
Chapter 18
Probabilistic Choice with an Infinite Set
of Options: An Approach Based on Random
Sup Measures

Hannes Malmberg and Ola Hössjer

Abstract This chapter deals with probabilistic choice when the number of options
is infinite. The choice space is a compact set S ≈ Rk and we model choice over S
as a limit of choices over triangular sequences {xn1, . . . , xnn} ≈ S as n → ∞. We
employ the theory of random sup measures and show that in the limit when n → ∞,
people behave as though they are maximising over a random sup measure. Thus,
our results complement Resnick and Roy’s [18] theory of probabilistic choice over
infinite sets. They define choice as a maximisation over a stochastic process on S
with upper semi-continuous (usc) paths. This connects to our model as their random
usc function can be defined as a sup-derivative of a random sup measure, and their
maximisation problem can be transformed into a maximisation problem over this
random sup measure. One difference remains though: with our model the limiting
random sup measures are independently scattered, without usc paths. A benefit of
our model is that we provide a way of connecting the stochastic process in their
model with finite case distributional assumptions, which are easier to interpret. In
particular, when choices are valued additively with one deterministic and one random
part, we explore the importance of the tail behaviour of the random part, and show
that the exponential distribution is an important boundary case between heavy-tailed
and light-tailed distributions.
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18.1 Introduction

Random utility theory and probabilistic choice have for a long time been the standard
tools for modelling discrete choice within the behavioural sciences [12, 15, 21].

This chapter presents a model of probabilistic choice when the set of options is
infinite. The set of possible choices is S ≈ Rk , a compact set, and the aim is to find
a choice probability distribution over S as a function of model parameters. Possible
applications include choice of residential location and commuting distances.

We first define a choice problem when the set of possible choices is a finite set
N n = {xn1, xn2, . . . , xnn} ≈ S. In this case, we model the different alternatives as
yielding utility

Yni ≤ μ(xni ) i = 1, . . . , n (18.1)

independently, where μ(·) associates each point in S with a probability distribution
on R. This setup is standard in the probabilistic choice literature and captures the
fact that some factors affecting choice are not observable to the analyst [14]. The
optimal choice is xIn where

In = arg max
1⇒i⇒n

Yni .

This value is unique almost surely provided μ(xni ) is a continuous distribution for
all i = 1, . . . , n. The argmax distribution on S is given by

T̃ N n

μ (·) = P(X In ∈ ·).

The continuous choice distribution is defined as the limit in distribution of T̃ N (·) as
n → ∞ and the empirical distribution of Nn = {xn,1, xn,2, . . . , xn,n} converges to
some pre-specified distribution δon S.

To calculate the asymptotic behaviour, we will use the theory of random sup
measures. In this, we will draw upon [16]. We show that in the limit when n → ∞,
people behave as though they are maximising over a random sup measure M . The
earlier chapter closest to our approach is [18]. They analyse probabilistic choice
over continuous sets when the random utility function is a random upper semi-
continuous (usc) function. However, their random usc function can be viewed as a
sup-derivative of an underlying random sup measure. Maximising over the random
usc function is equivalent tomaximising over their underlying random supmeasure in
a sense which will be defined in Sect. 18.3. Thus, we show that the limiting behaviour
of probabilistic choice in our model has some similarities to the model developed
in [18]. There are some important differences in the structure of the random sup
measures as well, most importantly that ours are independently scattered (c.f. [20]),
without a sup derivative. Instead we model slowly varying trends over S by means of
a deterministic component in μ(·). This allows us to translate specific distributional
assumptions on the microlevel to the shape of our random sup field. Thus, we can
explore how statistical properties such as tail behaviour of utility disturbances affect
choice behaviour.
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The paper [18] focuses on random usc functions such that the underlying random
sup measure is a max-stable measure. In this, it follows a broader literature within
probabilistic choice. For other applications of max-stable processes and random
choice, see [2] and [3].

The structure of this chapter is as follows. In Sect. 18.2 we give the formal
definition of the argmax measure. In Sect. 18.3 we provide the necessary background
on supmeasures and random supmeasures to clarify the relation between this chapter
and earlier research. In Sect. 18.4 we prove the relevant theorems to verify that our
approach works. In Sect. 18.5 we solve the model in the special case when μ is the
sum of a deterministic term m(·) varying over S and a random disturbance λi . In
particular, Sect. 18.5.2 deals with the case when λi has an exponential distribution,
and Sect. 18.5.3 considers other distributional assumptions. Section18.6 provides
a conclusion.

18.2 Defining the Argmax Measure

In this section, we provide the definition of the argmax measure. We will first
introduce some relevant concepts needed to state the definition.

Definition 18.1 Let S ≈ Rk be a compact set and let

μ : S → P

where P is the space of probability measures on R. Then μ is called an absolutely
continuous measure index on S if, for each x ∈ S, μ(x) is an absolutely continuous
probability measure on R with respect to Lebesgue measure.

Unless otherwise stated,μ refers to an absolutely continuousmeasure index and S
is a compact subset ofRk . We writeP S for the set of absolutely continuous measure
indices on S.

Wewill now introduce the basic building block of our theory: the argmaxmeasure
associated with a deterministic set of points. Throughout the discussion, elements
of point sequences N n = {xn1, xn2, ..., xnn} will be multi-sets, i.e. the xn,i ’s are not
necessarily distinct for identical n.

Definition 18.2 An indexed random vector Y N n = (Yn1, . . . , Ynn) with respect to
μ is a random vector on Rn with independent components, where each component
has marginal distribution μ(xni ).

Unless there is ambiguity, we omit the superscript N n .

Definition 18.3 The point process argmax measure T̃ N n

μ is defined as

T̃ N n

μ (A) = P

(

max
1⇒i⇒n:xni ∈N n∩A

Yni ≥ max
1⇒i⇒n

Yni

)

= P(Xn ∈ A), (18.2)
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for all Borel measurable sets A ≈ S, where

Xn = arg max
xni ∈N n

Yni (18.3)

is the almost surely unique argmax of {Yni }.
We use the convention of putting a ≤ on top of objects having (deterministic)

empirical distributions as arguments, and drop ≤ for their large sample limits. We
will write QS to denote the set of finite multisets on S. With this notation, T̃ N n

μ is

a function from QS to [0, 1]B(S), the family of set functions on the Borel sigma
algebraB(S) on S taking values in [0, 1]. We deliberately avoid identifying this set
with the set of probability distributions on S, as we will not always know a priori
that the relevant set function will be countably additive.

Even though N n is a deterministic set of points, it can typically be thought of as
the realisation of a point process. If so, we condition on the randomness associated
with that process. In any case, it is convenient to define the empirical distribution
function

P N n
(A) = #{A ∩ N n}

n

for all Borel sets A ≈ S.

Definition 18.4 For a probability distribution δ, we define the point sequence
domain of convergence as

N δ =
{
{N n} : P N n ∗ δ

⎛

i.e. the class of point sequences whose empirical distributions converge weakly to δ

onB (S).

We have now introduced the concepts needed to define the argmax measure.

Definition 18.5 (Limiting argmax measure) A probability measure T δ
μ such that

T̃ N n

μ ∗ T δ
μ (18.4)

for all {N n}n∈N ∈ N δ will be called an argmax measure with respect to μ and
δ. Here (and everywhere else in the chapter), ∗ refers to weak convergence of
probability measures.

18.3 Sup Measures, Random Sup Measures, and Upper-Semi
Continuous Functions

In this section, we provide the necessary background on randomfields, supmeasures,
random sup measures, and upper semi-continuous functions. See [9] for an introduc-
tion to random fields. A more careful treatment of random sup measures and upper
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semi-continuous functions can be found in [16], Sects. 2–4, and older works on the
topic include [22] and [23].

We write a random field over the sigma algebra of S as

M : τ × B(S) → R

whereτ is a generic sample space andB(S) denotes the Borel ψ -algebra on S. Thus,
for a fixed ϕ, M(ϕ, ·) is a set function onB(S) and for fixed A ∈ B(S), M(·, A) is
a random variable taking values in R. We sometimes write M(A) as short-hand for
M(·, A) and we write M(ϕ, A) for a particular realisation of the random variable
M(·, A). We will writePB(S) to denote the set of all random fields over B(S).

Suppose that we have a random field such that for each fixed ϕ, M(ϕ, ·) = mϕ(·)
satisfies

mϕ

⎝
⋃

α

Aα

)

=
⎞

α

mϕ(Aα) (18.5)

for any arbitrary collection {Aα} ≈ B(S). Thenwe call the randomfield M a random
sup measure.

For each random sup measure M , we may define the sup-derivative d ∼ by

Y (x) = d ∼M(x) = inf {M(G); G ∈ B(S), x ∈ G} (18.6)

which is a stochastic process on S with upper semi-continuous paths (recall that a
function f is upper semi-continuous if {x : f (x) < y} is open for all y). There is
a close connection between random sup measures and stochastic processes with usc
paths. Indeed, for A ∈ B(S)

⎞

x∈A

Y (x) =
⎞

x∈A

⎠

G√x

M(G) =
⎠

G⊃A

M(G) = M(A).

In [18], the sup-derivative is used to derive a random usc function from an underlying
random sup measure.

18.3.1 Calculating Argmax on Random Sup Measures

In this section, we consider how to select the element having the largest value for a
random sup measure, and the relation between the distribution of maximisers of a
random sup measure and those of its sup derivative, provided that the latter exists.

The probability distribution of the largest element X of a random sup measure is
given by

P(X ∈ A) = P(M(A) > M(S \ A)). (18.7)

http://dx.doi.org/10.1007/978-3-319-06653-0_2
http://dx.doi.org/10.1007/978-3-319-06653-0_4
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We can see that this agreeswith a definition based on the distribution of the location of
themaximal element of the sup derivative of M . Indeed, assuming that themaximiser
of a random usc function is unique, and given by

X ∼ = argmax
x

Y (x) (18.8)

we have

P(X ∼ ∈ A) = P

⎝
⎞

x∈A

Y (x) >
⎞

x∈Ac

Y (x)

)

= P (M(A) > M(S \ A))

= P(X ∈ A).

This means that maximising over a random usc function as in [18] can be seen as
maximising over a random sup measure in line with Eq. (18.7), which is the method
we will use in this chapter. This in turn shows the strong connections between the
mathematics of optimal choice in a framework based on limiting behaviour and one
based on maximisation over a random usc function.

18.4 Calculating the Argmax Measure

In this section, we will develop a method for calculating the argmax measure relying
on continuity properties of random fields.

For each multiset N n , we construct a random field

M̃ N n

μ =
⎤

max
1⇒i⇒n:xni ∈N n∩A

Yni , A ∈ B(S)

⎧

(18.9)

where sup ∅ = −∞. This random field is also a random sup measure as defined in
Definition 18.3, since it satisfies (18.5).

We connect this random sup measure to the argmax measures by the pseudo-
argmax measure.

Definition 18.6 Thepseudo-argmaxmeasure F : PB(S) → [0, 1]B(S) is definedby

F(A, M) = P (M(A) ≥ M(S))

for all A ∈ B(S).

We note that
F

⎨
·; M̃ N n

μ

⎩
= T̃ N n

μ (18.10)
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and that F(·; M̃ N n
) is a probability measure. We seek to show that F(·; M) is

continuous in M in an appropriate sense, and then use (18.10) to derive the lim-
iting behaviour of T̃ N n

μ from the asymptotic behaviour of M̃ N n
.

In particular, we will:

1. define a notion of convergence
m→ on the set of random fields, and

2. define a class of random fields, absolutely continuous independently scattered
random sup measures (acisrsm), such that,

3. if Mn
m→ M , and M is an acisrsm, then F(·; Mn) ∗ F(·; M) and F(·; M) is a

probability measure.

We need to explicitly show that F(·; M) is a probability measure, as the set of
probability measures is not closed under weak convergence.

Definition 18.7 A sequence of random fields Mn inPB(S) is said to m-converge to
the random field M (

m→) if there exists a sequence gn : R → R of strictly increasing
functions such that

gn(Mn(A)) ∗ M(A) (18.11)

for all A with
F(ω A, M) = 0.

A general notion of convergence for random sup measures is presented in [16].
However, for us this notion is unnecessarily strong as it requires convergence of
all finite dimensional distributions of the random field. Instead we make a slightly
weaker requirement of two dimensional convergence for a set A and its complement.

Definition 18.8 Let M : τ × B(S) → R ∪ {−∞} be a random field over B(S).
We call M an absolutely continuous independently scattered random sup measure
(henceforth acisrsm) if the following properties hold:

1. M(A) and M(B) are independent random variables whenever A ∩ B = ∅;
2. If I = A ∪ B then M(I ) = max{M(A), M(B)};
3. |M(A)| < ∞ almost surely or M(A) = −∞ almost surely;

4. If A1 ∃ A2 . . . , and
⎫

n An = ∅, then P

(

lim sup
n

M(An) ≥ M(S)

)

= 0;

5. M(∅) = −∞;
6. If M(A) = −∞ almost surely, then M(S \ A) > −∞ almost surely;
7. If M(A) > −∞ almost surely, then M(·, A) is an absolutely continuous proba-

bility measure on R with respect to Lebesgue measure.

An acisrsm is similar to the “independently scattered random sup measures”
introduced in [20], although that article restricts its attention to the case with Frechét-
distributed marginals. Typically, Property 5 implies that the right-hand side of (18.6)
is −∞ for all x ∈ S. We can either interpret this as a sup derivative Y (x) that is not
well-defined, or that it equals −∞. In either case, we cannot use the sup derivative
in order to derive an argmax distribution, as in Sect. 18.3.1.
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Theorem 18.1 Let {Mn} be a sequence of random fields and let M be an acisrsm
such that

Mn
m→ M.

Then
F(·, Mn) ∗ F(·, M)

and F(·, M) is a probability measure.

Proof Let A ≈ S be measurable with F(ω A; M) = 0. We seek to show that
F(A; Mn) → F(A; M), and consider three cases.

Case 1 M(A), M(Ac) > −∞ a.s. By the assumption of m-convergence and
F(ω A; M) = 0, we can find a sequence of strictly increasing functions gn such that

gn(Mn(A)) ∗ M(A)

gn(Mn(Ac)) ∗ M(Ac)

hold simultaneously. As gn(Mn(A)) and gn(Mn(Ac)) are independent for all n, this
means that

gn(Mn(A)) − gn(Mn(Ac)) ∗ M(A) − M(Ac).

By Definition 18.8, M(A) and M(Ac) are absolutely continuous with respect to
Lebesgue measure and independent, and therefore their difference is absolutely con-
tinuous. Hence,

F(A; Mn) = P(Mn(A) > Mn(Ac))

= P(gn(Mn(A)) > gn(Mn(Ac)))

= P(gn(Mn(A)) − gn(Mn(Ac)) > 0)
→ P(M(A) − M(Ac) > 0)
= F(A; M),

where we use absolute continuity to conclude that 0 is a point of continuity of the
distribution function of M(A) − M(Ac). Therefore, we get

F(A; Mn) → F(A; M).

Case 2 M(A) = −∞ a.s. From Definition 18.8, M(Ac) > −∞ almost surely,
which means that F(A; M) = 0. Furthermore,

gn (Mn(A)) ∗ −∞.

gn (Mn(Ac)) ∗ M(Ac) > −∞.

We can find K such that P(M(Ac) > K ) = 1 − λ, and n0 such that for all n ≥ n0,
P (gn (Mn(A)) < K ) > 1 − λ and P (gn (Mn(Ac)) > K ) > 1 − 2λ. Then, for all
n ≥ n0, P(Mn(A) > Mn(Ac)) < 3λ. As λ was arbitrary, we get
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F(A; Mn) → 0 = F(A; M).

Case 3 M(Ac) = −∞. We use F(A, Mn) = 1 − F(Ac, Mn) to conclude from
Case 2 that

F(A, Mn) → 1.

Furthermore, F(A; M) = 1 as

F(A; M) = P(M(A) > M(Ac))

= 1

and we get that
F(A; Mn) → F(A; M)

in this case as well.
It remains to show that F(·; M) is a probability measure. Countable additivity is

the only non-trivial property.
We first establish finite additivity. We introduce a new notation for the residual

set An+1 = S \ ⎬n
i=1 Ai , and the events

Bi = {M(Ai ) > M (S \ Ai )} for i = 1, 2, . . . , n.

It is evident that if there is an i such that M(Ai ) = −∞, then F(Ai ; M) = 0, so
let us assume that this not true for any i . By absolute continuity, the Bi ’s are almost
surely disjoint. Hence,

F
⎭⎬n

i=1 Ai ; M
) = P(max1⇒i⇒n M(Ai ) > M(An+1))

= P
⎭⎬n

i=1 Bi
)

= ⎢n
i=1 P(Bi )

= ⎢n
i=1 F(Ai ; M).

For countable additivity, it suffices to show that if A1 ∃ A2 ∃ A3 . . . such that
∩n An = ∅, then F(An; M) → 0. However, by Definition 18.8, Property 4,

F(An; M) = P(M(An) > M(S \ An)) ⇒ P(M(An) ≥ M(S)) → 0,

and the proof is complete. ⊂�
The following corollary establishes the connection between the theorem and the

calculation of the argmax measure.

Corollary 18.1 Suppose there exists an acisrsm Mδ
μ such that for all N n ∈ N δ

M̃ N n

μ

m→ Mδ
μ .
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Then, the argmax measure T δ
μ exists and is given by

T δ
μ = F

⎭·; Mδ
μ

)
. (18.12)

Proof We note that
T̃ N n

μ = F(·; M̃ N n

μ )

and apply Theorem 18.1 to conclude that

T̃ N n

μ ∗ F(·; Mδ
μ )

for all {N n} ∈ N δ, and that F(·; Mδ
μ ) is a probability measure. By Definition 18.5,

T δ
μ is the argmax measure. ⊂�

18.5 The Argmax Measure for Homoscedastic
Regression Models

The result in Corollary 18.1 shows that the methodology developed in the previous
section gives a way to calculate the argmax measure which is workable insofar as it
is possible to find an acisrsm Mδ

μ to which M̃ N n

μ m-converges for all N n ∈ N δ.
In this section we make a particular choice

Yni = m(xni ) + λni , (18.13)

for i = 1, . . . , n, where m : S → R is a given deterministic regression function and
{λni } are independent and identically distributed (i.i.d.) error terms with a common
distribution function H . This is a homoscedastic regression model, corresponding to
a measure index

μ(x) = H(· − m(x)). (18.14)

In order to find the limiting behaviour of the empirical acisrsm M̃ N n

μ defined in
(18.9), we note that for all open sets A with δ(A) > 0, |A ∩ N n| → ∞ as n → ∞,
which means that the maximum is taken over a large number of independent random
variables. Thus, the natural choice is to apply extreme value theory.

We will divide the exposition into three subsections. First we state a classical
result in extreme value theory for m ≡ 0, and its specific counterpart related to offers
H ≤ Exp(s) having an exponential distribution with mean s. The second subsection
develops the extreme value theory for exponential offers with varying m(x), in order
to calculate an acisrsm Mδ

μ to which M̃ N n

μ m-converges for an appropriate sequence
gn of monotone transformations. Then Corollary 18.1 is applied in order to calculate
the argmax measure T δ

μ . The third subsection considers other distributions H than
the exponential.
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18.5.1 Some Extreme Value Theory

The following theorem is a key result in extreme value theory, see for instance
[4–6, 10, 17].

Theorem 18.2 (Fisher–Tippet–Gnedenko Theorem) Let {Yn} be a sequence of inde-
pendent and identically distributed (i.i.d.) random variables and define the random
variable Mn = max{Y1, Y2, . . . , Yn}. If there exist sequences {an} and {bn} with
an > 0 such that

lim
n→∞P

(
Mn − bn

an
⇒ x

)

= G(x)

for all x ∈ R, then G belongs to either the Gumbel, the Fréchet, or the Weibull
families of distributions.

Under a wide range of distributions of Yn , convergence does occur, and for most
commondistributions the convergence is to theGumbel(θ, ρ) law,whose distribution
function has the form

G(x; θ, ρ) = exp

(

− exp

(

− x − θ

ρ

))

for some parameters θ and ρ and x ∈ R. We can give a more precise statement of
Gumbel convergence with an = 1 and bn = s log(n) when the random variables Yi

have an exponential distribution with mean s, see for instance [17] for a proof.

Proposition 18.1 Let {Yi }n
i=1 be a sequence of i.i.d. random variables with Yi ≤

Exp(s). Then
max
1⇒i⇒n

Yi − s log(n) ∗ Gumbel(0, s).

18.5.2 Exponential Offers

It turns out that the argmax theory for homoscedastic regression models depends
crucially on the error distribution H , and the exponential distribution is an important
boundary between more light and heavy tailed distributions. Therefore, we treat
H ≤ Exp(s) separately in this subsection.

18.5.2.1 Limiting Acisrsm with Varying m(x)

Ordinary extreme value theory assumes that random variables are independently and
identically distributed. However, in our case we do not have identically distributed
random variables, as the additive term m(x) varies over space (for references on the
theory of extremeswith non-identically distributed randomvariables, see for example
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[7, 8, 24]). Thus, we prove a result characterising the acisrsm with H ≤ Exp(s) and
m(x) varying.

Theorem 18.3 Let M̃ N n

μ (A) be as defined in (18.9), with Yni − m(xni ) ≤ Exp(s)
independently for i = 1, . . . , n and s > 0. Suppose δ is a probability measure on
the Borel ψ -algebra on S and that the following properties hold:

1. m is bounded;
2. {N n}n≥1 ∈ N δ;
3. δ(D̄m) = 0, where Dm = {x ∈ S : m(x) is discontinuous at x} and D̄m =

closure(Dm).

Then (18.11) holds with gn(y) = y/s − log(n), i.e.

M̃ N n

μ (A)/s − log(n) ∗ Mδ
μ (A)

for all A with δ(ω A) = 0, where

Mδ
μ (A) ≤ log




⎥

A

em(x)/sδ(dx)



 + Gumbel(A). (18.15)

The Gumbel(A) means that the marginal distribution of Mδ
μ (A) is a constant

plus a standard Gumbel(0,1) random variable. We give the marginal distributions of
the limiting random field, and do not specify the full set of the finite dimensional
distributions, as the only property on the joint distributions we will need is that the

randomvariables Mδ
μ (A) and Mδ

μ (Ac) are independent. This is true as gn

⎨
M̃ N n

μ (A)
⎩

and gn

⎨
M̃ N n

μ (Ac)
⎩
are independent for all pre-limiting random variables . For more

discussion on Gumbel random fields, see [19].

Proof After a standardisation Yni ∅ Yni/s, we may without loss of generality
assume s = 1.

Let A ⊂ S with δ(ω A) = 0. We note that we have weak convergence of P N n
to

δwhen both measures are restricted to A∩ D̄c
m , and that on this set m is a continuous

bounded function. Thus, by the properties of weak convergence (cf. e.g. Billingsley
[1]), we get

1
n

⎢

1⇒i⇒n:xin∈A
em(xin)

= ∫

A∩D̄c
m

em(x)dP N n
(x) + 1

n

⎢

1⇒i⇒n:xin∈A∩D̄m

em(xin)

→ ∫

A∩D̄c
m

em(x)dδ(x) + 0

= ∫

A
em(x)dδ(x).

(18.16)
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The last sum on the first line tends to 0 as we can write

m̄ = sup
x∈S

m(x) (18.17)

and get
1
n

⎢

1⇒i⇒n:xin∈A∩D̄m

em(xin) ⇒ 1
n

⎢

1⇒i⇒n:xin∈A∩D̄m

em̄

= 1
n n P N n

(A ∩ D̄m)em̄

→ δ(A ∩ D̄m)em̄

⇒ δ(D̄m)em̄

= 0,

where in the third last step we utilised that

δ
⎭
ω(A ∩ D̄m)

) ⇒ δ(ω A) + δ(ω D̄m) ⇒ δ(ω A) + δ(D̄m) = 0 + 0 = 0,

since D̄m is a closed set. We can use (18.16) to derive the acisrsm directly. With

gn(y) = y − log(n) we get that if Zn = log
⎨
P

⎨
gn

⎨
M̃ N n

μ (A)
⎩

⇒ y
⎩⎩

it holds that

Zn = log
⎨
P

⎨
M̃ N n

μ (A) ⇒ y + log(n)
⎩⎩

= ⎢

1⇒i⇒n;xni ∈A
log(1 − exp(−y − log(n) + m(xni )))

= − exp(−y) 1n
⎢

1⇒i⇒n;xni ∈A
exp(m(xni )) + e(n)

→ − exp(−y)
∫

A
exp(m(x))δ(dx)

= − exp

⎝

−y + log

⎝
∫

A
exp(m(x))δ(dx)

))

where we recognise the last line as the logarithm of a Gumbel distribution function

with an additive term log

⎝
∫

A
exp(m(x))δ(dx)

)

as required. Thus, we have proved

our result provided we can verify that the error term e(n) → 0.
To show this we note that

e(n) =
∑

1⇒i⇒n;xni ∈A

log(1−exp(−y−log(n)+m(xni )))+exp(−y−log(n)+m(xni )).

Indeed, using the well-known result that

|log(1 − x) + x | ⇒ x2

1 − x
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we get that

|e(n)| ⇒
∑

1⇒i⇒n;xni ∈A

exp(−2y − 2 log(n) + 2m(xni ))

1 − exp(−y − log(n) + m(xni ))
→ 0

and we have proved our result. ⊂�
Proposition 18.2 The random field defined by

M(A) = log




⎥

A

em(x)/sδ(dx)



 + Gumbel(A)

is an acisrsm in the sense of Definition 18.8 when m and δ satisfy the conditions of
Theorem 18.3.

Proof We note that Property 1 clearly holds as the M(A) and M(B) are measurable
with respect to independent ψ -algebras. Property 2 can be shown to hold by the
properties of the Gumbel distribution. Property 3 holds as m is bounded. Property
4 and 5 hold as limx→0 log(x) = −∞. Property 6 can be verified directly from
the expression of M , and Property 7 is true as the Gumbel distribution is absolutely
continuous. ⊂�

18.5.2.2 Argmax Distribution

In Corollary 18.1, it was shown that the limiting behaviour of M̃ N n

μ determines the
argmax measure. Thus, we can use the limit derived in Theorem 18.3 together with
Proposition 18.2 and Corollary 18.1 to derive the argmax measure associated with
μ and δ.

Theorem 18.4 Let μ(x) = m(x) + Exp(s) and let δ be a probability measure on
S. Suppose that δ and m jointly satisfy the conditions in Theorem 18.3. Then the
argmax measure T δ

μ exists and is given by the exponentially tilted distribution

T δ
μ (A) = C

⎥

A

em(x)/sδ(dx), (18.18)

where

C =



⎥

S

em(x)/sδ(dx)





−1

(18.19)

is a normalising constant. In particular, if δ has a density function ν with respect to
Lebesgue measure γ on S, then T δ

μ has the density function
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tδμ (x) = Cν(x) exp(m(x)/s) (18.20)

for x ∈ S, i.e. T δ
μ (A) = ∫

A tδμ (x)γ(dx) for all Borel sets A ⊂ S.

Proof After standardising data Yni ∅ Yni/s, we may, without loss of generality,
assume that s = 1. Proposition 18.2 states that Mδ

μ , defined as in Theorem 18.3, is an
acisrsm, and in order to find its pseudo argmax measure we let G(x) = G(x; 0, 1) =
e−e−x

denote the distribution function of a standard Gumbel distribution and put
L(A) = log

⎭∫
A em(x)dδ(x)

)
. Then

F(A; Mδ
μ ) = P

⎭
Mδ

μ (A) > Mδ
μ (S \ A)

)

=
∞∫

−∞
P (M(A) ∈ dr)P (M(S \ A) < r)

=
∞∫

−∞
G ∼ (r − L(A)) G (r − L(S \ A)) dr

=
∞∫

−∞
e−r+L(A)e−e−r+L(A)

e−e−r+L(S\A)
dr

= eL(A)
∞∫

−∞
exp(−r) exp

⎭−e−r+L(S)
)
dr

= C
∫

A
em(x)δ(dx)

for all Borel sets A.

Then note that Theorem 18.3 implies that

M̃ N n

μ (A) − log(n) ∗ Mδ
μ (A) (18.21)

holds for {N n}n≥1 ∈ N δ and all Borel sets A with δ(ω A) = 0. It can be shown

that if δ(ω A) > 0, we have F(ω A, Mδ
μ ) > 0. Consequently, M̃ N n

μ

m→ Mδ
μ . Finally,

Corollary 18.1 implies that the argmax measure T δ
μ = F(·; Mδ

μ ) exists and is given
by (18.18). ⊂�

Theorem 18.4 is remarkably simple and explicit. It turns out that this is due to
the memoryless property of the exponential distribution. Indeed, suppose {xni }n

i=1
is an i.i.d. sample from δ, with n large. Recall definition (18.17) of m̄, put In =
argmax1⇒i⇒n Yni and assume for simplicity s = 1. Then, for any i = 1, . . . , n,

P(In = i) ≈ P(Yni ≥ m̄)P(In = i |Yni ≥ m̄)

≈ e−(m̄−m(xni ))/ (nP(m(X) + λ ≥ m̄))

= em(xni )/

⎝

n
∫

S
em(x)δ(dx)

)

.

In the first step we utilised that max1⇒i⇒n Yni ≥ m̄ holds with probability close to
1 when n is large, and in the second step approximated the number of i for which
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Yni = m(xni ) + λni ≥ m̄ as

n∑

i=1

1{m(xni )+λni ≥m̄} ≈ nP(m(X) + λ ≥ m̄),

where {xni , λni }n
i=1 is an i.i.d. sample fromδ×Exp(1). Finally, we used thememory-

less property of the exponential distribution to deduce that all indices i with Yni ≥ m̄
have the same conditional probability of being the argmax, i.e. In = i .

18.5.3 Non-exponential Offers

In the previous subsection, we found that with m fixed, exponentially distributed
offers gave us a one-parameter family of argmax distributions, indexed by s > 0. We
will now provide solutions for other error distributions and find that the exponential
case provides the borderline between more light- and heavy-tailed distributions.
Loosely speaking, for light-tailed distributions, it is only the extremal behaviour of
m that determines the asymptotic argmax distribution, whereas m has no asymptotic
impact for heavy-tailed distributions.

18.5.3.1 Light-Tailed Error Distributions

Formally, the light-tailed case corresponds to the class of distributions for which the
moment generating function of the disturbance function is finite for the whole real
line. For simplicity, we assume that the support of the continuous distribution H has
an upper bound

K = sup{x; H(x) < 1} < ∞,

and that m is not constant. Applying the identity transformation gn(y) = y, we
deduce that

M̃ N n

μ (A) ∗ Mδ
μ (A) = K + sup

x∈A
m(x).

The limiting max field Mδ
μ is degenerate in the sense that Mδ

μ (A) has a one point
distribution, so that the absolute continuity Property 7 of Definition 18.8 is violated.
Therefore we cannot use Theorem 18.1 in order to deduce the argmax measure, but
have to employ a more direct argument.

Given any λ > 0, we let h(x) = H ∼(x) and define the measure

δλ(A) = C
⎥

A

h (K − λ + m̄ − m(x))

H([K − λ + m̄ − m(x), K ])δ(dx),
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with h(x) = 0 if x > K , m̄ as in (18.17), the convention H([K ∼, K ]) = 0 when
K ∼ > K , and C = C(λ) a normalising constant chosen so that δλ(S) = 1. Assume
further that a limit measure δmax exists, supported on the set

Smax = {x ∈ S; m(x) = m̄}

where m is maximal, such that

δλ ∗ δmax as λ → 0. (18.22)

It is reasonable to assume that δλ should approximate the conditional distribution
of Xn in (18.3) given that Yn:n = max1⇒i⇒n Yni = m̄ + K − λ. (A more formal
argument is provided below.) Hence (18.22) suggests that

T δ
μ = δmax, (18.23)

since Yn:n tends in probability to m̄ + K as n grows. Notice that δmax has a one
point distribution when Smax = xmax consists of one single element. This accords
with (18.8), since the sup derivative Y (x) = K + m(x) of Mδ

μ exists.
In order to establish (18.23) according to Definition 18.5, we need a slightly

stronger condition though than (18.22), as the following theorem reveals:

Theorem 18.5 For any λ > 0, put

P N n

λ (A) = Cn

⎥

A

h (K − λ + m̄ − m(x))

H [K − λ + m̄ − m(x), K ] P N n
(dx),

where Cn = Cn(λ) is a normalising constant assuring that P N n

λ (S) = 1, and

Qn(λ) =
⎥

S

H ([K − λ + m̄ − m(x), K ]) P N n
(dx).

Assume that
P N n

Q−1
n (c/n)

∗ δmax as n → ∞ (18.24)

uniformly for all c ∈ (0, c̄], for any c̄ > 0, with Q−1
n the inverse function of Qn.

Then (18.23) holds.

Proof According to Definition 18.5, we need to prove T̃ N n

μ ∗ δmax for any
{N n}n≥1 ∈ N δ. Let Zn = m̄ + K − Yn:n . We first note that

P(Xn = xni |Zn) = h(m̄ + K − m(xni ) − Zn)
∏

j �=i H(m̄ + K − m(xnj ) − Zn)

∝ h(m̄+K−m(xni )−Zn)
H(m̄+K−m(xni )−Zn)
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where Xn is defined as in (18.3). By conditioning on Zn we notice that

T̃ N n

μ (A) =
⎥ ∞

0
P N n

λ (A)FZn (dλ). (18.25)

Furthermore, Zn has the property that

nQn(Zn) ∗ Exp(1).

Indeed, for x > 0, we can use the monotonicity of Qn to deduce that

P(nQn(Zn) ⇒ x) = P
⎭
Zn ⇒ Q−1

n (x/n)
)

= 1 − ∏n
i=1(1 − H [K + m̄ − m(xni ) − Q−1

n (x/n), K ])
→ 1 − e−x

where the last step uses the well known fact

n∏

i=1

(1 − an,i ) → e−a

if an,i ≥ 0,

lim
n→∞

n∑

i=1

an,i = a

and limn→∞ max an,i = 0. These conditions hold in our case as

n⎢

i=1
H [K + m̄ − m(xni ) − Q−1

n (x/n), K ] = nQn(Q−1
n (x/n))

= x

and lim
n→∞max H [K + m̄ − m(xni ) − Q−1

n (x/n), K ] = 0 assuming that H has no

point mass on K .
Thus, nQn(Zn) ∗ Exp(1), and we conclude the proof by performing a change

of variable c = nQn(ς) on (18.25) to get

T̃ N n

μ (A) =
∞⎥

0

P N n

Q−1
n (c/n)

(A)FnQn(Zn)(dc). (18.26)

Letting e(c, n) = |δmax(A) − P N n

Q−1
n (c/n)

(A)| which tends uniformly to 0 on [0, c̄)

for any c̄ such that δmax(ω A) = 0, we get that
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|T̃ N n

μ (A)−δmax(A)| ⇒ sup
c∈[0,c̄)

e(c, n)P(nQn(Zn) ∈ [0, c̄))+ P(nQn(Zn) /∈ [0, c̄))

which can be made arbitrarily small. Thus, our proof is completed. ⊂�

18.5.3.2 Heavy-Tailed Error Distributions

It can be shown that the class of heavy-tailed distributions corresponds to those for
which themoment generating function is undefined for positive values. For simplicity,
we consider the class of Pareto distributions with shape parameter α > 0 and scale
parameter 1, i.e.

H(x) = Pareto(x;α, 1) = 1 − x−α

for x ≥ 1. Then Theorem 2 holds with bn = 0, an = n1/α , and

G(x) = Frechet(x;α, 1, 0) = exp(−x−α)

for x > 0 has a Fréchet distribution with shape parameter α, scale parameter 1 and
location parameter 0. Since an increases with n at a polynomial rate, it turns out that
any local variation of the bounded function m has no impact on the asymptotic max
field, as the following result reveals:

Theorem 18.6 Let M̃ N n

μ (A)be as defined in (18.9), with Yni−m(xni ) ≤ Pareto(α, 1)
independently for i = 1, . . . , n. Suppose δ is a probability measure on the Borel
ψ -algebra on S and that properties 1–3 of Theorem 18.3 hold.

Then (18.11) holds with gn(y) = y/n1/α , i.e.

M̃ N n

μ (A)/n1/α ∗ Mδ
μ (A) = δ(A)1/αFrechetα(A) (18.27)

for all A with δ(ω A) = 0. Moreover the argmax measure exists and is given by

T δ
μ = δ. (18.28)

In the notation, Frechetα(A) refers to a Frechet(α, 1, 0) distributed random
variable for any Borel set A ⊂ S, which is independent of Frechetα(B) for B such
that A ∩ B = ∅.
Proof We begin with (18.27). Let A be a measurable set with δ(ω A) = 0. Then, if
Fn,A is the distribution function of M̃ N n

μ (A)/n1/α we have
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log Fn,A(y) = log

⎝
∏

xn,i ∈A
P(Yn,i + m(xn,i ) ⇒ n1/α y)

)

= ⎢

1⇒i⇒n,xn,i ∈A
log

⎭
1 − (n1/α y − m(xn,i ))

−α
)

= ⎢

1⇒i⇒n
log

⎨
1 − (y−n−1/αm(xn,i ))

−α

n

⎩n I (xn,i ∈A)

n

= ⎢

1⇒i⇒n
f (n, i)h(n, i).

(18.29)

As m is bounded, f (n, i) → −y−α uniformly over i . Therefore, we get

lim
n→∞ log Fn,A(y) = lim

n→∞
⎢

1⇒i⇒n
f (n, i)h(n, i)

= −y−α lim
n→∞

⎢

1⇒i⇒n

I (xn,i ∈A)

n

= −y−αδ(A),

(18.30)

where the last step uses weak convergence of P N n
to δ. After exponentiation we

note that the right-hand side is, as required, the distribution function of the random
variable δ(A)1/αFrechetα(A).

It remains to prove (18.28). To this end, we notice that the pseudo argmaxmeasure
of Mδ

μ equals

F(A; Mδ
μ ) = P

⎭
δ(A)1/αFrechetα(A) > δ(Ac)1/αFrechetα(Ac)

)

= P (δ(A)Frechet1(A) > δ(Ac)Frechet1(Ac))

= δ(A),

(18.31)

where the last line follows from the properties of the Fréchet distribution. Indeed, if
X, Y ≤ Frechet1 independently,

P (δ(A)X > δ(Ac)Y ) =
∞∫

0

δ(A)

y2
Exp(−δ(A)y−1)Exp

⎭−δ(Ac)y−1
)
dy

= δ(A)
∞∫

0
1/y2 exp(−y−1)dy

= δ(A),

(18.32)
Since F(·; Mδ

μ ) = δ, it follows from (18.27) that M̃ N n

μ

m→ Mδ
μ . Hence, by

Corollary 1, T δ
μ = F(·; Mδ

μ ) = δ exists. ⊂�
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18.6 Conclusion

In this chapter we introduced a definition for an argmax measure on an infinite
compact set S ≈ Rk .

We showed that there is a close relation between an argmax measure defined as a
limit of choices with a finite number of options, and an argmax definition based on
selecting maximisers of a random sup measure [18].

Our limit-based definition also allows us to explore the consequence of different
distributional assumptions in a homoscedastic regression model, with one determin-
istic component and another random disturbance component. This analysis showed
that a model with an exponentially distributed disturbance term is an important inter-
mediate case. The class of heavy-tailed disturbances that we studied correspond
to Fréchet random sup measures where the deterministic component is unimpor-
tant. Light-tailed distributions (with compact support) correspond to non-random
sup measures where only the deterministic component m(·) matters for the argmax
measure.

It is possible to extend the approaches of this chapter and link it more closely
to theory of point processes and extreme values [17] as well as the theory of con-
comitants of extreme order statistics [11]. Indeed, one can construct a theory where
the locations xni of offers are not deterministic, leading to a doubly stochastic prob-
lem. When {xni }n

i=1 is a point process, this yields an argmax theory of marked point
process when the intensity of the underlying point process tends to infinity. In par-
ticular, when (xni , Yni ) = (xi , Yi ) is an i.i.d. sequence of pairs of random variables,
the argmax distribution for a sample of size n is the concomitant of the extreme order
statistic among Y1, . . . , Yn . Some work in this direction is presented in [13].
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