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Abstract

Evaluation of climate models is a key issue within climate research. The
statistical framework proposed by Sundberg et al., 2012, provides the theo-
retical underpinnings of methods for evaluation of climate model simulations
by use of climate proxy data from the last millennium. In the present work,
the statistical framework above is used to suggest several latent factor mod-
els of different complexity that can be used for estimating the amplitude of
a forcing effect in a climate model by comparison with the observed/recon-
structed climate. The performance of the models is evaluated and compared
in a pseudo-proxy experiment, in which the true unobservable temperature
series is replaced by selected realizations of a climate simulation model. For
different levels of added noise, different conclusions can be drawn. However,
for realistic noise levels, we find that the simplest model, the just-identified
two-indicator one-factor model, denoted j.i.FA(2,1), is a competitive al-
ternative to models with more complicated structure. Moreover, we discover
that the Fieller method of constructing confidence regions, associated with
the j.i.FA(2,1)-model, outperforms the Wald confidence interval, which
in most cases fails to provide sensible and interpretable conclusions about
the climate model under consideration. Last but not least, the results indi-
cate a good performance of the j.i.FA(2,1)-model even in the presence of
heteroscedasticity.

Keywords: Climate models, Climate proxy, Pseudo-proxy experiment, Fac-
tor analysis, the Wald confidence interval, the Fieller confidence set.
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Abbreviations

j.i.ME-model - just-identified Measurement Error model

j.i.FA(2,1)-model - just-identified Factor Analysis model
-with 2 indicators and 1 latent factor -

o.i.ME-model - overidentified Measurement Error model

o.i.FA(2,1)-model - overidentified Factor Analysis model
-with 2 indicators and 1 latent factor -

j.i.FA(2,2)-model - just-identified Factor Analysis model
-with 2 indicators and 2 latent factors

j.i.FA(3,2)-model - just-identified Factor Analysis model
-with 3 indicators and 2 latent factors

o.i.FA(3,2)-model - overidentified Factor Analysis model
-with 3 indicators and 2 latent factors

o.i.FA(3,1)-model - overidentified Factor Analysis model
-with 3 indicators and 1 latent factor
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1 Introduction

Current trends in the climate with the increasing frequency and severity of
extreme events such as heat waves, droughts, flooding events and storms
makes the issue of sustainable development of our society one of the vital
questions for governments and communities in all parts of the world. Al-
though the concept of sustainable development, including such elements as
economic growth, eradication of poverty, environmental protection, job cre-
ation, security, and justice (Victor et al., 2014) can have different goals in
different countries, the joint achievement of these goals is closely related to
the climate and its variations. While some climate changes can be bene-
ficial for human and economial development, other can be disruptive for a
sustainable future.

To understand and predict the future climate variability it is crucial to
understand not only how the climate varied in the past and how it varies
now but also the mechanisms behind the climate system variability. An
important tool to help us understand how the climate system works is cli-
mate models. Prior to defining a climate model, some climatological nota-
tions and definitions need to be introduced, and we start with the definition
of climate and the climate system structure (two main sources have been
used throughout the whole introductory section: Goosse et al., 2010, and
McGuffie&Henderson-Sellers, 2005).

Climate is traditionally defined as the description, in terms of the mean
and variability over a 30-year reference period, of the relevant atmospheric
variables (e.g. temperature, precipitation, winds). In a wider sense, it is
the statistical description of the climate system. The climate system con-
sists of five major components: the atmosphere, the hydrosphere, that is the
water on and underneath the Earth’s surface (ocean, seas, rivers, lakes, un-
derground water), the cryosphere, that is the portion of the Earth’s surface
where water is in solid form (sea ice, lake and river ice, snow cover, glaciers,
ice caps and ice sheets), the land surface and the biosphere. All these com-
ponents are in turn components of the broader system, the Earth system,
which also includes geological processes, such as plate tectonics, that can be
of importance for climate on very long time scales of millions to hundreds
of million years. Hence, the understanding of numerous processes, taking
place in each component of the climate system, and possible interactions be-
tween them requires the understanding of factors that have triggered these
processes.

Usually factors that influence the climate system fall into two separate
categories: external factors and internal factors. Examples of external fac-
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tors are changes in solar radiation or in the orbital position of the Earth.
Internal factors, as indicated by their name, are factors internal to the cli-
mate system itself. Ocean and atmosphere circulation and their variations
and mutual interactions are examples of processes that are clearly internal
to the climate system. Moreover, they are of natural character. Another in-
ternal factor, inducing natural climate changes, is volcanism. On short time
scales, volcanic eruptions affect climate during a few years after an erup-
tion through the release of small particles and various chemical compounds
several tenths of kilometers up in the atmosphere. These particles interact
with incoming solar radiation and also affect cloud properties and thereby
affect climate until they have been washed out by precipitation, but climate
does not interact with the volcanism on these time scales.

Beside natural internal factors, there exist internal factors that are of
anthropogenic character, i.e. causing human-induced changes. The most
prominent example of anthropogenic climate influence is the ongoing re-
lease of carbon dioxide to the atmosphere, primarily by burning fossil fuels
and cement production. Other examples of human influence on climate are
the emissions of aerosols through various industrial and burning processes,
changes in land-use and the depletion of stratospheric ozone through emis-
sions of halocarbons.

As a matter of fact, it is sometimes difficult to draw a clear boundary
between external and natural internal forcings. The distinction really de-
pends upon the time- and space-scales considered. For instance, whether
the human influence should be considered as an external or internal factor
would depends on how one conceptualises the problem of current interest,
but in many situations human climate influence is considered as an external
factor, the same holds for the volcanism.

In order to compare the magnitude of the changes in different factors
and to evaluate their effect on the climate, it is often convenient to analyze
their impact on the radiative balance of the Earth. The net change in the
Earth’s radiative balance at the tropopause (incoming energy flux minus
outgoing energy flux) caused by the change in a climate factor is called a
climate (radiative) forcing. Radiative forcings are measured in Wm−2 and
they may vary depending on spatial and temporal scale under consideration.

So in addition to being classified, depending on their origin, as external
or internal, natural or anthropogenic, forcings can be negative or positive
in comparison with a previous state. An example of a positive forcing is
the increase in the atmospheric concentration of carbon dioxide since 1750,
of which most is certainly due to human factors. The contribution from
carbon dioxide alone is estimated to be +1.68 Wm−2, with an uncertainty
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of +1.33 to +2.03 Wm−2 (IPCC, 2013). The total forcing from all green-
house gases is +3.00 Wm−2, with uncertainty +2.22 to +3.78 Wm−2, while
the total anthropogenic radiative forcing for the year 2011 relative to 1750
has been estimated to be +2.29 Wm−2 on average across the globe, with
an uncertainty lying in the range +1.13 to +3.33 Wm−2. An example of a
negative radiative forcing is the forcing associated with increased amounts
of sulphate aerosols in the atmosphere, which can be both of natural (explo-
sive volcanic eruptions) and anthropogenic (fossil fuel burning, in particular
coal burning) nature. The main effect of sulphate aerosols is the scattering
of a significant fraction of the incoming solar radiation back to space, which
induces a local warming in the stratosphere and a cooling below, but they
also affect clouds and thereby affect climate by changed cloud properties
and cloud amounts. According to IPCC (2013), the current total radiative
forcing from all kinds of aerosols in the atmosphere is negative: –0.9 Wm−2,
with uncertainty –1.9 to –0.1 Wm−2.

Powerful tools to investigate the effect of changes on the climate sys-
tem and to produce scenarios for future climate changes are climate models.
Based on physical, biological and chemical principles, climate models can be
defined as a system of partial differential equations that represents the pro-
cesses in the climate system. In constructing a model of the climate system
the following components are of importance:

1. Radiation - the way in which the input of solar radiation to the at-
mosphere or ocean and the emission of infrared radiation are handled,
e.g. through absorption and scattering;

2. Dynamics - the movement of energy around the globe by winds and
ocean currents and vertical movements (e.g. small-scale air turbulence
and deep-water formation);

3. Surface processes - inclusion of the effects of sea and land ice, snow,
vegetation and the resultant change in albedo1, surface-atmosphere
energy and moisture interchanges;

4. Chemistry - the chemical composition of the atmosphere and the inter-
actions with other components (e.g. carbon exchanges between ocean,
land and atmosphere);

5. Resolution in both time and space - the timestep of the model and the
horizontal and verical scales resolved.

1From the Latin albus, meaning white. It is the reflected fraction of incident radiation.
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In practice, it is impossible to construct a climate model that can completely
represent all processes at the time scales they are associated with. More-
over, some processes are still not sufficiently known to include their detailed
behaviour in models. Therefore, the concept of parametrization of processes
is a key concept within climate modeling. The time-scale being modelled
determines the relative importance of processes and in what way they should
be parameterized. The simplest form is the null parameterization where a
process, or group of processes, is ignored. By intentionally neglecting some
processes it is possible to identify the role of a particular process clearly or
to test a hypothesis. In addition, unnecessary computing time will not be
spent on processes that can be represented in simpler form. Depending on
the time-scale on which other more important processes (for a particular
situation) have been modelled explicitly, a particular process can be fully
prescribed in form of a fixed boundary condition or can evolve interactively,
for example the topography of the ice sheet in a model designed to study cli-
mate variations on a longer time scale. Representations of external forcings
in climate models are similarly handled. They can be either represented by
their reconstructions or directly computed if a model includes a representa-
tion of a corresponding process. In sum, parameterizations are usually not
valid for all possible conditions, so that there is inherent uncertainty in the
results.

In addition to being characterized by the number of components/pro-
cesses that are represented interactively, climate models can also be charac-
terized by the complexity of the processes that are included. The wide range
of climate models includes

• simple Energy Balance Models (EBMs). They are often zero- or one-
dimensional models, typically predicting the surface (strictly the sea-
level) temperature as a function of the energy balance of the Earth.
But the way in which radiation is absorbed, transferred and re-emitted
by the atmosphere is heavily simplified by means of parametrization
of those processes;

• Earth Models of Intermediate complexity (EMICs) deal explic-
itly with surface processes and dynamics, often in a zonally averaged
representation of the atmosphere and the ocean. They can be of vary-
ing degree of complexity and even be three-dimensional, where some
particular components of the climate system may be described in great
detail;

• Coupled Climate Models. They are complex fully coupled three-
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dimensional models of the atmosphere and ocean incorporating other
components such as the sea ice, the carbon cycle, ice sheet dynamics
and even atmospheric chemistry. The core of these models is a Gen-
eral Circulation Model (GCM) that describes the three-dimensional
atmosphere and ocean dynamics. Separate models for the other com-
ponents of the climate system are coupled to the GCM through a
model coupler. Such coupled models are often called Earth System
Models (ESMs) or Coupled Global Climate Models (CGCMs).

Depending on the objective, one type of models could be selected. On the
other hand, it is not unusual that the results from various types of mod-
els are combined in climate research. Enhanced computational and storage
capacity of computers have led to the idea of ’ensemble runs’ of the same
model. In such experiments, the modellers let the external forcings be the
same for all runs, but carefully perturb initial conditions for each model
run, producing an ensemble set. Such experiments help place limits on the
variation in climate. The availability of ensembles is also valuable from the
statistical point of view because a simulation ensemble corresponds to a set
of replicates in statistical terminology.

When a climate model is developed, it has to be tested to assess its
quality and evaluate its performance. A first step is to ensure that the nu-
merical model solves the equations of the physical model adequately. This
procedure, often referred to as verification, only deals with the numerical
resolution of the equations in the model, not with the agreement between
the model and reality. It checks that no coding errors have been introduced
into the program.

The next step is the validation process, i.e. determining whether the
model accurately represents reality. To do this, the model results have to be
compared with observations obtained under the same conditions. In partic-
ular, this implies that data input must be correctly specified to represent the
observed situation. The agreement should be related to the intended use of
the model. This could be done more or less intuitively by visually compar-
ing maps or plots describing both the model results and the observations.
Another way to compare is to define an appropriate metric, for example a
simple root mean square (RMS) error:

RMS =

√√√√ 1

n

n∑
k=1

(Tk,model − Tk,obs)
2
,

where k represents grid points for which observations are available, k =
1, 2, . . . , n, Tk,model is the climate model variable of interest, for example the
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model annual mean surface temperature at point k, and Tk,obs is then the
observed annual mean surface temperature at point k. The RMS errors of
different variables can be combined in various ways. It is also important
that the model data-comparison should also take into account the errors or
uncertainties in both the model results and the observations. Errors in the
observations can be related to the precision of the instruments or to the way
individual observations have been used to construct gridded data set. One
may also treat the internal variability of the climate system as errors in this
context.

An important stage in the development of climate models, and also in
investigations aimed to understand properties of the real climate system, is
a series of sensitivity tests. The behaviour of modelled climate systems is
examined by altering one component, which enables to study the effect of
this change on the model’s climate. Usually sensitivity is described as a unit
of response per unit change in a known forcing.

Because the modern instrumental climate record is very short compared
to the geological history of the Earth, the available instrumental observa-
tions do not cover the full range of variability that a climate model should
be able to represent. Therefore, many studies were devoted to comparison
of climate model simulations with paleodata for different past climate situ-
ations (see examples in Texier et al, 1997; Brewer et al, 2007; Braconnot et
al, 2012). The common feature of the methods applied is that they involve
the observed output from the real world climate system, as recorded in the
climate proxy data, and the observed output from the simulated climate
system.

Recently a new statistical framework for evaluation of climate model
simulations against a diverse set of climate proxy series has been developed
by Sundberg et al., 2012 (hereafter referred to as SUN12). This framework
was specifically developed to suit the comparison of simulations and proxy
data for the relatively recent past of about one millennium or so, when a
large number of climate proxy data series having annual resolution exist and
when many simulations with different coupled global climate system models
have already been performed (PAGES2k-PMIP3 group, 2015).

The distinctive feature of this framework is that it treats the real climate
system and the simulated climate in terms of unobservable temperature
changes caused by external and internal factors. This gives an opportu-
nity to develop new methods of evaluating climate models in addition to
those that are already widely applied. Indeed, apart from the correlation
and distance test-statistics, developed in SUN12, the framework provides
a theoretical basis for evaluation of climate model simulations by compar-
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ing the amplitude of an unobservable simulated forcing effect, caused by a
particular (reconstructed) forcing that constitutes a forcing history of the
climate model under consideration, with the amplitude of an unobservable
real-world forcing effect caused by the real-world counterpart of the recon-
structed forcing. Agreement in the amplitudes is interpreted then as the
agreement between the real-world forcing and its reconstruction.

The first step in this direction was recently taken by Tingley et al. (2015)
by analyzing a certain type of the measurement error (ME) model, formu-
lated on the basis of the statistical framework of SUN12, by Bayesian meth-
ods. Since our own analysis is also based on this statistical framework, a
comparison of the suggested methods is of interest. Without aiming to per-
form a detailed evaluation of the analysis carried by Tingley et al. (2015),
we will present a brief theoretical comparative discussion in Sec. 2.3.3.

It should be remarked that the concept of latent variables is not new
within climate research. A prominent example of its application is the op-
timal fingerprinting framework used in detection and attribution (D&A)
studies (Mitchell et al, 2001; Hegerl et al, 2007, 2011), seeking to identify
the latent forced response in temperature reconstructions. In Sec. 2.3.3, we
also elucidate the link between our methods and one of the methods used
in the D&A studies.

At this point, we may move on to the theoretical part of our analysis
by starting with the description of the statistical framework formulated in
SUN12. As in SUN12, the entire discussion here is made bearing in mind
the properties of data being available for the last millennium or so. Never-
theless, the statistical models discussed here are general and should also be
valid for other time periods extending further back. However, whether they
have any practical value or not, depends on whether the available climate
model simulation and climate proxy data allow them to be used or not.
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2 Theoretical background

2.1 Basic statistical model and aim of the analysis

The statistical framework in SUN12 includes the formulation of the follow-
ing model for data under forced climate model simulations:

Basic Statistical Model

xt = µx + α · ξt + δt

τt = µτ .+ ....ξt + ηt

yt = τt + θt (2.1)

zt ≈ τt + εt,

where t = 1, 2, . . . , n, and

xt - a simulated temperature value, generated by a climate
model, for the region of interest and time point t.

τt - a true temperature, corresponding to xt. The true tem-
perature is an unobserved variable, i.e. latent variable.

yt - a measured temperature, averaged over the same region
and time unit.

zt - a properly calibrated climate proxy, which serves as a sur-
rogate for the true temperature τt (the calibration method
can be found in SUN12).

µx, µτ - the mean values over time, around which x, τ , y and a
calibrated proxy z vary.

ξt - the true effect of a specific type of forcing that has influ-
enced the true temperature τt. The forcing can be either of
a single type (e.g. only volcanic forcing) or a combination
of several forcings (e.g. volcanic and solar forcing).

αξt - represents the unknown variability in x that can be lin-
early explained by the true forcing effect. A correct repre-
sentation of the forcing effect in the climate model corre-
sponds to α = 1, whereas an unforced climate model has
α = 0.
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δt - represents internal noise variability in the simulations and
any variability in the simulations unrelated to the true forcing
effects.

ηt - denotes the residual variation in true temperature that can-
not be statistically explained by the particular forcing under
consideration.

θt - denotes the measurement error in the observed temperature
yt, uncorrelated with τt.

εt - represents the residual variation in z, uncorrelated with τt.

Quantities δ, η, θ and ε are regarded as mutually uncorrelated random
variables, with mean values zero and variances σ2

δ , σ
2
η, σ

2
θ and σ2

ε . The first
three variances are assumed to be constant over time, while the last one
may vary with time.

The aim of the present analysis is the estimation of the parameter α. To
avoid any ambiguity in its interpretation, the viewpoint suggested by model
(2.1) has been adopted throughout the whole work, namely an estimate of α
provides a measure of the amplitude of a simulated forcing effect associated
with a reconstructed external forcing used for generation of {xt} by a climate
model under consideration.

2.2 Decomposition of the total forcing effect

We start approaching the aim by examining first the structure of the ex-
pression for the true temperature τ . Let us assume for a moment that τt is
observable. According to the model above, the mean-centered τt is given by

τt = .ξf t + ηt (2.2.1)

where the index f emphasizes the fact that the forcing effect ξ is due to a
particular forcing f. In reality, however, the true temperature is affected by
all external forcings simultaneously, implying the following decomposition
of τ :

τt = .ξtotal t + ηinternal t, (2.2.2)

where ξtotal is the total forcing effect and ηinternal denotes temperature changes
due to factors that are internal to the climate system itself. It is assumed
that ξtotal t and ηinternal t are uncorrelated for each time point t.

To rewrite (2.2.2) in the form of (2.2.1), we need first to isolate ξf from
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the total forcing effect ξtotal. A possible way to do it is to let ξtotal be
orthogonally projected on ξf . Denoting the orthogonal projection by κ · ξf
and the orthogonal complement by ξtotal⊥f, the total forcing effect may be
represented in the following way (see Figure 1 for a graphical illustration):

ξtotal = κ · ξf + ξtotal⊥f . (2.2.3)

ξf

ξtotal

ξtotal | f

κ ξf

Figure 1. Schematical description of decomposing the total forcing effect
Figure 1. into two parts.

Inserting (2.2.3) into (2.2.2) leads to

τt = κ · ξf t.+ .ξtotal⊥f t + ηinternal t. (2.2.4)

Due to the orthogonal decomposition of the total forcing effect, all compo-
nents in (2.2.4), i.e. κ·ξf t, .ξtotal⊥f t and ηinternal t, are mutually uncorrelated.
This allows us to consider ξtotal⊥f t as a part of the residual variation in τ
that cannot be statistically explained by the particular forcing f. According
to the basic statistical model, this residual variation is denoted by ηt. That
is, we may write

τt = κ · ξf t..+ ηt︸︷︷︸
=ξtotal⊥f t+ηinternal t

. (2.2.5)

It remains to explain the reason behind setting the coefficient κ to 1
in the basic statistical model. To this end, let Eq.(2.2.5) together with the
expression for mean-centered simulated temperature, xf t, form the following
equation system: {

xf t = αf · ξf t..+ δf t

τt.. = κ · ξf t...+ ηt
(2.2.6)
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This is a factor model with one latent factor, ξf , which is assumed to be re-
sponsible for the correlation among the two observed variables, x and τ . In
the terminology of factor analysis observed variables are called indicators or
manifest variables. The coefficients αf and κ are the model loadings, while
the errors δf and ηt are called specific factors because they are specific to
the particular indicator they are associated with. Specific-factor variables
are assumed to be uncorrelated with latent factors, implying that if we elim-
inate the effect of latent factors on indicators, indicators become mutually
uncorrelated. Moreover, as required by most theoretical results, specific-
factor variables are assumed to be identically and independently distributed
(abbr. i.i.d.). Although this assumption can hardly be met in real-world
climate data, the whole theoretical discussion in this section will be based on
the assumption of independent observations. The issue of autocorrelation
will be discussed in Sec. 3. The factor loading αf in (2.2.6) is estimable, or
equivalently identified, if:

1. The factor loading κ is fixed to one or

2. The variance of ξf is fixed to one.

As we see, in the basic statistical model the first identification approach, i.e.
κ = 1, has been applied.

At this point, we have to admit that regardless of approach, we need
observed data to estimate the parameter of interest. A natural way to con-
struct such data is to concatenate observed temperatures and a calibrated
proxies in the following way: for the period when y is observed, τt is replaced
by the measured yi, while outside of this period by a calibrated proxy zt.
Based on the calibration method described in SUN12, the (complete) climate
record, hereafter denoted by v, is given by

vt =


zt ≈ τt + εt t ∈ the period when only z is available,

the so-called reconstruction period

yt = τt + θt t ∈ the period when both y and z are available,
the so-called calibration period.

(2.2.7)
Typically in applications, the variance of noise in the proxies, σ2

ε , is
much larger than σ2

θ . In addition, it might substantially vary within the
reconstruction period. Therefore, replacing the true temperature by the
climate record {vt}, we are faced with the issue of time-varying variances,
known as heteroscedasticity. To understand how heteroscedasticity can be
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taken into account, let us first derive an estimator of αf in the absence of it,
in other words in the presence of homoscedasticity.

2.3 Models with one latent factor. Homoscedasticity

2.3.1 Approach 1: κ = 1

Consider model (2.2.6). Setting κ to 1 and replacing τ by calibrated proxies
with a time-constant precision, we obtain:

xf t = αf · ξf t + .....δf t

zt = ......ξf t + νt︸︷︷︸
=η t+εt

(2.3.1)

where νt has a constant variance σ2
ν = σ2

η+σ2
ε = σ2

ξtotal⊥f
+σ2

ηinternal
+σ2

ε . Model
(2.3.1) is known as a measurement error (ME) model (for its basic definition
see Cheng, 1999, Sec. 1.1 or Fuller, 1987, Sec. 1.1.1), where the unobserv-
able variable ξf might be either fixed or random. Models with ξf regarded as
fixed are called functional models, while models with ξf regarded as random
are called structural models. In particular, under normality assumption:

Structural model: ......ξf t
i.i.d∼ N(0, σ2

ξf
), (δf t, νt)

′ i.i.d∼ N
(
0,diag(σ2

δf
, σ2
ν)
)

Functional model: .... 1n
∑
t ξf t = 0, .... (δf t, νt)

′ i.i.d∼ N
(
0,diag(σ2

δf
, σ2
ν)
)
.

............................... σ2
ξf
≡ 1

n

∑
t ξ

2
f t > 0.

Despite the restriction κ = 1, it is still not possible to estimate the
parameter αf. More restrictions on the model parameters need to be im-
posed in order to make αf identified, i.e. estimable. A definition of identified
parameters and models is as follows.

Definition 1. The parameter θi, where θi is the ith element of the vector of
the model parameters θ, is identified if no two values of θ, belonging to the
space of possible parameter values Θ, for which θi differ, lead to the same
sampling distribution of the indicators. The model is identified if and only
if every element of θ is identified.
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The parameter αf is identified if one of the following conditions is satis-
fied (see Cheng, 1999, sec. 1.2.1):

...........(a) σ2
δf

is known;
...

...........(b) σ2
ν is known;

...

...........(c) both of the error variances, σ2
δf
, and σ2

ν , are known; (2.3.2)
...

...........(d) the ratio of the error variances, σ2
δf
/σ2

ν , is known;
...

...........(e) the ξf reliability ratio, σ2
ξf
/σ2

z where σ2
z = σ2

ξf
+ σ2

ν , is known.
...

. In practice, neither the ratios nor the individual variances can be known.
Perhaps the most realistic situation is that one of the error variances is es-
timated by an independent estimator.

The internal variability of a climate model, σ2
δf

, can be estimated by

means of replicates of the xf -climate model2, provided that such replicates
are available. At least two sequences are needed. More replicates will lead
to a more precise estimate of σ2

δf
. Letting k denote the number of replicates

of xf, the estimate is given by

σ̂2
δf

=

∑n
t=1

∑k
i=1(xf, repl.i t − x̄f .t)2

n(k − 1)
, (2.3.3)

where x̄f .t is the average of k replicates at time point t. If there are exactly
two replicates, σ̂2

δf
is half the sample variance of the difference sequence

{xf i1 − xf i2}. Note that this estimator is unbiased even in the presence of
autocorrelation in {xf, repl.i t}, which is due to the independence of replicates.

Regarding the variance of ν, we have to remember that it consists of
several variances, σ2

ν = σ2
ε + σ2

η = σ2
ε + σ2

ξtotal⊥f
+ σ2

ηinternal
. As argued in

SUN12, the variance σ2
ε is in principle estimable, and the variance of ηinternal

can at least be roughly approximated3. However, it seems impossible to
determine an appropriate source for the estimation of σ2

ξtotal⊥f
. Recall that

ξtotal⊥f is in effect an orthogonal complement, whose variability depends on
what particular forcing has been isolated from ξtotal. Therefore, we can
conclude that the most appropriate and realistic identifiability condition is
(2.3.2a), i.e. σ2

δf
known. Despite the fact that this variance is in effect

2Replicates of a climate model are simulations with identical reconstructed forcing but
with different initial conditions. In the terminology of climate modeling, replicates are
called members in a simulation ensemble.

3see SUN12, p. 1345 for the proposed estimation methods and sources. Note that at
this page σ2

ηinternal
is referred to as σ2

η .
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estimated, we henceforth will refer to parameters whose values are known
before a statistical model is fitted to data as known parameters. The ME
model in (2.3.1) has two known parameters: the loading κ and the variance
of δf t.

Under these assumptions, the model parameters are: αf, σ
2
ξf

and σ2
ν .

To determine their estimates, consider the covariance-variance matrix of
the observed variables, where each nonduplicated (or unique) element is
expressed as a function of the model parameters:

σ2
xf

= α2
f · σ2

ξf
+ σ2

δf

σxz = αf · σ2
ξf

σ2
z = σ2

ξf
+ σ2

ν .

(2.3.4)

Since there are three unique equations in three unknowns, there is one
and only one way to solve for the unknowns. From (2.3.4) follows that the
model parameters are uniquely determined by the following equations:

αf =
σ2
xf
− σ2

δf

σxfz

σ2
ξf

= σxfz/αf = (σxfz)
2/(σ2

xf
− σ2

δf
)

..........σ2
ν = σ2

z − σ2
ξf

= σ2
z − (σxfz)

2/(σ2
xf
− σ2

δf
),

...

(2.3.5)

Replacing the population variances and covariance of the indicators by
their maximum likelihood (ML) estimates, s2

xf
, sxfz and s2

z
4, the ML esti-

mators of the model parameters can be obtained:

α̂f =
s2
xf
− σ2

δf

sxfz

σ̂2
ξf

= sxfz/α̂f = (sxfz)
2/(s2

xf
− σ2

δf
)

σ̂2
ν = s2

z − σ̂2
ξf
,

(2.3.6)

4The ML estimates for the population variances and covariances in the bivariate normal
distribution are s2xf =

∑
(xft − x̄f)2/n, where x̄f =

∑
xft/n, etc.. For small samples, it

seems reasonable to use unbiased estimates for σ2
xf

, σxfz , and σ2
z that differ from the ML

estimates by a factor n/(n− 1). For large samples, however, both types of the estimates
can be used because the difference between them is negligible.
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provided three side conditions are fulfilled: (1) sxfz 6= 0, (2) s2
xf
> σ2

δf
, and

(3) s2
z − (sxfz)

2/(s2
xf
− σ2

δf
) ≥ 0.

The side conditions are motivated by the requirement that α̂f must be
finite and the variance estimates, σ̂2

ξf
, and σ̂2

ν , must be nonnegative. The first

two assumptions indicate that σ2
ξf
> 0. The third side assumption ensures

that σ2
ν ≥ 0. If this assumption is not satisfied, the solution for σ2

ν is an
inadmissible solution termed Heywood case. The usual interpretation of a
Heywood case is that the corresponding true variance is small and estimated
as zero. Having got an indication that σ2

ν ≈ 0, the ME model simplifies to
the ordinary regression model. The associated estimator is

α̂f =
sxfz

s2
z

(2.3.7)

As discussed by Moberg and Sundberg (1978), the estimators of αf in
(2.3.6) and (2.3.7) are the upper and lower bounds, respectively, for α̂f in
the normal functional model provided σ2

δf
is known and sxfz > 0. However,

in the climatological context, the situation with σ2
ν = 0 is senseless since it

means that all incoming variances, including σ2
ε , are zero. This contradicts

our knowledge about the properties of proxies, whose non-climatic compo-
nent ε is assumed to constitute the largest part of the observed proxy. It
makes the use of estimator (2.3.7) unmotivated, except as an estimated lower
bound.

An important remark about estimator (2.3.6) is that it is a ratio of two
random variables. Such ratios are typically biased estimators of the ratio
of the expectations. Nevertheless, the estimator is consistent regardless of
whether ξt is random or fixed. By a consistent estimator we mean the fol-
lowing:

Definition 2. An estimator Tn, defined for every n, is consistent as an
estimator of a parameter θ if for any a > 0,

P (|Tn − θ| > a)→ 0 as n→∞.

If θ is a vector then Tn − θ is replaced by ||Tn − θ||.

In other words, we say an estimate is consistent if the estimate converges

in probability to the true parameter, symbolically expressed as Tn
p→ θ as

n→∞.
To see the consistency of α̂f in (2.3.6) we use the fact that the sample

variance and covariance converge in probability to their expectations, that
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is to the population variance and covariance. From that we get:

α̂f =
s2
xf
− σ2

δf

sxfz
..

p→ ..
σ2
xf
− σ2

δf

σxfz
=

(α2
f · σ2

ξf
) + σ2

δf
)− σ2

δf

αf · σ2
ξf

= αf. (2.3.8)

Unfortunately, consistency, which is an asymptotic requirement, does not
guarantee good properties of the estimator for finite sample size. This is
due to the fact that for fixed n the estimator has infinite mean and infinite
variance. On the other hand, it possesses an asymptotic distribution with
both finite mean and variance. According to Cheng (1999, Sec. 2.1.3), the
asymptotic (limiting) distribution of

√
n(α̂f − αf) is a normal distribution

with zero mean and the variance equal to

Γαf
=

1

(σ2
ξ )2 · α2

f︸ ︷︷ ︸
=(σxz)2

·
( (
α2
f · σ2

ξ + σ2
δf

)
·
(
σ2
δf

+ α2
f · σ2

ν

)
+ σ4

δf

)
, (2.3.9)

It is worth remarking that the variance in (2.3.9) is obtained in accordance
with the so called delta method that, in its essence, consists in expanding
an estimator in a first-order Taylor series. Applied to the ME model, this
approach does not require ξf to be normally distributed, only that (δf, ν) be
normal.

By replacing the unknown parameters in Γαf
by their consistent esti-

mates, we obtain an estimator of the variance of the limiting distribution of
α̂f:

V̂ar(α̂f) =
1

n · (sxfz)
2
·
(
s2
xf
·
(
σ2
δf

+ α̂2
f · σ̂2

ν

)
+ σ4

δf

)
. (2.3.10)

Because nV̂ar(α̂f) is a consistent estimator of (2.3.9), it follows that for
large samples

T =
α̂f − αf√
V̂ar(α̂f)

approx∼ N(0,1). (2.3.11)

Consequently, we may construct an approximate 100(1 − p)% confidence
interval for αf:

α̂f ± zp/2 ·
√

V̂ar(α̂f), (2.3.12)

where zp/2 is the 100(1−p/2) percentile of the standard normal distribution.
The confidence interval in (2.3.12) is known as the Wald confidence interval.

As follows from (2.3.6) and (2.3.10), a sufficiently large (in absolut value)
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covariance between the simulated temperature and the observations is an im-
portant premise for obtaining a reasonable estimate of αf and a reasonable
confidence interval for it5. It suggests to test whether this covariance (or
equivalently correlation between xf and z) is statistically significantly dif-
ferent from zero before αf is estimated. To this end, the correlation UR test
statistic, developed in SUN12 (its definition is also given in Appendix here),
can be used.

In connection with using this test statistic, Moberg et. al (2015) pointed
out that high correlation does not mean that the amplitude of the forcing
effect is of the right size in the climate model. Analogously, we may say that
low correlation does not necessarily mean that the amplitude of a forcing
effect in a climate model simulation is of the wrong size. Indeed, based on
the model’s reproduced covariance between xf and z, given by αf · σ2

ξf
, low

covariance can arise when αf is arbitrarily small, or when σ2
ξf

is arbitrarily
small, or when both of them are arbitrarily small. In all three cases, the ME
model is close to an underidentifiable model, which makes the estimation
procedure highly unstable.

Under the condition σ2
ξf
≈ 0, arising when a true forcing f does not gen-

erate substantial temperature changes at the temporal and spatial scales
analyzed, the correct value of αf can be 1, but a small variability of ξf makes
the estimation of αf difficult, precisely as under ordinary linear regression
where the explanatory variable does not vary much. Furthermore, when
σ2
ξf
≈ 0 the performance of the approximations used for deriving the asymp-

totic distribution of α̂f will not perform well and the confidence level of the
confidence interval in (2.3.12) will decrease. As shown by Gleser and Hwang
(1987), any confidence set for the slope in ME models of finite expected
length must have confidence (confidence level) 1 − p = 0, where the con-
fidence level of a confidence set is defined to be the infimum of coverage
probability over the parameter space. Because the Wald confidence inter-
val in (2.3.12) has always finite length it has zero confidence level for any
fixed n by virtue of Gleser and Hwang’s theorem. Moreover, as n tends to
infinity, the confidence level remains zero and does not tend to the nominal
confidence level, 1− p.

Fortunately, this result does not mean that any given data set definitely
suffer from the zero confidence level effect. One needs σ2

ξf
to be sufficiently

5In this analysis, an unreasonable confidence set is defined as a set containing both 1
and 0. From the climatological point of view, such confidence sets are completely useless
because they allow two mutually exclusive types of interpretation: the event αf = 1 means
that the amplitude of a forcing effect in a climate model is correctly represented, while
αf = 0 means that a forcing is not represented at all.
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large. However, it is not easy to test H0 : σ2
ξf

= 0 under the ME model un-

der the assumption that σ2
δf

is known. Gleser (1987) studied the confidence
interval for the slope for the ME model when the ratio of the error variances
is known. It was found that problems might arise if the signal to noise ratio,
defined as

SNR = σ2
ξf
/σ2

ν , (2.3.13)

is less than 1. As assumed by Cheng (1999, p. 61), it is likely that Gleser’s
results can be extended to other assumptions despite the fact that Gleser’s
method of proof no longer works. However, keeping in mind the properties
of real-world temperature proxies, it appears unrealistic, even for the ME
model studied by Gleser, that the criterion SNR ≥ 1 will be satisfied. It is
well-known that climate proxies suffer from a large non-climatic noise that
dominates the climate signal. Hence, the SNR can hardly aid in testing the
hypothesis that σ2

ξf
= 0 when climate data are analyzed.

Since the knowledge about the (unknown) variability of the forced com-
ponent may contribute to a more comprehensive interpretation of the prop-
erties of a climate model simulation under consideration, we will investigate
the properties of the model obtained under Approach 2, under which the
variance of the forcing effect is known. More precisely, it is known to be 1.

2.3.2 Approach 2: Var(ξf) = 1

Let z, the proxy with a constant noise variance, be a substitute for the true
unobservable temperature τ in model (2.7):

xf t = αf. · .ξf t + δf t

zt = .κ. · .ξf t + νt︸︷︷︸
=ξtotal⊥f t+ηinternal t+εt

. (2.3.14)

As already mentioned, this is a two-indicator one-factor model, abbr.
FA(2,1)-model. The distributional assumptions of .ξf t, .δf t and .νt are the
same as under the ME model in (2.3.1) with an additional restriction that
σ2
ξf

is equal to 1. It implies that the unique equations of the associated
variance-covariance matrix of the indicators expressed in terms of the model
parameters are

σ2
xf

= α2
f + σ2

δf

σxf z = αf · κ....

σ2
z = κ2 + σ2

ν .

(2.3.15)
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The model parameteres are6: αf, κ and σ2
ν . Note that under the ME model

we need to estimate αf, σ
2
ξf

and σ2
ν . One might think that these two models

are different, but they are by definition identical in the sense that they have
the same estimator of the amplitude of a forcing effect in a climate model.
To see it we rewrite (2.3.15) in the form identical with the corresponding
matrix for the ME model:

under the ME model in (2.3.1) under the FA(2,1)-model in (2.3.14)

σ2
xf

= α2
f · σ2

ξf
+ σ2

δf
=

(
αf

κ

)2 · κ2 + σ2
δf

σxf z = αf · σ2
ξf

=
(
αf

κ

)
· κ2

σ2
z = σ2

ξf
+ σ2

ν = κ2 + σ2
ν .

(2.3.16)
From (2.3.16) it follows that the estimator of αf under the ME model is
the same as the estimator of αf/κ under the FA(2,1)-model. That is, under
the FA(2,1)- model the parameter representing the amplitude of a simulated
forcing effect is not αf itself, but the ratio αf/κ.

In addition, (2.3.16) shows the equivalence between σ2
ξf

and κ2. Hence,
testing the hypothesis H0 : κ = 0 under the FA(2,1)-model is equivalent to
testing the hypothesis H0 : σξf = 0 under the ME model. It leads to the
question as to whether tests for individual parameters of the factor model
are available. To address this question let us investigate in more detail how
the estimation procedure for a q-indicator p-factor model is carried out.

There is a vast range of literature devoted to factor analysis. Obviously,
it is not possible within the confines of this work to give more than a cur-
sory introduction to factor analysis. Readers who are interested in learning
this topic in greater depth are referred to the sources given in the following
discussion.

To begin with, factor analysis encompasses two major techniques of an-
alyzing data: exploratory factor analysis (EFA) and confirmatory factor
analysis (CFA). In EFA the structure of the factor model is not known or
specified a priori. Data are used to help reveal the structure of the fac-
tor model. Therefore, EFA imposes no substantive constraints on the data;
there are no restrictions on the pattern of relationships between observed
and latent variables. Each common factor is assumed to affect every ob-
served variable and that the common factors are either all correlated or
uncorrelated. In CFA, on the other hand, the investigator has certain hy-

6In the terminology of factor analysis, parameters that are to be estimated are referred
to as free parameters.
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potheses about which factors are to be involved and which restrictions on
the parameter space it implies. Depending on hypotheses the investigator
has, values of some model parameters, e.g. factor loadings or variances of
specific factors, can be specified in advance7. Formulating factor models
with a certain structure gives rise to the question: How well do the empir-
ical data conform to the hypothesized factor model? In other words, CFA
can be viewed as a technique for theory testing. In this work, we will focus
on the confirmatory factor analysis.

Depending on the number of the unique equations in the variance-covari-
ance matrix of indicators and the number of free parameters, a factor model
can be classified as underidentified, just-identified or overidentified.

If the number of the unique equations that is q(q + 1)/2 is smaller than
the number of free parameters, then a model is underidentified. By impos-
ing constraints on some parameters, the number of free parameters can be
reduced to q(q+1)/2. Such a model is called just-identified. Both previously
discussed ME- and FA(2,1)-models are just-identified. An overidentified fac-
tor model is a model where the number of the unique equations is larger than
the number of free parameters. At this point, a word of caution is needed:
even if the number of free parameters is less than q(q + 1)/2, this may not
be sufficient in a specific case to make the model identified. Fixing some
parameters to certain values or establishing equality constrains between pa-
rameters, researchers should check whether different sets of free parameter
values, given the set of known (and constrained-equal) parameters, do not
lead to the same hypothetical covariance matrix for the observed variables
(see Definition 1). If it is a case, the model is not identified, and therefore
it should be respecified.

If a model is identified (either just-identified or overidentified), estimates
of model parameters are obtained by minimizing a discrepancy between the
sample estimate of the unrestricted variance-covariance matrix S and the
model’s reproduced variance-covariance matrix Σ(θ), where θ is a vector
θ = (θ̄,θ∗), with a subvector θ̄ containing free parameters and θ∗ known
parameters. The discrepancy is measured with a discrepancy function F (θ),
conditional on the known parameters θ∗. There are a number of different
discrepancy functions (Mulaik, 2010, Ch. 15). Under normality assumption
of data, the following function is used:

F (θ) = log|Σ(θ)|+ tr(SΣ(θ)−1)− log|S| − q, (2.3.17)

7Note that parameters whose values are specified in advance in order to achieve the
identifiability of a model are not a part of hypotheses.
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To explain the idea behind this discrepancy function, we note first that the
estimates θ̂, which minimize the discrepancy function F are the maximum-
likelihood estimates, which maximize the logarithm of the likelihood func-
tion, conditional on the known parameters θ∗ (Jöreskog, 1969). Indeed,
without a function of the observations the logarithm of the likelihood func-
tion under the null hypothesis H0 : Σ = Σ(θ) is given by

logL(H0) = −1

2
· (n− 1) ·

{
log|Σ(θ)| + tr(SΣ(θ)−1)

}
, (2.3.18)

while under the alternative hypothesis HA of unrestricted Σ, i.e. Σ = S,
the logarithm of the likelihood function is given by

logL(HA) = −1

2
· (n− 1) ·

{
log|S|+ q

}
. (2.3.19)

As we see, the F function is closely related to the log-likelihood ratio, used
for testing the goodness of fit of the model’s Σ(θ) to S:

G = −2 · (logL(H0)− logL(HA)) = (n− 1) · F (θ̂), (2.3.20)

which is approximately distributed in large samples as chi-square with

df = q(q + 1)/2−m

degrees of freedom, where q(q + 1)/2 is the number of the unique equations
in the variance-covariance matrix of the indicators, and m is the number of
distinct free parameters.

For just-identified models, the function F (θ̂), evaluated at the mini-

mum, is equal to zero, since Σ(θ̂) = S and tr(SΣ(θ̂)−1) = q. That is, a
just-identified model has an exact solution in terms of the variances and
covariances among indicators, but nothing is hypothesized and nothing can
be tested.

For overidentified models, arising due to additional constraints imposed
on some model parameters, at least one (free) parameter can be expressed by
more than one distinct equation in terms of the variances and covariances
of indicators. Therefore, the fit between Σ(θ̂) and the sample variance-
covariance matrix, in general, will not be perfect, thus making it possible to
assess the fit of the model to the data.

If the solution obtained is proper8 and interpretable, the overall model

8One way to check whether a solution is proper or not is to look at the completely
standardized solution. This type of solution standardizes the solution such that the
variances of the latent factors and the indicators are one. Improper solutions are indicated
by factor loading that do not lie between −1 and +1, and by specific variances that are
greater than one (Sharma, 1996).

29



fit to the data can be assessed by means of the test statistic G, which is
asymptotically χ2 distributed with degrees of freedom equal to the differ-
ence between the number of the unique equations in Σ(θ) and the number
of free parameters. Note, failure to reject the null hypothesis is desired, as
it leads to the conclusion that the hypothesized model with the resulting
variance-covariance matrix Σ(θ) fits the data.

Finally, the estimation procedure also includes the estimation of the
variances and covariances among the parameter estimates. According to
the general theory, the ML estimates are consistent, jointly asymptotically
normally distributed with the asymptotic variance expressed as being the
inverse of the Fisher information. In confirmatory factor analysis, the infor-
mation matrix is defined as follows (Bollen, 1989, p.135):

n− 1

2
· E
[
∂2F (θ)

∂θ∂θ′

]
. (2.3.21)

The inverse of (2.3.21), evaluated at the values for the parameters that min-
imize the F function, gives an estimate of the variance of the asymptotic
distribution of the model estimates. Note that the inverse of the matrix
of second-order derivatives of the F (θ) function is explicitly calculated if
a Newton-Raphson algorithm is implemented whereas a quasi-Newton al-
gorithm, e.g. the Fletcher-Powell algorithm implemented first by Jöreskog
(1969), finds a close numerical approximation to it.

Provided that the information matrix is positive definite, each estimated

parameter θi can be tested by means of the z statistic θ̂i
/√

V̂ar(θ̂i), which

has approximately a standard normal distribution. The results of tests that
θi = 0 are provided in form of two-sided p-values by all statistical packages
designed to do confirmatory factor analysis, regardless of whether a model
is just-identified or overidentified. This is comforting, since we are avoiding
complex and burdensome algebraic calculations to derive an analytical ex-

pression for the estimated variance of κ̂ = sxfz

/√
s2
xf
− σ2

δf
. In addition, we

also can construct the Wald confidence interval, defined in (2.3.12), for each
parameter θi to test H0 : θi = θ0

i .
Regarding statistical software, factor analysis is mostly performed via

commercial software, such as LISREL, Mplus, Amos. In this work, we em-
ployed the R package sem, Structural Equation Models, that is an open source
alternative (see Fox, 2006; http://CRAN.R-project.org/package=sem). A
distinguishing feature of the sem package is that it requires latent variable
variances of 1 to be represented explicitly. This means that if a researcher
wishes to estimate the ME model by means of the sem package instead
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of using directly (2.3.6), he or she needs first to fit the FA(2,1)-model in
(2.3.14), and then, take the ratio of the estimated factor loadings, α̂f/κ̂. As
known, the estimator of αf and αf/κ under respective model is the same,
namely (s2

xf
− σ2

δf
)/sxfz. But the availability of the estimated variances and

covariances among all estimates of the FA(2,1)-model enables us to derive
the confidence limits for αf/κ in another way than it was done under the
ME model. The method, used in this work, is based on the Fieller method
of finding the confidence interval of the ratio of two normal means (Franz,
2007; Cheng, 1999, Sec. 2.4.3).

The idea of the Fieller method is to use a pivotal quantity, that is
a function of the data and parameters whose distribution does not depend
on any unknown parameters. Here, for ease of exposition, we introduce a
unified parameter, representing the amplitude of a forcing effect in a climate
model, valid under both approaches. This is the ratio λ11/λ21, where λ11 is
the loading of the first indicator xf on the latent factor ξf, while λ21 is the
loading of the second indicator z on the same latent factor. Under the ME
model, i.e. under Approach 1, the ratio λ11/λ21 is equal to αf/1 = αf, while
under the FA(2,1)- model, i.e. under Approach 2, it is equal to αf/κ.

Recall that under assumption of normality of data, the estimates of load-
ings in a factor model are asymptotically jointly normally distributed with
mean vector λ and the covariance matrix Var(λ̂). Thus for large samples
we may assume that they are approximately normally distributed. Because
the difference of (approximately) normal variables is also (approximately)

normally distributed, the statistic λ̂11−(λ11/λ21) · λ̂21 is approximately nor-
mally distributed with mean value zero and the variance σ2

λ̂11
+ (λ11/λ21)2 ·

σ2
λ̂21
− 2 · (λ11/λ21) · σλ̂11λ̂21

. Replacing the unknown covariances by their

estimates, we obtain the statistic

Tλ11/λ21
=

λ̂11 − (λ11/λ21) · λ̂21√
σ̂2
λ̂11

+ (λ11/λ21)2 · σ̂2
λ̂21
− 2 · (λ11/λ21) · σ̂λ̂11λ̂21

(2.3.22)

that follows approximately the standard normal distribution9.

9Note that under the ME model, the loading λ21 is κ that is fixed to 1. It implies that
σ2
λ̂21

and σ
λ̂11λ̂21

are zero, which simplifies (2.3.22) to the test statistic in (2.3.11),

T =
λ̂11 − (λ11/λ21) · 1

σ̂
λ̂11

=
α̂f − αf

σ̂α̂f

,

used to construct the Wald confidence interval in (2.3.12).
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Consequently,

T 2
λ11/λ21

=

(
λ̂11 − (λ11/λ21) · λ̂21

)2

σ2
λ̂11

+ (λ11/λ21)2 · σ2
λ̂21
− 2 · (λ11/λ21) · σλ̂11λ̂21

, (2.3.23)

is approximately χ2 distributed with 1 degree of freedom. The set

{
λ11/λ21.

∣∣∣.
(
λ̂11 − (λ11/λ21) · λ̂21

)2

σ̂2
λ̂11

+ (λ11/λ21)2 · σ̂2
λ̂21
− 2 · (λ11/λ21) · σ̂λ̂11λ̂21

≤ cp,
}

(2.3.24)

where cp satisfies P (χ2(1) ≤ cp) = 1− p, gives a 1− p confidence region for
(λ11/λ21). Expression (2.3.24) is equivalent to the quadratic inequality

a · (λ11/λ21)2 − 2 · b · (λ11/λ21) + c ≤ 0, (2.3.25)

where a = λ̂2
21 − cp · σ̂2

λ21
, b = λ̂11 · λ̂21 − cp · σ̂λ11λ21

and c = λ̂2
11 − cp · σ̂2

λ11
.

The roots of this quadratic are either (i) both real or (ii) both complex. In
case (i), the roots are

r1 = −
√

(b/a)2 − (c/a) + (b/a),

r2 = −
√

(b/a)2 − (c/a) + (b/a).

If a > 0 or in other words when the hypothesis λ̂21 = 0 is rejected at
significance level p, the 1 − p confidence region is the interval between the
roots, i.e.

CIλ11/λ21
= (r1, r2) ,

and if a < 0, or equivalently when the hypothesis λ̂21 = 0 is not rejected at
significance level p, it is the complement of this interval, that is, a confidence
region which includes all values outside the roots but excludes the values
between the roots, (”unbounded/exclusive” region):

CRλ11/λ21
= {(−∞, r1) , (r2,+∞)} .

In case (ii), inequality (2.3.25) is satisfied only when a < 0 for all λ11/λ21,
which means that the confidence interval is the whole real line (”unbounded”
region):

CRλ11/λ21
= (−∞,+∞) .
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As we see, the proposed method is able to generate unbounded regions,
which means that the zero confidence level effect due to Gleser and Hwang’s
theorem does not persist. This fact, together with the possibility to test all
individual parameters, makes use of the FA(2,1)-model more advantageous,
compared to the ME model10.

2.3.3 Relation to other studies

Detection and attribution studies
The objective of detection and attribution (D&A) studies, generally

known as ”optimal fingerprinting”, is the assessment of the amplitude of
the response to external climate forcings in temperature reconstructions.
As in SUN12, these studies often assume that forcing effects (called finger-
prints of forcings) are contaminated by noise.

Using the notation of the present work, a statistical model used in the
D&A studies for assessing the amplitude of the overall forced response in
temperature reconstructions can be expressed as follows:

xtotal t = ......ξtotal t + δtotal t,

zt = β. · .ξtotal t + γt︸︷︷︸
=ηinternal t+εt

(2.3.26)

or equivalently (in a form more familiar in climate D&A studies)

zt = β. · .(xtotal t − δf t) + γt.

The model above is estimated using the total least squares (TLS) approach
(see Allen and Stott, 2003), which corresponds to a ME model under the
identifiability condition that the ratio of the noise variances, σ2

γ/σ
2
δf

, is
known. While not obvious, the ME model in (2.3.26) has a direct bear-
ing on the statistical framework of SUN12. To see it let us formulate an
FA(2,1)-model for a climate model driven by all external forcings using the
SUN12 specifications:

10Frankly speaking, it is possible to apply the Fieller method even under the ME model.
Indeed, we could denote (s2xf − σ

2
δf

) by λ11, and sxfz as λ21, and use the fact that the

limiting distribution of
√
n(s2xf−σ

2
xf
, sxfz−σxfz)T , where xf and z are normally distributed

random variables is a normal distribution with the properties defined according to Fuller,
Appendix 1.C, Corollary 1.C. 1. However, constructing a confidence set for αf in this
way does not solve all problems associated with the ME model, in particular, it does not
aid in testing the hypothesis H0 : σ2

ξf
= 0. Therefore, it was decided not to apply this

method under the ME model.
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
xtotal t = αtotal · ξtotal t + δtotal t

zt = ....β. · .ξtotal t + γt︸︷︷︸
=ηinternal t+εt

. (2.3.27)

The identifiability of the above model is achieved by letting the factor load-
ing for one of the indicators to be 1, or by letting the variance of ξtotal t to
be 1. As we see, model (2.3.26) was derived from model (2.3.27) by setting

αtotal = 1. Having estimated β and the asymptotic variance of β̂, one can
construct the 1 − p Wald confidence interval for β according to (2.3.12).
However, if the correlation between xtotal and z is low, arbitrarily large de-
viations from the intended confidence level are possible. In this situation,
the use the FA(2,1)-model in (2.3.27) instead of model (2.3.26) can be rec-
ommended. Letting Var(ξtotal) = 1 in (2.3.27), the amplitude of the overall
forcing effect in z is then represented by the ratio β/αtotal. Consequently,
the associated confidence region can be constructed according to the Fieller
method (see (2.3.25)), which does not suffer from the zero confidence level
effect.

It can also be recommended to replace the identifiability condition of
known variance ratio by the more realistic condition of known σ2

δf
. Since

replacing one condition by another leads necessarily to a new estimator, it
can be an appropriate topic for further research to compare the performance
of two estimators, applied to the same climate data.

We conclude by remarking that the FA(2,1)-model can be used even for
estimating the amplitude of the forced response to a particular forcing f in
temperature reconstructions. In that case, the FA(2,1)-model in (2.3.14),
formulated for a climate model driven by a particular forcing, should be
applied. Under this model, isolating the true forcing effect associated with
a particular forcing, ξf, from the true total forcing effect makes a correct
value of the amplitude of the forced response in observations known. It
equals 1. The parameter representing this amplitude is the ratio κ/αf, i.e.
the inverse of αf/κ. Note that if contributions of several individual forcings
are in focus, a statistical model employed in D&A studies is a ME model
with vector explanatory variables when the entire error covariance structure
is known up to a scalar multiple11 (Allen and Stott, 2003; see also Fuller,

11If fingerprints are assumed to be noise free then model (2.3.28) reduces to an ordinary
multiple regression model.
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1987, Sec. 2.3):

zt =

m∑
fi=1

βi. · .(xfit − δfit) + γt. (2.3.28)

As follows from (2.3.28), one of the model assumptions is that interac-
tions between forcings, influencing the climate simultaneously, are negli-
gible, which explains the absence of possible interaction terms between the
fingerprints of individual forcings, (xfit − δfit), in the model. Under the
FA(2,1)-model in (2.3.14) this assumption is relaxed.

Relation to the analysis by Tingley et al. (2015)
Assuming that the true temperature is observable, the statistical model for-
mulated by Tingley et al. (2015) is the following:

Yt = ......FMt + UMt ,

Ct = ......FPt + UPt

FMt = β1 · FPt +Dt

(2.3.29)

or equivalently  Yt = β1 · FPt + Dt + UMt

Ct = ......FPt + UPt

where, using the notations of the present work,

Yt ≡ xf t, Ct ≡ τt, FPt ≡ ξtotal t, FMt ≡ αf · ξf t,
...UMt ≡ δf t, UPt ≡ ηinternal t,

and the variable Dt, independent from FPt , represents the disrepancy be-
tween the two forced series, and is assumed to be normally distributed with
zero mean and variance σ2

D. We omit the description of the distributional
properties of the remaining variables.

The model in (2.3.29) is known as a ME model with an error in the
equation (see Cheng, 1999, Sec. 1.5). For the standard ME model, defined
as in (2.3.1), σ2

D is 0, which, however, is not the only difference between
these models. As we see, the decomposition of the true temperature, Ct,
does not coincide with the decomposition of τt in SUN12, where the effect
of a particular forcing f is isolated from the total forced response:

τt = ξf t + (ξtotal⊥f t + ηinternal t)︸ ︷︷ ︸
=ηt

.
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The consequence of modeling a simulated forcing effect as a function of the
true total forcing effect, as in (2.3.29), is that for a climate model driven by
some (not all) external forcings a correct value of β1 is not known, implying
that the value of unity for the slope β1 is not necessarily a correct value.
Indeed, these forcings might be weak to their nature and thus not capable to
generate substantial temperature changes with the same (high) amplitude as

FP has. Therefore, observing β̂1 ≈ 1 in this situation would rather indicate
a discrepancy than an agreement between the reconstructions of the involved
individual forcings and their real-world counterparts. Instead, it would be
of little surprise to observe quite small values of β̂1 for a climate model
driven by weak forcings. But this in no way means that the amplitude of
the simulated forcing effect, FM , in a climate model is too small.

Finally, we note that inclusion of the discrepancy term D in the ME
model in (2.3.1), or equivalently in the FA(2,1)-model in (2.3.14), will lead
to unidentifiable models. For Bayesian approach, the issue of identifiability
does not arise, making it possible to estimate more parameters than can
be identified from a sample variance-covariance matrix. Therefore, it is of
interest to compare the performance of model (2.3.29) with Ct replaced by
observations and the ME model in (2.3.1), or equivalently the FA(2,1)-model
in (2.3.14), by applying them to the same climate data including simulations
generated by climate models driven by all external forcings.

2.4 Models with one latent factor. Heteroscedasticity.
Approach 1: κ = 1 and Approach 2: Var(ξf) = 1

In the preceding discussion it was assumed that the proxy variance is con-
stant over time. Now, let the proxy series zt have a time-varying precision,
σ2
ε (t). It implies that the specific factor ν in the ME- and FA(2,1)-models

has the following time-varying variance:

σ2
ν(t) = σ2

η + σ2
ε (t) = σ2

ξtotal⊥f
+ σ2

ηinternal
+ σ2

ε (t).

To take the heteroscedasticity in the proxy series {zt} into account, we
suggest to replace sxfz and s2

z by weighted versions, given by:

s
(w)
xf z =

∑n
t=1 wt · (xf t − µxf

)(zt − µz)∑n
t=1 wt

s
2(w̌)
z =

∑n
t=1 w̌t · (zt − µz)2∑n

t=1 w̌t
.

(2.4.1)
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where the mean values µxf
and µz are assumed to be known, {wt} and {w̌t}

are suitable sets of weights (not necessarily summing to 1). Note that if
wi = wj and w̌i = w̌j for all i, j such that i 6= j, the weighted statistical
functions above become ordinary maximum likelihood estimates of the pop-
ulation variance and covariance, i.e.

sxf z
=

∑n
t=1(xf t − µxf

)(zt − µz)
n

s2
z =

∑n
t=1(zt − µz)2

n
.

In practice, the mean values µxf
and µz , are not known, and therefore it is

natural to replace them by the weighted averages, x̄(w)
f =

∑n
t=1 wtxft

/∑n
t=1 wt,

etc. It can be shown that just as with the ordinary statistical functions,
where µxf

and µz are replaced by the ordinary averages, the use of the es-
timated mean values introduces a bias, which however can be corrected by
means of the correction factors

W = 1−
∑n
t=1 w

2
t

(
∑n
t=1 wt)

2 , and W̌ = 1−
∑n
t=1 w̌

2
t

(
∑n
t=1 w̌t)

2 ,

respectively. If all wt respectively w̌t are equal, the corresponding correction
factor above simplifies to the standard correction factor 1− 1/n, motivated
in ordinary sample covariances and ordinary sample variances. Since both
W and W̌ tend to 1 as n → ∞ (provided that max

1≤t≤n

(
wt/

∑n
t=1 wt

)
respec-

tive max
1≤t≤n

(
w̌t/

∑n
t=1 w̌t

)
goes to 0 as n → ∞), the bias in both weighted

and ordinary estimates will be negligible when the sample size, n, is large.
Referring to the fact that in the present analysis we are dealing with large
samples, the correction factors W and W̌ will be omitted from calculations.

To see what parameters the weighted functions in (2.4.1) are expected
to estimate, we calculate their expectations:

E
[
s(w)
xf z

]
= E

[∑n
t=1 wt (xf t − µf

) (zt − µz)∑n
t=1 wt

]
= −−−−−−−

..−−−−−− = σxfz =



αf · σ2
ξf

under the ME model

with κ = 1

−−−−−−−−−−−−−(2.4.2)

αf · κ under the FA(2,1)- model
with σ2

ξf
= 1,
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and

E
[
s2(w̌)
z

]
= E

[∑n
t=1 w̌t (zt − µz)2∑n

t=1 w̌t

]
= E

[∑n
t=1 w̌t (κ · ξf t + νt)

2∑n
t=1 w̌t

]
=

......−−... =


σ2
ξf

+ σ
2(w̌)
ν under the ME model with κ = 1

−−−−−−−−−−−−−−−−−(2.4.3)

κ2 + σ
2(w̌)
ν under the FA(2,1)- model withσ2

ξf
= 1,

where σ
2(w̌)
ν =

∑
t w̌t·σ

2
ν(t)∑

t w̌t
, that is, we estimate the weighted average vari-

ability of z over the whole time period.

Using the weighted functions the consistent estimates of the model pa-
rameters become:

ME FA(2,1)

α̂f ↔ α̂f/κ̂ =
s2
xf
− σ2

δf

s
(w)
xfz

,

σ̂2
ξf

↔ κ̂2 =
(
s

(w)
xfz

)2/(
s2
xf
− σ2

δf

)
,

σ̂
2(w̌)
ν = σ̂

2(w̌)
ν = s

2(w̌)
z −

(
s

(w)
xfz

)2/(
s2
xf
− σ2

δf

)
,

(2.4.4)

provided the following side conditions are met: (1) s
(w)
xf z 6= 0, (2) s2

xf
> σ2

δf

and (3) s
2(w̌)
z −

(
s

(w)
xfz

)2/(
s2
xf
− σ2

δf

)
≥ 0.

As follows from (2.4.2), the expected value of the weighted covariance
is the same as the expected value of its ordinary counterpart. Hence, we
could use the conventional estimator that is (s2

xf
− σ2

δf
)/sxfz because it re-

mains consistent even in the presence of heteroscedasticity. Nevetheless, its
precision will be lower, especially when the time-varying noise in the proxy
dominates the time-constant variability of the forcing-related component ξf,
i.e. when σ2

ξf
≈ 0 or equivalently κ ≈ 0, depending on identification ap-

proach. By choosing the weights for s
(w)
xfz such that its variance is minimized

under the particular circumstances, we obtain the most efficient estimator
for the population covariance, and thereby the most efficient estimator for
λ11/λ21, representing the amplitude of the forcing effect in a climate model.
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Noting that under the ME model Var
(
s

(w)
xfz

)
is given by:

Var

(
n∑
t=1

w′t (xft − µxf ) (zt − µz)

)
= Var

(
n∑
t=1

w′t(αf · ξft + δft)(ξft + νt)

)
=

(2.4.5)

= α2
f · 2 · (σ

2
ξf

)2 ·
n∑
t=1

w′2t + α2
f · σ

2
ξf
·
n∑
t=1

w′2t · σ2
ν(t) + σ2

δf
· σ2
ξf
·
n∑
t=1

w′2t︸ ︷︷ ︸
negligible when σ2

ξf
≈0

+

−−−−−−−−−−−−−−−−−−−−−−−−+ σ2
δf
·
n∑
t=1

w′2t · σ2
ν(t) ≈

... ≈ σ2
δf
·
n∑
t=1

w′2t · σ2
ν(t).,

where σ2
ξf

is neglected, w′t = wt/
∑
t wt are the normalized weights, summing

to 1, the problem of determining the weights essentially reduces to

minw′t

n∑
t=1

w′2t · σ2
ν(t), (2.4.6)

subject to

n∑
t=1

w′t = 1.

Solving for w′t, we obtain the weights proportional to 1/σ2
ν(t), i.e.

w′t =
1/σ2

ν(t)∑n
t=1 1/σ2

ν(t)
, (2.4.7)

valid under both ME and FA(2,1)-models, i.e. under both approaches.
Hence, the original weights, wt, are

wt =
1

σ2
ν(t)

=
1

σ2
η + σ2

ε (t)
. (2.4.8)

In analogy with the UR statistic, we may constrain the weights to be ≤ 1
by introducing the constant factor σ2

η:

wt =
σ2
η

σ2
η + σ2

ε (t)
(2.4.9)

with equality when σ2
ε (t) = 0. In this context, it should be pointed out that

the weights above and the weights in UR, denoted w̃t in SUN12, differ, the

39



latter being the square root of the former. The explanation is that they
were motivated by different principles, for different purposes. In case of
the UR-statistic, the main principle was to scale-transform (zt − µz) by the
weights such that wt(zt − µz) got the same variance for all time units t.

Regarding the weights for the weighted variance of z, s
2(w̌)
z , they were

chosen in the simular way as the weights for s
(w)
xfz . Calculations resulted in

w̌t = w2
t = w̃4

t =

(
σ2
η

σ2
ν(t)

)2

. (2.4.10)

Under the ME model specification, one can construct a large sample
confidence interval according to (2.3.12). To this end, the following estimate
of the variance of the limiting distribution of α̂f can be used:

V̂ar(α̂f) =
1

n ·
(
s

(w)
xfz

)2 ·
(
s2
xf
·
(
σ2
δf

+ α̂f · σ̂2(w̌)
ν

)
+ σ4

δf

)
. (2.4.11)

Under homoscedasticity (2.4.11) reduces to V̂ar(α̂f) in (2.3.10).
Another important aspect to discuss is the fact that the weights should

preferably be determined and estimated prior to analyzing the data. This
requirement makes us recall that the variance of η includes two other vari-
ances, namely σ2

ξtotal⊥f
and σ2

ηinternal
, where the former variance is not estimable

(see the discussion in the beginning of Sec. 2.3.1). A possible remedy is to
replace σ2

η by σ2
ηinternal

, which leads to the following weights:

wt =
σ2
ηinternal

σ2
ηinternal

+ σ2
ε (t)

(2.4.12)

At this point, the theoretical discussion regarding possible estimators of
the amplitude of a forcing effect in a climate model could be finished, but
the suggestion to replace σ2

η by σ2
ηinternal

gives us an idea about how the ME
and FA(2,1) models can be modified such that the weights in (2.4.12) will be
motivated. Bearing in mind the way of decomposing the total forcing effect
described in Eq. (2.2.4), this aim can be achieved by moving the orthogonal
complement ξtotal⊥f from the noise term η and by considering it as a second
latent factor instead.

Combining Eq. (2.2.4) with the expression for the mean-centered simu-
lated temperature leads to the following equation system:{

xf t = αf · ξf t.+ ..0 · ξtotal⊥f t + δf t

τt = κ · ξf t.+ 1.....ξtotal⊥f t + ηinternal t.
(2.4.13)
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This is a two-indicator two-factor model, abbr. FA(2,2), where the matrix
of the factor loadings has a specified pattern. More precisely, the loading for
the first indicator on the second latent factor, λ12, is fixed to zero, while the
loading for the second indicator on the second latent factor, λ22, is fixed to
1. This particular pattern can be explained by (1) our conviction that the
first indicator depends only on the first latent factor and (2) by our way of
decomposing the total forcing effect. This model is an excellent example of
purely confirmatory factor analysis; the underlying theory determines which
factors are to be involved and which restrictions on the parameter space it
implies. Our aim is to find solutions which conform to this pattern.

Let us discuss new models with two latent factors under each approach.
For the sake of simplicity, we start with assuming homoscedasticity.

2.5 Models with two latent factors. Homoscedasticity

2.5.1 Approach 1: κ = 1

By replacing τ in the FA(2,2)-model in (2.4.13) by the proxy z with a time-
constant precision and applying the first identification approach, we obtain:

xf t = αf · ξf t.+ ..0 · ξtotal⊥f t + δf t

zt = ......ξf t.+ 1.....ξtotal⊥f t + γt︸︷︷︸
=ηinternal+εt

, (2.5.1)

where δf t and γt are assumed to be normally distributed and mutually un-
correlated random variables with zero mean and variances σ2

δ and σ2
γ =

σ2
ηinternal

+σ2
ε , respectively. The latent factors, ξf and ξtotal⊥f, can be assumed

to be either fixed or random. Specifically:

Structural case: ......(ξf t, ξtotal⊥f t)
T ∼ N

(
0,diag(σ2

ξf
, σ2
ξtotal⊥f

)
,

Functional case: .... 1n
∑
t ξf t = 0, .... σ2

ξf
≡ 1

n

∑
t ξ

2
f t > 0 ;

Functional case: .... 1n
∑
t ξξtotal⊥f t = 0, .. σ2

ξtotal⊥f
≡ 1

n

∑
t ξ

2
ξtotal⊥f t

> 0.

In order to be able to construct a confidence set for αf according to
the Fieller method, we reparameterize the model in the following way:

1. Define standardized latent factors: ξ′f = ξf/σξf and ξ′total⊥f = ξtotal⊥f/σtotal⊥f.

2. Insert σξf · ξ′f and σtotal⊥f · ξ′total⊥f instead of ξf and ξtotal⊥f, respectively,
in model (2.5.1).
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That is, we may rewrite model (2.5.1) as follows12:{
xf t = λ11 · ξ′f t + .−0 · ξ′total⊥f + δf t

zt = λ21 · ξ′f t + λ22 · ξ′total⊥f + γt,
(2.5.2)

where the factor loadings are

λ11 = αf · σξf , λ21 = σξf , and λ22 = σξtotal⊥f
.

As we see, the ratio λ11/λ21 gives us back the parameter αf, though λ21

is not equal to 1 as under model (2.5.1). To determine the identifiability
condition, consider the model’s reproduced variance-covariance matrix of
the indicators:

σ2
xf

= λ2
11 + σ2

δf

σxf,z = λ11 · λ21

σ2
z = λ2

21 + λ2
22 + σ2

γ .

(2.5.3)

Since there are three unique equations, we conclude that only three functions
of the five parameters can be estimated. To obtain α̂f we need to estimate
λ11 and λ21. The loading λ22 should also be estimated, since we do not have
any a priori knowledge about its value. Consequently, to permit the identi-
fiability of the model, both specific variances, σ2

δf
and σ2

γ , should be treated
as known parameters. As concluded earlier, it is realistic to determine their
values from the sources independent from the variance-covariance matrix of
the indicators.

Treating the specific variances as known, the standardized FA(2,2)-model
in (2.5.2) becomes just-identified, abbr. j.i.FA(2,2). As follows from
(2.5.3), the estimator of λ11/λ21 is the same as under the FA(2,1)-model
(as well as under the ME model), provided that three side conditions are
fulfilled: (1) sxfz 6= 0, (2) s2xf−σ

2
δf
> 0 and (3) s2z−(sxfz)

2/(s2xf−σ
2
δf

)−σ2
γ ≥ 0.

The latter condition is based on the requirement that λ̂2
22, representing the

variance of the second latent factor, must be nonnegative.
Hence, the j.i.FA(2,2)-model does not provide a new estimator of the

amplitude of a forcing effect. However, if the third side condition is not
satisfied, the model can be simplified, which naturally leads to a new esti-
mator of λ11/λ21. The rejection of the third condition is interpreted as the
variance of ξtotal⊥f is small, and estimated as zero. Due to the absence of

12Henceforth we refer to factor models with standardized latent factors as standardized
factor models.
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complete knowledge about the climatological properties of ξtotal⊥f, the sim-
plification is motivated even from the climatological point of view. Imposing
the restriction λ22 = 0 leads to a one-factor model, FA(2,1):

xf t = λ11︸︷︷︸
=αf·σξf

·.ξ′f t+ δf t

zt = . λ21︸︷︷︸
=σξf

. · .ξ′f t+ γt,
(2.5.4)

where the specific variances are still considered as known, i.e. the model pa-
rameters are λ11 and λ21. Since the number of the model parameters is less
than the number of the unique equations in the model’s variance-covariance
matrix that is three (set λ22 = 0 in (2.5.3) to see it), the model is overi-
dentified, abbr. o.i.FA(2,1). The estimates of λ11 and λ21 are obtained
by minimizing the discrepancy function given in (2.3.17) conditional on the
known model parameter, i.e. λ22 = 0. If an admissible solution is obtained,
the overall model fit can be assessed statistically by means of the G statistic,
defined in (2.3.20). Naturally, the R package sem provides the value of the
G statistic with the associated p-value.

Unfortunately, the usefulness of the statistic G has frequently been ques-
tioned by many researchres because in large samples even small differences
between S and Σ(θ̂) will be statistically significant although the differences
may not be practically meaningful. This is because the larger the sam-
ple size, the better approximation of the statistic’s distribution to the chi-
squared distribution is, implying the higher power of the statistic against any
slight difference between S and Σ(θ̂). Consequently, a number of goodness-
of-fit indices, serving as heuristic measures of model fit, have been pro-
posed in the factor analysis literature (see for example Mulaik, 2010, Sec.
15.3.15; Sharma, 1996, sec. 6.4.3). Some fit indices are designed to provide
a summary measure of the residual matrix, which is the difference between
the sample and the estimated covariance matrix, i.e. S − Σ(θ̂). Such in-
dices are called absolut fit indices: no reference model is used to assess the
amount of increment in model fit (Hu&Bentler, 1998). Here, we will use: a
goodness-of-fit index (GFI ); GFI adjusted for degrees of freedom (AGFI ),
and standardized root- mean-square residual (SRMR). They are defined as
follows :

GFI = 1− tr(Σ̂
−1
S − I)2

tr(Σ̂
−1
S)2

, (2.5.5)

AGFI = 1− q(q + 1)

2 · df
(1−GFI) , (2.5.6)
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where df are the degrees of freedom, q is the number of indicators, and
finally

SRMR =

√√√√√√
q∑
i=1

i∑
j=1

[
(sij − σ̂ij)

/
(siisjj)

]2
q(q + 1)/2

, (2.5.7)

where sij := observed variances, σ̂ij := reproduced covariances, sii and
sjj := observed standard deviations.

Regarding the cutoff values of the indices, the following rules of thumb
are recommended. The GFI for good-fitting models should be greater than
0.90, while for the AGFI the suggested cutoff value is 0.8 (Sharma, 1996).
However, it has been shown that the expected value of GFI, and conse-
quently AGFI, tends to increase with sample size.

In case with the SRMR, perfect model fit is indicated by SRMR = 0.
Consequently, the larger the SRMR, the less fit between the model and
the data. According to Hu and Bentler (1999), a cutoff value close to 0.08
for SRMR indicates a good fit. Moreover, they recommend to supplement
SRMR by the incremental fit index CFI, defined as follows:

CFI =

 0, if FI < 0
FI
1, if FI > 1,

(2.5.8)

where

FI =
[(Gnull − dfnull)− (Gh − dfh)]

(Gnull − dfnull)
,

where Gnull and dfnull are the test statistic G and the degrees of freedom,
respectively, for the null model hypothesizing that the covariance matrix
should be a diagonal matrix with free diagonal elements, while Gh and dfh
are the G test statistic and the degrees of freedom, respectively, for the
hypothesized model. As indicated by its property, the CFI represents the
increase (increment) in model fit relative to a baseline model, which in the
present case is the null modell. It was found by Hu and Bentler (1999) that
a cutoff value for CFI should be close to 0.95. All these goodness-of-fit
indices are easily obtained from the output, provided by the R package sem.

It is worth pointing out that it is recommended to use the goodness-of-fit
indices for assessing the fit of a number of competing models fitted to the
same data set, rather than the fit of a single model. Researches also should
pay attention to other aspects of model fit such as examining parameter
estimates to ensure they have the anticipated signs and magnitudes. Before
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considering some type of model modification, other reasons why a model
may not fit, such as small sample size, nonnormality, or missing data, need
to be ruled out first (Boomsma, 2000).

An important comment concerning the o.i.FA(2,1)-model is that de-
spite the overidentifiability, an exact ML solution for αf in terms of the
sample variances and covariances of the indicators does exist. This is be-
cause the model in its unstandardized form can be viewed as a ME model
under the condition that both error variances are known:

xf t = αf · ξf t. + δf t

zt = ......ξf t. + γt︸︷︷︸
=ηinternal+εt

. (2.5.9)

As the model is overidentified, the method of moments approach cannot be
used to derive the ML estimates. The estimators were obtained by maxi-
mizing the likelihood directly by Birch (1964). They are given by:

α̂f =
s2
xf
− ` · s2

z +

√(
s2
xf
− ` · s2

z

)2
+ 4 · ` · (sxfz)

2

2 · sxfz
, (2.5.10)

where ` = σ2
δf
/σ2

γ ,

σ̂2
ξf

=
s2
xf

+ ` · s2
z − 2 · σ2

δf
+
√

(s2
xf
− `s2

z)
2 + 4 · ` · (sxfz)

2

2 · (`+ α̂2
f )

, (2.5.11)

provided one or more of the following conditions is satisfied: s2
z > σ2

γ , s2
xf
>

σ2
δf

or s2
z > (σ2

γ − s2
z) · (σ2

δf
− s2

xf
). Estimator (2.5.10) is valid both for the

functional and structural models. According to Cheng (Sec. 2.1.3), the
asymptotic distribution of

√
n(α̂f − αf) tends to a normal distribution with

zero mean and the variance

Γ =
σ2
γ

σ2
ξf

· (`+ α2
f ) + ` ·

(
σ2
γ

σ2
ξf

)2

, (2.5.12)

obtained by means of the delta method. By replacing unknown parameters
in (2.5.12) by their consistent estimates, an estimator of the variance of the
limiting distribution of α̂f is obtained:

V̂ar(α̂f) = n−1 ·

 σ2
γ

σ̂2
ξf

· (`+ α̂2
f ) + ` ·

(
σ2
γ

σ̂2
ξf

)2
 . (2.5.13)
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Using the corresponding standard error, we may construct an approximate
1−p confidence interval for αf according to (2.3.12), i.e. the Wald confidence
interval. Hence, two different parameterizations of the o.i.FA(2,1)-model
permit us to construct two confidence sets for λ11/λ21 (equal to αf under
both parameterizations):

1. The Wald confdence interval in (2.3.12) under the unstandardized pa-
rameterization of the model, i.e. under the o.i.ME model in (2.5.9);

2. The Fieller confidence set by solving inequality (2.3.25) under the
standardized form of the model, i.e. under the o.i.FA(2,1)-model
in (2.5.4).

.......In this work, we will compare the performance of both methods. From
(2.5.10) we again may conclude that a sufficiently large covariance between
the simulated temperature xf and the proxy z is an important premize for
obtaining a reasonable estimate of the amplitude of a forcing effect. Besides,
as follows from (2.5.13), a sufficiently large σ2

ξf
is also needed for ensuring

reasonable confidence intervals. Once again, we are faced with the issue of
testing H0 : σ2

ξf
= 0, which is not so easy to do under the ME model speci-

fication, but under the factor model specification the test of the equivalent
hypothesis H0 : λ21 = σ2

ξf
= 0 is available.

2.5.2 Approach 2: Var(ξf) = 1

By replacing τ in the FA(2,2)-model in (2.4.13) by the proxy z with a time-
constant precision and applying the second identification approach to it, we
obtain: 

xf t = αf · ξf t + .0 · ξtotal⊥f + δf t

zt = .κ · ξf t + .....ξtotal⊥f + γt︸︷︷︸
ηinternal t+εt

, (2.5.14)

where the distributional assumptions of the involved variables are the same
as under model (2.5.1), obtained under Approach 1, with an additional as-
sumption that σ2

ξf
= 1. Regarding the variance of the second latent factor,

two cases are considered: (1) Var(ξtotal⊥f) 6= 1, and (2) Var(ξtotal⊥f) = 1

Case 1: Var(ξtotal⊥f) 6= 1
Reparameterizing the model above in the similar manner as model (2.5.1),
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i.e. 
xf t = λ11 · .ξf t + ..0.. · ξ′total⊥f + δf t

zt = λ21 · .ξf t + λ22 · .ξ′total⊥f + γt︸︷︷︸
ηinternal t+εt

, (2.5.15)

where λ11 = αf, ..λ21 = κ, .and λ22 = σξtotal⊥f
,

shows clearly the equivalence between this model and the standardized
j.i.FA(2,2)-model in (2.5.2). In particular, the estimate of λ11/λ21 un-
der both models is the same. Moreover, the confidence set for λ11/λ21 is
to be constructed according to the same method, namely the Fieller method.

Case 2: Var(ξtotal⊥f) = 1
When fixing the variance of ξtotal⊥f to one, we obtain a model that says that
when this latent factor changes 1 unit, the second indicator variable changes
by 1 unit13, given that the first latent factor is held fixed. That is a very
strong and unrealistic hypothesis, requiring the variance of z to be at least
1. This makes us to refrain from taking this model into consideration.

To conclude, since the standardized j.i.FA(2,2)-model under Approach
2 does not provide a new estimator of λ11/λ21 and new methods of calculat-
ing the associated confidence set, it is sufficient to consider the standardized
j.i.FA(2,2)-model only under Approach 1.

Before moving on to the discussion about the model estimation in the
presence of heteroscedasticity, let us take a closer look at a situation when
the estimate of σ2

γ is not appropriate, i.e. σ̂2
γ > s2

z. In that case, the
model cannot be estimated. Admittedly, even the estimate of the internal
variability of a climate model under consideration, σ2

δf
, might turn out to

be larger than s2
xf

, making the model underidentifiable, but it is definitely
more challenging to obtain a precise estimate of σ2

γ than a precise estimate
of σ2

δf
. Should it happen that σ̂2

γ > s2
z, the parameter σ2

γ ought to be treated
as a free parameter. Obviously, this requirement makes the j.i.FA(2,2)-
model underidentifiable. In order to permit identifiability more than two
indicators should be incorporated. This was our main motive of proposing
a three-indicator model, described in the next section.

13Note that when temperature data is analyzed, it is assumed that latent factors have
the same unit of measurement as observed variables. By scientific convention the scale
for temperature is measured in Kelvin units.
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2.5.3 Extension of two-factor models. Approach 1: κ = 1

. Suppose that a climate model simulation influenced by all external (but
of course reconstructed) forcings, including a forcing f that has influenced
xf, is available. Let this simulation be denoted {xtotal}. The idea is to
invoke the variable xtotal as an indicator for the (true) latent variables ξf
and ξtotal⊥f. By adding the mean-centered variable xtotal to the standardized
j.i.FA(2,2)-model, the following standardized three-indicator two-factor
model, FA(3,2)-model, is obtained:

xf t = αf · σξf︸ ︷︷ ︸
=λ11

·.ξ′f t + .−−0 · ..ξ′total⊥f + ...δf t

zt =
.... σξf︸︷︷︸

=λ21

·.ξ′f t + . σξtotal⊥f︸ ︷︷ ︸
=λ22

·.−ξ′total⊥f + γt︸︷︷︸
ηinternal t+εt

xtotal t =
...κ1 · σξf︸ ︷︷ ︸

=λ31

·.ξ′f t + κ2 · σξtotal⊥f︸ ︷︷ ︸
=λ32

·.ξ′total⊥f + ...δtotal t,

(2.5.16)

where the variables δf t, γt and δtotal t are mutually independent normally
distributed variables with zero mean and variances σ2

δf
, σ2

γ and σ2
δtotal

, respec-
tively. The parameter of interest is the ratio λ11/λ21, which under model
(2.5.16) is equal to αf, as it should be under Approach 1. Besides that,
model (2.5.16) provides an opportunity to estimate the amplitude of a forc-
ing effect of a forcing f in xtotal. That is, another parameter of interest is
the ratio λ31/λ21.

The model’s reproduced variance-covariance matrix is:

σ2
xf

= λ2
11 + σ2

δf

σxfz = λ11 · λ21

σxfxtotal
= λ11 · λ31

σ2
z = λ2

21 + λ2
22 + σ2

γ

σ2
zxtotal

= λ21 · λ31 + λ22 · λ32

σ2
xtotal

= λ2
31 + λ2

32 + σ2
δtotal

.

(2.5.17)

Since (2.5.17) contains six unique elements, at most six parameters can be
estimated. That is, a vector of free parameters for an just-identified model
includes all five factor loadings and one of the specific variances. As there
are three specific variances, three different just-identified models can be for-
mulated. Which specific variance that should be treated as free depends on
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such factors as availability of replicates of a corresponding climate model or
on how confident a researcher is in known values of the specific variances. As
discussed earlier, it might be of more interest to treat the specific variance
of γ as free. In that case, σ2

δf
and σ2

δtotal
are treated as known and estimated

directly from replicates of the corresponding climate models.
As known, just-identified factor models are associated with explicit ex-

pressions of model estimates in terms of the sample variances and covariances
of indicators. However, we do not provide neither estimators nor associated
side conditions for a proper solution for any just-identified model of those
three possible. It is supposed that the model of interest is estimated by
means of a specialized software package, e.g. the R package sem, used in
this work. If all side conditions for a proper solution are fulfilled, a program
provides an output with the parameter estimates with the associated matrix
of the estimated variances and covariances among the estimates. Based on
this information, researches can calculate an estimate of λ11/λ21 with the
associated confidence set, constructed according to the Fieller method, i.e.
by solving inequality (2.3.25). If no solution is obtained, which occurs if the
information matrix is singular, or if an improper solution, e.g. Heywood
case, is obtained, the model should be reformulated accordingly.

We do not exclude a situation when all specific variances are regarded
as known, which implies that only factor loadings are to be estimated. The
resulting model is overidentified with one degree of freedom, which allows
us to assess its overall fit to the data. Provided the solution is proper and
interpretable (in terms of both sign and size), the overall fit is assessed sta-
tistically by the G statistic, defined in (2.3.20) and heuristically using a
number of goodness-of-fit indices, e.g. the indices defined in (2.5.5.− 2.5.8).
The result of the test and the values of the indices can be easily retrieved
from the output (see Appendix for an example of fitting the overidentified
FA(3,2)-model).

Further, both just-identified models and the overidentified model above
can be simplified by fixing the loadings λ22 and/or λ32 to zero. An import-
nat point to realize about the process of model simplification is that even
if simplification is justified from the climatological point of view and sup-
ported empirically by insignificant values of the relevant estimates, fixing
one or two loadings to a specified value might lead to unpredictable effects
on the estimates of the remaining parameters both in terms of sign and
magnitude that perhaps cannot be linked to climatological properties of the
involved variables. That is, the process of model simplification should be
performed with caution.
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2.5.4 Extension of two-factor models. Approach 2: Var(ξf) = 1

...Just as with the standardized j.i.FA(2,2)-model associated with Ap-
proach 1 (see Sec. 2.5.2)), it is sufficient to consider only the standardized
FA(3,2)-model (2.5.16) under Approach 1.

2.6 Models with two latent factors. Heteroscedasticity

When fitting the two-factor models (the j.i.FA(2,2)-model or the FA(3,2)-
model which can be either just-identified or overidentified) to data contain-
ing climate observations with time-varying precision, one can proceed pre-
cisely in the same way as for the one-factor models, i.e. by analyzing the
weighted sample variance-covariance matrix of the indicator instead of the
ordinary one. Under the two-factor models, these matrices are calculated as
follows:
.under the j.i.FA(2,2)-model: ..........under the FA(3,p)-model, p = 1, 2:

.......

 s
2
xf

s(w)
xfz

s(w)
xfz

s2(w)
z

 respective


s2
xf

s(w)
xfz

sxfxtotal

s(w)
xfz

s2(w)
z s(w)

zxtotal

sxfxtotal
s(w)
zxtotal

s2
xtotal

,

 (2.6.1)

where the unique elements are:

s2
xf

=

∑
t(xf t − x̄f)2

n
, where x̄f =

∑
t xf
n

,

s(w)
xfz

=

∑
t wt

(
xf t − x̄(w)

f

) (
zt − z̄(w)

)∑
t wt

, where x̄
(w)
f =

∑
t wtxf∑
t wt

, etc.

sxfxtotal
=

∑
t(xf t − x̄f)(xf t − x̄total)

n
,

s2(w)
z =

∑
t w

2
t

(
zt − z̄(w)

)2∑
t w

2
t

, where z̄(w) =

∑
t w

2
t zt∑

t w
2
t

,

s(w)
zxtotal

=

∑
t wt

(
zt − z̄(w)

) (
xtotal t − x̄(w)

total

)
∑
t wt

,
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s2
xtotal

=

∑
t(xtotal t − x̄total)2

n
,

where the weights wt are defined in (2.4.12), i.e.

wt =
σ2
ηinternal

σ2
ηinternal

+ σ2
ε (t)

=
σ2
ηinternal

σ2
γ(t)

.

Reasoning as in (2.4.5), it was found that the parameters estimated by
the weighted covariances are the same as the parameters estimated by the
ordinary ones, for example

E
[
s(w)
xf z

]
= E

[∑n
t=1 wt (xf t − µxf

) (zt − µz)∑n
t=1 wt

]
= σxfz = E [sxf z] = λ11 · λ21.

On the other hand, the expected value of the weighted variance of z,

E
[
s2(w)
z

]
= E

[∑n
t=1 w

2
t (zt − µz)2∑n
t=1 w

2
t

]
= λ2

21 + λ2
22 + σ2(w)

γ ,

includes a new parameter: the unknown weighted average variance of the

noise term γ over the entire time period analyzed, σ2(w)
γ =

∑
t w

2
tσ

2
γ(t)

/∑
t w

2
t .

However, with the a priori known weights in hand, it is not difficult to cal-

culate the value of σ
2(w)
γ , thereby allowing to treat this parameter as known.

A conceivable problem that might occur in practice is similar to that aris-

ing under homoscedasticity, i.e. it might happen that σ
2(w)
γ > s

2(w)
z . As

a resort, σ
2(w)
γ could be treated as a free parameter. Unfortunately, the

j.i.FA(2,2)-model is not estimable in that case, but the j.i.FA(3,2)-

model with all factor loadings and σ
2(w)
γ as model parameters is. Here we

have nevertheless to bear in mind that the weights, used for calculating the
weighted sample variance-covariance matrix, are not precise.

2.7 Usage of mean time series

It is not uncommon in climatological statistic to analyze ensemble-mean se-
quences instead of single members of an ensemble. Averaging over replicates
of the same type of forced model leads to a time series with an enhanced
forced climate signal and a reduced effect of the internal variability of the
corresponding forced climate model. It is, of course, possible to use mean
time series belonging to an ensemble even in our own analysis.
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Assuming that k and g replicates of the xf- respective xtotal-climate mod-
els are available, the single simulations {xf t} and {xtotal t} can be replaced
by the mean time series {x̄f t} and {x̄total t}, respectively, obtained by aver-
aging over k respective g replicates at each time point t. This entails that the
specific variances in our statistical models, σ2

δf
and σ2

δtotal
, should be replaced

by σ2
δf
/k and σ2

δtotal
/g, respectively, where σ2

δf
and σ2

δtotal
are calculated by

applying estimator (2.3.3). Naturally, the sample variances and covariances
involving the single sequences {xf t} and {xtotal t} should be replaced by the
sample variance and covariances involving their averaged counterparts.

2.8 Summary

Before proceeding further with a numerical analysis, let us summarize briefly
our theoretical discussion.

Several factor models have been suggested as appropriate models for
estimating the amplitude of a forcing effect in a climate model. Examination
of the structure of the expression for the true temperatue τ in the basic
statistical model (2.1) revealed that not only one-factor models, but also
two-factor models can be useful. Initially, a just-identified two-indicator
one-factor model was formulated:

j.i.FA(2,1)-model:
xf t = αf · ξf t..+ ...........δf t

zt.. = κ · ξf t...+ νt︸︷︷︸
=ξtotal⊥f t+ηinternal t+εt

By applying two different identification approaches, we could either refor-
mulate this model as a j.i.ME model (see (2.3.1)), or keep its original form
as a j.i.FA(2,1)-model (see 2.3.14)). More presicely, the j.i.ME-model
was obtained under Approach 1, assuming κ = 1, while the j.i.FA(2,1)-
model under Approach 2, assuming Var(ξf) = 1.

Regardless of approach, the estimator of the amplitude of a forcing effect
under both models is the same as well as the side conditions for a proper/ad-
missible solution. The sole difference is that the amplitude of a forcing effect
is represented by the parameter αf under the ME model and by the ratio of
the factor loadings αf/κ under the j.i.FA(2,1)-model. Thus, two different
methods of constructing a confidence set for the amplitude of a forcing ef-
fect can be employed. Under the former model, an approximate 1− p large
sample (always bounded) confidence interval, known as the Wald confidence
interval, is constructed (see 2.3.12). Under the latter, a confidence set is
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constructed on the basis of the Fieller method of finding the confidence set
of the ratio of two normal means, which in the context of our analysis corre-
sponds to solving the quadratic inequality in (2.3.25). The Fieller confidence
set does not suffer from confidence level errors as does the Wald confidence
interval.

Moving the orthogonal complement ξtotal⊥f t from the specific factor νt
and regarding it as a second latent factor, uncorrelated with the first latent
factor, ξf t, made it possible to formulate (orthogonal) two-factor models.
These models differ in the number of indicators, but all of them, when Ap-
proach 1 is applied, are subject to reparameterization based on the standard-
ization of the latent factors. Thanks to reparameterization, the amplitude
of a forcing effect can be represented by the ratio of two factor loadings,
namely λ11/λ21, where λ11 = αf · σξf and λ21 = σξf , making it possible to
construct the Fieller confidence set for αf even under Approach 1. In fact, a
standardized factor model under Approach 1 is equivalent to a factor model
obtained under Approach 2. Despite this equivalence, the focus is on the
former type because rewriting some factor models in their unstandardized
form can reveal interesting links to ME models.

Regarding two-indicator models, the initial model is the j.i.FA(2,2)-
model in (2.5.2). The model is identical to the j.i.FA(2,1)-model in terms
of the estimator of the amplitude and the associated confidence set. How-
ever, in contrast to the j.i.FA(2,1)-model, the j.i.FA(2,2)-model can be
modified by eliminating the second latent factor, which results in an overi-
dentified two-indicator one-factor model, associated with a new estimator
of the amplitude of a forcing effect and a new Fieller confidence set for it.
The model is defined in (2.5.4) and its abbreviation is o.i.FA(2,1).

A distinguishing feature of this model is that in its unstandardized
form the model is actually an (overidentified) ME model, abbr. o.i.ME.
The estimator of the amplitude remains of course the same as under the
o.i.FA(2,1)-model, but the associated confidence set is the Wald confi-
dence interval. Once again, we are observing the situation when one esti-
mator of the amplitude is associated with different methods of constructing
a confidence set for it.

The initial three-indicator model is the FA(3,2)-model in (2.5.16). Its
main advantage is that it offers flexibility in choosing known parameters.
Depending on what parameters are chosen and on their number, various
just-identified as well as various overidentified three-indicator models can
be formulated. In Table 1 in Sec. 3.3, one can see models that are suitable
for our analysis.

The next stage of our analysis will be devoted to the numerical compar-
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ison of the performance of the suggested models.

3 Numerical experiment to compare the sta-
tistical models

3.1 Description of the pseudo-proxy experiment

A first step in designing a numerical experiment is to determine criteria in
accordance with the aim of a particular study. Our aim is to compare the
performance of different estimators of the amplitude of a forcing effect in
a climate model simulation. It is clear that without knowing the correct
value of the parameter, representing the amplitude of a forcing effect, that
is λ11/λ21, it is not possible to make a comparison between different estima-
tors. As stated in the basic statistical model (2.1), a correct representation
of the forcing effect in the climate model xf corresponds to αf = 1. This
leads to the question: Against what data should xf be analyzed in order to
argue that the correct value of λ11/λ21 is 1?

Clearly, when analyzing xf against real-world climate observations, un-
certainties in the reconstruction of forcing f do not allow us to determine
to what extend the response to a reconstructed forcing f differ from the
response to its real-world counterpart. That is, the correct value of the pa-
rameter is not known.

Data for which the correct value of λ11/λ21 is not only known but also
is equal to 1 are climate model simulations whose forcing history contains
the same underlying forcing f, used for generation of xf. In other words,
real-world proxy data should be represented by climate model simulations.
Suitable candidates for pseudo-proxy data are (1) a replicate of xf or (2) any
other simulation driven by a group of forcings containing the forcing f. In
the former case, the orthogonal complement, ξtotal⊥f, does not exist, while
in the latter case it does. Since the two-factor models involve the orthog-
onal complement as a second latent factor, it is logical for our analysis to
represent climate observations by climate model simulations with a larger
forcing history, i.e. a history built by adding various forcings to f.

Actually, we let these specially selected climate model simulations play
the role of τ , for which, as known, σ2

ε (t) is zero for all time points. The
key point in it is that we can form a pseudo-proxy series {zt} by adding se-
quences of simulated values of εt ∼ N

(
0, σ2

ε (t) > 0
)

to the pseudo-τ . This in
turn enable us (1) to control uncertainty sources associated with climate ob-
servations, which is not possible when real-world data are analyzed, and (2)
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to investigate how sensitive the estimators of λ11/λ21 are to various levels of
the noise in the pseudo-proxy. The method of constructing pseudo-proxies
will be described in detail later in Sec. 4.

We would like to point out that the idea to use climate model simulations
instead of real-world data is not new in climate statistics. Such experiments
are known as pseudo-proxy experiments, abbr. PPE. An example on the use
of PPE is the experiment that aims to test climate reconstruction methods
(for its description see Smerdon, 2011). In this experiment, let us refer to it
as PPE-RecM, the true temperature τ is also represented by climate model
simulations. However, in contrast to our experiment, where the choice of
pseudo-τ depends on xf, PPE-RecM does not impose such restrictions on sim-
ulations. Further, since PPE-RecM aims to test reconstruction methods, the
pseudo-τ is explicitly involved in calculating various metrics measuring the
discrepancy between the pseudo-τ itself and the reconstructed temperature
(during the reconstruction period). The aim of our own analysis is to com-
pare performance of different estimators of the amplitude of a forcing effect
in a climate model. It gives rise to other criteria that do not involve the
pseudo-τ itself, for example the deviation of the estimates of λ11/λ21 from
the correct value of the parameter, how reasonable the associated confidence
sets are, or how well the overidentified factor models fit the data.

Further, just as in our own pseudo-proxy experiment, PPE-RecM also pre-
sumes the construction of pseudo-proxies, permitting researchers to study
the sensitivity of statistical methods to increasing noise level. Nevertheless,
in our PPE, misleading conclusions are possible. To avoid them, an appropri-
ate hierarchical analysis of iteratively obtained estimates is needed for any
level of proxy noise (this issue will be discussed later in Sec. 4).

A possible weakness of our PPE is its dependence on replicates of climate
models involved. Replicates are needed first of all for the estimation of the
internal variability of a corresponding climate model. The more replicates,
the better. It will certainly yield a more precise estimate of the internal
variability of climate models, which is highly desirable for obtaining proper
solutions of the models parameters, in particular of λ11/λ21. In case repli-
cates are not available, it is possible to estimate the internal variability of
forced climate models by means of replicates of an unforced climate model,
which are more offen available. Yet, this cannot guarantee that side condi-
tions for a proper estimate of λ11/λ21 will be fulfilled. Should that happen,
other methods of generating synthetic data could be employed, for instance,
having generated n (temporally dependent or independent) values of the
unobservable variables, possessing in that case known distributions, a set of
observed data can be formed in accordance with a statistical model under
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consideration.
In sum, having evaluated different aspects of our PPE, we may conclude

that its application is motivated and feasible within our analysis, making us
capable to address questions posed in the present work.

3.2 Description of data, its initial analysis and prelim-
inaries

Data used in the present analysis were generated during the COSMOS Mil-
lennium Activity simulation experiments conducted using the Max Planck
Institute Earth System Model (MPI-ESM), representing climate conditions
essentially within the last millennium. A detailed description of the model
and the Millennium experiment can be found in Jungclaus et al. (2010).
Below, the analyzed x-sequences with their notations and brief descriptions
are listed:

1. {xunforced,t}, a single unforced control simulation, spanning a period of
3000 years. This simulation was run under 800 AD orbital conditions
and constant preindustrial greenhouse gas concentrations. For the
purposes of this analysis, the control simulation has been separated
into three 1000-yr long series that provides us with three replicates of
xunforced.

2. {xland use,t} is a result of adding to the control boundary conditions a
reconstruction of temporal and spatial changes in a land use forcing,
a forcing based on the civilized world’s agricultural effect on the land
surface and how that affects climate, e.g. through changed solar re-
flectivity. The sequence starts at 800 and runs until 2005, and it is a
single simulation;

3. {xvolcanic,t} was obtained by adding to the control boundary condi-
tions a reconstruction of another single forcing, namely volcanic forc-
ing caused by the estimated effect of past volcanic eruptions. The
sequence spans the time 800 to 2005 AD, and it is a single simulation;

4. {xE1,t} is a multi-forcing simulation obtained by driving the climate
model with changing orbital forcing conditions from 800 to 2005 AD,
reconstructions of natural and anthropogenic greenhouse gas and aerosol
forcing, together with the same as for xland use reconstruction of land
use forcing, the same as for xvolcanic reconstruction of volcanic forcing
in addition to a reconstruction of solar forcing with a low amplitude
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(with an increase in total solar irradiance of 0.1% from the Maunder
Minimum at 1647-1715 AD until the present). In total, there are five
sequences, i.e. 5 replicates of xE1, forming the ’E1’ ensemble.

5. {xE2,t}, is another multi-forcing simulation influenced by same forcings
as for E1, but with another solar forcing having a high amplitude (with
an increase from the Maunder Minimum by 0.25%). In total, there are
three sequences, i.e. 3 replicates of xE2, forming the ’E2’ ensemble.

.. All above data are originally available as monthly averages at the climate
model grid resolution of 3.75◦, from which the desired spatial and temporal
averages can be calculated. The larger the spatial scale, the stronger the
forcing-related component of temperature variation becomes as compared
to the internal variability. Therefore, the global-mean land-only tempera-
ture is chosen for our analysis14. The time series have been transformed
from monthly series to annual mean time series. By doing so we remove the
seasonal periodicity typical for monthly data.

The time period analyzed in the present work is the 1000-year long pe-
riod 850− 1849 AD. The industrial period after 1850 AD has been omitted
in order to eliminate complicating influence of the anthropogenic greenhouse
gas emissions.

The role of the xf-sequence will be played by each of two single forc-
ing simulations, namely xvolcanic and xland-use. This choice is motivated by
the opposite properties that these two forcings are expected to have at the
temporal- and spatial scales analyzed. More specifically, the volcanic forc-
ing is expected to cause substantial temperature changes, while the land
use forcing is not. In terms of our statistical models, it means that the
hypothesis H0 : σ2

ξf
= 0 is expected to be rejected for the volcanic forcing,

but not for the land use forcing. Consequently, significant respective in-
significant values of the UR-statistic for these two single forcing simulations
are expected as well.

The true temperature τ will be represented by each replicate of xE1 and
xE2. Each of these replicates will also be invoked as xtotal, needed as a third
indicator in the FA(3,2)-model in (2.5.16), but such that τ 6= xtotal. Re-
call from Sec. 3.1 that replacing the true temperature τ by climate model
simulations with a larger forcing history such that the reconstruction of the
forcing f that influenced xf in included, leads to: (1) the orthogonal comple-
ment ξtotal⊥f exists and (2) the correct value of λ11/λ21 is 1. Note the the
latter statement is true regardless of whether the hypothesis H0 : σ2

ξf
= 0 is

rejected or not.
Another consequence of replacing τ by a climate model simulation is

14Data used here are the same as in Hind et al., 2012. Their motivation to exclude
ocean temperatures was that most real temperature proxy data come from land regions.
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that ηinternal corresponds now to the internal variation of a climate model.
In particular, letting τ be represented by a member from the E1 or E2 en-
sembles means that the variable ηinternal corresponds to the variables δE1
and δE2 , respectively. Consequently, the specific factors in our two-factor
models under the assumption that εt = 0 are to be represented by δf, δE1
and/or δE2, which is illustrated and exemplified in (3.2.1):

xf t = λ11 · .ξ′f t + 0 · ..ξ′total⊥f + δf t

τt︸︷︷︸
≡xE1, repl.i t

= λ21 · .ξ′f t + λ22 · ..ξ′total⊥f + ηinternal︸ ︷︷ ︸
≡δE1, repl.i t

xtotal t︸ ︷︷ ︸
=xE2, repl. j t

= λ31 · .ξ′f t + λ32 · .ξ′total⊥f + δtotal t︸ ︷︷ ︸
=δE2, repl.j t

,

where i = 1, 2, 3, 4, 5, j = 1, 2, 3.

Since the ML estimates of the model parameters are obtained under the
normality and independence assumptions, we need to investigate whether
these assumptions are satisfied. First of all, it is of importance to investigate
whether these assumptions are satisfied for each {δt}-sequence. Regarding
the latent-factor variables, it is possible to consider them as fixed unknown
constants.

Let us first investigate whether the independence assumption is satisfied.
Since the specific factors are unobservable, the series to analyze are:

{xrepl.i t − x̄.t}, i = 1, 2, . . . , k,

depending obviously only on δ:s. As for δE1 and δE2, the analysis of the
autocorrelation structure of

{xE1, repl.i t − x̄E1.t}, i = 1, 2, 3, 4, 5

and
{xE2, repl.i t − x̄E2.t}, i = 1, 2, 3,

showed that all series exhibit a significant autocorrelation on the annual scale
(see the left upper plot in Figure A1 in Appendix). Therefore, temporal ag-
gregation of each time series by taking m-yr nonoverlapping averages has
been performed for several values on m. The analysis of the autocorrelation
functions of the new series revealed that the smallest time unit appropriate
to apply to both ensembles is m = 10. The corresponding subplot in Figure
A1 shows that the autocorrelation coefficients for all lags are insignificant
as they are falling within the confidence bounds.
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Regarding δvolcanic and δland use, we unfortunately cannot perform the sim-
ilar analysis, because the COSMOS experiment did not involve any repli-
cates of the single forcing simulations. What we can do is to assume that
the decadal {δvolcanic t}- and {δland use t}-sequences do not exhibit a signifi-
cant autocorrelation, which does not seem to be an unreasonable assump-
tion. Hence, taking 10-year non-overlapping means in all x-sequences re-
duces number of observations in each of them from 1000 to 100.

An important point to realize about time aggregation of data, performed
in this way, is that it does not necessarily lead to an insignificant autocorrela-
tion of x-sequences themselves. A natural explanation for this phenomenon
is the presence of the forcing-related component - ξf in the single forcing
simulations and ξtotal in the multiforcing simulations - which may exhibit a
significant autocorrelation even after time-aggregation of data. For instance,
the analysis of xE1-and xE2-sequences showed that most of them display a
significant autocorrelation even for m = 20 (see Figure A2 in Appendix).
For the present analysis, however, time units of 20 or more years were not
applied to avoid the effect of small sample sizes on the estimation procedure.

The presence of the significant autocorrelation in the multi-forcing sim-
ulations themselves leads to the conjecture that under the ME model in
(2.3.1) and the j.i.FA(2,1)-model in (2.3.14), a significant autocorrelation
may be introduced into the specific factor η, or ν when σ2

ε > 0, because the
orthogonal complement ξtotal⊥f is regarded as a part of it. It is clear that
we do not have any possibility to check for the absence of autocorrelation in
the orthogonal complement, therefore we have to assume a negligible auto-
correlation in the {ξtotal⊥f t}-sequences in order to satisfy the independence
assumption among the errors ηt. For the two-factor models, this conjecture
is redundant because, as mentioned earlier, both ξf t and ξtotal⊥f t can be
regarded as fixed unknown constants for all t.

Having determined the appropriate time unit, we can now look for ev-
idence of non-normality in the time-aggregated δ-depending series and the
time-aggregated xvolcanic - and xland use-sequences themselves. It was chosen
to estimate a density function for each series. It was also possible to apply
a formal test for normality such as the Shapiro test or Kolmogorov-Smirnov
test to the δ-depending sequences, but not to the xvolcanic- and xland use -
simulations. This is because the autocorrelation which is still present due
to the forcing-related component may affect the results of the test. But
since the graphical investigation did not reveal apparent departures from
the normal distribution for all sequences (see Figure A3 in Appendix), we
refrained from performing the formal tests for the δ-depending sequences.

Another important aspect to discuss is the estimation of the internal
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variability of the time-aggregated single forcing climate models. Due to the
absence of replicates of them, neither σ2

δvolcanic
nor σ2

δland use
can be estimated

directly according to (2.3.3). But for three statistical models the knowledge
about σ2

δf
is essential for the estimation of λ11/λ21. What we can do in this

situation is to use the unforced climate model, as it was done, for example,
in SUN12. Unfortunately, the estimate of σ̂2

δunforced
, 0.0143, based on three

decadal replicates of xunforced, turned out to be too high for getting a proper
solution of the ME- and j.i.FA(2,1)-models for all replicates of xland use

and for some replicates of xvolcanic. This, of course, impairs the usefulness
of our analysis, because the most simple, and therefore the most interesting
models, are to be excluded from the numerical experiment. To circumvent
this difficulty, the internal variabilities of the xvolcanic- and xland use-models
were set to the internal variability of xE1, 0.0113, which is motivated under
the assumption of an equal internal, i.e. unforced, variability of all climate
models involved. Our choice to set σ2

δf
to the internal variability of xE1

instead of the internal variability of xE2 can be justified by the fact that
σ̂2
δE1

= 0.0113 and σ̂2
δE2

= 0.0134 turned out not to differ significantly.

The a priori knowledge about σ2
δf

is also required by the more complicated
j.i.FA(2,2)-model. On the other hand, this knowledge is not necessary for
the FA(3,2)-model, under which the parameter σ2

δf
can be treated either as

free or known. In the former case, the two remaining specific variances,
σ2
ηinternal

and σ2
δtotal

, should be specified in advance. Is the latter requirement

feasible in our pseudo-proxy study? The answer is yes. Since both σ2
ηinternal

and σ2
δtotal

are represented by either σ2
δE1

and/or σ2
δE2

(for an example see
(3.2.1)), they can be directly estimated from the replicates of xE1 respective
xE2. If in addition σ2

δf
is treated as known, the model becomes overidentified

with one degree of freedom. As a matter of fact, several plausible three-
indicator models can be formulated on the basis of model (2.5.16). In Table
1, an overview of the statistical models, analyzed in the present work, is
given. In the same table one can find the associated vectors of known hy-
pothesized parameters, i.e. parameters that are not a part of identifiability
conditions, but a part of hypotheses, and the associated confidence regions
for λ11/λ21. Regarding the overidentified three-indicator models, a model
with the best overall fit, provided a solution is proper and interpretable, will
be chosen as a final model. As a further remark on Table 1, we specify the
known specific variances required for the identifiability:
...............• σ2

δf
————in the j.i.ME- and j.i.FA(2,1)-models,

............. • σ2
δf

, σ2
ηinternal

.–in the j.i.FA(2,2)- and o.i.FA(2,1)-models,

............. • σ2
ηinternal

, σ2
δtotal

in all three-indicator models.
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Table 1. Overview of the statistical models with the associated vectors of known

parameters and the associated confidence regions for λ11/λ21. Each model was

fitted to data satisfying σ2
ε = 0

..... ..Reference .. ..df .. ..... Known ..... ... CRλ11/λ21
...

...Model ... number hypothesized is calculated

parameters ...according to ...

..j.i.ME (2.3.1) 0 - (2.3.12)

i.e. the Wald CI

j.i.FA(2,1) (2.3.14) 0 - (2.3.25)

i.e. the Fieller CR

...j.i..FA(2,2)... (2.5.2) 0 - (2.3.25)

o.i.ME (2.5.9) 1 λ22 = 0 (2.3.12)

o.i.FA(2,1) (2.5.4) 1 λ22 = 0 (2.3.25)

.. j.i.FA(3,2) (2.5.16) 0 -

1st o.i.FA(3,2) 1 σ2
δf

= 0.0113

2nd o.i.FA(3,2) 1 λ22 = 0

3d o.i.FA(3,2) 1 λ32 = 0

4th o.i.FA(3,2) 2 σ2
δf

= 0.0113,

λ22 = 0

5th o.i.FA(3,2) 2 σ2
δf

= 0.0113,

λ32 = 0

1st o.i.FA(3,1) 2 λ22 = λ32 = 0

2nd o.i.FA(3,1) 3 σ2
δf

= 0.0113,

λ22 = λ32 = 0
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3.3 Numerical results for data with zero proxy noise

We start our comparative analysis by investigating the performance of the
estimators in ’true’ conditions, i.e. when ’true’ τ is available. All models,
presented in Table 1, were fitted to the data sets with zero proxy noise,
i.e. σ2

ε = 0. The numerical results are summarized in Summary 1 (see Ap-
pendix). As follows from Summary 1, all overidentified models, accepted
as final models, have a very good overall fit to data both statistically and
heuristically.

To simplify the discussion about the estimates of λ11/λ21, they all are
summarized graphically in Figure 2 and 3 together with the observed values
of the UR-statistic. In both figures the estimates obtained under the one-
factor models, i.e. the j.i.ME-model and the j.i.FA(2,1)-model, both
associated with the same estimator of λ11/λ21, are separated from the esti-
mates obtained under the two-factor models.

Figure 2 shows the result for the climate model driven by the volcanic
forcing, while Figure 3 for xland-use. Note the different scales of the horizontal
axis in the figures.

The number of estimates obtained under the one-factor models is not
high. Due to the limited number of replicates of xE1 (5 repl.) and xE2 (3
repl.), used as pseudo-τ , only eight estimates for each single forcing climate
model, xvolcanic and xland-use, are available. Clearly it is not possible to draw
definite conclusions based on few estimates, but it is still possible to get
some general idea about the performance of the estimators.

For two-factor models, inclusion of the third indicator, xtotal, led to the
larger number of estimates, namely 33 for xvolcanic and 30 for xland-use. For
the latter climate model, fitting the three-indicator models to three data
sets resulted in inadmissable solutions, why we have 30 estimates instead
of 33. It should be remarked, that all members of both ensembles were
arranged into pairs randomly in such a way that each pair was associated
only with one data set. By doing so, we remove from the analysis data sets
containing essentially identical information, and therefore expected to lead
to correlated estimates.

Comparing Figure 2 and Figure 3, we first of all note that the perfor-
mance of all estimators is fairly good when the test statistic, UR, take on
significant values, or equivalently when the covariance between the simu-
lated temperature and the pseudo-τ is significantly different from zero. On
the contrary, when the test statistic is not significant, each estimator seems
to fail to provide reasonable estimates of λ11/λ21 (at least for one data set).

Theoretically, given that λ11/λ21 = 1, the highly significant values of the
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UR-statistic should be caused by the significant variability of the latent fac-
tor ξf, dominating over the noise variability, whereas the insignificant values
imply that H0 : σ2

ξf
= 0 is not rejected. This theoretical result is fully con-

firmed by the numerical results. As follows from Summary 1.1-1.5, where the
results for the climate model driven by the volcanic forcing are reported, the
leading coefficient a in Eq. 2.31 is positive for all data sets analyzed, which
amounts to saying that σ̂2

ξvolcanic
is significantly different from zero (here, at

the 5% level). Regarding the climate model driven by the land-use forcing,
the result is opposite: the coefficient is negative for all data sets analyzed
(see Summary 1.6-1.10), which means that the hypothesis σ2

ξf
= 0 is not

rejected at the same significance level. The latter fact explains not only
the insignificance of the test statistic, but also the unstable estimation of
λ11/λ21.
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Figure 2. To the left : Graphical overview of the estimates of λ11/λ21, obtained under

the one-factor models (8 points in magenta) and under various two-factor models (33

points in blue), for the climate model driven by the volcanic forcing, xvol (see Summary

1.1-1.5 in Appendix). The dotted vertical line denotes the correct value of λ11/λ21 that

is 1. To the right : Boxplots for the associated unweighted UR-statistic (see Appendix).

The dotted lines denote the 5% one-sided confidence limits. Calculations are based on

the data with zero proxy noise, i.e. σ2
ε = 0.
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Estimates of λ11/λ21
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Figure 3. To the left : Graphical overview of the estimates of λ11/λ21, obtained un-

der the one-factor models (8 points in magenta) and under various two-factor models

(29 points in blue), for the climate model driven by the land use forcing, xland-use (see

Summary 1.6-1.10 in Appendix). The dotted vertical line denotes the correct value of

λ11/λ21 that is 1. To the right : Boxplots for the associated unweighted UR-statistic (see

Appendix). The dotted lines denote the 5% one-sided confidence limits. Calculations are

based on the data with zero proxy noise, i.e. σ2
ε = 0.

Theoretically, given that λ11/λ21 = 1, the highly significant values of the
UR-statistic should be caused by the significant variability of the latent fac-
tor ξf, dominating over the noise variability, whereas the insignificant values
imply that H0 : σ2

ξf
= 0 is not rejected. This theoretical result is fully con-

firmed by the numerical results. As follows from Summary 1.1-1.5, where the
results for the climate model driven by the volcanic forcing are reported, the
leading coefficient a in Eq. 2.31 is positive for all data sets analyzed, which
amounts to saying that σ̂2

ξvolcanic
is significantly different from zero (here, at

the 5% level). Regarding the climate model driven by the land-use forcing,
the result is opposite: the coefficient is negative for all data sets analyzed
(see Summary 1.6-1.10), which means that the hypothesis σ2

ξf
= 0 is not

rejected at the same significance level. The latter fact explains not only
the insignificance of the test statistic, but also the unstable estimation of
λ11/λ21.

Now, let us take a closer look at the estimates associated with the sig-
nificant UR-statistic. As indicated by Figure 2, the two-factor models (the

64



points in blue) on the whole appear to perform better than the one-factor
models in the sense that they are closer to the correct value of the amplitude
of a forcing effect in a climate model that is 1. This conjecture is also sup-
ported by the sample means (compare 0.7672 to 0.8986). Summary 1.1-1.5
together with Figure 4, where the estimates for each two-factor model are
shown, give a strong indication that this result is due to deleting structural
relations, linked to the insignificant influence of the second latent factor in
the two-factor models. In addition, it was found that freeing the parameter
σ2
δf

in the three-indicator models could lead to a further improvement of the
estimates of λ11/λ21 and to a good overall fit of the overidentified models,
compared to the same models where this specific variance was treated as
known.

0.6 0.8 1.0 1.2 1.4 1.6

Estimates of λ11/λ21

j.i.ME,  j.i.FA(2,1)

j.i. FA(2,2)

o.i.ME,  o.i. FA(2,1)

j.i. FA(3,2)

1
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 o.i. FA(3,2)

2
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3
d
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1
st
 o.i. FA(3,1)

Figure 4. Graphical comparison of the estimates of λ11/λ21, obtained under various

statistical models associated with the xvolcanic- climate model (see Summary 1.1-1.5 in

Appendix). The dotted vertical line denotes the correct value of λ11/λ21 that is 1.

Concomitantly, it was noted that if fitting the j.i.FA(2,2)-model to
data sets {xf t, τt} and {xf t, xtotal t} results in admissable solutions, i.e. all
three side conditions are fulfilled, for both data sets, then adding xtotal to
(xf , τ) as a third indicator might lead to an unstable estimation. In many
cases, simplifications of such three-indicator models led to a larger under-
estimation. The instability was especially pronounced when the hypothesis
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H0 : σ2
ξf

= 0 was not rejected, which was observed for the xland use-climate

model. For this climate model, freeing σ2
δf

or setting some loadings to zero
could lead to diametrically opposite results, compared to those obtained be-
fore modification.

Based on the experience gained during the whole estimation process, it
can be recommended to start the estimation process with the estimation of
the j.i.FA(2,2)-model. If all side conditions are satisfied and the estimate
of λ22 is statistically significantly different from zero, do not procceed fur-
ther with the estimation of three-indicator models. If the estimate of λ22

is not significant, fit the o.i.FA(2,1)-model and assess its overal fit. Only
if it is acceptable and if the estimate of λ21 is significantly different from
zero, a three-indicator model can be fitted, otherwise its estimation stabil-
ity is questionable. However, bearing in mind that real-world temperature
proxies are contaminated with a much larger noise than our pseudo-τ , these
recommendations should be taken with care.

Further, based on Figure 4, we may conclude that although the two-
factor models seem to perform better than the one-factor models, there is
still a tendency to underestimation of the amplitude of a forcing effect. Only
the 1sto.i.FA(3,1)-model seems to present a reasonable and stable perfor-
mance among all three-indicator models, indicating that in some situations,
adding an additional indicator to a two-indicator model might lead to an
improved estimate (compare with the result for the o.i.FA(2,1)-model in
Figure 4). Regarding the 2ndo.i.FA(3,2)-model, the result rather indicates
an unstable behaviour, than an improvement.

Having discussed the performance of the estimators, we now compare
the performance of the Wald confidence interval and the Fieller confidence
region.

First of all, the results in Summary 1.1-1.10 strongly indicate the reliabil-
ity of the Fieller method, regardless of whether the hypothesis H0 : σ2

ξf
= 0

is rejected or not. That is, in most cases, we could draw a correct conclu-
sion that the amplitude of a forcing effect in a climate model is of the right
size. For the xland use-climate model, for which H0 : σ2

ξf
= 0 was not rejected,

most Fieller confidence regions were unbounded/exclusive. Despite of it, the
largest part of them were reasonable, more precisely they contain 1 but not
0. Obviously, an unbounded/exclusive confidence region (even reasonable)
does not provide precise information about possible values of the amplitude
of a forcing effect in a climate model. Nevertheless, the interpretation of a
reasonable unbounded/exclusive confidence region is unambiguous. Such a
confidence region says us that a particular forcing f is detected in a climate
model simulation, but due to insignificant temperature changes caused by
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the forcing, it is not possible to determine with any precision the amplitude
of these changes, i.e. the amplitude of its effect.

For a small part of the data sets for which the hypothesis H0 : σ2
ξf

= 0
was not rejected, the Fieller method failed to provide reasonable confidence
regions. That is, unbounded/exclusive confidence regions containing both
1 and 0 were observed. According to Summary 1.6-1.10, this failure seems
to be associated with three-indicator two-factor models, where the ’true’ τ
and xtotal are represented by simulations from different ensembles, i.e. the
influence of the second latent factor on these indicators is of different signif-
icance, perhaps a common occurrence in real-world data.

Regarding the Wald confidence interval in (2.3.12), we distinguish be-
tween a confidence interval for αf associated with the j.i.ME-model and a
confidence interval for αf associated with the o.i.ME-model. Since the esti-
mators of αf under these two models are different, with different asymptotic
distributions, we may expect different results concerning such properties as a
actual coverage probability of a confidence interval and its expected length.

• The j.i.FA(2,1)-model

...For the xvolcanic-climate model, for which the hypothesis H0 : σ2
ξf

= 0
was rejected (see Summary 1.1-1.5), the observed confidence inter-
vals do not exhibit any problematic behavior in terms of their lenght,
though it seems that the actual coverage probability can be less than
0.95 (more estimates are required to gain more certainty in conclu-
sions).
... When the hypothesis H0 : σ2

ξf
= 0 was not rejected (see the re-

sults for the xland use-climate model in Summary 1.6-1.10), the method
obviously failed to provide reasonable confidence intervals, which il-
lustrates the impact of the Gleser-Hwang effect.

• The o.i.FA(2,1)-model

To begin with, this model had an acceptable overall fit only for the
xvolcanic-climate model, for which the hypothesis H0 : σ2

ξf
= 0 was

rejected. Under this condition, the observed confidence intervals indi-
cate that the performance of the Wald confidence interval is as good
as the performance of the Fieller confidence interval.

As mentioned earlier, the properties of the data, analyzed in this section,
do not mirror the properties of the real-world proxy z. Therefore, it is
not reasonable to draw conclusions about the performance of the statistical
models and the methods for constructing confidence regions at this stage of
the analysis. What we need to do next is to investigate the impact of adding
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a noise to the pseudo-τ on the results observed for the data with the zero
proxy noise. The description of this analysis is given in the next section.

3.4 Sensitivity to increasing noise

The question of sensitivity of a statistical model can be addressed by fitting
the model to data containing the pseudo-τ distorted by a noise with a con-
siderable variability. Since the results, obtained for the ’true’ data, i.e. data
with zero proxy noise, clearly show that large residual noise in climate obser-
vations, dominating over a weak forcing effect, is a great obstacle for precise
estimation of the amplitude of such a forcing effect, it is natural to wonder
whether increased noise in climate observations impacts the estimation of
the amplitude of a strong forcing effect in a similar manner. Therefore, in
the framework of the present analysis, the sensitivity to increasing noise will
be investigated for the statistical models associated with the xvolcanic-climate
model. Would their estimation still be stable and reliable such that it results
in a proper solution, a reasonable confidence interval, and acceptable overall
fit when noise is added?

According to Summary 1.1-1.5, the following ’true’ statistical models are
associated with the xvolcanic-climate model:

• One-factor models:
.........j.i.ME, j.i.FA(2,1)

• Two-factor models:
.........j.i.FA(2,2), o.i.ME, o.i.FA(2,1) ,
..... j.i.FA(3,2), 1sto.i.FA(3,2), 2ndo.i.FA(3,2), 3do.i.FA(3,2),
..... 1sto.i.FA(3,1).

Provided that a large number of data sets is available, the sensitivity of each
statistical model above to increasing noise can be investigated by studying:

1. How close each estimator is to the correct value of λ11/λ21 that is 1,
.....by calculating proportions of admissible/proper estimates satis-

.....fying |λ̂11/λ̂21 − 1| ≤ s for all s ∈ (0, 0.9) (larger values are not

.....of interest);

2. Whether the overall fit of the overidentified models remains acceptable,
.....by calculating the proportion of proper estimates for which the
.....following criteria are satisfied: GFI ≥ 0.9, AGFI ≥ 0.8, SRMR ≤
.....0.08, and CFI ≥ 0.95;
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3. Whether the precision of the estimates of λ11/λ21 is acceptable,
.....by calculating the proportion of proper estimates associated with
.....a bounded confidence interval for λ11/λ21, CIλ11/λ21

, containing 1
.....but not 0 (the 5% significance level is considered). Note that obser-
.....ving a bounded confidence interval, constructed according to the
.....Fieller method, corresponds to rejection of the hypothesis H0 :
.....σ2

ξf
= 0;

4. Whether the UR-statistic is significantly positive,
.....by calculating the proportion of proper estimates for which the UR-
.....statistic is statistically significant at the 5% significance level, i.e.
.....the cutoff value is 1.65.

Recall that homoscedasticity is assumed, and all sequences analyzed are
decadally resolved.

A single pseudo proxy series {zt} is created by adding noise sequence {εt}
to climate model simulation that represents τ . In this study, the pseudo
proxy noise has the characteristics of white noise15, whose generation is
accomplished by taking a sample of n, here n = 100, observations on ε ∼
N(0, σ2

ε ). To compute the variance of ε, σ2
ε , we use a notion of ”percent

noise by variance”, abbr. PNV, which is a common convention in pseudo
proxy studies for classifying the level of noise (Smerdon, 2011). It is defined
as follows:

PNV =
σ2
ε

σ2
z

=
σ2
ε

σ2
τ + σ2

ε

. (3.4.1)

Solving (3.4.1) for σ2
ε , we get

σ2
ε =

PNV

1− PNV
· σ2

τ . (3.4.2)

Realistic values of PNV for real local temperature proxy data that have
been used in large-scale temperature reconstructions lie in the range be-
tween about 2/3 and 0.94, which means that noise variation accounts for
about 67% and 94%, respectively, of the total variation in the observed
proxy.

The procedure of creating a pseudo-proxy sequence is repeated N times,
here N ≈ 1000. This approximation arises due to different number of basic
data sets. For example, the j.i.ME-model is associated with 8 basic data
sets with xvolcanic as xf and the pseudo-τ represented by members of different

15A sequence of uncorrelated random variables, each with zero mean and variance σ2

is referred to as white noise.
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ensembles. It means that 125 {εt}-sequences should be generated for each
basic data set and added to the pseudo-τ . At the next step, the statisti-
cal model is fitted to new data sets, resulting in 8 samples of estimates of
λ11/λ21, each consisting of 125 estimates. By merging the separate samples,
we obtain a single sample consisting of exactly 8 × 125 = 1000 estimates.
Another example is the 3ndo.i.FA(3,2)-model that is associated with 6 ba-
sic data sets, where the pseudo-τ is represented by only the members of the
E2 ensemble. Generating 167 new data sets on the basis of each basic data
set will result in 6× 167 = 1002 estimates of λ11/λ21.

A distinguishing feature of the above approach is that merged samples
have a hierarchical structure. Indeed, the variability among the estimates
within a merged sample can be attributed to two or three (depending on a
statistical model under consideration) sources: the first one is the difference
between ensembles, the second one is the difference between climate model
simulations within an ensemble, and the third source is the imposed noise,
whose variability is completely controlled by us. Obviously, merging esti-
mates into a single sample is justified if and only if their variation due to
the first two sources is substantially smaller than their variation due to the
imposed noise. Two different situations are exemplified and illustrated in
Figure A4 in Appendix by means of the o.i.FA(2,1)-model associated with
5 basic data sets, where the pseudo-τ is represented only by the members
of the E1 ensemble. The upper plot of the figure illustrates the situation
when the variation among the estimates of λ11/λ21 is mainly due to the dif-
ference between replicates within the ensemble, thereby not allowing us to
merge the estimates. An opposite situation is shown in the second plot: the
variability among the estimates is sufficiently represented by the uncertainty
due to the imposed noise, which justifies the merging. Note, the latter result
is obtained for one of the PNV values that is typical for high-quality real
temperature proxy records, namely PNVz = 2/3. It turned out that this
level of noise is sufficiently high for merging of estimates for each statistical
model. Another PNV value of interest is PNVz = 0.94, for which merging
of estimates is also justified. This is a very high noise level, but neverthe-
less local temperature proxies with that much noise have been regarded by
paleoclimatologists as useful. In the following, sensitivity of the statistical
models will be investigated for these two noise levels.

The discussion will be based on Figure 5. The plots in the upper row
describe the distributions of the estimators in terms of their closeness to the
correct value of λ11/λ21 that is 1. More precisely, the proportions of admis-

sible estimates (under each statistical model) satisfying |λ̂11/λ̂21−1| ≤ s are
plotted against the deviations s. The higher the proportions, the better, or
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equivalently, the smaller s for which the proportions approach 1, the better.
The barplots in the second row show the proportion of the admissible esti-
mates for which the last three desired characteristics, listed in the beginning
of the section, are true. The boxplots in the third row show the distribution
of the UR-statistic.
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Figure 5. The upper row: Empirical probabilities, P (|λ̂11/λ̂21 − 1| ≤ s) under various

statistical models, where λ̂11/λ̂21 is a proper estimate. The second row: Proportion of
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proper estimates of λ21/λ21 for which one of the following criteria is met:

....(1) CIλ11/λ21
(2.3.12) contains 1 but not 0, UR ≥ 1.65;

....(2) CIλ11/λ21
(2.3.24) contains 1 but not 0, UR ≥ 1.65;

....(3) GFI ≥ 0.9 , AGFI ≥ 0.8, SRMR ≤ 0.08, CFI ≥ 0.95, CIλ11/λ21
(2.3.12)

..........contains 1 but not 0, UR ≥ 1.65;

....(4) GFI ≥ 0.9 , AGFI ≥ 0.8, SRMR ≤ 0.08, CFI ≥ 0.95, CIλ11/λ21
(2.3.25)

........contains 1 but not 0, UR ≥ 1.65;

.Calculations are based on the basic data sets, i.e. data with zero proxy noise, distorted

iteratively by noise satisfying either PNVz = 2/3 or PNVz = 0.94. Each statistical model

is associated with its own set of the basic data sets (see Summary 1). Remark: side con-

ditions for a proper solution were explicitly formulated in Sec. 2 for all models except

for the three-indicator models. For the latter ones, the completely standardized solu-

tions were checked except singularity cases when no any solution could be obtained. The

third row: Boxplots for UR-statistic, describing the correlation between xvolcanic and 1,000

pseudo proxy z, constructed by adding {εt}iterationj -sequences, j = 1, 2, . . . , 125, to each

replicate of xE1 and xE2. The 5% one-sided significance levels are shown with dashed lines.

•..PNVz = 2/3
According to Figure 5 (both plots in the left panels), the worst per-

formance, or equivalently, the highest sensitivity to the added noise in the
pseudo-proxy data, is demonstrated by the j.i.FA(3,2)-model. The rea-
sons behind this behavior turned out to be either a singular information
matrix, or inadmissible solutions containing a negative estimate of σ2

δf
, i.e.

so called Heywood cases. Singularity indicates that a model is underidenti-
fied, which amounts to saying that some parameters are not needed. That
is, the model should be respecified. Respecification is needed even in the
Heywood cases through setting σ2

δf
to zero. Applied to real-world analy-

sis, it means that if the underlying model is the j.i.FA(3,2)-model, it is
likely that a substantial amount of noise in the proxy will mask the true
relationship between the latent factors and the true temperature, entailing
a formulation of another factor model.

Three other three-indicator models, 1sto.i.FA(3,2), 2ndo.i.FA(3,2),
and 3do.i.FA(3,2), exhibit much better performance, compared to the
j.i.FA(3,2)-model, although singularity and/or Heywood cases still oc-
cur. The best performance among the three-indicator models is shown by
the 1sto.i.FA(3,1)-model. To begin with, all 1,000 solutions turned out to
be proper, that is, no one singularity case was observed. Further, the asso-
ciated estimator of λ11/λ21 shows a very good performance in terms of devi-
ations from the correct value of the parameter almost for the whole range of
deviations. The estimated probability of observing an acceptable overall fit
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and a reasonable bounded confidence interval when the correlation between
simulated and observed temperatures is significantly different from zero is
the highest, ≈ 0.9, albeit not considerably higher than the corresponding
probabilities for the first three models, especially for the 2ndo.i.FA(3,2)-
model. What it says us is that the increase in the proxy noise affects first
of all the overall fit of the 1sto.i.FA(3,1)-model.

Singularity was also common for the j.i.FA(2,2)-model, though to a
less extent than for the j.i.FA(3,2)-model. A detailed analysis revealed
that in all singularity cases, the third side condition, ensuring a positive
estimate of the variance of the second latent factor, i.e. λ̂22 > 0, was not
satisfied. From this, we may conclude that the influence of the increased
noise is reflected in the decreased significance of the second latent factor.
Once again, we are observing distortion of the true relationships between
the variables.

A special attention is drawn to the two groups of models:
...............Group 1: the j.i.ME-model versus the j.i.FA(2,1)-model, and
...............Group 2: the o.i.ME-model versus the o.i.FA(2,1)-model.

The models within each group have the same estimator of λ11/λ21, but
are associated with different methods of constructing a confidence region for
the parameter: the ME models with the Wald confidence interval given in
(2.3.12), while FA(2,1)-models with the Fieller confidence region obtained
by solving inequality (2.3.25).

It turned out that the side conditions for a proper solution associated
with the models in each group were fulfilled for each iteration step. Re-
garding the deviations of the estimates from the correct value of λ11/λ21,
the overidentified models demonstrate a better performance than the just-
identified models almost for the whole range of the deviations analyzed.
In other words, the estimator, associated with the overidentified models in
Group 2, is closer to 1. However, the estimated probabilities of observing the
same characteristics that the models had for the data with zero proxy noise
seem to favor slightly the just-identified models, which indicates the sensi-
tivity of the overall fit of the overidentified models to rising levels of noise.
Lastly, comparing the models within each group, we may draw conclusions
about the two methods of constructing a confidence interval for λ11/λ21.
The observed result speaks in favor of the Fieller method, especially within
the first group.

•..PNVz = 0.94
Both plots in the right panels in Figure 5 show that the impact of the

noise, accounting for 94% of the total variation in the proxy, is huge. All
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criteria reflect a strong deterioration in the performance of all statistical
models, compared to the results for PNVz = 2/3: deviations of the es-
timates from the correct value of the ratio become larger, the number of
improper solutions increases, the overall fit of the overidentified models is
more often judged as inadequate and unacceptable. Nevertheless, three
models are still associated with admissible solutions only. They are: the
j.i.FA(2,1)-model, the o.i.FA(2,1)-model and the o.i.FA(3,1)-model.
The estimators of the last two models seem to deviate from 1 less than the
j.i.FA(2,1)-model, although the difference is not substantial. In addition,
the estimated probabilities of observing all desired characteristics simultane-
ously do not differ substantially either, especially between the j.i.FA(2,1)-
and the o.i.FA(3,1)-models. In other words, these two models seem to be
equally sensitive to increasing noise.

Further, comparing the results for the models within Group 1 and Group
2 shows clearly the advantage of the Fieller confidence set over the Wald
confidence interval. At this point, we recall that the Fieller method, as
opposed to the Wald confidence interval which is always bounded, may gen-
erate three types of confidence regions, depending on whether the hypothesis
H0 : σ2

ξf
= 0 is rejected or not. Our criterion of an acceptable precision of

an estimate is based on the assumption that H0 : σ2
ξf

= 0 is rejected. How-
ever, the distribution of the UR-statistic for PNVz = 0.94 in Figure 5 gives
rise to a conjecture that the noise with such a large variation affects in de-
creasing manner not only the significance of the variability of the second
latent factor, but also the significance of the variability of the first latent
factor. A detailed analysis confirmed this conjecture. That is, rejection of
the hypothesis H0 : σ2

ξf
= 0 is not unlikely for PNVz = 0.94. Notice that for

PNVz = 2/3, this event was extremely rare.
As known, the Fieller confidence set cannot be bounded when the hy-

pothesis H0 : σ2
ξf

= 0 is not rejected. But it can generate unbounded/ex-
clusive confidence regions. As observed for the data with, such confidence
regions may include 1 but not 0. Without providing precise information
about the possible values of the amplitude of a forcing effect in a climate
model, they are still reasonable and interpretable from the climatological
point of view. Therefore, in order to investigate the performance of the
Fieller method comprehensively, the insignificance of the first latent factor,
caused by the large proxy noise, should be taken into account. Before per-
forming recalculations, we redefine the criterion for an acceptable precision
of a proper estimate associated with a factor model as follows: if H0 : σ2

ξf
= 0

is rejected, the criterion remains the same, i.e. it is a bounded confidence
interval, containing 1 but not 0, but if H0 : σ2

ξf
= 0 is accepted, a relevant
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criterion is an unbounded/exclusive confidence region, still containing 1 but
not 0. The result of recalculations are shown in Figure 6. As follows from
the figure, the superiority of the Fieller confidence set over the Wald confi-
dence interval becomes even more visible: it is more likely to draw a correct
conclusion (either precise or imprecise) about the amplitude of a forcing ef-
fect in a climate model when the Fieller method is applied. Furthermore, we
also see that it is equally likely as under the j.i.FA(2,1)-model as under
the o.i.FA(3,1)-model, which actually supports the earlier uttered conjec-
ture about an equivalent performance of these two models in the presence
of large non-climatic noise.
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Figure 6. Proportion of estimates of λ21/λ21 under various factor models for which one

of the following criteria is met:

...........(I) Solution is proper, CIλ11/λ21
(2.3.12) contains 1 but not 0, UR ≥ 1.65.

.........(II) Solution is proper, CRλ11/λ21
(2.3.25) contains 1 but not 0, UR ≥ 1.65.

.........(III) Solution is proper, GFI ≥ 0.9, AGFI ≥ 0.8, SRMR ≤ 0.08, CFI ≥

...................0.95, CIλ11/λ21
(2.3.12) contains 1 but not 0, UR ≥ 1.65;

.........(IV) Solution is proper, GFI ≥ 0.9, AGFI ≥ 0.8, SRMR ≤ 0.08, CFI ≥

..................0.95, CRλ11/λ21
(2.3.25) contains 1 but not 0, UR ≥ 1.65.

Calculations are based on the basic data sets, distorted iteratively by noise satisfying

PNVz = 0.94. Each statistical model is associated with its own set of the basic data

sets (see Summary 1). Remark: the side conditions for a proper solution were explicitly

formulated in Sec. 2 for all models except for the three-indicator models. For the latter

models, the completely standardized solutions were checked except singularity cases when

no any solution could be obtained.
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3.5 Estimation of parameters under heteroscedasticity

Our goal in this section is to test the estimation method that we suggest to
apply in the presence of heteroscedasticity. The method is described in Sec.
2. and it consists in replacing the ordinary covariance matrix of indicators
by the weighted one.

The pseudo proxy series {zt} with time-varying precision,

σ2
ν(t) = σ2

η + σ2
ε (t) = σ2

ξtotal⊥f
+ σ2

ηinternal
+ σ2

ε (t), (3.5.1)

are created by adding white noise {εt} to the pseudo-τ such that the variance
of εt accounts for 94% of the total variability in zt for the period 850-1349
AD, while for the remaining period 1350-1849 AD it accounts for 67%, i.e.
PNVz = 2/3. The choice of basic data sets depends on a statistical model
under consideration.

The method was tested on the j.i.FA(2,1)-model. Although the model
is associated with 8 basic data sets involving the replicates of both ensembles
as the pseudo-τ , we, for the sake of simplicity, used only data sets associated
with the E1 ensemble. Once again, the role of the xf-sequence was assigned to
the xvolcanic-sequence. The vector of free parameters under the j.i.FA(2,1)-

model in the presence of heteroscedasticity consists of αf, κ and σ
2(w)
ν , where

σ
2(w)
ν is the weighted average variability of the proxy z, defined in Sec. 2.4

as follows:

σ2(w)
ν =

∑n
t=1 w

2
t σ

2
ν(t)∑n

t=1 w
2
t

, (3.5.2)

where the weights wt are defined in (2.4.12), i.e. wt = σ2
ηinternal

/
σ2
γ(t). Recall,

however, the results for the data with zero proxy variance. It was found that
the variability of the second latent factor was insignificant for data with τ
represented by the E1 members, that is σ2

ξtotal⊥f
in (3.5.1) was estimated as

zero. For our pseudo-proxy experiment, this implies that

σ̂2(w)
ν ≈ σ2(w)

γ =

∑n
t=1 w

2
t σ

2
γ(t)∑n

t=1 w
2
t

=

∑100
t=1 w

2
t · (σ2

ηinternal
+ σ2

ε (t))∑n
t=1 w

2
t

, (3.5.3)

where σ2
ηinternal

is independently estimated according to (2.3.3), and the values
of σ2

ε (t) are determined according to (3.4.2).
The result above gives us an opportunity to assess the effect of tak-

ing heteroscedasticity into account by comparison with the results obtained
without assuming heteroscedasticity, more precisely, when the model is fit-
ted to the ordinary sample covariance matrix of the indicators in spite of
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the presence of heteroscedasticity. Note, the UR-statistic under the assump-
tion of homoscedasticity is calculated accordingly, i.e. without applying the
weights.

The results of fitting the j.i.FA(2,1)-model to heteroscedastic data
under the assumption of heteroscedasticity and without assuming it, are
summarized in Figure 7. Notice that all estimates of λ11/λ21, obtained
under each assumption, were proper. Nevertheless, judging from Figure 7,
the effect of taking heteroscedasticity into account is highly positive: (1)
the estimates of λ11/λ21 are closer to the correct value of 1, which indi-
cates a higher precision, (2) the estimated probability of observing proper
estimates with an acceptable precision, i.e. proper estimates for which the
Fieller bounded confidence set contains 1 but not 0, when the correlation
between simulated temperatures and the proxy is significantly positive, is
almost twice as large as the corresponding probability obtained without

taking heteroscedasticity into account, (3) the estimates σ̂
2(w)
ν :s, obtained

without taking heteroscedasticity into account, are too high, compared to

the five ’true’ values of σ
2(w)
γ , while the estimates of σ

2(w)
ν , obtained under

the assumption of heteroscedasticity, exhibit a good agreement with them.
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Figure 7. The results of fitting the j.i.FA(2,1)-model to heteroscedastic data assuming

and without assuming heteroscedasticity:

....(a) Empirical probabilities, P (|λ̂11/λ̂21 − 1| ≤ s), s ∈ (0, 0.9);

....(b) Proportion of proper estimates of λ21/λ21 for which CIλ11/λ21
(2.3.25) contains 1

........ but not 0, and UR ≥ 1.65.

....(c) I: Boxplot for σ̂
2(w)
ν , estimated without assuming heteroscedasticity;

.........II: Boxplot for σ̂
2(w)
ν , estimated under the assumption of heteroscedasticity;

.........III: Five ’true’ values of σ
2(w)
γ , calculated according to (3.5.3).

Calculations are based on the 5 basic data sets {xvolcanic, τE1, repl. i}, each of which is
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distorted iteratively 200 times by noise satisfying PNVz = 0.94 for 850 − 1349 AD and

PNVz = 2/3 for 1350− 1849 AD.

4 Conclusions

A starting point for this work was the statistical framework, developed by
Sundberg et. al (2012), incorporating both climate model simulations, ob-
served climate variables and proxies. This framework provides a theoretical
basis for evaluating climate model simulations by estimating the amplitude
of a latent forcing effect embedded in the simulations. The aim of the present
work was to suggest appropriate statistical methods that can be employed
for the estimation.

To this end, several latent factor models were proposed. The models have
different structures, differing in the number of observed and/or unobserved
(latent) variables (see Table 1 in Sec. 3.2 for an overview). To evaluate
and compare their performance we conducted a pseudo-proxy experiment,
in which the true unobservable temperature is replaced by selected climate
model simulations. The analysis of the data with the zero proxy noise in-
dicated the advantage of more complicated models with two latent factors
over the one-factor models. This is due to the possibility to simplify the
structure of the former models by eliminating the second latent factor form
the models, which may lead to a more precise estimation of the amplitude of
a forcing effect in a climate model. However, concerning the three-indicator
models, it was found that such a simplification should preferably involve all
indicators, like in the o.i.FA(3,1)-model, otherwise the estimation proce-
dure might be unstable. This finding was confirmed by analyzing data with
added noise: the higher the noise level, the higher chance to observe im-
proper estimates under various FA(3,2)-models, which requires the models
to be respecified accordingly.

In the climatological context, the analysis of data with added noise is
of the most importance as such data reflect the properties of real-world
proxies contaminated with a large non-climatic noise. Increasing noise to
such a level when observations consist almost only of noise affected highly
negatively all statistical models analyzed. Nevertheless, the results clearly
pointed out on two competing models: the j.i.FA(2,1)-model and the
o.i.FA(3,1)-model. Their performance was not only better than the per-
formance of the others but also more or less equal. Based on this result and
keeping in mind that the estimation procedure for overidentified models, as
opposed to just-identified models, ought to be accompanied by an additional
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procedure of assessing the overall model fit to data, which may be challeng-
ing for non-statisticians, we may conclude that the simpler model, i.e. the
j.i.FA(2,1)-model, is preferred for a real-world analysis. In addition, the
model demonstrated a quite good performance even under heteroscedastic-
ity.

Note that the j.i.FA(2,1)-model has the same estimator of the am-
plitude of a forcing effect in a climate model as the j.i.ME-model, which
however demonstrated much worse performance, and therefore cannot be
recommended to be applied in reality. The main reason behind it was the
use of different methods of constructing a confidence region for the parame-
ter representing the amplitude of a forcing effect. Hence, another important
finding of our analysis concerns two methods of constructing a confidence
region.

The first method leads always to a bounded confidence interval, referred
to as the Wald confidence interval (see (2.3.12)) whereas the second method,
based on the Fieller method of finding the confidence interval of the ratio
of two normal means (see (2.3.25)), is able to generate not only a bounded
confidence intervall but also two types of unbounded confidence regions.
The results shows the superiority of the Fieller confidence region, especially
when the correlation between simulated temperatures and the proxy/ob-
served temperature is not significantly different from zero. In such cases,
the conclusions about the amplitude of a forcing effect in a climate model
could be imprecise but still reasonable and interpretable from the climatolog-
ical point of view, leading to a more comprehensive description of properties
of a climate model under consideration.

The discussion in Sec. 2.3.3 has indicated prospective directions of fu-
ture research. Closer investigation of the j.i.FA(2,1)-model is needed in
connection with its possible application in the detection and attribution
studies. Another interesting topic is a deeper investigation of the differences
in performance of statistical models with and without the discrepancy term
in the relation between latent forcing effects, suggested by Tingley et al.
(2015).
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Figure A1. The sample ACF function up to 30 lags for the residual {δEnsemble t} =

{xEnsemble, repl.i t − x̄Ensemble .t}-sequences (the E1 and E2 ensembles). The two-sided

95% and 99% bounds, denoted by dashed lines, are equal to ±1.96/
√
n and

±2.58/
√
n, respectively, where n = 1000/m.
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Figure A2. The sample ACF function up to 30 lags for {xEnsemble, repl.i t}-sequences

(the E1 and E2 ensembles). The two-sided 95% and 99% bounds, denoted by

dashed lines, are equal to ±1.96/
√
n and ±2.58/

√
n, respectively, where n =

1000/m.
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sities for the single forcing simulations. All data have the time unit of 10 years

(m = 10).
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Figure A4. Estimated densities for λ̂11/λ̂21 associated with the o.i.FA(2,1)-

model, and calculated on the basis of data sets obtained by adding noise satisfying

PNVz = 0.2 (the upper plot), and PNVz = 2/3 (the second plot) to five basic

data sets with xvolcanic as xf and xE1, repl.i as τ , i = 1, 2, 3, 4, 5. The colored dots at

the horizontal axis denote λ̂11/λ̂21 associated with the basic sets (see Summary

1.1-1.5.).

Summary 1. Result of fitting the statistical models described in Table 1.
Only the final models associated with an admissible/interpretable solution
and an acceptable overall fit are presented. The overall fit of the overi-
dentified models was assessed statistically by the χ2 test, involving the G
test statistic, defined in (2.3.20), and heuristically using four goodness-of-fit
indices: GFI, AGFI, SRMR and CFI (see 2.5.5-2.5.8). The associated UR-
statistic was calculated according to (A.1) in Appendix with weights equal to
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1 due to the fact that σ2
ε = 0. The results are based on the following data sets:

1.1:...........(1) {xvolcanic, .τE1, repl.1};
............... (2) {xvolcanic, .τE2, repl.1};
............... (3) {xvolcanic, .τE1, repl.1, .xE1, repl.j}, j = 2, 4;
............... (4) {xvolcanic, .τE2, repl.1, .xE2, repl.j}, j = 2, 3;
............... (5) {xvolcanic, .τE1, repl.1, .xE2, repl.j}, j = 1, 3;
............... (6) {xvolcanic, .τE2, repl.1, .xE1, repl.j}, j = 4, 5.

UR(xvolcanic, τE1, repl.1) = 8.879, UR(xvolcanic, τE2, repl.1) = 6.712

.

.

. Model Ref. df Data xrepl.j a > 0 λ̂11

/
λ̂21 ..95% CR for λ11/λ21

num. set ..calculated according to

...(2.3.12) ........ (2.3.25)

ME, FA(2,1) 2.3.1&.14 0 (1) - TRUE 0.696 (0.441,.0.950) .. (0.471,.1.007)

(2) - TRUE 0.673 (0.368,.0.977)....(0.430,.1.122)

o.i.FA(2,1) 2.5.4 1 (1) - TRUE 0.813 (0.585,.1.042)....(0.604,.1.077)

j.i.FA(2,2) 2.5.2 0 (2) - TRUE 0.673 ..........−.......... (0.430,.1.122)

1sto.i.FA(3,1) 2.5.16 2 (3) 2 TRUE 0.924 ..........−.......... (0.714,.1.198)

4 TRUE 0.883 ..........−.......... (0.666,.1.161)

1sto.i.FA(3,2) 2.5.16 1 (4) 2 TRUE 0.676 ..........−.......... (0.431,.1.126)

3 TRUE 0.677 ..........−.......... (0.428,.1.143)

j.i.FA(3,2) 2.5.16 0 (5) 1 TRUE 0.989 ..........−.......... (0.595,.1.638)

3 TRUE 0.906 ..........−.......... (0.641,.1.265)

3do.i.FA(3,2) 2.5.16 1 (6) 4 TRUE 0.918 ..........−.......... (0.574,.1.592)

5 TRUE 0.738 ..........−.......... (0.525,.1.063)

where a is the leading coefficient in inequality (2.3.25).
If a > 0 is TRUE, .H0 : σ2

ξf
= 0 is rejected.

Model Ref. df Data xrepl.j G p-value GFI AGFI SRMR CFI

num. set

o.i.FA(2,1) (2.5.4) 1 (1) - 1.606 0.205 0.983 0.949 0.039 0.99

1sto.i.FA(3,1) (2.5.16) 2 (3) 2 0.220 0.896 0.999 0.996 0.010 1

4 0.117 0.941 0.999 0.998 0.009 1

1sto.i.FA(3,2) (2.5.16) 1 (4) 2 0.192 0.662 0.999 0.992 0.005 1

3 1.987 0.159 0.987 0.921 0.021 0.99

3do.i.FA(3,2) (2.5.16) 1 (6) 4 0.450 0.502 0.997 0.982 0.020 1

5 4.596 0.032 0.971 0.829 0.041 0.96

to be continued on the next page
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1.2:.........(1) {xvolcanic, .τE1, repl.2},
...............(2) {xvolcanic, .τE2, repl.2},
...............(3) {xvolcanic, .τE1, repl.2, .xE1, repl.j}, j = 3, 4;
............. (4) {xvolcanic, .τE2, repl.2, .xE2, repl.j}, j = 3;
............. (5) {xvolcanic, .τE1, repl.2, .xE2, repl.j}, j = 2, 3;
............. (6) {xvolcanic, .τE2, repl.2, .xE1, repl.j}, j = 1, 5.

UR(xvolcanic, τE1, repl.2) = 8.373, UR(xvolcanic, τE2, repl.2) = 7.176

.

.

. Model Ref. df Data xrepl.j a > 0 λ̂11

/
λ̂21 ....95% CI for λ11

/
λ21

num. set ...calculated according to

....(2.3.12) ......... (2.3.25)

ME, FA(2,1) 2.3.1&.14 0 (1) - TRUE 0.809 (0.500,.1.118).. (0.542,.1.199)

(2) - TRUE 0.590 (0.337,.0.844). (0.383,.0.945)

o.i.FA(2,1) 2.5.4 1 (1) - TRUE 0.937 (0.648,.1.226).. (0.679,.1.285)

j.i.FA(2,2) 2.5.2 0 (2) - TRUE 0.590 ..........−......... (0.383,.0.945)

1sto.i.FA(3,1) 2.5.16 2 (3) 3 TRUE 0.962 ..........−......... (0.706,.1.303)

4 TRUE 0.959 ..........−......... (0.695,.1.312)

1sto.i.FA(3,2) 2.5.16 1 (4) 3 TRUE 0.591 ..........−......... (0.382,.0.951)

2ndo.i.FA(3,2) 2.5.16 1 (5) 2 TRUE 1.021 ..........−......... (0.746,.1.394)

3 TRUE 1.020 ..........−......... (0.743,.1.399)

3do.i.FA(3,2) 2.5.16 1 (6) 1 TRUE 0.727 ..........−......... (0.519,.1.056)

5 TRUE 0.790 ..........−......... (0.565,.1.162)

where a is the leading coefficient in inequality (2.3.25).
......If a > 0 is TRUE, .H0 : σ2

ξf
= 0 is rejected.

Model Ref. df Data xrepl.j G p-value GFI AGFI SRMR CFI

num. set

o.i.FA(2,1) 2.5.4 1 (1) - 1.396 0.237 0.985 0.956 0.038 0.99

1sto.i.FA(3,1) 2.5.16 2 (3) 3 0.963 0.618 0.994 0.981 0.021 1

4 1.860 0.395 0.988 0.964 0.031 1

1sto.i.FA(3,2) 2.5.16 1 (4) 3 4.331 0.037 0.972 0.831 0.022 0.98

2ndo.i.FA(3,2) 2.5.16 1 (5) 2 0.193 0.661 0.999 0.992 0.010 1

3 0.211 0.646 0.999 0.992 0.010 1

3do.i.FA(3,2) 2.5.16 1 (6) 1 0.124 0.725 0.999 0.995 0.007 1

5 0.606 0.436 0.996 0.976 0.016 1

to be continued on the next page
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1.3:...........(1) {xvolcanic, .τE1, repl.3};
............... (2) {xvolcanic, .τE2, repl.3};
............... (3) {xvolcanic, .τE1, repl.3, .xE1, repl.j}, j = 1;
............... (4) {xvolcanic, .τE2, repl.3, .xE1, repl.j}, j = 3, 4, 5.

UR(xvolcanic, τE1, repl.3) = 7.524, UR(xvolcanic, τE2, repl.3) = 6.887

.

.

. Model Ref. df Data xrepl.j a > 0 λ̂11

/
λ̂21 ...95% CI for λ11

/
λ21

num. set ...calculated according to

......(2.3.12) ............ (2.3.25)

ME, FA(2,1) 2.3.1&.14 0 (1) - TRUE 0.878 (0.515, .1.241).. (0.575,.1.369)

0 (2) - TRUE 0.679 (0.378, .0.981).. (0.436,.1.113)

o.i.FA(2,1) 2.5.4 1 (1) - TRUE 0.888 (0.610, .1.166).. (0.638,.1.220)

j.i.FA(2,2) 2.5.2 0 (2) - TRUE 0.679 ..........−............(0.436,.1.113)

1sto.i.FA(3,1) 2.5.16 2 (3) 1 TRUE 1.031 ..........−........... (0.770,.1.387)

3sto.i.FA(3,2) 1 (4) 3 TRUE 0.774 ..........−........... (0.520,.1.191)

4 TRUE 0.872 ..........−........... (0.554,.1.456)

j.i.FA(3,2) 0 5 TRUE 0.808 ..........−............(0.576,.1.174)

where a is the leading coefficient in inequality (2.3.25).
......If a > 0 is TRUE, H0 : σ2

ξf
= 0 is rejected.

Model Ref. df Data xrepl.j G p-value GFI AGFI SRMR CFI

num. set

o.i.FA(2,1) 2.5.4 1 (1) - 0.007 0.936 0.999 0.999 0.003 1

1sto.i.FA(3,1) 2.5.16 2 (3) 1 1.329 0.514 0.991 0.973 0.026 1

3do.i.FA(3,2) 1 (4) 3 0.349 0.555 0.997 0.986 0.013 1

4 0.171 0.679 0.998 0.993 0.012 1

to be continued on the next page

89



1.4:...........(1) {xvolcanic, .τE1, repl.4};
............... (2) {xvolcanic, .τE1, repl.4, .xE1, repl.j}; j = 3, 5.
............... (3) {xvolcanic, .τE1, repl.4, .xE2, repl.j}. j = 2.

UR(xvolcanic, .τE1, repl.4) = 6.865

.

.

. Model Ref. df Data xrepl.j a > 0 λ̂11

/
λ̂21 ....95% CI for λ11

/
λ21

num. set .....calculated according to

......(2.3.12) ....... (2.3.25)

ME,FA(2,1) 2.3.1&.14 0 (1) - TRUE 1.114 (0.618,.1.610)..(0.715,.1.830)

o.i.FA(2,1) 2.5.4 1 (1) - TRUE 1.185 (0.740,.1.630)..(0.811,.1.776)

1sto.i.FA(3,1) 2.5.16 3 (2) 3 TRUE 1.235 ..........−..........(0.849,.1.828)

5 TRUE 1.248 ..........−..........(0.900,.1.773)

2ndo.i.FA(3,2) 2.5.16 1 (3) 2 TRUE 1.466 ..........−..........(0.975,.2.282)

where a is the leading coefficient in inequality (2.3.25).
......If a > 0 is TRUE, H0 : σ2

ξf
= 0 is rejected.

Model Ref. df Data x repl.j G p-value GFI AGFI SRMR CFI

num. set

o.i. FA(2,1) 2.5.4 1 (1) - 0.207 0.649 0.998 0.994 0.018 1

1sto.i.FA(3,1) 2.5.16 3 (2) 3 0.169 0.919 0.999 0.997 0.009 1

5 6.646 0.036 0.959 0.878 0.051 0.96

2ndo.i.FA(3,2) 2.5.16 1 (3) 2 0.436 0.509 0.987 0.982 0.020 1

to be continued on the next page
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1.5:............ (1) {xvolcanic, .τE1, repl.5},
.................. (2) {xvolcanic, .τE1, repl.5, .τE1, repl.j}, j = 1, 2, 3;

UR(xvolcanic, τE1, repl.5) = 9.226

.

.

. Model Ref. df Data xrepl.j a > 0 λ̂11

/
λ̂21 .....95% CI for λ11

/
λ21

num. set ......calculated according to

......(2.3.12) ......... (2.3.25)

ME, FA(2,1) 2.3.1&.14 0 (1) - TRUE 0.699 (0.450, .0.948) ..(0.476, .0.997)

o.i.FA(2,1) 2.5.4 1 (1) - TRUE 0.875 (0.625, .1.125) ..(0.647,.1.168)

1sto.i.FA(3,1) 2.5.16 2 (2) 1 TRUE 0.909 ..........−............(0.702,.1.177)

2 TRUE 0.987 ..........−............(0.764,.1.285)

3 TRUE 0.925 ..........−............(0.764,.1.214)

where a is the leading coefficient in inequality (2.3.25).
.....If a > 0 is TRUE, H0 : σ2

ξf
= 0 is rejected.

Model Ref. Data xtotal, repl.j G p-value GFI AGFI SRMR CFI

num. set

o.i.FA(2,1) 2.5.4 (1) - 3.780 0.051 0.959 0.878 0.059 0.95

1sto.i.FA(3,1) 2.5.16 (2) 1 3.879 0.144 0.975 0.925 0.037 0.99

2 0.302 0.860 0.999 0.994 0.011 1

3 2.297 0.317 0.985 0.955 0.031 0.99

to be continued on the next page
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1.6:......... (1) {xland-use, τE1, repl.1};
............... (2) {xland-use, τE2, repl.1};
............... (3) {xland-use, τE1, repl.1, xE1, repl.j}, j = 2, 4;
...........-... (4) {xland-use, τE2, repl.1, xE2, repl.j}, j = 2, 3;
...........-... (5) {xland-use, τE1, repl.1, xE2, repl.j}, j = 1, 3.
...........-... (6) {xland-use, τE2, repl.1, xE1, repl.j}, j = 4, 5.

UR(xland-use, τE1, repl.1) = 1.246, UR(xland-use, τE2, repl.1) = 0.3436

.

.

. Model Ref. df Data xrepl.j a > 0 λ̂11

/
λ̂21 ..........95% CI for λ11

/
λ21

num. set ..........calculated according to

....(2.3.12) ............... (2.3.25)

ME, FA(2,1) 2.3.1&.14 0 (1) - FALSE 0.946 (-1.16,.3.05)..{(−∞,−1.34), .(0.08,∞)}

(2) - FALSE 2.511 (-13.4,.18.4)...{(−∞,−0.33), .(0.13,∞)}

j.i.FA(2,2) 2.5.2 0 (1) - FALSE 0.946 ........−..........{(−∞,−1.34), .(0.07,∞)}

(2) - FALSE 2.511 ........−..........{(−∞,−0.33), .(0.13,∞)}

1sto.i.FA(3,2) 2.5.16 1 (3) 2 FALSE 1.204 ........−..........{(−∞,−1.35), .(0.18,∞)}

4 FALSE 0.948 ........−..........{(−∞,−1.37), .(0.07,∞)}

(4) 2 FALSE 2.651 ........−..........{(−∞,−0.32), .(0.13,∞)}

3 FALSE 1.561 ........−..........{(−∞,−0.26), .(0.09,∞)}

(5) 1 FALSE 0.467 ........−..........{(−∞,−4.8), .(−0.01,∞)}

3 FALSE 0.685 ........−..........{(−∞,−2.3), .(0.11,∞)}

(6) 4 FALSE 0.300 ........−...................... {(−∞, .∞)}

5 FALSE 2.952 ........−...................... {(−∞, .∞)}

where a is the leading coefficient in inequality (2.3.25).
......If a > 0 is FALSE, H0 : σ2

ξf
= 0 is not rejected.

Model Ref. df Data xrepl.j G p-value GFI AGFI SRMR CFI

num. set

1sto.i.FA(3,2) 2.5.16 1 (3) 2 0.267 0.605 0.998 0.989 0.014 1

4 0.000 0.991 1.000 1.000 0.000 1

(4) 2 0.235 0.628 0.998 0.991 0.006 1

3 0.191 0.662 0.99 0.992 0.014 1

(5) 1 0.525 0.469 0.996 0.979 0.029 1

3 0.134 0.714 0.999 0.995 0.015 1

(6) 4 1.400 0.237 0.991 0.951 0.059 1

5 0.700 0.403 0.995 0.972 0.028 1

to be continued on the next page
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1.7:......... (1) {xland-use, τE1, repl.2};
............... (2) {xland-use, τE2, repl.2};
............... (3) {xland-use, τE1, repl.2, xE1, repl.j}, j = 3, 4;
...........-.-. (4) {xland-use, τE2, repl.2, xE2, repl.j}, j = 3;
...........-.-. (5) {xland-use, τE1, repl.2, xE2, repl.j}, j = 2, 3;
...........-.-. (6) {xland-use, τE2, repl.2, xE1, repl.j}, j = 1, 5.

UR(xland-use, τE1, repl.2) = −0.510, UR(xland-use, τE2, repl.2) = 0.411

.

.

. Model Ref. df Data xrepl.j a > 0 λ̂11

/
λ̂21 ......95% CI for λ11

/
λ21

num. set ......calculated according to

..(2.3.12) ............. (2.3.25)

ME, FA(2,1) 2.3.1&.14 0 (1) - FALSE -2.54 (-13.7,.8.6)..{(−∞,−0.15), .(0.60,∞)}

(2) - FALSE 1.97 (-8.5,.12.5)..{(−∞,−0.33), .(0.11,∞)}

j.i.FA(2,2) 2.5.2 0 (1) - FALSE -2.54 .......−........{(−∞,−0.15), .(0.61,∞)}

(2) - FALSE 1.97 .......−........{(−∞,−0.33), .(0.11,∞)}

1sto.i.FA(3,2) 2.5.16 1 (3) 3 FALSE -10.31 .......−.......{(−∞,−0.49), .(0.57,∞)}

4 FALSE -4.60 .......−.......{(−∞,−0.27), .(0.52,∞)}

(5) 2 FALSE -0.58 .......−...................{−∞, .∞}

3 FALSE -0.09 .......−...................{−∞, .∞}

(6) 1 FALSE 0.82 .......−...................{−∞, .∞}

5 FALSE 0.37 .......−...................{−∞, .∞}

where a is the leading coefficient in inequality (2.3.25).
.......If a > 0 is FALSE, H0 : σ2

ξf
= 0 is not rejected.

Model Ref. df Data xrepl.j G p-value GFI AGFI SRMR CFI

num. set

1sto.i.FA(3,2) 2.5.16 1 (3) 3 1.584 0.208 0.990 0.937 0.031 0.99

4 1.997 0.158 0.987 0.921 0.036 0.97

(5) 2 0.936 0.333 0.994 0.962 0.043 1

3 1.498 0.221 0.990 0.940 0.063 0.98

(6) 1 0.897 0.343 0.994 0.964 0.044 1

5 1.286 0.257 0.991 0.949 0.056 0.99

to be continued on the next page
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1.8:......... (1) {xland-use, τE1, repl.3};
............... (2) {xland-use, τE2, repl.3};
............... (3) {xland-use, τE1, repl.3, xE1, repl.j}, j = 1;
............... (4) {xland-use, τE2, repl.3, xE1, repl.j}, j = 3, 4, 5;
...............

UR(xland-use, τE1, repl.3) = 1.521, UR(xland-use, τE2, repl.3) = −0.679

.

.

. Model Ref. df Data xrepl.j a > 0 λ̂11

/
λ̂21 ................95% CI for λ11

/
λ21

num. set .............calculated according to

....(2.3.12) ................. (2.3.25)

ME, FA(2,1) 2.3.1&.14 0 (1) - FALSE 0.83 (-0.83,.2.49)...{(−∞,−2.01), .(0.07,∞)}

(2) - FALSE -1.32 (-5.83,.3.20)..{(−∞,−0.09), .(0.52,∞)}

j.i.FA(2,2) 2.5.2 0 (1) - FALSE 0.83 .......−..........{(−∞,−2.01), .(0.07,∞)}

(2) - FALSE -1.32 .......−.........{(−∞,−0.09), .(0.52,∞)}

1sto.i.FA(3,2) 2.5.16 1 (3) 1 FALSE 0.62 .......−.........{(−∞,−3.70), .(0.02,∞)}

(4) 3 FALSE -1.04 .......−..........{(−∞,−0.15), .(0.46,∞)}

4 FALSE -0.55 .......−..........{(−∞, 0.08), .(0.23,∞)}

5 FALSE -1.05 .......−..........{(−∞,−0.10)., (0.48,∞)}

where a is the leading coefficient in inequality (2.3.25).
.....If a > 0 is FALSE, H0 : σ2

ξf
= 0 is not rejected.

Model Ref. df Data xrepl.j G p-value GFI AGFI SRMR CFI

num. set

1sto.i.FA(3,2) 2.5.16 1 (3) 1 0.415 0.519 0.997 0.983 0.017 1

(4) 3 0.075 0.784 0.999 0.997 0.011 1

4 0.724 0.395 0.996 0.971 0.037 1

5 0.084 0.772 0.999 0.997 0.010 1

to be continued on the next page
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1.9:......... (1) {xland-use, .τE1, repl.4};
............... (2) {xland-use, .τE1, repl.4, .xE1, repl.j}, j = 3, 5;
............... (3) {xland-use, .τE1, repl.4, .xE2, repl.j}, j = 2.

UR(xland-use, τE1, repl.4) = 0.583,

.

.

. Model Ref. df Data xrepl.j a > 0 λ̂11

/
λ̂21 .......95% CI for λ11

/
λ21

num. set .......calculated according to

....(2.3.12) ............. (2.3.25)

ME, FA(2,1) 2.3.1&.14 0 (1) - FALSE 2.50 (-7.3,.12.3).{(−∞,−0.75), .(0.16,∞)}

j.i.FA(2,2) 2.5.2 0 (1) - FALSE 2.50 .......−........{(−∞,−0.75), .(0.16,∞)}

j.i.FA(3,2) 2.5.16 0 (2) 3 FALSE 4.77 .......−.................{−∞, .∞}

where a is the leading coefficient in inequality (2.3.25).

.....If a > 0 is FALSE, H0 : σ2
ξf

= 0 is not rejected.

1.10:......... (1) {xland-use, .τE1, repl.5};
................. (2) {xland-use, .τE1, repl.5, .xE1, repl.j} , j = 1, 2, 3.

UR(xland-use, τE1, repl.5) = 0.820,

.

.

. Model Ref. df Data xrepl.j a > 0 λ̂11

/
λ̂21 .......95% CI for λ11

/
λ21

num. set .......calculated according to

......(2.3.12) .............. (2.3.25)

ME,FA(2,1) 2.3.1&.14 0 (1) - FALSE 1.51 (-2.93,.5.93)..{(−∞,−0.85), .(0.11,∞)}

j.i.FA(2,2) 2.5.2 0 (1) - FALSE 1.51 .......−..........{(−∞,−0.85), .(0.11,∞)}

1sto.i.FA(3,2) 2.5.16 1 (2) 1 FALSE 1.32 .......−..........{(−∞,−0.95), .(0.10,∞)}

2 FALSE 2.05 .......−..........{(−∞,−0.79), .(0.21,∞)}

3 FALSE 1.46 .......−..........{(−∞,−0.94), .(0.12,∞)}

where a is the leading coefficient in inequality (2.3.25).
.....If a > 0 is FALSE, H0 : σ2

ξf
= 0 is not rejected.

Model Ref. df Data xrepl.j G p-value GFI AGFI SRMR CFI

num. set

1sto.i.FA(3,2) 2.5.16 1 (2) 1 3.634 0.057 0.976 0.857 0.035 0.96

2 0.452 0.502 0.997 0.982 0.016 1

3 0.031 0.860 0.999 0.999 0.004 1
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The correlation test-statistic UR

This statistic is of regression type and allows to test the null hypothesis
whether the climate model under consideration does not explain any of the
temporal variation in the actual climate record, v, defined in (2.2.7). For
testing a single simulation, the statistic is defined as follows (SUN12, Ap-
pendix):

UR =
R (xf, v)√

Var (R(xf, v))
(A.1)

where

R (xf, v) =

∑n
t=1 w̃t(xft − µx)(vt − µ(w̃)

v )∑n
t=1 w̃

2
t (vt − µ

(w̃)
v )2

,

Var (R(xf, v)) =
σ2
δf∑n

t=1 w̃
2
t (vt − µ

(w̃)
v )2

and µ
(w̃)
v estimated by the weighted average

v̄(w̃) =

∑n
t=1 w̃tvt∑n
t=1 w̃t

.

The correct expression for the weights w̃t is given in Moberg et. al. (2015,p.427):

w̃t =



√
σ2
η

σ2
η+σ2

ε (t) t ∈ the reconstruction period

√
σ2
η

σ2
η+σ2

θ
t ∈ the calibration period

(A.2)

To arrive at a judgment of statistical significance of UR one uses the fact that

UR
approx.∼ N(0, 1) under the null hypothesis. Thus, if for example UR > 1.65,

then H0 can be rejected at the one-sided 5% significance level. The higher
UR, the stronger the correlation between the model and the observations.
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An example of using the R package sem

The model to be fitted is the 1sto.i.FA(3,2)-model with λ11, λ21, λ22, λ31,
and λ32 as model parameters (see Table 1). Homoscedasticity is assumed.

1 mydata<−data . frame ( x f , z , x t o t a l ) # the data f i l e c o n s i s t i n g o f
2 # the va lue s o f the three
3 # i n d i c a t o r v a r i a b l e s
4

5 S<−cov ( mydata ) # the sample var iance−
6 # covar iance matrix o f
7 # the i n d i c a t o r s
8 l i b r a r y ( sem) # to load the sem package
9

10 ## Step 1 : model s p e c i f i c a t i o n ( here , in the path format )
11 model FA32<− spec i fyMode l ( )
12 F1 −> x f , lambda 11 , NA # a f r e e param . with a s t a r t
13 # value picked by sem i t s e l f
14 F2 −> x f , NA, 0
15 F1 −> z , lambda 21 , NA
16 F2 −> z , lambda 22 , NA
17 F1 −> x t o t a l , lambda 31 , NA
18 F2 −> x t o t a l , lambda 32 , NA
19 x f <−> x f , NA, 0 .0113
20 z <−> z , NA, 0 .0134
21 x t o t a l<−> x t o t a l , NA, 0 .0134
22 F1 <−> F1 , NA, 1
23 F2 <−> F2 , NA, 1
24 F1 <−> F2 , NA, 0

where F1 stays for ξ′f , while F2 for ξ′total⊥f. A single-headed arrow indicates a factor
loading, whereas a double-headed arrow represents a variance or covariance.

1 ## Step 2 : e s t imat i on
2 opt ions ( d i g i t s =4) ## s e t the number o f d i g i t s in output
3

4 #to s p e c i f y h e u r i s t i c measures o f the model f i t
5 opt ions ( f i t . i n d i c e s = c ( ”GFI” , ”AGFI” , ”SRMR” , ”CFI” ) )
6

7 FA32<− sem( model FA32 , S , N=100 , f i t . i ndec e s=TRUE)
8 # where N i s a number o f obs .
9

10 # Completely s tandard i zed s o l u t i o n ( see page 30 , f oo tno t e nr . 8 )
11 c o e f (FA32 , s tandard i zed=TRUE)
12 lambda 11 lambda 21 lambda 22 lambda 31 lambda 32
13 0 .7069 0 .6739 0 .5475 0 .7272 0 .5050
14 # the s o l u t i o n i s admi s s i b l e

continued on following page
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1 summary(FA32)
2 Model Chisquare = 0.1913 # the G s t a t i s t i c ( 2 . 3 . 2 0 )
3 Df = 1 # with 1 degree o f freedom
4 Pr(>Chisq ) = 0.6619 # and the a s s o c i a t e d p−value
5 Goodness−of− f i t index = 0.9987 # GFI see ( 2 . 5 . 5 )
6 Adjusted goodness−of− f i t index = 0.9923 # AGFI ( 2 . 5 . 6 )
7 SRMR = 0.005211 # SRMR ( 2 . 5 . 7 )
8 Bent le r CFI = 1 # CFI ( 2 . 5 . 8 )
9

10 Parameter Est imates
11 Estimate Std Error z va lue Pr(>| z | )
12 lambda 11 0 .1063 0.01511 7 .033 2 .020 e−12 x f <−−− F1
13 lambda 21 0 .1572 0.02913 5 .399 6 .707 e−08 z <−−− F1
14 # r e j e c t H 0 : lambda 21=0 at a l l convent iona l s i gn . l e v e l s
15 lambda 22 0 .1278 0.03025 4 .223 2 .411 e−05 z <−−− F2
16 lambda 31 0 .1811 0.03029 5 .980 2 .237 e−09 x t o t a l <−−− F1
17 lambda 32 0 .1258 0.03438 3 .659 2 .534 e−04 x t o t a l <−−− F2
18

19 I t e r a t i o n s = 12 ## the s o l u t i o n converged in 12 i t e r a t i o n s
20

21 ## to c a l c u l a t e the r a t i o and
22 ## the a s s o c i a t e d 95% con f idence s e t accord ing to ( 2 . 3 . 2 5 )
23 Lambda11<−c o e f (FA32) [ [ 1 ] ]
24 Lambda21<−c o e f (FA32) [ [ 2 ] ]
25 Var<−vcov (FA32) # the matrix o f the est imated var iance
26 # and covar i ance s among the e s t imate s
27 var Lambda11<−Var [ 1 , 1 ]
28 var Lambda21<−Var [ 2 , 2 ]
29 cov Lambda11 Lambda21<−Var [ 1 , 2 ]
30 a<−Lambda21ˆ2−3.8415∗var Lambda21
31 a
32 0.02166 # >0, which amount to r e j e c t i n g H 0 : lambda 21=0 at 5%

s ign . l e v e l
33 b<−Lambda11∗Lambda21−3.8415∗ cov Lambda11 Lambda21
34 c<−Lambda11ˆ2−3.8415∗var Lambda11
35 r 1<− −s q r t ( ( b/a ) ˆ2−(c/a ) )+(b/a )
36 r 2<− s q r t ( ( b/a ) ˆ2−(c/a ) )+(b/a )
37 r a t i o<−Lambda11/Lambda21
38 r e s u l t<−cbind ( ra t i o , r 1 , r 2 )
39 r e s u l t
40 r a t i o r 1 r 2
41 0 .6757 0 .4308 1 .1259

Since a > 0, the Fieller confidence region for the amplitude of a forcing effect in a

climate model, represented by the ratio λ11/λ21, is a bounded confidence interval,

i.e.
[
0.4308, 1.1259

]
.
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