
Mathematical Biosciences 272 (2016) 100–112

Contents lists available at ScienceDirect

Mathematical Biosciences

journal homepage: www.elsevier.com/locate/mbs

Exact Markov chain and approximate diffusion solution for haploid

genetic drift with one-way mutation

Ola Hössjer a,∗, Peder A. Tyvand b, Touvia Miloh c

a Department of Mathematics, Div. of Mathematical Statistics, Stockholm University, Stockholm SE 106 91, Sweden
b Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås 1432, Norway
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a b s t r a c t

The classical Kimura solution of the diffusion equation is investigated for a haploid random mating

(Wright–Fisher) model, with one-way mutations and initial-value specified by the founder population.

The validity of the transient diffusion solution is checked by exact Markov chain computations, using a

Jordan decomposition of the transition matrix. The conclusion is that the one-way diffusion model mostly

works well, although the rate of convergence depends on the initial allele frequency and the mutation

rate. The diffusion approximation is poor for mutation rates so low that the non-fixation boundary is

regular. When this happens we perturb the diffusion solution around the non-fixation boundary and ob-

tain a more accurate approximation that takes quasi-fixation of the mutant allele into account. The main

application is to quantify how fast a specific genetic variant of the infinite alleles model is lost. We also

discuss extensions of the quasi-fixation approach to other models with small mutation rates.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Diffusion theory is an important approach to population genet-

ics. It was first introduced by Fisher [17] and carried further by

Wright [42]. A breakthrough for diffusion models came with the

pioneering papers of Kimura [26,27]. In particular, Kimura gave an

explicit solution of the diffusion equation for the classical two-

allele and haploid Wright–Fisher model ([17,41]) without muta-

tions, in terms of an infinite series that is parametrized by time τ
≥ 0 and the frequency 0 ≤ x ≤ 1 of one the two alleles. Crow and

Kimura [7] solved the diffusion problem for the two-allele model

with immigration from an outside population, and for multi-allele

models with a small amount of selection. Chapter 8 of [8] summa-

rizes further diffusion solutions for the two allele Wright–Fisher

model, for instance when mutations between the alleles are pos-

sible in one direction or both, referred to as one-way or two-way

mutations. For a more recent account of the use of diffusion the-

ory in population genetics, we refer to Chapter 10 of [11], Chap-

ters 4 and 5 of [15], and Chapter 7 of [9]. The review article [22]
∗ Corresponding author. Tel.: +46 70 672 12 18.
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ontains different representations of the diffusion solution for a

ery wide class of Wright–Fisher models. This includes series ex-

ansions with Jacobi polynomial eigenfunctions that generalize the

nes in [8], and series expansions in terms of a dual coalescence

rocess ([10,20,36]).

For the two-allele model, it is convenient to treat the interior

omain (0 < x < 1) and the boundary points (x ∈ {0, 1}) of the

iffusion solution in a unified manner. McKane and Waxman [31]

onfirmed Kimura’s formula for the Wright–Fisher model without

utations, and complemented it by introducing Dirac singularities

t each boundary, a solution that is also implicit in [28] and in

ections 8.4 and 8.8 of [8]. These singularities conserve the total

robability and possess a memory, as they integrate in time the

utgoing flux through the boundaries of the open domain of the

ompositional x. A continuity equation for the probability flux at

he boundary takes care of the conservation of total probability.

The diffusion approximation represents a similarity solution,

here all population sizes evolve similarly, provided the time vari-

ble is scaled properly. This similarity is not exactly valid, as there

re deviations from the diffusion limit for all finite population

izes. Therefore, the diffusion model is only asymptotically valid in

he limit of large population sizes. This discrepancy becomes im-

ortant for boundary points of mutant alleles, that have two-way

http://dx.doi.org/10.1016/j.mbs.2015.12.006
http://www.ScienceDirect.com
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nteraction with the interior domain. Since the diffusion solution

as no singular delta function at such a point, boundary conditions

re not needed for conservation of probability. But with a relatively

mall mutation rate, the probability density of the diffusion solu-

ion may go to to infinity around the boundary point, but in an

ntegrable manner over the open interval 0 < x < 1. In such cases

t is much more subtle to deduce from the diffusion model itself,

hat the limit of infinity means for the underlying exact discrete

ime stochastic process for a finite population. An infinite proba-

ility density near a boundary point of a mutant allele means that

xact probabilities for the genetic composition of the population,

onverges to zero at a slower rate.

Tyvand and Thorvaldsen [39] showed that the mutation free

right–Fisher model has quite a slow convergence rate to the dif-

usion solution close the two absorbing boundaries x = 0, 1. The

act that the Wright–Fisher model involves many neighbor inter-

ctions slows down its convergence to diffusion near boundaries.

his is because the Markov chain may hit the boundary in one

ingle generation from sample points close to a boundary, whereas

he diffusion model predicts a longer time for this to happen. It is

herefore important to focus on the behavior near the boundaries,

n qualitative and quantitative evaluations of a diffusion model.

In the present work we focus on the two allele Wright–Fisher

odel with one-way mutations, which is of interest in the context

f the infinite alleles model ([29]), with a new allele created af-

er each mutation. One boundary point is then absorbing, having

ne-way interaction with the interior domain, whereas the other

s non-absorbing, with two-way interaction. We demonstrate that

he diffusion solution approximates the exact Markov chain close

o both boundaries, but the accuracy is higher close to the non-

xation boundary. The accuracy at the absorbing boundary point is

lso high, at least for large time points τ , but at the non-absorbing

oundary, it is highly dependent on the mutation rate. Following

he terminology of [15], we distinguish between whether a non-

bsorbing boundary point is regular (accessible but not absorbing)

r entrance (neither accessible nor absorbing). It turns out that the

iffusion solution at the non-absorbing boundary is very close to

he Markov chain solution if the mutation rate is so large that the

oundary point is entrance and the diffusion density in the inte-

ior domain is bounded around it. But the accuracy of the diffu-

ion solution at the non-absorbing boundary is very poor if the

utation rate is low and the boundary point is regular, so that the

iffusion density around it tends to infinity. When this happens

e perturb the diffusion approximation around the non-fixation

oundary, treating the mutant allele as quasi-fixed, with a strictly

ositive quasi fixation probability that tends to zero at an expo-

ential rate.

We also use a Jordan decomposition of the transition matrix to

rite the exact Markov chain probabilities as a series, and moti-

ate that each term of it converges to the analogous term of the

iffusion solution, at a rate inversely proportional to the popula-

ion size.

The paper is organized as follows. The Wright–Fisher stochas-

ic process with one-way mutations is defined in Section 2, and

ts link to the continuous time diffusion approach is outlined in

ection 3. In Section 4 we review properties of the analytical

iffusion equation and present its solution in a new form, as a

reparation for the numerical comparison with the exact Markov

hain in Section 5. A summary with final conclusions is provided

n Section 6, and some of the mathematics is collected in the

ppendix.

. The Wright–Fisher stochastic process

We consider the simple Wright–Fisher model of discrete non-

verlapping generations of diploid monoecious individuals in ran-

om mating. The random mating is assumed to depend only on
he present population, independently of all preceding generations.

he stochastic process is a Markov chain whose transition proba-

ilities follow a binomial distribution. Ewens [13] calculated the

xact Markov chain at the haploid gamete level. Tyvand [38] pre-

ented a more general Markov model on the diploid genotype

evel, and added numerical verification by Monte Carlo simulations.

We consider one locus with two alleles A and a. The generation

umber is t, and the number of individuals n is constant for all

enerations. The mating takes place on the gamete level, provided

he probability of self-fertilization is 1/n. The haploid gamete pool

onsists of 2n members, from which we pick at random with re-

lacement. Random mutation is assumed to take place in the ga-

ete pool between two consecutive generations. The probability of

utation (mutation rate) from gamete A to gamete a during one

eneration is denoted by μ, while the mutation rate from gamete

to gamete A is taken to be identically zero.

A parental population has n(t) gametes of type A and 2n − n(t)

ametes of type a in generation t. The different possible composi-

ions are numbered by the running index

= n(t), 0 ≤ i ≤ 2n. (1)

he Markov chain models dynamics of the frequency n(t) of the A

llele, with state space {0, 1, . . . , 2n}, transition matrix

= (Mi j)
2n
i, j=0 (2)

nd transition probabilities

ij = P
(
n(t+1) = j|n(t) = i

)

= (2n)!

j!(2n − j)!

(
(1 − μ)i

2n

) j(
2n − (1 − μ)i

2n

)2n− j

. (3)

t is convenient to introduce the probability distribution vector

(t) = (V (t)
0

, . . . ,V (t)
2n

) (4)

ver all population compositions at generation t, and use the

hapman–Kolmogorov equation to infer

(t) = V (0)Mt . (5)

e choose one specific founder population, with a fixed number
(0) and 2n − n(0)

1
of A and a alleles respectively. This corresponds

o an initial vector V(0) with only one nonzero component;

(0)
i

=
{

1, i = n(0),

0, otherwise.
(6)

. Markov chain linked to diffusion theory

The diffusion model is a similarity solution that represents the

tochastic process asymptotically for large population sizes. For

omparing the Wright–Fisher process with its continuous diffusion

odel, we reformulate it in terms of diffusion variables. The first

ndependent diffusion variable is the compositional coordinate x of

parental population, defined from (1) as

= i

2n
. (7)

he variable x for an offspring population is defined similarly. The

econd independent diffusion variable is the stretched time coor-

inate τ . It can be defined in different ways depending on which

roperties of the Wright–Fisher model that are of interest. Pa-

angelou [33] obtained large deviation results for rapid allele fre-

uency changes over time intervals of length o(n), conditionally on

hat the number of A-alleles at each one of the end points of the

ime interval is known. This requires τ � t/n, but here we will fol-

ow [41,42] and study the unconditional behaviour of the Markov

hain, with

= t

2n
. (8)
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The dependent diffusion variable is the probability density v(x,

τ ), which, for each τ gives the probability density function over

all the different population compositions. The probability that the

population in the one-dimensional x space has a composition be-

longing to the compositional interval [x, x + dx] is by definition

given by v(x, τ )dx, taking the diffusion approach as representative

for the stochastic process.

A diffusion model takes v(x, τ ) to be a continuous function for

0 < x < 1. The appropriate definition of vn(x, τ ) for the discrete

Markov model with one-way mutation is

vn(x, τ ) = 2nV (t)
i

, (9)

with x and i related as in (7). This definition may approximate the

continuous diffusion solution by a properly scaled histogram that

is obtained from the internal points of the Markov chain. An ap-

propriate choice of histogram is by means of a right Riemann sum

based on the 2n sample points that remain when we exclude the

boundary that we locate at x = 0 when a is fixed and A is lost in

the whole population. The other boundary point x = 1 is not ex-

cluded, since it behaves like all internal points. The diffusion solu-

tion may possibly go to infinity at x = 1, but in a continuous and

integrable manner. At the fixation boundary x = 0 the diffusion so-

lution will possess a Dirac singularity.

The probability distribution obeys the normalizing constraint of

conserved total probability. With only one-way mutations, normal-

ization is not achieved by integrating v(x, τ ) over the open domain

0 < x < 1, because of the Dirac singularity at x = 0. We can express

the conservation of probability in diffusion theory by the integral

∫ ∞

−∞
v(x, τ )dx = 1, (10)

where v(x, τ ) is defined as identically zero for x < 0 and x > 1.

The founder population t = 0 has a fixed number x = p which

is

given by the initial frequency

p = n(0)
1

2n
(11)

of the A gamete, and the corresponding initial frequency of the a

gamete is 1 − p. In the sequel, we disregard the case p = 0 because

it means complete fixation in gamete a at all times, and thus as-

sume 0 < p ≤ 1. The diffusion representation of a founder popula-

tion is the initial condition

v(x, 0) = δ(x − p), (12)

for the continuous variable v(x, τ ), where δ(x) is Dirac’s delta func-

tion.

4. Analytical solution of the diffusion equation

In this section we review properties of the diffusion solution

v(x, τ ) of the Wright–Fisher model, as a preparation for the nu-

merical and analytical results of the next section. Using the Kol-

mogorov forward or Fokker–Planck equation, it follows that

∂v(x, t)

∂t
= − ∂

∂x
[M(x)v(x, t)] + 1

4n

∂2

∂x2
[x(1 − x)v(x, t)]. (13)

Mutations are represented by the drift term with the variable co-

efficient M(x). For a model with one-way mutations, it is defined

by

M(x) = −μx, (14)

see for instance [31]. We rescale the mutation rate μ by

μ∗ = 2nμ (15)
nd use the stretched time variable in (8). The rescaled diffusion

quation will be

(1 − x)
∂2v
∂x2

+ [2 − (3 + β)x]
∂v
∂x

− (1 + β)v = 2
∂v
∂τ

, (16)

here we have introduced the new mutation parameter β defined

y

= 1 − 2μ∗ = 1 − 4nμ. (17)

ince μ ≥ 0, we have β ≤ 1, where β = 1 represents the case of

o mutation, and β = 0 is a model which conditionally on non-

xation of the a allele behaves very similar to a mutation free

right–Fisher model. It follows from Section 5.5 of [15] that x = 1

s a regular boundary point for 0 < β < 1 and an entrance bound-

ry point for β ≤ 0.

In order to analyze (16), the interior 0 < x < 1 and the fixa-

ion boundary x = 0 need separate treatment, because of the Dirac

ingularity at 0. In the appendix we prove that

v(x, τ )= v(x, τ ; p, β)

=�0(t)δ(x)

+ p(1 − p)
β

∞∑
m=0

(2m + 2 − β)(m + 1 − β)(m + 1)

·2F1(β − m, m + 2; 2; p)

·2F1(β − m, m + 2; 2; x)e−λmτ/2

=�0(t)δ(x) +
∞∑

m=0

rm(p;β)lm(x;β)e−λmτ/2,

(18)

s a solution of (16) when β < 1 and 0 < p ≤ 1, that is equiv-

lent to the one presented in Section 8.5 of [8], see in particu-

ar formulas 8.5.17 and 8.5.19. An advantage of (18) is its simpler

arametrization in terms of hypergeometric functions 2F1(a, b; c;

), which we will use below to explain the behaviour of the diffu-

ion solution as β → 1−. The number

m = λm(β) = (m + 1)(m + 1 − β) (19)

s the m:th eigenvalue of a differential operator corresponding

o minus the left hand side of (16). It follows from (56) in the

ppendix that (18) is well defined as p → 1 for all values of β ,

nd in particular that the right eigenfunction

m(p;β) = (2m + 2 − β)p(1 − p)β 2F1(β − m, m + 2; 2; p) (20)

s a polynomial in p of degree m + 1, closely related to a Jacobi

olynomial. The left eigenfunction

m(x;β) = (m + 1)(m + 1 − β)2F1(β − m, m + 2; 2; x) (21)

s typically not a polynomial in x though, unless β is an integer.

he normalizing factor (m + 1)(m + 1 − β) guarantees that lm in-

egrates to 1 for all m. The fixation probability

�0(τ )=�0(τ ; p, β)

= 1 − p(1 − p)
β

∞∑
m=0

(2m + 2 − β)e−λmτ/2

·2F1(β − m, m + 2; 2; p)

= 1 −
∞∑

m=0

rm(p)e−λmτ/2

(22)

s represented as a coefficient of a Dirac singularity at the x = 0

oundary in the diffusion approximation.

Any choice of initial distribution (12) will ultimately lead to

0(∞) = 1, provided μ > 0. Therefore the only steady-state so-

ution is that of full fixation in gamete a

(x,∞) = �0(∞)δ(x) = δ(x). (23)
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onsequently, the uniform steady state with extinction of gamete

is independent of both the initial condition (founder population)

nd the magnitude of the mutation rate μ > 0.

There are several interesting features of (18). First, we motivate

n the appendix that for fixed τ , the diffusion solution can be writ-

en as

(x, τ ) = �0(τ )δ(x) + C(x, τ ) · (1 − β)(1 − x)−β, (24)

here C(x, τ ) is a bounded function, with an expansion

(x, τ ) = (2 − β)pe−(1−β)τ/2 + o
(
e−(1−β)τ/2

)
as τ → ∞, (25)

rst noted by Wright [41], and equivalent to formula 8.5.18 of [8].

his implies that v is integrable in x for each β < 1, but yet un-

ounded at x = 1 whenever this boundary point is regular (0 < β
1), with a pole of order β .

Second, it is instructive to investigate the limit of (18) or (24)

hen mutations are removed. The size of the pole of v at the right

oundary gets increasingly large and the leading eigenvalue van-

shes (λ0 → 0) when β → 1−. But v must be transient between

he two boundaries for the mutation free model because of ge-

etic drift. And since the m = 0 term of (18) vanishes in the in-

erior and becomes non-transient (λ0 → 0) when β → 1−, it must

e removed and replaced by a point mass at the x = 1 boundary

hen β = 1. This implies that the limit of (18) and (22) as β → 1−

iffers from the classical diffusion solution

v(x, τ ; p, 1)=�0(τ ; p, 1)δ(x) + �1(τ ; p, 1)δ(x − 1)

+ p(1 − p)

∞∑
m=1

(2m + 1)m(m + 1)

·2F1(1 − m, m + 2; 2; p)

·2F1(1 − m, m + 2; 2; x)e−m(m+1)τ /2,

(26)

f the mutation free Wright–Fisher model, with absorption proba-

ilities

�1(τ ; p, 1)= p + p(1 − p)

∞∑
m=1

(2m + 1)(−1)
me−m(m+1)τ /2

·2F1(1 − m, m + 2; 2; p),

�0(τ ; p, 1)=�1(τ ; 1 − p, 1)

= 1 − p + p(1 − p)

∞∑
m=1

(2m + 1)(−1)
me−m(m+1)τ /2

·2F1(1 − m, m + 2; 2; 1 − p)

(27

t the two boundaries. For the mutation free model, the density in

26) for 0 < x < 1 first appeared in [27], and the fixation proba-

ility (27) in [28]. See also formulas 8.4.3 and 8.8.3.4 of [8], and

31]. The most obvious difference between the mutation free and

ne-way mutation models, is that a second point mass at x = 1

s added to the steady state solution (23) when mutations are re-

oved, so that

(x,∞; p, 1) = �0(∞)δ(x) + �1(∞)δ(x − 1)

= (1 − p)δ(x) + pδ(x − 1). (28)

or a fixed time point τ > 0, and any 0 < x < 1, we also have

hat

v(x, τ ; p, β) → v(x, τ ; p, 1)

�0(τ ; p, β) → �0(τ ; p, 1)

= �1(τ ; p, β) 	→ �1(τ ; p, 1) as β → 1−. (29)

hile the first and third equations of (29) follow easily from (18)

nd (26)–(28), the second one is less obvious, see the appendix

or a proof. Since the total probability mass (10) is conserved over

ime, a consequence of (29) is that although the integrand of the
on-fixation probability

1−

0+
v(x, τ ; p, β)dx

β→1−
→

∫ 1−

0+
v(x, τ ; p, 1)dx + �1(τ ; p, 1) (30)

onverges pointwise for any fixed 0 < x < 1, a part �1(τ ; p, 1) of

he integral still escapes to the right hand boundary as mutations

re removed.

Third, the quasi equilibrium distribution of the diffusion solu-

ion is the conditional distribution

quasi(x;β) = lim
τ→∞

v(x, τ ; p, β)∫ 1−
0+ v(y, τ ; p, β)dy

(31)

f the frequency of the A allele conditionally on non-fixation, in

he limit of large time points. It follows from (18), our normal-

zation of the left eigenfunctions in (21), and formula (56) of the

ppendix, that

quasi(x;β)

=
{

l0(x;β) = (1 − β)2F1(β, 2; 2; x) = (1 − β)(1 − x)−β , β < 1,

2F1(0, 3; 2; x) = 1, β = 1.
(32)

e may also derive the upper part of (32) directly from (24) and

25). The interesting conclusion of (32) is that vquasi is uniform for

∈ {0, 1}, skewed to the left for β < 0 and skewed to the right for

< β < 1. Again, the discontinuity at β = 1 is due to that part of

he quasi equilibrium distribution “gets lost” at the right boundary

s β → 1−.

Fourth, the rate of fixation is determined by (twice) the small-

st positive eigenvalue, i.e.

min =
{
λ0(β) = 1 − β = 4nu, β < 1,

λ1(1) = 2, β = 1.
(33)

hen β = 1, fixation of either allele can occur through genetic

rift. With rescaled time (15), this occurs at a rate λmin/2 = 1 that

s independent of population size. When β < 1, only the a allele

an be fixed, with a rate λmin/2 = μ∗ proportional to the mutation

robability u. This rate is lower than 1 when 0 < β < 1, but since

enetic drift works in both directions, it may cause the mutant al-

ele A to dominate the population temporarily, so that the rate of

nal fixation is still smaller than the genetic drift rate of 1.

. Comparisons with the exact Markov chain

In this section we investigate numerically for which parameters

f the Wright–Fisher model the diffusion solution v( ·, τ ) in (18)

rovides a good approximation of the exact Markov chain distribu-

ion V(2nτ ) in (5). The diffusion approximation represents a simi-

arity solution that is supposed to be asymptotically valid for very

arge population sizes n, and several general results are available.

himakura [35] gives convergence results for a class of multiple

lleles models with mutation, migration and selection, and Ethier

nd Kurz [11] provide a mathematical theory for Markov chain

onvergence towards diffusion processes.

Let us first compare Tn, the Markov chain’s rescaled time until

he a allele gets fixed, with the corresponding fixation time T of

he diffusion process. Theorem 10.2.4 of [11] implies convergence

(Tn ≤ τ ) = V ([2nτ ])
0

= �n0(τ ; p, β)

→ �0(τ ; p, β)

= P(T ≤ τ ) (34)

s n → ∞ of the fixation probability up to time τ > 0, for any 0 <

≤ 1 and β ≤ 1. It is shown in the appendix that (34) implies

(Tn) → E(T ) as n → ∞, (35)
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and an explicit formula for E(T) appears on Page 96 of [15]. The

accuracy of (34) and (35) was investigated numerically by Ewens

[13] in a slightly different context - the haploid and mutation free

Wright–Fisher model, with or without selection, and Kimura [30]

studied the accuracy of (35) for diploid Wright–Fisher models with

one-way mutations and various selection schemes.

In the interior domain, we use Theorem 10.1.1 of [11] to de-

duce weak convergence of the Markov chain distribution towards

the diffusion solution for each τ > 0. Because of (34), we can

phrase this solely in terms of the rescaled probabilities vn(x, τ ) =
vn(x, τ ; p, β) in (9), as

1

2n

[2nx]∑
i=1

vn(
i

2n
, τ ) →

∫ x

0+
v(y, τ )dy

when n → ∞ for all 0 < x ≤ 1. Theorem 1 of [12] provides a rate

of convergence∣∣∣∣∣[�n0(τ ) − �0(τ )] f (0) + 1

2n

2n∑
i=1

vn

(
i

2n
, τ

)
f

(
i

2n

)

−
∫ 1

0+
v(y, τ ) f (y)dy

∣∣∣∣ ≤ B( f, β)

2n
(36)

for expected values of functions f of the Markov chain that have six

continuous derivatives on [0, 1], and a constant B(f, β) that is inde-

pendent of τ and p. Ewens [14] looked at diffusion approximations

of the quasi equilibrium distribution

vn,quasi(x, β) = lim
τ→∞

vn(x, τ )
1

2n

∑2n
i=1 vn(

i
2n

, τ )

that improve upon vquasi in (32). In more detail, he found a func-

tion bquasi(x; β) for which

vn,quasi(x;β) = vquasi(x;β) + bquasi(x;β)

2n
+ o(n−1) (37)

for any 0 < x = i/(2n) < 1. Formulas (36) and (37) suggest that

the diffusion solution v(x, τ ) approximates the rescaled probability

vn(x, τ ) at an accuracy inversely proportional to population size.

We formulate this as a local limit result

vn(x, τ ) = v(x, τ ) + b(x, τ )

2n
+ o(n−1), (38)

for some function b(x, τ ) = b(x, τ ; p, β), whenever 0 < x =
i/(2n) < 1 and τ > 0. In order to motivate (38), we compare

the series expansion (18) of the diffusion solution, with one for

the Markov chain. To this end, we first rewrite (18) as

v(x, τ ) =
∞∑

m=0

hm(x; p) exp(−λmτ/2), (39)

for x > 0, with hm(x; p) = hm(x; p, β) = rm(p;β)lm(x;β) the prod-

uct of the m:th right and left eigenfunctions. For the Markov chain

we use a Jordan decomposition

M = Q−1DQ (40)

of its transition matrix (2). The matrix D is block diagonal in gen-

eral, with its eigenvalues along the diagonal, see for instance [6]

and [5]. Feller [16] proved that

dk =

⎧⎪⎨
⎪⎩

1, k = 0,(
1 − 1 − β

4n

)k k−1∏
l=1

(1 − l

2n
), k = 1, . . . , 2n,

(41)

for the Wright–Fisher model with one-way mutations, with
∏0

l=1

interpreted as 1 when k = 1. Since the eigenvalues in (41) are all

real valued and different, it follows that D = diag(d0, . . . , d2n) is di-

agonal, so that the left eigenvectors lk = (lk0, . . . , lk,2n) and right
igenvectors rk = (rk0, . . . , rk,2n)′ of M with eigenvalues dk are the

ows of Q and columns of Q−1, i.e.

=

⎛
⎜⎜⎝

l0
l1
...

l2n

⎞
⎟⎟⎠, Q−1 =

(
r0 r1 . . . r2n

)
.

hese rows and columns can be normalized after convenience as

ong as lkrk = 1. In particular, if r1 = (1, . . . , 1) we choose the first

eft eigenvector l1 = (1, 0, . . . , 0) as the asymptotic distribution of

, corresponding to fixation of the a allele.

In the appendix we prove that the Jordan decomposition (40)

mplies a series expansion

n(x, τ ) =
2n−1∑
m=0

hnm(x; p) exp(−λnmτ/2) (42)

f the renormalized absolute probability vector. For each term m,

he quantities λnm = −4n log(dm+1) and hnm(x; p) = hnm(x; p, β) =
m+1,2np · 2nlm+1,2nx can be viewed as analogues of the diffusion so-

ution’s mth eigenvalue λm and corresponding product of eigenvec-

ors hm(x; p), in (39). Formula (38) will follow if the latter quanti-

ies approximate the former at an accuracy inversely proportional

o population size. Therefore, we assume functions bm = bm(τ, β)

nd b̃m(x; p) = b̃m(x; p, β) exist, such that

xp(−λnmτ/2) = exp(−λmτ/2)

[
1 + bm

2n
+ o(n−1)

]
(43)

nd

nm(x; p) = hm(x; p) + b̃m(x; p)

2n
+ o(n−1). (44)

e then take the difference of (42) and (39), and use (43) and (44)

o deduce that (38) holds, with

(x, τ ) =
∞∑

m=0

[
bm + b̃m(x; p)

]
exp(−λmτ/2).

n the appendix we prove (43), and in order to motivate (44), we

se that the right and left eigenvectors of Q may be normalized

o that the two functions p → rm+1,2np and x → 2nlm+1,2nx approx-

mate the right and left eigenfunctions rm(p) and lm(x) of the dif-

usion operator in (20) and (21). Using similar methods of proof as

n Chapter 13 of [23] and in [4], it follows from (3) and moment

roperties of the binomial distribution that rm+1,2np is a polyno-

ial in p of degree m + 1, just as rm(p). Notice also that (44) is

elated to (37) when m = 1, since the quasi equilibrium distribu-

ion of the Markov chain and diffusion solutions are proportional

o hn1(x; p) and h1(x; p) respectively, as functions of x.

Table 1 gives numerical results for a scenario with a small mu-

ation rate (β = 0.5), with both alleles starting at the same al-

ele frequency (p = 0.5). It is seen that all four quantities vn(x, τ ),

n0(τ ), λnm and hnm(x) converge rather quickly as n grows. The

pproximation errors of v and hm are inversely proportional to

opulation size, in agreement with (38) and (44), whereas �n0(τ )

eems to be converging at a slower rate. We also investigated an-

ther scenario with a larger mutation rate (β = −2) where the A

llele starts at a higher frequency (p = 0.9). All four quantities con-

erge, although at a somewhat slower rate, and formulas (38) and

44) were confirmed in this setting as well (results not shown).

In Table 2 we investigate how the mutation rate β , and the ini-

ial frequency p of the A allele affect accuracy of the approximate

xation probability (22) for n = 50 individuals. When β varies, we

ompare the diffusion solution with the exact Markov chain, un-

er the assumption of a symmetric initial state, p = 0.5. When p

aries, we first choose a relatively large mutation rate, represented
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Table 1

Convergence of fixation probability �n0(0), approximate diffusion function vn(x, τ ), transformed eigenvalue

λnm and left eigenvector hnm(x) towards their diffusion (n = ∞) limits �0(τ ), v(x, τ ), λm and hm(x), when

β = 0.5 and p = 0.5. For each quantity zn (= �n(0), vn(x, τ ) or hnm(x)) of the Markov chain, the number

2n(zn − z) in brackets refers to an approximation error of the corresponding diffusion quantity z (= �(0),

v(x, τ ) or hm(x)), normalized by population size.

β = 0.5, p = 0.5

τ n �n0(0) vn(0.25, τ ) vn(0.5, τ ) vn(0.75)

0.25 4 0.0395 (0.2618) 1.1582 (−0.2488) 1.5076 (−0.1899) 0.8999 (−0.2619)

20 0.0131 (0.2506) 1.1831 (−0.2489) 1.5264 (−0.1976) 0.9253 (−0.2955)

100 0.0083 (0.2880) 1.1880 (−0.2487) 1.5303 (−0.1989) 0.9312 (−0.3028)

400 0.0072 (0.2832) 1.1890 (−0.2487) 1.5311 (−0.1991) 0.9323 (−0.3042)

Diffusion 0.0068 1.1893 1.5313 0.9327

1 4 0.3427 (0.5339) 0.6331 (−0.3024) 0.6343 (−0.1495) 0.6121 (−0.3169)

20 0.2938 (0.7136) 0.6635 (−0.2941) 0.6492 (−0.1515) 0.6439 (−0.3107)

100 0.2804 (0.8976) 0.6694 (−0.2920) 0.6522 (−0.1518) 0.6501 (−0.3137)

400 0.2773 (1.0558) 0.6705 (−0.2916) 0.6528 (−0.1518) 0.6513 (−0.3143)

Diffusion 0.2759 0.6709 0.6530 0.6517

4 4 0.7438 (0.1705) 0.1478 (−0.1231) 0.1857 (−0.0957) 0.2532 (−0.1868)

20 0.7277 (0.2108) 0.1600 (−0.1251) 0.1953 (−0.0967) 0.2721 (−0.1760)

100 0.7237 (0.2499) 0.1625 (−0.1253) 0.1972 (−0.0967) 0.2756 (−0.1769)

400 0.7228 (0.2832) 0.1630 (−0.1253) 0.1976 (−0.0968) 0.2763 (−0.1771)

Diffusion 0.7225 0.1632 0.1977 0.2765

m n λnm hnm(0.25) hnm(0.5) hnm(0.75)

0 4 0.5080 0.4000 (−0.2639) 0.5072 (−0.1852) 0.6977 (−0.4184)

20 0.5016 0.4264 (−0.2656) 0.5257 (−0.1862) 0.7404 (−0.3843)

100 0.5003 0.4317 (−0.2656) 0.5294 (−0.1860) 0.7481 (−0.3861)

400 0.5001 0.4327 (−0.2656) 0.5301 (−0.1860) 0.7495 (−0.3864)

Diffusion 0.5000 0.4330 0.5303 0.7500

1 4 3.1525 1.6119 (0.3919) 1.1483 (0.8339) 0.3051 (0.4723)

20 3.0286 1.5728 (0.3953) 1.0634 (0.7743) 0.2553 (0.3663)

100 3.0056 1.5649 (0.3977) 1.0479 (0.7630) 0.2479 (0.3575)

400 3.0014 1.5634 (0.3981) 1.0450 (0.7609) 0.2465 (0.3558)

Diffusion 3.000 1.5629 1.0441 0.2461

2 4 8.2634 −0.6439 (0.0117) 0.1902 (−0.5293) 0.5051 (−0.5511)

20 7.6336 −0.6475 (−0.0842) 0.2436 (−0.5098) 0.5596 (−0.5762)

100 7.5261 −0.6459 (−0.1022) 0.2538 (−0.5059) 0.5711 (−0.5779)

400 7.5065 −0.6455 (−0.1054) 0.2557 (−0.5052) 0.5733 (−0.5783)

Diffusion 7.5000 −0.6454 0.2564 0.5740
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y β = −1 (and hence μ = 0.005). The diffusion solution is then

n fairly good agreement with the tabulated results for the ex-

ct Markov chain. This is also true in the limit of a vanishingly

mall mutation rate (β → 1). Formula (29) implies that the the

imiting one-way mutation diffusion model predicts the same fixa-

ion probability at the left boundary as the mutation free diffusion

odel. It also gives good agreement with the exact Markov chain

or 50 individuals, at least when τ is of order one or larger.

In Table 3 we investigate the accuracy of the diffusion approx-

mation (38) close to the left and right boundaries for two muta-

ion parameters. The lower mutation rate (β = 0) has a diffusion

ensity v close to uniform (cf. (32)), so that the convergence rates

t the two boundaries are more easily compared. The higher mu-

ation rate (β = 0.8) has a pole at the right boundary. It is seen

hat the diffusion solution predicts too high probabilities close to

he fixation boundary x = 0, whereas the convergence rate is faster

t the non-fixation boundary x = 1. This is the case for both mu-

ation rates, as well as for β = −0.8 (results not shown). Tyvand

nd Thorvaldsen [39] made a similar analysis for the mutation free

right–Fisher model (β = 1), and found that the diffusion approx-

mation was too large close to both fixation boundaries.

Table 4 illustrates the accuracy of the diffusion solution for the

xtreme initial condition of a homogeneous population of A alleles

p = 1), so that the distance to the steady state population is max-

mal. Convergence is checked towards the diffusion density (38) in

he interior and at the right boundary, towards the fixation proba-

ility (34) at the left boundary, and also possible convergence

n1(τ ) = V ([2nτ ])
2n

→ �1(τ ) = 0 (45)

l

t the right boundary. We see from Table 4 that the local conver-

ence to the diffusion limit is acceptable for all values of x, with a

ossible exception for the non-fixation boundary x = 1.

In several of the tables (in particular Table 2), it can seen that

he convergence rate of the fixation probability at the x = 0 bound-

ry, as n increases, is slower the smaller τ is. The diffusion model

enerally predicts a fixation probability below that of the exact

arkov chain. A similar phenomenon was observed by Ewens [13]

n the context of the neutral model β = 1, and two fixation bound-

ries. In both cases, this is due to the fact that the Wright–Fisher

odel discretizes time, so that large jumps to fixation are possi-

le in a small population, whereas the diffusion approach does not

ccount for this. This also explains why the diffusion solution pre-

icts too high values close to the fixation boundary, as found in

able 3.

We finally consider the case of a small but positive mutation

ate μ∗. In the appendix we motivate that (45) breaks down at the

ight boundary when μ∗ is close to 0. Instead, we suggest to per-

urb the diffusion solution (18) around the non-fixation boundary

= 1, as

∗
n(x, τ ; p, β) = �0(τ ; p, β)δ(x)

+v(x, τ ; p, β) · 1{0<x≤1−1/(4n)}
+�∗

n1(τ ; p, β)δ(x − 1). (46)

his is achieved by moving a probability mass of the diffusion so-

ution v from the interval [1 − 1/(4n), 1) adjacent to 1, to a point
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Table 2

Fixation probability �n0(τ ) according to the Wright–Fisher model for different values of the mutation

parameter β and the initial frequency p of the A allele. The exact Markov chain is computed for pop-

ulations of n = 50 individuals. The lower number in each box represents the diffusion approximation

�0(τ ) of the fixation probability, cf. (22).

p = 0.5

τ β = −2 β = −1 β = 0 β = 0.5 β = 0.9 β = 1

0.25 .0222 .0160 .0114 .0095 .0082 .0079

.0157 .0114 .0081 .0068 .0059 .0057

0.5 .1980 .1478 .1062 .0887 .0763 .0734

.1786 .1334 .0961 .0804 .0693 .0667

1 .5845 .4643 .3416 .2841 .2416 .2315

.5680 .4504 .3315 .2759 .2349 .2252

2 .9058 .8034 .6289 .5172 .4241 .4014

.9007 .7970 .6230 .5126 .4209 .3985

β = −1

τ p = 0.01 p = 0.1 p = 0.3 p = 0.7 p = 0.9 p = 0.99

0.25 .9344 .4968 .1040 .0015 4 × 10−5 2 × 10−6

.9290 .4683 .0861 .0009 2 × 10−5 7 × 10−7

0.5 .9686 .7202 .3481 .0509 .0114 .0041

.9669 .7078 .3290 .0433 .0088 .0029

1 .9868 .8732 .6500 .3124 .1910 .1454

.9864 .8688 .6393 .2977 .1775 .1330

2 .9960 .9598 .8807 .7279 .6542 .6216

.9958 .9584 .8767 .7193 .6435 .6100

β = 1

τ p = 0.01 p = 0.1 p = 0.3 p = 0.7 p = 0.9 p = 0.99

0.25 .9250 .4468 .0725 .0424 4 × 10−5 10−8

.9197 .4214 .0603 .0003 2 × 10−6 7 × 10−9

0.5 .9589 .6480 .2431 .0150 .0011 3 × 10−5

.9573 .6370 .2303 .0130 .0008 3 × 10−5

1 .9770 .7857 .4545 .0932 .0189 .0014

.9765 .7819 .4475 .0893 .0177 .0013

2 .9860 .8637 .6062 .2181 .0653 .0062

.9859 .8626 .6137 .2158 .0643 .0061
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mass at 1, so that

�∗
n1(τ ; p, β) =

∫ 1−

1−1/(4n)
v(x, τ )dx ≈ C(1, τ )

(4n)1−β
, (47)

where C(1, τ ) is defined in (24). This perturbed diffusion solution

(46) is mainly of interest when the population size is small and/or

when x = 1 is a regular boundary point (0 < β < 1). For such a

boundary point we notice that the right hand side of (47) will ex-

ceed the order O(n−1) of the Markov chain probabilities at inner

points.

It can be seen from Table 5 that both �∗
n1(τ ) and

(1, τ )/(4n)1−β are good approximation of �1(τ ) when β is close

to 1, although �∗
n1

(τ ) is slightly more accurate for small τ . The

diffusion solution, on the other hand, provides a very poor approx-

imation for such β , but it is accurate for β = 1. In Table 4 we find

that �∗
n1

(τ ) is less accurate for β = 0, but it still improves upon

the diffusion solution.

We interpret �∗
n1(τ ; p, β) as a quasi-fixation probability, and

C(1, τ ) as an approximate quasi-fixation probability for mutation

rates so small that the denominator of (47) is close to 1. It follows

from (25) that for small μ∗ and large τ ,

(1, τ ) ≈ pe−μ∗τ = pe−λminτ/2

tends to zero at a rate determined by the smallest eigenvalue (33)

of the diffusion operator. In the appendix we also provide an exact

formula for C(1, τ ).

It is possible to get a more probabilistic interpretation of quasi-

fixation. Let 0 ≤ Tn1 ≤ ∞ be the stochastic and rescaled time

at which the population for the first time becomes homogeneous

with A alleles only. When p < 1, this may never happen, and in

this case we put T = ∞. Then, let T be the time, after this
n1 n2
vent, that it takes for a “successful” new mutation A → a to occur,

.e. one that spreads to the whole population. The previous unsuc-

essful A → a mutations that happen after the A allele has taken

ver, will typically be short-lived, compared to the time it takes

or the successful mutation to occur. This suggests that the A allele

s quasi-fixed during most of the time interval [Tn1, Tn1 + Tn2), and

hat

∗
n1(τ ; p, β) ≈ P(Tn1 ≤ τ, Tn1 + Tn2 > τ ) (48)

s approximately the probability that up to time τ , a successful

utation has not yet occurred in an environment of A alleles only.

n order to motivate (48) we need to approximate the distribution

f Tn1 and Tn2. We first notice that

(Tn1 ≤ τ ) ≈ �1(τ ; p, 1) (49)

hen μ∗ > 0 is small, since a Wright–Fisher model with a small

ne-way mutation rate behaves like a neutral model between

oundaries, as a consequence of the fact that genetic drifts domi-

ates over the systematic drift towards the left boundary. Suppose

is first chosen large, and then μ∗ > 0 is taken to be small. In the

ppendix we then show that the time Tn2 of quasi-fixation is ap-

roximately exponentially distributed with rate parameter μ∗, and

hat

∗
n1(τ ; p, β) ≈ C(1, τ )

≈
∫ τ

0

fTn1
(s)P(Tn2 > τ − s)ds

≈
∫ τ

0

�′
1(s; p, 1)e−μ∗(τ−s)ds, (50)

here fTn1
is the density function of Tn1. One consequence of (50)

s that C(τ , 1) approaches the fixation probability �1(τ ; p, 1) of

he mutation free model at the right boundary, as μ∗ → 0.
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Table 3

Values of the approximate diffusion function vn(x, τ ) for different population sizes n and fre-

quencies 0 < x < 1 of the A allele that conform with (7) and are close to the left and right

boundaries x = 0 and 1. For comparison, the diffusion density v(x, τ ) is given as well. The

rescaled time variable τ = 2, and the initial frequency of the A allele is p = 0.5.

x close to left boundary

n β → 0 1/320 1/160 1/80 1/40 1/20 1/10

5 0 – – – – – – 0.3176

10 – – – – – 0.3224 0.3610

20 – – – – 0.3254 0.3647 0.3797

40 – – – 0.3274 0.3669 0.3829 0.3892

80 – – 0.3287 0.3683 0.3847 0.3921 0.3939

160 – 0.3294 0.3692 0.3857 0.3937 0.3967 0.3963

Diff 0.4040 0.4038 0.4036 0.4033 0.4026 0.4013 0.3987

5 0.8 – – – – – – 0.2051

10 – – – – – 0.2049 0.2334

20 – – – – 0.2055 0.2321 0.2456

40 – – – 0.2062 0.2320 0.2439 0.2518

80 – – 0.2068 0.2322 0.2434 0.2499 0.2549

160 – 0.2072 0.2324 0.2433 0.2492 0.2529 0.2564

Diff 0.2541 0.2542 0.2543 0.2545 0.2549 0.2559 0.2580

x close to right boundary

n β 1−1/10 1−1/20 1−1/40 1−1/80 1−1/160 1−1/320 → 1

5 0 0.3190 – – – – – –

10 0.3334 0.3306 – – – – –

20 0.3440 0.3382 0.3391 – – – –

40 0.3494 0.3452 0.3421 0.3449 – – –

80 0.3522 0.3486 0.3465 0.3448 0.3487 – –

160 0.3536 0.3504 0.3486 0.3476 0.3465 0.3510 –

Diff 0.3550 0.3522 0.3508 0.3501 0.3497 0.3496 0.3494

5 0.8 0.6180 – – – – – –

10 0.5943 0.9983 – – – – –

20 0.6186 0.9469 1.6674 – – – –

40 0.6240 0.9860 1.5706 2.8391 – – –

80 0.6271 0.9933 1.6365 2.6654 4.8857 – –

160 0.6286 0.9976 1.6478 2.7788 4.5796 8.4551 –

Diff 0.6302 1.0020 1.6616 2.8208 4.8485 8.3869 ∞

Table 4

Boundary probabilities �n0(τ ), �n1(τ ) and rescaled probabilities vn(x, τ ), for three eq-

uispaced choices of x, are given for β = 0 and a homogeneous founder population with

only the A gamete (p = 1). Results for the exact Markov chain are given for increasing

population sizes n and for the diffusion limits (18) and (22) of vn(x, τ ) and �n0(τ ). The

right column refers to the quasi fixation probability in (47).

β = 0, p = 1

n τ �n0(τ ) vn(0.25, τ ) vn(0.5, τ ) vn(0.75, τ ) �n1(τ ) �∗
n1(τ )

4 1 0.0814 0.5956 0.8799 1.1678 0.1492 0.1098

32 0.0424 0.5814 0.9065 1.3013 0.0241 0.0142

128 0.0379 0.5795 0.9092 1.3169 0.0063 0.0036

Diff 0.0361 0.5788 0.9101 1.3221 0.0000 0.0000

4 2 0.3802 0.5928 0.6477 0.6697 0.0715 0.0502

32 0.3136 0.6383 0.6923 0.7425 0.0109 0.0063

128 0.3044 0.6431 0.6971 0.7510 0.0028 0.0016

Diff 0.3006 0.6446 0.6988 0.7538 0.0000 0.0000

4 4 0.7727 0.2332 0.2407 0.2354 0.0240 0.0170

32 0.7370 0.2644 0.2663 0.2663 0.0037 0.0021

128 0.7320 0.2678 0.2691 0.2698 0.0009 0.0005

Diff 0.7300 0.2690 0.2700 0.2710 0.0000 0.0000
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Recall from (34) that the distribution of the fixation time Tn of

he a-allele is approximated by the diffusion solution, as

(Tn ≤ τ ) ≈ �0(τ ; p, β).

his distribution will be very skewed for small mutation rates

hen p < 1. This can be seen by rewriting it as a mixture of two

omponents;

(Tn ≤ τ ) = P(Tn ≤ τ, Tn1 = ∞) + P(Tn ≤ τ, Tn1 < ∞)

= P(Tn ≤ τ, Tn1 = ∞) + P(Tn ≤ τ, Tn1 ≤ τ )
≈ P(Tn ≤ τ, Tn1 = ∞) + P(Tn1 + Tn2 ≤ τ, Tn1 ≤ τ )

≈ �0(τ ; p, 1) + [�1(τ ; p, 1) − �∗
n1(τ ; p, β)]. (51)

he first term of (51) approximates the probability of immediate

xation of the a-allele up to time τ , whereas the second term ap-

roximates the probability that quasi-fixation of the A-allele oc-

urs at first, followed by a successful mutation A → a that spreads

o the whole population. In the third step of (51) we ignored the

ime Tn − (Tn1 + Tn2) it takes for the successful mutation to spread,

ne it has occurred, and in the fourth step we used (48) and (49).
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Table 5

Probabilities of a homogeneous population of A alleles are shown for different popula-

tion sizes n, time points τ , mutation parameters β and initial frequencies p of A alleles.

Four types of probabilities are displayed; exact values �n1(τ ) from the Markov chain

(upper rows marked n = 4, 128), the quasi fixation probability �∗
n1(τ ) (middle rows

marked n = 4, 128), the approximate quasi fixation probability C(1, τ )/(4n)1−β (lower

rows marked n = 4, 128) and the diffusion solution �1(τ ) (rows marked Diff). The quasi

fixation probabilities for the mutation free models refer limits β → 1−.

p = 0.5 p = 1

n τ β = 0.95 β = 0.99 β = 1 β = 0.95 β = 0.99 β = 1

4 1 0.2519 0.2707 0.2756 0.9104 0.9814 1.0000

0.2366 0.2544 0.2590 0.9142 0.9825 1.0000

0.2078 0.2216 0.2252 0.9179 0.9833 1.0000

128 0.1773 0.2168 0.2280 0.7736 0.9499 1.0000

0.1755 0.2151 0.2262 0.7717 0.9498 1.0000

0.1747 0.2141 0.2252 0.7718 0.9498 1.0000

Diff 0.0000 0.0000 0.2252 0.0000 0.0000 1.0000

4 3 0.4037 0.4586 0.4735 0.8506 0.9681 1.0000

0.3984 0.4528 0.4673 0.8507 0.9684 1.0000

0.3949 0.4483 0.4627 0.8510 0.9685 1.0000

128 0.3333 0.4337 0.4632 0.7175 0.9357 1.0000

0.3322 0.4332 0.4628 0.7156 0.9355 1.0000

0.3321 0.4331 0.4627 0.7156 0.9355 1.0000

Diff 0.0000 0.0000 0.4627 0.0000 0.0000 1.0000

4 10 0.3561 0.4672 0.5000 0.7123 0.9344 1.0000

0.3559 0.4672 0.5000 0.7119 0.9345 1.0000

0.3559 0.4672 0.5000 0.7119 0.9345 1.0000

128 0.3001 0.4515 0.5000 0.6002 0.9028 1.0000

0.2993 0.4513 0.5000 0.5986 0.9026 1.0000

0.2993 0.4513 0.5000 0.5986 0.9026 1.0000

Diff 0.0000 0.0000 0.5000 0.0000 0.0000 1.0000

4 100 0.0374 0.2979 0.5000 0.0748 0.5957 1.0000

0.0375 0.2979 0.5000 0.0750 0.5958 1.0000

0.0375 0.2979 0.5000 0.0750 0.5958 1.0000

128 0.0316 0.2878 0.5000 0.0633 0.5757 1.0000

0.0315 0.2878 0.5000 0.0631 0.5755 1.0000

0.0315 0.2878 0.5000 0.0631 0.5755 1.0000

Diff 0.0000 0.0000 0.5000 0.0000 0.0000 1.0000

4 500 0.0000 0.0403 0.5000 0.0000 0.0806 1.0000

0.0000 0.0403 0.5000 0.0000 0.0806 1.0000

0.0000 0.0403 0.5000 0.0000 0.0806 1.0000

128 0.0000 0.0390 0.5000 0.0000 0.0779 1.0000

0.0000 0.0389 0.5000 0.0000 0.0779 1.0000

0.0000 0.0389 0.5000 0.0000 0.0779 1.0000

Diff 0.0000 0.0000 0.5000 0.0000 0.0000 1.0000
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6. Summary and conclusions

We have analyzed the continuum representation of the biallelic

and haploid Wright–Fisher model with a constant one-way muta-

tion rate, and no selection. In order to investigate the accuracy of

this diffusion solution, we compared it to the exact Wright–Fisher

Markov chain for a wide range of parameter values. In general, the

agreement is good at fixed sample allele frequency points 0 < x <

1, with a rapid local convergence of the exact stochastic process to-

wards the diffusion density, in the limit of very large populations.

We also found that the local convergence of the one-way mutation

model is rapid close to the non-fixation boundary, but slower close

to the fixation boundary. The local convergence result was justi-

fied by comparing the Jordan decomposition of the Markov chain’s

transition matrix with the infinite series representation of the dif-

fusion solution.

We also observed convergence of the fixation probability to-

wards the diffusion solution at the left fixation boundary, over a

wide range of parameter values, although the convergence rate is

slower when the rescaled time parameter τ is small. On the other

hand, the accuracy of the diffusion approximation is very poor at

the non-fixed right boundary when the mutation rate is small,

since the mutant allele may temporarily be fixed for a very long

time. We developed an accurate modification of the diffusion solu-
 r
ion that incorporates such quasi-fixation. This phenomenon is due

o a discontinuity of the diffusion solution at zero mutation rates

β = 1). The solution switches from fixation at only one boundary

s β → 1−, to fixation at both boundaries. As long as mutations

f the one-way model remain, the asymptotic limit (23) is unique,

ith a steady state of only non-mutant alleles, although the time it

akes to reach this limit increases as the mutation probability goes

o zero.

The main application of our results is the infinite alleles model,

here a fixed mutant allele A is of interest, and a represents all

he other alleles. We argue that the quasi-fixation phenomenon

ill very often occur, unless the population n is very large. Indeed,

t follows from (17), (46) and (47) that quasi-fixation can be ne-

lected only if

n log(4n) ≥ log [C(1, τ )/ε]

Lμsite

, (52)

or a DNA sequence of L base pairs or sites, where 0 < ε < 1

s a tolerance parameter quantifying the maximal quasi-fixation

robability that can be neglected, and μsite is the mutation

robability per generation and site, so that the mutation proba-

ility for the whole sequence is μ = Lμsite. For instance, putting

(1, τ ) = 0.5, ε = 0.05 and μsite = 10−8, the order of the mutation

ate of humans ([3,25]), the right hand side of (52) simplifies
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o 108 log(10)/L = 2.30 · 105 for a string of L = 1000 base pairs.

his value is of the same order of magnitude as if the effective

opulation size ne of humans is plugged into the left hand side of

52). Although estimates of ne differ between studies and types of

ffective sizes, it is believed to be of the order 104 ([37]), which

ives 4.24 · 105 in (52). Hence it is clear that quasi-fixation of

1 kb DNA string cannot be neglected for populations smaller

han ne.

Several extensions of our work are possible. First, Moran [32]

ntroduced a haploid model with overlapping generations where

nly one gamete at a time is replaced. Karlin and McGregor

24] showed that the Moran and Wright–Fisher models share a

ommon diffusion limit, with appropriate rescaling of time. Ty-

and and Thorvaldsen [39] compared both models when no mu-

ations are present, and showed numerically that the diffusion

olution approximates the Moran model much more accurately

han the Wright–Fisher model, close to both fixation boundaries.

his is due to the nearest-neighbor interactions of the Moran

odel, whereas the many neighbor interactions of the Wright–

isher model slows down its convergence rate close to boundaries.

e conjecture that the same is true in the case of one-way muta-

ions, so that the Moran model converges more rapidly to the dif-

usion solution at the fixation boundary x = 0 as well as in its close

icinity.

Second, quasi-fixation will also occur for a (Wright–Fisher or

oran) model with two-way mutations. Let ν∗ be the normalized

utation rate a → A, defined in the same way as μ∗ in (15). It is

ell known that the steady state solution of the diffusion solution

as a beta distribution

(x,∞) = 
(2μ∗ + 2ν∗)

(2μ∗)
(2ν∗)

x2ν∗−1(1 − x)2μ∗−1, 0 < x < 1, (53)

here 
 is the gamma function, see for instance Sections 8.5 and

.3 of [8]. This solution is independent of initial conditions and

ossesses a discontinuity as μ∗ and ν∗ tend to 0, since the lim-

ting mutation free model has a two-point stationary distribution

28) that depends on the initial frequencies of the two alleles. For

mall but positive mutation rates and/or small populations, quasi-

xation occurs at both boundaries of the two-way model, with

on-negligible probabilities. In analogy with (46), these probabil-

ties can be approximated by integrating the diffusion density v(

, τ ) over intervals (0, 1/(4n)) and (1 − 1/(4n), 1) that surround

he two boundary points. These quasi-fixation probabilities will de-

end on initial conditions, but as τ → ∞ they converge to limiting

onzero values, independently of the founder population composi-

ion. The limiting values are obtained by integrating (53) over the

ame two intervals.

Third, population genetic diffusion models with K + 1 alleles are

efined on a K-simplex. They have been well studied for neutral

odels with mutations, see for instance [19,21,34] and [2]. A one-

ay model is obtained by assuming that alleles A1, . . . , AK are mu-

ant, whereas all remaining alleles are collected into a final state

. For an infinite alleles model, only K types of mutations Ai → a

re possible for i = 1, . . . , K. In this case it would be of interest to

tudy quasi-fixation of all mutant alleles jointly. The quasi-fixation

oundary is then the K − 1 simplex defined by all allele frequency

onfigurations for which a is absent.

Fourth, it is possible to address quasi-fixation for a larger

lass of models. This is achieved by replacing the diffusion

olution v by a refined approximation of the Markov chain

[40,43]). See also [18], where coalescence theory is used to im-

rove the diffusion solution approximation of time to fixation.

hese refined approximations typically have a finite allele fre-

uency space, a subset of which could represent the quasi-fixation

oundary.
cknowledgements
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ppendix

The hypergeometric function. The infinite series representa-

ion of the hypergeometric function can be found for instance in

ormula 15.1.1 of [1]. It is defined as

F1(a, b; c; x) =
∞∑

m=0

(a)m(b)m

(c)mm!
xm, (54)

here

(x)m = 
(x + m)


(x)
(55)

s the rising factorial. Hence (x)0 = 1 and (x)m = x(x + 1) · . . . · (x +
− 1) for m > 0.

Hypergeometric functions and Jacobi polynomials. We can

se formulas 15.3.3 and 15.4.6 of [1] to express the hypergeometric

unctions in (18), as

m(x) := 2F1(β − m, m + 2; 2; x)

= (1 − x)−β
2F1(m − β + 2,−m; 2; x)

= 1

m + 1
(1 − x)−βP

(1,−β)
m (1 − 2x), (56)

here P
(1,−β)
m (z) is a Jacobi polynomial of order m, and in

articular

(1,−β)
0

(z) = 1. (57)

he Jacobi polynomials of integer order are orthogonal over the in-

erval −1 < z < 1 with respect to the weight function (1 − z)(1 +
)−β , and constitute an orthogonal and complete set of functions

ver |z| < 1.

Equivalence of (18) and (22) with previous diffusion solu-

ions. Formulas 8.5.17 and 8.5.19 of [8] contain the diffusion limit

f the Wright–Fisher model with one-way mutations. Adapted to

ur notation, these two equations read

(x, τ ) =
∞∑

m=0

(2 − β + 2m)
(2 − β + m)
(1 − β + m)

m!(m + 1)!
(1 − β)2

·p · 2F1(−m, 2 − β + m; 1 − β; 1 − p)

·(1 − x)−β
2F1(−m, 2 − β + m; 1 − β; 1 − x)e−λmτ/2

=
∞∑

m=0

(2m + 2 − β)(m + 1 − β)(m + 1)

·p (1 − β)m

(m + 1)!
2F1(−m, 2 − β + m; 1 − β; 1 − p)

·(1 − x)−β (1 − β)m

(m + 1)!
2F1(−m, 2 − β + m; 1 − β; 1 − x)e−λmτ/2

(58)

or the interior (0 < x < 1) and

0(τ ) = 1 − p

∞∑
m=0

(−1)m 
(m + 1 − β)(2m + 2 − β)


(1 − β)(m + 1)!

·2F1(−m, 2 + m − β; 1 − β; 1 − p)e−λmτ/2

= 1 − p

∞∑
m=0

(−1)m (1 − β)m(2m + 2 − β)

(m + 1)!

·2F1(−m, 2 + m − β; 1 − β; 1 − p)e−λmτ/2 (59)
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at the fixation boundary (x = 0). In the second steps of formulas

(58) and (59) we used property (55) of the gamma function 
(x).

It follows from equation 15.3.6 of [1] that

2F1(−m, 2 − β + m; 1 − β; 1 − x)

= (−1)m(m + 1)!

(1 − β)m
2F1(−m, 2 − β + m; 2; x). (60)

Inserting (60) into (58) and (59), we find that

v(x, τ ) =
∞∑

m=0

(2m + 2 − β)(m + 1 − β)(m + 1)

·p · 2F1(−m, 2 − β + m; 2; p)

·(1 − x)−β
2F1(−m, 2 − β + m; 2; x)e−λmτ/2 (61)

and

�0(τ ) = 1 − p

∞∑
m=0

(2m + 2 − β)

·2F1(−m, 2 + m − β; 2; p)e−λmτ/2.

(62)

We finally apply the second step of (56) to each term of (61) and

(62), in order to find that (61) agrees with (18) in the interior (0 <

x < 1), and that (62) coincides with (22).

Motivation of (24) and (25). Inserting (56) into (18), we find

that

v(x, τ ) = �0(τ )δ(x)

+ (1 − x)−β
∞∑

m=0

Am

m + 1
P

(1,−β)
m (1 − 2x)e−λmτ/2,

where

Am = p(1 − p)β (2m + 2 − β)(m + 1 − β)(m + 1)φm(p). (63)

This agrees with (24), if

(x, τ ) = 1

1 − β

∞∑
m=0

Am

m + 1
P

(1,−β)
m (1 − 2x)e−λmτ/2

= p(1 − p)β

1 − β

∞∑
m=0

(2m + 2 − β)(m + 1 − β)φm(p)

·P(1,−β)
m (1 − 2x)e−λmτ/2

= p

1 − β

∞∑
m=0

(2m + 2 − β)(m + 1 − β)

m + 1

·P(1,−β)
m (1 − 2p)P

(1,−β)
m (1 − 2x)e−λmτ/2. (64)

In the second and third steps we made use of (63) and (56). The

m = 0 term of the expansion for C(x, τ ) equals the leading term of

(25), because of λ0 = 1 − β and (57).

Derivation of (29). Since the first and third equations of (29)

follow easily from (18) and (26)–(28), we concentrate on the mid-

dle one. In order to verify this second equation of (29), we need

some properties of hypergeometric functions. The first one

2F1(1, 2; 2; p) = 1

1 − p
, (65)

follows directly from (54). The second formula

2F1(1 − m, m + 2; 2; 1 − p) = −(−1)m
2F1(1 − m, m + 2; 2; p) (66)

can be deduced from 15.3.6 of [1]. In conjunction with (22), we

find that
0(τ ; p, 1−) = 1 − p(1 − p)
∞∑

m=0

(2m + 1)e−m(m+1)τ /2

·2F1(1 − m, m + 2; 2; p)

(65)= 1 − p −
∞∑

m=1

(2m + 1)e−m(m+1)τ /2

·2F1(1 − m, m + 2; 2; p)

(66)= 1 − p +
∞∑

m=1

(2m + 1)(−1)me−m(m+1)τ /2

·2F1(1 − m, m + 2; 2; 1 − p)

= �0(τ ; p, 1),

s was to be proved.

Proof of (35). We have that

(Tn) = 1

2n

∞∑
t=0

P

(
Tn >

t

2n

)

= 1

2n

∞∑
t=0

[
1 − �n0(

t

2n
)
]

→
∫ ∞

0
[1 − �0(τ )]dτ

= E(T ),

here in the third step we used (34) to deduce that the integrand

onverges pointwise. The fact that the integral converges as well

ollows from dominated convergence. Indeed, let Ṽ (0) be the row

ector of length 2n that excludes the first component of V(0) in

5), and M̃ the square matrix of order 2n that excludes the first

olumn and the first row of the transition matrix M in (2). The

ordan decomposition (40) of M implies that

− �n0

(
t

2n

)
= Ṽ (0)M̃t (1, . . . , 1)′

≤ Kdt
1

= Kd2nτ
1

= K exp(−λn0τ/2)

≤ 2K exp(−λ0τ/2), (67)

or some constant K not depending on n, where in the last step of

67) we used (43). Clearly, the right hand side of (67) is an inte-

rable function of τ .

Proof of (42). In order to prove (42) we insert the Jordan de-

omposition (40) into (5) and (9), and use the relation between x

nd i in (7). In this way, we can rewrite the renormalized absolute

robability vector as

n(x, τ ) = 2n
(
V (0)M2nτ

)
i

= 2n
(
V (0)Q−1D2nτ Q

)
2nx

= 2n

2n∑
k=0

(V (0)Q−1)k · d2nτ
k lk,2nx

x>0=
2n∑

k=1

rk,2np · 2nlk,2nx · d2nτ
k

=
2n−1∑
m=0

hnm(x; p) exp(−λnmτ/2),

here in the second last step we used (6), (11), and that l1,2nx = 0

hen x > 0. In the last step we changed summation index from k

o m = k − 1.
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Proof of (43). It follows from (19) and (41) that

m+1 = 1 − (1 − β)(m + 1)

4n
− m(m + 1)

4n
+ cm

(2n)2
+ o(n−2)

= 1 − λm

4n
+ cm

(2n)2
+ o(n−2) (68)

s n → ∞, for any fixed m ≥ 0 and some constant cm = cm(β).

ormula (68) and the definition of λnm below (42), imply

xp(−λnmτ/2) = d2nτ
m+1

=
[

1 − λm

4n
+ cm

(2n)2
+ o(n−2)

]2nτ

= exp(−λmτ/2)

[
1 + bm

2n
+ o(n−1)

]
,

ith bm = cmτ − λ2
mτ/8.

Motivation of (47). In view of (24) and the continuity of x →
(x, τ ) on [0, 1], we find that the probability mass of the diffusion

ensity v that is removed from [1 − 1/(4n), 1) is

∗
n1(τ ) =

∫ 1−

1−1/(4n)
v(x, τ )dx

= C(1, τ )

∫ 1

1−1/(4n)
(1 − β)(1 − x)−βdx · (1 + o(1))

= C(1, τ ) · 1

(4n)1−β
· (1 + o(1)),

s n → ∞.

Motivation of (50). We will first derive an explicit expression

or C(1, τ ), and a useful approximation of this quantity for small

utation rates. In view of (64), we need the following values

(1,−β)
m (−1) = (−1)m

(
m − β

m

)

= (−1)m 
(m + 1 − β)


(m + 1)
(1 − β)

≈ (−1)m 1 − β

m
(69)

f the Jacobi polynomials at the left boundary -1 for all m ≥ 1,

here the last approximative step requires that 2μ∗ = 1 − β is

mall. Insertion of (56), (57) and (69) into (64), we get

(1, τ ) = p(1 − p)β

1 − β

∞∑
m=0

(2m + 2 − β)(m + 1 − β)P
(1,−β)
m (−1)

·2F1(β − m, m + 2; 2; p)e−λmτ/2

≈ p(2 − β)e−μ∗τ

+p(1 − p)β
∞∑

m=1

(2m + 2 − β)(m + 1 − β)

m
(−1)m

·2F1(β − m, m + 2; 2; p)e−λmτ/2. (70)

n order to prove the first step of (50), we initially keep n fixed. It

hen follows from (27), (29), (30) and (70) that

lim
→1−

�∗
n1(τ ) =

∫ 1−

1−1/(4n)
v(x, τ ; p, 1)dx + �1(τ ; p, 1)

nd

lim
→1−

C(1, τ )

(4n)1−β
= lim

β→1−
C(1, τ ) = �1(τ ; p, 1).

y choosing n large enough, the above two limits can be made ar-

itrarily close.

In order to motivate the third step of (50), we need to show

hat T is asymptotically exponentially distributed with rate μ∗

n2
or small mutation rates. We will first look at 2nTn2, which is the

umber of generations t after the population gets homogeneous for

he A allele, that a successful mutation occurs. We argue that 2nTn2

as a geometric distribution with a success probability close to

1 − (1 − μ)2n
]

· 1

2n
≈ μ,

here the first factor is the probability that at least one mutation

→ a occurs per generation in a homogeneous population of A

lleles, and the second factor approximates the probability that one

allele subsequently spreads to the whole population. Since μ∗

s small, this follows from (28), with p = 1 − 1/(2n). The claimed

xponential distribution follows, since

(Tn2 > τ ) = P(2nTn2 > 2nτ ) ≈ (1 − μ)2nτ

=
(

1 − μ∗

2n

)2nτ

→ e−μ∗τ

s n → ∞, for a fixed positive value of the rescaled time parameter

= t/(2n).

We finish by showing that the right hand side of (50) approx-

mates C(1, τ ) well for small mutation rates. To this end, we first

ifferentiate (27) in order to find the first factor

′
1(τ ; p, 1) = p(1 − p)

∞∑
m=1

(2m + 1)m(m + 1)

2
(−1)m−1

·2F1(1 − m, m + 2; 2; p)e−m(m+1)τ /2

f the integrand of the right hand side of (50). Let I denote the

alue of this integral. Inserting the above series expansion into the

ntegrand, we obtain

=:

∫ τ

0

�′
1(s; p, 1)e−μ∗(τ−s)ds

= p(1 − p)e−μ∗τ
∞∑

m=1

(2m + 1)m(m + 1)

λ∗
m

(−1)m−1

·2F1(1 − m, m + 2; 2; p)(1 − e−λ∗
mτ/2), (71)

fter some straightforward but tedious calculations, where the or-

er of summation and integration is exchanged, and

∗
m = m(m + 1) − 2μ∗ μ∗ small≈ m(m + 1).

nserting this approximation of λ∗
m into (71), we get

≈ p(1 − p)e−μ∗τ
∞∑

m=1

(2m + 1)(−1)m

·2F1(1 − m, m + 2; 2; p)(1 − e−λ∗
mτ/2)

= pe−μ∗τ

+p(1 − p)
∞∑

m=1

(2m + 1)(−1)m

·2F1(1 − m, m + 2; 2; p)e−m(m+1)τ /2,

here in the last step we used (27) in order to recognize the co-

fficient of e−μ∗τ as [p − �1(0; p, 1)] = p. But in view of (70), the

ast approximation of I is close to C(1, τ ) when β is close to 1, as

as to be proved.
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