2.3)

as the maximal NPL score among the markers.

2.3 Significance of the results

To interpret the significance of an observed maximal linkage score zy,x, we need to calculate the corre-
sponding p-value
@ (Zmax) = P(Zmax = Zmax|Ho)- 2.4

If the number of pedigrees and markers and pedigree sizes are small enough, the genome-wide p-value
in (2.4) may be computed exactly. Otherwise, one has to approximate the p-value using simulation
techniques or theoretical approximations. Often, an assumption of Normally distributed linkage scores
is made.

Note that E(Z(x)|Hyp) = 0 but V(Z(x)|Hp) < 1, when the markers are not fully informative at
x (in single-point or multipoint sense). This makes the p-value based on the perfect data approximation
V(Z(x)|Hp) = 1 statistically conservative. We model imperfect marker data by assuming that the markers
are equidistantly positioned (on all chromosomes) over €, with grid size 4. However, all markers are
assumed to be fully polymorphic, so that V(Z(x)|Hp) = 1 at all x € Q. With this setup, perfect marker
data corresponds to 4 = 0.

An asymptotic approximation formula regarding the probability a(zmax) is given by Lander and
Kruglyak (1995):

o (Zmax) & 1 — e_#(zmax)’ (2.5)

where x(z) is an approximation for the mean number of regions in which the linkage score process
exceeds the threshold z. Lander and Kruglyak (1995) gave a formula for x(z) when 4 = 0 and Z(x)
is distributed as N (0, 1) at all x € Q. Here we will incorporate 4 > 0 and possible skewness of Z, as
suggested by Feingold et al. (1993) and Tang and Siegmund (2001). This gives the adjusted formula

p(2) = [Cr1 + 2pr2w G2 lap(2), (2.6)

where C is the number of chromosomes included in the scan and G the total genetic (in this case sex-
averaged) length of these chromosomes. According to Collins et al. (1996), G = 35.75 Morgans if all
the 22 autosomes are included in the scan. Moreover, the variable z refers to the score threshold and
apt(z) = 1 — @(z) is the pointwise significance level of exceeding z when Z(x) is standard Normal.

The crossover rate p is a function of the autocorrelation function rz(-) of the NPL process under Hy
and perfect marker data, and defined as

>
where the derivative is taken from above. The crossover rate is a nonrandom quantity that measures
the average amount of fluctuation of the NPL score statistic Z(-) and therefore depends both on the
pedigree structures in the pedigree set as well as on the choice of score function. One example of a
process satisfying (2.7) is the Ornstein—Uhlenbeck (OU )-process with mean 0 and covariance function
rz(t) = e~ 2!l However, the approximation formula (2.5) does not require Z(-) to be an OU-process.

2.7)
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The quantity v = v(z(4p 4)'/?) adjusts for finite marker spacing. Here v(-) is the decreasing function
defined in Siegmund (1985, p. 82). For perfect marker data, 4 = 0, one has v = 1. Finally, the constants
%1 and x; adjust for possible skewness of Z(x). When E(Z(x)*|Hy) = 0, both x| and x> equal 1. See
Dupuis and Siegmund (1999), Tu and Siegmund (1999), Tang and Siegmund (2001), and Section A of
the Supplementary Material (henceforth denoted SM; see http://biostatistics.oupjournals.org/) for more
details.

3. METHODS
3.1 Calculating the crossover rate

If using (2.7) as a starting point, it is possible to show that the following equality holds for a single
pedigree of a general structure:

i m
p=732" DD (Sw) = S(w +¢)))*, 3.1

w  j=1

where 4 = 1 Morgan™! or 0.01 centiMorgan™' depending on which unit of genetic map distance is used.
Moreover, w ranges over all 2" binary vectors of length m and e; is a binary vector with 1 in position
j and zeros elsewhere. For more details, see Hossjer (2003a) and Section B of SM. This calculation is
easily implemented in a computer program, for example, by using binary to decimal conversion for the
different inheritance vectors and an index matrix reflecting all vector transformations w — w + e;.

Considering a pedigree set consisting of N pedigrees, it is possible to weight the different p-values
into an overall value

N
=> i (32)
k=1

where py is the crossover rate for the kth pedigree.

3.2 Calculating the crossover rate using Monte Carlo simulation

The computational complexity O(2”) in (3.1) can be reduced to O(2"~7) using founder phase symmetry

(Kruglyak et al., 1996; Gudbjartsson et al., 2000) but, for large pedigrees, the computational complexity

may still be burdensome. Under these circumstances, an option is to use a Monte Carlo approximation.
First notice that p may be reformulated as

A
p= ZE(f(D)), (3.3)

where f(w) = ZTZI(S(u) +ej)— S(w))? and v is random with P(v = w) = 27" for each w. A valid
Monte Carlo approximation of p is therefore,

p=17 Z i), (3:4)

where {vl} _, are independent and identically distributed with the same distribution as v and J is the
number of simulated inheritance vectors.
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3.3 Adjusting the approximation formula

Formulas (2.5)—(2.6) to some extent correct for non-Normality by incorporating the skewness of Z via x
and x;. In this section we describe how to fully adjust for non-Normality of Z(x).

Let F(z) = P(Z(x) < z|Hp) denote the marginal distribution function of Z(-) in (2.2). In our frame-
work of fully polymorphic markers, F(-) is independent of x € Q. In the work of Lander and Kruglyak
(1995), the approximation F' = @ is assumed. A possible approximate correction of the distribution
function, F(-), with respect to deviations from the standard Normal distribution, is to use Edgeworth
expansions (see McCune and Gray, 1982) but in this case it is possible to calculate F(-) exactly with
arbitrarily small error.

Define Y (x) = g~ (Z(x)), where g = (F~! o ®). Since F is the distribution function of a discrete
random variable, g does not have a unique inverse. We put g~! = (®~! o F), where F is the version of
F which at points of discontinuity takes values halfway between the right-hand and left-hand limits, as
shown in Section C of SM. Here Y is a stationary process, whose marginal distribution converges to ® as
F tends to a continuous function. It is possible to rewrite the unknown p-value as

a(z2) = P(Zmax = z|Ho) = P(Ymax = &' (2)| Ho). (3.5)

In Section D of SM it is shown how py = —r}(0)/2 may be derived from p = pz. By combining (2.5)
and (3.5) and replacing p with py, we obtain

a(z) ~ 1 — e Hai@, (3.6)

In (3.6)
tadi(z) = [C +2pyvGg~ () lap(g ™" (2)), (3.7)

where v = v(z(4py 4)'/?) adjusts for finite marker spacing. Compared to (2.6), notice that no skewness
factors x; and x are involved, since the transformation g removes skewness.

3.4  Computing the p-value by Monte Carlo simulations

An obvious way of approximating the p-value a(z) is to generate independent and identically distributed

replicates Zrlnax, o, Zr{m of Zmax, under Hyp, and then put

J
1 i
a@)~ ; 1(ZL,. >2), (3.8)

where 7 (A) is the indicator function for the event A. We will use the Monte Carlo approximation (3.8) in
order to check the validity of the approximative p-value formulas (2.5) and (3.6).

We generate each Z! . by first simulating an NPL score process Z (x) under Hy and perfect marker
information at all loci x, i.e. even between markers. The computational complexity is modest since no
hidden Markov algorithm is needed for computing the appropriate pedigree scores. Assuming no chiasma
interference (i.e. that the crossover points are independent of each other) and considering the inheritance
on different chromosomes as independent, we simply progress the components of the inheritance vector
as independent and stationary Markov processes with two states, O and 1, such that jumps (crossovers)
between the states occur according to a Poisson process with intensity 4. Since each pedigree score is a
deterministic function of the inheritance vector at all x € Q, Zﬁnax is easily computed from (2.2) to (2.3)
once all inheritance vector processes have been simulated. Further results on simulation of linkage scores
and p-values can be found in Boehnke (1986), Ploughman and Boehnke (1989), Ott (1989), Terwilliger

et al. (1993), Malley et al. (2002), and Angquist and Hossjer (2004).
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4. RESULTS

We have applied the theory from the preceding section to different kinds of pedigree sets. All computer
calculations have been performed using MATLAB. Throughout, we let Q represent all the 22 human
autosomes with a total sex-averaged autosomal genome length G of 35.75 Morgans (Collins et al., 1996),
and use equal weighting for all the N pedigrees included in the pedigree set (i.e. yx = 1/+/N).

4.1 Calculating the significance using the crossover rate

We calculated the crossover rate using (3.1) for pedigrees of the seven different structures shown in
Figure 1. The results are shown in Table 1. Pedigrees 1-4 replicate the results given by Lander and
Kruglyak (1995). Pedigrees 67 are both present in the second BOTNIA study, which is further described
in Section 4.2.

As pointed out above, the p-value measures the fluctuation rate of the NPL process Z(x). This means,
loosely speaking, that a high value of p will make it easier for the process to attain extreme values and
therefore, with a higher probability, somewhere on the corresponding genome region exceed a given
threshold z. The p-value is therefore an increasing function of p. In addition, note that the crossover rate
depends on the choice of score function.

3
2
|:| — male
O — female
4 5
% ® i
. — affected

Fig. 1. Pedigrees corresponding to the p-values given in Table 1.

Table 1. Crossover rate (in Morgans™") for pedigrees of different structures (cf. Figure 1)

Example Pedigree structure p-value (Sa11)
1 Sib-pairs 2.0000
2 Grandparent/grandchild 1.0000
3 Uncle/nephew 2.5000
4 First cousins 2.6667
5 Five affected siblings 2.0847
6 BOTNIA pedigree 2.5053
7 BOTNIA pedigree 2.1880
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Fig. 2. Plotting the crossover rate (p) against the number of meioses () and individuals (1).

Table 2. Crossover rate for the BOTNIA pedigree set—exact or using Monte Carlo approximation
(cf. Figure 2)

Type of calculation Number of pedigrees Pmax Pmin, p>0 Pmin Mean (p) Std (p)
Exact 324 3.1069 1.0000 0.0000 2.0246 0.4031
Monte Carlo 13 3.5620 2.0348 2.0348 2.6208 0.4868
Total 337 3.5620 1.0000 0.0000 2.0476 0.4218

4.2 Further properties of the crossover rate

To get a clearer view of the distribution of the crossover rate, we calculated the parameter p for the
pedigree set from the second BOTNIA type-2-diabetes study (Parker et al., 2001; Lindgren et al., 2002).
This set consisted of 337 different pedigrees, originating from Finland and Sweden. Exact calculations
were performed for the 324 pedigrees with m < 20 meioses. The remaining crossover rates (13 pedigrees)
were estimated using the Monte Carlo simulation technique (3.4) with J/ = 1000. A summary of these
outcomes is given in Table 2 and Figure 2, where plots of p against both m (number of meioses) and n
(number of individuals) are shown. There is some positive correlation between p and m (0.4115) and p
and n (0.4140), whereas m and n are highly correlated (0.9738).

Moreover, when the value of the score function is independent of the inheritance vector, p = 0. This
follows from using (3.1) or the formulas in Section B of SM. An example is a pedigree consisting only of
two unaffected parents and one affected child.
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Fig. 3. Comparisons between the p-values for the Normal (unadjusted) approximation (2.5) and the simulation
procedure (3.8) with 4 =0, J = 10000, and N = 60, 180.
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Fig. 4. Comparisons between the p-values for the unadjusted and skewness adjusted approximations in (2.5), the
simulation procedure (3.8), and our non-Normality adjusted approximation (3.6). Further, 4 = 0, J = 10000,
N = 60, and the accuracy parameter for the probability distribution approximation is set to ¢ = 0.001 and / = 5 (cf.

Sections C-D in SM).
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4.3 Calculating the p-value using simulations

We applied the simulation to the seven pedigrees displayed in Figure 1. The marker map was infinitely
dense (4 = 0) and the number of simulations / = 10000. We compared the performance of the
asymptotic approximation formulas (2.5)—(2.6), with no skewness correction (k; = k3 = 1) and p
as in (3.1)—(3.2), to the simulation results. To see more clearly the effect of the pedigree structure on
the p-value, we considered homogeneous pedigree sets (i.e. all pedigrees identical) of sizes N = 60
and N = 180 for all seven examples. The results are shown in Figure 3 as p-values for thresholds 2.0,
2.1,...,6.0.

The distribution of the simulated process depends on the number of pedigrees, their pedigree struc-
ture, and the choice of scoring function. The performance of the unadjusted approximation formula
depends on how well the discrete distribution of Z is approximated by the standard Normal distribution
(cf. Section 4.4) and, by the central limit theorem, on the number of pedigrees.

4.4 Calculating the p-value using the adjusted approximation formula

We tested the accuracy of the adjusted p-value approximation (3.6), again using the seven pedigree struc-
tures from Figure 1 to construct homogenous pedigree sets with N = 60. Taking 4 = 0, we compared
the original asymptotic approximation formula (with and without skewness correction), the Monte Carlo
simulation technique, and our suggested approximation formula. The results are given in Figure 4. They
support the view that it is important to adjust for non-Normality (especially skewness), since (3.6) and the
skewness adjusted approximation formula clearly outperform the nonadjusted version of (2.5). The best
choice of approximation seems to depend on the pedigree set, as will be discussed in Section 4.6.

In the unadjusted formula, the distribution of Z is approximated by a standard Normal distribution.
Loosely speaking, skewed distributions with a thick or narrow right-hand tail will give anticonservative or
conservative results, respectively, for p-values corresponding to the upper tail of F. Moreover, symmet-
ric distributions with truncated tails, for instance because of very few meioses m, will give conservative
p-values for large thresholds z. This is formalized by using the theory of Edgeworth expansions. In our
case we calculated the first four cumulants (skewness and kurtosis) of the distributions (cf. Table 3 and
Figure 5)

Faitr(z) = F(z) — ®(2)

k k k3
~ —é(z2 - DP'(z) - 24(13 —32)@'(2) — %(ZS —10z° + 152)@'(2), 4.9)

where k3 and k4 are the third and fourth cumulants, respectively, and Fgiir measures the numerical differ-
ence, at value z, between the distribution of Z and a standard Normal variable.

Table 3. The first four cumulants for pedigrees 1-7

Pedigrees k1 ko k3 kg

1 0 1 0 —1

2-3 0 1 0 -2

4 0 1 1.1547 —0.6667
5 0 1 1.9972 4.1044
6 0 1 22722 6.6118
7 0 1 0 —1.64
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Fig. 5. The difference F' — @ between F and the cumulative distribution function @ for the standard Normal distri-

bution using Edgeworth expansions and N = 60.

The Edgeworth expansions explain the bias of the p-value approximations based on the assumption
of Normal marginal distributions. Pedigrees 1-3 and 7 have positive deviations Fyjr(z) from the Nor-
mal distribution, for large z, and the original asymptotic approximation formula is therefore conservative.
On the contrary, Fgir(z) is negative for large z for pedigrees 4-6, implying anticonservativeness. Further,
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pedigree 7

— — Simulation
2 —— Unadjusted normal approximation
— - Skewness adjusted approximation
Suggested adjusted approximation

1 1
0 0.05 0.1 0.15 0.2 0.25 0.3

Fig. 6. Estimated p-values with respect to marker distance 4 = 0 : 0.02 : 0.30 Morgans for threshold 7 = 4.5, using
J = 50000 simulations. For further assumptions cf. Figure 4.

the adjusted approximation formulas seem to perform better than the unadjusted formula in all of the
seven cases.

In Figure 6 we illustrate, using N = 60 and T = 4.5, the amount of decrease of the p-value approxi-
mations with respect to increased equidistant marker spacing 4 Morgans. One may note that generally the
variance of the simulation estimator increases with larger 4 since more simulations are needed to reach a
reasonable number of exceedances of 7'.

4.5 Pedigree structures from two real examples

We applied the new method to two pedigree sets from distinct studies. Firstly, we used the pedigree set
from the BOTNIA study (cf. Section 4.2). In this case we selected only the 266 pedigrees with both the
number of meioses m < 12, to reduce the computational complexity, and a nonconstant score function,
hence p > 0. These pedigrees had crossover rates in the interval [1.0; 2.4309] and the corresponding
mean value was 2.0390. The p-value estimates are displayed in Figure 7. The previous interpretations
(cf. Section 4.4) seem still to hold as the results confirm, with satisfactory accuracy, the corresponding the-
ory. An Edgeworth expansion, not shown, gives negative deviation Fgis, implying anticonservative tests.

Secondly, we used the pedigree set shown in Figure 8, consisting of only one single large pedigree
with a very skewed distribution F. Using the notation and theory from Section D of SM, we found that
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Botnia pedigree set

0 T
B -
oL B
o
2
g
a -3 ]
=
2
o0
2
— Unadjusted normal approximation
— — Simulation
-4+ Suggested adjusted approximation |  T\T 7~
_5 L

_6 1 1 1 1 1 1 1

Fig. 7. Comparisons, for the BOTNIA pedigree set, between the p-values for the unadjusted approximation in
(2.5), the simulation procedure (3.8), and our non-Normality adjusted approximation (3.6). Further, ¢ = 0.0005 and
J =10000.

22: 1 a,% = 0.8795 which is far from 1 and therefore contradicts (D.2). In order to not obtain very con-
servative significance results using (D.3), we increased /, the number of influential Hermite polynomials,
to 100 with 3% a? = 0.9963. Moreover, we calculated p = 4.1288 and ;% ka? = 8.9602 which
gave us a final crossover rate of py = 0.4608. This pedigree illustrates the importance of adjusting for
non-Normality. Figure 9 shows the results. The very good performance of our adjusted approximation
formula compared to (2.5) in this case probably depends on the large difference between F and .

4.6  Properties and performance

It is clear that the adjustment for non-Normality (3.6)—(3.7) will be of increasing importance the more
F departs from ® whereas, as appears to be the case for the BOTNIA pedigree set, when F is close to
Normal, the two methods are virtually equal.

The results in Figures 4, 6, 7, and 9 indicate that formula (3.6) is slightly conservative, at least when
A = 0. There may be several reasons for this. First, one may choose the parameter [ too small leading
to a too large py in (D.4) of SM, which in turn implies that the p-values are overestimated. Secondly, the
original formulas (2.5)—(2.6) are most accurate for OU-processes. However, the true covariance function
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o

Fig. 8. The pedigree structure corresponding to the second real pedigree set example, cf. Figure 7.

of Z in general differs from Sl (Hossjer, 2003c), and this may cause some conservativeness of
(2.5)—(2.6) and (3.6)—(3.7). A third possible source of conservative p-values may be the choice of clump-
ing rate and the L = 0 correction in (A.1) of SM.

Except for this small conservative bias, the suggested approximation formula often seems to be more
accurate than the skewness adjusted version of (2.5), probably because we not only correct for skewness
but also transform F to a standard Normal distribution. Both methods seem to have good performance in
general and the best choice depends on the pedigree set.

When N = 1, it is possible to use another method when calculating the adjusted crossover rate py.
This approach is based on the substitution of Z with g~!(Z) in the original crossover formula (3.1). In
the second real data example, this method suggests a substantially larger value of py, but the performance
of the p-value estimation is in this case not as accurate as when using the first method. In other cases this
method may be preferable.

Further discussion of related issues, e.g. concerning distributions and their relation to skewness, con-
servativeness, and deviations from the standard Normal distribution, may be found in Kong and Cox
(1997), Teng and Siegmund (1998), Nicolae et al. (1998), Sengul et al. (2001), and Tang and Siegmund
(2001). In these articles some of the problems mentioned above are, for instance, discussed in the context
of different scoring functions and pedigree structures (mainly nuclear families).

5. DISCUSSION
5.1 General comments

In this article we have described two improvements of significance calculation for genome-wide scans
through the approximation formula given in Lander and Kruglyak (1995) and extended by Feingold et al.
(1993) and Tang and Siegmund (2001).

Firstly, a method of calculating p for an arbitrary pedigree set is presented. Secondly, in the unadjusted
formula an assumption of Normally distributed NPL scores is made. If this assumption fails, the estimated
p-values might be either conservative or anticonservative, to a large extent depending on the cumulants
of order 3 and 4 of the marginal distribution function F of the NPL score. In this work we present
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Second real pedigree set
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Fig. 9. Comparisons, for the second real pedigree set example, between the p-values for the unadjusted and skewness
adjusted approximations in (2.5), the simulation procedure (3.8), and our non-Normality adjusted approximation
(3.6). Moreover, € = 0.001 and J = 100 000. The two largest values, the standardized score function Sy); can attain
are 31.6115 and 8.0830. The largest value corresponds to the case where all the affected individuals share an allele
IBD, and this possibility is the reason behind the extreme skewness of F in this case.

an approach which takes the pedigree set structure into account in such a way that the p-values will
be corrected for deviations from Normality. We compared the performance of the original, both the
unadjusted and the skewness adjusted formulas, with our non-Normality adjusted formula and found that
the latter seems to be successful, not only because of the robust performance but also since the p-value
curve, as a function of thresholds, more closely follows the discrete behavior of the NPL score. The use of
the non-Normality adjusted formula (3.6) also forces us to update the crossover rate (3.7). This correction
may be described using a Hermite polynomial expansion of the transformation g between the standard
Normal distribution @ and the marginal distribution F' of the NPL score, see Section D of SM.

5.2 Assumptions and further work

Throughout this article we have made some assumptions to gain simplicity as follows. Firstly, we do not
discriminate the genetic genome lengths with respect to genders and therefore use sex-averaged values.
One may note that there is no theoretical problem in generalizing (3.1) to sex-specific genetic lengths. If
we assume A ¢ and 4, to equal the genetic map length in Morgans per unit of measurement (x) for females
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and males, respectively, we get

1 m
p=2" DD 2j(Sw) = S(w + €))%, (5.1)

w j=I1

where 4; equals A7 or 4, depending on whether the jth meioses corresponds to the formation of an
egg or sperm cell. Secondly, the crossover rate formula (3.1) is valid for several types of map functions
(Hossjer, 2003a), although we used Haldane’s map function in the simulations. This implies, for instance,
that the absence of chiasma interference is assumed. Thirdly, the markers are assumed equidistant and
fully polymorphic. The effects of all these assumptions deserve further study.

A partial solution in the case of incomplete marker information may be to use a transformation (as in
Section 3.3) to the 1 — df likelihood ratio statistic Zj; of Kong and Cox (1997) and Nicolae et al. (1998).
This statistic is often less skewed than Z, in which case the transformation g might be closer to the identity
function, making the crossover adjustment of Section D in SM less crucial.
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