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Determining Inheritance Distributions
via Stochastic Penetrances

Ola HÖSSJER

The aim of linkage analysis is to map the position of a gene contributing to an inheritable disease. The statistical model contains the
disease allele frequency and penetrance parameters. Here I investigate the inheritance distribution, that is, the conditional distribution of
the inheritance vector given phenotypes at the disease locus. Based on this, the likelihood and likelihood score function of Whittemore can
be de� ned. As a result, a general semiparametric methodology of choosing score functions in linkage analysis is proposed. The proposed
approach is valid for arbitrary pedigrees, and I treat quantitative, dichotomous (binary), and other phenotypes in a uni� ed framework. The
resulting score functions can be easily incorporated into existing software for multipoint linkage analysis. I use the fact that the inheritance
distribution depend on unknown founder alleles. These are treated as hidden data and give rise to “stochastic penetrance factors.” Certain
uncorrelated unit variance random variables that are functions of the founder alleles are introduced. I show that the moment-generating
function and moments of these play crucial roles in choosing likelihoods and likelihood score functions. Lower-/higher-order moments
are more important when the genetic effect is weak/strong, and this corresponds to simultaneous identical by descent (IBD) sharing of
few/many individuals. For inbred pedigrees and nonadditive models, the likelihood score function is dominated by individuals homozygous
by descent at the disease locus. For outbred pedigrees, the local score function involves pairwise IBD sharing. Relations to existing score
functions of nonparametric linkage (Spairs , Sall , Srobdom) and quantitative trait loci (QTL) are highlighted.

KEY WORDS: Founder alleles; Identical by descent sharing; Inheritance distribution; Linkage analysis; Local score functions; Semipara-
metric linkage analysis; Stochastic penetrances.

1. INTRODUCTION

The purpose of statistical linkage analysis is to locate the po-
sition along the chromosomes of an unknown gene contribut-
ing to a certain disease. Disease-related quantities (phenotypes)
and parts of DNA (so-called “genetic markers”) are collected
for a number of families (pedigrees). The phenotype can be
binary (affection status) or quantitative (e.g., insulin concen-
tration, body mass index) and involve various covariates (e.g.,
sex, age). Segregation of DNA is governed by Mendelian laws
and the occurence of so-called “crossovers,” latter are switching
points between grandpaternal and grandmaternal DNA trans-
mission during meiosis, that is, formation of egg or sperm cells.

DNA and phenotype segregation are associated with one an-
other at the disease gene. The stength of this association de-
pends on the strength of the genetic component of the disease.
For loci on the same chromosome as the disease gene, the asso-
ciation gradually decreases with the genetic distance from the
disease gene because of crossovers. The linkage score function
is a stochastic process that at each DNA location measures the
degree of association between phenotype segregation and DNA
segregationat that position.Regionswith high linkage score are
declared interesting in further � ne mapping of the disease gene.

A genetic model speci� es both the frequency of the possible
expressions (alleles) of the disease gene and the statistical re-
lationship (penetrance) between disease alleles and phenotype.
Given a certain genetic model, one can specify the conditional
distribution of inheritance of disease genes given phenotypes.
This distribution is important for several reasons. It summarizes
the strength of association between phenotypes and disease
genes, and thus re� ects the strength of the genetic compo-
nent of the disease. It is needed for performing parametric
linkage analysis; it can be used for calculating the power of
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gestions to improve the manuscript’s presentation and readability.

parametric and nonparametric linkage tests (Feingold, Brown,
and Siegmund 1993; Lander and Kruglyak 1995), for deter-
mining the asymptotic accuracy of estimators of the disease
locus (Liang, Chin, and Beaty 2001; Hössjer 2003a,b); and
it generates sampling criteria for pedigrees (Risch and Zhang
1995, 1996; Liang, Huang, and Beaty 2000; Dudoit and Speed
2000). Another advantage of the conditional inheritance dis-
tribution is it’s independence of the sample mechanism (as-
certainment procedure). This holds under the mild assumption
that pedigrees are sampled on the basis of disease phenotypes
only, regardless of marker data. In contrast, the popular vari-
ance components techniques used in linkage analysis (Almasy
and Blangero 1998) depend on the sample mechanism.

For each gene, an individual receives one allele from the
mother and one from the father. Mendel’s law of segregation
states that the probability that each of these two alleles are
of grandpaternal or grandmaternal origin is .5. For a whole
pedigree, allele segregation can be speci� ed at a certain lo-
cus through the inhertiance vector v (see, e.g., Kruglyak, Daly,
Reeve-Daly, and Lander 1996), a binary vector whose length
equals the number of meioses in the pedigree. I use the fact
that the conditional distribution of v at the disease locus given
phenotypes can be written as an expectation, summing over
all possible founder alleles, that is, the alleles of individuals
with no ancestors in the pedigree. In this way each penetrance
factor becomes stochastic, viewed as a function of unknown
founder alleles. This functioncan decomposed into additiveand
dominance components, analogously to variance components
or U statistic techniques. It turns out that the conditionaldistri-
bution of the inheritance vector can be written as the moment-
generating function of a certain array of uncorrelated random
variables (dependingonly on the disease allele frequency) eval-
uated at a point B , which depends on the occurrence and si-
multaneous identical by descent (IBD) allele sharing of various
founder alleles.
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By letting the penetrance factors depend on a parameter re-
� ecting the strength of the genetic component at the disease
locus, the local likelihood-based score function of Whittemore
(1996), can be evaluated in great generality.This score function
dependson the behaviorof the inheritancedistribution for weak
genetic components and involves pairwise IBD sharing of in-
dividuals for outbred pedigrees (i.e., pedigrees without loops).
For inbred pedigrees (i.e., pedigreeswith loops), the score func-
tion involves the dominance components of those individuals
who are homozygousby descent (HBD) (i.e., both alleles orig-
inate from the same founder) at the disease locus. When the ge-
netic component is strong, the inheritance distribution depends
to a larger extent on higher-order factors of B , correspondingto
simultaneous allele sharing of many individuals.

I also derive general expressions for the inheritance distribu-
tion when the disease allele frequency tends to 0, meaning that
at most one disease allele is present in the pedigree.

My approach is valid for any kind of penetrance factors, par-
ticularly binary and quantitative phenotypes, with or without
covariates. In the context of dichotomous phenotypes and af-
fected pedigree members, McPeek (1999) has derived general
expressions for the inheritance distribution and in particular
studied which score functions are optimal for various genetic
models. Several of her results can be derived as special cases in
my setting with arbitrary phenotypes.

The practical implicationsof my approach is a general semi-
parametric way of choosing score functions and weighting of
pedigrees, valid for arbitrary kinds of phenotypes. These can
be easily incorporated into existing nonparametric linkage soft-
ware, such as the Genehunter program (Kruglyak et al. 1996).

In Section 2 I de� ne the genetic model, and in Section 3
I introduce stochastic penetrances and bivariate functions of
founder alleles. I use these in Sections 4 and 5 to expand the
logarithm of the inheritance distribution or the inheritance dis-
tribution itself. In the latter case, I apply the results to binary
phenotypesand nonparametric linkage. I consider local genetic
models and apply them to Gaussian phenotypes in Section 6.
In Section 7, I de� ne the limiting score function when the dis-
ease allele frequency tends to 0. In Section 8 I discuss how to
put parametric and nonparametric linkage analysis into a gen-
eral framework and how to choose score functions of practical
use in linkage analysis. This is accompanied by a simulation
study in Section 9 and a discussion of possible extensions in
Section 10. The more technical parts of the article are collected
in a series of appendixes.

2. LINKAGE SCORES AND THE GENETIC MODEL

Consider a chromosome with genetic map length of l Mor-
gans. This means that on average, l crossovers occur during
each meiosis. Further, the position of each locus t 2 [0; l] on
the chromosome refers to genetic map distance, meaning that
on average, t and l ¡ t crossovers occur to the left and right of
that locus. Let ¿ be the unknown disease locus. Then, for each
t 2 [0; l] we with to test H0 : ¿ D 1 against H1.t/ : ¿ D t , where
¿ D 1 means that the disease gene is located on another chro-
mosome. In the former case, t is unlinked to ¿ , and in the latter
case the two loci are perfectly linked. Given a number of fami-
lies (pedigrees) P1; : : : ; PN with unusually large occurrence of

the disease, linkage analysis proceeds by comparing the inher-
itance pattern of DNA at t (deduced from marker alleles) with
inheritance of phenotypes. Following Kruglyak et al. (1996),
a possible test statistic for choosing between H0 and H1.t/ is

Z.t/ D
NX

iD1

°iZi.t/

,vuut
NX

iD1

° 2
i ; (1)

where fZi.t/gN
iD1 are the family scores at locus t and f°igN

iD1
are weights assigned to the various pedigrees. The marker in-
formation at t is perfect if the inheritance pattern can be un-
ambigously determined from the marker genes surrounding t .
If the family scores are normalized to have 0 expectation and
unit variance under H0 under perfect marker information, it fol-
lows that Z.t/ also has 0 mean and unit variance under H0.
The whole process fZ.t/I 0 · t · lg can be used for testing
H0 against the composite alternative hypothesis H1 : ¿ 2 [0; l],
by comparing the test statistic

Zmax D sup
0·t·l

Z.t/ (2)

with a given threshold. H0 is rejected when Zmax exceeds the
threshold. (See, e.g., Feingold et al. 1993;Lander and Kruglyak
1995; and Ängquist and Hössjer 2003 for guidance in choos-
ing thresholds to control the signi� cance level.) If H0 is re-
jected, then a con� dence region for ¿ can be computed. This
region consists of those loci for which Zmax ¡ Z.t/ is smaller
than a given constant, which is chosen to control the coverage
probability (see Hössjer 2003a, b for details). Unless otherwise
stated, from here on I consider a � xed pedigree P with n in-
dividuals. Let Yi D .Yi1; : : : ; Yir / and xi D .xi1; : : : ; xis/ be
the set of phenotypes and covariates of the ith individual,
i D 1; : : : ; n. If f is the number of founders and each non-
founder has both of its parents in the pedigree, then the alle-
les at a certain locus for all pedigree members originate from
the 2f founder alleles. For each nonfounder, there are two
meioses that determine which parental alleles are transmitted.
Hence the total number of meioses needed to describe trans-
mission of founder alleles is m D 2.n ¡ f /. The inheritance
vector v.t/ D .v1.t/; : : : ; vm.t// at locus t is is a binary vector
of length m, where vk .t/ is zero or one depending on whether
a grandpaternalor grandmaternal allele is transmitted at locus t

during the kth meiosis.
Notice that v.t/ is an element of Zm

2 , the additive vector
space over the � eld of two elements. Let S : Zm

2 ! R be a score
function, where large values of S.v.t// D S.v.t/I P ;Y/ indi-
cate a high degree of similarity between the inheritance vec-
tor v.t/ and the observed phenotypes.The family score of P at
locus t was de� ned by Kruglyak et al. (1996) as

Z.t/ D
X

w2Zm
2

S.w/P
¡
v.t/ D wjmarker data for P

¢
; (3)

if S has been standardized to have 0 mean and unit vari-
ance under H0 . The probability distribution of the inheritance
vector given the marker data can be calculated by means of
the forward–backward algorithm for hidden Markov models
(cf. Lander and Green 1987). Under perfect marker informa-
tion, (3) reduces to Z.t/ D S.v.t//, the score function eval-
uated at the inheritance vector at locus t . Even under perfect
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Hössjer: Determining Inheritance Distributions via Stochastic Penetrances 1037

marker information, v.t/ is not completely known, due to un-
certainty of founder phases. But because all score functions of
practical interest are invariant with repect to this uncertainty,
S.v.t// is known even though v.t/ is not (Kruglyak et al. 1996,
app. B). An alternative method of calculating Z.t/ was pro-
posed by Kong and Cox (1997), using pointwise likelihood ra-
tio tests for an empirical model de� ned by S and the marker
data.

Example 1 (Two score functions). With binary and scalar
(r D 1) phenotypes, the two possible values Yi D 1 and Yi D 0
refer to “affected” and “unaffected.” This is the setup of non-
parametric linkage (NPL) analysis. If the disease is rare, in-
cluding only the affected pedigree members generally involves
little loss of information.Then the score function quantit� es the
degree of IBD allele sharing among the affected individuals,
P1 ½ P , with known disease status. Let IBDi1 i2 D IBDi1 i2 .v/

be the number of founder alleles shared IBD by i1 and i2, which
is either 0, 1, or 2. Whittemore and Halpern (1994) introduced
a score function that is a constant multiple of

Spairs.v/ D
X

i1<i22P1

IBDi1 i2 ; (4)

and focuses on pairwise allele sharing of affected pedigree
members. Whittemore and Halpern (1994) also de� ned an-
other score function Sall, by putting higher weight than Spairs

on inheritance vectors with simultaneous IBD sharing of many
individuals. Given v and i 2 P , we can trace backward in
the pedigree, the two (possibly identical if there are loops)
founder alleles that were transmitted from the father and
mother to i . In this way, there is a founder allele associated
with each one of the 2jP1j alleles in P1 . Each binary vector
u D .u1; : : : ; ujP1 j/ 2 f0;1gP1 picks out jP1j of these alleles by
taking the paternal and maternal allele of i when ui D 0 and 1.
Let bjj .u/ be the number of times that the j th founder allele is
picked out. Then, for a randomly chosen u,

Sall.v/ D 2¡jP1 j
X

u2f0;1gP1

2fY

jD1

bjj .u/! (5)

is the average number of permutations of f1; : : : ; jP1jg that
leave the terms of jP1j D

P2f
jD1 bjj .u/ intact.

A priori, without making use of information from the pheno-
types, one has

P
¡
v.t/ D w

¢
D 2¡m 8 w 2 Zm

2 ; (6)

whether or not t is linked to the disease locus. This re� ects the
Mendelian mode of inheritance: for each parent, both grand-
parental alleles are equally likely to be transmitted to an off-
spring, and the outcomes of different meioses are independent.
For loci unlinked to the disease, the conditional distribution
of v.t/ given phenotypes coincides with (6), because v.t/ is
then independentof the phenotypes.

Let v D v.¿ / be the inheritance vector of P at the dis-
ease locus. When conditioning on the phenotype vector Y D

.Y1; : : : ; Yn/, I regard all covariates as � xed (nonrandom) and
use (6) and Bayes’s rule to get

P.v D wjY/ D
P.Yjv D w/2¡m

P
w02Zm

2
P .Yjv D w0/2¡m

/ P .Yjv D w/; (7)

for the a posteriori distribution of v. The conditional distrib-
ution in (3) describes knowledge of the inheritance vector for
a � xed pedigree, as given by the marker genes. In contrast, the
conditional distribution in (7) concerns the statistical variation
of v over a (thought to be) large population of pedigrees of the
same structure as P and with the same phenotypevector Y.

The classical lod score in parametric linkage analysis uses
the base-10 logarithm of the likelihood ratio P .Yjv.t/;

¿ D t/=P .Y/ at locus t for perfect marker data. It follows from
Bayes’s rule (7) that the latter is proportional to P .v.t/jY;

¿ D t/. Hence the lod score is a function of the conditional
inheritance distribution. The same is true when maximizing
lod scores over genetic model parameters, the so-called “mod
scores” (see Risch 1984). On the other hand, variance com-
ponents techniques maximize the numerator and denomina-
tor of an approximate likelihood ratio separately (see Almasy
and Blangero 1998). The result is a score function that is
not a function of the conditional inheritance distribution. Re-
cently, several alternative linkage methods have been proposed
for quantitiative traits that, in contrast to variance compo-
nents techniques, are functions of the conditional inheri-
tance distributions (cf. Dudoit and Speed 1999; Sham, Zhao,
Cerney, and Hewitt 2000; Goldstein, Dudoit, and Speed 2001;
Sham, Purcell, Cherny, and Abecasis 2002).

The factor P .Yjv/ in (7) can be expanded further by condi-
tioning on the vector of genotypes G D .G1; : : : ; Gn/. Here
Gi D .a2i¡1; a2i/ consists of the two alleles of i transmit-
ted from the father and the mother. I label the founders
1; : : : ;2f . It is clear that G is a function of the founder alleles
a D .a1; : : : ; a2f / and v. Assuming no segregation distortion
(i.e., a and v are independent), independenceof founder alleles
(random mating), and conditional independenceof phenotypes
given genotypes, I get

P .Yjv/ D
X

G

P.YjG/P .Gjv/ D
X

a

P.Yja;v/P .a/

D
X

a1;:::;a2f

nY

iD1

P .Yi ja;v/

2fY

jD1

P .aj /

D E

Á
nY

iD1

P .Yija; v/

!

: (8)

For simplicity, I assume that each aj 2 f0; 1g, where 0 is the
normal allele and 1 is the disease allele, with p D P .1/ and
q D 1 ¡ p D P .0/. Depending on the application, each pen-
etrance factor, P .Yi jGi/ D P .Yi ja;v/, can be either a prob-
ability or a density, and I put P .Yi jGi/ D 1 for individuals
with unobserved phenotypes. If the covariates are random, then
I condition on them in (7) and (8) as well. The representa-
tion (8) is crucial for the rest of the article. Notice that expecta-
tion is taken with respect to unknown founder alleles, which are
treated as hidden data. Thus the penetrance factors P .Yi ja;v/

are stochastic, because they depend on a.
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Example 2 (Binary phenotypes). For binary phenotypes, as
in Example 1, a logistic regression model incorporating covari-
ates can be formulated according to

P .Yi D 1jGi/ D 1
.Á

1 C exp

Á
¡®jGi j ¡

sX

lD1

¯lxil

!!
;

where jGij D a2i¡1 C a2i is the number of disease alleles of Gi .
Thus the triplet ® D .®0;®1;®2/ determines the genetic con-
tribution, whereas the numbers f¯lg are regression coef� cients
determining the in� uence of the corresponding covariates. The
penetrance factor becomes

P .Yi jGi/ D

Á

1 C exp

Á

¡®jGi j ¡
sX

lD1

¯lxil

!!¡Yi

£

Á

1 C exp

Á
® jGi j C

sX

lD1

¯lxil

!!¡.1¡Yi /

:

The dimension of ® might be reduced. For a dominant model,
put ®1 D ®2 and for a recessive model, put ®0 D ®1 .

Example 3 (Gaussian phenotypes). When the phenotypesare
quantitative and scalar (r D 1), it is common to assume that
the conditionaldistributionof phenotypesgiven genotypes (and
covariates) is Gaussian,

Yi jGi 2 N

Á

mjGi j C
sX

lD1

¯lxil; ¾ 2

!

; (9)

where f¯lgq
lD1 are regression coef� cients and ¾ 2 is the residual

(environmentally caused) variance. In this case, the penetrance
factor is a density

P .Yi jGi/ D 1
p

2¼¾
exp

Á
¡ 1

2¾ 2

Á

Yi ¡ mjGi j ¡
sX

lD1

¯lxil

!2!

:

Example 4 (Survival analysis). Let r D 1 and let Yi be a di-
chotomous disease status indicator as in Example 2. The � rst
covariate, xi1 D ti , is the age of disease onset if Yi D 1 and the
last known unaffected age if Yi D 0. The remaining covariates,
xi2; : : : ; xip , are individual characteristics for pedigree mem-
ber i . A proportional hazards model for the penetrance func-
tion is

P.Yi jGi/ D
(

exp
¡
¡3.ti/

¢
; Yi D 0

¸.ti/ exp
¡
¡3.ti/

¢
; Yi D 1,

where 3.t/ D
R t

0 ¸.u/ du is the cumulative hazard function,

¸.t/ D ¸0.t/ exp

Á

®jGi j C
pX

lD2

¯lxil

!

;

is the hazard function, ¸0.¢/ is the baseline hazard and f¯lg
is the regression coef� cients. As in Example 2, the triplet
.®0;®1;®2/ determines the genetic contribution to the disease.
Note that the penetrance factor is a probability for unaffected
individuals and a density for affected ones. More details on
and extensions of this model have been given by Thomas and
Gauderman (1996).

3. DEFINING STOCHASTIC PENETRANCES

For each pedigree member i , I introduce ji D ji.v/ and ki D
ki.v/ as the founder allele indeces of the two alleles that i re-
ceives from the father and the mother. The vector f.ji; ki/gn

iD1
of length 2n is the gene identity state of P at the disease locus
(cf. Thompson 1974). Because

P .Yi jGi/ D

8
>>>>>>>><

>>>>>>>>:

P
¡
Yij.00/

¢

if aji
D aki

D 0

P
¡
Yij.10/

¢

if aji
D 0; aki

D 1; or aji
D 1; aki

D 0

P
¡
Yij.11/

¢

if aji D aki D 1;
(10)

P .Yi jGi/ is a symmetric bivariate function of aji and aki . In-
troduce

»j D .aj ¡ p/=
p

pq (11)

and, if j 6D k,

»jk D »j »k : (12)

Under random mating, note that faj g2f
jD1 are iid with a binomial

.1;p/ distribution. Hence »j is the standardized version of aj ,
and

E.»j / D E.»j k/ D 0;

E.»j »k/ D 1fjDkg;
(13)

E.»j »kl/ D 0;

E.»jk»lm/ D 1f.j;k/D.l;m/g C 1f.j;k/D.m;l/g:

Appendix A, describes how to expand bivariate functions of
aj and ak as linear combinations of the random variables in
(11) and (12). This expansion is similar to the variance com-
ponents techniqueof Kempthorne (1957), which has been used
by a number of authors to derive IBD probabilities for dichoto-
mous phenotypes. Suarez, Rice, and Reich (1978), and Risch
(1990b)consideed affected sib pairs, and Feingold et al. (1993),
Feingoldand Siegmund (1997), and Teng and Siegmund (1997)
treated other kinds of pedigrees with up to four affected mem-
bers. In the following two sections I generalize these results
by deriving explicit expressions for the inheritance distribution
P.vjY/ for arbitrary pedigrees and phenotypes.

4. EXPONENTIAL EXPANSION OF PENETRANCES

In this section I expand the logarithmof P .YijGi/, which de-
pends on the unknown and stochastic Gi . By symmetry, Gi can
attain one of three values, .00/, .10/, or .11/. I introduce

·ai D p
pq

¡
p

¡
logP

¡
Yi j.11/

¢
¡ logP

¡
Yij.10/

¢¢

C q
¡
logP

¡
Yi j.10/

¢
¡ logP

¡
Yij.00/

¢¢
;

·di D pq
¡
logP

¡
Yi j.11/

¢
(14)

¡ 2 logP
¡
Yi j.10/

¢
C logP

¡
Yi j.00/

¢¢
;

·li D p
pq

¡
logP

¡
Yij.11/

¢
¡ logP

¡
Yij.00/

¢¢
;

as the additive, dominant, and loop random � uctuations of
logP .Yi jGi/.
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Given any � xed (nonrandom)array B D .Bj k/1·j·k·2f , I in-
troduce

M» .B/ D E

Á

exp

Á 2fX

jD1

Bjj »j C
X

1·j<k·2f

Bjk»jk

!!

;

as the moment-generating function of

» D f»j g2f
jD1 [ f»jkg1·j<k·2f

de� ned in (11) and (12). It turns out that the conditional
inheritance distribution involves M» .B/, with coef� cients B
depending on the quantities ·ai , ·di , and ·li .

Proposition 1. The conditional distribution of the inheri-
tance vector is given by

P.vjY/ / exp

Á
X

i2 NR

·di

!
M» .B/; (15)

where the components of B D .Bjk/1·j·k·2f are de� ned by

Bj k D Bjk.v/ D

8
>>>><

>>>>:

X

i2Rjk

·di; j < k

X

i2Rj

·ai C
X

i2 NRj

·li; j D k,
(16)

R D R.v/ D fi 2 Pknown; ji 6D kig;
NR D NR.v/ D fi 2 Pknown; ji D kig;

Rj D Rj .v/ D fi 2 RI ji D j or ki D j g; (17)

Rjk D Rjk .v/ D fi 2 RI .ji ; ki/ D .j; k/ or .k; j/g;
NRj D NRj .v/ D fi 2 NRI ji D ki D j g:

and Pknown is the collection of all pedigree members with
known disease phenotypes.

Note that NR.v/ D ? for all v if the pedigree contains no
loops. Thus, the � rst factor on the right side of (15) vanishes
for outbred pedigrees, and then P .vjY/ can be expressed solely
in terms of the moment-generating function of the array » .

Example 5 (Survival analysis, continued). Consider the sur-
vival analysis model of Example 4. Then

logP .Yi jGi/ D
» ¡e®jGi j3i ; Yi D 0

®jGi j C log¸i.ti/ ¡ e®jGi j3i; Yi D 1,

where ¸i.t/ D ¸0.t/ exp.
Pp

lD2 ¯lxil/ and 3i D
R ti

0 ¸i.u/ du. In-
serting this into (14) yields

·ai D ¡3i·
I
a C 1fYiD1g·

II
a ; (18)

with · I
a D p

pq.p.e®2 ¡ e®1/ C q.e®1 ¡ e®0 // and · II
a Dp

pq.p.®2 ¡ ®1/C q.®1 ¡ ®0//. The dominanceand loop com-
ponents ·di and ·li are de� ned analogously in terms of ·I

d , · II
d ,

·I
l , and · II

l . For an outbred pedigree, P .vjY/ / M» .B/, with

Bjk D

8
>>><

>>>:

¡·I
a

X

i2Rj

3i C · II
a jR1

j j; j D k

¡·I
d

X

i2Rjk

3i C · II
d jRjk j; j < k,

with R1
j D fi 2 Rj I Yi D 1g and R1

jk D fi 2 Rj kI Yi D 1g.

We know that f»j g2f
jD1 are iid and, from (13), all components

of » are uncorrelated. Thus it is tempting to treat » as if it had
independentcomponents and try the approximation

P .vjY/
¼/ exp

Á
X

i2 NR

·di

! 2fY

jD1

M»j
.Bjj/ ¢

Y

1·j<k·2f

M»jk
.Bjk /;

(19)
where M»j

.t/ D E.exp.t»j // and M»jk
.t/ D E.exp.t»jk// are

the moment generating functions of »j and »jk . The approxi-
mation in (18) is better with smaller dominance compo-
nents ·di , because then all Bjk , j < k, are small as well. When
·di ´ 0, the easily-computed formula

P .vjY/ /
2fY

jD1

M»j
.Bjj / (20)

is exact. This is the case for binary phenotypes of Example 6
when Pknown consists only of affecteds and f1 D

p
f0f2 . Fur-

ther, ·di ¼ 0 in Example 3, when m1 D .m0 C m2/=2 and
jm2 ¡ m0j ¿ ¾ , that is, an additive model with a small genetic
component. Formula (20) is also of interest for rare diseases
p ! 0, as is explored further in Section 7.

5. LINEAR EXPANSION OF PENETRANCES

For some genetic models, it is more convenient to expand the
penetrance factor P .Yi jGi/, rather than its logarithm, in terms
of f»j g. This is true for binary phenothypeswhen the penetrance
probabilities are parameterized by affection probabilities given
genotypes. More importantly, the linear expansion shows more
clearly how the conditional inheritance distribution P .vjY/ is
split into different terms involving simultaneous allele sharing
of a varying number of individuals.

I start by introducing

Q¹i D q2P
¡
Yi j.00/

¢
C 2pqP

¡
Yij.10/

¢
C p2P

¡
Yi j.11/

¢
(21)

as the average penetrance of individual i and

Q·ai D
p

pq
¡
p

¡
P .Yi j.11// ¡ P .Yi j.10//

¢

C q
¡
P .Yi j.10// ¡ P .Yi j.00//

¢¢¯
Q¹i ;

Q·di D pq
¡
P .Yij.11// (22)

¡ 2P .Yij.10// C P .Yij.00//
¢¯

Q¹i ;

Q·li D
p

pq
¡
P .Yij.11// ¡ P .Yij.00//

¢¯
Q¹i;

as the amount of additive, dominant, and loop random � uctua-
tion of the ith penetrance factor.

The conditionalinheritancedistribution in this section is built
on statistics QTQ D QTQ.v/, which involve simultaneous allele
sharing of the pedigree members in Q ½ Pknown. When Q D fig
consists of just one individual,

QTi D Q·diHBDi; (23)

where HBDi D HBDi .v/ is 1 if i has both its alleles homozy-
gous by descent and 0 otherwise. For pairs Q D fi1; i2g, the
statistic is

QTi1 i2 D

8
>>><

>>>:

Q·ai1 Q·ai2IBDi1 i2

C Q·di1 Q·di2 1fIBDi1 i2
D2g; i1; i2 2 R

Q·ai1 Q·li2 IBDi1i2; i1 2 R; i2 2 NR
Q·di1 Q·di2 C Q·li1 Q·li2IBDi1i2 =2; i1; i2 2 NR:

(24)
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When jQj ¸ 3, QTQ has quite a complicated expression when
Q \ NR 6D ?. I thus restrict the investigation to outbred pedi-
grees, NR D ?: Given any array b D .bj kI 1 · j · k · 2f / of
natural numbers, I de� ne the bth central moment of » ,

ºb D E.» b/

D E

Á 2fY

jD1

»
bjj

j ¢
Y

1·j<k·2f

»
bjk

j k

!

D
2fY

jD1

ºbj
; (25)

where ºk D E.» k
j / D .pq/¡.k¡2/=2..¡1/kpk¡1 C q k¡1/ for nat-

ural numbers k and bj D bjj C
P

k<j bkj C
P

k>j bjk . In the

last step of (25), I used (12) and the independenceof f»j g2f
jD1.

For any Q ½ Pknown with jQj ¸ 2, I de� ne the vector u D
.ui; i 2 Q/. Here ui decides which alleles of i to pick the grand-
paternal allele (ui D 0), the grandmaternal allele (ui D 1), or
both alleles (ui D 2). Then

QTQ D QTQ.v/ D
X

u2f0;1;2gQ

Y

i2Q01.u/

Q·ai

Y

i2Q2.u/

Q·di ¢ ºb.u/; (26)

where Q01.u/ [ Q2.u/ is a disjoint decomposition of Q into
subsets with ui 2 f0;1g and ui 2 f2g, and b.u/ D .bjk.u/,
1 · j · k · 2f / is de� ned by

bj k.u/ D

8
>>><

>>>:

fi 2 QI ui D 0; ji D j or ui D 1; ki D jg
;

j D kfi 2 QI ui D 2 and .ji; ki/ D .j; k/ or .k; j /g
;

j < k:

For additive models ( Q·di ´ 0), all terms with Q2.u/ 6D ? will
vanish in (26). Hence, only one allele is picked from each indi-
vidual. Notice further that (26) also holds for jQj D 1;2 when
NR D ?, yielding Ti D 0 and Ti1i2 equal to the � rst line of (24).

I gave an alternative de� nition of TQ in terms of IBD-sharing
quantities in earlier work (Hössjer 2001).

I can now state the following result.

Proposition 2. The conditional distribution of the inheri-
tance vector can be expanded as

P .vjY/ / 1 C
jPknownjX

lD1

QSl.v/; (27)

where

QSl.v/ D
X

Q½Pknown
jQjDl

QTQ; (28)

involves the simultaneous allele sharing of l individuals,
l D 1; : : : ; jPknownj.

Example 6 (Binary phenotypes, continued). As a particular
case of Example 2 without covariates, I consider binary pheno-
types

P .Yi D 1jGi/ D fjGi j; (29)

where f0 , f1, and f2 are the penetrance probabilites of the dis-
ease [i.e., fi D 1=.1 C exp.¡®i// in Example 2]. Based on this
binary model, Feingold et al. (1993), and Teng and Siegmund
(1997) have established expansions of the kind given in (27)

for additive models and outbred pedigrees with up to four af-
fected members. The prevalence and the additive and dominant
genetic variance components are

Kp D P .Yi D 1/ D q2f0 C 2pqf1 C p2f2;

Q¾ 2
a D 2pq

¡
p.f2 ¡ f1/ C q.f1 ¡ f0/

¢2
; (30)

Q¾ 2
d D p2q2.f2 ¡ 2f1 C f0/2 :

Then, with R D Kp=.1 ¡ Kp/ the prevalence odds ratio, as
shown in Appendix D,

QS1.v/ /
X

i2P1

HBDi ¡ R
X

i2P0

HBDi ; (31)

where P0 and P1 are the subsets of individuals in Pknown with
Yi D 0 and Yi D 1. For small prevalences, QS1 approximately
equals S]aff HBD D

P
i2P1

HBDi . This is the number of affected
individuals homozygous by descent, a score function intro-
duced by McPeek (1999). For outbred pedigrees,

QS2.v/ / :5.1 ¡ c/ ¢
Á

X

i1 <i22P1

IBDi1 i2 ¡ R
X

i12P1
i22P0

IBDi1 i2

C R2
X

i1 <i22P0

IBDi1 i2

!

C c ¢

Á
X

i1 <i22P1

1fIBDi1 i2
D2g ¡ R

X

i12P1
i22P0

1fIBDi1 i2
D2g

C R2
X

i1 <i22P0

1fIBDi1 i2 D2g

!

Kp¿1
¼ :5.1 ¡ c/Spairs.v/ C cSg-prs.v/; (32)

where c D Q¾ 2
d =. Q¾ 2

a C Q¾ 2
d / is the proportion of total genetic

variance due to dominance effects, Spairs is de� ned in (4) and
Sg-prs D

P
i1<i22P1

1fIBDi1 i2
D2g counts the number of pairs of

affected pedigree members that have the same genotype IBD
(see McPeek 1999). In other words, QS2 is essentially a weighted
average of :5Spairs and Sg-prs when the prevalence is small. The
weight for :5Spairs is 1 in the additive case. I gave results for
higher-order score functions earlier (Hössjer 2001). In particu-
lar, I showed that Sall in (5) is somewhat related to TP1

D QSjP1 j
in the additive case.

6. LOCAL PENETRANCE MODELS

As illustrated in the preceding examples, the penetrance
function commonly includes a set of parameters Ã D
.Ã1; : : : ;Ãd/, which are either known (i.e., estimated before
the linkage analysis) or unknown and then estimated simulta-
neously with the linkage analysis. Thus, applying penetrance
factors PÃ .Yi jGi/ in (8), using (6) and Bayes’s rule (7), yields
an inheritance distribution PÃ .vjY/ dependingon Ã .

Assume a one-dimensional submodel, that is, a family of
penetrance parameters

fÃ "I " ¸ 0g; (33)
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Hössjer: Determining Inheritance Distributions via Stochastic Penetrances 1041

where Ã 0 corresponds to no genetic contribution. This means
that PÃ 0

.YijGi/ is independentof Gi , and hence (6) and (7) im-
ply that PÃ 0

.v D wjY/ ´ 2¡m. The larger the ", the stronger the
genetic effect and the more nonuniform the PÃ "

.vjY/ distribu-
tion. The degree of association between the inheritance vector
and the disease phenotypes, that is, the degree of “nonuni-
formity” of PÃ "

.vjY/, was termed “speci� city” by Thompson
(1997). Thus " may be considered a speci� city parameter of the
genetic model.

6.1 Exponential Expansions

Suppose that there exists a positive integer ½ such that

PÃ "
.vjY/ D 2¡m exp

¡
"½ S.v/=½! C o."½/

¢
(34)

as " ! 0. Following Whittemore (1996) and Commenges
(1994), this can be used to de� ne a likelihood score function.
In fact, suppose that PÃ "

.vjY/ D L."I v/ is interpretedas a like-
lihood function for ". The likelihood score function at " D 0 is
d log½ L."I v/=d"½ j"D0 D S.v/, provided the reminder term in
(34) is suf� ciently smooth. Under the idealized assumption that
the disease locus is known, S.¢/ yields a locally most powerful
test for testing " D 0 against local alternatives " > 0 (see, e.g.,
Cox and Hinkley 1974). Expansions of the kind shown in (34)
were used by Kong and Cox (1997) and Nicolae (1999) as em-
pirical likelihood models, in which " is estimated at each locus
as a way to perform linkage analysis.

Viewing the penetrance factors PÃ "
.Yi jGi/ as functions

of ", the quantities ·ai D ·ai."/, ·di D ·di."/, and ·li D ·li."/

in (14) will also depend on ". Because PÃ0
.Yi jGi/ is inde-

pendent of Gi , it follows from (14) that ·ai.0/ D ·di.0/ D
·li.0/ D 0. Hence it is reasonable to assume that for small
" ¸ 0,

·ai."/ D · 0
ai.0/" C o."/;

·li."/ D · 0
li .0/" C o."/; (35)

·di."/ D · 0
di .0/" C 1

2· 00
di.0/"2 C o."2/:

Given a pedigree member i 2 Pknown , I de� ne a score function

Ti.v/ D · 0
di.0/HBDi ; (36)

with HBDi as de� ned before (23). Further, given two members
i1 and i2 of Pknown, I de� ne a “pair score function” Ti1 i2 D
Ti1i2 .v/ according to

Ti1i2 D

8
>>>>>>>>>><

>>>>>>>>>>:

· 0
ai1

.0/· 0
ai2

.0/IBDi1i2

C · 0
di1

.0/· 0
di2

.0/1fIBDi1 i2
D2g; i1; i2 2 R;

· 0
ai1

.0/· 0
li2

.0/IBDi1 i2 ; i1 2 R; i2 2 NR;

· 0
li1

.0/· 0
ai2

.0/IBDi1 i2 ; i1 2 NR; i2 2 R;

· 00
di .0/1fi1Di2g

C · 0
li1

.0/· 0
li2

.0/IBDi1i2 =2; i1; i2 2 NR;

(37)
with IBDi1i2 as de� ned in Example 1. Note the similarity be-
tween Ti and Ti1i2 and QTi and QTi1 i2 in (23) and (24).

The following corollary of Proposition 1 can now be stated.

Corollary 1. Consider a one-parameter family, fPÃ"
.Yi j

Gi/g"¸0 of genetic models satisfying (35). Then, for small ",
the distribution of the inheritance vector can be expanded as

PÃ "
.vjY/ D 2¡m exp

±
"
¡
S1.v/ ¡ E0.S1/

¢

C "2
¡
S2.v/ ¡ E0.S2/ ¡ var0.S1/

¢¯
2 C o."2/

²
; (38)

where

S1.v/ D
X

i2Pknown

Ti;

(39)
S2.v/ D

X

i1;i22Pknown

Ti1 i2;

E0.Sl/ and var0.Sl/ denote expectation and variance of Sl.v/

taken under " D 0 [i.e., PÃ0
.vjY/ ´ 2¡m], and Ti and Ti1i2 are

as de� ned in (36) and (37).

For inbred pedigrees, · 0
di.0/ 6D 0 for at least some pedigree

member. Therefore, S1 does not vanish, and the likelihoodscore
function is S D S1 ¡ E0.S1/ in (34), with ½ D 1. For outbred
pedigrees, NR D ?. Hence S1 ´ 0 and ½ D 2 in (34), yielding
the likelihood score function S D S2 ¡ E0.S2/. Further, Ti1i2

simpli� es to

Ti1 i2 .v/ D · 0
ai1

.0/· 0
ai2

.0/IBDi1i2 C · 0
di1

.0/· 0
di2

.0/1fIBDi1 i2
D2g
(40)

for outbred pedigrees. The score function S2 based on (40) was
essentially derived by Commenges (1994) for outbred pedi-
grees and an empirical additive likelihood model involvingsto-
chastic founder allele effects but not disease allele frequencies.

For strong genetic models (i.e., large " > 0), higher-order cu-
mulants of » and larger exponents of B 0

j k.0/ will dominate.
This corresponds to simultaneous allele sharing of more than
two individuals. In principle, TQ can be de� ned for subsets
Q ½ Pknown with more than two individuals,although the com-
plexity of the expressions quickly increases with jQj.

Example 7 (Gaussian phenotypes). The penetrance para-
meters in Example 3 are Ã D .m0;m1;m2; ¯; ¾ 2/, where
¯ D .¯1; : : : ; ¯s/

T is the vector of regression parameters. Let
m¤

0 , m¤
1 , and m¤

2 be the mean parameters of a � xed reference
model. When ¯ D 0, the reference model has mean pheno-
type E.Yi/ D q2m¤

0 C 2pqm¤
1 C p2m¤

2 D: m and total variance
V .Yi / D ¾ 2

g C¾ 2, where ¾ 2
g D q2.m¤

0 ¡m/2 C2pq.m¤
1 ¡m/2 C

p2.m¤
2 ¡ m/2 is the genetic variance. This can be split into ad-

ditive and dominant variance components as ¾ 2
g D ¾ 2

a C ¾ 2
d ,

where

¾ 2
a D 2pq

¡
p.m¤

2 ¡ m¤
1/ C q.m¤

1 ¡ m¤
0/

¢2
;

(41)
¾ 2

d D .pq/2.m¤
2 ¡ 2m¤

1 C m¤
0/2:

Introduce a one-parameter trajectory of penetrance parameters
in a direction toward the reference model,

Ã " D
¡
m C "¾ .m¤

0 ¡ m/=¾g;m C "¾ .m¤
1 ¡ m/=¾g;

m C "¾ .m¤
2 ¡ m/=¾g;¯; ¾ 2¢

;

for " ¸ 0. Note that E.Yi/ D m independentlyof " whereas the
heritability (i.e., the ratio between genetic and total variance) is
"2=."2 C 1/ and hence grows with ".
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Let ri D .Yi ¡ m ¡
Ps

lD1 xil¯l/=¾ be the ith standardized
residual. It is proved in Appendix E that the likelihood score
function for an outbred pedigree is

S D S2 ¡ E0.S2/ D 2
X

i1<i2

ri1 ri2

¡
Ci1 i2 ¡ E0

¡
Ci1 i2

¢¢
; (42)

where

Ci1 i2 D .1 ¡ c/ ¢ IBDi1 i2 =2 C c ¢ 1fIBDi1 i2
D2g (43)

and c D ¾ 2
d =¾ 2

g is the fraction of genetic variance for the ref-
erence model due to dominance effects. This score function is
discussed further in Section 8.

Because polygenic or shared environmental effects are not
included, the vector YjG has independent,normal components,
whereas Yjv is a mixture of multivariate normals. For an out-
bred pedigreewith all Yi observed, the � rst two moments of Yjv
are

EÃ "
.Yjv/ D m1C X¯;

covÃ "
.Yjv/ D

¡
covÃ "

.Yi1 ;Yi2 /jv
¢n

i1;i2D1 (44)

D ¾ 2.I C "2C/;

where 1D .1; : : : ; 1/T is an n-dimensional column vector, I is
the n £ n identity matrix, C D .Ci1 i2/ and X D .xil I1 · i · n;

1 · l · s/ the design matrix. It is common in linkage analy-
sis to assume multivariate normality of Yjv based on (44) (see,
e.g., Almasy and Blangero 1998). I have shown (Hössjer 2001)
that the multivariatenormal assumption is locally correct, in the
sense that the same likelihoodscore function (42) is obtained as
for the exact calculation based on Corollary 1.

Example 8 (Survival analysis). Continuing Example 5, I de-
� ne the one-parameter family Ã " D .®0"; ®1"; ®2";¯2; : : : ; ¯p/

of genetic models with ®i" D "®¤
i =¾g . Here ®¤

0 , ®¤
1 , and ®¤

2
are given constants of a reference model and ¾ 2

g D q2.®¤
0/2 C

2pq.®¤
1/2 C p2.®¤

2 /2. I split ¾ 2
g D ¾ 2

a C ¾ 2
d into additive and

dominance components, with ¾ 2
a and ¾ 2

d de� ned by replacing
®¤

i with m¤
i in (41). For an outbred pedigree with Pknown D P ,

the likelihood score function (also see Commenges 1994) is of
the form (42), with ri D 1fYi D1g ¡ 3i a so-called martingale
residual and c D ¾ 2

d =¾ 2
g the fraction of genetic variance for the

reference model due to dominance effects. Appendix E gives
a derivation.

6.2 Linear Expansions

In this section, I expand the inheritance distribution linearly
for small " as

PÃ "
.vjY/ D 2¡m

¡
1 C "½S.v/=½! C o."½/

¢
: (45)

This is slightly different from (34), where the logarithm of
PÃ "

.vjY/ was used. The linear expansion is, for example, more
convenient to use for binary phenotypes;refer to Example 6. As
in Section 6.1, I arrive at (45) by introducing a one-parameter
family of penetrance factors, fPÃ "

.YijGi/g0·"·"max . To this
end, I let P ¤.Yi jGi/ denote the penetrance factors of a � xed
reference model with mean penetrance Q¹i [cf. (21)]. Then in-
troduce

PÃ "
.Yi jGi/ D Q¹i C "

¡
P ¤.Yi jGi/ ¡ Q¹i

¢
I (46)

that is, PÃ "
.Yi jGi/ is a linear function of ". Note that an upper

bound "max of " is needed to ensure that 0 · P".YijGi/ · 1 for
all i 2 Pknown.

Because of linearity, the penetrance variation coef� cients
Q·ai D Q·ai."/, Q·di D Q·di."/, and Q·li D Q·li."/ in (22) satisfy

Q·ai."/ D "·¤
ai;

Q·di."/ D "·¤
di; (47)

Q·li."/ D "·¤
li;

where ·¤
ai , ·¤

di , and ·¤
li are the correspondingcoef� cients of the

reference model P ¤ . This is more restrictive than the exponen-
tial expansion (35).

The following local expansion of the inheritance distribution
can now be derived.

Corollary 2. Consider the family (46) of genetic models.
Then the distribution of the inheritance vector can be expanded
as

PÃ "
.vjY/ / 1 C

jPknown jX

lD1

"l QSl.v/: (48)

The proportionality constant depends on " but not on v. Here
f QSlgjPknown j

lD1 are de� ned as in Proposition 2, with ·¤
ai , ·¤

di , and
·¤

li replacing Q·ai , Q·di , and Q·li . For small " ¸ 0,

PÃ "
.vjY/ D 2¡m

¡
1 C "

¡ QS1.v/ ¡ E0. QS1/
¢

C "2¡ QS2.v/ ¡ E0. QS2/

¡ E0. QS1/
¡ QS1 ¡ E0. QS1/

¢¢
C o."2/

¢
; (49)

where E0 denotes expectation taken under the uniform inheri-
tance distribution (6).

The strict linear expansion (47) is needed only for estab-
lishing (48). A weaker expansion related to (35) suf� ces to
prove (49), at the cost of more laborious notation.

From Corollary 2, I conclude that lower-order score func-
tions QSl , involving simultaneous IBD sharing of few individ-
uals, dominate the inheritance distribution when the genetic
component is weak (i.e., " is small). In fact, for inbred pedi-
grees, (45) holds with ½ D 1 and S D QS1 ¡ E0. QS1/, provided
that the dominance components ·¤

di are not 0. For outbred pedi-
grees, the � rst-order term QS1 vanishes. Then ½ D 2 in (45) with
S D 2. QS2 ¡ E0. QS2//. Higher-order QSl ’s have more in� uence
when the genetic component is strong (i.e., " is large), corre-
sponding to simultaneous allele sharing of many individuals.

Example 9 (Binary phenotypes, continued). In Example 6,
consider a � xed reference model with penetrance probabilites
f ¤

0 , f ¤
1 , and f ¤

2 and prevalence Kp . Then de� ne a 1-df fam-
ily of genetic models Ã " D .f0"; f1"; f2"/, where fi" D Kp C
"Kp.f ¤

i ¡ Kp/= Q¾g . To be precise, I replaced " by "Kp=¾g

in (46) to get a natural interpretation of ". Here Q¾ 2
g D q2 £

.f ¤
0 ¡ Kp/2 C 2pq.f ¤

1 ¡ Kp/2 C p2.f ¤
2 ¡ Kp/2 is the total ge-

netic variance of the reference model. The prevalence is Kp for
all ", and 1 C "2 can be interpreted as the recurrence risk ratio
P.Yi2 D 1jYi1 D 1/=P .Yi2 D 1/ of a monozygotic twin pair i1i2
(Risch 1990a).The local score function follows immediately by
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Hössjer: Determining Inheritance Distributions via Stochastic Penetrances 1043

applying Corollary 2 with QS1 and QS2 as in (31) and (32) and Q¾ 2
a

and Q¾ 2
d as the additive and dominant genetic variances of the

reference model. For outbred pedigrees, ½ D 2, and the optimal
score function S D 2. QS2 ¡ E0. QS2// can be written in the form
of (42), with ri D Yi ¡ Kp and c D Q¾ 2

d = Q¾ 2
g the fraction of to-

tal genetic variance due to dominance effects for the reference
model. For pedigrees with Pknown containing only affected in-
dividuals, the local optimality of QS1 and QS2 has been derived by
McPeek (1999).

7. RARE DISEASES

In Section 6 I kept the disease allele frequency � xed while
varying the penentranceparameters Ã . I now do the opposite,—
keep Ã � xed and let p ! 0. This is of interest for rare diseases,
with at most one disease allele present in the pedigree with high
probability.

Put

NS1.v/ D
2fX

jD1

Y

i2Rj .v/

P .Yi j.10//

P .Yi j.00//

Y

i2 NRj .v/

P .Yi j.11//

P .Yi j.00//
; (50)

with Rj .v/ and NRj .v/ as de� ned in (17). The j th term of (50)
measures the relative risk if the j th founder allele is changed
from 0 to 1, while all other founder alleles equal 0. Note that
no .11/ genotypes occur in Rj , because it is very unlikely that
two founders have a disease allele when p is small.

The following proposition states that a centered version of
NS1 is a pointwise optimal score function as p ! 0.

Proposition 3. As p ! 0,

Pp.vjY/ D 2¡m
¡
1 C p

¡ NS1.v/ ¡ E0. NS1/
¢

C o.p/
¢
; (51)

with NS1 as de� ned in (50) and E0 denoting expectation with
respect to the uniform inheritance distribution (6).

Example 10 (Binary phenotypes, continued). Consider the
binary model (29). For an outpred pedigree, (50) becomes

NS1.v/ D
2fX

jD1

³
1 ¡ f1

1 ¡ f0

´jRj \P0 j³f1

f0

´jRj \P1j
:

For a pedigree with Pknown consisting of affecteds only (P1 D
Pknown), NS1 further reduces to

Srobdom.v/ D
2fX

jD1

³
f1

f0

´jRj j
: (52)

This robust dominant score functionwas introducedby McPeek
(1999), who found that f1=f0 D 7 gave high power in simula-
tions for a variety of additive and dominant models with differ-
ent disease allele frequencies and phenocopy rates f0.

Example 11 (Gaussian phenotypes, continued). Consider
now the Gaussian phenotypes from Example 3. For simplic-
ity, I set all regression coef� cients ¯l to 0. Then P .Yi j.10//=

P .Yi j.00// D K ri¡log.K/=2, where ri D .Yi ¡ m0/=¾ is a stan-
dardized version of Yi and K D exp..m1 ¡ m0/=¾ / measures
the strength of the genetic component. In fact, the heritability

is 2.log.K//2p C o.p/ for small p. For an outbred pedigree,
NS1.v/ in (50) reduces to

Snormdom.v/ :D
2fX

jD1

K

P
i2R j

.ri¡log.K/=2/
; (53)

which is a dominance score function for normal phenotypesand
rare disease alleles.

For recessive binary models (f0 D f1) and inbred pedigrees,
only the second product in each term of (50) is included. This
indicates that the inbred individuals (D NR) are most important
in this case. In fact, Feingold and Siegmund (1997) reported
that inbred individuals are more powerful in detecting linkage
than sib pairs for recessive traits and very rare disease alle-
les. On the other hand, NS1 ´ 0 for recessive traits and outbred
pedigrees. Then higher-order terms are needed in the expan-
sion (51).

8. A SEMIPARAMETRIC WAY TO CHOOSE
SCORE FUNCTIONS

I now describe a general strategy for doing linkage analysis.
Given a genetic model, with arbitrary phenotypes and covari-
ates, I compute the locally optimal score function according to
Corollaries 1 and 2 or Proposition 3 and then use it for link-
age analysis as described in Section 2. The score function ob-
tained ususally contains one or several unknown parameters,
which must be chosen in some way from existing/previous
data or other experience. Therefore, the proposed procedure is
semiparametric. Existing software for multipoint nonparamet-
ric linkage, such as the Genehunter program, can be easily used
in this framework. Only the appropriate score function S and
family weights °i have to be added to the program [cf. (3)].
The semiparametric procedure can be described in more detail
as follows:

1. Choose a parametric model.
2. Derive a locally optimal likelihood score function S

from Corollary 1 by letting " ! 0 [S D S1 ¡ E0.S1/

or S D S2 ¡ E0.S2/, depending on whether the pedigree
is inbred or not], or Proposition 3 by letting p ! 0
[S D NS1 ¡ E0. NS1/]. The locally optimal score functions QS1

and QS2 are equivalent to S1 and S2. This is because the lin-
ear and exponential expansions are equivalent as " ! 0.

3. Normalize the score function to have 0 mean and unit vari-
ance under H0, that is, S Ã S=

p
I , where I D var0.S/.

4. Compute the family score Z.t/ at all loci t of interest ac-
cording to (3).

5. Based on previous experience or data, choose any un-
known quantities remaining in the score function. (The
number of these quantities is often much smaller than the
original number of genetic model parameters.)

6. Repeat steps 1–6 for all pedigrees and de� ne a total link-
age score function according to (1), with weights °i /p

Ii , Ii representing the value of I in step 3 for the ith
pedigree.

The quantity I in step 3 can be interpreted as a Fisher in-
formation. For instance, for weak penetrances, I introduced the
likelihood function L."I v/ in Section 6.1. Then I D E0.S2.v//
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is the second moment of the likelihood score function S eval-
uated at " D 0. This gives the usual de� nition of Fisher infor-
mation when ½ D 1 and a generalized de� nition when ½ > 1.
A reparameterization " Ã "½ =½! gives the usual de� nition of
Fisher information for all ½. The choice of weights °i /

p
Ii in

step 6 corresponds to normalizing the " D 0 score function of
the total likelihood,

QN
iD1 Li."/, by the square root of the total

Fisher information,
PN

iD1 Ii . This is optimal in a pointwise test-
ing (McPeek 1999) or estimation (Hössjer 2003a) sense. Note
that unknown multiplicative constants appearing in S are au-
thomatically removed by the normalization in step 3 and the
normalization of weights in (1).

Example 12 (Local speci� city models). I have shown that
the likelihood score function (42) is locally optimal in a weak
penetrance sense for Gaussian, binary and survival analysis
models, provided that the pedigree is outbred. The unknown
parameters of S D S2 ¡ E0.S2/ are the fraction c of genetic
variance due to dominance effects and possible parameters of
the residuals ri . It generally involves little loss of information
to put c D 0, especially when p is small. The corresponding
(noncentered) score function S2=2,

SWPC D
X

i1<i2

ri1 ri2 IBDi1i2 ; (54)

is the weighted pairwise correlation (WPC) statistic previously
derived by Commenges (1994) using different criteria. For bi-
nary models, when unaffecteds are included in Pknown, SWPC

contains the prevalence Kp as unknown parameter. It can be
easily estimated from population data. If Pknown contains only
affecteds, then .1 ¡ Kp/ enters as a multiplicative constant
of SWPC and can be removed. The resulting equivalent score
function is Spairs . For Gaussian models, ri contains a multi-
plicative constant, ¾ ¡1, that can be removed. The only essen-
tial parameters remaining in ri are the “mean genotype effect”
m and regression parameters ¯ , which can be estimated from
population data. Note that each term of (42) has the form
ri1 ri2 .IBDi1 i2 ¡ E0.IBDi1i2 // when c D 0. Risch and Zhang
(1995, 1996) found that extremely concordant (ri1 ri2 large) and
discordant (¡ri1ri2 large) sib pairs were most informative for
linkage for Gaussian models. This is intitively plasible, be-
cause concordant (discordant)pairs of relatives on average have
a larger (lower) degree of allele sharing under H1 than expected
under H0. Hence they contribute positively to the overall link-
age score around the disease locus under H1, which increases
the power. In survival analysis, ri contains the Cox regression
parameters .¯2; : : : ; ¯p/ and the baseline hazard.

Example 13 (Rare disease alleles). In Example 10, (the cen-
tered version of) Srobdom gave the locally optimal score func-
tions for binary phenotypeswith affecteds only. It includes one
unknown quantity, f1=f0, to be speci� ed by the user.

The Gaussian phenotype generalization Snormdom in Exam-
ple 11 contains K , m0, and ¾ as the unknown quantities. Here
K is the important design parameter, re� ecting the strength of
the genetic component. For rare diseases, m0 and ¾ 2 can be
well approximated by E.Yi/ and the total variance, var.Yi / D
¾ 2

g C ¾ 2 D: ¾ 2
t . Both of these can easily be estimated from pop-

ulation data.

9. A SIMULATION STUDY

Here I present a simulation study for the Gaussian model.
I � rst de� ne some additional concepts. The noncentrality para-
meter (NCP) is the expected value (conditional on all pheno-
types), E.Z.¿//, of the linkage score (1) at the disease locus. It
is closely related to the power for detecting linkage, especially
when the power is large (see Prop. 2 and Feingold et. al. 1993;
Sham, Zhao, and Curtis 1997; Nilsson 1999). But NCP is ana-
lytically more convenient, and it does not require speci� cation
of signi� cance level and threshold. A noncentrality parameter
of about 4 corresponds to signi� cant linkage for a genomewide
scan with perfect marker data (Lander and Kruglyak 1995), al-
though the exact value depends on the set of pedigrees and phe-
notypes, the score function, and the genetic model (Änquist and
Hössjer 2003; Hössjer 2003b). Under perfect marker informa-
tion,

NCP D E.S/ D
X

w

S.w/P .v D wjY/ (55)

for one pedigree, provided that the score function S has been
standardized to have mean 0 and variance 1 under H0, as in
step 3 of the preceding section. For a sample of N pedigrees,

NCP D
p

N ¢
PN

iD1 °iNCPi=NqPN
iD1 ° 2

i =N

(56)

under perfect marker information, with NCPi the noncentrality
parameter of the ith pedigree.

Assume that pedigrees are sampled from a large population
according to a probabilitydistributiondP .Y/. (In general, Y in-
cludes information about which individuals that have known
phenotypes, the phenotype values for these and the pedigree
structure. For simplicity, I retain the notation Y, see Hössjer
2003a for a more general notation.) Then the second factor
of (56) converges to the asymptotic noncentrality parameter,
(ANCP),

ANCP D
R

° .Y/NCP.Y/ dP .Y/
qR

° 2.Y/ dP .Y/

; (57)

as N ! 1. (The square of ANCP is called the “asymptotic
signal-to-noiseratio” in Hössjer 2003a.) The sampling measure
P could be de� ned through some ascertainment scheme based
on probands. Another possiblity is using random sampling,
P D Prnd. This means that pedigree structures are sampled ac-
cording to some distribution. Then, conditional on pedigree
structure, the subset of individuals with known phenotypes is
sampled according to a distribution speci� c for that pedigree
structure. Finally, conditionalon pedigree structure and the sub-
set of individuals with known phenotype, Y is sampled ac-
cording to

P
P .G/P .YjG/, that is, by combining (8) with the

denominatorof (7). I consider a sampling scheme where a frac-
tion, ® (0 < ® · 1) of the most informative and randomly sam-
pled pedigrees is retained according to

dP .Y/ / dPrnd.Y/1f° .Y/¸cg; (58)

where c is chosen so that
R

° .Y/¸c dPrnd.Y/ D ® and the pro-
portionality constant is chosen so that P becomes a probabil-
ity measure. This means that the fraction ® of pedigrees with
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Hössjer: Determining Inheritance Distributions via Stochastic Penetrances 1045

largest weights is retained. If ® D 1, then P is identical to ran-
dom sampling.

Four pedigree structures were used: a sib pair (SP), sib trio
(Strio), sib quartet (Squart), and � rst-cousin pedigree (Cous)
with eight pedigree members; two grandparents, their two chil-
dren with spouses, and two � rst cousins in the third generation.
For all four pedigrees, the two members of the � rst generation
had unknown phenotypes.

I did not include covariates in the Gaussian model, and I as-
sumed, for simplicity, that m D E.Yi/ and ¾ 2

t D var.Yi/ had
been estimated from population data. Because the ANCP is
invariant with respect to location and scale transformations
of the phenotypes, the four penetrance parameters .m0;m1;

m2;and ¾ 2/ can, without loss of generality, be reduced to two,

Disp D .m2 ¡ m0/=¾

and

Dom D .2m1 ¡ m0 ¡ m2/=.m2 ¡ m0/:

The displacement,Disp, quanti� es the strength, and Dom quan-
ti� es the degree of dominance of the genetic component.Under
the mild restriction that mi ’s are nondecreasing, Disp ¸ 0 and
¡1 · Dom · 1, with Dom takingvalues ¡1, for recessive mod-
els, 0 for additive models, and 1 for dominant models.

Figures 1–5 show the results of the simulation study. In these
� gures, plots of 50 ¢ ANCP correspond to a noncentrality para-
meter for a sample of 2,500 pedigrees. However, the reader can
easily rescale to interpret the results for other sample sizes.

Four score functions were used: SWPC; Snormdom with
K D 1:5; the Haseman–Elston score function,

SHE.v/ D
X

i1 <i2

¡
2¾ 2

t ¡ .Yi1 ¡ Yi2 /2¢
IBDi1 i2 I (59)

and the optimal score function S.v/ D P .vjY/. Phenotypes
were centered, Yi Ã Yi ¡ m, for SWPC and standardized,
Yi Ã .Yi ¡ m/=¾t , for Snormdom . SHE is the score function
analog of the classical linkage method for QTL mapping due
to Haseman and Elston (1972), where squared trait differences
.Yi1 ¡ Yi2/2 are regressed against IBDi1i2 . The constant 2¾ 2

t

can be removed in (59) without affecting the ANCP. Then SHE

becomes a score test for the regression slope being 0. However,
the � nite-sample behavior of NCP is often a bit better when
the 2¾ 2

t term is included. The optimal score function Soptimal

maximizes (55) with respect to S subject to the constraints of
0 mean and unit variance under H0 (Hössjer 2003a). It is ideal
(parametric) in the sense that it requires knowledge of the ge-
netic model, and is a good benchmark to use for comparisons
with other score functions.

The two winners are SWPC and Snormdom . These two score
functions have fairly good performance for a wide range of
models. SWPC is better than Snormdom for large p, whereas
the opposite is true for small p and small sampling frac-
tions ®. SHE has comparable or better performance than the
other two score functions only for strong genetic models and
large p. I also investigated the version of SWPC with opti-
mal c D ¾ 2

d =¾ 2
g instead of c D 0. This score function never

had more than a few percent higher NCP than SWPC, even for

(a) (b)

(c) (d)

Figure 1. 50 ¢ ANCP for Randomly Sampled Sib Pair Families as a Function of Degree of Dominance, Dom. The Soptimal (——), SWPC (¡ ¡ ¡¡),
Snormdom with K D 1.5 (¢ ¢ ¢ ¢ ¢ ¢), and SHE (¢ ¡ ¢ ¡¢ ¡¢¡) score functions are plotted, and the number of Monte Carlo iterates is 10,000 in (57). (a) p D .1,
Disp D .5, ® D 1; (b) p D .1, Disp D 2, ® D 1; (c) p D .5, Disp D .5, ® D 1; (d) p D .5, Disp D 2, ® D 1.
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1046 Journal of the American Statistical Association, December 2003

(a) (b)

(c) (d)

Figure 2. 50 ¢ ANCP for Randomly Sampled Sib Pair and Sib Quartet Families as a Function of Displacement Disp. The Soptimal (——), SWPC
(¡¡ ¡¡), Snormdom with K D 1.5 (¢ ¢ ¢ ¢ ¢ ¢), and SHE (¢ ¡ ¢ ¡ ¢ ¡¢¡) score functions are plotted, and the number of Monte Carlo iterates in (57) is 10,000
(a and b) and 2,000 (c and d). (a) p D .01, Dom D 0, ® D 1, SP; (b) p D .1, Dom D 0, ® D 1, SP; (c) p D .01, Dom D 0, ® D 1, Squart; (d) p D .1,
Dom D 0, ® D 1, Squart.

(a) (b)

(c) (d)

Figure 3. 50 ¢ ANCP for Randomly Sampled Sib Pair and Sib Quartet Families as a Function of Tenth Logarithm of Disease Allele Frequency
log10(p). The Soptimal (—–), SWPC (¡ ¡ ¡¡), Snormdom with K D 1.5 (¢ ¢ ¢ ¢ ¢ ¢), and SHE (¢ ¡ ¢ ¡ ¢ ¡ ¢¡) score functions are plotted, and the number
of Monte Carlo iterates in (57) is 10,000 (a and b) and 2,000 (c and d). (a) Disp D 1, Dom D 0, ® D 1, SP; (b) Disp D 4, Dom D 0, ® D 1, SP;
(c) Disp D 1, Dom D 0, ® D 1, Squart; (d) Disp D 4, Dom D 0, ® D 1, Squart.
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Hössjer: Determining Inheritance Distributions via Stochastic Penetrances 1047

(a) (b)

(c) (d)

Figure 4. 50 ¢ ANCP for Sib Pair Families as a Function of Sampling Fraction ®. The Soptimal (—–), SWPC (¡ ¡¡¡), Snormdom with K D 1.5 (¢ ¢ ¢ ¢ ¢ ¢),
and SHE (¢ ¡ ¢ ¡ ¢ ¡ ¢¡) score functions are plotted. The number of Monte Carlo iterates in (57) is 10,000, of which the fraction ® most informative
ones are retained. In (a) and (c) the solid line is omitted, because it essentially coincides with the dotted line. (a) p D .01, Disp D 1, Dom D 0;
(b) p D .01, Disp D 4, Dom D 0; (c) p D .1, Disp D 1, Dom D 0; (d) p D .1, Disp D 4, Dom D 0.

(a) (b)

(c) (d)

Figure 5. 50 ¢ ANCP for Sib Pair, Sib Trio, Sib Quartet, and First-Cousin Families as a Function of Sampling Fraction ®. The Soptimal (—–), SWPC
(¡ ¡ ¡¡), Snormdom with K D 1.5 (¢ ¢ ¢ ¢ ¢ ¢), and SHE (¢ ¡ ¢ ¡ ¢ ¡ ¢¡) score functions are plotted. The number of Monte Carlo iterates is 10,000 (a and d),
5,000 (b), and 2,000 (c), of which the fraction ® most informative ones are retained. (a) p D .1, Disp D 2, Dom D 0, SP; (b) p D .1, Disp D 2, Dom D 0,
Strio; (c) p D .1, Disp D 2, Dom D 0, Squart; (d) p D .1, Disp D 2, Dom D 0, Cous.
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purely recessive (Dom D ¡1) or dominant (Dom D 1) models.
I also tried Snormdom with other values of K in the range of
2 to 10. As a rule of thumb, larger values of K gave much
less robust prestanda. Especially for large p and strong ge-
netic models, the performance of Snormdom drasticallydecreased
with increasing K . The same was true for the optimal version
of Snormdom with K D exp..m1 ¡ m0/=¾/ and standardization
Yi Ã .Yi ¡ m0/=¾ . It was best only among the Snormdom score
functions for very small disease allele frequencies.

10. OUTLOOK

10.1 Oligogenic, Polygenic, and Environmental Effects

In (8) I assumed conditionallyindependentphenotypesgiven
the genotypes. This assumption is not appropriate if shared en-
vironmental effects or trait loci from other chromosomes are
contributing to the disease.

Two-locus IBD probabilities for affected sib pairs have
been considered by other authors. Cordell, Todd, Bennett,
Kawagucki, and Farrall (1995) used variance components tech-
niques of James (1971) and Risch (1990a), whereas Dudoit and
Speed (1999) and Bengtsson (2001) used methods that cou-
ple monotonicity of penetrances and IBD probabilities. Fur-
ther results for additive models of multilocus penetrance have
been derived by Feingold and Siegmund (1997) and Teng and
Siegmund (1997).

It is possible to derive P .vjY/ /
P

v0 P.Yjv;v0/ for oli-
gogenic models with two major unlinked genes. Here v and v0

are the inheritancevectors at the two disease loci and the contri-
bution from v0 is summed, because markers from the � rst chro-
mosome give no information about v0 (see Hössjer 2001 for
more details).

Another approach is to retain just one inheritance vector v

and build in conditional dependence into P .YjG/ via some
given penetrance function that includespolygenicand/or shared
environmental effects. Note that this penetrance function is de-
� ned for YjG rather than the components Yi jGi (see Hössjer
2003c for details).

Tang and Siegmund (2001), Putter, Sandkuijl, and van
Houwelingen (2002), and Wang and Huang (2002) recently de-
� ned score functionsfor quantitativetraits. These authors incor-
porate polygenicand shared environmentaleffects by modeling
Yjv as a multivariatenormal vectorwith dependentcomponents
due to effects from polygenes and the gene at the main locus.

10.2 Nonparametric Approach

When little is known about the genetic model, it is plausible
that power can be increased by maximizing the local score func-
tions over several parameters simultaneously with the linkage
analysis. This possiblity was mentioned by Whittemore (1996).
Let S.vI µ ¤/ represent a local likelihood score function derived
from a trajectory µ ¤, with Z.tI µ ¤/ the corresponding total link-
age score (1). Then

sup
µ¤

Z.tI µ¤/ (60)

is a nonparametric alternative to the semiparametric procedure
of Section 8, where the trajectory was kept � xed. Of course,
the increased number of degrees of freedom must be adjusted
for when computing p values for the maximal linkage score.

For the Gaussian model, the score function S in (42) could be
used. The trajectory µ ¤ depends on one parameter c, which can
be maximized over. However, because c D 0 is often a good
approximation, it is not certain whether the improved model
� tting justi� es the increased degrees of freedom.

10.3 Other Extensions

It is possible to generalize the genetic model in various other
ways. If the assumption of random mating is dropped, Propo-
sition 1 remains still valid, although the variables f»ig are no
longer independent.This will affect the local penetrance expan-
sion of Corollary 1 for outbred pedigrees. Multiallelic models
can be treated in principle, using U statistics theory to extend
Lemma A.1 in Appendix A. Finally, various kinds of environ-
mental parameters (such as the regression coef� cents of Exam-
ple 7) can be easily incorporated into the general framework.

APPENDIX A: DECOMPOSITION OF
BIVARIATE FUNCTIONS

Here I demonstrate how to expand a bivariate function h.aj ; ak/

as a linear combination of the random variables f»j g and f»jkg in-
troduced in (11) and (12). It is convenient to introduce two bivariate
forms, h¢; ¢il : R3 £ R3 ! R, l D 1;2, according to

hx;yi1 D q2x1y1 C 2pqx2y2 C p2x3y3

and

hx; yi2 D qx1y1 C px3y3;

where h¢; ¢i1 introduces a norm and h¢; ¢i2 a seminorm on R3. Then it
can be seen that

e1 D .1; 1; 1/;

e2 D
1

p
2pq

.¡2p; q ¡ p; 2q/;

and

e3 D .1=q ¡ 1;¡1;1=p ¡ 1/;

and

Ne1 D .1;0;1/;

and

Ne2 D
¡
¡

p
p=q;0;

p
q=p

¢

are mutually orthogonal unit vectors with respect to h¢; ¢i1 and h¢; ¢i2.
I can now formulate the following result.

Lemma 1. Consider a bivariate function h : f0; 1g £f 0;1g ! R,
which is symmetric (h.0;1/ D h.1;0/). Then

h.aj ; ak/ D

8
>>><

>>>:

hh; e1i1 C 1p
2

hh; e2i1.»j C »k/

C hh;e3i1»j k if j 6D k

hh; Ne1i2 C hh; Ne2i2»j if j D k;

where h D .h.0; 0/;h.0; 1/;h.1; 1//.

Proof. The result can be derived from U statistics theory (see, e.g.,
Lee 1990), but I sketch a direct elementaryproof here in the case where
j 6D k (the case j D k is similar). De� ne

r.aj ; ak / D h.aj ; ak/

¡
³

hh; e1i1 C 1p
2

hh; e2i1.»j C »k/ C hh; e3i1»jk

´
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Hössjer: Determining Inheritance Distributions via Stochastic Penetrances 1049

and r D .r.0; 0/; r.0;1/; r.1; 1//. Then, it follows from (13) that

E.r.aj ; ak // D 0 () hr; e1i1 D 0;

E.»j r.aj ; ak // D 0 () hr; e2i1 D 0;

and

E.»j kr.aj ; ak // D 0 () hr;e3i1 D 0:

Because e1 , e2 , and e3 are linearly independent,r D 0, and this proves
the assertion.

APPENDIX B: PROOF OF PROPOSITION 1

It is convenient to introduce hi .0;0/ D logP .Yi j.00//, hi.1; 0/ D
hi .0; 1/ D logP .Yi j.10//, and hi .1;1/ D logP .Yi j.11//. Then write
logP .Yi jGi / D h.aji

; aki
/. This representation uses the fact that

given v, the logarithm of the penetrance factor is a function of two
founder alleles, aji

and aki
. Let ¹i D q2hi.0; 0/ C 2pqhi .0;1/ C

p2hi .1; 1/ and ¹li D qhi.0; 0/ C phi .1; 1/ be the mean penetrance
effects for an individual who (given v) has alleles IBD or not. Note
that ·ai , ·di , and ·li in (14) can be written in terms of hi .¢; ¢/ as well.
Further, hi .¢; ¢/ ´ 0 for pedigree members with unknown phenotypes.

It follows from (8) and Lemma A.1 in Appendix A that

P .Yjv/ D E

Á
exp

Á
nX

iD1

hi

¡
aji

; aki

¢
!!

D E

Á

exp

Á
X

i2R

¡
¹i C ·ai

¡
»ji

C »ki

¢
C ·di»jiki

¢

C
X

i2 NR

¡
¹li C ·li»ji

¢
!!

/ E

Á

exp

Á
X

i2R

¡
·ai

¡
»ji

C »ki

¢
C ·di»jiki

¢

C
X

i2 NR

¡
·di C ·li»ji

¢
!!

: (B.1)

I divided by exp.
P

i2Pknown
¹i /, which is independent of v, in the

last step of (B.1), and also used the fact that ¹li ¡¹i D ·di . The propo-
sition now follows by combining (7) and (B.1) with the de� nition of
M» .B/ and rearranging terms in (B.1).

APPENDIX C: PROOF OF PROPOSITION 2

Introduce the bivariate function Qhi .0; 0/ D P .Yi j.00//= Q¹i ¡ 1,
Qhi .0; 1/ D Qhi.1; 0/ D P .Yi j.10//= Q¹i ¡ 1, and Qhi.1; 1/ D P .Yi j.11//=

Q¹i ¡ 1. Further, let Q¹li D qP .Yi j.00// C pP .Yi j.11// be the average
penetrance value of an individual homozygous by descent. Then it fol-
lows from (8), Lemma A.1, and the de� nitions of Q¹i , Q·di , Q·ai , and Q·li

that

P .Yjv/ D
nY

iD1

Q¹i ¢ E

Á
nY

iD1

¡
1 C Qhi

¡
aji

; aki

¢¢
!

/ E

Á
Y

i2R

¡
1 C Q·ai

¡
»ji

C »ki

¢
C Q·di»ji ki

¢

£
Y

i2 NR

¡
1 C Q·di C Q·li»ji

¢
!

: (C.1)

The last step of (C.1) used the fact that Q¹li = Q¹i ¡ 1 D Q·di .

Now (C.1) can be expanded as a sum of 4jRj3j NRj terms. For any
nonempty Q, let TQ be the sum of those terms for which the nonunity

factors Q·ai»ji
, Q·ai»ki

, Q·di»jiki
, Q·di , and Q·li»ji

are taken precisely from
the individuals in Q. It is easy to see that this de� nition of TQ coin-
cides with (23), (24), and (26). The latter formula is given only for
outbred pedigrees, and the exact de� nition of ui is

ui D

8
><

>:

0 if a grandpaternal factor Q·ai»ji
is picked

1 if a grandmaternal factor Q·ai»ki
is picked

2 if a joint factor Q·di»ji ki
is picked.

Note also that the � rst moments of »j and »jk are 0; this explains why
only HBD individuals are included in (23).

By the de� nition of TQ , P .Yjv/ / 1 C
P

Q TQ . In conjunction
with (7) and (28), this proves (27).

APPENDIX D: SCORE FUNCTIONS FOR BINARY
PHENOTYPES OF ORDER 1 AND 2

Here I derive the expressions (31) and (32) for QS1 and QS2. De� ne

Q·a D
p

pq
¡
p.f2 ¡ f1/ C q.f1 ¡ f0/

¢
=Kp ;

Q·d D pq.f2 ¡ 2f1 C f0/=Kp;

and

Q·l D
p

pq.f2 ¡ f0/=Kp :

Then it follows from (22) that Q·ai D Q·a when i 2 P1 and Q·ai D ¡R Q·a

when i 2 P0. Hence Q·ai attains only two values in the pedigree. Simi-
larly, Q·di and Q·li are the same as Q·d and Q·l when i 2 P1 and differ by
a factor ¡R when i 2 P0. From this, I immediately derive (31) from
(23) and (28). Noticing that Q·2

a D Q¾ 2
a =.2K2

p/ and Q·2
d D Q¾ 2

d =K2
p , I also

deduce (32) from (24) and (28).

APPENDIX E: PROOFS FROM SECTIONS 6 AND 7

Proof of Corollary 1

Let B."/ be the value of B in (16) corresponding to the penetrance
vector Ã" . Because the cumulants of f»j ; »jkg up to order 2 are given

by (13), it follows that log.M.B."/// D :5
P

j·k Bjk."/2 C o."2/.
Differentiating (16) with respect to " and using (35), note that

B 0
jk.0/ D

8
>>>><

>>>>:

X

i2Rjk

· 0
di.0/; j < k

X

i2Rj

· 0
ai.0/ C

X

i2 NRj

· 0
li.0/; j D k.

Interchanging summation with respect to .j; k/ and .i1; i2/, ob-
serve that S2 in (39) can be written as S2.v/ D

P
i2 NR · 00

di.0/ C
P

j·k B0
jk.0/2. This, in conjunctionwith (35) and Proposition1, gives

PÃ "
.vjY/ / exp."S1.v/ C "2S2.v/=2 C o."2//. I � nally arrive at (38)

by using
P

w PÃ "
.v D wjY/ D 1, which holds for each " ¸ 0.

Deriving Local Score Functions for Gaussian Phenotypes

Let ui D m¤
i ¡ m. Because logP .Yi jGi / D constant ¡ :5.ri ¡

"ujGi j=¾g/2, the additive, dominant, and loop components become

·ai."/ D "ri
p

pq
¡
p.m¤

2 ¡ m¤
1/ C q.m¤

1 ¡ m¤
0/

¢
=¾g

¡ "2p
pq

¡
p.u2

2 ¡ u2
1/ C q.u2

1 ¡ u2
0/

¢
=.2¾ 2

g /;

·di."/ D "ripq.m¤
2 ¡ 2m¤

1 C m¤
0/=¾g (E.1)

¡ "2pq.u2
2 ¡ 2u2

1 C u2
0/=.2¾ 2

g /;

·li."/ D "ri
p

pq.m¤
2 ¡ m¤

0/=¾g ¡ "2p
pq.u2

2 ¡ u2
0/=.2¾ 2

g /;
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for i 2 Pknown. Expanding (E.1) locally around " D 0, (35) holds, with

· 0
ai.0/ D ri

p
pq

¡
p.m¤

2 ¡ m¤
1/ C q.m¤

1 ¡ m¤
0/

¢
=¾g ;

· 0
di.0/ D ripq.m¤

2 ¡ 2m¤
1 C m¤

0/=¾g ;

· 00
di.0/ D ¡pq.u2

2 ¡ 2u2
1 C u2

0/=¾ 2
g ;

and

· 0
li .0/ D ri

p
pq.m¤

2 ¡ m¤
0/=¾g:

Inserting these expressions into (37) yields

Ti1i2 D ri1 ri2

¡
.1 ¡ c/ ¢ IBDi1 i2 =2 C c ¢ 1fIBDi1 i2

D2g
¢

D ri1 ri2 Ci1i2 ; (E.2)

when NR D ? and c D ¾ 2
d =¾ 2

g . Because I am assuming an outbred
pedigree, the likelihood score function is S D S2 ¡ E0.S2/, with
S2 D

P
i1 i2

Ti1i2 as de� ned in (39). The matrix .Ti1 i2 / symmetric, and
its diagonal entries are independent of v. Hence the diagonal can be
absorbed into the centering constant of S2, and S D S2 ¡ E0.S2/ can
be written with S2 as in (42).

Proof of Corollary 2

Equation (48) follows from Proposition 2 and the expansions
in (47). Then, using

P
w PÃ "

.v D wjY/ D 1 gives

PÃ "
.vjY/ D 2¡m 1 C

PjPknown j
lD1 "l QSl.v/

1 C
PjPknownj

lD1 "lE0. QSl /
;

and Taylor expansion of this formula up to order 2 gives (49).

Score Function in Example 8

I use (40) and (39) to derive the score function. By differenti-
ating (18) and the analogous expression for ·di with respect to ",
I obtain · 0

ai.0/ D ·
¤;II
a ri=¾g and · 0

di.0/ D ·
¤;II
d ri=¾g , where ·

¤;II
a D

p
pq.p.®¤

2 ¡ ®¤
1 / C q.®¤

1 ¡ ®¤
0// and ·

¤;II
d D pq.®¤

2 ¡ 2®¤
1 C ®¤

0 /.

Notice further that ¾ 2
a D 2.·

¤;II
a /2 and ¾ 2

d
D .·

¤;II
d /2. This gives (42)

on noticing that fCi1 i2g is symmetric and that its diagonal elements are
independent of v.

Proof of Proposition 3

I apply (15). Note � rst that

·di D p
¡
hi.1;1/ ¡ 2hi.0; 1/ C hi.0; 0/

¢
C o.p/ (E.3)

as p ! 0, with h.¢; ¢/ as de� ned in Appendix B. Thus ·di=
p

p ! 0,
whereas ·ai=

p
p ! hi .0; 1/ ¡ hi .0; 0/ and ·li =

p
p ! hi.1; 1/ ¡

hi.0; 0/ as p ! 0. Hence, by (16),

Bjj =
p

p !
X

i2Rj

¡
hi .0;1/ ¡ hi .0;0/

¢

C
X

i2 NRj

¡
hi.1; 1/ ¡ hi .0; 0/

¢
D: sj

and Bjk=
p

p ! 0 when j < k . After some computations, it is seen
that

M» .B/ D
2fY

j D1

M»j
.Bjj / C o.p/; (E.4)

which follows from the independence of f»j g2f
jD1 and the fact that the

nondiagonal entries of B can be ignored in the limit p ! 0. Now the
de� nition of M»j

after (19) implies that

M»j
.Bjj / D q exp

³
¡

Bjjp
p

p
p

q

´
C p exp

³
Bjjp

p

p
q

´

D 1 C p
¡
exp.sj / ¡ sj ¡ 1

¢
C o.p/: (E.5)

Observe that

2fX

jD1

sj D 2
X

i2R

¡
hi .0;1/ ¡ hi.0;0/

¢

C
X

i2 NR

¡
hi.1; 1/ ¡ hi .0; 0/

¢

D 2
X

i2Pknown

¡
hi.0; 1/ ¡ hi .0; 0/

¢

C
X

i2 NR

¡
hi.1; 1/ ¡ 2hi .0; 1/ C hi.0; 0/

¢
: (E.6)

Because the third line of (E.6) is independentv, (15) may be combined
with (E.3), (E.4), (E.5), and (E.6) to deduce that Pp.vjY/ / 1Cc.p/C
p

P2f
jD1 exp.sj /Co.p/, with c.p/ D O.p/ independentof v. Formula

(51) � nally follows by using the de� nition of hi .¢; ¢/ and
P

w Pp.v D
wjY/ D 1.

[Received October 2001. Revised September 2003.]
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