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When statistical linkage to a certain chromosomal region has been found, it is of interest to develop methods quantifying the
accuracy with which the disease locus can be mapped. In this paper, we investigate the performance of three different types
of confidence regions, with asymptotically correct coverage probability as the number of pedigrees grows. Our setup is that
of a saturated map of marker data. We allow for arbitrary combinations of pedigree structures, and treat various kinds of
genetic models (e.g. binary and quantitative phenotypes) in a unified way. The linkage scores are weighted sums of the
individual family scores, with NPL and lod scores as special cases. We show that the expected length of the confidence
region is inversely proportional to the slope-to-noise ratio, or equivalently, inversely proportional to the product of the
square of the noncentrality parameter and a certain normalized slope-to-noise ratio. Our investigations reveal that maximal
expected linkage scores can be quite different from estimation-based performance criteria based on expected length of
confidence regions. The main reason is that there is no simple relationship between peak height and peak slope of the mean
linkage score. One application of our results is planning of linkage studies: given a certain genetic model, we can
approximate the number of pedigrees needed to obtain a confidence region with given coverage probability and expected
length. Genet Epidemiol 25:59–72, 2003. & 2003 Wiley-Liss, Inc.
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INTRODUCTION

The goal of statistical linkage analysis is to test if
any disease susceptibility genes are located on one
or several chromosomal regions, and then to
decrease as much as possible the size of the region
showing statistical significance for harboring the
disease gene. This is often a two-step procedure.
Once statistical linkage to a region is found, it is of
interest to know how well the disease locus can be
estimated. For instance, suppose that the linkage
study is followed by fine mapping using associa-
tion analysis. Then the multiple testing problem
associated with the latter is reduced, if search for
the gene is narrowed down to a smaller region.

The traditional performance criterion in linkage
analysis is the power to detect linkage. The most
common setup of a test is to reject the null
hypothesis of no linkage when the maximum
linkage score exceeds a certain threshold. Feingold
et al. [1993] showed that the power to detect

linkage can be approximated by an explicit
formula for large sample sizes. The leading term
of this formula depends on the chosen signifi-
cance level of the test and the noncentrality
parameter Z (the mean of the linkage score at the
disease locus). Hence Z (which is a pointwise
criterion evaluated at the disease locus) is closely
related to the power to detect linkage (which is a
genomewide criterion). In fact, Z was used as
performance criterion by Sham et al. [1997] and
Nilsson [1999]. Its main advantages are simplicity
of computation and no need for specification of
significance level. Relatively little work has been
done on disease locus estimation, although the
scientific problem of interest is a location-estima-
tion problem. New work on confidence regions is
therefore very important.

Classical parametric linkage analysis is based on
the so-called lod score, which is the base 10
logarithm of the likelihood ratio for the hypothesis
test that the disease locus is linked to a given
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chromosomal position. The lod score is then
maximized over the chromosomal regions of
interest. The position attaining the maximum lod
score coincides with the maximum likelihood
estimator of the disease locus. If a fixed number
of markers is used, it can be shown that the

disease locus estimator converges at a rate N�1
2

towards the true disease locus when N pedigrees
are used [Ott, 1999]. However, if the assumed
model is incorrectly specified, the disease locus
estimator can in fact be inconsistent [Clerget-
Darpoux et al., 1986]. A more robust disease locus

estimator converging at rate N�1
2 was recently

proposed by Liang et al. [2001], using generalized
estimating equations.

In view of the current availability of high-
density maps of single-nucleotide polymorphisms
(SNPs), it is of interest to study the behavior of
linkage procedures when the markers give perfect
inheritance information at all loci. Some authors
have noticed that the size of confidence regions
for the disease locus decreases at a faster rate N�1

under perfect marker information. Kong and
Wright [1994] established the limiting distribution
of the disease locus estimator for backcross
designs. Darvasi et al. [1993] and Darvasi and
Soller [1997] showed by simulation that the
lengths of confidence intervals are inversely
proportional to the sample size for backcross
and F2 designs. Dupuis and Siegmund [1999]
gave theoretical justification of their results, using
an asymptotic expansion of the expected length of
the confidence interval. Kruglyak and Lander
[1995] gave analytical expressions for the distribu-
tion function of confidence region lengths for
affected-relative pairs in nonparametric linkage
(NPL). Hössjer [2001a] recently established N�1

convergence and the limiting distributions for the
disease locus estimator, i.e., the chromosomal
position maximizing the linkage score. This result
was based on defining linkage family scores
conditionally on observed phenotypes (dichoto-
mous or quantitative), and it holds for arbitrary
pedigree structures, score functions, and weight-
ing schemes.

The purpose of this paper is to use the results in
Hössjer [2001a] to define confidence regions with
asymptotically valid coverage probabilities and
expected lengths. We define three different types
of confidence regions: the support region, the
convex support region, and an estimation-based
confidence region. Their performance is investi-
gated by simulation for affected relative pairs. It

turns out that the asymptotic approximations are
accurate for noncentrality parameters Z of about
4 or larger, or for expected confidence region
lengths about 5 centiMorgans (cM) or shorter.

One consequence of this work is to use the
expected length of the confidence region as an
alternative performance criterion. Such a criterion
is not identical to the noncentrality parameter,
because the expected confidence region length
also depends on the slope of the mean linkage
score at the disease locus and the amount of
random fluctuation of the linkage score around
the disease locus. The expected length of the
confidence region is inversely proportional to the
product of Z2 and a certain normalized slope-to-
noise ratio C. Hence, C contains the residual
‘‘estimation information’’ present in the data set
when the noncentrality parameter has been
accounted for. It turns out that C varies a lot
between data sets, genetic models, and chosen
score functions. This strongly indicates that the
estimation and testing criteria in linkage analysis
are quite different, at least when the maximum
linkage score is used as test statistic.

We refer to a genetic model as strong or weak
if the conditional distribution of the inheritance
pattern at the disease locus, given phenotypes, is
very different from the prior inheritance prob-
abilities that are deduced from Mendel’s law of
segregation. See Appendix D for more details. For
the type of sibling families considered in our
simulations, data sets corresponding to a weak
genetic model have larger values of C than data
sets corresponding to a strong genetic model
(although the strong genetic model has a larger
Z). We also compare the two score functions Spairs

and Sall, introduced by Whittemore and Halpern
[1994], for a number of sibling families. For the
families we consider, the performance of Spairs and
Sall is quite similar, using CZ2 as performance
criterion, whereas Sall does a bit better in terms
of Z.

SLOPE-TO-NOISE RATIOS

Consider a data set of N pedigrees, where Zi(t)
is the family score of the ith pedigree at locus t,
normalized to have zero mean and unit variance
under the null hypothesis H0 that t is unlinked
to the disease locus. We assume that the family
scores are defined conditionally on observed
phenotypes, so that the random variation in Zi(t)
comes from the (perfect) marker data only. In NPL
analysis, this usually means that we condition on
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the affection status of all pedigree members (i.e.,
those who have known affection status). How-
ever, our setup is valid for arbitrary kinds of
phenotypes, both dichotomous (affected/unaf-
fected) and quantitative. We refer to Hössjer
[2001a,b] for details.

Following Kruglyak et al. [1996], we define the
total linkage score as

ZðtÞ ¼
XN
i¼1

giZiðtÞ;

where the weights gi satisfy
PN

1 g
2
i ¼ 1, so that Z(t)

has zero mean and unit variance under H0.
Under the alternative hypothesis H1 we assume

there exists a disease susceptibility locus at some
position t on the chromosomal region(s) of
interest. The power to reject H0, as well as the
precision of estimating t under H1, depend on the
strength of the genetic model, the observed
phenotypes, the number of pedigrees, and their
graphical structures. Following Feingold et al.
[1993], we introduce the noncentrality parameter

Z ¼ EðZNðtÞjH1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðZNðtÞjH0Þ

p ¼ EðZNðtÞjH1Þ: ð1Þ

As mentioned in the Introduction, this quantity
is related to the power to detect linkage.

Figure 1 gives an example of the observed
linkage score function Z(t) and the mean linkage

score E(Z(t)). Figure 1 displays four simulations of
N affected sib pairs (ASPs) with mean family
score d ¼ EðZiðtÞÞ at the disease locus. The mean
sharing score function is used. Hence Zi(t) equals
�

ffiffiffi
2

p
, 0 or

ffiffiffi
2

p
, depending on whether the ith ASP

shares 0, 1, or 2 alleles identical by descent at locus
t. Since all pedigrees have the same structure, we
use equal weights gi � N�1=2. Each row of Figure 1
displays two linkage scores with the same non-
centrality parameter Z ¼

ffiffiffiffi
N

p
d. There are more

crossovers present for the weaker genetic model,
corresponding to a smaller d (and larger N).
Notice that the expected linkage score is peaked
at the disease locus at 75 cM. This is true also for
general types of pedigrees and score functions,
and can be formalized as follows. We consider the
local scaling of the mean score function around t,
and assume there exists a constant a40 such that

EðZðtÞ � ZðtÞÞ � �ajt� tj ð2Þ
when t is close to t. Similarly, the local scaling of
the variance function around t can be described
by assuming that

VðZðtÞ � ZðtÞÞ � s2jt� tj ð3Þ
for some constant s240 when t is close to t. The E
sign in (2) and (3) means that there are additional
terms on the right-hand sides which are of smaller
order than jt� tj as t ! t. The ratio of the squared
mean slope a2 and the local variance s2 will be
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Fig. 1. NPL score Z (solid lines) and E(Z) (dash-dotted lines) under perfect marker information for N affected sib pairs when no
interference is assumed for crossovers. Chromosome has length 150 cM, with disease locus s positioned at 75 cM. Expected family score

at s is d, and thus noncentrality parameter g equals 3 in a and b, and 6 in c and d.
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referred to as the slope-to-noise ratio (SLNR) of the
linkage score function at t, and is denoted

SLNR ¼ a2=s2: ð4Þ
It turns out that SLNR is the right quantity to use
for describing the precision with which the
disease locus can be mapped. In general, SLNR
grows linearly with sample size N. The accuracy
with the disease locus can be mapped depends on
SLNR�1, and is therefore inversely proportional to
the sample size.

To gain further insight about SLNR, we express
it in a slightly different way. Let l be the crossover
rate for one meiosis, equal to 1 or 0.01 if map
distance is measured in Morgans (M) or cM,
respectively. Further, let

C ¼ a2=ðlZ2s2Þ
be a normalized slope-to-noise ratio, i.e., the ratio of
a=ðlZÞ squared and s2=l. Here a=ðlZÞ is the slope
of the mean score function at the disease locus,
adjusted for the noncentrality parameter Z (aver-
age peak height) and crossover rate l (peak width
unit). Similarly, s2=l is the local variance, normal-
ized for l. We can rewrite SLNR as

SLNR ¼ lCZ2 ð5Þ
and this formulation shows that SLNR is related
to the square of the noncentrality parameter Z2

through the constant C. Since Z is an intuitive
quantity (average peak height of the linkage
score), we believe that (5) gives more insight into
the values that SLNR will attain in various
situations. It will be seen below that C can vary
quite a lot between pedigrees, genetic models, and
score functions. This shows that SLNR and Z2 are
not equivalent performance criteria. If C is large,
the corresponding linkage score is likely to have
a sharper peak than another linkage score with a
smaller C (but the same Z).

Let Zi; ai, and s2
i be the noncentrality parameter,

mean slope, and local variance of the ith family
score, defined as (1), (2), and (3), with Zi in place
of Z. Also, let Ci ¼ a2

i =ðlZ2
i s

2
i Þ. These quantities are

all independent of i when the pedigrees, including
their phenotypes, are identical and equal weights
gi � N�1=2 are used. This follows from the fact that
the family scores Zi are independent and identi-
cally distributed (i.i.d.). In this case, Z ¼

ffiffiffiffi
N

p
d,

where d is the common value of all Zi and further,
C ¼ C1 ¼ . . . ¼ CN (see Appendix A). Insertion
into (5) yields

SLNR ¼ lNCd2: ð6Þ

In general, both d and C will be a function of the
pedigree structure, the phenotypes, the genetic
model, and the score function.
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Fig. 2. Plots of noncentrality parameter d as a function of proportion z of IBD sharing for various affected relative pairs, with score

function counting number of alleles shared IBD by pair. Under weak assumptions (nondecreasing penetrances), one has zminrzr1,

where zmin is value of z under null hypothesis of no linkage (twice the kinship coefficient). Thus zmin equals 0.5 for sibs, half-sibs, and
uncle-nephew pairs, 0.25 for first cousins, and 0.0625 for second cousins. Line for second cousins is identical to that for HBD-sharing of

one affected offspring in a first-cousin marriage. In this case, zmin (inbreeding coefficient) is attained for all additive models, whereas

z4zmin for recessive models.
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For dichotomous traits and affected unilineal
relative pairs, both d and C can be written as
functions of one parameter, the probability z that
the pair shares one allele IBD. The same is true for
affected sib pairs when the mean sharing score
function is used and z is the fraction of alleles
shared IBD by the sibs on average. This can be
seen in Figures 2 and 3. Note that C is constant for
some pairs, such as sibs, half sibs, uncle-nephew,
and grandparent-grandchild, but it varies with z
for first and second cousins.

For an inbred pedigree with one affected inbred
individual, the score function S#affHBD [McPeek,
1999] checks whether the inbred individual has its
two alleles homozygous by descent (HBD) or not.
In this case, both d and C are functions of z, the
probability that the two alleles are IBD; see
Figures 2 and 3.

In Figures 4 and 5 values of d and C are given
for several nuclear families with a varying
number of affected and unaffected children. One
strong dominant and one weak dominant genetic
model is considered, along with two score func-
tions, Sall and Spairs. It is seen that Sall is a bit more
powerful in terms of testing (d) than Spairs for both
the strong and weak models. This is compensated
by C being larger for Spairs, so that the estimation
performance is more similar. In fact, Spairs has
slightly better performance than Sall in terms
of SLNR for the weak genetic model. These

differences between the two score functions are
interesting and should be further investigated for
a larger collection of pedigree structures and
genetic models. McPeek [1999], Feingold et al.
[2000], and Sengul et al. [2001] compared various
score functions in linkage analysis in the testing
context in more detail.

CONSTRUCTION OF CONFIDENCE
REGIONS

Here, we will describe three confidence regions
I1–I3 for t, all having asymptotic coverage prob-
ability Pðt 2 IjÞ ! 1 � a as the number of pedi-
grees N tends to infinity.

Let Zmax ¼ maxt ZðtÞ be the maximal linkage
score attained. The support region [e.g., Dupuis and
Siegmund, 1999] is defined as the set

I1 ¼ ft; Zmax � ZðtÞ�s2h1a=ag:

The quantity s2h1a=a is (apart from discretiza-
tion effects) the (1�a)-quantile of Zmax � ZðtÞ. The
factor s2=a depends on the pedigree structures,
the observed phenotypes, the genetic model, and
the score function. The constant h1a is (apart from
discretization effects) the (1�a)-quantile of a
certain random variable defined in Appendix B.
When the genetic model is weak, h1a is essentially
a function of just a.
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Fig. 3. Plots of C as a function of z for IBD-sharing of various affected relative pairs. HBD-sharing curve for an offspring of two first
cousins is same as IBD-sharing curve for two second cousins.
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A disadvantage of the support region is that I1
need not be an interval. As in Siegmund [1986]
and Kruglyak and Lander [1995], we overcome

this by introducing the convex support interval

I2 ¼ chðft; Zmax � ZðtÞ � s2h2a=agÞ
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Fig. 4. Values of slope-to-noise ratio SLNR¼kCd2, noncentrality parameter d, and constant C for one nuclear family (N¼1). Family has k
children. Phenotypes are binary, with parents having unknown phenotypes, l children are affected, and k�l unaffected. Crossover rate
k¼1. Genetic model is weak dominant, corresponding to a biallelic disease locus with disease allele frequency p¼0.0675 and penetrance

parameters (f0, f1, f2)¼(0.07, 0.3, 0.3). Here fi is probability of being affected for an individual with i disease alleles. Prevalence is 0.1, and
sibling relative risk is 1.29.
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Fig. 5. Same setup as in Figure 4, but for a strong dominant genetic model with p¼0.0513, (f0, f1, f2)¼(0, 1, 1), prevalence 0.1, and sibling
relative risk 5.44.
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where ch(I) is the convex hull of I, i.e. the smallest
interval containing I. To compensate for the
convex hull operator, which enlarges the con-
fidence region, h2a is smaller than h1a, so that I2
has asymptotic coverage probability 1�a as well.
When the genetic model is weak, the quantity h2a
essentially depends on a only.

The slope-to-noise ratio is crucial for determin-
ing the average length of I1 and I2, in the sense that

EðjIjjÞ �
kja

SLNR
¼

kja
lCZ2

ð7Þ

for j¼1,2, where jIjj is the length of Ij, and k1a and
k2a are constants depending essentially only on a;
see Appendix B for definitions. We write E in (7),
since the right-hand side contains additional
terms of smaller order than SLNR�1 and Z�2,
respectively. These remainder terms become neg-
ligible in the limit as N grows.

Figure 1 shows that the linkage score is
piecewise constant under the perfect marker
assumption. This implies that arg max Z(t) is not
uniquely defined, but rather a union of finitely
many intervals. In order to extract one unique
point estimator of t, we define t̂t ¼ ðt̂tþ þ t̂t�Þ=2,
where t̂tþðt̂t�Þ is the rightmost (leftmost) point of
arg max Z(t). The asymptotic properties of t̂t as an
estimator of t can be deduced from Kong and
Wright [1994] for backcross designs, and from
Hössjer [2001a] for general pedigrees, score func-
tions and genetic models. Using SLNRðt̂t� tÞ as
pivot, this yields an estimation-based confidence
interval

I3 ¼ ½t̂t� SLNR�1k3a=2; t̂tþ SLNR�1k3a=2�
where the constant k3a (defined in Appendix B) is
chosen so that I3 has asymptotic coverage prob-
ability 1�a. As opposed to I1 and I2, I3 has a fixed
length. We expect I3 to be useful mainly for high
peaks. Otherwise, I3 can be located in a valley
between two peaks.

Formula (7) has important consequences for
planning linkage studies. Let A¼SLNR/N be the
average slope-to-noise ratio of the sample. In
general, Awill depend on N (its limit is referred to
as the asymptotic slope-to-noise ratio in Hössjer
[2001a]), but for i.i.d. family scores, A ¼ a2

i =s
2
i ¼

lCd2 because of (6). The sample size required to
obtain a confidence region Ij with coverage
probability 1�a and (average) length L is asymp-
totically

N ¼
kja
AL

¼
kja

lLCd2
; j ¼ 1; 2; 3 ð8Þ

for i.i.d. family scores as L ! 0. The relative
performance of I1, I2, and I3 is reflected through
the constants k1a, k2a, and k3a. Note that the
required sample size is asymptotically inversely
proportional to the length of the confidence
region, the square of the noncentrality parameter
d, and C.

AFFECTED RELATIVE PAIRS

We will now illustrate the behavior of I1–I3 for a
collection of N identical affected relative pairs
which are either sibs or related through just one
parent (unilineal relationship). This is essentially
the same scenario as considered by Kruglyak and
Lander [1995]. Everything herein is also valid for
HBD-sharing of a single inbred individual. Let

p ¼ d
dmax

¼ z� zmin

1 � zmin
ð9Þ

be a number which varies between 0 (no linkage)
and 1 (IBD- or HBD-sharing at the disease locus
can be determined unambiguously from the
phenotype). Here dmax ¼

ffiffiffi
2

p
and dmin ¼ 0:5 for

sibs
ffiffiffi
3

p
and 0.25 for first cousins, and so on (see

Fig. 2).
The quantities hja and kja, defined above, are

functions of the single parameter p for affected
relative pairs. In Hössjer [2002], we performed
extensive simulations for a¼0.5 and 0.05, and
found that h1a and h2a are strictly decreasing
functions, with the maximum values attained at
p¼0 and the minimum value zero at p¼1. The
quantiles k1a, k2a, and k3a were almost independent
of p up to about p¼0.5 and then slowly decreased
or increased, depending on the value of a and the
confidence region method j. The almost constant
values of k1a, k2a, and k3a up to about p¼0.5 were
around 0.63, 0.94, and 0.79 for a¼0.5 and 3, 3.4,
and 5.4 for a¼0.05. Hence, the average length of
the confidence interval is fairly independent of the
genetic model as long as it is weak (p is small). We
will see below that a Gaussian approximation can
be used for weak genetic models. Our simulations
thus indicate that this approximation has some
robustness.

The behavior of I1�I3 has been analyzed by
simulation for a collection of N sib pairs with
noncentrality parameter d. The asymptotic ap-
proximation of the coverage probability in Table I
is quite accurate for I2 when Z is 3 or larger.
Slightly larger values of Z are needed for I1, and
even larger ones for I3. In Figure 6, we plotted the
expected length of I2 against Z for a 95%
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confidence region. The asymptotic approximation
ignores the curvature of E(Z) in either direction
from t. This is more severe for smaller Z, since the
confidence region then extends over a larger part
of the chromosome. It is seen from Figure 6 that

the asymptotic approximation is close for ZZ4
and very accurate for ZZ5.5. In Table II, we
computed the number of sib pairs required to
produce 50%, 95%, and 99% confidence regions of
expected length 5 cM for various d. This was done

TABLE I. Values of True a, for (1�a) Confidence Regions Based onNAffected Sib Pairs With Noncentrality Parameter da

a¼0.5 a¼0.05 a¼0.01

N d Z I1 I2 I3 I1 I2 I3 I1 I2 I3

50 0.1 0.71 0.35 0.24 0.38 0.000 0.000 0.000 0.000 0.000 0.000
100 0.1 1.00 0.49 0.37 0.56 0.008 0.001 0.000 0.000 0.000 0.000
200 0.1 1.41 0.57 0.46 0.62 0.041 0.011 0.063 0.003 0.000 0.000
500 0.1 2.24 0.58 0.52 0.61 0.083 0.043 0.204 0.017 0.005 0.102
1,000 0.1 3.16 0.56 0.52 0.57 0.080 0.056 0.156 0.019 0.011 0.091
50 0.2 1.41 0.57 0.46 0.62 0.038 0.011 0.060 0.002 0.000 0.000
100 0.2 2.00 0.59 0.51 0.62 0.077 0.034 0.197 0.013 0.003 0.070
200 0.2 2.83 0.57 0.52 0.58 0.085 0.056 0.181 0.019 0.010 0.103
500 0.2 4.47 0.52 0.51 0.53 0.064 0.057 0.095 0.014 0.011 0.042
1,000 0.2 6.32 0.51 0.51 0.50 0.057 0.052 0.066 0.013 0.011 0.021
50 0.4 2.83 0.56 0.52 0.58 0.078 0.052 0.178 0.018 0.009 0.096
100 0.4 4.00 0.53 0.51 0.54 0.066 0.056 0.107 0.015 0.012 0.050
200 0.4 5.66 0.51 0.51 0.51 0.056 0.052 0.070 0.012 0.011 0.023
500 0.4 8.94 0.50 0.50 0.50 0.052 0.052 0.056 0.011 0.011 0.015
1,000 0.4 12.65 0.50 0.50 0.49 0.052 0.052 0.053 0.011 0.011 0.013
50 1.0 7.07 0.51 0.50 0.51 0.053 0.052 0.059 0.011 0.010 0.015
100 1.0 10.00 0.50 0.50 0.50 0.050 0.049 0.053 0.011 0.011 0.012
200 1.0 14.1 0.50 0.50 0.50 0.049 0.049 0.049 0.009 0.009 0.010
500 1.0 22.36 0.50 0.50 0.50 0.049 0.050 0.050 0.010 0.010 0.010
1,000 1.0 31.63 0.50 0.50 0.50 0.051 0.050 0.049 0.011 0.011 0.010

aNominal values are a¼0.5, 0.05, and 0.01, respectively. Estimates are computed from 50,000 simulated confidence regions when disease
locus is positioned in middle of a chromosome of length 150 cM.
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Fig. 6. Solid line is expected length in cM of a 95% convex support region plotted against noncentrality parameter for affected sib pairs,
using asymptotic formula (7) with C¼2. d¼0.4 is used for computing k2,0.05. (Corresponding curves for other d are virtually

indistinguishable.) Also plotted are simulated expected lengths for same combinations of N and d as in Table I, with d having values 0.1

(squares), 0.2 (asterisks), 0.4 (open circles) and 1 (diamonds).
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by combining (8) with simulated values of kja [for
details, see Hössjer, 2002].

When the disease locus has not yet been
mapped, it might be preferable to express d (or
p) in terms of relative risk ratios, which can be
estimated by an epidemiologic study. For instance,
Risch [1990] showed that

d ¼ lM � 1

2
ffiffiffi
2

p
lS

for affected sib pairs, where lM and lS are the risk
ratios of a monozygous (MZ) twin and a sibling of
an affected individual, respectively. Similarly, d
can be written as a function of relative risk ratios
for other affected relative pair [Risch, 1990;
Kruglyak and Lander, 1995].

WEAK GENETIC MODELS

For weak genetic models, a large number of
pedigrees N is needed to attain a given slope-to-
noise ratio. For instance, when the pedigrees have
identical structure and phenotypes, this corre-
sponds to letting d-0 and N-N, while keeping
the relation Z ¼

ffiffiffiffi
N

p
d. By a central limit argument,

it is then reasonable to approximate Z and its local
expansion around t with Gaussian processes. A
discussion of general phenotypes, score functions,
and genetic models can be found in Appendix D.
See also Feingold et al. [1993].

The Gaussian approximation makes the con-
stants hja and kja independent of the genetic
model, the score function, and the pedigree. In
fact, the quantiles h1a, h2a, and k3a, which are
needed to define the three confidence regions, all
have explicit expressions (see Appendix D). From
simulations [details in Hössjer, 2002], we deduced
k2,0.5¼0.94 and k2,0.05¼3.47. By plugging these

values into (7),we find that the expected lengths
of a 50% and 95% convex support region are
asymptotically 94/(CZ2) cM and 347/(CZ2) cM,
respectively, as Z grows.

NONIDEAL CONFIDENCE REGIONS

The confidence regions I1–I3 are ideal, in the
sense that SLNR h1a, h2a, and k3a depend on the
genetic model. Therefore, they should mainly be
used for planning linkage studies. Given a certain
genetic model and score function, how many
pedigrees are required to obtain a region of given
length and confidence level?

It would be interesting to use plug-in versions
of I1–I3, with the genetic model estimated from
data. For ASPs, this entails estimating Z, since all
unknown quantities depend on Z (or equivalently
d). Since Z is the maximal value of E(Z(t)), it would
be tempting to use Zmax as an estimate of Z.
However, this will produce an upward bias.
Similar phenomena were recently discussed for
QTL models by Göring et al. [2001] and Allison
et al. [2002]. Interestingly, the asymptotic expan-
sions in Appendix B can be used to construct at
least a first-order bias correction of Zmax as an
estimate of Z. The basic expansion to use is

EðZmaxÞ � gðZÞ ð10Þ
where gðZÞ ¼ Zþ 2MðZ=

ffiffiffiffiffiffiffi
2N

p
Þ=Z. This approxima-

tion is accurate when Z becomes large; see
Appendix B for derivation as well as a definition
of function M. An asymptotic method-of-mo-
ments estimate of Z is thus

ẐZ ¼ g�1ðZmaxÞ:
This bias correction does not take into account

the size of the chromosomal region where linkage

TABLE II. Required Number of ASPs N in Order for Confidence Regions I1–I3 to have (Expected) Length L¼5 cMa

a¼0.5 a¼0.05 a¼0.01

d I1 I2 I3 I1 I2 I3 I1 I2 I3

0.05 2,500 3,800 3,000 13,000 14,000 22,000 19,000 21,000 39,000
0.1 630 950 770 3,100 3,500 5,500 4,700 5,100 9,800
0.2 160 240 190 760 850 1,360 1,200 1,200 2,400
0.3 70 100 87 340 380 600 510 550 1,100
0.5 25 36 31 120 140 210 180 200 380
0.7 13 18 16 62 68 100 94 100 180
1.0 7 9 7 29 31 44 43 44 80ffiffiffi

2
p

5 5 4 10 10 15 10 10 23

aThe (asymptotic) coverage 1�a and noncentrality parameter d for one ASP is varied. Figure 6 (and similar figures for a¼0.5 and 0.01 not
reported here) reveals that values of N are a bit too small. (N is too small by a factor slightly less than 2 for a¼0.5, but is more accurate for
a¼0.05 and 0.01.) The smaller L is, the more accurate is the asymptotic approximation.
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is sought. Instead, it is solely based on the random
fluctuation of the linkage score locally around the
disease locus. Figure 7 displays the asymptotic
approximation (10) as well as simulated genome-
wide estimates of E(Zmax). The asymptotic ap-
proximation is quite accurate for genomewide
scans when the noncentrality parameter Z is 4 or
larger.

DISCUSSION

In this paper, we have defined three kinds of
confidence regions. Their construction depends
on the underlying genetic model and they are in
that sense ideal, although we briefly discussed
nonideal plug-in versions to use when the genetic
model is unknown. The main application is
planning of linkage studies. An asymptotic ap-
proximation of the expected length of a confi-
dence region with a given level of confidence can
be computed under a perfect marker assumption.
The answer depends on the genetic model, the
score function, the pedigree structures, and the
weighting scheme of the pedigrees.

The definitions of all three confidence regions
involve the quantiles, h1a, h2a, and k3a of certain
distributions defined in Appendix B. We have

discussed how to compute these quantiles ex-
plicitly for affected relative pair families. For
common designs, with pedigrees of different
structures, the quantiles have quite complicated
expressions. In principle, they can be computed
straightforwadly by simulation, although this can
be time-consuming. On the other hand, our results
for affected relative pairs indicate that the
quantiles are very robust towards changes of the
genetic model parameters for weak or moderately
weak genetic models. In addition, many linkage
studies for complex diseases involve a contribu-
tion from several genes, with each gene having
a small individual effect. Under such circum-
stances, it is reasonable to use the weak genetic
model approximations based on Gaussian pro-
cesses. Then explicit expressions for the quan-
tiles of interest are available (independent
of the pedigree structures, genetic model, score
function, and weighting scheme), as discussed in
Appendix D.

The perfect marker assumption has been used
throughout this paper. In practice, this assumption
is violated because 1) genetic markers have a finite
spacing with heterozygosity lower than one, 2) not
all family members are genotyped, and 3) several
founders may be related and share alleles iden-
tical by descent. In view of the large number of
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Fig. 7. Expected maximal linkage score as a function of noncentrality parameter g for affected sib pairs. Solid curve is approximation

g(g) in (10) with N¼100 (corresponding curves for other N are virtually indistinguishable). Also shown are estimates of genomewise
expected maximal linkage scores. Each estimate is based on 1,000 simulated genomewise linkage scores, with sex averaged chromosome

lengths taken from Table 1 in Ott [1999]. Disease locus is positioned at midpoint of chromosome 1 (which has length of 298.5 cM). Same

combinations of d and N as in Table I are used, with d¼0.1 (squares), d¼0.2 (asterisks), d¼0.4 (open circles), and d¼1.0 (diamonds).
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genetic markers currently available, assumption 1
is less problematic. This is because linkage
analysis is based on crossovers occuring in the
pedigrees (not in previous generations). For
instance, a medium-sized pedigree with 20
meioses has on average 1 crossover per 5 cM.
Therefore, a marker map with interdistance 1 cM
will have a good chance of detecting all or most
crossovers provided that the markers are reason-
ably polymorphic. A marker map with inter-
distance 1 cM can be attained, for instance, if
linkage analysis is performed in two steps. An
initial genome scan with a coarse grid of markers
is followed by a second scan from interesting
regions pinpointed by the first scan. In the second
scan, which is defined for a much smaller region,
a finer marker map is employed. Assumption 2 is
more problematic, especially for large extended
pedigrees. The perfect marker assumption can be
used if the value of the score function does not
change because of missing phenotype and marker
information from untyped pedigree members. The
simplest example is the mean sharing score
function for an affected sib pair. This score
function only requires genotyping of the sib pair,
and not of the parents, for its definition. (How-
ever, if only the sibs are genotyped, a denser map
of markers is needed for the perfect marker
assumption to be accurate.) Assumption 3 can be
problematic in families from isolated regions
when some founders have a recent ancestor.

In any case, the perfect marker approach gives a
lower bound for the true expected length of the
confidence regions. The true expected length will
depend on the positioning of the genetic markers
in close vicinity of the disease locus, as well as
their heterozygosity. As a rule of thumb, the
interdistance between markers should be of a
lower order than the length of the confidence
regions, in order for the perfect marker approx-
imation to be accurate.

The results in this paper are based on asympto-
tic approximations. Our simulations show that
these approximations are accurate when the
confidence regions have a length of about 5 cM
or shorter, or when the noncentrality parameter is
about 5 or larger. Mathematically, we look at the
linkage score locally around the disease locus, and
the asymptotic approximations require that the
local neighborhood be small compared to the
whole chromosome. In fact, the asymptotic ap-
proximations are based on two local quantitities
computed at the disease locus, i.e., the slope of the
mean linkage score a, and the amount of random

fluctuations s2. The upward curvature of the
mean linkage score is ignored. This results in a
too-optimistic confidence region, since the mean
linkage score is underestimated at regions far off
from the disease locus.

We briefly discussed nonideal plug-in versions
of our confidence regions for affected sib pairs.
This can be done more generally for other
pedigree structures, phenotypes, and genetic
models. For each particular genetic model, one
identifies the relevant parameters y and investi-
gates how the expected maximum linkage score
EðZmaxÞ ¼ gðyÞ depends on these parameters.
Then ŷy ¼ g�1ðZmaxÞ gives a first-order bias-cor-
rected estimate of y. When the genetic model is
weak, we can rely on the Gaussian approximation
in Appendix D. This makes computation of g
more feasible. Siegmund [2002] used the Gaussian
approximation for correcting for upward bias. His
approach differs from ours in that he uses
quantiles of Zmax as a function of y rather than
the expected value of the maximum linkage score.

We assumed a single-locus genetic model.
Everything treated in this paper can be general-
ized to multilocus models if the other disease loci
are unlinked to t. The crucial part is to generalize
the probability Pi(w) defined in Appendix A to
multilocus models; see Hössjer [2000a] for details.
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APPENDIX A

COMPUTATION OF SLOPE-TO-NOISE RATIOS
AND C

Let ai and s2
i be defined as before (6). Then, by

(4) and the linearity of the mean and variance
functions

SLNR ¼
PN

i¼1 giai
� �2

PN
i¼1 g

2
i a

2
i

: ð11Þ

Analogously, the noncentrality parameter can
be expressed as Z ¼

PN
i¼1giZi. This in turn gives

C ¼ SLNR=ðlZ2Þ.
For equal weights gi � 1=

ffiffiffiffi
N

p
and i.i.d. family

scores, (11) reduces to (6). Further, Z ¼
ffiffiffiffi
N

p
Zi and

Ci ¼ C.
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The quantities ai and s2
i can be computed as

follows: let vi(t) be the inheritance vector of the ith

pedigree at locus t. If there are ni members and fi
founders in this pedigree, vi(t) is a binary vector
of length twice the number of nonfounders
mi ¼ 2ðni � fiÞ. Each bit is 0 (1) if during the
corresponding meiosis a grandpaternal (grand-
maternal) allele is transmitted [Kruglyak et al.,
1996]. We assume that the score function Si :
f0; 1gmi ! R for the ith pedigree has been normal-
ized to have zero mean and unit variance under
H0, i.e., when vi(t) is uniformly distributed over all
2mi possible inheritance vectors. Thus ZiðtÞ ¼
SiðviðtÞÞ under perfect marker information. (The
inheritance vector vi(t) is only known up to
uncertainty of the phase of all founders [Kruglyak
et al., 1996]. However, if the score function Si is
invariant with respect to this uncertainty, SiðviðtÞÞ
will be known, although vi(t) is not.) Let PiðwÞ ¼
PðviðtÞ ¼ wjYi; H1Þ be the probability function of
the inheritance vector at the disease locus condi-
tional on the observed phenotype vector Yi for the ith

pedigree. Details on computation of Pi(w) can be
found in Kruglyak et al. [1996, Appendix C]. It is
shown in Hössjer [2001a] that

ai ¼ l � mi

X
w

SiðwÞPiðwÞ �
Xmi

j¼1

X
w

Siðwþ ejÞPiðwÞ

0
@

1
A;

s2
i ¼ l �

X
w

PiðwÞ
Xmi

j¼1

ðSiðwþ ejÞ � SiðwÞÞ2

where ej is the binary vector of length mi, with one
in position j and zeros elsewhere, and + refers to
componentwise modulo 2 addition. The corre-
sponding formula for the ith noncentrality para-
meter is Zi ¼

P
wSiðwÞPiðwÞ.

APPENDIX B

LOCAL SCALING OF LINKAGE PROCESS AND
CONFIDENCE INTERVALS

We start by rescaling the linkage score as

~ZZNðsÞ ¼ aðZðtþ s=SLNRÞ � ZðtÞÞ=s2: ð12Þ
Thus we look at the linkage score on a local
chromosomal scale OðSLNR�1Þ ¼ OðN�1Þ and
vertical scale Oðs2=aÞ ¼ OðN�1=2Þ. For large N,
the rescaled linkage process ~ZZN can be well-
approximated by a limiting compound Poisson
process ~ZZ; see Hössjer [2001a] for a formal proof.
We define ~ZZ as follows: ~ZZð0Þ ¼ 0, and then ~ZZ is
piecewise constant, with jumps occuring in both
directions from the origin, according to two

independent Poisson processes with intensity
~ll ¼ l � SLNR�1 PN

1 mi, where l is the crossover
rate for one meiosis. A jump is defined as the
change of ~ZZ when we move away from the origin,
i.e., to the right (left) when s40 (so0). All jumps
of ~ZZ are independent and identically distributed
(i.i.d.) with the same distribution as a random
variable X, which can be written as

X ¼ a

s2
gJðSJðv0Þ � SJðvÞÞ ð13Þ

where ðJ; v; v0Þ is random: PðJ ¼ iÞ ¼ mi=
Pn

j¼1 mj,
Pðv ¼ wjJ ¼ iÞ ¼ PiðwÞ, and Pðv0 ¼ w0jJ ¼ i; v ¼ wÞ
equals 1/mi, if w0 and w differ by one bit and
are zero otherwise. After some manipulations,
using the definitions of a and s2, it can be verified
that

Eð~ZZðsÞÞ ¼ �jsj; Vð~ZZðsÞÞ ¼ jsj: ð14Þ
Thus ~ZZ drifts away to �1 in both directions from
the origin.

The weak convergence ð!L Þ of ~ZZN towards ~ZZ
makes it possible to find asymptotically valid
expressions for h1a, h2a, k1a, k2a, and k3a. Note first
that t 2 I1 iffZmax � ZðtÞ � s2h1a=a. This is asymp-
totically equivalent to ~ZZmax � h1a, where
~ZZmax ¼ maxs

~ZZðsÞ. Thus we take

h1a ¼ ð1 � aÞ-quantile of ~ZZmax: ð15Þ
Note further that t 2 I2 iff jmaxt�t ZðtÞ � maxt�t
ZðtÞj � s2h2a=a. This is asympotically equivalent
to j~ZZþ

max � ~ZZ�
maxj � h2a, where ~ZZþ

max � maxs�0
~ZZðsÞ

and ~ZZ�
max ¼ maxs�0

~ZZðsÞ. Thus we pick h2a accord-
ing to

h2a ¼ ð1 � aÞ-quantile of j~ZZþ
max � ~ZZ�

maxj: ð16Þ
Note that ~ZZmax ¼ maxð~ZZþ

max;
~ZZ�

maxÞ. Further, due to

the construction of ~ZZ, ~ZZþ
max and ~ZZ�

max are indepen-
dent random variables with the same distribution.

In order to give expressions for k1a and k2a, we
first define rescaled confidence regions ~II1 ¼
fs; ~ZZmax � ~ZZðsÞ � h1ag and ~II2 ¼ chðfs; ~ZZmax � ~ZZðsÞ
� h2agÞ, corresponding to I1 and I2. Then set

kja ¼ Eð~IIjÞ; j ¼ 1; 2: ð17Þ

Finally, in order to define k3a, we let ŝs� and ŝsþ be
the left- and rightmost maximum points of ~ZZ and

ŝsðŝsþ þ ŝs�Þ=2. The weak convergence ~ZZN !L ~ZZ im-

plies that SLNRðt̂t� tÞ!L ŝs, see Hössjer, [2001a]
for details. This gives an asymptotically valid
distribution for the pivot SLNRðt̂t� tÞ, and

k3a ¼ 2 � ðð1 � a=2Þ-quantile of ŝsÞ: ð18Þ
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APPENDIX C

AFFECTED RELATIVE PAIRS

As a special case of the general framework in
Appendices A and B, consider a collection of N
affected relative pairs, with 0op � 1 as defined in
(9). The limiting process ~ZZ is then a Poisson-
inbedded two-sided random walk with negative
drift, whose distribution only depends on p. This
class of processes was previously considered by
Kong and Wright [1994] for backcrosses, and by
Kruglyak and Lander [1995] for affected relative
pairs.

The intensity of the jumps equals ~ll ¼ 1=p2, and
the jumps in (13) have a two-point distribution
with PðX ¼ �pÞ ¼ ð1 þ pÞ=2, PðX ¼ pÞ ¼ ð1 � pÞ=2.
Explicit expressions for h1a and h2a in (15) and (16)
are available, by noting that the maximum of ~ZZ=p
in both directions from the origin has the same
distribution as the maximum of a random walk
starting at the origin and having probability ð1 �
pÞ=2 and ð1 þ pÞ=2 of upward (+1) and downward
(�1) jumps, respectively. It can be shown [see
Appendix D in Kruglyak and Lander, 1995] that
this implies that ~ZZþ

max=p (and ~ZZ�
max=p) have

geometric distributions, i.e., Pð~ZZþ
max ¼ piÞ ¼

ð1 � pÞip, p ¼ 2p=ð1 þ pÞ, and i ¼ 0; 1; 2; . . . After
some algebra, this implies

Pð~ZZmax � hÞ ¼ ð1 � ð1 � pÞ½h=p�þ1Þ2 ð19Þ
and

Pðj~ZZþ
max � ~ZZ�

maxj � hÞ

¼
p; 0 � hop;

1 � 1 � p
1 þ p

� �½h=p�þ1

ð1 þ pÞ; h � p:

8><
>: ð20Þ

where [x] is the largest integer smaller than or
equal to x. In principle, h1a and h2a can be
computed as the (1�a)-quantiles of the distribu-
tion functions in (19) and (20), respectively. Note,
however, that ~ZZmax and j~ZZþ

max � ~ZZ�
maxj have dis-

crete distributions. This will create a bias when
computing k1a and k2a according to (17). Especially
for large d, this effect is quite pronounced. To
avoid this, we will actually compute the length j~II1j
(the reasoning for ~II2 is analogous) as follows.
Given a, define numbers h11 and h12 such that
p1 ¼ Pð~ZZmax � h11Þo1 � a � p2 ¼ Pð~ZZmax � h12Þ.
Let ~II11 and ~II12 be the confidence regions obtained
when h1a is replaced by h11 and h12, respectively, in
the definition of ~II1. Then put

j~II1j ¼ ð1 � rÞj~II11j þ rj~II12j ð21Þ

where r ¼ ð1 � a� p1Þ=ðp2 � p1Þ. This corresponds
to using a randomized decision rule when con-
structing the confidence region, so that the
asymptotic confidence level is exactly a. Then k1a

is computed from (17) by repeatedly simulating
confidence regions of ‘‘length’’ (21). We also use
h1a ¼ ð1 � rÞh11 þ rh12 when plotting h1a as a
function of p.

The constant k3a will be determined using (18)
and simulation. When p¼1, an analytical solution
is easily available, since ŝsþ and ŝs� are independent
exponential random variables with mean p2¼1.
From this, it follows that k3a ¼ � lnðaÞ when p¼1.

We end this appendix by motivating the
expansion (10) for affected sib pairs. The distribu-
tion function of ~ZZmax is given in (19) as p times the
maximum of two independent geometric distribu-
tions. After some computations, one obtains

MðpÞ: ¼ Eð~ZZmaxÞ ¼ 1
4ð1 � pÞð3 þ pÞ

which is a decreasing function of p, with Mð0Þ ¼
3=4 and Mð1Þ ¼ 0. The rescaling (12) and the fact
that ~ZZN is close to ~ZZ in distribution implies

EðZmaxÞ ¼ EðZðtÞÞ þ a
s2Eð~ZZmaxÞ þ oðN�1=2Þ

¼ Zþ 2
ZMðZ=

ffiffiffiffiffiffiffi
2N

p
Þ þ oðZ�1Þ:

Here we used the fact that Z ¼
ffiffiffiffi
N

p
d ¼

ffiffiffiffiffiffiffi
2N

p
p,

a ¼
ffiffiffiffi
N

p
ai ¼ 4

ffiffiffiffi
N

p
ld, s2 ¼ s2

i ¼ 8l, and a=s2 ¼ Z=2
for affected sib pairs. By combining the last two
displayed equations, we obtain an explicit expres-
sion for g in (10).

APPENDIX D

WEAK GENETIC MODELS

A weak genetic model corresponds to the case
when the conditional inheritance distribution at
the disease locus is close to uniform, i.e.,
PiðwÞ ¼ 2�mið1 þ eRðwÞ þ oðeÞÞ, where RðwÞ is the
likelihood score function, and e is a small positive
number [see Whittemore, 1996; Hössjer, 2001b].
When e ! 0, the process ~ZZ has jumps X of size
tending to zero, and intensity ~ll tending to infinity
in such a way that (14) is maintained. By a central
limit theorem argument, it follows that in the limit
we obtain the Gaussian process

~ZZðsÞ ¼ BðsÞ � jsj
where B is a two-sided standard Brownian
motion. For affected relative pairs, this corre-
sponds to the limit p ! 0.

The Gaussian framework simplifies some

formulas. To start with, ~ZZ
þ
max and ~ZZ

�
max are
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independent exponential random variables with
mean 0.5. From this, it follows that

h1a ¼ � lnð1 �
ffiffiffiffiffiffiffiffiffiffiffi
1 � a

p
Þ=2, and h2a ¼ � lnð1 � aÞ=2.

Further, an explicit formula for k3a can be obtained
from Siegmund [1986].
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