
Chapter 13
Analysis of the Stochasticity of Mortality
Using Variance Decomposition

Erland Ekheden and Ola Hössjer

Abstract We analyse the stochasticity in mortality data from the USA, the UK and
Sweden, and in particular to which extent mortality rates are explained by systematic
variation, due to various risk factors, and random noise.We formalise this in terms of
amixed regressionmodelwith a logistic link function, and decompose the variance of
the observations into three parts: binomial risk, the variance due to randommortality
variation in a finite population, systematic risk explained by the covariates and unex-
plained systematic risk, variance that comes from real changes in mortality rates, not
captured by the covariates. The fraction of unexplained variance caused by binomial
risk provides a limit in terms of the resolution that can be achieved by a model. This
can be used as a model selection tool for selecting the number of covariates and
regression parameters of the deterministic part of the regression function, and for
testing whether unexplained systematic variation should be explicitly modelled or
not.We use a two-factor model with age and calendar year as covariates, and perform
the variance decomposition for a simple model with a linear time trend on the logit
scale. The population size turns out to be crucial, and for Swedish data, the simple
model works surprisingly well, leaving only a small fraction of unexplained system-
atic risk, whereas for the UK and the USA, the amount of unexplained systematic
risk is larger, so that more elaborate models might work better.

13.1 Introduction

Decreasing mortality rates is not a new phenomenon. This trend has been evident
for over a century in countries like Sweden, the United Kingdom and the United
States. “Longevity” is an often used term for this trend, especially when the trend is
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viewed as an economic risk for society, pension funds and insurers. Actuaries and
demographers have a long tradition of making life tables and models for mortality.
Thirty years ago Osmond [31] introduced the Age-Period-Cohort model within the
medical statistics literature, but the interest in stochastic modelling of mortality first
took off with the paper by Lee and Carter [27] in which a principal components
approach of Bozik and Bell [6] and Bell and Monsell [4] was modified. Since then a
variety ofmodels have been proposed, see [2, 5, 11, 12, 14] for recent overviewswith
further references. They differ in the way in which the covariates; age x , calendar
year t and cohort t − x , are included, and whether the one year death risk, qtx , or the
closely related expected number of deaths per individual and unit of time, the death
intensity μt x ≈ − log(1 − qtx ), is modelled.

The richness of proposed models shows that the problem is non-trivial, with a
high dimensional data set. There are more than a hundred observed age specific
mortalities, often for males and females, collected for over thirty, fifty and even a
hundred calendar years. Still there are substantial correlations in data, sincemortality
in general increases with age. The improvements of mortalities seem, however, to
be non-stationary, in that the rates vary over ages and time. On top of this we have
random noise, caused by individual variation in a finite population.

When evaluatingmodels, some seem to be too simple. Thismay either be assessed
in an explorative data analysis whichmay revealmarked patterns in residual plots that
signify features of historical data not explained by the model, or formally by some
model selection criterion such as BIC [12]. Other models seem to be too complex.
Even though they fit historical data well, they might be sensitive to varying indata
and have less robust forecasts, see [12, 14]. Bell [3] showed that a simple model,
where the logged death rates constitute a random walk with drift, separately for each
age, can sometimes outperform more complex models in terms of forecasting. Bell’s
work has received relatively little attention in the literature, and it seems there is still
work to be done in terms of selecting models for mortality and forecasting.

In the Lee–Carter model and many of its successors, it is often taken for granted
that either the observed death rates μ̂xt ormortality rates q̂xt are stochastic processes.
It is, however, seldom explicitly pointed out that what we observe is a finite popu-
lation and that the randomness is partially caused by this. Brouhns et al. [10] used
Poisson regression, where instead, the actual death rates are non-random, whereas
the randomness from the finite population manifests itself in terms of a Poisson
distributed number of deaths (see also [1, 35]). This source of variation has been
referred to as Poisson risk [15], and analogously, we speak of binomial risk if the
number of deaths is assumed be binomially distributed. Both Poisson and binomial
risks are examples of diversifiable risks.

In this paper we will take a closer look at the randomness of observed mortality
rates q̂xt . The aim is to get a better understanding of the underlying processes and
to get new means for model selection and/or model validation. This close look will
start with an explorative data analysis, where some stochastic behaviour of data in
a finite population is expected regardless of the stochastic nature of the underlying
mortality rates qxt .
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As a next more formal step we divide variation in observed mortalities into three
components by means of a certain variance decomposition for mixed regression
models [24] that has previously been applied to non-life insurance data [25]. The
first two components is systematic risk (variation in true mortalities) that is either
explained or unexplained by the covariates age and year, and the third component,
binomial risk, is due to the finiteness of the population. The novel feature, in the
life insurance context, is that unexplained variation can be divided into binomial risk
and unexplained systematic risk. We develop a test where the size of these two risk
components are compared, and show that the unexplained systematic risk can/should
be excluded from the model for a small population, or at low ages. In that case a
simple logistic regression analysis can be employed. This test can also be interpreted
as a test of over-dispersion of the annual death counts compared to what would be
expected for a binomial distribution with non-random mortality rates.

In our analysis, we will use data sets for Swedish, UK, and United States popu-
lations. Rather than finding a multi-population model that fits all three data sets [13,
29], we build a single model separately for each country. There is a danger of using a
single data set, since it may contain something specific that one takes to be general.
However, the three chosen countries have a broad range of population sizes and are
popular in the literature for their economic importance and size (UK and USA) or
admittedly good data quality (Sweden), and therefore constitute a fairly broad range
of Western populations. We use the latest available data at the time of download,
ranging from 1979 to 2011 (Sweden), 2009 (UK) and 2007 (USA) respectively, with
males and females handled separately. The data comes from the Human Mortality
database, see mortality.org for further documentation.

13.1.1 Preliminaries

We study a population of ages x = xl , . . . , xu spanning between lower and upper
limits xl and xu , during calendar years t = t1, . . . , tT , where tT is the latest year
of observations and T is the length of the time window. Assuming that Nxt is the
number of individuals of age x alive at the beginning of calendar year t (or more
generally the exposure-to-risk Ext , rounded to the nearest integer), the number of
deaths

Dxt |qxt → Bin(Nxt , qxt )

among them within one year is assumed to have a binomial distribution, with a death
probability or mortality rate qxt that can be estimated as

q̂xt = Dxt

Nxt
. (13.1)



202 E. Ekheden and O. Hössjer

As mentioned in the introduction, a Poisson approximation

Dxt |μxt → Po(Extμxt )

to death counts is often employed, see for instance [9, 10]. This is a useful approxima-
tion for most ages, but for higher ages, over 80, the Poisson distribution increasingly
overestimates the variance, making it less suitable for our purposes.

We will work with logit transformed (LM) mortality data

Y LM
xt = logitq̂xt = log

q̂xt

1 − q̂xt
, (13.2)

and in order to remove linear age trends, we also study the logit transformed incre-
ments (LMI)

Y LMI
xt = δlogitq̂xt = logitq̂xt − logitq̂x,t−1 (13.3)

in time, regarding data as a time series for every fixed age x .

13.2 Explorative Data Analysis

We wish to get a better understanding of the probabilistic properties of mortality
data. We perform an explorative data analysis in order to achieve this. We know that
there are year to year variations in mortalities. First we ask if the logit transformed
increments (13.3) are normally distributed. We inspect quantile-quantile plots, some
of which are shown in Fig. 13.1, and find the normal distribution to be a reasonable
assumption.

We then proceed to investigate the correlation structure of the LMI data. In order
to get a picture of how the correlation between nearby ages varies with age, we study
in Fig. 13.2, for each age x , the average

1

4

∑

|h|∞2
h ≤=0

̂Corr(Y LMI
x · , Y LMI

x+h,·) (13.4)

of the estimated correlation function for the four nearest ages. For Sweden and the
UK, the correlation is around zero for low ages, but it starts to rise at the age of 60,
so that a marked correlation of 0.5 can be seen at the age of 90. The pattern for US
males is quite different, here we have a pronounced correlation of 0.7 in ages 20–40,
then it dips towards zero at age 60 and finally it rises again to 0.7 at age 90. For US
females, the correlation is not so high in ages 20–40 as for the males, but for ages 60
and higher, they are very close.
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Fig. 13.1 Estimated logit mortality rates (13.2) and QQ-plots of increments (13.3) of estimated
logit mortality rates for the Swedish data set, males of ages 50 and 70

We then look at the estimated lag 1 autocorrelation function

̂ACFx (1) = ̂Corr(Y LMI
x · , Y LMI

x,·+1)

of the LMI data, and in Table 13.1 we have averaged these over all age classes for the
Swedish, UK and US datasets. At this stage we define an MA(1)-process (without
drift)

Yt = λ + wt + τwt−1, (13.5)

with wt → N (0, ψ 2) independent. Recall that it has an ACF(1) equal to τ/(1 + τ2),
see for instance [8], hence

ACF(1) = −0.5 ⇒ τ = −1.

When τ = −1 we can rewrite (13.5) as

Yt = (wt + ϕ + λ(t − t̄) − (wt−1 + ϕ + λ(t − 1 − t̄))
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Fig. 13.2 Correlation of estimated increments (13.3) of logit mortality rates between each age
group x and its four nearest age groups for the Swedish, UK and US datasets of males and females

and interpret it as LMI transformed data (13.3), in whichϕ+λ(t − t̄) andwt represent
a linear trend and independent noise of the estimated logit mortalities (13.2), with
t̄ = (t1 + tT )/2 the midpoint of the observational interval of calendar years. An
ACF(1) close to −0.5 thus indicates a high degree of independence of the logit
mortalities between years, when a linear trend has been removed. The findings for
Sweden and the UK, with low correlations between nearby ages and an ACF(1) close
to −0.5, see Table 13.1, suggest a large amount of independence between years and
over ages. We will find in Sect. 13.3 that this is caused by a binomial risk that is large
in comparison to the unexplained systematic risk. The autocorrelations for US data
suggests a structure with more dependencies, corresponding to a lower fraction of
binomial risk.
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Table 13.1 Autocorrelations ̂ACF(1) = averagêACFx (1) of lag 1, for increments of logit trans-
formed data, averaged over all age classes, for the Swedish, UK and US datasets

Category ̂ACF(1)

SWE males −0.45 SWE females −0.46
UK males −0.42 UK females −0.44
US males −0.15 US females −0.29

13.3 Mixed Regression Model for Transformed Data

We will formalise the procedure of the previous section, and notice that (13.2) and
(13.3) are both transformations

Yxt = fxt (q̂), (x, t) ∈ α (13.6)

of the estimated mortalities q̂ = {q̂xt ; (x, t) ∈ α}, computed for a collection

α ⊂ {(x, t); xl ∞ x ∞ xu, t1 ∞ t ∞ tT }

of ages and calendar years. The analogous transformations of the true but unknown
mortalities q = {qxt ; (x, t) ∈ α} are denoted as

Y ∞
xt = fxt (q), (x, t) ∈ α,

where the superscript ∞ signifies a hypothetical population of infinite size with no
binomial risk.

Imagine that we have a regression model with response variables {Yxt ; (x, t) ∈
α}, covariates (x, t) and parameters τ . In order to assess how much of the variation
in Yxt is a function of changes in the underlying q, not explained by our model
(systematic variation), and how much is due to random noise (binomial risk), we
write

Yxt = mxt + ωxt

= mxt + ωs
xt + ωb

xt ,
(13.7)

as a sum of one part
mxt = mxt (τ) = Eτ (Y

∞
xt ) (13.8)

explained by the regression model, and another part ωxt not explained by the regres-
sion model. The explained part depends on a number of regression parameters
τ = (τ1, . . . , τp)

T , the unexplained part can further be decomposed into a sum
of ωs

xt = Y ∞
xt − mxt , the unexplained systematic variation, which by definition satis-

fies E(ωs
xt ) = 0, and ωb

xt = Yxt − Y ∞
xt , the unexplained random noise, i.e. binomial

risk. We assume that
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E(ωb
xt ) = 0, (13.9)

which is accurate to order N−1
xt for smooth transformations fxt .

Based on (13.7), we decompose the variance

vxt = Var(Yxt )

= Var(ωs
xt ) + Var(ωb

xt ) (13.10)

=: vs
xt + vb

xt

of Yxt into two parts, of which vs represents unexplained systematic variation and vb

binomial risk.
In particular we will study linear mixed regression models

Y = Xτ + ω, (13.11)

whereY = (Yxt ; (x, t) ∈ α)T and ω = (ωxt ; (x, t) ∈ α)T are n×1 column vectors,
X is an n × p design matrix and n is the number of elements in α. The least squares
estimator

τ̂ = (XXT )−1XT Y (13.12)

will be used in a model selection step below for computing estimates m̂xt = mxt (τ̂)

of the regression function.

13.4 Basic Model

We assume a simple two-factor model

logitqxt = ϕx + λx (t − t̄) + θxt (13.13)

for the logit transformed mortalities, with age and calendar years as covariates,
whereas cohort effects t − x are not included. The deterministic period effect (t − t̄)
is linear, with t̄ = (t1 + tT )/2 the mid-point of the chosen time interval. This often
provides a good approximation, see for instance Sect. 9 of [17]. The intercepts ϕx and
slopes λx represent deterministic age effects, for which we assume a parametrisation

ϕx =
p1∑

j=0
a jρ j (x),

λx =
p2∑

j=0
b jρ j (x)

in terms of basis functions ρ j that are either polynomials,
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ρ j (x) = x j , (13.14)

or single age class indicators

ρ j (x) = 1{x=x j+l }, (13.15)

so that each age class is assigned a separate intercept and slope parameter, corre-
sponding to p1 = p2 = xu − xl , a j = ϕxl+ j and b j = λxl+ j .

While (13.14) has the advantage of smoothing the logit transformed mortalities
age-wise, (13.15) is better at capturing age specific effects. It is also possible to
choose the basis functions as B-splines [19, 26].

The θxt terms are random variables with E(θxt ) = 0. If these are all indepen-
dent, we get a generalised (or hierarchical) linear mixed model, for which various
approximate estimation algorithms are available, see for instance [7, 28].

In the following two subsections,we analyse two transformations (13.2) and (13.3)
of raw data in more detail for the model in (13.13).

13.4.1 Logit Mortality

Assume that Yxt = Y LM
xt in (13.2) is defined for all (x, t) in α = {(x, t); xl ∞ x ∞

xu, t1 ∞ t ∞ tT }. The three terms in (13.7), and the parameter vector, then have the
form

mxt =
p1∑

j=0
a jρ j (x) + (t − t̄)

p2∑

j=0
b jρ j (x),

ωs
xt = θxt ,

ωb
xt = logitq̂xt − logitqxt ,

p = p1 + p2 + 2,
τ = (a0, . . . , ap1 , b0, . . . , bp2)

T .

(13.16)

In the Lee–Carter model and many of its extensions, age and period parameters enter
bi-linearly into the regression function. However, since time enters as a fixed known
covariate in terms of a linear time trend in (13.13), Eq. (13.7) can be rewritten as a
multiple linear regression model (13.11), where the design matrix X has rows

(ρ0(x), ρ1(x), . . . , ρp1(x), (t − t̄)ρ0(x), (t − t̄)ρ1(x), . . . , (t − t̄)ρp2(x))

for all (x, t) ∈ α.
It follows from (13.9) that the binomial risk variance function satisfies

vb
xt = E

(
Var(logitq̂xt |qx,t )

⎛ ≈ E

⎝
1

Nxt qxt (1 − qxt )

)

, (13.17)
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where the variance of a transformed binomial variable is computed by means of a
Gauss approximation in the last step. Hence we can estimate vb

xt from the data as

v̂b
xt = 1

Nxt q̄xt (1 − q̄xt )
, (13.18)

where either

q̄xt = emxt (τ̂)

1 + emxt (τ̂)
, (13.19)

or more simply q̄xt = q̂xt .
A logistic regression model is obtained if the unexplained systematic errors θxt in

(13.13) equal zero. This is a generalised linear model (GLM) with a logit link. Then
the death counts Dxt will have an (unconditional) binomial distribution

Dxt → Bin(Nxt , qxt ) = Bin

(

Nxt ,
emxt (τ)

1 + emxt (τ)

⎞

, (13.20)

with mxt (τ) as in (13.16). The model parameters τ can be estimated directly from
untransformed raw data Dxt by means of maximum likelihood

τ̃ = argmax
τ

⎠

(x,t)∈α

Pτ (Dxt |Nxt ) (13.21)

andbyplugging these into the regression function, themortality rate estimates (13.19)
can be refined as

q̃xt = emxt (τ̃)

1 + emxt (τ̃)
. (13.22)

Renshaw and Haberman [32] also use a GLM approach with an over-dispersed Pois-
son distribution. When their over-dispersion parameter is set to unity, so that the data
is Poisson distributed, the resulting model is very similar to (13.20).

13.4.2 Logit Mortality Increments

If the time trend in (13.13) is of central interest, we use instead Yxt = Y LMI
xt in (13.3)

for all (x, t) in α = {(x, t); xl ∞ x ∞ xu, t2 ∞ t ∞ tT }. Then the three terms in
(13.7), and the parameter vector, have the form
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mxt =
p2∑

j=0
b jρ j (x),

ωs
xt = θxt − θx,t−1,

ωb
xt = (

logitq̂xt − logitqxt
⎛ − (

logitq̂x,t−1 − logitqx,t−1
⎛
,

p = p2 + 1,
τ = (b0, . . . , bp2)

T .

(13.23)

We canwrite this as amultiple linear regressionmodel (13.11) with a designmatrixX
of dimension n× p whose row corresponding to (x, t) is (ρ0(x), ρ1(x), . . . , ρp2(x)).
It follows from (13.9) that the binomial risk variance function satisfies

vb
xt = E

(
Var(logitq̂x,t−1|qx,t−1)

⎛ + E
(
Var(logitq̂xt |qxt )

⎛

≈ E
⎤

1
Nx,t−1qx,t−1(1−qx,t−1)

⎧
+ E

⎤
1

Nxt qxt (1−qxt )

⎧
,

(13.24)

which we estimate as

v̂b
xt = 1

Nx,t−1q̄x,t−1(1 − q̄x,t−1)
+ 1

Nxt q̄xt (1 − q̄xt )
, (13.25)

with q̄x,t−1 and q̄xt as in (13.19), using the LS estimate τ̂ of LM (not LMI) trans-
formed data, or we put q̄x,t−1 = q̂x,t−1 and q̄xt = q̂xt .

The LMI transformation will only be used for goodness of fit testing, not for
refining mortality estimates, as in (13.22).

13.5 Variance Decomposition and Overdispersion Test

We can use (13.7–13.10) in order to define a variance decomposition of the trans-
formed mortalities Yxt as follows: Let wxt be weights assigned to all elements of α

and assume that ν is randomly chosen fromαwith probabilities proportional to wxt .
Then

E(Yν) = m = m(τ) =
∑

(x,t)∈α

wxt mxt/
∑

(x,t)∈α

wxt .

Following [24, 25], we will decompose the variance of Yν into three parts;
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Var(Yν) =
∑

(x,t)∈α

wxt E
⎤
(Yxt − m)2

⎧
/

∑

(x,t)∈α

wxt

=
⎨

⎩
∑

(x,t)∈α

wxt (mxt − m)2 +
∑

(x,t)∈α

wxt v
s
xt +

∑

(x,t)∈α

wxt v
b
xt

⎫

⎬ /
∑

(x,t)∈α

wxt

= ψ 2
exp + ψ 2

s + ψ 2
b

corresponding to explained, systematic unexplained and binomial variance. The
weights can be chosen in many different ways, see [24]. One possibility is to use

wxt = γtT −t , (13.26)

where 0 < γ ∞ 1 is a forgetting factor that quantifies to which extent older calendar
years should be down-weighted.Whereas γ < 1may be preferable when the ultimate
purpose is prediction of future mortality risks, uniform weights γ = 1, i.e.

wxt = 1 (13.27)

are more appropriate for parameter estimation of historical data. Yet another pos-
sibility is to downweight observations with a high binomial variance. This yields a
scheme

wx,t =
⎤

vb
xt

⎧−1
(13.28)

referred to in [24] as inverse non-dispersed variance weighting.
The variance components can be estimated as

ψ̂ 2
exp = ∑

(x,t)∈α

ŵxt (m̂xt − m̂)2/
∑

(x,t)∈α

ŵxt

ψ̂ 2
b = ∑

(x,t)∈α

ŵxt v̂b
xt/

∑

(x,t)∈α

ŵxt

ψ̂ 2
unexp = ∑

(x,t)∈α

ŵxt (Yxt − m̂xt )
2/

∑

(x,t)∈α

ŵxt ,

(13.29)

where ψ̂ 2
unexp is an estimate of the total unexplained variance ψ 2

unexp = ψ 2
s + ψ 2

b ,

v̂b
xt and m̂xt = mxt (τ̂) are estimates of the binomial risk variance and regression
function respectively, ŵxt = wxt if deterministic weights (13.26–13.27) are used,
ŵxt = (v̂b

xt )
−1 for inverse variance weights (13.28), and

m̂ =
∑

(x,t)∈α

ŵxt m̂xt/
∑

(x,t)∈α

ŵxt .

The coefficient of determination
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R2 = ψ̂ 2
exp

ψ̂ 2
exp + ψ̂ 2

unexp

quantifies how large a fraction of the total variance is explained by the model. How-
ever, in this paper we will focus on the fraction

ς = 1 − ψ 2
b

ψ 2
unexp

(13.30)

of the unexplained variance that originates from systematic risk. It represents the part
of the unexplained variation which potentially could be explained. We can interpret
ς as the correlation coefficient between two random variables Yν and Y ∗

ν, computed
from two hypothetical populations with the same mortalities q, and with estimated
mortalities that both satisfy (13.1) but the two populations are conditionally inde-
pendent, given q. An estimate of ς is

ς̂ =
(

1 − ψ̂ 2
b

ψ̂ 2
unexp

⎞

+
,

where a truncation is applied in order to avoid a negative estimate of a non-negative
parameter. This may happen, either due to the randomness of the estimated mortali-
ties, or if the model is over-parametrised, then a simpler model should be considered.
We will use ς̂ as a model selection tool as follows: Let 0 < ςcrit < 1 be a pre-defined
threshold value of the correlation coefficient and ωs = {ωs

xt ; (x, t) ∈ α} the unex-
plained systematic risk. Then, if

ς̂ ∞ ςcrit =⇒ discard ωs,

ς̂ > ςcrit =⇒ include ωs,
(13.31)

with the rationale of choosing a simpler model when the binomial risk dominates
the unexplained systematic risk. The outcome of the test (13.31) can thus serve as
a tool for model selection. With ς̂ sufficiently close to 0, we disregard unexplained
systematic variation, so that themortality ratesqxt are deterministic. The death counts
will then follow the logistic regression model (13.20), knowing that it will mostly
explain what there is to explain. On the other hand, a high value of ς̂ indicates that
the logistic regression model fails to explain a significant amount of variation in data,
and then ωs should be included in the model. Various ways of modelling unexplained
systematic risk are discussed in Sect. 13.7.

We can regard (13.31) as a test of over-dispersion for the number of deaths Dxt ,
with null and alternative hypotheses

H0 : ς = 0 ∼ ωs = 0,

H1 : ς > 0 ∼ ωs ≤= 0,
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respectively. Under the alternative hypothesis, the unconditional distribution of Dxt

will be a mixed binomial, with a mixture distribution caused by the unexplained
systematic risk. This gives an over-dispersion

Var(Dxt ) = Var (E(Dxt |qxt )) + E (Var(Dxt |qxt ))

= N 2
xtVar(qxt ) + Nxt E (qxt (1 − qxt ))

= Nxt E(qxt ) (1 − E(qxt )) + (N 2
xt − Nxt )Var(qxt )

H1
> Nxt E(qxt ) (1 − E(qxt ))

of untransformed data for all (x, t) ∈ α. For large populations, the transformations
(13.2) and (13.3) are approximately linear functions of {Dxt ; xl ∞ x ∞ xu, t1 ∞
t ∞ tT }. Therefore, transformed data will be over-dispersed (Var(Yxt ) > vb

xt for all
(x, t) ∈ α), precisely under the alternative hypothesis, as shown in (13.10).

The threshold ςcrit in (13.31) can either be defined as a fixed value, for instance
in the range 0.1–0.3, depending on how much a simpler model, without unexplained
systematic variation, is preferred. It can also be derived as a quantile of the null
distribution of ς̂, which can either be approximated by parametric bootstrap, when
new data is generated from the null model (13.20), but with τ replaced by an estimate
τ̂ , or from an asymptotic approximation of the null distribution of ς̂. It is motivated
in the appendix that

ς̂ →
⎭

C

n
U+ under H0 (13.32)

when the number of elements n ofα is large, whereU → N (0, 1) and C is a constant
that depends on the weighting scheme and the type of transformation used. For LM
transformed data, all Yxt are independent under the null hypothesis, and therefore

C = 2n
∑

(x,t)

(
wxt vb

xt

⎛2

⎤∑
(x,t) wxt vb

xt

⎧2 ,

with a minimum value of C = 2 for inverse variance weighting (13.28). For LMI
transformed data, C will be slightly smaller, as motivated in the appendix.

We see from (13.32) that the null distribution of ς̂ is approximately a 0.5:0.5
mixture of a point mass at zero and a continuous one-dimensional distribution. More
generally, statistics for testing parameters at the boundary of a parameter space often
have null distributions that are mixtures of distributions of different dimensions
[33, 34].

13.6 Data Analysis

In this section, we proceed with a data analysis in order to investigate whether the
simple model (13.13) could be used for Swedish, UK and US data sets.
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Fig. 13.3 Estimated age-specific variance components ψ̂ 2
bx and ψ̂ 2

unexp,x , for the Swedish female,
UK female and US datasets as a function of age x . We use uniform weights (13.27) and for the v̂b,x
estimate in (13.25), we put q̄xt = q̂xt . In all four subplots, the more smoothed curves represent the
estimated binomial variances

13.6.1 Variance Decomposition

We start by fitting a multiple linear regression model (13.23) to LMI data, with
single age class indicators as defined in (13.15).We then compute estimated variance
components ψ̂ 2

bx and ψ̂ 2
unexp,x given in (13.29), when α consists of one single age,

class, i.e. xl = xu = x , using uniform weights (13.27), see Fig. 13.3.
Some general features can be seen. Since the binomial variance ψ̂ 2

bx √ q−1
x for

younger ages, it has a maximum around the age of ten, then it declines, but starts
to grow again at age 90 due to the rapidly declining population size. For US data,
the unexplained variance is above the binomial variance for almost all ages, and for
all over 25. For the Swedish data set the two variances are very close to each other.
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Table 13.2 Estimated correlation coefficient ς̂ for different age bands and populations based on
LM and LMI data

Transformation Age 0–100 1–45 46–60 61–90
Quantity ς̂ ςcrit ς̂ ςcrit ς̂ ςcrit ς̂ ςcrit

LM SWE f 0.15 0.0488 0.10 0.0730 0.14 0.1265 0.29 0.0895
UK f 0.80 0.0504 0.02 0.0754 0.50 0.1307 0.92 0.0924
US f 0.90 0.0521 0.72 0.0781 0.84 0.1353 0.94 0.0956

LMI SWE f 0.12 0.0495 0 0.0742 0.10 0.1285 0.34 0.0909
UK f 0.68 0.0512 0 0.0767 0.37 0.1329 0.86 0.0940
US f 0.72 0.0531 0.36 0.0795 0.68 0.1377 0.83 0.0974

British data is in between, ψ̂ 2
bx and ψ̂ 2

unexp,x are very close up to age 45–50, then the
unexplained variance rises above the binomial variance. Since the estimated variance
components vary a great deal over ages, we use the inverse non-dispersed variance
weighting (13.28) when computing ς̂. In order not to confound finer nuances at
higher ages with larger variances from lower ages, we calculate ς̂ for several age
bands, as it is apparent that the ratio ψ̂ 2

bx/ψ̂
2
unexp,x changes with age.

For Swedish data, ς̂ is significantly different from 0, but yet so low that we can
settle for a simpler regression model with systematic unexplained risk excluded.
The same holds for the UK, up to an age of 45. For the US data, the systematic
unexplained variation ψ̂ 2

s is the main source of unexplained variation. Hence one
should try a model with systematic unexplained risk included.

Table13.2 presents the estimated correlation coefficient ς̂ for different age bands
and populations based on LM and LMI data, no age-wise smoothing (13.15) and
inverse non-dispersed variance weighting (13.28). Also displayed is the approxi-
mation (13.32) of the 0.975 quantile ςcrit = 1.96

⊃
2/n of the null distribution,

using C = 2 for the asymptotic variance, which is exact for LM and a conservative
upper bound for LMI. The number of age-year cells n equals (xu − xl + 1)T and
(xu − xl + 1)(T − 1) respectively for LM and LMI data, with T = 32, 30 and 28
for the female SWE, UK and US populations.

13.6.2 Residual Plots

Even with the above finding, it is instructive to study the residual plots for the
simple regression model (13.23) based on LMI transformed data, with systematic
unexplained risk disregarded. In Fig. 13.4 we have plotted the residuals

ω̂xt = Yxt − m̂xt

from an ordinary least squares fit (13.12).
When one observes clear patterns in a residual plot it is a sign that there are

systematic effects, not captured by the model. One can then ask if one should modify
or extend the model in order to explain them by the covariates, or if such an extension
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Fig. 13.4 Residuals of a least squares fit (13.12) to one year increments (13.3) of estimated logit
mortality rates for Swedish male, UK female and US data

adds more complexity than is motivated by these effects. The patterns can in some
cases provide additional insight into the underlying processes.

13.6.2.1 Calendar Year Effects

Calendar year effects can be seen as vertical lines in the residual plots. They can be
spotted mostly in higher ages, above 60, and a probable cause are phenomena such
as a seasonal influenza, heat waves and cold spells that are known to vary in severity
from year to year. There is a notable exception from the old age only effects. An
increase in mortality for US males in their 30s appears during 1985–89, when the
AIDS epidemic started and a steep drop is observed in 1996–97, the same years as
the HIV inhibitor medicines reached the markets. This effect is also evident in the
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inter age correlation graph, see Fig. 13.2, where a high degree of correlation is seen
among US males in this ageband.

The calendar year effects, while recurring, seem to be random in nature. They
could be incorporated in a random effect model but not in an ordinary regression
model with error terms that are independent between ages and calendar years.

13.6.2.2 Cohort Effects

There are some evident cohort effects in the residual plots. One, emanating from the
generation around 1920, is more or less evident for all studied populations. Another
stems from the 1946–47 generations, although this is not visible for Swedish data.

What these periods have in common is that they are post war years with a baby
boom. Birth rates in the UK went up almost 40% in 1920 and 22% in 1946, whereas
in Sweden they went up by 20% in 1920, but no particular increase occurred in 1946,
since births started to increase already in 1942 and did so in a steadier fashion.

A sudden increase (or drop) in birth rate skews the distribution of births over the
year, and this might lead to a systematic error in estimating Nxt around that cohort
([36], p. 11). So these single year cohort effects might be due to statistical errors
rather than real effects.

13.6.3 Estimated and Predicted Mortality Rates

For Swedish data we disregard systematic unexplained risk and perform the regres-
sion analysis (13.20) with an age-specific parametrisation based on (13.15). The
results are very similar to the least squares estimates (13.12) (not shown here)
obtained from LM transformed data.

In Fig.13.5 we plot both estimated and empirical logit mortalities for 2011 as well
as the estimated trend, for Swedish females.

The mortality improvement varies in a wavelike pattern over ages. It is fastest
for infants with almost −0.04 per year, from age 85 the improvements decrease in a
linear manner to age 100 were very small improvements are observed.

Extrapolation of the trend gives a prediction of future mortality. However, more
plausible results may be obtained by first smoothing the trend using for example the
polynomial parametrisation based on (13.14).



13 Analysis of the Stochasticity of Mortality 217

0 20 40 60 80 100

−1
0

−8
−6

−4
−2

0
Mortality 2011, SWE f

Age

Lo
gi

t q
x

0 20 40 60 80 100

−0
.0

4
−0

.0
3

−0
.0

2
−0

.0
1

0.
00

Mortality trend, SWE f

Age

Ye
ar

ly
 c

ha
ng

e 
in

 L
og

it 
qx

Fig. 13.5 Left Estimates of logit morality rates (logitq̂xt ) for Swedish females of different ages
x in calendar year t = 2011, together with a logistic regression analysis (13.20) with fitted logit
mortality rates (logitq̃xt ) from (13.22).Right Corresponding estimates λ̃x of the one year increments
of the logit mortality rates. An age-specific parametrisation is used, based on (13.15)

How long into the future should the present trend be extrapolated?
Looking further back in mortality data it is clear that there have been shifts in the

speed of improvements over different age spans and time periods.
We can think of different scenarios that will change the present trend, but predict-

ing if and when is not possible within the framework of the model.

13.7 Discussion

In this paper we have focused on the stochastics of mortality rates, starting with an
explorative data analysis. Using data from Sweden, the UK and the USA, we found
clear signs of randomness in the logit mortalities for Swedish data, after a linear
trend had been removed, whereas for US data, there was more underlying structure.

In order to quantify these effects and separate random noise from over-dispersion
in terms of systematic unexplained variation, we fitted a parametric regression func-
tion, where logit mortalities have a deterministic linear period effect, with a separate
intercept and slope parameter for each age class. Then we performed a variance
decomposition of the residual variance, which enabled us to quantify the amount of
unexplained variation in terms of systematic and diversifiable (binomial) risk. Based
on formulas for estimates of these two variance components we were able to calcu-
late an estimate of the fraction ς of the unexplained variance that originates from
systematic unexplained variation.

We found that the estimates of ς were low for Swedish data, around 0.15, depend-
ing on the age span. The somewhat surprising conclusion is that a naive regression
model captures the essentials, leaving very little further variance to a more elabo-
rate model to explain. However, for US data ς was estimated to values around 0.9,
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indicating a lot of over-dispersion or systematics effects not captured by the naive
regression model. Looking at residual plots we see the existence of calendar year
effects, indicating that this is something that should be included in a model with a
better fit. UK data falls somewhere in between. For ages 1–45, the simple model
without systematic unexplained variation explains almost everything in regards of
variance, but for higher ages there is substantial unexplained variation.

Population size is the key here, evenwith almost 10million inhabitants in Sweden,
almost all underlying changes in the estimated mortality rates q̂xt , except for the
deterministic trend, is drowned by random binomial noise. This would certainly be
the case even for smaller populations. For the practitioner working with mortality in
a life or pension company the message is clear, keep your models simple!

If the estimated fraction of unexplained systematic variance ς is small, we sug-
gested to predict mortality rates from a logistic regression fit of raw data. On the other
hand, if the estimated ς large, this signifies a non-negligible amount of unexplained
systematic variation. Then there are several possible ways to proceed. Firstly, a logis-
tic regression analysis could be employed, but with an enlarged parametric model.
Secondly, a low-dimensional parametric model could be retained, but with overdis-
persion explicitly modelled, using for instance negative binomial distributions [30]
or generalised linear models with over-dispersed Poisson data [18, 32] for which
parameters can be estimated by extended quasi-likelihood methods, or some gener-
alised linear mixedmodel. In [20], we proposemodelling the unexplained systematic
variation as a time series that includes a random white noise component, a random
walk component, and a third seasonal effects component that incorporates correlation
between age classes. Thirdly, nonparametric smoothing methods can be employed,
such as two-dimensional penalised splines [16], Generalised Additive Models [22]
or Kalman filter techniques for time series [21].

We have argued that a simple logistic regressionmodel often works well for fitting
mortality data in a small country. However, when prediction of futuremortalities is of
concern, it is oftenmore flexible to have a random component of systematic variation.
This facilitates calculation of more realistic predictive distributions and simulation
of various scenarios of future mortalities. See [9, 12, 14, 21] and references therein
for more details on mortality prediction.

Acknowledgments Ola Hössjer’s research was financially supported by the Swedish Research
Council, contract nr. 621-2008-4946, and the Gustafsson Foundation for Research in Natural Sci-
ences and Medicine.

Appendix

Motivation of (13.32). We first rewrite and approximate (13.30) as
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ς̂ =
⎝∑

(x,t) ŵxt
(
(Yxt −m̂xt )

2−v̂b
xt

⎛

∑
(x,t) ŵxt (Yxt −m̂xt )2

)

+
H0≈

⎝∑
(x,t) wxt

(
(Yxt −mxt )

2−vb
xt

⎛

∑
(x,t) wxt (Yxt −mxt )2

)

+
≈

⎝∑
(x,t) wxt vb

xt
(
U2

xt −1
⎛

∑
(x,t) wxt vb

xt U
2
xt

)

+
,

(13.33)

whereUxt are standard normal variables that approximate the null hypothesis Pearson

residuals (Yxt − m̂xt )/

√
v̂b

xt .
In order to motivate the approximations in (13.33), we first notice that the last

step follows from a Multivariate Central Limit Theorem

⎝

(Yxt − mxt )/

√

vb
xt ; (x, t) ∈ α

)
L−→ U = (Uxt ; (x, t) ∈ α) ,

under H0 as the population size tends to infinity, and U → N (0, �) has a multi-
variate normal distribution, with a covariance matrix � = (�xt,x ∗t ∗) that equals the

covariance matrix of

⎝

ωb
xt/

√
vb

xt ; (x, t) ∈ α

)

.

For LM transformed data, it follows from (13.16) that all ωb
xt are independent, and

by definition in (13.10), vb
xt = Var(ωb

xt ). Therefore � equals the identity matrix of
order n. For LMI transformed data, it follows analogously from (13.23) that ωb

xt are
no longer independent. Therefore the elements of � are slightly more complicated;
�xt,xt = 1, �xt,x ∗t = 0 if x ≤= x ∗, �xt,x ∗t ∗ = 0 if |t − t ∗| ≥ 2 and

�xt,x,t+1 = − 1

Nx (qxt (1 − qxt ))

√
vb

xt v
b
x,t+1

,

where

vb
xt = 1

Nx,t−1qx,t−1(1 − qx,t−1)
+ 1

Nxt qxt (1 − qxt )

is the expression for the binomial variance (13.24) when there is no overdispersion.
For the second step of (13.33) we assume for simplicity that weights are uniform,

introduce

v̄b = max
(x,t)∈α

vb
xt ,

and notice that under the null hypothesis the numerator and denominator of the
second line of (13.33) satisfy
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∑

x,t

(
(Yxt − mxt )

2 − vb
xt

⎛ = Op
(
n1/2v̄b

⎛

∑

x,t
(Yxt − mxt )

2 = Op
(
nv̄b

⎛
,

(13.34)

where Xn = Op(An) is a sequence of random variables such that Xn/An is bounded
in probability as n grows.

Under mild regularity conditions, the least squares estimator τ̂ is consistent as n
grows, at a rate |τ̂ − τ | = Op

(
n−1/2(v̄b)1/2

⎛
, both in (13.16) and (13.23), see for

instance [23] for asymptotics of linear regression estimators. It can be seen that this
leads to approximation errors between the numerators and denominators of the first
and second lines of (13.33) that equal

∑

x,t

(
(Yxt − m̂xt )

2 − (Yxt − mxt )
2
⎛ = Op

⎤
n|τ̂ − τ |2

⎧
= Op

(
v̄b

⎛
,

∑

x,t

(
v̂b

xt − vb
xt

⎛ = Op
(
n1/2(v̄b)3/2

⎛
,

(13.35)

using Taylor expansions of mxt = mxt (τ) with respect to τ = τLM or τ = τLMI in
the upper equation, and another Taylor expansion of vb

xt = vb
xt (τ

LM) with respect to
τLM in the lower equation. Under the null hypothesis we have for LM transformed
data that (13.17) and (13.20) simplify so that

vb
xt = 1

Nxt qxt (1 − qxt )
=

⎤
1 + emxt (τ

LM)
⎧2

Nxt emxt (τ LM)
,

and analogously (13.24) can be simplified for LMI transformed data. In either case
we find that

M = max
(x,t)∈α

⎢
⎢
⎢
⎢
βvb

xt

βτLM

⎢
⎢
⎢
⎢ = O(v̄b),

which was used on the right-hand side of the second equation of (13.35), since the
left-hand side can be bounded above by Op(Mn|τ̂ − τ |).

We conclude that the approximation errors in (13.35) are of smaller order than
the relevant main terms in (13.34), and this justifies the second step of (13.33).

In order to motivate (13.32), we use the Central Limit Theorem for the numerator
and Law of Large Numbers for the denominator of the ratio within the (·)+ sign
on the third line of (13.33). From this we deduce that the ratio has an asymptotic
N (0, 2C/n) distribution, with

C = n
∑

(x,t),(x ∗,t ∗) wxt vb
xt · wx ∗t ∗vb

x ∗t ∗ · Cov (
U 2

xt , U 2
x ∗t ∗

⎛

⎤∑
(x,t) wxt vb

xt

⎧2 ,
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which for LM transformed data reduces to (13.32), since � is then the identity
matrix of order n and Var(U 2

xt ) = 2 for all (x, t) ∈ α. For LMI transformed data,
the negative correlations between U 2

x,t and U 2
x,t+1 make C slightly smaller, and in

particular C < 2 for inverse variance weighting.

References

1. Alho, J.M.: Discussion of Lee. North Am. Actuar. J. 4, 91–93 (2000)
2. Barrieu, P., et al.: Understanding, modelling and managing longevity risk: key issues and main

challenges. Scand. Actuar. J. 3, 203–231 (2012)
3. Bell, W.R.: Comparing and assessing time series methods for forecasting age-specific fertility

and mortality rates. J. Official Stat. 13(3), 279–303 (1997)
4. Bell,W.R.,Monsell, B.C.: Using principal components in time seriesmodelling and forecasting

of age specific mortality rates. In: Proceedings of the American Statistical Association, Social
Statistics Session, pp. 154–159 (1991)

5. Booth, H., Tickle, L.: Mortality modelling and forecasting: a review of methods. Ann. Actuar.
Sci. 3(I/II), 3–43 (2008)

6. Bozik, J.E., Bell, W.R.: Forecasting age specific mortality using principal components. In:
Proceedings of the American Statistical Association, Social Statistics Session, pp. 396–401
(1987)

7. Breslow, N.E., Clayton, D.G.: Approximate inference in generalized linear mixed models. J.
Am. Stat. Assoc. 88(421), 9–25 (1993)

8. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, New York
(1991)

9. Brouhns, N., Denuit, M., van Keilegom, I.: Bootstrapping the log-bilinear model for mortality
forecasting. Scand. Actuar. J. 2005(3), 212–224 (2005)

10. Brouhns, N., Denuit, M., Vermunt, J.K.: A poisson log-bilinear regression approach to the
construction of projected lifetables. Insur. Math. Econ. 31, 373–393 (2002)

11. Cairns, A.J.G., Blake, D., Dowd, K.: Modeling and management of mortality risk: a review.
Scand. Actuar. J. 2008(2–3), 79–113 (2008)

12. Cairns, A.J.G., Blake, D., Dowd, D., Couglan, G.D., Epstein, D., Ong, A., Balevich, I.: A
quantitative comparison of stochastic mortality models using data from england and wales and
the united states. North Am. Actuar. J. 13, 1–35 (2009)

13. Cairns, A.J.G., Blake, D., Dowd, D., Couglan, G.D., Khalaf-Allah, M.: Bayesian stochastic
mortality modelling for two populations. ASTIN Bull. 41, 29–59 (2011b)

14. Cairns, A.J.G.: Modelling and management of longevity risk. Manuscript (2013)
15. Cairns, A.J.G., Dowd, K., Blake, D., Guy, D.: Longevity hedge effectiveness: a decomposition.

Quant. Financ. 14(2), 217–235 (2014)
16. Currie, I.D., Durban,M., Eilers, P.H.C.: Smoothing and forecastingmortality rates. Stat.Model.

4, 279–298 (2004)
17. Denton, F.T., Feaver, C.H., Spencer, B.G.: Time series analysis and stochastic forecasting: an

econometric study of mortality and life expectancy. J. Popul. Econ. 18, 223–227 (2004)
18. Djeundje, V.A.B., Currie, I.D.: Smoothing dispersed counts with applications to mortality data.

Ann. Actuar. Sci. 5(1), 33–52 (2010)
19. Eilers, P.H.C., Marx, B.D.: Flexible smoothing with b-splines and penalties (with discussion).

Stat. Sci. 11, 89–121 (1996)
20. Ekheden, E., Hössjer, O.: Multivariate time series modeling, estimation and prediction of

mortalities. Submitted (2014)
21. Guerrero, V.M., Silva, E.: Non-parametric and structured graduation of mortality rates. Popul.

Rev. 49(2), 13–26 (2010)



222 E. Ekheden and O. Hössjer

22. Hall, M., Friel, N.: Mortality projections using generalized additive models with applications
to annuity values for the irish population. Ann. Actuar. Sci. 5(1), 19–32 (2010)

23. Huber, P.J.: Robust regression: asymptotics, conjectures and monte carlo. Ann. Stat. 1(5),
799–821 (1973)

24. Hössjer, O.: On the coefficient of determination for mixed regression models. J. Stat. Plan.
Infer. 138, 3022–3038 (2008)

25. Hössjer, O., Eriksson, B., Järnmalm, K., Ohlsson, E.: Assessing individual unexplained varia-
tion in non-life insurance. ASTIN Bull. 39(1), 249–273 (2009)

26. Imoto, S., Konishi, S.: Selection of smoothing parameters in b-spline nonparametric regression
models using information criteria. Ann. Inst. Statist. Math. 55(4), 671–687 (2003)

27. Lee, R.D., Carter, L.R.: Modelling and forecasting U.S. mortality. J. Am. Stat. Assoc. 87(419),
659–671 (1992)

28. Lee, Y., Nelder, J.A., Pawitan, Y.: Generalized linear models with random effects. Unifiied
Analysis via H-likelihood. Chapman and Hall/CRC, Boca Raton (2006)

29. Li, N., Lee, R.: Coherent mortality forecasts for a group of populations: an extension of the
lee-carter model. Demography 42(3), 575–594 (2005)

30. Li, J.S.H., Hardy, M.R., Tan, K.S.: Uncertainty in mortality forecasting: an extension to the
classic lee-carter approach. ASTIN Bull. 39, 137–164 (2009)

31. Osmond, C.: Using age, period and cohort models to estimate future mortality rates. Int. J.
Epidemiol. 14, 124–129 (1985)

32. Renshaw, A., Haberman, S.: Lee-carter mortality forecasting: a parallel generalized linear
modelling approach for england and wales mortality projections. Appl. Stat. 52(1), 119–137
(2003)

33. Self, S.G., Liang,K.Y.:Asymptotic properties ofmaximum likelihood estimators and likelihood
ratio tests under nonstandard conditions. J. Am. Stat. Assoc. 82, 605–610 (1987)

34. Silvapulle, M.J., Sen, P.K.: Constrained Statistical Inference: Order, Inequality and Shape
Constraints. Wiley, Hoboken (2005)

35. Wilmoth, J.R.: Computational methods for fitting and extrapolating the Lee-Carter model of
mortality change. Technical Report, Department of Demography, University of California,
Berkeley (1993)

36. Wilmoth, J.R., Andreev, K., Jdanov, D., Glei, D.A.: Methods protocol for the HumanMortality
Database (2007). http://www.mortality.org/Public/Docs/MethodsProtocol.pdf

http://www.mortality.org/Public/Docs/MethodsProtocol.pdf

