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Applied Section

Non-parametric and parametric bootstrap techniques
for age-to-age development factor methods in stochastic

claims reserving
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*Department of Mathematical Statistics, Stockholm University, SE-106 91 Stockholm, Sweden

$Länsförsäkringar Alliance, SE-106 50 Stockholm, Sweden
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In the literature, one of the main objects of stochastic claims reserving is to find models underlying the

chain-ladder method in order to analyze the variability of the outstanding claims, either analytically or

by bootstrapping. In bootstrapping these models are used to find a full predictive distribution of the

claims reserve, even though there is a long tradition of actuaries calculating the reserve estimate

according to more complex algorithms than the chain-ladder, without explicit reference to an

underlying model. In this paper we investigate existing bootstrap techniques and suggest two

alternative bootstrap procedures, one non-parametric and one parametric, by which the predictive

distribution of the claims reserve can be found for other age-to-age development factor methods than

the chain-ladder, using some rather mild model assumptions. For illustration, the procedures are

applied to three different development triangles.

Keywords: Bootstrap; Chain-ladder; Development factor method; Development triangle; Stochastic

claims reserving

1. Introduction

The provision for outstanding claims � henceforth the claims reserve � is a major

contributor to the total risk of an insurance company, especially for long-tailed lines of

business. In order to estimate the risk that the provisions will not suffice to pay all claims

in the end, the actuary’s best estimate of the outstanding claims needs to be

complemented by its predictive distribution; this is the ultimo perspective. For solvency

control and risk management with Dynamic Financial Analysis (DFA) we are also

interested in a shorter period, say the one-year risk. The reserving risk is then the risk of a

negative run-off result, due to unexpectedly large claims payments, changes in inflation

regime or in the discount rate in the simulated forecast year.

A well-known method for calculating the uncertainty of the claims reserve, obtained by

chain-ladder, in meeting ultimate claims, or at least its mean squared error of prediction,

is the one introduced by Mack (1993) and recently treated by Buchwalder et al. (2006) and
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Mack et al. (2006). Another popular method is bootstrapping, as introduced in this

context by England & Verrall (1999) and England (2002). The latter method gives a full

predictive distribution without further assumptions and can easily be used also for the

purpose of finding the risk in the run-off result. Therefore, we focus on bootstrap methods

here.

The standard statistical approach to claims reserving would be to first specify a model,

then find an estimate of outstanding claims under the model, e.g. by maximum likelihood.

Finally, the model could be used to find the precision of the estimate, e.g. the mean

squared error of prediction or the predictive distribution.

In practice there is a long tradition of actuaries calculating reserve estimates according

to complex algorithms without explicit reference to a model. The actuaries often make ad

hoc adjustments of the reserving methods in order to fit the data set under analysis. The

object of the research area called stochastic claims reserving has mostly been to find a

model and a method of giving a measure of the precision of the actuary’s best estimate

post festum, i.e. without the possibility of changing the estimate itself. Hence, a model that

would have produced the given estimate is constructed and then used in order to find the

precision of the estimate. This approach can lead to unreasonable models, which cannot

be used anyway if the actuary changes her reserving method.

The object of several papers on stochastic claims reserving has been to find a model

under which the best estimate is the one given by the chain-ladder method; indeed, there

has been a discussion of which model is underlying the chain-ladder, see in particular

Mack & Venter (2000), Verrall (2000), and Verrall & England (2000). So even though the

actuary did not use a model to pick her best estimate, these articles try to find one that

would make her work consistent with the standard approach of statistics, to specify the

model before finding the estimate. In Verrall (2000) several underlying models, which

produce the same reserve estimates as the chain-ladder method, are suggested, and it is

also remarked on the importance of careful examination of the assumptions of the model

and how the chosen model effects the outstanding claims.

In this paper we argue that if the actuary’s best estimate is given a priori to the

stochastic claims reserving there is no reason why the model should reflect the estimate;

we should better use a reasonable model that fits the data to find the precision of the

estimate. Moreover, we question the need to bootstrap an underlying model with claim

distributions fully specified, which happens to reproduce the actuary’s best estimate.

Instead, we develop a bootstrap methodology for the data with as few model

assumptions as possible, which allows the actuary to change her reserving algorithm.

We assume that the claims are independent with a given mean and variance function.

The mean function is typically chosen as multiplicative, but more generally, we let

the reserving algorithm define the mean function in the bootstrap world, using the fitted

claims. Then, using the non-parametric bootstrap approach of Pinheiro et al. (2003), it

only remains to specify the variance function of the claims, given an underlying

assumption that all standardized residual claims have (approximately) the same

distribution. For comparison, we also define a parametric bootstrap version of

Pinheiro’s approach that requires more distributional assumptions. We consider
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standardized as well as unstandardized prediction errors and apply the suggested

bootstrap procedures to development triangles of different types.

Section 2 contains the definitions and gives an example of an age-to-age development

factor method that might be used in practice. In Section 3 the non-parametric bootstrap

procedure of Pinheiro et al. (2003) is discussed and an alternative parametric procedure is

suggested, as well as bootstrap procedures, which can be used to find the predictive

distribution of other age-to-age development factor methods than the chain-ladder.

Furthermore, the double bootstrap is discussed and some details of the implementation of

the bootstrap procedures are commented. The bootstrap procedures are compared on

three development triangles in Section 4 and finally, some technical results are collected in

Appendices A and B.

2. A basic model

We consider data in the form of a triangle of n incremental observations {Cij; i, j �9},

where 9 denotes the upper, observational triangle 9�{i�1, . . .,t; j�1, . . .,t � i�1} and

Cij is, e.g. paid claims, number of claims, claims incurred, or some other quantity of

interest of origin year i in development year j, see Table 1. For the time being we discuss

paid claims. The actuary’s goal is then to predict the sum of the delayed claim amounts in

the lower, unobserved future triangle {Cij; i, j �D}, where D�{i�2, . . .,t; j�t � i�2, . . .,t},

see Table 2. We write R�aD Cij for this sum, which is the outstanding claims for which

the insurance company must hold a reserve.

Above we have implicitly made the common assumption that claims are settled within

the t observed years. In long-tailed business we often have no origin year with finalized

claims; when needed, we extend the model so that the unknown claims extend beyond t in

a tail of length u, i.e. over the development years t, t�1, . . ., t�u. For simplicity, we use

the notation D for the set of unobserved claims in this case, too.

In practice, the actuary has used some method to calculate an estimate of the

outstanding claims R; in statistical terminology this is rather a prediction of R. We assume

that the method gives estimates m̂ij of the cell expectations mij�E(Cij) for all claims in

both 9 and D, and that these estimates are functions of our observations 9C‹{Cij; i, j �9}

only. (We will use the notation 9x to denote the 9 collection of any variable x, and

similar for Dx.) The estimate of outstanding claims is then R̂�aD m̂ij: This is the case for

Table 1. The triangle 9 of observed incremental payments.

Development year

Accident year 1 2 3 . . . t�1 t

1 C11 C12 C13 . . . C1,t�1 C1,t

2 C21 C22 C23 . . . C2,t�1

3 C31 C32 C33 . . .

/n /n /n /n
t�1 Ct�1,1 Ct�1,2

t Ct,1
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age-to-age development factor methods. Note in particular that we do not assume that the

reserving method is based on an explicit statistical model.

Some reserving methods operate on cumulative claims Dij�aj
l�1 Cil rather than

incremental claims Cij. Let mij�E(Dij). Here is an example of an age-to-age development

factor method that fits our scheme:

1. The chain-ladder method (see Taylor 2000), is used to produce development factors

f̂ j that are estimates of fj�mi, j�1/mij, perhaps after excluding the oldest observations

and/or sole outliers in 9.

2. For 3BjBt, say, the f̂ js are smoothed by some method, say exponential smoothing,

i.e. they are replaced by estimates obtained from a linear regression of log(f̂ j�1) on

j. By extrapolation in the linear regression, this also yields f̂ j for the tail j�t, t�1. . .,

t�u. The original f̂ js are kept for j53 and the smoothed ones used for all j�3.

3. Now estimates m̂ij for D are computed as in the standard chain-ladder method.

4. Estimates of m̂ij for 9 are obtained by the process of backwards recursion described

in England & Verrall (1999).

5. Finally, the obtained claim values may be discounted by some interest rate curve, or

inflated by assumed claims inflation. The latter of course requires that the

observations were recalculated to fixed prices in the first place.

We now have an estimator R̂�h(9C) for some possibly quite complex function h that

might be specified only by an algorithm as in the example. Our primary object is to find

the bootstrap estimate of the predictive distribution of R̂:

3. Bootstrap methods

The basic idea of bootstrapping is to work with the Bootstrap world in order to make

inference on the Real world see Efron & Tibshirani (1993). This is done by investigating

the result of B simulations in the bootstrap world and assuming that the conclusions from

these are approximately valid in the real world; this is the so-called plug-in-principle Efron

& Tibshirani (1993). With the outstanding claims in consideration this means that a

relation between the true outstanding claims R and its estimator R̂ in the real world can be

substituted in the bootstrap world by their bootstrap counterparts R**, i.e. the true

Table 2. The triangle D of unobserved future claim costs.

Development year

Accident year 1 2 3 . . . t�1 t

1

2 C2,t

3 C3,t�1 C3,t

/n /n /n
t�1 Ct�1,3 . . . Ct�1,t�1 Ct�1,t

t Ct,2 Ct,3 . . . Ct,t�1 Ct,t
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outstanding claims in the bootstrap world, and R̂�; i.e. the estimated outstanding claims in

the bootstrap world. Hence, the process error and the estimation error are considered by

R** and R̂�; respectively. This makes it possible to approximate the mean square error of

prediction as well as its predictive distribution. Henceforth we use the index ‘*’ for random

variables or plug-in estimators in the bootstrap world which correspond to observations or

estimators in the real world, while the index ‘**’ is used for random variables in the

bootstrap world when the counterparts in the real world are unobserved.

Pinheiro et al. (2003) use the plug-in-principle to obtain the predictive distribution of R

by a non-parametric bootstrap technique which is documented in a general context by

Davison & Hinkley (1997). Even though Pinheiro et al. (2003) adopt the statistical

assumptions underlying the chain-ladder in the literature, the bootstrap procedure can

easily be extended to other reserving algorithms as well since the plug-in-principle is used.

Hence, our purpose is to modify it to a non-parametric bootstrap procedure which works

for age-to-age development factor methods used in practice, e.g. the one described in

Section 2. We also suggest a completely parametric approach consistent with, and as a

complement to, the non-parametric procedure.

3.1. Bootstrapping data with a generalized linear model (GLM) using standardized

prediction errors

Some assumptions about the model structure of 9C have to be imposed in order to

bootstrap the data. In the literature a common choice is to use a generalized linear model

(GLM), in particular an over-dispersed Poisson distribution (ODP) with a logarithmic link

function. A consequence of this underlying model is that the expected claims obtained by

maximum likelihood estimation of the parameters in the GLM equal the ones obtained by

the chain-ladder method, if the column sums of the triangle are positive, see Renshaw &

Verrall (1998). Thus, the expectations of the claims can be obtained either by maximum

likelihood estimation or by the chain-ladder, while the variances, which are needed for the

residuals, are given by the assumption of the GLM. Note, however, that for the results obtained

by the GLM to equal the chain-ladder results the full triangle must be used. Since actuaries

often use development factor methods similar to the example described in Section 2, a GLM

like the ODP may be very discordant with how the actuary has actually fitted the model.

The bootstrap methods described by England & Verrall (1999), England (2002), and

Pinheiro et al. (2003) are all based on a GLM. The method discussed in Pinheiro et al.

(2003) assumes the following log-additive structure of the n�t(t�1)/2 incremental

observations in 9C:

E(Cij)�mij and Var(Cij)�fm
p
ij

log(mij)�hij

hij �c�ai�bj; a1�b1�0 :(3:1)

The fitted values 9m̂ and the forecasts Dm̂ are calculated by maximum quasi-likelihood

estimation of the q�2t � 1 model parameters c, ai, and bj, e.g. under the assumption of an

ODP, i.e. p�1, or a gamma distribution, i.e. p�2. Estimators of the outstanding claims
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are then obtained by summing per accident year R̂i�aj �Di
m̂ij; where Di denotes the row

corresponding to accident year i in Dm̂: The estimator of the grand total is R̂�aD m̂ij:

The residuals are needed for the resampling process and the common choice is to use

the Pearson residuals

rP
ij �

Cij � m̂ijffiffiffiffiffiffiffi
m̂

p
ij

q ; (3:2)

which should have approximately zero mean and constant variance. Pinheiro et al. (2003), as

well as England & Verrall (1999) and England (2002), work under the assumption that the

residuals are independent and identically distributed, an assumption that can be questioned,

see e.g. Larsen (2007) and Appendix A. Nevertheless, we shall adhere to this assumption.

The Pearson residuals need to be adjusted in order to obtain (approximately) equal

variance. England & Verrall (1999) and England (2002) use a global adjusting factor

rPA
ij �

ffiffiffiffiffiffiffiffiffiffiffiffi
n

n � q

s
rP

ij ; (3:3)

whereas Pinheiro et al. (2003) argue that the hat matrix standardized Pearson residuals

are a better choice. They are given by

rPA
ij �

rP
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � hij

q ; (3:4)

where the hij:s are the diagonal elements of the n�n hat matrix H, which for a GLM is

given by

H�X (X T WX )�1X T W ; (3:5)

where X is an n�q design matrix and the generic elements Wij,ij of the n�n diagonal

matrix W are

Wij;ij � V (mij)
@hij

@mij

 !2
0@ 1A�1

(3:6)

and V is the variance function.

This choice of residual correction is in accordance with Davison & Hinkley (1997). The

result of the comparison in Pinheiro et al. (2003) does not indicate a big difference to the

correction in Eq. (3.3).

Note that the residuals are also used to produce the Pearson estimate of the unknown f,

f̂�
1

n � q

X
9

(rP
ij )

2�
1

n

X
9

(rPA
ij )2; (3:7)

where the last equality is exact when Eq. (3.3) is used and an approximation for Eq. (3.4).

The next step is to get B new triangles of residuals 9r* by drawing samples with

replacement from the collection of residuals in Eq. (3.3) or (3.4). This procedure means
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sampling from the empirical distribution function of the approximately independent and

identically distributed residuals r.

Then B pseudo-triangles 9C* are generated by computing

Cij��m̂ij�rij�
ffiffiffiffiffiffiffi
m̂

p
ij

q
for i; j �9 (3:8)

and for these B pseudo-triangles the future values Dm̂� are forecasted by the same method

as above, i.e. by estimating the parameters of the GLM. Estimators for the outstanding

claims in the bootstrap world are then derived by R̂i��aj �Di
m̂ij� and R̂��aD m̂ij�:

In order to get the random outcome of the true outstanding claims in the bootstrap world,

i.e. Ri���aj �Di
Cij�� and R���aD Cij��; the resampling is done once more from the

empirical distribution function of the residuals to get B triangles of Dr** and then

computing

Cij���m̂ij�rij��
ffiffiffiffiffiffiffi
m̂

p
ij

q
for i; j �D (3:9)

to get DC**.

The final step is to calculate the B prediction errors and in Pinheiro et al. (2003) this is

done by the following equations:

pei���
Ri��� R̂i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar(Ri��)

q and pe���
R��� R̂�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar(R��)

q : (3:10)

The predictive distributions of the outstanding claims Ri and R are then obtained by

plotting,

R̃i���R̂i�pei��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar(Ri)

q
and R̃���R̂�pe��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar(R)

q
(3:11)

for each B.

We tacitly assume that the mean and variance of all bootstrapped quantities are

conditional on the observed data 9C. For instance, the variances of the bootstrapped

outstanding claims are

Var(Ri��)�f̂
X
j �Di

m̂
p
ij and Var(R��)�f̂

X
D

m̂
p
ij; (3:12)

since the variance of the bootstrapped residuals conditional on 9C is f̂ according to Eqs.

(3.3), (3.4), and (3.7). Since Pinheiro et al. (2003), as well as England (2002), consider f as

constant for the data, the estimates of Eq. (3.12) appearing in Eq. (3.10) aredVar(Ri��)�f̂
X
j �Di

m̂
+p
ij and dVar(R��)�f̂

X
D

m̂
+p
ij (3:13)

and hence computable from the bootstrap world data 9C*. Nevertheless, f is unknown

and therefore dVar(Ri��)�f̂�
X
j �Di

m̂
+p
ij and dVar(R��)�f̂�

X
D

m̂
+p
ij ; (3:14)

where
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f̂��
1

n

X
9

(r+ PA
ij )2 (3:15)

should rather be used, see Davison & Hinkley (1997). This is in analogy with the

estimated variances of the true claims reservesdVar(Ri)�f̂
X
j �Di

m̂
p
ij and dVar(R)�f̂

X
D

m̂
p
ij; (3:16)

which are computable from the real data 9C, as opposed to Var(Ri) and Var(R).

As a complement to the non-parametric procedure described above we suggest

a parametric approach. In addition to the assumptions in Eq. (3.1) we assume a

full distribution F, parametrized by the mean and variance, so that we may write

F �F (mij;fm
p
ij): Instead of resampling the residuals, we draw Cij� from F (m̂ij; f̂m̂

p
ij)

for all i, j �9 and thereby we directly get the pseudo-triangles 9C*. The bootstrap

estimates R̂i��aj �Di
m̂ij� and R̂��aD m̂ij� are then calculated for each simulation by

estimating the parameters of the GLM. In order to get Ri���aj �Di
Cij�� and R���

aD Cij�� we sample once again from F (m̂ij; f̂m̂
p
ij) to get Cij�� for all i, j �D. Finally, the

B observations of Eqs. (3.10) and (3.13) are inserted into Eq. (3.11) to yield the sought

predictive distribution.

These methods of bootstrapping for claims reserve uncertainty are described in Figure 1

and are referred to as the non-parametric and the parametric standardized predictive

bootstrap.

3.2. The double bootstrap

It would be preferable to use

pe���
R��� R̂�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar(R��� R̂�)

q (3:17)

and

R̃���R̂�pe��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar(R�R̂)

q
(3:18)

instead of Eqs. (3.10) and (3.11), in particular if the estimation error is much larger than

the process error. Although this is more complicated it can be achieved by means of a

double bootstrap. However, the computational complexity of this approach is quite

prohibitive because of the nested bootstrap loop and therefore the double bootstrap is not

included in our numerical study.

For each of the B bootstrap replicates, we generate B̃ double bootstrap claims reserves

Rd and estimated claims reserves R̂d in analogy with R** and R̂� in Section 3.1, the

difference being that we use 9C* as our data rather than 9C. ThendVar(R�R̂)�Var(R���R̂�½9C) (3:19)

and
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dVar(R���R̂�)�Var(Rd �R̂d ½9C�); (3:20)

where the last variance is approximated by the sample variance of all B̃ double bootstrap

replicates.

An alternative to Eqs. (3.19) and (3.20) is to use the variance of the process and the

estimation errors in Eq. (A.1) in Appendix B, i.e.

dVar(R�R̂)�dVar(R)�dVar(R̂) (3:21)

and

dVar(R���R̂�)�dVar(R��)�dVar(R̂�); (3:22)

where the process errors are estimated by

dVar(R)�f̂
X
D

m̂
p
ij (3:23)

and

dVar(R��)�f̂�
X
D

m̂
+p
ij : (3:24)

Figure 1. The procedure of the non-parametric and the parametric standardized predictive bootstrap.
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The estimation errors are approximated by the sample variance of the corresponding

bootstrap replicates dVar(R̂)�Var(R̂�) (3:25)

and dVar(R̂�)�Var(R̂d ): (3:26)

3.3. Bootstrapping data with a simple underlying model and a reserving algorithm using

unstandardized prediction errors

For the purpose of obtaining the predictive distribution of the claims reserve by

bootstrapping, the assumption of a GLM in Eq. (3.1) is unnecessarily strong. In practice

the actuary seldom assumes any model for 9C and DC, but only uses a reserving

algorithm in order to estimate 9m̂ and Dm̂: Thus, when using the plug-in-principle we just

need to make an assumption of the model that generates 9C* and DC** from the data

9C, while the reserving algorithm can be used in the bootstrap world too in order to

estimate Dm̂�:
We follow England & Verrall (1999), England (2002), and Pinheiro et al. (2003) and

assume independent claims Cij and a variance function in terms of the means, i.e.

E(Cij)�mij and Var(Cij)�f m
p
ij (3:27)

for some p�0. Thus, the mean and variance of Cij are still related as in Eq. (3.1), but mij

need no longer satisfy the log-additive conditions in Eq. (3.1). Instead the chosen reserving

algorithm implicitly specifies the structure of all mij and produces estimates of m̂ij: The

bootstrap procedures are then performed as in Section 3.1 with the exception that the

residuals Eq. (3.3) are used rather than Eq. (3.4). The interpretation of n and q as

the number of observations and model parameters is still the same. Using the pure chain-

ladder method together with the backwards recursive operation described in England &

Verrall (1999) implies that q�2t�1, as for the GLM in Eq. (3.1), since this procedure

demands the estimation of t�1 development factors as well as the t starting values of the

backwards recursive operation. Adding exponential smoothing of the development

factors, like in the example in Section 2, can indeed complicate the determination of the

number of model parameters. The correction factor in Eq. (3.3) can be considered as an

approximation, although the number of parameters q typically depends on the amount of

smoothing.

Standardized prediction errors may still be used, since Eqs. (3.10)�(3.16) continue to

hold. Indeed, it is well-known that for many bootstrap procedures, resampling of

standardized quantities often increases accuracy compared to using unstandardized

quantities, see e.g. Hall (1995). Nevertheless, the unstandardized prediction errors

pei���Ri���R̂i� and pe���R���R̂� (3:28)
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are useful, in particular for the purpose of studying the estimation and the process errors,

but also since they are always defined. On the contrary, the denominators of Eq. (3.10)

may sometimes be non-positive, yielding undefined or imaginary standardized prediction

errors, see Section 3.6. The predictive distributions of the outstanding claims Ri and R are

then obtained by plotting

R̃i���R̂i�pei�� and R̃���R̂�pe�� (3:29)

for each B. These prediction errors are used in Li (2006).

The alternative bootstrap procedures discussed above are described in detail in Figure 2

and are referred to as the non-parametric and the parametric unstandardized predictive

bootstrap.

3.4. A semi-parametric bootstrap approach

England & Verrall (1999) and England (2002) use other bootstrap approaches, which are

described in Appendix B. In England (2002) the bootstrap counterparts of the outstanding

claims in the real world are obtained by another simulation conditional on the one in

Substage 2.1 in Figure 1. In this way the process error R�E(R) is bootstrapped differently

from Substage 2.2, while Substage 2.1 bootstraps the estimation error R̂�E(R): Thus, B

Figure 2. The procedure of the non-parametric and the parametric unstandardized bootstrap.
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triangles Dm̂$ are obtained by sampling a random observation m̂$
ij from a distribution with

mean m̂ij� and variance f m̂ij� for all i, j �D. The predictive distribution of the outstanding

claims R in real world is then obtained by plotting the B values of R̃$�aD m$
ij: England

(2002) suggests using, e.g. an ODP, a negative binomial or a gamma distribution as the

process distribution.

In Appendix B we question if England’s bootstrap technique provides us with the right

predictive distribution. The reason is that the estimation error o2 is replaced by �o2,

whereas the process error is approximately unaffected. This affects the distribution of the

prediction error as soon as the distribution of o2 is skewed. Like the unstandardized

bootstrap of Section 3.3, England’s approach does not require variance estimation of the

predictive distribution. In principle though, a standardized version of England’s approach

could be defined. As in Sections 3.1 and 3.2, the best standardization would then be

obtained using double bootstrap.

England & Verrall (2006) comment on the approach of including the process error by

sampling from a separate distribution, by noting that the non-parametric standardized

predictive bootstrap in Pinheiro et al. (2003) cannot give larger extremes of the process

error than the most extreme residuals observed. Nevertheless, we see no reason to assume

separate distributions for the process error and the estimation error. Either we believe in

the chosen distribution on the whole and use a parametric predictive bootstrap or we do

not and continue to use a non-parametric predictive bootstrap.

3.5. Estimation of p

In the literature the most frequent choice of dispersion parameter is p�1 in order to

reproduce the chain-ladder estimates under the assumption of a GLM, but as indicated in

the method example in Section 2, a pure chain-ladder is seldom used in practice. Thus,

another approach would be to choose the p that best fits the data.

A straightforward way of obtaining a suitable value of p is to use the unstandardized

residuals

rij �

ffiffiffiffiffiffiffiffiffiffiffiffi
n

n � q

s
(Cij�m̂ij): (3:30)

The following relation then holds approximatively

E(r2
ij):Var(Cij)�f m

p
ij (3:31)

and minimizing the function

f (p;f)�
X
i; j

wij (r2
ij�f m̂

p
ij)

2; (3:32)

where wij is a weight for observation Cij, with respect to p and f yields an estimator for p.

Once a reasonable value of p is chosen and the residuals for the resampling process are

defined, f is estimated by Eq. (3.7). The simplest choice is to use uniform weights wij�1
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in Eq. (3.32). Another possibility is inverse variance weighting, wij �dVar(r2
ij)

�1: In order

to specify these weights, further model assumptions would be needed though.

In principle, we could use non-integer values of p for the non-parametric bootstrap.

However, since we focus on the comparative performance of the parametric and non-

parametric bootstrap methods in this paper, we have not pursued this approach. Instead

we consider the estimated value of p as an indicator of whether p�1 or p�2 should be

used in the non-parametric bootstrap and whether an ODP or a gamma distribution

should be used in the parametric bootstrap. It is of course important that this approach of

estimating p is complemented by a residual analysis in order to get the relationship

between the mean and the variance right as well as to detect outliers.

3.6. Implementation details

There are some major problems with the process of resampling the residuals for the non-

parametric bootstrap procedures. Firstly, the bootstrap world is hardly a good

approximation of the real world if the claims triangle is small. Furthermore, the basic

assumption of the non-parametric bootstrap procedure of identically distributed residuals

is certainly violated for p�1, i.e. for an ODP, see Appendix A. Depending on the chosen

reserving method and the value of p, the standardized residuals in Eq. (3.2) sometimes

imply a limitation of the set of triangles that can be analyzed, since the residual will be

undefined or imaginary whenever a fitted value in 9m̂ is non-positive. Finally, using the

residuals to solve equation Eq. (3.8) sometimes results in undesirable negative increments

in the pseudo-triangles.

Thus, if the claims triangle 9C is small, a parametric bootstrap procedure seems

preferable. On the other hand, if we know nothing about F and have a large triangle, a

non-parametric bootstrap procedure would be our first choice. Note, however, that a

parametric bootstrap procedure does not solve the problem with undefined residuals since

they are needed in order to estimate f as well. Furthermore, a parametric bootstrap

procedure should be used if negative increments in the pseudo-triangles are unacceptable

and a gamma distribution should particularly be used if it is undesirable that the

increments only take on the values zero and multiples of f, which is the case for the ODP.

The choice of prediction errors causes another problem. The standardized ones in Eq.

(3.10) are sensitive to pseudo-triangles where the row sums of the outstanding claims are

non-positive. An ad hoc solution is simply to cut out these pseudo-triangles from the

simulation process if they are rare, another solution is to use the unstandardized

prediction errors in Eq. (3.28) instead. The unstandardized ones, on the other hand, result

in a predictive distribution which is more skewed to the left than the distribution obtained

by the standardized prediction errors, see Section 4 for more details.

Since England & Verrall (1999), England (2002), and Pinheiro et al. (2003) replace the

maximum likelihood estimation of the parameters in Eq. (3.1) by chain-ladder when p�1,

the same method is adopted here for the standardized predictive distribution in Figure 1,

even though the non-positive column sums of the pseudo-triangles make the estimates

disagree.
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4. Numerical study

The purpose of the numerical study is to compare the non-parametric and the parametric

bootstrap procedures under different choices of p, F and prediction errors. Since the

actuary chooses an age-to-age development factor method that fits the particular

development triangle under analysis, it is difficult to find one single algorithm that

works for all situations. Therefore we only use the pure chain-ladder method in the

comparisons, even though the bootstrap procedures allow the use of other age-to-age

development factor methods as well. From now on B�10,000 simulations are used for

each prediction. The upper 95 percent limits are studied due to higher robustness than,

e.g. the 99.5 percentile, which is perhaps the most frequent choice in practice. The

coefficients of variation are also presented.

4.1. The triangle from Taylor & Ashe

4.1.1. Comparison with Pinheiro et al. (2003). First, the well-known triangle from Taylor

& Ashe (1983), called Data 1 in Table 3, is analyzed by the non-parametric standardized

predictive bootstrap procedure, i.e. the bootstrap procedure described in Pinheiro et al.

(2003). The estimated reserves and the upper 95 percent limits for p�1 and p�2 are

presented in Table 4. The second accident year is left out from the tabulation of results

when p�1 since a negative increment in the northeast corner of a pseudo-triangle causes

a situation with an imaginary prediction error for that year. The remaining accident years

are not as sensitive to negative increments as this year.

The results of the standardized predictive bootstrap procedure are in accordance with

Pinheiro et al. (2003). As we can see, for earlier accident years, the p�2 percentiles are

smaller than the p�1 percentiles, whereas the opposite is true for later accident years.

This is natural, since most of the future claims Cij of later years have large mij and hence

larger variance for p�2 than for p�1.

4.1.2. The choice of f̂ or f̂��. We continue to use the non-parametric standardized

predictive bootstrap and Data 1, but we now replace Eqs. (3.13) with (3.14) in Substage

2.2 in Figure 1. Thus, we do not consider f as constant for the data and therefore we

Table 3. Data 1 from Taylor & Ashe (1983).

1 2 3 4 5 6 7 8 9 10

1 357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948

2 352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046

3 290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405

4 310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286

5 443,160 693,190 991,983 769,488 504,851 470,639

6 396,132 937,085 847,498 805,037 705,960

7 440,832 847,631 1,131,398 1,063,269

8 359,480 1,061,648 1,443,370

9 376,686 986,608

10 344,014
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replace f̂ by f̂�: The results are presented in Table 5. As we can see, the replacement

hardly affects the results.

Note that since p�1 occasionally yields m̂ij�B0 the corresponding Pearson residuals

in the bootstrap world are imaginary while f̂� is real. Since the assumption of an ODP for

the parametric procedure occasionally yields m̂ij��0; the corresponding Pearson

residuals in the bootstrap world are undefined and as a result, f̂� is undefined as well.

Thus, in the sequel we use Eq. (3.13) in all simulations.

4.1.3. Maximum likelihood estimation vs. chain-ladder when p�2. The next step is to

replace the maximum likelihood estimator of the model parameters by the chain-ladder

for the non-parametric standardized predictive bootstrap when p�2. (We already use the

chain-ladder when p�1, cf. Section 3.6.) Consequently, the estimated reserves in Table 6

are the same as when p�1 in Table 4, whereas the percentiles in Table 6 are consistently

higher than in Table 4.

This is an example of bootstrapping under a model that does not produce the estimator

actually employed, a model which might nevertheless be quite realistic for paid claims.

4.1.4. Non-parametric bootstrap vs. parametric bootstrap. For the purpose of comparing

the non-parametric and the parametric bootstrap procedures we continue to use the

Table 5. The estimated reserves and the 95 percentiles of the non-parametric standardized predictive bootstrap

when Eq. (3.13) is replaced by Eq. (3.14) in Substage 2.2 in Figure 1 for Data 1. Chain-ladder is used for p�1 and

maximum likelihood estimation for p�2.

Year Estimated reserve 95% p�1 Estimated reserve 95% p�2

2 94,634 93,316 216,698

3 469,511 889,639 446,504 796,146

4 709,638 1,186,623 611,145 978,315

5 984,889 1,533,399 992,023 1,497,722

6 1,419,459 2,082,287 1,453,085 2,136,423

7 2,177,641 3,041,716 2,186,161 3,290,061

8 3,920,301 5,290,749 3,665,066 5,738,496

9 4,278,972 6,181,331 4,122,398 6,795,927

10 4,625,811 9,328,277 4,516,073 9,476,343

Total 18,680,856 23,603,123 18,085,772 23,042,954

Table 4. The estimated reserves and the 95 percentiles of the non-parametric standardized predictive bootstrap

with Eq. (3.13) used in Substage 2.2 of Figure 1 for Data 1. Chain-ladder is used for p�1 and maximum

likelihood estimation for p�2.

Year Estimated reserve 95% p�1 Estimated reserve 95% p�2

2 94,634 93,316 222,789

3 469,511 906,877 446,504 799,700

4 709,638 1,191,170 611,145 992,585

5 984,889 1,535,723 992,023 1,497,633

6 1,419,459 2,084,349 1,453,085 2,170,480

7 2,177,641 3,032,643 2,186,161 3,284,490

8 3,920,301 5,271,523 3,665,066 5,692,764

9 4,278,972 6,116,000 4,122,398 6,975,123

10 4,625,811 9,450,379 4,516,073 9,286,282

Total 18,680,856 23,616,114 18,085,772 23,033,968
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standardized predictive bootstrap with chain-ladder for Data 1. See Table 7 for the upper

95 percent limits and Table 8 for the coefficients of variation, i.e.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Ri��)

p
=R̂i andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(R��)
p

=R̂:

The results of the parametric bootstrap coincide well with the results of the

non-parametric bootstrap except for the last accident year. It is well-known that the

chain-ladder estimate of the outstanding claims for the last accident year is extremely

sensitive to outliers in the south corner of the upper triangle. If Ct1� happens to be small

in the pseudo-triangle then the corresponding reserve R̂t� will be small compared to Rt��;
which affects the prediction error in Eq. (3.10). The parametric bootstrap generates more

stable Ct1�s than the non-parametric bootstrap, consequently there is a discrepancy in the

results of the last accident year for the non-parametric and the parametric bootstrap

procedures in Tables 7 and 8. The conclusion is that the parametric bootstrap may be

preferable in some cases.

4.1.5. Standardized prediction errors vs. unstandardized prediction errors. From now on

the unstandardized predictive bootstrap procedures are used in all tables; the results for

Data 1 are presented in Tables 9 and 10. As we can see, the percentiles for the

unstandardized predictive bootstrap in Table 9 are usually lower than for the standardized

Table 6. The estimated reserve and the 95 percentiles of the non-parametric standardized predictive bootstrap

with Eq. (3.13) used in Substage 2.2 in Figure 1 for Data 1. Chain-ladder is used for p�2.

Year Estimated reserve 95% p�2

2 94,634 236,850

3 469,511 875,382

4 709,638 1,156,050

5 984,889 1,503,685

6 1,419,459 2,141,470

7 2,177,641 3,308,805

8 3,920,301 6,199,841

9 4,278,972 7,646,140

10 4,625,811 10,698,797

Total 18,680,856 23,991,584

Table 7. The estimated reserve and the 95 percentiles of the non-parametric and the parametric standardized

predictive bootstrap with Eq. (3.13) used in Substage 2.2 in Figures 1 and 2 for Data 1. Chain-ladder is used

in both cases.

Year Estimated reserve

Non-parametric

95% p�1 Parametric ODP

Non-parametric

95% p�2 Parametric Gamma

2 94,634 236,850 220,643

3 469,511 906,877 894,754 875,382 866,833

4 709,638 1,191,170 1,195,535 1,156,050 1,162,942

5 984,889 1,535,723 1,522,381 1,503,685 1,516,868

6 1,419,459 2,084,349 2,092,719 2,141,470 2,150,441

7 2,177,641 3,032,643 3,061,294 3,308,805 3,309,838

8 3,920,301 5,271,523 5,308,455 6,199,841 6,192,286

9 4,278,972 6,116,000 6,220,501 7,646,140 7,272,012

10 4,625,811 9,450,379 9,185,885 10,698,797 9,222,470

Total 18,680,856 23,616,114 23,606,507 23,991,584 24,095,302

321Non-parametric and parametric bootstrap techniques

D
ow

nl
oa

de
d 

by
 [

St
oc

kh
ol

m
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
3:

36
 2

0 
A

pr
il 

20
16

 



predictive bootstrap in Table 7, and the same goes for the coefficients of variation. Note

that there is a large discrepancy in the coefficients of variation, in Table 10, for the two

choices of distribution for Year 2. The reason for the extreme values, when p�1 or an

ODP is assumed, is discussed in Section 4.3.

In Figures 3c�d and 4c�d, the predictive distributions of the total claims reserve are

plotted when assuming p�1 for the non-parametric bootstrap procedures and an ODP

for the parametric bootstrap procedures. The predictive distribution obtained by the

unstandardized bootstrap in Figure 3c is slightly skewed to the left compared to the one

obtained by the standardized bootstrap in Figure 3d, which is almost symmetric. This

follows since the process component (Figures 3a and 4a) has smaller variability than the

estimation component (Figures 3b and 4b), and the latter is slightly skewed to the right.

This skewness is to a large extent removed for the standardized prediction errors (see Eq.

(3.10)), because of the denominator, but not for the unstandardized prediction errors (see

Eq. (3.28)). Furthermore, from Figures 3a and 4a, it does not seem to matter in our

example whether we use a non-parametric or a parametric approach for the process error,

even though we agree with England & Verrall (2006) that the former choice cannot give

larger extremes than the most extreme residual observed. The same holds for p�2 or a

gamma distribution (results not shown here).

Table 9. The estimated reserve and the 95 percentiles of the non-parametric and the parametric unstandardized

predictive bootstrap when chain-ladder is used for Data 1.

Year Estimated reserve

Non-parametric

95% p�1 Parametric ODP

Non-parametric

95% p�2 Parametric Gamma

2 94,634 275,957 252,438 168,132 167,585

3 469,511 821,152 813,932 750,175 754,646

4 709,638 1,141,093 1,130,218 1,055,135 1,064,059

5 984,889 1,475,776 1,487,763 1,414,799 1,403,919

6 1,419,459 2,042,976 2,023,014 1,995,397 1,982,611

7 2,177,641 2,997,277 2,973,779 3,043,356 3,049,215

8 3,920,301 5,189,024 5,156,277 5,579,973 5,564,848

9 4,278,972 5,902,840 5,935,956 6,363,139 6,257,000

10 4,625,811 7,766,632 7,561,924 7,387,885 7,088,050

Total 18,680,856 23,197,770 23,096,637 23,109,992 23,107,180

Table 8. The estimated reserve and the coefficients of variation of the simulations (in %) of the non-parametric

and the parametric standardized predictive bootstrap with Eq. (3.13) used in Substage 2.2 in Figures 1 and 2 for

Data 1. Chain-ladder is used in both cases.

Year Estimated reserve

Non-parametric

95% p�1 Parametric ODP

Non-parametric

95% p�2 Parametric Gamma

2 94,634 76 62

3 469,511 49 49 43 42

4 709,638 37 38 32 32

5 984,889 31 31 27 28

6 1,419,459 27 27 26 26

7 2,177,641 23 23 27 26

8 3,920,301 20 20 30 29

9 4,278,972 24 25 38 35

10 4,625,811 52 50 64 48

Total 18,680,856 16 16 15 16
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4.1.6. Estimation of p. Estimation of p by minimizing the (unweighted) sum in Eq.

(3.32) yields p�0.7280. Thus, p�1 or an ODP seems to be more reasonable for this

development triangle.

4.2. A triangle of claim counts

The non-parametric and the parametric unstandardized predictive bootstrap procedures

are now compared on a triangle of claim counts appearing in Taylor (2000). Because of

Table 10. The estimated reserve and the coefficients of variation of the simulations (in %) of the non-parametric

and the parametric unstandardized predictive bootstrap when chain-ladder is used for Data 1.

Year Estimated reserve

Non-parametric

95% p�1 Parametric ODP

Non-parametric

95% p�2 Parametric Gamma

2 94,634 122 118 52 50

3 469,511 47 46 39 38

4 709,638 38 37 31 31

5 984,889 31 31 28 27

6 1,419,459 27 27 26 26

7 2,177,641 23 23 26 26

8 3,920,301 21 20 28 27

9 4,278,972 25 25 32 32

10 4,625,811 45 44 40 38

Total 18,680,856 16 16 17 16
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Figure 3. Density charts of (a) R**, (b) R̂�; and (c) R̃�� for the unstandardized and (d) standardized non-

parametric predictive bootstrap procedures for Data 1 when p�1.
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the shape of the data and in order to avoid non-positive column sums we use just the later

part of the original triangle, see Table 11. This is reasonable since the claim counts from

previous accident years are almost finalized.

Estimation of p yields p̂�0:5596; which indicates that p�1 is a better choice than p�2

for the non-parametric bootstrap and an ODP is preferable for the parametric bootstrap,

as expected for claim counts. Nevertheless, the results for both choices are presented in

Tables 12 and 13 and, as we can see, the results of the parametric bootstrap coincide well

with the results of the non-parametric one.
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Figure 4. Density charts of (a) R**, (b) R̂�; and (c) R̃�� for the unstandardized and (d) standardized parametric

predictive bootstrap procedures for Data 1 under the assumption of an ODP.

Table 11. Data 2 from Taylor (2000).

1 2 3 4 5 6 7

1989 589 210 29 17 12 4 9

1990 564 196 23 12 9 5

1991 607 203 29 9 7

1992 674 169 20 12

1993 619 190 41

1994 660 161

1995 660
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The density charts of R** and R̂� are plotted in Figure 5. The variability of the

estimation error is larger than the variability of the process error for Data 2 too, but the

difference is not as extreme as for Data 1 in Figures 3 and 4.

4.3. A triangle of paid claims from a short-tailed line of business

Table 14 shows a triangle of paid claims, provided by the Swedish insurance company

AFA Försäkring, for the short-tailed line of business Severance Grant.

Table 12. The estimated reserve and the 95 percentiles of the non-parametric and the parametric unstandardized

predictive bootstrap when chain-ladder is used for Data 2.

Year Estimated reserve Non-parametric p�1 Parametric ODP Non-parametric p�2 Parametric Gamma

1990 8 19 18 14 14

1991 14 26 26 20 20

1992 24 40 39 34 34

1993 36 56 55 51 50

1994 65 90 89 91 90

1995 269 323 321 400 399

Total 417 500 496 555 554

Table 13. The estimated reserve and the coefficients of variation of the simulations (in %) of the non-parametric

and the parametric unstandardized predictive bootstrap when chain-ladder is used for Data 2.

Year Estimated reserve Non-parametric p�1 Parametric ODP Non-parametric p�2 Parametric Gamma

1990 8 74 71 43 42

1991 14 57 55 35 33

1992 24 40 39 29 28

1993 36 32 31 26 25

1994 65 23 22 25 25

1995 269 12 12 32 31

Total 417 12 12 22 21
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Figure 5. Density charts of (a) R** and (b) R̂� for the unstandardized non-parametric predictive bootstrap

procedures for Data 2 when p�1.
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The results of the bootstrap procedures are presented in Tables 15 and 16. The percentiles

for year 1996 are very different for the two choices of distribution. This is a consequence of

occasional non-positive m̂ij� caused by the resampling process. Tables 17 and 18 show

examples of pseudo-triangles when p�1 for the non-parametric bootstrap procedure and

an ODP is assumed for the parametric bootstrap procedure. By Eqs. (3.28) and (3.29) these

particular simulations yield R̃1996���2614 and R̃1996���2876; respectively, which is not

reasonable. Thus, even though p̂�1:1915; a comparison of the results for p�1 and p�2

indicates that p�2 might be a better choice for this triangle. Another alternative might be to

use a truncated ODP to exclude zero values, but this is outside the scope of the present paper.

The variability of the estimation error is larger than the variability of the process error

for Data 4, but the density charts are not shown here.

5. Conclusions

So far most papers concerning bootstrapping for claims reserve uncertainty focus on

obtaining the predictive distribution for the chain-ladder method by assuming underlying

models, which reproduce the chain-ladder estimates. However, the assumption of an

underlying model is generally not made in practice for the purpose of estimating the claims

reserve, since the actuary rather uses somewhat complex reserving algorithms, without

reference to statistical models. In this paper we suggest using either a non-parametric or a

parametric bootstrap methodology with as few model assumptions as possible in order to

make the bootstrap procedures more consistent with the actuary’s way of working. The

non-parametric bootstrap procedure only requires some mild distributional assumptions,

Table 14. Data 3 provided by the Swedish insurance company AFA Försäkring.

1 2 3 4 5 6 7

1995 48,545 56,786 32,659 12,973 4005 1696 490

1996 58,294 79,824 38,287 15,957 4617 1427

1997 73,859 73,237 35,281 13,960 3854

1998 65,707 67,632 32,832 12,158

1999 92,901 80,931 36,508

2000 66,834 47,630

2001 45,838

Table 15. The estimated reserve and the 95 percentiles of the non-parametric and the parametric unstandardized

predictive bootstrap when chain-ladder is used for Data 3.

Year Estimated reserve Non-parametric p�1 Parametric ODP Non-parametric p�2 Parametric Gamma

1996 621 2369 2124 873 862

1997 2408 5377 5382 3128 3116

1998 6317 10,763 10,823 8027 7960

1999 25,536 34,668 34,673 32,242 32,163

2000 46,196 59,249 58,820 58,910 58,395

2001 82,821 107,213 105,455 110,188 108,440

Total 163,898 195,586 195,097 195,876 193,573
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including the mean and variance function, where the actuary’s choice of reserving

algorithm implicitly specifies the mean structure. Consequently, the suggested bootstrap

procedures can be used to obtain the predictive distribution of other age-to-age

development factor methods than the chain-ladder. The non-parametric and the

parametric bootstrap procedures are compared to techniques described in Pinheiro et al.

(2003), as well as in England (2002), and finally they are applied to three development

triangles.

We have seen that the results of the parametric standardized predictive bootstrap are

consistent with the results of its non-parametric counterpart in Pinheiro et al. (2003).

Furthermore, our simulation results are almost the same for the non-parametric and the

parametric approach. Finally, the unstandardized predictive bootstrap procedures have

revealed that the variability of the estimation error, when chain-ladder is used, is larger

than the variability of the process error for all investigated development triangles.

However, the difference is not that large for Data 2. This triangle provides more

information than it seems since the claim counts can be summarized without any loss in

statistical efficiency under the assumption of Poisson distributions. The relative size of the

estimation and process errors is an interesting topic for future research. Since parameters

corresponding to late origin and development years are hard to estimate for large as well

Table 16. The estimated reserve and the coefficients of variation of the simulations (in %) of the non-parametric

and the parametric unstandardized predictive bootstrap when chain-ladder is used for Data 3.

Year Estimated reserve Non-parametric p�1 Parametric ODP Non-parametric p�2 Parametric Gamma

1996 621 173 169 26 25

1997 2408 77 74 19 18

1998 6317 44 42 17 16

1999 25,536 22 22 17 16

2000 46,196 17 17 17 17

2001 82,821 17 17 21 20

Total 163,898 12 12 12 12

Table 18. An example of pseudo-triangles when an ODP is assumed; the left triangle is DC** and the right

triangle is /Dm̂*.

2255 0

1503 2255 1712 0

3758 3006 0 4919 1716 0

18,788 2255 3006 2255 16,892 5385 1878 0

30,061 12,024 3006 752 752 28,929 12,041 3838 1339 0

42,085 27,055 9770 2255 2255 752 55,292 28,841 12,004 3827 1335 0

Table 17. An example of pseudo-triangles when p�1; the left triangle is DC** and the right triangle is /Dm̂*.

757 �1236

2007 �746 1949 �1367

604 3300 326 2653 1561 �1095

16,480 6116 2838 1108 17,954 3478 2046 �1435

30,487 11,674 2527 1924 �948 26,073 11,364 2201 1295 �908

47,952 16,537 14,875 2315 640 �368 40,247 18,232 7947 1539 905 �635
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as small triangles, it is by no means clear that estimation error should be relatively smaller

for large triangles, in spite of the fact that there is more data available for a large triangle.

Since resampling of standardized quantities often increases accuracy compared to using

unstandardized quantities, the standardized predictive bootstrap is in theory preferable to

the unstandardized one. We have seen that the standardized case yields higher estimated

risk, seemingly due to the fact that it makes the distribution more symmetric than the

unstandardized case, where the predictive distribution is skewed to the left. A

disadvantage of the standardized predictive bootstrap is that the denominators of Eq.

(3.10) may sometimes be non-positive, yielding undefined or imaginary prediction errors.

In principle, this could be corrected by the double bootstrap, which provides a better

estimation of the variance since it includes the estimation error as well as the process error.

Therefore, it would be interesting, in future papers, to analyze the behavior of the double

bootstrap method both for simulated and real data sets.

In DFA, the movements of the claims reserve are of particular interest. The one-year

run-off result is the change in the reserve during the financial year and is defined as the

difference between the opening reserve at the beginning of the year and the sum of

payments during the year and the closing reserve of the same portfolio at the end of the

year. The simulation of the run-off result by the non-parametric and the parametric

bootstrap procedures described in this paper would also be interesting in future papers.

Acknowledgements

The authors wish to thank an anonymous referee for valuable comments that significantly
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Appendix A

The basic assumption of the resampling process of the non-parametric bootstrap is

independent and identically distributed residuals. We will now motivate that the model

in Eq. (3.1) gives approximately identically distributed residuals rij for the majority

of residuals Eq. (3.2) or (3.3) in the upper triangle (not close to any of the corners) when

p�2 (gamma distribution), but not for p�1 (ODP). By large triangles we mean that

t0� and hence also n0�. For each fixed ij, m̂ij is a consistent estimate of mij as n grows,

and q/n00. Hence, for large n, the residuals can be written as

rij �
Cij � mijffiffiffiffiffiffiffi

m
p
ij

q :

Since the moment generating function of a G(a,b) distribution is M(t)�(1�bt)�a and p�2

is equivalent to Cij �G(1
f; f mij); the residuals rij are identically distributed according to

Mrij
(t)�e�t MCij

t

mij

 !
�e�t(1�f t)

�1
f:

The moment generating function of a Po(l) distribution is M(t)�el(et�1); but since p�1

implies an ODP we need a help variable Xij in order to find the distribution of the residuals.

The underlying model is fulfilled if Cij�fXij, Xij � Po
mij

f

 !
and the residuals are

distributed according to

Mrij
(t)�e

�t
ffiffiffiffi
m

ij

p
MCij

tffiffiffiffiffiffi
mij

p

 !
�e

�t
ffiffiffiffi
m

ij

p
MXij

f tffiffiffiffiffiffi
mij

p

 !
�e�t

ffiffiffiffi
mij

p
e

mij

f



e

f tffiffiffiffi
mij

p
�1

�
:

The distributions of the residuals rij depend on mij and consequently the residuals cannot

be identically distributed. However, for large mij, by the Central Limit Theorem, the

distribution of rij is close to a normal distribution with mean 0 and variance f, making the

assumption of identically distributed residuals approximately valid.
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Appendix B

In order to find the variability of the claims reserve obtained by the chain-ladder method,

England & Verrall (1999) assume the model structure in Eq. (3.1). They find that the

mean square error of prediction can be decomposed as

MSEP(R):Var(R)�Var(R̂) (B:1)

and under the assumed model

Var(R)�
X
D

f m
p
ij; (B:2)

which can easily be estimated analytically. Furthermore, in the ODP case when p�1,

Eq. (A.2) simplifies to

Var(R)�f R: (B:3)

England & Verrall (1999) suggest the use of bootstrapping to estimate the second term in

Eq. (A.1). Hence, when p�1 they replace Eq. (A.1) by

dMSEP(R̂):f̂R̂�dVar(R̂�); (B:4)

where dVar(R̂�) is the variance of the B simulated values of R̂� obtained by the non-

parametric standardized bootstrap procedure in Substage 2.1 in Figure 1. However,

England & Verrall (1999) substitute the maximum likelihood estimates of the model

parameters in Figure 1 by the chain-ladder method.

In order to obtain a complete predictive distribution England (2002) extended the

method in England & Verrall (1999) by replacing the analytic calculation of the process

error by another simulation conditional on the bootstrap simulation. The process error is

included to the B triangles Dm̂� by sampling a random observation from a process

distribution with mean m̂ij� and variance f m̂ij� to obtain the future claims Dm$. Here we

denote the second bootstrap stage by a dagger ‘$’ to distinguish from our own procedure

of drawing the second bootstrap sample in the same way as the first, denoted by two

asterisks ‘**’. England (2002) suggests using, e.g. an ODP, a negative binomial or a gamma

distribution as the process distribution.

The predictive distribution of the outstanding claims is then obtained by plotting the B

values of R$�aD m$
ij and finally the standard deviation of the simulations gives the

standard error of prediction of the outstanding claims.

England (2002) presents no justification of this procedure, but sampling from ODPs

with mean m̂ij� and variance f m̂ij� will indeed provide us with a bootstrap standard error

of prediction consistent with Eq. (A.1). Recall that we tacitly assume that all moments of

bootstrapped quantities are conditional on the observed data 9C. Since

E(R$ ½ Dm̂�)�
X
D

E(m$
ij ½ Dm̂�)�

X
D

m̂ij��R̂�

and
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Var(R$ ½ Dm̂�)�
X
D

Var(m$
ij ½ Dm̂�)�

X
D

f̂ m̂ij��f̂ R̂�

the variance of the simulated predictive distribution is

Var(R$)�E[Var(R$ ½ Dm̂�)]�Var[E(R$ ½ Dm̂�)]

�E(f̂ R̂�)�Var(R̂�)�f̂ E(R̂�)�Var(R̂�):f̂ R̂�Var(R̂�);

where, in the last step, we used E(R̂�):R̂ and Eq. (3.12). Note that this result is special for

the ODP, since the variance is proportional to the expected value, and it is also true for the

normal distribution, but it cannot be generalized to other exponential dispersion models.

Hence, using an ODP in England’s bootstrap will indeed provide us with a predictive

distribution with the right mean and variance, but is it really the right distribution?

What we are looking for is the distribution of R�R̂: According to the plug-in-principle

the counterpart to R�R̂ in the bootstrap world should be R���R̂�: Just for the

moment, we use a normal distribution everywhere (p�0). Hence, R���R̂�o1; where

o1	N(0;s2), and R̂��R̂�o2; where o2	N(0;t2), for some s2 and t2. For simplicity let us

say that s2 and t2 are known here. Consequently,

R���R̂��o1�o2; (B:5)

so that according to Eq. (3.29), R̃���R̂�o1�o2 gives the predictive distribution of the

claims reserve when the unstandardized prediction errors are used. Comparing this with

England’s method, R$ would be drawn from N(R̂�;s2); conditionally on Dm̂�; making its

unconditional distribution N(R̂;s2�t2) equal to that of R̃��; due to the symmetry of the

normal distribution. This means that R$ has the right predictive distribution.

Assume now a parametric bootstrap with p�1 and, for simplicity, f�1. Then Cij��	
Po(m̂ij) for all i, j �D, implying that Eq. (A.5) still holds with process error o1 and

estimation error o2. By the additive property of the Poisson distribution, o1 has a centered

Po(R̂) distribution. What England (2002) does is to draw m$
ij from Po(m̂ij�); conditionally

on Dm̂�: Again, by the additive property of the Poisson distribution, we find that

conditionally on R̂�; R$	Po(R̂�): This implies that

R$�R̂�o2�o3; (B:6)

where o3	Po(R̂�o2)�R̂�o2; is a mixture of centered Poisson distributions, since o2 is

random in the bootstrap world. Comparing the right-hand sides of Eqs. (A.6) and (A.5),

we find that the estimation error occurs with opposite signs in the two equations and that

the process error o1 has been replaced by the (closely related) o3. The predictive

distribution in England (2002) becomes even more entangled since it is suggested that,

e.g. a negative binomial or a gamma distribution can be used for the process distribution

instead of an ODP even though the reserving method and the bootstrap procedure

completely stands on the assumption of the latter.
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