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The main purpose of this paper is to develop a theoretical framework for assessing effective population size
and genetic divergence in situations with structured populations that consist of various numbers of more or
less interconnected subpopulations. We introduce a general infinite allele model for a diploid, monoecious
and subdivided population, with subpopulation sizes varying over time, including local subpopulation extinc-
tion and recolonization, bottlenecks, cyclic census size changes or exponential growth. Exact matrix analytic
formulas are derived for recursions of predicted (expected) gene identities and gene diversities, identity by
descent and coalescence probabilities, and standardized variances of allele frequency change. This enables us
to compute and put into a general framework a number of different types of genetically effective population
sizes (N, ) including variance, inbreeding, nucleotide diversity, and eigenvalue effective size. General expres-
sions for predictions (gsr) of the coefficient of gene differentiation Gsr are also derived. We suggest that in
order to adequately describe important properties of a subdivided population with respect to allele frequency
change and maintenance of genetic variation over time, single values of gsr and N, are not enough. Rather,
the temporal dynamic patterns of these properties are important to consider. We introduce several schemes
for weighting subpopulations that enable effective size and expected genetic divergence to be calculated and
described as functions of time, globally for the whole population and locally for any group of subpopulations.
The traditional concept of effective size is generalized to situations where genetic drift is confounded by
external sources, such as immigration and mutation. Finally, we introduce a general methodology for state
space reduction, which greatly decreases the computational complexity of the matrix analytic formulas.
© 2014 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

the concept was first introduced by Wright [113,114], as reviewed e.g.
by Ewens [21], Crow and Denniston [17], Orrive [76], Caballero [7],

Determining the amount of genetic variation within and between
populations and the rate of loss of genetic variation is of fundamental
importance in evolutionary and conservation genetics, and crucial pa-
rameters in this respect include the genetically effective population
size (Ne) and the coefficient of gene differentiation (Gsr). Nei [64] in-
troduced Ggr as a multiallelic and multilocus extension of the fixation
index Fsr of Wright [115,116] and it quantifies the proportion of ge-
netic variation that is explained by genetic differences between pop-
ulations. The effective size is the size of an ideal homogeneous pop-
ulation without mutations or selection, that has the same expected
change of some genetic characteristic (e.g. inbreeding) per generation
as the studied one. Many versions of N, have been developed since
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Wang and Caballero [103], Waples [107], and Charlesworth [11]. Over
the years, N, has become an indispensable tool in conservation biol-
ogy for identifying population sizes necessary for short and long term
conservation of e.g. endangered species and populations [2,27,93,96].

Most models for N, refer to a single population of constant size,
and rules of thumb in conservation genetics are often based on such
models assuming single, isolated populations [1]. Inreal life, however,
populations are rarely isolated but are subject to gene flow among
more or less isolated subpopulations of varying size that are dispersed
over a particular geographic area.

The main purpose of the present paper is to develop theoretical
means for assessing effective population size and genetic divergence
in a situation with substructured populations that consist of vari-
ous numbers of more or less interconnected subpopulations whose
size can vary over space and time. Specifically, this analytical work
was prompted by a practical, real life case - the conservation ge-
netic situation of the Swedish wild wolf population. The Swedish wolf
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population is highly inbred and has been almost completely isolated
for several decades. Conservation genetics research has addressed
the severe genetic situation (e.g. [46,52,80]), specifically stressing the
need for breaking isolation and creating an interconnected population
system where the Swedish wolf population can exchange genes with
the Finnish population and populations further east [29,47]. Politi-
cians and managers have now also realized this need and various ways
of creating gene flow are discussed [53]. However, the necessary prop-
erties of such a substructured population in order to meet conserva-
tion genetic goals with respect to rate of inbreeding and genetic drift
are unclear, because theory for metapopulation effective population
size relevant for practical situations such as the current one has been
missing. In this paper, we develop the mathematical framework for
addressing such issues and several steps are involved in this process,
including 1) generalized recursion formulas for a number of genetic
quantities, 2) new analytical tools for reporting the time dynamics
of N and forecasts of Gsr, 3) a novel class of subpopulation weights,
4) a generalized unified theory of different types of effective size N,
and 5) a novel method of computational reduction for populations
with symmetries.

We briefly describe these five contributions. First, we consider a
class of diploid, monoecious populations evolving in discrete gen-
erations under selective neutrality, with mutations, migration and
genetic drift (due to random sampling of genes when a finite pop-
ulation reproduces) as evolutionary forces affecting the amount of
genetic variation. Whereas formulas for N, and Gsr are often devel-
oped under a variety of assumptions, such as a large population, a
small migration rate between subpopulations, or a long time frame,
we will rather use matrix analytic methods [10] in order to define ex-
act linear recursions for a number of quantities, including identity by
descent and coalescence probabilities, standardized variances of al-
lele frequency change, and predicted (expected) gene identities/gene
diversities. All these recursions are very similar, with matrices that
have rows and columns indexed by pairs of subpopulations. Although
several authors have considered such recursions, starting with the
seminal work in [56], our setup is more general in that we allow the
demographics, in terms of migration patterns, local census and local
effective sizes to vary in an arbitrary way, including global and lo-
cal bottlenecks, subpopulation extinction and recolonization, cyclic
changes, or exponential growth. From these recursions we get novel
and exact expressions of predictions of Gsr and various types of Ne
(inbreeding, variance, nucleotide diversity, eigenvalue).

Second, it is essential for protection of genetic characteristics of
populations and species to know the rate of loss of genetic variability
and subpopulation differentiation over short and long time intervals.
For a subdivided population it is typically not possible to summarize
this information with just a few parameters, not even when the sub-
population census sizes are constant over time. When a population
is isolated its degree of inbreeding, for example, will increase at a
fixed rate so that N, is constant from one generation to the next. In
contrast, if a subpopulation of a population system receives migrants
from the rest of the system, then the rate of inbreeding, and thereby
Ne, will vary over time. As a consequence, N, of the whole system will
fluctuate as well, as we will see below. For this reason we generalize a
new approach initiated in [73] for age structured models and variance
effective sizes, and report N, as a function of the time interval under
which genetic loss takes place. Similarly, the predicted Gsr depends
on when the forecast is made, and it can therefore be computed as
a function of the distance between the present and the time point
of prediction. This enables researchers to investigate the predicted
genetic effects of various demographic scenarios and management
schemes that include population systems rather than single, isolated
populations.

Third, we consider a large and novel class of schemes of weight-
ing subpopulations and show how they influence N, and predic-
tions of Ggr. Of particular interest are weights that are uniform (all

subpopulations weighted equally), proportional to subpopulation
sizes (each individual weighted equally) or reproductive (each in-
dividual weighted proportionally to its predicted or expected long
term number of descendants). We also consider local schemes for
which only subsets of subpopulations are assigned positive weights.
This could be of interest in practical management when the popu-
lation managed in a particular area is genetically connected to one
or several other populations, which act as more or less known ‘ghost
populations’ [4,91]. For such local weights, it is possible to quantify
exactly how various migration scenarios between the population of
interest and the other subpopulations affect Gsr and Ne.

Fourth, in an influential paper Whitlock and Barton [110] showed
that several notions of effective size are closely related for subdivided
populations, and here we extend their results by considering time
intervals of arbitrary length, and a larger class of effective sizes. To
this end, we utilize that each type of effective size involves a quantity
that is either defined backwards (identity by descent and coalescence
probabilities) or forwards (predicted gene identity, standardized vari-
ance of allele frequency change) in time, and the matrices of the cor-
responding linear recursions can be described in terms of pairs of
genes, drawn with or without replacement from the population. Al-
though the latter distinction has a negligible effect for a population
with a size of order, say, 100 or larger, it makes it possible to put all
notions of effective size into a unified framework, expressing each
one of them as a very explicit function of the initial conditions and
matrices of its linear recursion and of the subpopulation weights.

Fifth, we define a general way of exploiting invariance between
subpopulations, so that whenever certain symmetry conditions hold,
the size of the state space can be reduced from s2, where s is the
number of subpopulations.

In Section 2 we define the population dynamics and specify in
particular how migration, genetic drift and mutations enter into the
model. Subpopulation differentiation is treated in Section 3 and the
various types of effective sizes in Section 4. In Section 5 we consider
the special case when local census sizes and migration rates are time
independent. This is illustrated with several examples that highlight
the importance of reporting N, and predictions of Gsr as functions of
time. State space reduction is defined and exemplified in Section 6, a
summary and discussion are provided in Section 7, some extensions
of the theory and proofs can be found in Appendix A, and finally,
Table 1 provides a list of notations for some of the most important
quantities of the paper.

2. Model for demographics, reproduction, and mutations

Consider a diploid and monoecious population with a random
amount of selfing that is subdivided, with s subpopulations. It evolves
in discrete generations t=...,—1,0,1,2,... of which t < 0 repre-
sents the past, t = 0 the present and t > O the future. Let N;; > 0 be the
local census size of subpopulation i in generation t, with Ni; = 0 cor-
responding to extinction. Each individual carries two copies of a gene,
so that the total number of genes in subpopulation i and generation
tis 2Ny;. The total census size Ny = °;_; Ny; in generation t is assumed
to be positive, so that at least one subpopulation is non-extinct.

The local effective size Ny; in generation t of subpopulation i is
usually (but not necessarily) smaller than or equal to its local census
size Ny. The more variable reproduction between individuals in i is,
the smaller is Ngy;.

Occasionally, migration between subpopulations takes place, as
quantified by the forward and backward migration rates M;_ y; and
Byir from subpopulation k of generation t — 1 to subpopulation i of
generation t. More precisely, each gene of subpopulation k and gen-
eration t — 1 has an expected number M;_; y; of offspring, which, in
the next generation t, live in subpopulation i, whereas By, is the
probability that a parent of a gene in subpopulation i and generation t
originates from subpopulation k in the previous generation t — 1. The
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Table 1
Notation for selected quantities of the paper.

Symbol Definition

s Number of subpopulations

Ny Local census size of subpopulation i in generation t (= N; if time independent)

N; Global census size Y;_; Ny of generation t (= N if time independent)

Neti Local effective size of subpopulation i in generation t

M; = (My;) Matrix with forward migration rates between all pairs of subpopulations from generation t to t + 1

B; = (Bix) Matrix with backward migration rates between all pairs of subpopulations from generation t to t — 1

n Mutation probability for each gamete

Piiq Frequency of allele a in subpopulation i of generation t

Hy Gene diversity between subpopulations i and j of generation t

h; = (hy) Column vector of s? predicted gene diversities between all pairs of subpopulations, generation t

Fiij Gene identity between subpopulations i and j of generation t

fo= () Column vector of s? predicted gene identities between all pairs of subpopulations, generation t, or
identity by descent probabilities between generations t; and t, or standardized genetic drift covariances
between generations 0 and t

1 Column vector of s2 ones

8¢ = (Beij) Column vector of s2 probabilities of drawing the same gene with replacement from all pairs of
subpopulations

Ar = (Agiju) Square matrix of order s? in gene identity with replacement recursions

D¢ = (Dyij i) Square matrix of order s? in gene identity without replacement recursions

w; Weight assigned to subpopulation i

Wr = (wjwj) Row vector of s? sampling probabilities, all pairs of subpopulations, scheme T

Ws = (W;ilj3)  Row vector of s> sampling probabilities, all pairs of subpopulations, scheme S

U; Relative size of subpopulation i (if constant over time)

Vi Probability that distant ancestor belongs to subpopulation i (constant migration)

S Subset of subpopulations that have positive weights

Gst Coefficient of gene differentiation in generation t

&sTe Predicted Gsr¢ based on information from generation 0

Nei () Inbreeding effective size over time interval 7, global when all w; > 0

Nex (o0, t]) Nucleotide diversity effective size based on coalescence time of two genes from generation t, global
when all w; > 0

Nev(T) Variance effective size over time interval 7, global when all w; > 0

Neg Eigenvalue effective size, always globally for the whole population

A Largest eigenvalue of Ay = Aand D; =D

r=(ryj) Right eigenvector of A corresponding to eigenvalue A

o= (i) Left eigenvector of A corresponding to eigenvalue A

P = () Right eigenvector of D corresponding to eigenvalue A

p = (0y) Left eigenvector of D corresponding to eigenvalue A

m Migration rate, i.e. proportion of offspring that belong to a subpopulation different from their parents

m Defined for the island model, = sm/(s — 1)

NaN Not a number

forward migration rates determine the time progression of the local
census sizes, according to

S
Ni =Y Ne1xMi-1pis (1)
k=1

where each term on the right hand side gives the number of offspring
that the parents in subpopulation k and generation t — 1 contribute to
subpopulation i in generation t. In particular, M;_ ; is the observed
forward migration rate, a random variable with E(M;_q k) = M¢_1 k.
In order to define a larger and more flexible class of forward mi-
gration rates, we will not always require that N;_; j and N; are in-
tegers in (1). When N;_; = 0, the forward rates from subpopula-
tion k in generation t — 1 are not well defined, and this we write as
M;_1 ki = M;_1 ki = NaN, where NaN is short for ‘Not a Number’, and
a convention 0 - NaN = 0 is assumed in (1). However, a subpopula-
tion k that is extinct in generation t — 1 may still be recolonized in
the next generation through migration from other subpopulations, as
described in (1). The backward rates satisfy

Ne_1.kMi_1 ki
;’ Nti > O7
Ny

NaN, N =0.

(2)

By =

The total number of genetic variants (alleles) in generation tisn; > 1,
and for any non-extinct subpopulation i in generation t, Py, is the
fraction of genes in generation t and subpopulation i carrying al-
lele a=1,...,n;, whereas P, = NaN if N;; = 0. Our model of sub-
population extinction and recolonization is very general, but for

notation convenience we only consider non-extinct subpopulations
in the main text, and refer to the end of Appendix A for the extended
theory. See also [32,89,111] for more specific models of subpopulation
extinction and recolonization.

The gene is assumed to be selectively neutral, with a mutation
probability 0 < ; < 1 per gamete and generation. We will assume an
infinite allele model [42], so that each mutation creates a new allele,
never seen before. In more detail, the reproduction cycle between
generations t — 1 and t can be summarized in four steps as follows:

1. In each (non-extinct) subpopulation k=1,...,s of generation
t—1,arandom subset N, ;_; j of all N;_; ; individuals are selected
as breeders. An infinitely sized pre-migration gamete pool k is
formed, to which all breeders’ genes contribute in equal propor-
tions 1/(2Ne¢_1.x)-

2. Migration takes place by exchange of genetic material between
gamete pools, so that, after migration gamete pool i of a subpop-
ulation that is non-extinct in generation t, is a mixture of pre-
migration gamete pools 1, ..., s in proportions By, k=1,...,s.

3. The gametes of all post-migration pools i of step 2 mutate inde-
pendently with probability u.

4. Fertilization in a (non-extinct) subpopulationi € {1,..., s} of gen-
eration t proceeds, selecting 2N; gametes randomly from post-
migration gamete pool i of step 3, corresponding to Ny diploid
individuals.

Since fertilization in step 4 takes place in infinitely sized post-
migration pools, the number of genes drawn from each parental
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subpopulation have a multinomial distribution, and therefore
(@Ne_1,1 M40, - - -, 2Ne1sMi_151) ~ Mult@Ny; Bgir . . . ., Byis).

Sampson [85] employed a special case of reproduction cycle 1-4 with-
out mutations, identical local effective and census sizes of all sub-
populations (N = N¢p), with (N1, ..., Nis) varying rapidly accord-
ing to a Markov chain with a finite state space. See also Nagylaki
[61], who considered a model similar to 1-4, with equal effective
and census sizes of all subpopulations that are constant over time
(Neti = Nii = N;j), and selection added in a separate step between 1
and 2. For the infinite island model, 1-4 corresponds to a scheme
that Sved and Latter [95] referred to as stochastic migration with a
stochastic migration rate.

3. Subpopulation differentiation

In this section, we quantify inbreeding in terms of allele frequen-
cies at one single locus, with the goal of obtaining general expres-
sions for how predictions of inbreeding and the coefficient of gene
differentiation (Gsr) evolve over time, with numerical illustrations
in Example 1 of Section 5. In the next section, we will also de-
fine inbreeding from identity by descent sharing and coalescence
probabilities.

3.1. Gene diversities and identities with replacement

Suppose two genes are drawn randomly from two subpopulations
iandj of generation t, with replacement if i = j. Following [64,67], we
quantify inbreeding by means of the gene identity

ne
Fyj = ZPnan‘u (3)
a=1
between subpopulation i and j in generation t as the probability that
the two genes are identical by state (IBS), i.e. have the same allele.
The probability that the two alleles are different is referred to as the
gene diversity

Hijj=1-Fy = E PiigPgip (4)
1<a.b=n;
a#b

of i and j in generation t. When i = j, the gene identity and gene di-
versity are identical to the homozygosity and heterozygosity of sub-
population i, only when the genotype frequencies of i conform with
Hardy-Weinberg proportions. Otherwise the concepts are different,
since genotype frequencies cannot be determined from the allele fre-
quencies alone.

An advantage of (3)-(4) is that genotype frequencies need not be
specified when i = j, and that the same definition applies when i # j.
Define

ftij = EO(Ftij),
h[ij = EO(Htij)r

as expectations conditionally on allele frequencies of the present (in-
dex 0 of E corresponding to t = 0). We regard (5) as predictions of
Fyjj and Hy, given information on allele frequencies from ¢ = 0, and in
particular fo; = Fojj and hgjj = Hojj = 1 — fo;;. In Appendix A, we show
that

0 < fij < /feiifyi- (6)

for any pair of subpopulations i and j of generation t.

The predicted gene identities and diversities satisfy linear recur-
rence relations. In order to formulate these recursions, it is conve-
nient to collect all fy; and hg; of generation t into column vectors
fr=(4. 1<ij=<s)and h = (hy 1 <ij<s) of length s, where ij
is short-hand notation for column number (j — 1)s + i. We introduce
the s? x s2 matrix A; = (Agjx; 1 < 1.j, k.1 < 5), whose row and column

(3)

numbers (j— 1)s+i and (I — 1)s + k are abbreviated as ij and kI re-
spectively, with elements

{k=1}

1 \= 1- ﬁ
-1k

It is shown in Appendix A that
fi=0- M)Z(Atftfl -Al+1)+ (1 -(1- M)Z) 4.

(8)
h.=(1- M)zAthtfl + (1 -(1- M)Z) 1 -4y,
fort =1,2,3,..., where 1isacolumn vector of sZ ones,and § = (8¢ij) is
another column vector of length s2 with elements 8eij = 14ijy/ @Nyg).

3.2. Gene diversities and identities without replacement

Suppose instead that the two genes of the previous section are
required to be distinct, so that they are drawn without replacement
when i = j. Then the probabilities that the two genes are identical and
different by state, are

n,
: 2NiiPrig — 1 .
ZPtla ;IVWLI ’ =],
Fn'j =
Zptiaplja, i#]’,
a=1
ZNl‘lPtlb . .
ZPMZN[, =],
Hyj = %2 . )
ZPtian‘b, i #],
a#b

for any pair i,j of subpopulations in generation t. These quantities
were studied by Malécot [56], when all local census and effective
sizes are identical and constant over time. We refer to (9) as the
gene identity and gene diversity of subpopulations i and j in gen-
eration t, for genes drawn without replacement. Although Nei [64]
used the other definition (3)-(4) when defining Gsr, it is implicit from
[51], [65, p. 122] and [84] that these authors’ expected gene identity
recursions employed (9).

Itis shown in Appendix A that the predicted gene identity between
two distinct subpopulations i and j, satisfies the inequality

2Ny — 1 2N; 1 1
0 < fij S\/< fm ZN“) (Wfq;'f‘m) (10)

The recursions (8) for predicted gene identities/diversities, are mod-
ified to

fe=0- M)z(DLft—l —-D1+1),
he = (1 — w)?*Dehe1 + (1 - (1 - p)*)1

(11)

fort =1,2,3,..., whengenes are drawn without replacement, where
D; = (Dyj k) is an s? x s? matrix with elements
1 {k=1}
Diiivt = BeitBit | 1 — =—— . 12
ikl = BritByji ( Mo ) (12)

We may interpret (12)as a non-coalescence probability of two distinct
genes sampled from i and j in generation t, given that their parents
reside in k and [. The explicit solution of the upper part of (11);

fr = (1*M)2tDt'-~~'D1fo

t
_ M)Z(t—rH)Dt X

+y

=1

1-D;-...-Di(1-f,). (13)

-+Dr11(1-D-1)
u=0

extends a formula of [65] for a single (s = 1) population.
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3.3. Defining sampling probabilities

We will define two different schemes for sampling a pair of genes
from the global population. This sampling is a theoretical construct,
needed to define a number of quantities below, and should not be
confused with collecting real data and estimating parameters. The two
schemes we propose are hierarchical, where in the first step, a pair of
subpopulations is selected, and in the second step, a pair of genes is
sampled from the selected pair of subpopulations (as described in the
previous section). In order to formalize the first step, we introduce
a vector of non-negative subpopulation weights wy = W1, ..., Wis)
that sum to one, i.e. >°;_; wy; = 1. Unless otherwise stated, we will
assume that the weight vector w; = w = (wq, ..., wg) does not change
with time, although this is not required for all formulas. For instance,
if Sc{1,...,s} is a fixed subset of subpopulations from which we
plan to collect genetic data, a possible weighting scheme is

liics)
P = , 14
where |S| refers to the number of subpopulations included in S,

whereas the remaining s — |S| ghost subpopulations are only in-
cluded in the analysis indirectly, through migration. If samples are

taken from all subpopulations (S = {1, ..., s}) formula (14) reduces
to uniform weights

1
w; = ; (15)

The two sampling schemes are defined as follows:

Sampling scheme T: Select a pair of subpopulations with proba-
bility w;wj, 1 < i,j < s. Then sample two genes, one from each of i
and j.
Sampling scheme S: Select a subpopulation with probability w;,
i=1,...,s. Then sample two genes from the chosen subpopula-
tion i.

Whereas the first sampling scheme quantifies genetic variation of
the total (T) set of subpopulations with positive weights, the second
one quantifies genetic variation within these subpopulations (S).

If two genes are sampled in generation t, their gene identi-
ties/diversities for each of the two sampling schemes are

S
Fre = ZWinFtij,
ij=1

N
Fse = Y wiFsi,
i=1

N
Hre = 1—Fre =) wiw;H,
ij=1

N
Hse =1—Fs = ZWthii, (16)
i=1

with Fy; and Hy; formulated with or without replacement, as
in (3)-(4) and (9). When uniform subpopulation weights (15) are
used and the genes are drawn with replacement, (16) equals the def-
initions of the gene identity and gene diversity in Section 6.4 of [65].

3.4. Coefficient of gene differentiation

In order to assess how genetically different the subpopulations
are, we use the coefficient of gene differentiation
Fst — Fre  Hre — Hg
Gste = GY, = = 17
STt STt 1_ FTt HTt ( )
of generation t. This quantity was introduced by Nei [64,66], first
for uniform (15) and then for more general weighting schemes. It

is assumed that the two genes are drawn with replacement in (17),
in order to guarantee that Gsr; is non-negative, see Appendix A for
details.

For a future (t > 0) generation, G}"T’t is unknown, with a certain dis-
tribution depending on the random nature of genetic drift, migration,
and mutation. A single value forecast g;"T’t ([0, t]) should approximate
some central point (median, expected value, ...) of the predictive

distribution of G}"T’[ over time interval [0, t]. One such quantity
Eo(Fst — Fre) _ fse — fre
Eo(1 —Fr)  1—fr

was introduced by Nei [65] and further studied in [68]. It employs the
predicted (or expected) gene identities

(18)

gste = 8%, ([0.t]) =

N
fre = EBo(Fro) = ) wiwifyy;.

ij=1

S
fst = Eo(Fst) = > wifiii, (19)
i=1
of sampling schemes T and S respectively in generation t.

Let Wy = (wwj; 1 <ij<s) and Ws= (1;_yw;; 1 <i,j<s) be
row vectors of length s2, whose elements are weights assigned by
sampling schemes T and S to all pairs of subpopulations. We can
reexpress (18) as

(Ws — Wr)f,
1 - Wrf,

with f; computed from the upper recursion of (8) when genes are
drawn with replacement. If f;;; has been specified within all subpop-
ulations, it follows from (6) that the maximal value of gsr¢ has fi;; = 0
for all distinct pairsi # j[31]. One may also define versions of Gsr; and
gstr with genes drawn without replacement, using the upper recur-
sion of (11) in (20). However, this is less appropriate, since Gsr¢ then
becomes negative when the frequencies of any allele is the same in
all subpopulations.

&stt = , (20)

4. Effective population sizes

In this section we examine the inbreeding (N,;), nucleotide diver-
sity (Ner ), variance (N,y) and eigenvalue (N,g) effective sizes, with a
notation

Nex(T) = Ny (T), (21)

for X € {I, w, V, E}, where T is a finite or infinite time interval and w
a vector of subpopulation weights. Eq. (21) quantifies the expected
loss of genetic variability due to changed allele frequencies, in those
subpopulations that have positive weights w;, per generation during
T. These allele frequency changes are not only caused by genetic
drift, but confounding effects of migration and mutation could also
be present. Throughout this section we assume wu = 0, so that only
genetic drift and migration will influence Ngx. In particular, if the
subpopulations within S have positive weights (cf. (14)), migration
between S and its complement will influence N,y as a confounder, as
shown explicitly in [83] for the island model.

4.1. Inbreeding effective size

In the original definition of the inbreeding effective size N in
[113], two genes are drawn without replacement from a population,
and the probability is derived that their parental genes are from the
same individual. We generalize this definition of Ng; to structured
populations in the context of reproduction model 1-4 of Section 2,
where the probability of having the same parent is twice the proba-
bility of having identical parental genes. Our generalization includes
longer time intervals than one single generation that may extend not
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only backwards, but also forwards in time, and genes may be sam-
pled with and without replacement, see Examples 3-5 of Section 5
for numerical illustrations.

Two gene copies are either IBD if they originate from the same
mutated allele; under the infinite allele model, this is equivalent to
being IBS. Alternatively, two alleles are IBD if they originate from the
same ancestral gene of a founder generation ty < 0. We employ the
second IBD definition, so that each individual of the founder gener-
ation contributes with two IBD classes. We let P, be the frequency
of IBD class c =1, ..., 2Ny, in subpopulation i of generation t > to. In
absence of mutations (u = 0), these IBD frequencies determine allele
frequencies through

Ptia = Z Ptics
ceCq

where Cq C {1, ..., 2Ny} is the set of IBD classes with allele a. In par-
ticular P = Py if all alleles of the founder generation are different.

4.1.1. Drawing without replacement
When two genes are drawn without replacement from i and j at
time t, they have a probability

2N,
i ~ 2NiiPric — 1 i=j
—~ tic 2N[l _ .l ’ )
Ftij =\ 38, (22)
i#].

Z Pric Pic
c=1

of being IBD. For two generations t1 and t satisfying to < t; < t, we let
fii = fofg = Eo Fay) (23)
be the forward predicted IBD probability of two genes of subpopu-
lations i and j at generation ¢, given that the sizes of all IBD classes
are known at time t1. An equivalent backward in time interpretation
of fi;j is the probability that the two genes will have ancestors from
generation t; that are IBD, given that we know the IBD classes at that
time.

Let f; = f%?? be a column vector of length s2 containing all IBD
probabilities f;;;. Since our IBD definition does not involve mutations,
ft, St 41, - - satisfy the upper recursion of (11) with .+ = 0 and initial
condition f, . From (13) (with O replaced by t;) we derive the IBD
probability of two genes, chosen randomly without replacement with
scheme T from generation t, as

S
fre = Z WiWifyj
=1
—1-WD,-... Dy(1-f,). (24)

For a Wright-Fisher model of diploid size N, it is easy to see that
1 — frrdropsby 1 — 1/(2N)in each generation (see for instance Section
1.7.10f [30], so that fre = 1 — (1 — fr,) (1 — 1/(2N))"~"*. Based on this,
the inbreeding effective size without replacement over time interval
[t1, 1],

1 .
. iffrr > ,
W.D, ,,D[ﬁ](lf[]))‘/( 1>) fre > fr

Net ([t1. t]) = 2(1—( W, (1f,)

NaN, if fre < fre,,

(25)

is defined as the size of a Wright-Fisher population for which
(1 = fre)/( = fr¢,) decreases by the same amount as in the studied
population.

In the lower part of (25) we incorporated the possibility that the
IBD probability fr; does not increase between generations t; and t, so
that Ng;([t1. t]) is not well defined. Since plausible scenarios can be
found when this happens, this is a deficiency of Ng;. For instance, if

positive weights are assigned only to a subset S of subpopulations,
as in (14), and the amount of inbreeding f; ;; for i, j within S is much
larger than f; ; with i € S and j ¢ S, then fre may decrease the first
few generations t > t; due to migration into S from the less inbred
subpopulations outside S.

Definition (25) has a very appealing property

1
Nei ([t1.t]) = ,
2(1- 12,0 = g )

whenever each term Ne; ([, r + 1]) on the right hand side is well de-
fined according to (25) for each value of the generation index r. In
particular, for large populations, Ne; ([t1, t]) is approximately the har-
monic mean of all N ([r,r + 1]), as for homogeneous populations
[19, p. 144].

Suppose S = {i} consists of a single subpopulation, with weights
w;j = 1y in (14). When there is migration from at least one of the
other subpopulations into i, (26) describes how the local effective
size of i over [t1, t] depends on the local effective sizes of i between
subsequent generations. These will in general differ from N,;, since
they are also affected by immigration into i. It is shown in Appendix A
that this confounding effect disappears and

Nel([t»t‘i‘ 1]):Neti (27)

when i receives no immigrants from the other subpopulations.

The backward interpretation of (25) simplifies when t; = ty is the
founder generation. Then f;; = ftlfn'?j is the probability that two distinct
genes, drawn fromiandjin generation t, have found their most recent
common ancestor (MRCA) withintime spant —1,t—2,..., ty, so that
froij = 0 gives an initial condition f; = 0in (24). Suppose two distinct
genes of generation t are drawn according to sampling scheme T,
and let t7¢ be their coalescence time, corresponding to a MRCA from
generation t — tr.. Then we can rewrite (24) as fr; = fry,e = P(tre <
t — tp), and (25) simplifies to

Ne; ([th t]) =

(26)

1
2(1—= (= P(rre < t—to))V/E00)

1

T 2(1= (WD, ... Dy 1)1/E0)°

In particular, for a time interval [t, t + 1], (28) equals
B 1 _ 1
" 2P(tre1=1)  2(1—WrDgq1)'
which for an isolated (s = 1) population simplifies to Ner = Nesq, in

accordance with the original Ng; definition of [113], see for instance
equation 7.6.2.8 of [18] or Section 4.4 of [19].

Ner ([t. t+1])

4.1.2. Drawing with replacement
If we rather draw two genes with replacement from subpopula-

tions i and j of generation ¢, their IBD probability is

2N;,
]'—tij = Z 7Dn'cpg'c (29)

c=1
for all 1 <i,j <s. The definitions of the expected IBD probabilities
Jiij = ft, i and fre in (23)~(24) remain the same, apart from replacing
matrices D; by A; everywhere. For a Wright-Fisher population with
diploid size N, it holds that fre = 1 — (1= fr;,) (1 — 1/@N)) "7, see
for instance Theorem 1.3 of [ 19]. Based on this observation, we define
the inbreeding effective size N¢; (with replacement) over time interval
[t1,t] as

1 .
e i fre > fre
WA, A, ., (1f[1))”‘ 1)) fre > fry

Wi1f,]

Ner ([t1.t]) = 2(1‘(
NaN, if fre < fre,.

(30)
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4.2. Nucleotide diversity effective size

The mutation or nucleotide diversity effective size Ney is the size
of a Wright-Fisher population with the same heterozygosity in gener-
ation t as in the studied population at a site with a very small mutation
probability, see [19,22]. It is defined in terms of the expected coales-
cence time 7 of two genes, sampled in generation t according to
scheme T;

E(trt)
3
with || tr¢|| the smallest positive integer such that P(tr; < ||7r¢]|) = 1.

In particular, if t7¢ has no finite upper bound, the time interval in (31)
equals (—oo, t]. It follows from (24) and (31) that

Nex ([t — [ Trell. £]) = (31)

1 Izl -1

3 > P(re>r)

r=0

Iz ll-1
= (1+ > WTDt-..-Dt_ml). (32)

Nerr ([t - ”TTt”v t])

N —

r=1
4.3. Variance effective size

Consider a biallelic gene (n; = 2), and write the allele frequen-
cies of the two alleles (1 and 2) of subpopulation i in generation t as
P71 = P and Pyjp = 1 — Py;. We will make the simplifying assumption
that all subpopulations have the same frequency Pg; = ... = Pys =: Py
of allele 1 in generation t = 0. Without this assumption, the variance
effective size is much more difficult to analyze ([21,36]). Let Covy (., -)
refer to the covariance between two random variables conditionally
on allele frequencies of the t = 0 generation. For any pair of subpop-
ulations i and j,

cov COV()(P“' — P(), Pq' — Po)
Jo=Ii" = =@ o) 53)
quantifies how correlated their genetic drifts over time interval
[0, t] are.

It is shown in Appendix A that the column vector f; = f{°" = (fy)
satisfies a special case of recursion (8) for genes drawn with re-
placement, with © =0 and initial condition f; = 0. Jorde and Ry-
man [37] obtained analogous recursions for genetic drift variables of
age-structured models, where subpopulations represent age classes,
whose sizes are constant over time, Felsenstein [26], Tufto et al. [97]
and Tufto and Hindar [98] derived covariance recursions for a slightly
different reproduction model than ours, and Emigh [20] studied re-
lated recursions for variances of allele frequencies.

Let
N
Py = Z WPy
i=1

be the overall frequency of allele 1 in the total population when sub-
populations are weighted as wy, ..., ws. It then follows from (33) and
the above mentioned recursions that the genetic drift over time in-
terval [0, t] is

Varg(P — Py) 25: Covo (Pyi, Py)

wiw; ——— 82
Po(1—Po) iz Po(1—Po)
S
= > wiwfi
ij=1
= fre
11— WA ... Al (34)

The variance effective size N.y ([0, t]) over time interval [0, t]is defined
as the number of individuals of a diploid Wright-Fisher model for

which fr, is the same as in (34). Since fry =1 — (1 — 1/(2N))* for a
Wright-Fisher model of diploid size N (see for instance Section 5.1.2
of [65]) this leads to

1
2(1 — (WrA; - ...- Aty

a special case of the version (30) of N ([0, t]) with genes drawn with
replacement, when there is no subpopulation differentiation at t = 0,
i.e. fojj = fo for all i,j and some O < fy < 1. In particular, for a time
interval [0, 1] of one single generation ahead of the present, (35)
simplifies to

Nev((0. t]) = (35)

P -Py) 1
- 2Var0(P1 —P()) - 2(1 — W'[Afl).
For an homogeneous (s=1) population the first part of (36)

agrees with [16], and in particular we find that Ney ([0, 1]) = N4
if Noe1 = No.

Nev ([0’ 1]) (36)

4.4. Eigenvalue effective size

The eigenvalue effective size Neg [16,21,23] is defined as the num-
ber of individuals of a diploid Wright-Fisher model for which the
multiplicative rate A at which alleles are lost is the same as in the
studied population. It has been shown [35,110] that A also equals
the rate at which predicted gene identities approach 1. In other words,
Neg defines the rate at which inbreeding increases at equilibrium in
all subpopulations.

A Wright-Fisher model of diploid size N has Awg = 1 — 1/(2N), see
for instance [24]. Equating A with A and solving for N, we find that
Nee = Ne (161,9) = 5775 (37)
for any t; > to. In Section 5.4 we prove that Neg is the same whether
genes are drawn with or without replacement. We may therefore
assume that f; is the vector of predicted gene identities with genes
drawn with replacement. Existence of A requires some extra condi-
tion, such as a population size that varies according to a Markov chain
[39] or cyclically [77,79,104,105]. If all population characteristics vary
cyclically with period t > 0, it follows that Ar,; = A forall t > 1, so
that

oAy Ac AT (A=), (38)

forany n > 0 and 0 <r < 7 — 1. Under mild conditions, Ay.; = Az -
...-Aq isirreducible and aperiodic, and then it follows from Perron-
Frobenius Theorem (see for instance [15]) that a unique largest and
positive eigenvalue Amax (A7) of Ay.; exists, which will determine
the rate

A= )Lmax (Ar .

ft1+m:+r =1 _Ar+t1 .

AN (39)

of increase of the expected gene identities (38). Inserting (39)
into (37), we find that N is the only effective size independent of
the weighting scheme w. It is a global effective size, even if w; = 0 for
some subpopulations i.

5. Constant subpopulation sizes and migration rates

Suppose all subpopulation sizes Ny; = Nj, forward migration rates
My = My, and local effective sizes N = Ne; are constant over time.
Write the total subpopulation size as N=Y"j ; Ny, the matrix of
forward migration rates as M = (M;) and introduce the vector
u=(up,...,us) of relative subpopulation sizes u; = N;/N. It follows
from (1) that u is a left eigenvector of M with eigenvalue 1, corre-
sponding to a system

u=uM,

40
Yiqui=1, (40)



120 0. Hossjer et al. / Mathematical Biosciences 258 (2014) 113-133

of s+ 1 equations, from which all u; can be inferred, given a
specification of M. In view of (2), the backward migration rates
Byix = By, are constant over time as well, and related to the forward
migration rates as

UM

Bie = =4 (41)

Since >" Bj, = 1foranyi, B = (Bj;)is the transition matrix of a Markov
chain with s states. We assume that this Markov chain is irreducible
and aperiodic, with a unique equilibrium distribution

y=W01..... ). (42)

Intuitively, y; is the probability that a distant ancestor of a gene that
is sampled from any subpopulation of the present, has its ancestor a
large number of generations back in time from subpopulation i.

5.1. Subpopulation weights

When local census sizes are constant over time, it is of interest to
weight the subpopulations S from which we collect data proportion-
ally to size, i.e.
wi = Uil{ics) .

Djes Uj
This implies that all genes that belong to S have the same sampling
probability, whereas those outside S will not be sampled. In particular

Wi = Uj (44)

(43)

corresponds to a scenario where all genes in the population are drawn
with the same probability. Another possibility is to use as weights the
probabilities

wi =Y (45)

in (42), see [25,36,61,108]. We will refer to (45) as reproductive
weights, since each subpopulation is weighted proportionally to its
long term number of offspring. For this reason, they are useful when
long term genetic changes of the population are to be inferred from
short term changes.

5.2. Gene identities, gene diversities and subpopulation differentiation

When genes are drawn with replacement, the recursions in (8) for
the predicted gene identities and gene diversities simplify to

fo= 0 -w?@f 1 A1+ 1)+ (1-(1-py)é.

(46)
he = (1 — w)?Ahe_1 + (1 - (1 - w)?) (1-9),
fort =1,2,3,..., where A = (4;;y) has elements
. {k=1)
1\ =) 1-— 2,3,
Aiju=11- BBy | ——% , 47
ij.kl < 2Nui) ik Djl < — ﬁuk ( )

and § = (§;) is a column vector of length s2, with entries 8ij =
14i=j)/ @Nu;). Analogously, when genes are drawn without replace-
ment, the recursions in (11) for the predicted gene identities and
gene diversities, simplify to

Jo=(0-pnyDf 4 -D1+1),

e = (1= 102Dl + (1= (1 — W) 1. (48)
fort =1,2,3,..., where D = (Djj ;) has elements

{k=I}
Djj 11 = BiBji (1 - m) . (49)

and (48) agrees with a classical recursion in [56]. Gene identity re-
cursions have been studied in other settings by Caballero [8] and

Subpop 5

Subpop 4

4 Subpop 3

Subpop 1

Subpop 2

Fig. 1. Population system with five subpopulations and local census sizes N; = Ny; =
Neii that are constant over time. The arrows illustrate migration between different
pairs k, i of subpopulations, and next to them the number of migrants NyMj; from
k to i per generation, so that for instance My; = 0.94, M1z = 0.025, M4 = 0.01 and
M3 = Mis =0.

Nagylaki [62] for dioecious (two-sex) models, in which sexes corre-
spond to subpopulations, and Sawyer [86] for the diploid stepping
stone model.

When genes are drawn with replacement and mutations are ab-
sent (= 0),(20) and (46) imply that the predicted coefficient of gene
differentiation over time interval [0, t] simplifies to

(Wr — W9A' (1 - fy)
WrA'(1 - f,)

8sTt ([07 t]) = ) (50)
and asymptotically for large time intervals, we find from a Jordan
decomposition of A (see for instance [15]) that

(W — Wo)r
Wrr ’

with r the right eigenvector of the largest eigenvalue of A. Eq. (51)
is related to a quasi equilibrium approximation of Gsr in [36], and
an asymptotic expression of the fixation index in [82], in terms of
ratios of tail probabilities of coalescence times of genes from different
pairs of subpopulations. The convergence rate in (51) is exponentially
fast O ((A2/A1)f), with A1 = Amax(A) > A, the two largest eigenvalues
of A.

8stoe = 1M gsre ([0,t]) = (51)

Example 1 (A system with five subpopulations). Consider the pop-
ulation of Fig. 1. It has no novel mutations (x = 0) and consists of five
subpopulationsi =1, ..., 5 whose local census and effective sizes are
the same and constant over time (N;; = Ng; = N;). The migration ma-
trix M = (M};) is also constant over time, with four subpopulations
connected through migration along a circle, whereas the fifth sub-
population has no emigrants. It is only linked with the other subpop-
ulations through immigration from subpopulation 4.

Fig. 2 shows predictions of gene identities (with replacement) for
each subpopulation i separately (f;;;), for subpopulations combined
(fs¢) and for the total population (fr;). As expected, they all tend to
1 as the length of the prediction interval (t) increases. The amount
of inbreeding fo;; at t = 0 varies within and between subpopulations,
and although initially subpopulation 5 has the least amount of in-
breeding, it soon becomes most inbred. It is seen that the values
of fo; when i # j have a great impact on the overall level of future
inbreeding.

If subpopulation number i would have been isolated, then

fii =1 =1 = foi)(1 = 1/@Ny))', (52)
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Fig. 2. Amount of inbreeding and subpopulation differentiation, as a function of generation (t) for all subpopulationsi=1,..., 5 of Fig. 1 in absence of mutations (i« = 0). The

columns differ in whether the amount of inbreeding between subpopulations in generation 0 is minimal, left, or maximal, right (see below). The plots show a, b) predicted gene
identities fy; with replacement (5), ¢, d) the corresponding predicted gene identities fr¢ and fs; in (19), for the total population and within subpopulations, weighted uniformly (15),
proportionally to size (44) or reproductively (45), e, f) predicted coefficients of gene differentiation gsr; in (18), for all three weighting schemes. The gene identities of generation 0

within the subpopulations are fo11 = 0.3, fo22 = 0.1, fo33 = 0.3, foas = 0.1 and foss = 0.05, and between subpopulations fo;; = 0 (left), fo; = \/foiifo; (right), corresponding to the lower

and upper limits of (6). Note the different scales on the vertical axes.

which is very different from the true curves, shown in the upper two
subplots. Subpopulations 1 and 3 both have a large proportion of
immigrants, and the first few generations their levels of inbreeding
decrease, in contrast to (52). For all five subpopulations, the long term
multiplicative rate of increased inbreeding is 1 — 1/(2Neg) = 0.9995

per generation (see Example 3), much less than predicted by (52).
This highlights the importance of avoiding isolation, particularly for
small subpopulations.

The predicted coefficient of gene differentiation (gs¢) is shown
for all three weighting schemes, and it converges to nonzero limits
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as t increases. Since the ratio of the two largest eigenvalues of A is
Ao /A1 = 0.988, it follows from the paragraph below (51) that although
the convergence rate towards gs7., is exponential 0(0.988Y), it is still
very slow, and therefore the whole time profile of gsr; is needed. The
reproductive weights give the smallest and the uniform weights the
largest values of gs7..,, with the size-proportional weights in between.

5.3. Coalescence probabilities and expected coalescence times

We noticed in Section 4.1 that coalescence probabilities f; ; satisfy
the same forward recursion as gene identities in absence of mutations,
when the founder generation tg is kept fixed and ¢ increases. Slatkin
[90] and Nagylaki [63] obtained an analogous backward recursion

hey e =Dhey e t—2,... (53)

for the non-coalescence probabilities ke, = 1 — f  when subpopula-
tion sizes are constant. We may in fact interpret (53) as the transition
probabilities of a structured coalescent [33,72] in discrete time for a
sample of two lineages.

Slatkin [90] used recursion (53) to derive an explicit expression for
the expected coalescence time of two genes sampled from an island
model of constant size. This approach can be extended to our general
framework of migration, reproduction and subpopulation weights w;.
Then 7y, is the coalescence time of two genes sampled in generation
t with scheme T, and

to=t—-1,

E(tr) = ) P(tre > 1)

r=0
= Z w;D'1
r=0
= W:(I-D)'1. (54)

It follows from (54) that 71, has a discrete phase-type distribution
[5,71], i.e. the time until absorption of a Markov chain describing the
joint subpopulation ancestry of two different genes. Its state space
of size s2 + 1 contains all s2 ordered pairs of subpopulations (before
the genes have coalesced), and an additional absorbing state after
coalescence. It starts with initial distribution Wy among the non-
absorbing states, and D contains the transition probabilities between
all non-absorbing states.
In view of (31), formula (54) provides an explicit expression

Nex = Nex (~o0.t]) = s Wr(l - D)1 (55)

for the nucleotide diversity effective size, with I the identity matrix of
order s2. Strobeck [94] and Durrett [19, p. 149] have studied models
for which B is doubly stochastic, so that not only the column sums,
but also the row sums, equal 1. Then all subpopulations are equally
large and reproductive (u; = y; = 1 = 1/s), and for a local weighting
scheme w; = 1;_; of any subpopulation i, they prove that Nez =N,
provided that N,; = Nu; for all subpopulations j. On the other hand,
Ner will be larger than N for any scheme w that assigns positive
weights to at least two subpopulations.

We may also introduce the coalescence time s of two genes
sampled in generation t according to scheme S, and a prediction

E(trt) — E(tst) Wy - Ws)(I - D)1
E(tre) - W -D)-11
of the coefficient of gene differentiation in generation t, in the limit of
small mutation rates u — 0. Formula (56) generalizes a suggestion of
Slatkin [90] for the island model. It is similar to (50), but has another
definition of predicted gene diversity, in terms of the probability that
mutation comes before coalescence when looking backwards in time.
For this reason, we write the interval in (56) as (—oo, t]. It is shown
in [36] that (56) is asymptotically equivalent to a version of (50)-(51)

gsre ((—o0, t]) = (56)

with D in place of A, in the limit of large population sizes. Wilkinson-
Herbots[112] obtained extensions of (56) for non-negligible mutation
rates (.

5.4. Eigenvalue effective size

In absence of mutations, the upper part of (46) gives an explicit
formula f, = 1 — A'(1 — f) for the predicted gene identity, first ob-
tained in [25] for age-structured models. Since the backward matrix
Bis irreducible and aperiodic, it follows that A is irreducible and ape-
riodic as well. We can use Perron Frobenius’ Theorem and conclude
that A has a unique positive largest eigenvalue Amax (A), which deter-
mines the long term multiplicative rate of increase of predicted gene
identities, with an eigenvalue effective size

1
NEE = NEE ([0’ OO)) = 2(-1 _ )\max(A))’ (57)
that is a special case of (37) and (39), corresponding to a cycle of
length T = 1, see [35,98,110]. In Appendix A we show that A can be
replaced by D in (57), since

)"max(A) = )"max(D)v (58)

and moreover, the whole spectrum of eigenvalues is the same for
A and D, at least when all eigenvalues are distinct. As mentioned
in Section 4.4, the conclusion is that Neg is the same, regardless of
whether we use a version of predicted gene diversities with genes
drawn with or without replacement.

Example 2 (The effect of varying the migration rate on N.z). Con-
sider again the population of Fig. 1. In Fig. 3 we have plotted the
eigenvalue effective size Nz in (57) and the predicted coefficient of
gene differentiation gsro, in (51) as a function of the overall migration
rate

s
m=1 —ZU,’Mﬁ, (59)
i=1

i.e. the fraction of genes whose offspring live in another subpopulation
than their parents. In order to vary M (and hence also m) we reduced
the migration rates of Fig. 1 by multiplying the numbers at the arrows
with a variable factor 0 < a < 1. For each value of a we increased
the number of offspring that remain at their parental subpopulations
accordingly.

We notice that Neg — oo and gsyoo — 1 as m — 0, and from the
lower left subplot

CN 1
+o0 , 60
1 — 8510 (1 *gsroo> (60)

with C =0.793.

NeE =

Both Ner and Neg in (55) and (57) quantify the long term behavior
of the population. In general they differ, since Ne, depends on the
weighting scheme w whereas N,r does not. They are only asymptoti-
cally equivalent in the limit of large population sizes, see [36].

5.5. Time dynamics of inbreeding and variance effective size

The (different versions of the) inbreeding and variance effective
sizes are defined for time intervals of finite length. It follows from (28),
(30),(35),(57) and (58) that they are all asymptotically equivalent to
the eigenvalue effective size over large time intervals, since

rlLTo N ([0, t]) = [ILT?O Nev ([0, t]) = Net, (61)

regardless of weights w, see Appendix A for details. A bit surprisingly,
the convergence rate O(1/t) in (61) is slow, regardless of the spec-
trum of eigenvalues of A and D. However, if genes are drawn with
replacement and either Wt = p or hy = r, where p and r are the left
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Fig.3. Plot of the eigenvalue effective size Ne¢ (a), long term predicted coefficient of gene differentiation gsro, (b), Negm () and Neg (1 — gsro)/N (d), as a function of the migration rate
min (59), for a system with five subpopulations and census sizes as in Fig. 1. The mutation rate ;+ = 0 and the migration rate from subpopulation k to i # k is My; = My;(a) = aM,;(1),
where 0 < a < 1 and M,;(1) is the corresponding migration rate in Fig. 1. The diagonal elements M;; of the migration matrix are defined to ensure that all local census sizes remain
constant over time. The lower left subplot converges to 1.419 as m — 0, and the lower right subplot to C = 0.793 as m — 0, in accordance with (60).

and right eigenvectors corresponding to the largest eigenvalue of A,
then N ([0, t]) = Neg for any t=1,2,.... The same is true if genes
are drawn without replacement, if either W1 = p or hy = ¥, where p
and ¥ are the left and right eigenvectors corresponding to the (same)
largest eigenvalue of D.

Example 3 (Time dynamics of global N;). In the first three subplots
a—c) of Fig. 4, we study the global inbreeding effective size N ([0, t])
for the population system of Fig. 1, plotted as a function of the number
of generations (t) of genetic change, when a number of factors are
varied. It is seen that the sampling mechanism, without (25) or with
(30) replacement, and the (small) amount of initial fluctuations of
the IBD probabilities fy;; at time ¢ = 0, both have minor effects on Ne;.
This is particularly true when the same sampling mechanism is used
to define fo;; and Ney. The variance effective size Ny curves are not
shown, but they will be close to the N curves with replacement,
and in the upper left subplot they are identical, since there is no
subpopulation differentiation at t = 0.

The Ng; curves depend a lot on whether uniform (15), size-
proportional (44) or reproductive (45) subpopulation weights are
used. As t increases, the Ng; curves will eventually approach the eigen-
value effective size Neg, as shown in (61), although the convergence
rate O(1/t) is slow for the uniform and size-proportional weights. It
is only the reproductive weights that give a rapid convergence, since
the weight vector Wr = (y;);; 1 <i.j <) is then very close to the
leading left eigenvectors p of A and p of D respectively, for draws

with and without replacement. It follows from the proof of (57) that
this makes both versions of N ([0, t]) very close to Neg for any t > 0.

If subpopulation structure was ignored, all Ng; curves in (a)-(c)
would have a constant value equal to the global census size 1150.
This is obviously misleading for uniform and reproductive weights,
whereas the Ng; curves for size proportional weights will at least start
at values close to 1150, so that subpopulation structure can be ig-
nored over short time spans. For longer time intervals, all N¢; curves
will approach the Ngg limit of 970, which is considerably smaller than
1150. This discrepancy can be explained by a number of migrants
per generation that is fairly large, and a migration pattern that is not
conservative, with individuals in some subpopulations more repro-
ductive than in the others, see [35,61].

To summarize the last two paragraphs for size proportional
weights: We can neither replace N by its long term limit N (since
convergence is very slow), nor ignore subpopulation structure and
replace Ng; by the global census size (since Ng; will drift away from
this value). We rather need the whole time profile for Ng;.

In the lower right subplot we vary the migration rates and sizes of
all subpopulations proportionally with time. The global census size is

t-1
Ny =1150-[]1.001%" = 1150 - 1.001®9-0/2,
r=0
in generation t, so that subpopulation sizes initially increase up to
t = 49, reach a maximum Ngg = Nsq slightly above 3900, then start to
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Fig. 4. Global inbreeding effective size Ne; ([0, t]) as a function of the number of generations (t), for the population of Fig. 1 in absence of mutations (;« = 0), using either uniform
(15), size-proportional (44) or reproductive (45) subpopulation weights, and sampling without ((25), dashed) or with ((30), solid) replacement. Also shown is the eigenvalue
effective size Ner (horizontal dotted). The IBD probabilities fy;; of generation 0 a) are the same for all i, j when genes are drawn with our without replacement, b) all 2 }~; No; genes
of generation 0 are different by descent, with fo; computed from IBD class frequencies for two genes sampled without (22) or with (29) replacement, ¢) same as b), but with two
IBD classes of equal frequencies 0.5 in all subpopulations, d) same as in a), but the forward migration matrix M of Fig. 1 is replaced by the time varying M; = 1.001%°-‘M. In a) and
d), the global variance effective size Ney ([0, t]) in (35) coincides with the solid N ([0, t]) curves based on with replacement sampling.

decrease from t = 52 until they reach the original t = 0 size of Fig. 1 by
t = 99. The varying population size makes the sampling mechanism
more important, since N, curves with genes drawn without replace-
ment slightly lag those where genes are drawn with replacement.
Mathematically we explain this by comparing the local census sizes
of the A matrices with those of the D matrices, which are one time
step behind, cf. (85).

In the previous example, we noted that Ng; ([0, t]) converges slowly
towards Neg. In contrast Ng([t, t + T]) will converge exponentially
fast at rate O ((A2/A1)") towards Neg as t — oo, for any fixed t > 0,
since the predicted gene diversities of the left end point t converge
exponentially fast to the leading right eigenvector of A or D, depending
on which sampling scheme that is used.

In the next two examples we demonstrate how subpopulation
weights are used to model time dynamics of local and nested in-
breeding effective size:

Example 4 (Time dynamics of local N,;). Fig. 5 displays the local in-
breeding effective size N, ([0, t]) without replacement (25), for each
of the five subpopulations i of Fig. 1, using weights w; = 1;;_;. The
subplots differ in whether subpopulation 1 encounters a local bot-
tleneck, or gets temporarily disconnected from subpopulation 2. The
local effective sizes of all subpopulations start at values close to their
local census sizes, as explained by (27) and the fact that subpopula-

tions exchange very few genes (and hence can be approximately be
treated as isolated) during short periods of time. Then they gradually
increase towards the eigenvalue effective size Ngg. The local bottle-
neck and interrupted migration temporarily slow down this conver-
gence for subpopulation 1 and (to some extent) its closest neighbors.
All five local effective size curves demonstrate that we can neither
treat the subpopulations as isolated, since their N¢; curves will con-
verge to Neg, nor replace these curves by their limits, since conver-
gence is very slow. We rather need the whole N time profile for each
subpopulation.

Also shown is the global Ng; curve. Since uniform weights (15) are
used, the impact of the smaller subpopulations is initially large, with
a curve starting at a value less than 2/3 of its asymptotic Neg limit.

Example 5 (Time dynamics of nested N,). Fig. 6 plots inbreed-
ing effective size curves Ng ([0, t]) without replacement (25), as a
function of the time t of genetic drift, for nested groups S =
{1,...,i} of subpopulations (i =1, ..., 5), using either equal or size-
proportional weights. The starting values of all curves depend on
the local census sizes of the subpopulations in the group and the
weighting scheme, and then gradually converge to their asymptotic
limits NeE.

Ifeach group S of subpopulations was a homogeneous and isolated
system, its Ne; curve would be horizontal, with a constant value equal
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to the census size Ny + - - - + N; of the group. The corresponding true
Ney curve in Fig. 6 starts at this value for size proportional weights, but
then converges to Neg, since the system is neither isolated (if i < 5)
nor homogeneous. We rather need the whole N curve for each group
of subpopulations in order to describe its effective size accurately.

6. State space reduction

The predicted gene identity and diversity vectors f; and h; include
s% elements, and their recursions (8) and (11) require O(s*) operations
for each time step. The same is true for the analogous vectors (23) and
(33) of IBD probabilities and genetic drift variables. When the number
of subpopulations s is large, this is very time consuming, and hence it
is of interest to exploit symmetries in order to reduce the state space.
For models with translationally invariant migration and reproduction,
Fourier analysis can be used to reduce the size of the state space from
s2 to s, see [34] for details. In this section we consider a larger class
of models for which the state space can be reduced. For simplicity,
we will only deal with the gene identity and gene diversity variables,
although analogous results hold for IBD probabilities and genetic drift
variables.

We first give general conditions for state space reduction, and then
illustrate it with several examples. In more detail, we assume that the
collection of all s% pairs of subpopulations can be written as a disjoint
union

{1,...,S}><{1,...,S}=IlU...UId

of d sets. Each of the first dg sets consists of equivalent pairs of iden-

tical subpopulations, and each of the last d; = d — dy sets consists

of equivalent pairs of different subpopulations. More formally, we

express this as
{,1),...,G6,9)},
{G)), 1<i#j<s},

require that the local census and effective sizes

Nti = Iilta,

Neti = NE[Gv

1<a<do,
do+1<a<d,

(62)

are the same for all i such that (i, i) € Z, and a < do, that the gene
identities are constant over each group of pairs of subpopulations
whent =0, i.e.

Foij = foij = foa (63)
for all (i, j) € Zg, and finally, that

Z BByt = Qeap (64)
k,leT,

is independent of (i,j) € Z, for all 1 <a,b<d and t =1,2,.... The

last equation is equivalent to the row sum criterion for state space

reduction (lumpability) of a time inhomogeneous Markov chain [6,

40]. This Markov chain runs backwards in time and characterizes

the joint subpopulation history of a pair of genes, with transition

probabilities By By and Qqqp before and after state space reduction.
It is shown in Appendix A that (62)-(64) lead to

fii = fa (65)

for all (i,j) e Z, and t = 1,2, ..., and that it suffices to consider the
reduced column vectors f[ = (fa) of length d, or equivalently, the
corresponding reduced vectors h; = (l;q) of gene diversities hyq =
1 — fua. If these vectors are defined by drawing genes without re-
placement, they satisfy recursions

ft =01- M)z(i)tf[—l -bAd +i),

. - . (66)
ht = (1 — M)thht,] + (l — (1 — M)Z) 1,

for t=1,2,3,..., analogous to (11), with 1 a column vector of
d ones, Dy = (Dyqp) a d x d matrix with elements

Div = Y Dijua

k,leT,
{b=do}
©4)
_ . 67
Gra ( 2Netb> (67)

independently of i, j € Z,.

If local census sizes, local effective sizes and migration rates are
constant over time, as in Section 5, the above conditions simplify.
The right hand sides of (62) take the form N = Ng and Netg = Neg
for 1 < a < dy, and the predicted gene identity recursion (66), when
genes are drawn without replacement, reads

fi=(0 - w?®f _, —-D1+1), (68)

= (Dgp) does not depend on t.

since D; = D

Example 6 (Island model).
forward migration rates are

For the island model [59,95,115], the

1-m,i=k

M. — o1 ;

ki { (sTl)’ l;ék,
where m is the overall migration rate (59). We can use (40) to de-
duce that all subpopulations are equally large, i.e. u=(1, ..., 1)/s,

and therefore (41) implies B = M. We also assume that N,; = N, for
all i. The state space size can then be reduced from s2 to d = 2, with
do = d1 =1and

71 ={(1,1),...,(,9)},
T ={Gj). 1 <i#j=<s}.

It follows from (64) and (67) that

(E m; o _Q“) , (69)

where
2m’ — (m')?
— B — N2 - 7.
Qu = Z =10 -m) + S
. me—-m
Qn Z ZBikBjk _me-m) S )

k=1

and m’ =sm/(s — 1). Inserting (69) into (68), we obtain the same
predicted gene identity recursion for two genes drawn without re-
placement as in [51,65] and [84], but note that these authors use the
opposite notation for m and m’.

The reduced state space analogues of the weight vectors W and
W for two genes drawn according to sampling schemes T and S, are
Wy = Wig; 1 <a<d)and Ws = (Wsg; 1 < a < d) respectively, with
elements

Wrq = Z WiWw;j,
(ij)eZa
Wsa = 1{a<do) Z w;. (70)
i;(,i)eZ,
When (65) holds, we can use Wy and W to express the predicted
coefficient of gene differentiation (20), equivalently, as
(Ws — Wo)f,
1 - Wrf,

To guarantee that gsr; is non-negative, it is necessary to define
ft and h; by drawing genes without replacement, as motivated in

gre ([0, t]) = (71)
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Section 3.4. This requires state space reduced analogues of A; and (8),
see Appendix A.

It is also possible to reexpress the effective population sizes
in (28), (32) and (35) by replacing Wr, Dy, and A; with their reduced
state space analogues.

Example 7 (Island model, contd.). Continuing Example 6, if subpop-
ulations are assigned the same weight (15), it follows from (70) that
Wt = (1/s, (s — 1)/s)and Ws = (1, 0), and therefore the predicted co-
efficient of gene differentiation (71) equals

(o —f2)
1- (%ﬁl + %ﬁz)
The nucleotide diversity effective size (55) can be written as
1
2
for the island model when state space reduction is employed. Nei and
Takahata [70] derived an explicit approximation

- 1)2>

gste([0, t]) =

Ner = WT(I - D)qi (72)

73
4ANms (73)
of (72) when N, = Ne = N/s is large and uniform weights (44) are
used. Wakeley [99] derived a similar formula for the coalescence ef-
fective size Noc when the number of subpopulations s is large as
well. It is seen in Fig. 7 that (73) is a very good approximation of

NPT =N (1 n

(72), with a relative error that is inversely proportional to the pop-
ulation size, whereas it only depends marginally on s and m. For
instance, the relative error is between 1 x 10~> and 2 x 10~ when
Ne = 10, 000.

Example 8 (Circular stepping stone model). In natural populations,
migration is often restricted to neighboring subpopulations. Kimura
[41] proposed a class of stepping stone models with this feature,
and its properties were further studied by Kimura and Weiss [44],
Weiss and Kimura [109], Maruyama [58], and Durrett [19]. The sub-
populations of the circular stepping stone model are located along
the perimeter of a circle, and migration is only possible to the two
neighbors, i.e.

1-m, i=k,
M = %, i=k+1,
0, otherwise,

where mis the overall migration rate (59), and addition is modulo s. By
symmetry, we deduce from (40) that all subpopulations are equally
large, so that u=(1,..., 1)/s and B = M because of (41). We also
assume that the local size N, = N, is the same for all subpopulations
k. The state space size can then be reduced from s2 to d = s, with
do:l,dl =d-1and

I, ={G,j);i—j=a—1modulos}, a=1,...,s.
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It follows from (64) and (67) that

_ 1\ =1 _
D = (1-3v)

A-mP+™, b=aq,
{b=1}
525 <1_L> ) m(1 —m), b=a+1, (74)
- 2N, mTZ, b=a+2,
0, |b—a| > 2.

Whenm, i and 1/N, are all small, we may drop all quadratic terms m?,
2, m/Ne and f¢/N,. The recursion (68), with D = (D) as in (74), then
simplifies to those in [57, p. 89] and [19, p. 162-163]. The equilibrium
solution of the approximate recursion is provided in Theorem 5.2 of
[19], and the corresponding exact asymptotic solution of (66) can be
written as

foo=0 =@ -pyD)'d-D1),
with I the identity matrix of orders. See also [3] for the exact recursion
and asymptotic equilibrium solution of the infinite (s = co) stepping
stone model. Results in Appendix A, (57) and (58) imply
_
2(1 - )\max(i))’
for any state space reduced model. Maruyama [58] gave asymptotic
expressions for Neg for the circular stepping stone model under two
different scenarios; large local effective population sizes N and small
migration rates m. Wang and Caballero [103] combined these two
approximations into one single formula

52

}\max(i)) = Amax(D) => Ner = (75)

NeE QSNe‘f‘ W

that approximates (75). If uniform subpopulations weights (15)
are used, it follows from (70) that Wy = (1/s,...,1/s) and
Ws=(1,0,...,0), so that the predicted coefficient of gene
differentiation (71) is
s—1¢ 1S 3

gste ([0, t]) = =2 fu : 5 Szi‘hffm.

s Za:] ffﬂ
Example 9 (Hierarchical island model). This model was introduced
by Carmelli and Cavalli-Sforza [9], and further treated by Sawyer and
Felsenstein [87], Slatkin and Voelm [92] and Héssjer [34]. The sub-
populations i = (i1, iy) are divided into s; regions of equal size s,
with iy the region number and i, the subpopulation number within a
region. The total migration probability m = m,, + mj, consists of two
parts; the probability m,, to migrate within a region, divided equally
mw/(s2 — 1) between its subpopulations, or a probability m;, to mi-
grate between regions, divided equally m;/((s; — 1)s2) between all
subpopulations in the other regions. Hence

M ko), i1,y = (1 = Mw = M) Vi, iy)= (ko))

m
+ S5 _W1 1{i1=k2,i2#—k2}
my
—1y . 76
+ (51— 1)s2 {i1#k1 } (76)

By symmetry, if follows that all subpopulations are equally large,
so that u=(1,...,1)/s and B= M. We also assume that the local
effective size N,; = Ne is the same for all subpopulations. The state
space size can then be reduced from s tod = 3, withdy = 1, d; =2
and

Ty = {(i1. i2), (i, i2); 1 iy <51,1 i <82},
I = {(111,1:2), (1:1,J:2)§ 1< 1:1 S-‘_?Ll <i 75]:2 §Sz},
73 = {(i1.12), G1.j2); 1 < i1 #j1 <81.1 <o, o <52}

As for the island and stepping stone models we have that

_ 1 \0=1) _
Du=(1-5) G

for 1 <a,b <3, where Qg are functions of my,, my,, s; and s,
that can be derived from (64), (76) and the fact that B = M.

If all subpopulations have the same weight (15), it follows
from (70) that Wy = (1/s,1/s; — 1/s,1 —1/s1) and W = (1, 0, 0), so
that the predicted coefficient of gene differentiation (71) is

- (LR -(1-4)f

g“mngﬁﬂfefamfofak‘

7. Discussion
7.1. Summary and conclusions

In this paper we introduce a class of models for a diploid, monoe-
cious and subdivided population with temporally varying subpop-
ulation sizes. Exact matrix analytic recursion formulas are derived
for predicted gene diversities/gene identities, identity by descent and
coalescence probabilities, and standardized covariances of allele fre-
quency change. From this we obtain exact expressions for predictions
of the coefficient of gene differentiation (gsr) and a number of dif-
ferent types of effective sizes N.. We also consider general ways of
weighting subpopulations in order to account for long and short term
effects, local and global features, and develop a general scheme for
state space reduction.

We argue that in order to adequately summarize the most impor-
tant properties of a subdivided population, the dynamic behavior of
gst and (certain versions of) N, should be reported as a function of
time. Indeed, the examples of Section 5 reveal that single values of gsr
and global N, may be very wrong if long term equilibrium conditions
are assumed, and single values of local N, as well, if subpopulation
isolation is assumed.

One aspect of our work is to put various types of the effective sizes
into a general framework. These are defined forwards or backwards
over time intervals of various lengths, with subpopulations weighted
in different ways and pairs of genes drawn with or without replace-
ment. Although in practice the latter distinction is not crucial, unless
some subpopulation is very small, it clarifies the relation between the
inbreeding and variance effective sizes N and N,y, since the latter is
essentially a version of the former with genes drawn with rather than
without replacement. As one implication of this we could show very
generally that Ne; lags Ny by one unit of time for populations of vary-
ing size, thereby confirming results for homogeneous populations
[43]. The nucleotide diversity effective size Ner looks backwards in
terms of expected coalescence probabilities, whereas the eigenvalue
effective size N¢g looks forwards and quantifies the long term rate at
which inbreeding increases (with or without replacement). It is only
defined for constant or regularly changing populations, and is the
only notion of effective size that is independent of the subpopulation
weighting scheme. Both Ng; and N,y are defined over time intervals of
finite length t, and although they both converge to Neg as t increases,
the convergence rate O(1/t) is very slow, unless equilibrium condi-
tions prevail at the beginning of the time interval, or if reproductive
weights are used. In general it is therefore possible to quantify long
term genetic changes from short intervals with Ne; and Ney, only with
reproductive weights.

Our focus has been to compute quantities exactly, not relying on
large population asymptotics. The coalescence effective size (Nec) ex-
ists when the ancestry of a sample converges to Kingman'’s coalescent
[45] as the population size grows. Only in this case it is possible to
summarize the rate of genetic loss by one single number, and for this
reason [88] advocate Npc. However, two finite populations that are
approximated by Kingman ancestries can still behave differently, and
for other populations, for which N¢ does not exist, it is still important
to quantify the dynamics of genetic loss, using some other notion of
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effective size. For instance, it is shown in [35] that N is a more gen-
eral concept than Nec, since the latter is an asymptotic limit of Neg for
structured populations of growing size with a limiting coalescence
ancestry of Kingman type.

7.2. Practical conservation genetics aspects

The analytical work presented here is useful for research in the
fields of conservation biology and conservation genetics, and we in-
tend to present such applications in forthcoming publications that are
directed towards workers of those fields. For instance, the algorithms
presented here have been implemented in a user friendly software
(GESP) for genetic exploration of structured populations [74], which
we hope will be a helpful tool for conservation biologists, facilitat-
ing investigation of short and long term inbreeding and genetic di-
vergence when populations are connected through various rates of
gene flow. For example, our framework enables exploration of how
the conservation genetic status of a population system might be af-
fected by reductions and expansions of subpopulations with vari-
ous degrees of connectivity. Such studies are of relevance to many
practical situations in the management of species in terrestrial as
well as aquatic environments such as the Fennoscandic wolf popu-
lation system [47], and for keystone ecological species of the Baltic
Sea. Further, the opportunity of describing effective population size
of substructured populations constitutes a basis for further devel-
opment of general conservation genetics guidelines and monitoring
schemes.

7.3. Future perspectives

The results of this paper could be extended in a number of ways.
First, the reproduction model of Section 2 could be modified in order
to incorporate diploid two sex models with gene identities that corre-
spond to inbreeding coefficients within individuals or coefficients of
consanguinity between different individuals, in the same or different
subpopulations. Previous work includes the gene identity recursions
in Section 3.8 of [18], the inbreeding recursions for age structured
models in [13], and the inbreeding recursions for an island model of
diploid monoecious or dioecious individuals [12,101,102].

Second, real data estimates of our novel expressions for Ne and
gst should be developed, employing for instance methods described
in the review papers of Luikart et al. [55] and Levyiang and Hamilton
[50]. Whereas the sampling scheme of Section 3.3 was a theoretical
construct, real data estimates requires sampling of a number of in-
dividuals for all subpopulations i that have positive weights w;. For
instance, the temporal method is used to estimate N,y ([0, t]) from
genetic data sampled at two time points r € {0, t} at a number of
genetic markers [ =1, ..., L, see [69,78,106] for homogeneous pop-
ulations, and [37,108] for structured populations. If all markers are
biallelic, estimates 13:? and

PO = Zw PO, (77)

are provided for each time point r, of the frequencies of one of the
two alleles at all loci [, in subpopulation i and the whole population
respectively. This is used in [75] to extend an approach of [38] for
homogeneous populations by estimating (34), and hence also (35),
from the genetic drift of (77), averaged over several loci. It turns out
that the choice of subpopulation weights w; is important, and the long
term genetic drift (as quantified by Neg) can be estimated even from
short time intervals with reproductive weights (45), for a population
of constant size, see [73].

Third, one may study the effect of mutation on effective size, and
definitions (25),(28) or (30) of the inbreeding effective size are special

cases of 1
fTr > tho,

1/(t-to)\ ’
.
2 (1 - () ) (78)
NaN, Jre < freos

with an identity by descent probability fr; of the whole population in
generation t that allows for mutations. This is different though from
the heterozygosity effective size N, 0f [19, p. 154] or the coalescence
effective size Ngc of [100], who included mutation as a source of
genetic change accounted for, not as an uncorrected confounder. A
further extension of N; would be to allow for selection as well.

Fourth, the whole predictive distribution of Gsr¢ is sometimes of
interest, not only a predictor gsr¢ of it, see [48,49,81] for work along
these lines for the island and two-dimensional stepping stone mod-
els. It would be challenging to generalize such methods to arbitrary
migration schemes. On the other hand the multilocus extension
Corr — Y1 Hrea — Yy Hsel

STt = I
21—t Hre

of the coefficient of gene differentiation in [64], will be more concen-
trated around gs7¢ the larger the number of loci L is, suggesting that
gst¢ is an adequate measure of subpopulation differentiation.

Fifth, for conservation genetics applications, it is well known that
a bottleneck implies a transient loss of rare alleles, see [14,54,60] and
[28]. It would be of interest to quantify some of the statistics of these
papers, and other quantities that are functions of the allele frequency
spectrum from multiple loci, analytically for subdivided populations.

Ne ([tﬁa t]) =
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Appendix A. Extensions of theory and proofs

Proof of (6) and (10). If genes are drawn with replacement, we first
show

0 < Fyj < \/FiFyj. (79)

for any pair of subpopulations i and j. It is clear from the definition of
Fgjj in (3) that the left inequality of (79) holds, since all allele frequen-
cies P, are non-negative. Moreover, this inequality is sharp since
Fyjj = 0ifi # jand at most one of Py;, and Py, is positive for any allele a.
In order to prove the right inequality of (79), we assume without loss
of generality that Fy; > Fyj. Let Ay = {a; 1 < a < n, Pjq > 0} denote
the set of alleles in subpopulation i, and put Ftlii
Then

Fij = Y PiaPya

acAgi

ana Zpéa

acAg acAg

JFa
JFa

— 2 ;
= ZaeAti Pg‘a = Fﬂl'

I\

3@

I\
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using Cauchy Schwarz inequality in the second step. In order to prove
that the right hand side of (79) can be attained for any Fy; and Fg;, we
first choose allele frequencies so that Py,/Pyjq is constant for a € Ayq.
Then the fourth step holds with equality asymptotically, in the limit
of large populations, if n; — | A — oo and maxgg a,; Pjg — 0. We then
obtain (6) from (79) and Cauchy-Schwarz inequality, as

fiiij = Eo(Fsij)

<Ep (v Fgji x ,/Fg‘;‘)

< VEo(Fii) x /Eo(Fy)

= /frifi-
Finally, it follows from (9) that f[‘,f}(“h"“t = fyith is the same if i #
Jj, whether the two genes are drawn with or without replace-

ment, whereas fWithout — 2N, fwith /N — 1) — 1/(2Ny; — 1). Together
with (6), this proves (10). O

Proof of (8). We first verify the lower part of (8) when p = 0. As-
sume t > 1 and let E;_; denote expectation conditionally on allele
frequencies at generation t — 1. By the definition of the reproduction
scheme in Section 2,

1 \ U=
st (1)

s {k=1)
5 1 H,_
) BB (1 2N lk) ( o
-1, 1—

NN
k=1 P )

since (1 -1/ (2Nt,-)){’:1} is the probability that the two genes drawn
from subpopulations i and j in generation ¢ are different, BBy is
the probability that the two parents of two different genes from i
and j come from subpopulations k and I, (1 — 1/(2Ng 1)) is
the probability that the two parental gametes in k and [ originate
from different genes in the parental generation t — 1,and Hy_1 j;/(1 —
1/(2N;_1 )=t is the gene diversity of the two parental gametes,
given that they originate from different genes in subpopulations k
and [ of generation t — 1.

Taking expectation Eq on both sides of the last displayed equation,

" L
o= (13

x XS:B-R P = LS
ket 2Net 1.k 1\t
kl=1 T (l — 2Nmk>

proving the lower part of (8) when p = 0. For any u, we derive (8);

hij = (1= w)* x Ache_1)j
Tri; Tri;
1-(1=p)? 1 = 0 {i=j}
1= =Py x (1= ) +0x fed
by conditioning on whether the same gene (with probability
14i—j)/(2Ny)) or not is drawn, and in the latter case whether at least
one of the two genes have mutated since the last generation (with
probability 1 — (1 — w)?) or not. Since f; = 1 — h¢, we then obtain the

upper part of (8) from the lower. O

Proof of (11). In order to prove the lower part of (11), we argue as
in the proof of (8) and initially assume & = 0. Since the two genes of
subpopulationsiandjin generation t are drawn without replacement,

s 1 {k=I}

Ei_1(Hgj) = BigBii (1 — =—— Hi 1,
t 1( tzj) k; tik Dl < 2Ne.t—l,k> t—1.kl

and the rest of the proof is completely analogous to that of (8). For

general i, we condition on whether there is at least mutation between

generations t — 1 and t or not, and find that

hij = (1 — p)* x D)+ (1 — (1 —p)?) x 1,

since the expected gene diversity is (D¢h;_1); if none of the two genes
mutates between t —1 and ¢, and 1 if at least one of them does.
This proves the lower part of (11), and the upper part follows since
fi=1-h. O

Non-negativity of (17). When two genes are drawn with replace-
ment in the definitions of Hr; and Hg;, the numerator of (17), the so
called gene differentiation between subpopulations, satisfies

Dste = Hre — Hst
= Z WiW]’DH‘j

i#]
ne N

= Z Zwi(Ptia - P[~a)2
a=1 i=1

>0,

where Piq =) WiPjq, and Dy = Hyj — (Hyj; + Hgj)/2 is the non-
negative gene differentiation between subpopulations i and j.

Proof of (27). Suppose S = {i}. Then Wt is a row vector with one in
position (i, i) and zeros elsewhere, so that (25) simplifies to

1
- Jeviii > fri
Ner ([t t+1]) = { 2 (1 _ (Zlerql.u.kt(lffrkl))) trl = (80)

—fii
NaN, ferii < fiit,

for a time interval of length 1. If additionally i is isolated, B, = 1
and

1
Dyt = 1n=aiy (1 - m) . (81)

Inserting (81) into (80), we arrive at (27). O

Proof of (34). We will prove that f, = (ftc,.;"’) satisfies the recursion

fi=Af 1 -Ad+1, (82)

a special case of the upper equation of (8) with u = 0. Indeed, since
the gene is biallelic (n; = 2), it follows from (4) that the gene diversity
between two subpopulations i and j in generation t simplifies to

Hijj = Pi(1 = Py) + Pi(1 — Pyy). (83)

Let Py = (P, ..., Ps) be the vector of frequencies of Allele 1 in all
subpopulations. A consequence of the definition of the reproduction
scenario in Section 2 is that E(P¢|P¢_1) = B:P;_1. Since Py = Py1; is
assumed, where 15 is a column vector of s ones, it follows by induc-
tion with respect to t that Eg(P;) = Pyl for any t =1, 2, .... Taking
expectation on both sides of (83) and invoking the lower part of (5),
we deduce

hj = Eo(Hgj)

= Eo (Pi(1 = Pyg) + Py(1 — Pyy))

= ZP()(] — Po) — 2COV0(Pﬂ', P[j)

= 2Py(1 — Po)(1 — fgyj).
where in the last step we used the definition of fy; :ftcyf’" in (33).
From this, and the special case h; = A¢h;_; of the recursion for h; in
the lower part of (8), when u = 0, it follows that
Je=1-h/Q2Po(1 - Po))

=1-Ath; 1/Q2Po(1 - Po))

=1-A0-f_1)

= Atf[71 —Afl + 1,
and this completes the proof of (82). Since the allele frequencies of
all subpopulations are the same in generation t = 0, we must have
fo =0. In conjunction with (82) this leads to f; =1—-A;-...-A(1,
and multiplying this vector with Wy, we finally arrive at (34). O
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Proof of (58). Write A = A(t} )and D' = (Dfﬁd). We first prove that

1-5;
© _ i p©
Al 5. Di

ikl — 1-— (85)

by induction with respect to t =1,2,..., with §; as defined below
(47). When t = 1, (85) follows directly from the definitions of A and
D in (47) and (49). Suppose next that (85) has been established up to
t > 1.Then

(t+1) _
AI] Kkl ZAU mnAmn Kkl

mn
1-46; 1-6
= Z(l _SU Dumn) ( 1 _3mk;1D;(1?n,k1)
1 — 3k, ZDU mnD.(fm Kl

1- 81” t+1
T1- 8131D’(j‘k' "

so that (85) holds for t + 1, completing the induction proof of (85). It
follows from Perron Frobenius’ Theorem that
Al = Alrp 4+ o(Ah),

D' = A#p + o(MY),

ast — oo, where A = Amax(A) is the largest eigenvalue of A, with cor-
responding s2 x 1 right eigenvector r = (r,-j), and 1 x s2 left eigenvec-
tor p = (py). Analogously, A = Amax (D) is the largest eigenvalue of D,
with accompanying right and left eigenvectors ¥ = (7;) and p = (Oy).
Comparing (85) and (86), it is clear that A = A, and the leading right
and left eigenvectors of A and D can normalized so that r;; = (1 — &;)
and py; = P/ (1 — 8k), and this completes the proof of (58).

When the eigenvalues A =11 > A, > ... > Ap of A are all dis-
tinct, a Jordan decomposition of A implies that right and left eigen-
vectors 1rq = (g5 1 <i.j<s) and p, = (0q 5 < i.j <s) with eigen-
values A4 exist for each 1 < a < s2. It follows easily from (85), with
t=1, that ¥q = (Fg; 1 <i.j <s) and p, = (Gqjj; <i.j <s) are right
and left eigenvectors of D with the same eigenvalue A4, provided
Taij = Ta;j(1 — 8;) and pq i1 = Pg 11/ (1 — 8ir). Hence the whole spec-
trum of eigenvalues of A and D is the same. O

(86)

Proof of (61). When subpopulation sizes and migration rates are
constant over time, it follows from (28), (30) and (35) that

N0, t]) B 1/Q(1 — (W1D' (1 = £o))/ (W1 (1 —Fo))' /%),
Ner((0. ¢)) 2 1/Q(1 — (WA (1 o))/ (Wr(1 - fo))'/9)),
Nev ([0, £)) £ 1/2(1 — WA 1)),
We need to prove that the right hand sides of all these three formulas
converge to (28) as t — oco. We confine ourselves with (30), since
(35) is a special case of this formula, with fy = 0, and since (25) is
analogous to (30), replacing A by D everywhere. Recalling that hy =
1 - f(, we find that
(W1A'ho/(Wrho))''* = (Wr(A'rp + 0(A")ho/(Wrho))!/*
= A((Wrr)(pho)/ (Wrho) + o(1))"/*
= A(C+o()
=A+0(1/t)
ast — co.The remainder term vanishes when (WA hg/(Wrho))V/t =

A, which happens when Wt = p, the left eigenvectors of A with eigen-
value A, or when hg = r, the corresponding right eigenvector of A. O

Reduced state space recursions. Assume first that two genes are
drawn without replacement. To prove the upper part of (66), we start
to show that f;;; is independent of i,j € Zq, as specified by (65) for
t=0,1,2,.... When t = 0, (65) follows from (63). Assume t > 1 and

that (65) holds for t — 1. Picka € {1, ...,
part of (11) implies

d} and any i, j € Z,. The upper

fii = 1= w)?* (Df 1)y — D)+ 1)

= (1= | Y- DejuaFera— 1+ 1)
Tl

= (1—-p)? Z(fr 15— 1) Z Dtvkl+1)

kleZ,

d - -

= (1-py Z(ft—l,b — DDyap + 1)
b1

= (1= w? (Of -1)a — Bed)a + 1)

=: ftas
and this completes the induction step, so that (65) is verified, as well
as the upper part of (66). Finally, the lower part of (66) follows from
the upper part, since hyj = hyg =1 — fig fori.je ZIpanda=1,....d.

When two genes are drawn with replacement, the gene identities
and gene diversities will satisfy recursions

fo= Q- pP@Af  -Ad+1D)+0 -1 -,
he = (1 - pw?Ahe_; + (1 - (1 - A - &),

fort =1, 2, ... that are reduced state space versions of the recursions
in (8), with As = (Ayp) @ d x d matrix with elements

Awp =Y Aijn
kleZ,

{b=do}
1\ fa=sdo} _ 1- 2Nem

={1- — Qp | —— ,
2N¢q 1——

2N,,

(87)

foranyi,j € Z,, with 8 = (Sm)ad x 1vector with §;q = 1{a5d0}/(2Nta)-
Formula (87) is proved as (66), using (8) instead of (11).

Proof of (75). Write D= (D(‘) )fort =1, 2,....Using induction with
respecttot=1,2,..., itcan be shown that (67) extends to

t t
DY = > Dfﬂd (88)

k,leZy

for any i, j € Z,. It follows from Perron Frobenius’ Theorem that

D' = At#p + o(hY) (89)
as t — oo, where A = Amax (D) is the largest eigenvalue of D, with cor-
responding d x 1 right eigenvector r = (1) and 1 x d left eigenvector
o = (pp). Comparing the lower part of (86) with (88) and (89), it fol-
lows that A = X. To complete the proof, the leading right and left
eigenvectors of D and D can be normalized so that 7;; = 7q for any
ij € Za and pp = 3 yjez, Oui- O

Subpopulation extinction. We will briefly indicate how some vari-
ables and recursions can be generalized to allow for subpopulation
extinction. It is assumed in Section 3 that Fgj, Hj, frj and hy; are all
undefined and assigned values NaN if at least one of i and j is extinct in
generation t. Analogously, we put Ay iy = &;j = NaN if either Ny; = 0
or N;j =0, and Ay iy = 0 of none of i and j is extinct in generation ¢,
but at least one of k and [ is extinct in generation t — 1. The recursions
in (8) remain valid with these conventions, if all matrix multiplica-
tions (A¢h;_1, Af;_; and A1) employ the rules NaN + NaN = NaN,
0-NaN =0 and NaN - C = NaN for C > 0. In particular, h, f¢, Ach:_1,
Af;_; and A;1 will have NaN components for those pairs i, j of subpop-
ulations of which at least one is extinct in generation t. When these
column vectors have been computed, we finally obtain the right hand
sides of (8), using the conventions NaN + NaN = NaN, C - NaN = NaN
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and C + NaN = NaN for any real-valued C, even C = 0. The conven-
tions for D; recursions are the same as for A;.

The subpopulation weights of Sections 3.3-3.4 may incorporate
extinction through the rule N;; = 0 = w; = 0, so that all extinct sub-
populations are assigned zero weights. This implies in particular that
quantities that depend on the weighting scheme, such as Fr¢, Fs;, Hry,
Gst, f1¢, fse, hre and hgg, are well defined sums of terms, some of which
satisfy 0 - NaN = 0.
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