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The main purpose of this paper is to develop a theoretical framework for assessing effective population size

and genetic divergence in situations with structured populations that consist of various numbers of more or

less interconnected subpopulations. We introduce a general infinite allele model for a diploid, monoecious

and subdivided population, with subpopulation sizes varying over time, including local subpopulation extinc-

tion and recolonization, bottlenecks, cyclic census size changes or exponential growth. Exact matrix analytic

formulas are derived for recursions of predicted (expected) gene identities and gene diversities, identity by

descent and coalescence probabilities, and standardized variances of allele frequency change. This enables us

to compute and put into a general framework a number of different types of genetically effective population

sizes (Ne) including variance, inbreeding, nucleotide diversity, and eigenvalue effective size. General expres-

sions for predictions (gST ) of the coefficient of gene differentiation GST are also derived. We suggest that in

order to adequately describe important properties of a subdivided population with respect to allele frequency

change and maintenance of genetic variation over time, single values of gST and Ne are not enough. Rather,

the temporal dynamic patterns of these properties are important to consider. We introduce several schemes

for weighting subpopulations that enable effective size and expected genetic divergence to be calculated and

described as functions of time, globally for the whole population and locally for any group of subpopulations.

The traditional concept of effective size is generalized to situations where genetic drift is confounded by

external sources, such as immigration and mutation. Finally, we introduce a general methodology for state

space reduction, which greatly decreases the computational complexity of the matrix analytic formulas.

© 2014 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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. Introduction

Determining the amount of genetic variation within and between

opulations and the rate of loss of genetic variation is of fundamental

mportance in evolutionary and conservation genetics, and crucial pa-

ameters in this respect include the genetically effective population

ize (Ne) and the coefficient of gene differentiation (GST ). Nei [64] in-

roduced GST as a multiallelic and multilocus extension of the fixation

ndex FST of Wright [115,116] and it quantifies the proportion of ge-

etic variation that is explained by genetic differences between pop-

lations. The effective size is the size of an ideal homogeneous pop-

lation without mutations or selection, that has the same expected

hange of some genetic characteristic (e.g. inbreeding) per generation

s the studied one. Many versions of Ne have been developed since
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he concept was first introduced by Wright [113,114], as reviewed e.g.

y Ewens [21], Crow and Denniston [17], Orrive [76], Caballero [7],

ang and Caballero [103], Waples [107], and Charlesworth [11]. Over

he years, Ne has become an indispensable tool in conservation biol-

gy for identifying population sizes necessary for short and long term

onservation of e.g. endangered species and populations [2,27,93,96].

Most models for Ne refer to a single population of constant size,

nd rules of thumb in conservation genetics are often based on such

odels assuming single, isolated populations [1]. In real life, however,

opulations are rarely isolated but are subject to gene flow among

ore or less isolated subpopulations of varying size that are dispersed

ver a particular geographic area.

The main purpose of the present paper is to develop theoretical

eans for assessing effective population size and genetic divergence

n a situation with substructured populations that consist of vari-

us numbers of more or less interconnected subpopulations whose

ize can vary over space and time. Specifically, this analytical work

as prompted by a practical, real life case – the conservation ge-

etic situation of the Swedish wild wolf population. The Swedish wolf
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population is highly inbred and has been almost completely isolated

for several decades. Conservation genetics research has addressed

the severe genetic situation (e.g. [46,52,80]), specifically stressing the

need for breaking isolation and creating an interconnected population

system where the Swedish wolf population can exchange genes with

the Finnish population and populations further east [29,47]. Politi-

cians and managers have now also realized this need and various ways

of creating gene flow are discussed [53]. However, the necessary prop-

erties of such a substructured population in order to meet conserva-

tion genetic goals with respect to rate of inbreeding and genetic drift

are unclear, because theory for metapopulation effective population

size relevant for practical situations such as the current one has been

missing. In this paper, we develop the mathematical framework for

addressing such issues and several steps are involved in this process,

including 1) generalized recursion formulas for a number of genetic

quantities, 2) new analytical tools for reporting the time dynamics

of Ne and forecasts of GST , 3) a novel class of subpopulation weights,

4) a generalized unified theory of different types of effective size Ne,

and 5) a novel method of computational reduction for populations

with symmetries.

We briefly describe these five contributions. First, we consider a

class of diploid, monoecious populations evolving in discrete gen-

erations under selective neutrality, with mutations, migration and

genetic drift (due to random sampling of genes when a finite pop-

ulation reproduces) as evolutionary forces affecting the amount of

genetic variation. Whereas formulas for Ne and GST are often devel-

oped under a variety of assumptions, such as a large population, a

small migration rate between subpopulations, or a long time frame,

we will rather use matrix analytic methods [10] in order to define ex-

act linear recursions for a number of quantities, including identity by

descent and coalescence probabilities, standardized variances of al-

lele frequency change, and predicted (expected) gene identities/gene

diversities. All these recursions are very similar, with matrices that

have rows and columns indexed by pairs of subpopulations. Although

several authors have considered such recursions, starting with the

seminal work in [56], our setup is more general in that we allow the

demographics, in terms of migration patterns, local census and local

effective sizes to vary in an arbitrary way, including global and lo-

cal bottlenecks, subpopulation extinction and recolonization, cyclic

changes, or exponential growth. From these recursions we get novel

and exact expressions of predictions of GST and various types of Ne

(inbreeding, variance, nucleotide diversity, eigenvalue).

Second, it is essential for protection of genetic characteristics of

populations and species to know the rate of loss of genetic variability

and subpopulation differentiation over short and long time intervals.

For a subdivided population it is typically not possible to summarize

this information with just a few parameters, not even when the sub-

population census sizes are constant over time. When a population

is isolated its degree of inbreeding, for example, will increase at a

fixed rate so that Ne is constant from one generation to the next. In

contrast, if a subpopulation of a population system receives migrants

from the rest of the system, then the rate of inbreeding, and thereby

Ne, will vary over time. As a consequence, Ne of the whole system will

fluctuate as well, as we will see below. For this reason we generalize a

new approach initiated in [73] for age structured models and variance

effective sizes, and report Ne as a function of the time interval under

which genetic loss takes place. Similarly, the predicted GST depends

on when the forecast is made, and it can therefore be computed as

a function of the distance between the present and the time point

of prediction. This enables researchers to investigate the predicted

genetic effects of various demographic scenarios and management

schemes that include population systems rather than single, isolated

populations.

Third, we consider a large and novel class of schemes of weight-

ing subpopulations and show how they influence Ne and predic-

tions of GST . Of particular interest are weights that are uniform (all
ubpopulations weighted equally), proportional to subpopulation

izes (each individual weighted equally) or reproductive (each in-

ividual weighted proportionally to its predicted or expected long

erm number of descendants). We also consider local schemes for

hich only subsets of subpopulations are assigned positive weights.

his could be of interest in practical management when the popu-

ation managed in a particular area is genetically connected to one

r several other populations, which act as more or less known ‘ghost

opulations’ [4,91]. For such local weights, it is possible to quantify

xactly how various migration scenarios between the population of

nterest and the other subpopulations affect GST and Ne.

Fourth, in an influential paper Whitlock and Barton [110] showed

hat several notions of effective size are closely related for subdivided

opulations, and here we extend their results by considering time

ntervals of arbitrary length, and a larger class of effective sizes. To

his end, we utilize that each type of effective size involves a quantity

hat is either defined backwards (identity by descent and coalescence

robabilities) or forwards (predicted gene identity, standardized vari-

nce of allele frequency change) in time, and the matrices of the cor-

esponding linear recursions can be described in terms of pairs of

enes, drawn with or without replacement from the population. Al-

hough the latter distinction has a negligible effect for a population

ith a size of order, say, 100 or larger, it makes it possible to put all

otions of effective size into a unified framework, expressing each

ne of them as a very explicit function of the initial conditions and

atrices of its linear recursion and of the subpopulation weights.

Fifth, we define a general way of exploiting invariance between

ubpopulations, so that whenever certain symmetry conditions hold,

he size of the state space can be reduced from s2, where s is the

umber of subpopulations.

In Section 2 we define the population dynamics and specify in

articular how migration, genetic drift and mutations enter into the

odel. Subpopulation differentiation is treated in Section 3 and the

arious types of effective sizes in Section 4. In Section 5 we consider

he special case when local census sizes and migration rates are time

ndependent. This is illustrated with several examples that highlight

he importance of reporting Ne and predictions of GST as functions of

ime. State space reduction is defined and exemplified in Section 6, a

ummary and discussion are provided in Section 7, some extensions

f the theory and proofs can be found in Appendix A, and finally,

able 1 provides a list of notations for some of the most important

uantities of the paper.

. Model for demographics, reproduction, and mutations

Consider a diploid and monoecious population with a random

mount of selfing that is subdivided, with s subpopulations. It evolves

n discrete generations t = . . . , −1, 0, 1, 2, . . . of which t < 0 repre-

ents the past, t = 0 the present and t > 0 the future. Let Nti ≥ 0 be the

ocal census size of subpopulation i in generation t, with Nti = 0 cor-

esponding to extinction. Each individual carries two copies of a gene,

o that the total number of genes in subpopulation i and generation

is 2Nti. The total census size Nt = ∑s
i=1 Nti in generation t is assumed

o be positive, so that at least one subpopulation is non-extinct.

The local effective size Neti in generation t of subpopulation i is

sually (but not necessarily) smaller than or equal to its local census

ize Nti. The more variable reproduction between individuals in i is,

he smaller is Neti.

Occasionally, migration between subpopulations takes place, as

uantified by the forward and backward migration rates Mt−1,ki and

tik from subpopulation k of generation t − 1 to subpopulation i of

eneration t. More precisely, each gene of subpopulation k and gen-

ration t − 1 has an expected number Mt−1,ki of offspring, which, in

he next generation t, live in subpopulation i, whereas Btik is the

robability that a parent of a gene in subpopulation i and generation t

riginates from subpopulation k in the previous generation t − 1. The
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Table 1

Notation for selected quantities of the paper.

Symbol Definition

s Number of subpopulations

Nti Local census size of subpopulation i in generation t (= Ni if time independent)

Nt Global census size
∑s

i=1 Nti of generation t (= N if time independent)

Neti Local effective size of subpopulation i in generation t

Mt = (Mtki) Matrix with forward migration rates between all pairs of subpopulations from generation t to t + 1

Bt = (Btik) Matrix with backward migration rates between all pairs of subpopulations from generation t to t − 1

μ Mutation probability for each gamete

Ptia Frequency of allele a in subpopulation i of generation t

Htij Gene diversity between subpopulations i and j of generation t

ht = (htij) Column vector of s2 predicted gene diversities between all pairs of subpopulations, generation t

Ftij Gene identity between subpopulations i and j of generation t

f t = (ftij) Column vector of s2 predicted gene identities between all pairs of subpopulations, generation t, or

identity by descent probabilities between generations t1 and t, or standardized genetic drift covariances

between generations 0 and t

1 Column vector of s2 ones

δt = (δtij) Column vector of s2 probabilities of drawing the same gene with replacement from all pairs of

subpopulations

At = (Atij,kl) Square matrix of order s2 in gene identity with replacement recursions

Dt = (Dtij,kl) Square matrix of order s2 in gene identity without replacement recursions

wi Weight assigned to subpopulation i

WT = (wiwj) Row vector of s2 sampling probabilities, all pairs of subpopulations, scheme T

WS = (wi1{i=j}) Row vector of s2 sampling probabilities, all pairs of subpopulations, scheme S

ui Relative size of subpopulation i (if constant over time)

γi Probability that distant ancestor belongs to subpopulation i (constant migration)

S Subset of subpopulations that have positive weights

GSTt Coefficient of gene differentiation in generation t

gSTt Predicted GSTt based on information from generation 0

NeI(T ) Inbreeding effective size over time interval T , global when all wi > 0

Neπ ((−∞, t]) Nucleotide diversity effective size based on coalescence time of two genes from generation t, global

when all wi > 0

NeV(T ) Variance effective size over time interval T , global when all wi > 0

NeE Eigenvalue effective size, always globally for the whole population

λ Largest eigenvalue of At = A and Dt = D

r = (rij) Right eigenvector of A corresponding to eigenvalue λ

ρ = (ρij) Left eigenvector of A corresponding to eigenvalue λ

r̃ = (r̃ij) Right eigenvector of D corresponding to eigenvalue λ

ρ̃ = (ρ̃ij) Left eigenvector of D corresponding to eigenvalue λ

m Migration rate, i.e. proportion of offspring that belong to a subpopulation different from their parents

m′ Defined for the island model, = sm/(s − 1)

NaN Not a number
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orward migration rates determine the time progression of the local

ensus sizes, according to

ti =
s∑

k=1

Nt−1,kMt−1,ki, (1)

here each term on the right hand side gives the number of offspring

hat the parents in subpopulation k and generation t − 1 contribute to

ubpopulation i in generation t. In particular, Mt−1,ki is the observed

orward migration rate, a random variable with E(Mt−1,ki) = Mt−1,ki.

n order to define a larger and more flexible class of forward mi-

ration rates, we will not always require that Nt−1,k and Nti are in-

egers in (1). When Nt−1,k = 0, the forward rates from subpopula-

ion k in generation t − 1 are not well defined, and this we write as

t−1,ki = Mt−1,ki = NaN, where NaN is short for ‘Not a Number’, and

convention 0 · NaN = 0 is assumed in (1). However, a subpopula-

ion k that is extinct in generation t − 1 may still be recolonized in

he next generation through migration from other subpopulations, as

escribed in (1). The backward rates satisfy

tik =
⎧⎨
⎩

Nt−1,kMt−1,ki

Nti

, Nti > 0,

NaN, Nti = 0.

(2)

he total number of genetic variants (alleles) in generation t is nt ≥ 1,

nd for any non-extinct subpopulation i in generation t, Ptia is the

raction of genes in generation t and subpopulation i carrying al-

ele a = 1, . . . , nt , whereas Ptia = NaN if Nti = 0. Our model of sub-

opulation extinction and recolonization is very general, but for
otation convenience we only consider non-extinct subpopulations

n the main text, and refer to the end of Appendix A for the extended

heory. See also [32,89,111] for more specific models of subpopulation

xtinction and recolonization.

The gene is assumed to be selectively neutral, with a mutation

robability 0 ≤ μ ≤ 1 per gamete and generation. We will assume an

nfinite allele model [42], so that each mutation creates a new allele,

ever seen before. In more detail, the reproduction cycle between

enerations t − 1 and t can be summarized in four steps as follows:

. In each (non-extinct) subpopulation k = 1, . . . , s of generation

t − 1, a random subset Ne,t−1,k of all Nt−1,k individuals are selected

as breeders. An infinitely sized pre-migration gamete pool k is

formed, to which all breeders’ genes contribute in equal propor-

tions 1/(2Ne,t−1,k).
. Migration takes place by exchange of genetic material between

gamete pools, so that, after migration gamete pool i of a subpop-

ulation that is non-extinct in generation t, is a mixture of pre-

migration gamete pools 1, . . . , s in proportions Btik, k = 1, . . . , s.

. The gametes of all post-migration pools i of step 2 mutate inde-

pendently with probability μ.

. Fertilization in a (non-extinct) subpopulation i ∈ {1, . . . , s} of gen-

eration t proceeds, selecting 2Nti gametes randomly from post-

migration gamete pool i of step 3, corresponding to Nti diploid

individuals.

Since fertilization in step 4 takes place in infinitely sized post-

igration pools, the number of genes drawn from each parental
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subpopulation have a multinomial distribution, and therefore

(2Nt−1,1Mt−1,1i, . . . , 2Nt−1,sMt−1,si) ∼ Mult(2Nti; Bti1, . . . , Btis).

Sampson [85] employed a special case of reproduction cycle 1–4 with-

out mutations, identical local effective and census sizes of all sub-

populations (Neti = Nt1), with (Nt1, . . . , Nts) varying rapidly accord-

ing to a Markov chain with a finite state space. See also Nagylaki

[61], who considered a model similar to 1–4, with equal effective

and census sizes of all subpopulations that are constant over time

(Neti = Nti = Ni), and selection added in a separate step between 1

and 2. For the infinite island model, 1–4 corresponds to a scheme

that Sved and Latter [95] referred to as stochastic migration with a

stochastic migration rate.

3. Subpopulation differentiation

In this section, we quantify inbreeding in terms of allele frequen-

cies at one single locus, with the goal of obtaining general expres-

sions for how predictions of inbreeding and the coefficient of gene

differentiation (GST ) evolve over time, with numerical illustrations

in Example 1 of Section 5. In the next section, we will also de-

fine inbreeding from identity by descent sharing and coalescence

probabilities.

3.1. Gene diversities and identities with replacement

Suppose two genes are drawn randomly from two subpopulations

i and j of generation t, with replacement if i = j. Following [64,67], we

quantify inbreeding by means of the gene identity

Ftij =
nt∑

a=1

PtiaPtja (3)

between subpopulation i and j in generation t as the probability that

the two genes are identical by state (IBS), i.e. have the same allele.

The probability that the two alleles are different is referred to as the

gene diversity

Htij = 1 − Ftij =
∑

1≤a,b≤nt
a	=b

PtiaPtjb (4)

of i and j in generation t. When i = j, the gene identity and gene di-

versity are identical to the homozygosity and heterozygosity of sub-

population i, only when the genotype frequencies of i conform with

Hardy–Weinberg proportions. Otherwise the concepts are different,

since genotype frequencies cannot be determined from the allele fre-

quencies alone.

An advantage of (3)–(4) is that genotype frequencies need not be

specified when i = j, and that the same definition applies when i 	= j.

Define

ftij = E0(Ftij),

htij = E0(Htij),
(5)

as expectations conditionally on allele frequencies of the present (in-

dex 0 of E corresponding to t = 0). We regard (5) as predictions of

Ftij and Htij, given information on allele frequencies from t = 0, and in

particular f0ij = F0ij and h0ij = H0ij = 1 − f0ij. In Appendix A, we show

that

0 ≤ ftij ≤
√

ftiiftjj, (6)

for any pair of subpopulations i and j of generation t.

The predicted gene identities and diversities satisfy linear recur-

rence relations. In order to formulate these recursions, it is conve-

nient to collect all ftij and htij of generation t into column vectors

f t = (ftij, 1 ≤ i, j ≤ s) and ht = (htij 1 ≤ i, j ≤ s) of length s2, where ij

is short-hand notation for column number (j − 1)s + i. We introduce

the s2 × s2 matrix At = (Atij,kl; 1 ≤ i, j, k, l ≤ s), whose row and column
umbers (j − 1)s + i and (l − 1)s + k are abbreviated as ij and kl re-

pectively, with elements

tij,kl =
(

1 − 1

2Nti

){i=j}
BtikBtjl

(
1 − 1

2Ne,t−1,k

1 − 1
2Nt−1,k

){k=l}
. (7)

t is shown in Appendix A that

f t = (1 − μ)2(Atf t−1 − At1 + 1)+ (
1 − (1 − μ)2

)
δt,

ht = (1 − μ)2Atht−1 + (
1 − (1 − μ)2

)
(1 − δt),

(8)

or t = 1, 2, 3, . . ., where 1 is a column vector of s2 ones, and δ = (δtij)is

nother column vector of length s2 with elements δtij = 1{i=j}/(2Nti).

.2. Gene diversities and identities without replacement

Suppose instead that the two genes of the previous section are

equired to be distinct, so that they are drawn without replacement

hen i = j. Then the probabilities that the two genes are identical and

ifferent by state, are

Ftij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nt∑
a=1

Ptia
2NtiPtia − 1

2Nti − 1
, i = j,

nt∑
a=1

PtiaPtja, i 	= j,

tij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
a	=b

Ptia
2NtiPtib

2Nti − 1
, i = j,

∑
a	=b

PtiaPtjb, i 	= j,
(9)

or any pair i, j of subpopulations in generation t. These quantities

ere studied by Malécot [56], when all local census and effective

izes are identical and constant over time. We refer to (9) as the

ene identity and gene diversity of subpopulations i and j in gen-

ration t, for genes drawn without replacement. Although Nei [64]

sed the other definition (3)–(4) when defining GST , it is implicit from

51], [65, p. 122] and [84] that these authors’ expected gene identity

ecursions employed (9).

It is shown in Appendix A that the predicted gene identity between

wo distinct subpopulations i and j, satisfies the inequality

≤ ftij ≤
√(

2Nti − 1

2Nti

ftii + 1

2Nti

) (
2Ntj − 1

2Ntj

ftjj + 1

2Ntj

)
. (10)

he recursions (8) for predicted gene identities/diversities, are mod-

fied to

f t = (1 − μ)2(Dtf t−1 − Dt1 + 1),

ht = (1 − μ)2Dtht−1 + (
1 − (1 − μ)2

)
1,

(11)

or t = 1, 2, 3, . . ., when genes are drawn without replacement, where

t = (Dtij,kl) is an s2 × s2 matrix with elements

tij,kl = BtikBtjl

(
1 − 1

2Ne,t−1,k

){k=l}
. (12)

e may interpret (12) as a non-coalescence probability of two distinct

enes sampled from i and j in generation t, given that their parents

eside in k and l. The explicit solution of the upper part of (11);

t = (1 − μ)2tDt · . . . · D1f 0

+
t∑

τ=1

(1 − μ)2(t−τ+1)Dt · . . . · Dτ+1(1 − Dτ 1)

μ=0= 1 − Dt · . . . · D1(1 − f 0), (13)

xtends a formula of [65] for a single (s = 1) population.
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.3. Defining sampling probabilities

We will define two different schemes for sampling a pair of genes

rom the global population. This sampling is a theoretical construct,

eeded to define a number of quantities below, and should not be

onfused with collecting real data and estimating parameters. The two

chemes we propose are hierarchical, where in the first step, a pair of

ubpopulations is selected, and in the second step, a pair of genes is

ampled from the selected pair of subpopulations (as described in the

revious section). In order to formalize the first step, we introduce

vector of non-negative subpopulation weights wt = (wt1, . . . , wts)
hat sum to one, i.e.

∑s
i=1 wti = 1. Unless otherwise stated, we will

ssume that the weight vector wt = w = (w1, . . . , ws)does not change

ith time, although this is not required for all formulas. For instance,

f S ⊂ {1, . . . , s} is a fixed subset of subpopulations from which we

lan to collect genetic data, a possible weighting scheme is

i = 1{i∈S}
|S| , (14)

here |S| refers to the number of subpopulations included in S ,

hereas the remaining s − |S| ghost subpopulations are only in-

luded in the analysis indirectly, through migration. If samples are

aken from all subpopulations (S = {1, . . . , s}) formula (14) reduces

o uniform weights

i = 1

s
. (15)

he two sampling schemes are defined as follows:

Sampling scheme T: Select a pair of subpopulations with proba-

bility wiwj, 1 ≤ i, j ≤ s. Then sample two genes, one from each of i

and j.

Sampling scheme S: Select a subpopulation with probability wi,

i = 1, . . . , s. Then sample two genes from the chosen subpopula-

tion i.

Whereas the first sampling scheme quantifies genetic variation of

he total (T) set of subpopulations with positive weights, the second

ne quantifies genetic variation within these subpopulations (S).

If two genes are sampled in generation t, their gene identi-

ies/diversities for each of the two sampling schemes are

FTt =
s∑

i,j=1

wiwjFtij,

FSt =
s∑

i=1

wiFtii,

Tt = 1 − FTt =
s∑

i,j=1

wiwjHtij,

HSt = 1 − FSt =
s∑

i=1

wiHtii, (16)

ith Ftij and Htij formulated with or without replacement, as

n (3)–(4) and (9). When uniform subpopulation weights (15) are

sed and the genes are drawn with replacement, (16) equals the def-

nitions of the gene identity and gene diversity in Section 6.4 of [65].

.4. Coefficient of gene differentiation

In order to assess how genetically different the subpopulations

re, we use the coefficient of gene differentiation

STt = Gw
STt = FSt − FTt

1 − FTt
= HTt − HSt

HTt
(17)

f generation t. This quantity was introduced by Nei [64,66], first

or uniform (15) and then for more general weighting schemes. It
s assumed that the two genes are drawn with replacement in (17),

n order to guarantee that GSTt is non-negative, see Appendix A for

etails.

For a future (t > 0) generation, Gw
STt is unknown, with a certain dis-

ribution depending on the random nature of genetic drift, migration,

nd mutation. A single value forecast gw
STt([0, t]) should approximate

ome central point (median, expected value, . . . ) of the predictive

istribution of Gw
STt over time interval [0, t]. One such quantity

STt = gw
STt

(
[0, t]

) = E0(FSt − FTt)

E0(1 − FTt)
= fSt − fTt

1 − fTt
(18)

as introduced by Nei [65] and further studied in [68]. It employs the

redicted (or expected) gene identities

Tt = E0(FTt) =
s∑

i,j=1

wiwjftij,

fSt = E0(FSt) =
s∑

i=1

wiftii, (19)

f sampling schemes T and S respectively in generation t.

Let WT = (wiwj; 1 ≤ i, j ≤ s) and WS = (1{i=j}wi; 1 ≤ i, j ≤ s) be

ow vectors of length s2, whose elements are weights assigned by

ampling schemes T and S to all pairs of subpopulations. We can

eexpress (18) as

STt = (WS − WT)f t

1 − WT f t

, (20)

ith f t computed from the upper recursion of (8) when genes are

rawn with replacement. If ftii has been specified within all subpop-

lations, it follows from (6) that the maximal value of gSTt has ftij = 0

or all distinct pairs i 	= j [31]. One may also define versions of GSTt and

STt with genes drawn without replacement, using the upper recur-

ion of (11) in (20). However, this is less appropriate, since GSTt then

ecomes negative when the frequencies of any allele is the same in

ll subpopulations.

. Effective population sizes

In this section we examine the inbreeding (NeI), nucleotide diver-

ity (Neπ ), variance (NeV ) and eigenvalue (NeE) effective sizes, with a

otation

eX(T ) = Nw
eX (T ), (21)

or X ∈ {I, π, V, E}, where T is a finite or infinite time interval and w

vector of subpopulation weights. Eq. (21) quantifies the expected

oss of genetic variability due to changed allele frequencies, in those

ubpopulations that have positive weights wi, per generation during

. These allele frequency changes are not only caused by genetic

rift, but confounding effects of migration and mutation could also

e present. Throughout this section we assume μ = 0, so that only

enetic drift and migration will influence NeX . In particular, if the

ubpopulations within S have positive weights (cf. (14)), migration

etween S and its complement will influence NeX as a confounder, as

hown explicitly in [83] for the island model.

.1. Inbreeding effective size

In the original definition of the inbreeding effective size NeI in

113], two genes are drawn without replacement from a population,

nd the probability is derived that their parental genes are from the

ame individual. We generalize this definition of NeI to structured

opulations in the context of reproduction model 1–4 of Section 2,

here the probability of having the same parent is twice the proba-

ility of having identical parental genes. Our generalization includes

onger time intervals than one single generation that may extend not
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only backwards, but also forwards in time, and genes may be sam-

pled with and without replacement, see Examples 3–5 of Section 5

for numerical illustrations.

Two gene copies are either IBD if they originate from the same

mutated allele; under the infinite allele model, this is equivalent to

being IBS. Alternatively, two alleles are IBD if they originate from the

same ancestral gene of a founder generation t0 ≤ 0. We employ the

second IBD definition, so that each individual of the founder gener-

ation contributes with two IBD classes. We let Ptic be the frequency

of IBD class c = 1, . . . , 2Nt0
in subpopulation i of generation t ≥ t0. In

absence of mutations (μ = 0), these IBD frequencies determine allele

frequencies through

Ptia =
∑
c∈Ca

Ptic,

where Ca ⊂ {1, . . . , 2Nt0} is the set of IBD classes with allele a. In par-

ticular Ptic = Ptic if all alleles of the founder generation are different.

4.1.1. Drawing without replacement

When two genes are drawn without replacement from i and j at

time t, they have a probability

Ftij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2Nt0∑
c=1

Ptic
2NtiPtic − 1

2Nti − 1
, i = j,

2Nt0∑
c=1

PticPtjc, i 	= j,

(22)

of being IBD. For two generations t1 and t satisfying t0 ≤ t1 ≤ t, we let

ftij = f IBD
t1tij = Et1

(Ftij) (23)

be the forward predicted IBD probability of two genes of subpopu-

lations i and j at generation t, given that the sizes of all IBD classes

are known at time t1. An equivalent backward in time interpretation

of ftij is the probability that the two genes will have ancestors from

generation t1 that are IBD, given that we know the IBD classes at that

time.

Let f t = f
IBD
t1t be a column vector of length s2 containing all IBD

probabilities ftij. Since our IBD definition does not involve mutations,

f t1
, f t1+1, . . . satisfy the upper recursion of (11) with μ = 0 and initial

condition f t1
. From (13) (with 0 replaced by t1) we derive the IBD

probability of two genes, chosen randomly without replacement with

scheme T from generation t, as

fTt =
s∑

i,j=1

wiwjftij

= 1 − W tDt · . . . · Dt1+1(1 − f t1
). (24)

For a Wright–Fisher model of diploid size N, it is easy to see that

1 − fTt drops by 1 − 1/(2N)in each generation (see for instance Section

1.7.1 of [30], so that fTt = 1 − (1 − fTt1
)
(
1 − 1/(2N)

)t−t1 . Based on this,

the inbreeding effective size without replacement over time interval

[t1, t],

NeI

(
[t1, t]

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2

⎛
⎜⎜⎝1−

⎛
⎜⎝ W TDt ·...Dt1+1

(
1−f t1

)

W T

(
1−f t1

)
⎞
⎟⎠

1/(t−t1)
⎞
⎟⎟⎠

, if fTt > fTt1
,

NaN, if fTt ≤ fTt1
,

(25)

is defined as the size of a Wright–Fisher population for which

(1 − fTt)/(1 − fTt1
) decreases by the same amount as in the studied

population.

In the lower part of (25) we incorporated the possibility that the

IBD probability fTt does not increase between generations t1 and t, so

that NeI([t1, t]) is not well defined. Since plausible scenarios can be

found when this happens, this is a deficiency of NeI . For instance, if
ositive weights are assigned only to a subset S of subpopulations,

s in (14), and the amount of inbreeding ft1ij for i, j within S is much

arger than ft1ij with i ∈ S and j /∈ S , then fTt may decrease the first

ew generations t > t1 due to migration into S from the less inbred

ubpopulations outside S .

Definition (25) has a very appealing property

eI

(
[t1, t]

) = 1

2
(

1 − ∏t−1
r=t1

(1 − 1
2NeI([r,r+1]))

1/(t−t1)
) , (26)

henever each term NeI

(
[r, r + 1]

)
on the right hand side is well de-

ned according to (25) for each value of the generation index r. In

articular, for large populations, NeI

(
[t1, t]

)
is approximately the har-

onic mean of all NeI

(
[r, r + 1]

)
, as for homogeneous populations

19, p. 144].

Suppose S = {i} consists of a single subpopulation, with weights

j = 1{j=i} in (14). When there is migration from at least one of the

ther subpopulations into i, (26) describes how the local effective

ize of i over [t1, t] depends on the local effective sizes of i between

ubsequent generations. These will in general differ from Neti, since

hey are also affected by immigration into i. It is shown in Appendix A

hat this confounding effect disappears and

eI([t, t + 1]) = Neti (27)

hen i receives no immigrants from the other subpopulations.

The backward interpretation of (25) simplifies when t1 = t0 is the

ounder generation. Then ftij = f IBD
t0tij

is the probability that two distinct

enes, drawn from i and j in generation t, have found their most recent

ommon ancestor (MRCA) within time span t − 1, t − 2, . . . , t0, so that

t0ij = 0 gives an initial condition f t0
= 0 in (24). Suppose two distinct

enes of generation t are drawn according to sampling scheme T ,

nd let τTt be their coalescence time, corresponding to a MRCA from

eneration t − τTt . Then we can rewrite (24) as fTt = fTt0t = P(τTt ≤
− t0), and (25) simplifies to

eI

(
[t0, t]

) = 1

2
(
1 − (1 − P(τTt ≤ t − t0))1/(t−t0)

)
= 1

2
(
1 − (WT Dt · . . . · Dt0+11)1/(t−t0)

) . (28)

n particular, for a time interval [t, t + 1], (28) equals

eI

(
[t, t + 1]

) = 1

2P(τT,t+1 = 1)
= 1

2
(
1 − WT Dt+11

) ,

hich for an isolated (s = 1) population simplifies to Net = Net1, in

ccordance with the original NeI definition of [113], see for instance

quation 7.6.2.8 of [18] or Section 4.4 of [19].

.1.2. Drawing with replacement

If we rather draw two genes with replacement from subpopula-

ions i and j of generation t, their IBD probability is

tij =
2Nt0∑
c=1

PticPtjc (29)

or all 1 ≤ i, j ≤ s. The definitions of the expected IBD probabilities

tij = ft1tij and fTt in (23)–(24) remain the same, apart from replacing

atrices Dt by At everywhere. For a Wright–Fisher population with

iploid size N, it holds that fTt = 1 − (1 − fTt1
)
(
1 − 1/(2N)

)(t−t1)
, see

or instance Theorem 1.3 of [19]. Based on this observation, we define

he inbreeding effective size NeI (with replacement) over time interval

t1, t] as

eI

(
[t1, t]

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2

⎛
⎜⎜⎝1−

⎛
⎜⎝ W TAt ·...At1+1

(
1−f t1

)

W T

(
1−f t1

)
⎞
⎟⎠

1/(t−t1)
⎞
⎟⎟⎠

, if fTt > fTt1
,

NaN, if fTt ≤ fTt1
.

(30)
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.2. Nucleotide diversity effective size

The mutation or nucleotide diversity effective size Neπ is the size

f a Wright–Fisher population with the same heterozygosity in gener-

tion t as in the studied population at a site with a very small mutation

robability, see [19,22]. It is defined in terms of the expected coales-

ence time τTt of two genes, sampled in generation t according to

cheme T;

eπ ([t − ‖τTt‖, t]) = E(τTt)

2
, (31)

ith ‖τTt‖ the smallest positive integer such that P(τTt ≤ ‖τTt‖) = 1.

n particular, if τTt has no finite upper bound, the time interval in (31)

quals (−∞, t]. It follows from (24) and (31) that

eπ

(
[t − ‖τTt‖, t]

) = 1

2

‖τTt‖−1∑
r=0

P(τTt > r)

= 1

2

⎛
⎝1 +

‖τTt‖−1∑
r=1

WT Dt · . . . · Dt−r+11

⎞
⎠ . (32)

.3. Variance effective size

Consider a biallelic gene (nt = 2), and write the allele frequen-

ies of the two alleles (1 and 2) of subpopulation i in generation t as

ti1 = Pti and Pti2 = 1 − Pti. We will make the simplifying assumption

hat all subpopulations have the same frequency P01 = . . . = P0s =: P0

f allele 1 in generation t = 0. Without this assumption, the variance

ffective size is much more difficult to analyze ([21,36]). Let Cov0(·, ·)
efer to the covariance between two random variables conditionally

n allele frequencies of the t = 0 generation. For any pair of subpop-

lations i and j,

tij = f cov
tij = Cov0(Pti − P0, Ptj − P0)

P0(1 − P0)
(33)

uantifies how correlated their genetic drifts over time interval

0, t] are.

It is shown in Appendix A that the column vector f t = f
cov
t = (ftij)

atisfies a special case of recursion (8) for genes drawn with re-

lacement, with μ = 0 and initial condition f t = 0. Jorde and Ry-

an [37] obtained analogous recursions for genetic drift variables of

ge-structured models, where subpopulations represent age classes,

hose sizes are constant over time, Felsenstein [26], Tufto et al. [97]

nd Tufto and Hindar [98] derived covariance recursions for a slightly

ifferent reproduction model than ours, and Emigh [20] studied re-

ated recursions for variances of allele frequencies.

Let

t =
s∑

i=1

wiPti

e the overall frequency of allele 1 in the total population when sub-

opulations are weighted as w1, . . . , ws. It then follows from (33) and

he above mentioned recursions that the genetic drift over time in-

erval [0, t] is

Var0(Pt − P0)

P0(1 − P0)
=

s∑
i,j=1

wiwj

Cov0(Pti, Ptj)

P0(1 − P0)

=
s∑

i,j=1

wiwjftij

= fTt

= 1 − WT At · . . . · A11. (34)

he variance effective size NeV([0, t])over time interval [0, t] is defined

s the number of individuals of a diploid Wright–Fisher model for
hich fTt is the same as in (34). Since fTt = 1 − (1 − 1/(2N))t for a

right–Fisher model of diploid size N (see for instance Section 5.1.2

f [65]) this leads to

eV([0, t]) = 1

2(1 − (WT At · . . . · A11)1/t)
, (35)

special case of the version (30) of NeI([0, t]) with genes drawn with

eplacement, when there is no subpopulation differentiation at t = 0,

.e. f0ij = f0 for all i, j and some 0 < f0 < 1. In particular, for a time

nterval [0, 1] of one single generation ahead of the present, (35)

implifies to

eV

(
[0, 1]

) = P0(1 − P0)

2Var0(P1 − P0)
= 1

2(1 − WT A11)
. (36)

or an homogeneous (s = 1) population the first part of (36)

grees with [16], and in particular we find that NeV([0, 1]) = N11

f N0e1 = N01.

.4. Eigenvalue effective size

The eigenvalue effective size NeE [16,21,23] is defined as the num-

er of individuals of a diploid Wright–Fisher model for which the

ultiplicative rate λ at which alleles are lost is the same as in the

tudied population. It has been shown [35,110] that λ also equals

he rate at which predicted gene identities approach 1. In other words,

eE defines the rate at which inbreeding increases at equilibrium in

ll subpopulations.

A Wright–Fisher model of diploid size N has λWF = 1 − 1/(2N), see

or instance [24]. Equating λ with λWF and solving for N, we find that

eE = NeE

(
[t1,∞)

) = 1

2(1 − λ)
(37)

or any t1 ≥ t0. In Section 5.4 we prove that NeE is the same whether

enes are drawn with or without replacement. We may therefore

ssume that f t is the vector of predicted gene identities with genes

rawn with replacement. Existence of λ requires some extra condi-

ion, such as a population size that varies according to a Markov chain

39] or cyclically [77,79,104,105]. If all population characteristics vary

yclically with period τ > 0, it follows that At+τ = At for all t ≥ 1, so

hat

t1+nτ+r = 1 − Ar+t1
· . . . · A1+t1

· (Aτ · . . . · A1)
n (1 − f t1

), (38)

or any n ≥ 0 and 0 ≤ r ≤ τ − 1. Under mild conditions, A1:τ = Aτ ·
. . · A1 is irreducible and aperiodic, and then it follows from Perron–

robenius Theorem (see for instance [15]) that a unique largest and

ositive eigenvalue λmax(A1:τ ) of A1:τ exists, which will determine

he rate

= λmax (Aτ · . . . · A1)
1/τ (39)

f increase of the expected gene identities (38). Inserting (39)

nto (37), we find that NeE is the only effective size independent of

he weighting scheme w. It is a global effective size, even if wi = 0 for

ome subpopulations i.

. Constant subpopulation sizes and migration rates

Suppose all subpopulation sizes Nti = Ni, forward migration rates

tki = Mki and local effective sizes Neti = Nei are constant over time.

rite the total subpopulation size as N = ∑s
i=1 Nti, the matrix of

orward migration rates as M = (Mki) and introduce the vector

= (u1, . . . , us) of relative subpopulation sizes ui = Ni/N. It follows

rom (1) that u is a left eigenvector of M with eigenvalue 1, corre-

ponding to a system

u = uM,∑s u = 1,
(40)
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Fig. 1. Population system with five subpopulations and local census sizes Ni = Nti =
Neti that are constant over time. The arrows illustrate migration between different

pairs k, i of subpopulations, and next to them the number of migrants NkMki from

k to i per generation, so that for instance M11 = 0.94, M12 = 0.025, M14 = 0.01 and

M13 = M15 = 0.
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of s + 1 equations, from which all ui can be inferred, given a

specification of M. In view of (2), the backward migration rates

Btik = Bik are constant over time as well, and related to the forward

migration rates as

Bik = ukMki

ui

. (41)

Since
∑

k Bik = 1 for any i, B = (Bik) is the transition matrix of a Markov

chain with s states. We assume that this Markov chain is irreducible

and aperiodic, with a unique equilibrium distribution

γ = (γ1, . . . , γs). (42)

Intuitively, γi is the probability that a distant ancestor of a gene that

is sampled from any subpopulation of the present, has its ancestor a

large number of generations back in time from subpopulation i.

5.1. Subpopulation weights

When local census sizes are constant over time, it is of interest to

weight the subpopulations S from which we collect data proportion-

ally to size, i.e.

wi = ui1{i∈S}∑
j∈S uj

. (43)

This implies that all genes that belong to S have the same sampling

probability, whereas those outsideS will not be sampled. In particular

wi = ui (44)

corresponds to a scenario where all genes in the population are drawn

with the same probability. Another possibility is to use as weights the

probabilities

wi = γi (45)

in (42), see [25,36,61,108]. We will refer to (45) as reproductive

weights, since each subpopulation is weighted proportionally to its

long term number of offspring. For this reason, they are useful when

long term genetic changes of the population are to be inferred from

short term changes.

5.2. Gene identities, gene diversities and subpopulation differentiation

When genes are drawn with replacement, the recursions in (8) for

the predicted gene identities and gene diversities simplify to

f t = (1 − μ)2(Af t−1 − A1 + 1)+ (
1 − (1 − μ)2

)
δ,

ht = (1 − μ)2Aht−1 + (
1 − (1 − μ)2

)
(1 − δ),

(46)

for t = 1, 2, 3, . . ., where A = (Aij,kl) has elements

Aij,kl =
(

1 − 1

2Nui

){i=j}
BikBjl

(
1 − 1

2Nek

1 − 1
2Nuk

){k=l}
, (47)

and δ = (δij) is a column vector of length s2, with entries δij =
1{i=j}/(2Nui). Analogously, when genes are drawn without replace-

ment, the recursions in (11) for the predicted gene identities and

gene diversities, simplify to

f t = (1 − μ)2(Df t−1 − D1 + 1),

ht = (1 − μ)2Dht−1 + (
1 − (1 − μ)2

)
1,

(48)

for t = 1, 2, 3, . . ., where D = (Dij,kl) has elements

Dij,kl = BikBjl

(
1 − 1

2Nek

){k=l}
, (49)

and (48) agrees with a classical recursion in [56]. Gene identity re-

cursions have been studied in other settings by Caballero [8] and
agylaki [62] for dioecious (two-sex) models, in which sexes corre-

pond to subpopulations, and Sawyer [86] for the diploid stepping

tone model.

When genes are drawn with replacement and mutations are ab-

ent (μ = 0), (20) and (46) imply that the predicted coefficient of gene

ifferentiation over time interval [0, t] simplifies to

STt

(
[0, t]

) = (WT − WS)A
t(1 − f 0)

WT At(1 − f 0)
, (50)

nd asymptotically for large time intervals, we find from a Jordan

ecomposition of A (see for instance [15]) that

ST∞ = lim
t→∞

gSTt

(
[0, t]

) = (WT − WS)r

WT r
, (51)

ith r the right eigenvector of the largest eigenvalue of A. Eq. (51)

s related to a quasi equilibrium approximation of GST,t in [36], and

n asymptotic expression of the fixation index in [82], in terms of

atios of tail probabilities of coalescence times of genes from different

airs of subpopulations. The convergence rate in (51) is exponentially

ast O
(
(λ2/λ1)

t
)
, with λ1 = λmax(A) > λ2 the two largest eigenvalues

f A.

xample 1 (A system with five subpopulations). Consider the pop-

lation of Fig. 1. It has no novel mutations (μ = 0) and consists of five

ubpopulations i = 1, . . . , 5 whose local census and effective sizes are

he same and constant over time (Nti = Neti = Ni). The migration ma-

rix M = (Mki) is also constant over time, with four subpopulations

onnected through migration along a circle, whereas the fifth sub-

opulation has no emigrants. It is only linked with the other subpop-

lations through immigration from subpopulation 4.

Fig. 2 shows predictions of gene identities (with replacement) for

ach subpopulation i separately (ftii), for subpopulations combined

fSt) and for the total population (fTt). As expected, they all tend to

as the length of the prediction interval (t) increases. The amount

f inbreeding f0ij at t = 0 varies within and between subpopulations,

nd although initially subpopulation 5 has the least amount of in-

reeding, it soon becomes most inbred. It is seen that the values

f f0ij when i 	= j have a great impact on the overall level of future

nbreeding.

If subpopulation number i would have been isolated, then

tii = 1 − (1 − f0ii)(1 − 1/(2Ni))
t, (52)
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Fig. 2. Amount of inbreeding and subpopulation differentiation, as a function of generation (t) for all subpopulations i = 1, . . . , 5 of Fig. 1 in absence of mutations (μ = 0). The

columns differ in whether the amount of inbreeding between subpopulations in generation 0 is minimal, left, or maximal, right (see below). The plots show a, b) predicted gene

identities ftii with replacement (5), c, d) the corresponding predicted gene identities fTt and fSt in (19), for the total population and within subpopulations, weighted uniformly (15),

proportionally to size (44) or reproductively (45), e, f) predicted coefficients of gene differentiation gSTt in (18), for all three weighting schemes. The gene identities of generation 0

within the subpopulations are f011 = 0.3, f022 = 0.1, f033 = 0.3, f044 = 0.1 and f055 = 0.05, and between subpopulations f0ij = 0 (left), f0ij =
√

f0ii f0jj (right), corresponding to the lower

and upper limits of (6). Note the different scales on the vertical axes.
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hich is very different from the true curves, shown in the upper two

ubplots. Subpopulations 1 and 3 both have a large proportion of

mmigrants, and the first few generations their levels of inbreeding

ecrease, in contrast to (52). For all five subpopulations, the long term

ultiplicative rate of increased inbreeding is 1 − 1/(2NeE) = 0.9995
er generation (see Example 3), much less than predicted by (52).

his highlights the importance of avoiding isolation, particularly for

mall subpopulations.

The predicted coefficient of gene differentiation (gSTt) is shown

or all three weighting schemes, and it converges to nonzero limits
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as t increases. Since the ratio of the two largest eigenvalues of A is

λ2/λ1 = 0.988, it follows from the paragraph below (51) that although

the convergence rate towards gST∞ is exponential O(0.988t), it is still

very slow, and therefore the whole time profile of gSTt is needed. The

reproductive weights give the smallest and the uniform weights the

largest values of gST∞, with the size-proportional weights in between.

5.3. Coalescence probabilities and expected coalescence times

We noticed in Section 4.1 that coalescence probabilities ft0tij satisfy

the same forward recursion as gene identities in absence of mutations,

when the founder generation t0 is kept fixed and t increases. Slatkin

[90] and Nagylaki [63] obtained an analogous backward recursion

ht0,t = Dht0+1,t t0 = t − 1, t − 2, . . . (53)

for the non-coalescence probabilities ht0t = 1 − f t0t when subpopula-

tion sizes are constant. We may in fact interpret (53) as the transition

probabilities of a structured coalescent [33,72] in discrete time for a

sample of two lineages.

Slatkin [90] used recursion (53) to derive an explicit expression for

the expected coalescence time of two genes sampled from an island

model of constant size. This approach can be extended to our general

framework of migration, reproduction and subpopulation weights wi.

Then τTt is the coalescence time of two genes sampled in generation

t with scheme T , and

E(τTt) =
∞∑

r=0

P(τTt > r)

=
∞∑

r=0

WT Dr1

= WT(I − D)−11. (54)

It follows from (54) that τTt has a discrete phase-type distribution

[5,71], i.e. the time until absorption of a Markov chain describing the

joint subpopulation ancestry of two different genes. Its state space

of size s2 + 1 contains all s2 ordered pairs of subpopulations (before

the genes have coalesced), and an additional absorbing state after

coalescence. It starts with initial distribution WT among the non-

absorbing states, and D contains the transition probabilities between

all non-absorbing states.

In view of (31), formula (54) provides an explicit expression

Neπ = Neπ ((−∞, t]) = 1

2
WT(I − D)−11 (55)

for the nucleotide diversity effective size, with I the identity matrix of

order s2. Strobeck [94] and Durrett [19, p. 149] have studied models

for which B is doubly stochastic, so that not only the column sums,

but also the row sums, equal 1. Then all subpopulations are equally

large and reproductive (ui = γi = 1 = 1/s), and for a local weighting

scheme wj = 1{j=i} of any subpopulation i, they prove that Neπ = N,

provided that Nej = Nuj for all subpopulations j. On the other hand,

Neπ will be larger than N for any scheme w that assigns positive

weights to at least two subpopulations.

We may also introduce the coalescence time τSt of two genes

sampled in generation t according to scheme S, and a prediction

gSTt

(
(−∞, t]

) = E(τTt)− E(τSt)

E(τTt)
= (WT − WS)(I − D)−11

WT(I − D)−11
(56)

of the coefficient of gene differentiation in generation t, in the limit of

small mutation rates μ → 0. Formula (56) generalizes a suggestion of

Slatkin [90] for the island model. It is similar to (50), but has another

definition of predicted gene diversity, in terms of the probability that

mutation comes before coalescence when looking backwards in time.

For this reason, we write the interval in (56) as (−∞, t]. It is shown

in [36] that (56) is asymptotically equivalent to a version of (50)–(51)
ith D in place of A, in the limit of large population sizes. Wilkinson-

erbots [112] obtained extensions of (56) for non-negligible mutation

ates μ.

.4. Eigenvalue effective size

In absence of mutations, the upper part of (46) gives an explicit

ormula f t = 1 − At(1 − f 0) for the predicted gene identity, first ob-

ained in [25] for age-structured models. Since the backward matrix

is irreducible and aperiodic, it follows that A is irreducible and ape-

iodic as well. We can use Perron Frobenius’ Theorem and conclude

hat A has a unique positive largest eigenvalue λmax(A), which deter-

ines the long term multiplicative rate of increase of predicted gene

dentities, with an eigenvalue effective size

eE = NeE

(
[0,∞)

) = 1

2(1 − λmax(A))
, (57)

hat is a special case of (37) and (39), corresponding to a cycle of

ength τ = 1, see [35,98,110]. In Appendix A we show that A can be

eplaced by D in (57), since

max(A) = λmax(D), (58)

nd moreover, the whole spectrum of eigenvalues is the same for

and D, at least when all eigenvalues are distinct. As mentioned

n Section 4.4, the conclusion is that NeE is the same, regardless of

hether we use a version of predicted gene diversities with genes

rawn with or without replacement.

xample 2 (The effect of varying the migration rate on NeE). Con-

ider again the population of Fig. 1. In Fig. 3 we have plotted the

igenvalue effective size NeE in (57) and the predicted coefficient of

ene differentiation gST∞ in (51) as a function of the overall migration

ate

= 1 −
s∑

i=1

uiMii, (59)

.e. the fraction of genes whose offspring live in another subpopulation

han their parents. In order to vary M (and hence also m) we reduced

he migration rates of Fig. 1 by multiplying the numbers at the arrows

ith a variable factor 0 < a ≤ 1. For each value of a we increased

he number of offspring that remain at their parental subpopulations

ccordingly.

We notice that NeE → ∞ and gST∞ → 1 as m → 0, and from the

ower left subplot

eE = CN

1 − gST∞
+ o

(
1

1 − gST∞

)
, (60)

ith C = 0.793.

Both Neπ and NeE in (55) and (57) quantify the long term behavior

f the population. In general they differ, since Neπ depends on the

eighting scheme w whereas NeE does not. They are only asymptoti-

ally equivalent in the limit of large population sizes, see [36].

.5. Time dynamics of inbreeding and variance effective size

The (different versions of the) inbreeding and variance effective

izes are defined for time intervals of finite length. It follows from (28),

30), (35), (57) and (58) that they are all asymptotically equivalent to

he eigenvalue effective size over large time intervals, since

lim
→∞

NeI([0, t]) = lim
t→∞

NeV([0, t]) = NeE, (61)

egardless of weights w, see Appendix A for details. A bit surprisingly,

he convergence rate O(1/t) in (61) is slow, regardless of the spec-

rum of eigenvalues of A and D. However, if genes are drawn with

eplacement and either WT = ρ or h0 = r, where ρ and r are the left
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Fig. 3. Plot of the eigenvalue effective size NeE (a), long term predicted coefficient of gene differentiation gST∞ (b), NeEm (c) and NeE(1 − gST∞)/N (d), as a function of the migration rate

m in (59), for a system with five subpopulations and census sizes as in Fig. 1. The mutation rate μ = 0 and the migration rate from subpopulation k to i 	= k is Mki = Mki(a) = aMki(1),

where 0 < a ≤ 1 and Mki(1) is the corresponding migration rate in Fig. 1. The diagonal elements Mii of the migration matrix are defined to ensure that all local census sizes remain

constant over time. The lower left subplot converges to 1.419 as m → 0, and the lower right subplot to C = 0.793 as m → 0, in accordance with (60).
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nd right eigenvectors corresponding to the largest eigenvalue of A,

hen NeI

(
[0, t]

) = NeE for any t = 1, 2, . . .. The same is true if genes

re drawn without replacement, if either WT = ρ̃ or h0 = r̃, where ρ̃
nd r̃ are the left and right eigenvectors corresponding to the (same)

argest eigenvalue of D.

xample 3 (Time dynamics of global NeI). In the first three subplots

–c) of Fig. 4, we study the global inbreeding effective size NeI

(
[0, t]

)
or the population system of Fig. 1, plotted as a function of the number

f generations (t) of genetic change, when a number of factors are

aried. It is seen that the sampling mechanism, without (25) or with

30) replacement, and the (small) amount of initial fluctuations of

he IBD probabilities f0ij at time t = 0, both have minor effects on NeI .

his is particularly true when the same sampling mechanism is used

o define f0ij and NeI . The variance effective size NeV curves are not

hown, but they will be close to the NeI curves with replacement,

nd in the upper left subplot they are identical, since there is no

ubpopulation differentiation at t = 0.

The NeI curves depend a lot on whether uniform (15), size-

roportional (44) or reproductive (45) subpopulation weights are

sed. As t increases, the NeI curves will eventually approach the eigen-

alue effective size NeE, as shown in (61), although the convergence

ate O(1/t) is slow for the uniform and size-proportional weights. It

s only the reproductive weights that give a rapid convergence, since

he weight vector WT = (γiγj; 1 ≤ i, j ≤ s) is then very close to the

eading left eigenvectors ρ of A and ρ̃ of D respectively, for draws
ith and without replacement. It follows from the proof of (57) that

his makes both versions of NeI([0, t]) very close to NeE for any t > 0.

If subpopulation structure was ignored, all NeI curves in (a)–(c)

ould have a constant value equal to the global census size 1150.

his is obviously misleading for uniform and reproductive weights,

hereas the NeI curves for size proportional weights will at least start

t values close to 1150, so that subpopulation structure can be ig-

ored over short time spans. For longer time intervals, all NeI curves

ill approach the NeE limit of 970, which is considerably smaller than

150. This discrepancy can be explained by a number of migrants

er generation that is fairly large, and a migration pattern that is not

onservative, with individuals in some subpopulations more repro-

uctive than in the others, see [35,61].

To summarize the last two paragraphs for size proportional

eights: We can neither replace NeI by its long term limit NeE (since

onvergence is very slow), nor ignore subpopulation structure and

eplace NeI by the global census size (since NeI will drift away from

his value). We rather need the whole time profile for NeI .

In the lower right subplot we vary the migration rates and sizes of

ll subpopulations proportionally with time. The global census size is

t = 1150 ·
t−1∏
r=0

1.00149−r = 1150 · 1.001t(99−t)/2,

n generation t, so that subpopulation sizes initially increase up to

= 49, reach a maximum N49 = N50 slightly above 3900, then start to
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Fig. 4. Global inbreeding effective size NeI

(
[0, t]

)
as a function of the number of generations (t), for the population of Fig. 1 in absence of mutations (μ = 0), using either uniform

(15), size-proportional (44) or reproductive (45) subpopulation weights, and sampling without ((25), dashed) or with ((30), solid) replacement. Also shown is the eigenvalue

effective size NeE (horizontal dotted). The IBD probabilities f0ij of generation 0 a) are the same for all i, j when genes are drawn with our without replacement, b) all 2
∑

i N0i genes

of generation 0 are different by descent, with f0ij computed from IBD class frequencies for two genes sampled without (22) or with (29) replacement, c) same as b), but with two

IBD classes of equal frequencies 0.5 in all subpopulations, d) same as in a), but the forward migration matrix M of Fig. 1 is replaced by the time varying Mt = 1.00149−tM. In a) and

d), the global variance effective size NeV([0, t]) in (35) coincides with the solid NeI([0, t]) curves based on with replacement sampling.
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decrease from t = 52 until they reach the original t = 0 size of Fig. 1 by

t = 99. The varying population size makes the sampling mechanism

more important, since NeI curves with genes drawn without replace-

ment slightly lag those where genes are drawn with replacement.

Mathematically we explain this by comparing the local census sizes

of the At matrices with those of the Dt matrices, which are one time

step behind, cf. (85).

In the previous example, we noted that NeI([0, t])converges slowly

towards NeE. In contrast NeI([t, t + τ ]) will converge exponentially

fast at rate O
(
(λ2/λ1)

t
)

towards NeE as t → ∞, for any fixed τ > 0,

since the predicted gene diversities of the left end point t converge

exponentially fast to the leading right eigenvector of A or D, depending

on which sampling scheme that is used.

In the next two examples we demonstrate how subpopulation

weights are used to model time dynamics of local and nested in-

breeding effective size:

Example 4 (Time dynamics of local NeI). Fig. 5 displays the local in-

breeding effective size NeI

(
[0, t]

)
without replacement (25), for each

of the five subpopulations i of Fig. 1, using weights wj = 1{j=i}. The

subplots differ in whether subpopulation 1 encounters a local bot-

tleneck, or gets temporarily disconnected from subpopulation 2. The

local effective sizes of all subpopulations start at values close to their

local census sizes, as explained by (27) and the fact that subpopula-
ions exchange very few genes (and hence can be approximately be

reated as isolated) during short periods of time. Then they gradually

ncrease towards the eigenvalue effective size NeE. The local bottle-

eck and interrupted migration temporarily slow down this conver-

ence for subpopulation 1 and (to some extent) its closest neighbors.

ll five local effective size curves demonstrate that we can neither

reat the subpopulations as isolated, since their NeI curves will con-

erge to NeE, nor replace these curves by their limits, since conver-

ence is very slow. We rather need the whole NeI time profile for each

ubpopulation.

Also shown is the global NeI curve. Since uniform weights (15) are

sed, the impact of the smaller subpopulations is initially large, with

curve starting at a value less than 2/3 of its asymptotic NeE limit.

xample 5 (Time dynamics of nested NeI). Fig. 6 plots inbreed-

ng effective size curves NeI

(
[0, t]

)
without replacement (25), as a

unction of the time t of genetic drift, for nested groups S =
1, . . . , i} of subpopulations (i = 1, . . . , 5), using either equal or size-

roportional weights. The starting values of all curves depend on

he local census sizes of the subpopulations in the group and the

eighting scheme, and then gradually converge to their asymptotic

imits NeE.

If each groupS of subpopulations was a homogeneous and isolated

ystem, its NeI curve would be horizontal, with a constant value equal
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Fig. 5. Local inbreeding effective sizes NeI([0, t]) with genes drawn without replacement (25), as a function of the number of generations (t) of the time interval of genetic

drift, in absence of mutations (μ = 0). There is no subpopulation differentiation in generation 0, with f0ij obtained from (22), (23), and two IBD classes with frequency 0.5 in

all subpopulations. Curves are shown for the five subpopulations i, using weights wj = 1{j=i} , and for the global inbreeding effective size NeI([0, t]) with uniform subpopulation

weights (15). a) The population equals that of Fig. 1, or the population differs from Fig. 1 in that b) subpopulation 1 encounters a local bottleneck during t = 21, . . . , 40, with

Nt1 = 200, 180, . . . , 40, 20, 20, 40, . . . , 180, 200, c) migration between subpopulations 1 and 2 temporarily drops to 0 during t = 21, . . . , 40, and in order to keep the local census

sizes of 1 and 2 fixed, both subpopulations are filled up with more parental genes from themselves. The eigenvalue effective size NeE is shown as a horizontal line in all subplots.
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Fig. 6. Inbreeding effective sizes NeI

(
[0, t]

)
as a function of the number of generations (t) of the time interval of genetic drift, for the population of Fig. 1, in absence of mutations

(μ = 0), when genes are drawn without replacement (25). There are two IBD classes of the same frequency 0.5 in all subpopulations in generation 0, with f0ij obtained from (22)

and (23). Only subpopulations within the groups S = {1, . . . , i} of subpopulations are assigned positive weights for i = 1, . . . , 5, and i = 5 gives the global inbreeding effective size.

The subpopulations within each group are weighted a) equally (14), b) proportionally to size (43). The horizontal line is the eigenvalue effective size NeE of the whole system.
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to the census size N1 + · · · + Ni of the group. The corresponding true

NeI curve in Fig. 6 starts at this value for size proportional weights, but

then converges to NeE, since the system is neither isolated (if i < 5)

nor homogeneous. We rather need the whole NeI curve for each group

of subpopulations in order to describe its effective size accurately.

6. State space reduction

The predicted gene identity and diversity vectors f t and ht include

s2 elements, and their recursions (8) and (11) require O(s4)operations

for each time step. The same is true for the analogous vectors (23) and

(33) of IBD probabilities and genetic drift variables. When the number

of subpopulations s is large, this is very time consuming, and hence it

is of interest to exploit symmetries in order to reduce the state space.

For models with translationally invariant migration and reproduction,

Fourier analysis can be used to reduce the size of the state space from

s2 to s, see [34] for details. In this section we consider a larger class

of models for which the state space can be reduced. For simplicity,

we will only deal with the gene identity and gene diversity variables,

although analogous results hold for IBD probabilities and genetic drift

variables.

We first give general conditions for state space reduction, and then

illustrate it with several examples. In more detail, we assume that the

collection of all s2 pairs of subpopulations can be written as a disjoint

union

{1, . . . , s} × {1, . . . , s} = I1 ∪ . . . ∪ Id

of d sets. Each of the first d0 sets consists of equivalent pairs of iden-

tical subpopulations, and each of the last d1 = d − d0 sets consists

of equivalent pairs of different subpopulations. More formally, we

express this as

Ia ⊂
{{(1, 1), . . . , (s, s)}, 1 ≤ a ≤ d0,

{(i, j), 1 ≤ i 	= j ≤ s}, d0 + 1 ≤ a ≤ d,

require that the local census and effective sizes

Nti = N̄ta,

Neti = N̄eta,
(62)

are the same for all i such that (i, i) ∈ Ia and a ≤ d0, that the gene

identities are constant over each group of pairs of subpopulations

when t = 0, i.e.

F0ij = f0ij = ¯f0a (63)

for all (i, j) ∈ Ia, and finally, that∑
k,l∈Ib

BtikBtjl = Q̄tab (64)

is independent of (i, j) ∈ Ia for all 1 ≤ a, b ≤ d and t = 1, 2, . . .. The

last equation is equivalent to the row sum criterion for state space

reduction (lumpability) of a time inhomogeneous Markov chain [6,

40]. This Markov chain runs backwards in time and characterizes

the joint subpopulation history of a pair of genes, with transition

probabilities BtikBtjl and Q̄tab before and after state space reduction.

It is shown in Appendix A that (62)–(64) lead to

ftij = ¯fta (65)

for all (i, j) ∈ Ia and t = 1, 2, . . ., and that it suffices to consider the

reduced column vectors f̄ t = ( ¯fta) of length d, or equivalently, the

corresponding reduced vectors h̄t = (h̄ta) of gene diversities h̄ta =
1 − ¯fta. If these vectors are defined by drawing genes without re-

placement, they satisfy recursions

f̄ t = (1 − μ)2(D̄t f̄ t−1 − D̄t1̄ + 1̄),

h̄ = (1 − μ)2D̄ h̄ + (
1 − (1 − μ)2

)
1̄,

(66)

t t t−1 f
or t = 1, 2, 3, . . ., analogous to (11), with 1̄ a column vector of

ones, D̄t = (D̄tab) a d × d matrix with elements

¯
tab =

∑
k,l∈Ib

Dtij,kl

(64)= Q̄tab

(
1 − 1

2N̄etb

){b≤d0}
, (67)

ndependently of i, j ∈ Ia.

If local census sizes, local effective sizes and migration rates are

onstant over time, as in Section 5, the above conditions simplify.

he right hand sides of (62) take the form N̄ta = N̄a and N̄eta = N̄ea

or 1 ≤ a ≤ d0, and the predicted gene identity recursion (66), when

enes are drawn without replacement, reads

¯
t = (1 − μ)2(D̄f̄ t−1 − D̄1̄ + 1̄), (68)

ince D̄t = D̄ = (D̄ab) does not depend on t.

xample 6 (Island model). For the island model [59,95,115], the

orward migration rates are

ki =
{

1 − m, i = k,
m

(s−1), i 	= k,

here m is the overall migration rate (59). We can use (40) to de-

uce that all subpopulations are equally large, i.e. u = (1, . . . , 1)/s,

nd therefore (41) implies B = M. We also assume that Nei = Ne for

ll i. The state space size can then be reduced from s2 to d = 2, with

0 = d1 = 1 and

I1 = {(1, 1), . . . , (s, s)},
I2 = {(i, j), 1 ≤ i 	= j ≤ s}.
t follows from (64) and (67) that

¯ =
⎛
⎝

(
1 − 1

2Ne

)
Q̄11 1 − Q̄11(

1 − 1
2Ne

)
Q̄21 1 − Q̄21

⎞
⎠ , (69)

here

¯11 =
s∑

k=1

B2
ik = (1 − m′)2 + 2m′ − (m′)2

s
,

¯21
i 	=j=

s∑
k=1

BikBjk = m′(2 − m′)
s

nd m′ = sm/(s − 1). Inserting (69) into (68), we obtain the same

redicted gene identity recursion for two genes drawn without re-

lacement as in [51,65] and [84], but note that these authors use the

pposite notation for m and m′.

The reduced state space analogues of the weight vectors WT and

S for two genes drawn according to sampling schemes T and S, are
¯ T = (W̄Ta; 1 ≤ a ≤ d)and W̄S = (W̄Sa; 1 ≤ a ≤ d) respectively, with

lements

¯ Ta =
∑

(i,j)∈Ia

wiwj,

W̄Sa = 1{a≤d0}
∑

i;(i,i)∈Ia

wi. (70)

hen (65) holds, we can use W̄T and W̄S to express the predicted

oefficient of gene differentiation (20), equivalently, as

STt

(
[0, t]

) = (W̄S − W̄T)f̄ t

1 − W̄T f̄ t

. (71)

o guarantee that gSTt is non-negative, it is necessary to define
¯ and h̄t by drawing genes without replacement, as motivated in
t
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Fig. 7. The difference �Neπ = Neπ − N
appr
eπ between exact and approximate nucleotide diversity effective sizes (72) and (73), for an island model without mutations (μ = 0), as

a function of a) N, b) m, and c) s. The parameters held constant have values s = 5, m = 0.05 and N/s = Ne = 10, 000 in all subplots. In a), �Neπ attains a value of −1.48, almost

independently of the population size, whereas in c), �Neπ is roughly proportional to s.
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ection 3.4. This requires state space reduced analogues of At and (8),

ee Appendix A.

It is also possible to reexpress the effective population sizes

n (28), (32) and (35) by replacing WT , Dt , and At with their reduced

tate space analogues.

xample 7 (Island model, contd.). Continuing Example 6, if subpop-

lations are assigned the same weight (15), it follows from (70) that
¯ T = (1/s, (s − 1)/s)and W̄S = (1, 0), and therefore the predicted co-

fficient of gene differentiation (71) equals

STt([0, t]) =
s−1

s
( ¯ft1 − ¯ft2)

1 −
(

1
s

¯ft1 + s−1
s

¯ft2

) .

he nucleotide diversity effective size (55) can be written as

eπ = 1

2
W̄T(I − D̄)−11̄ (72)

or the island model when state space reduction is employed. Nei and

akahata [70] derived an explicit approximation

appr
eπ = N

(
1 + (s − 1)2

4Nms

)
(73)

f (72) when Nei = Ne = N/s is large and uniform weights (44) are

sed. Wakeley [99] derived a similar formula for the coalescence ef-

ective size NeC when the number of subpopulations s is large as

ell. It is seen in Fig. 7 that (73) is a very good approximation of
72), with a relative error that is inversely proportional to the pop-

lation size, whereas it only depends marginally on s and m. For

nstance, the relative error is between 1 × 10−5 and 2 × 10−5 when

e = 10, 000.

xample 8 (Circular stepping stone model). In natural populations,

igration is often restricted to neighboring subpopulations. Kimura

41] proposed a class of stepping stone models with this feature,

nd its properties were further studied by Kimura and Weiss [44],

eiss and Kimura [109], Maruyama [58], and Durrett [19]. The sub-

opulations of the circular stepping stone model are located along

he perimeter of a circle, and migration is only possible to the two

eighbors, i.e.

ki =

⎧⎪⎨
⎪⎩

1 − m, i = k,

m
2
, i = k ± 1,

0, otherwise,

here m is the overall migration rate (59), and addition is modulo s. By

ymmetry, we deduce from (40) that all subpopulations are equally

arge, so that u = (1, . . . , 1)/s and B = M because of (41). We also

ssume that the local size Nek = Ne is the same for all subpopulations

. The state space size can then be reduced from s2 to d = s, with

0 = 1, d1 = d − 1 and

a = {(i, j); i − j = a − 1 modulo s}, a = 1, . . . , s.



128 O. Hössjer et al. / Mathematical Biosciences 258 (2014) 113–133

f

t

f

t

g

7

7

c

u

f

c

q

o

f

w

e

s

t

g

t

a

a

i

i

o

i

m

s

i

e

w

g

i

[

t

e

w

d

o

w

fi

t

t

w

t

r

l

i

[

s

r

a

f

It follows from (64) and (67) that

D̄ab =
(

1 − 1

2Ne

){b=1}
Q̄ab

s≥5=
(

1 − 1

2Ne

){b=1}
·

⎧⎪⎪⎨
⎪⎪⎩
(1 − m)2 + m2

2
, b = a,

m(1 − m), b = a ± 1,
m2

4
, b = a ± 2,

0, |b − a| > 2.

(74)

When m, μ and 1/Ne are all small, we may drop all quadratic terms m2,

μ2, m/Ne and μ/Ne. The recursion (68), with D̄ = (D̄ab)as in (74), then

simplifies to those in [57, p. 89] and [19, p. 162–163]. The equilibrium

solution of the approximate recursion is provided in Theorem 5.2 of

[19], and the corresponding exact asymptotic solution of (66) can be

written as

f̄ ∞ = (1 − μ)2(Ī − (1 − μ)2D̄)−1(1̄ − D̄1̄),

with Ī the identity matrix of order s. See also [3] for the exact recursion

and asymptotic equilibrium solution of the infinite (s = ∞) stepping

stone model. Results in Appendix A, (57) and (58) imply

λmax(D̄) = λmax(D) =⇒ NeE = 1

2(1 − λmax(D̄)
, (75)

for any state space reduced model. Maruyama [58] gave asymptotic

expressions for NeE for the circular stepping stone model under two

different scenarios; large local effective population sizes Ne and small

migration rates m. Wang and Caballero [103] combined these two

approximations into one single formula

NeE ≈ sNe + s2

2mπ2

that approximates (75). If uniform subpopulations weights (15)

are used, it follows from (70) that W̄T = (
1/s, . . . , 1/s

)
and

W̄S = (1, 0, . . . , 0), so that the predicted coefficient of gene

differentiation (71) is

gSTt

(
[0, t]

) =
s−1

s
¯ft1 − 1

s

∑s
a=2

¯fta

1 − 1
s

∑s
a=1

¯fta

.

Example 9 (Hierarchical island model). This model was introduced

by Carmelli and Cavalli-Sforza [9], and further treated by Sawyer and

Felsenstein [87], Slatkin and Voelm [92] and Hössjer [34]. The sub-

populations i = (i1, i2) are divided into s1 regions of equal size s2,

with i1 the region number and i2 the subpopulation number within a

region. The total migration probability m = mw + mb consists of two

parts; the probability mw to migrate within a region, divided equally

mw/(s2 − 1) between its subpopulations, or a probability mb to mi-

grate between regions, divided equally mb/((s1 − 1)s2) between all

subpopulations in the other regions. Hence

M(k1,k2),(i1,i2) = (1 − mw − mb)1{(i1,i2)=(k1,k2)}

+ mw

s2 − 1
1{i1=k2,i2 	=k2}

+ mb

(s1 − 1)s2
1{i1 	=k1}. (76)

By symmetry, if follows that all subpopulations are equally large,

so that u = (1, . . . , 1)/s and B = M. We also assume that the local

effective size Nei = Ne is the same for all subpopulations. The state

space size can then be reduced from s2 to d = 3, with d0 = 1, d1 = 2

and

I1 = {(i1, i2), (i1, i2); 1 ≤ i1 ≤ s1, 1 ≤ i2 ≤ s2},
I2 = {(i1, i2), (i1, j2); 1 ≤ i1 ≤ s1, 1 ≤ i2 	= j2 ≤ s2},
I3 = {(i1, i2), (j1, j2); 1 ≤ i1 	= j1 ≤ s1, 1 ≤ i2, j2 ≤ s2}.
As for the island and stepping stone models we have that

D̄ab =
(

1 − 1
){b=1}

Q̄ab

2Ne t
or 1 ≤ a, b ≤ 3, where Q̄ab are functions of mw, mb, s1 and s2

hat can be derived from (64), (76) and the fact that B = M.

If all subpopulations have the same weight (15), it follows

rom (70) that W̄T = (1/s, 1/s1 − 1/s, 1 − 1/s1) and W̄S = (1, 0, 0), so

hat the predicted coefficient of gene differentiation (71) is

STt

(
[0, t]

) =
s−1

s
¯ft1 −

(
1
s1

− 1
s

)
¯ft2 −

(
1 − 1

s1

)
¯ft3

1 − 1
s

¯ft1 −
(

1
s1

− 1
s

)
¯ft2 −

(
1 − 1

s1

)
¯ft3

.

. Discussion

.1. Summary and conclusions

In this paper we introduce a class of models for a diploid, monoe-

ious and subdivided population with temporally varying subpop-

lation sizes. Exact matrix analytic recursion formulas are derived

or predicted gene diversities/gene identities, identity by descent and

oalescence probabilities, and standardized covariances of allele fre-

uency change. From this we obtain exact expressions for predictions

f the coefficient of gene differentiation (gST ) and a number of dif-

erent types of effective sizes Ne. We also consider general ways of

eighting subpopulations in order to account for long and short term

ffects, local and global features, and develop a general scheme for

tate space reduction.

We argue that in order to adequately summarize the most impor-

ant properties of a subdivided population, the dynamic behavior of

ST and (certain versions of) Ne should be reported as a function of

ime. Indeed, the examples of Section 5 reveal that single values of gST

nd global Ne may be very wrong if long term equilibrium conditions

re assumed, and single values of local Ne as well, if subpopulation

solation is assumed.

One aspect of our work is to put various types of the effective sizes

nto a general framework. These are defined forwards or backwards

ver time intervals of various lengths, with subpopulations weighted

n different ways and pairs of genes drawn with or without replace-

ent. Although in practice the latter distinction is not crucial, unless

ome subpopulation is very small, it clarifies the relation between the

nbreeding and variance effective sizes NeI and NeV , since the latter is

ssentially a version of the former with genes drawn with rather than

ithout replacement. As one implication of this we could show very

enerally that NeI lags NeV by one unit of time for populations of vary-

ng size, thereby confirming results for homogeneous populations

43]. The nucleotide diversity effective size Neπ looks backwards in

erms of expected coalescence probabilities, whereas the eigenvalue

ffective size NeE looks forwards and quantifies the long term rate at

hich inbreeding increases (with or without replacement). It is only

efined for constant or regularly changing populations, and is the

nly notion of effective size that is independent of the subpopulation

eighting scheme. Both NeI and NeV are defined over time intervals of

nite length t, and although they both converge to NeE as t increases,

he convergence rate O(1/t) is very slow, unless equilibrium condi-

ions prevail at the beginning of the time interval, or if reproductive

eights are used. In general it is therefore possible to quantify long

erm genetic changes from short intervals with NeI and NeV , only with

eproductive weights.

Our focus has been to compute quantities exactly, not relying on

arge population asymptotics. The coalescence effective size (NeC) ex-

sts when the ancestry of a sample converges to Kingman’s coalescent

45] as the population size grows. Only in this case it is possible to

ummarize the rate of genetic loss by one single number, and for this

eason [88] advocate NeC . However, two finite populations that are

pproximated by Kingman ancestries can still behave differently, and

or other populations, for which NeC does not exist, it is still important

o quantify the dynamics of genetic loss, using some other notion of
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ffective size. For instance, it is shown in [35] that NeE is a more gen-

ral concept than NeC , since the latter is an asymptotic limit of NeE for

tructured populations of growing size with a limiting coalescence

ncestry of Kingman type.

.2. Practical conservation genetics aspects

The analytical work presented here is useful for research in the

elds of conservation biology and conservation genetics, and we in-

end to present such applications in forthcoming publications that are

irected towards workers of those fields. For instance, the algorithms

resented here have been implemented in a user friendly software

GESP) for genetic exploration of structured populations [74], which

e hope will be a helpful tool for conservation biologists, facilitat-

ng investigation of short and long term inbreeding and genetic di-

ergence when populations are connected through various rates of

ene flow. For example, our framework enables exploration of how

he conservation genetic status of a population system might be af-

ected by reductions and expansions of subpopulations with vari-

us degrees of connectivity. Such studies are of relevance to many

ractical situations in the management of species in terrestrial as

ell as aquatic environments such as the Fennoscandic wolf popu-

ation system [47], and for keystone ecological species of the Baltic

ea. Further, the opportunity of describing effective population size

f substructured populations constitutes a basis for further devel-

pment of general conservation genetics guidelines and monitoring

chemes.

.3. Future perspectives

The results of this paper could be extended in a number of ways.

irst, the reproduction model of Section 2 could be modified in order

o incorporate diploid two sex models with gene identities that corre-

pond to inbreeding coefficients within individuals or coefficients of

onsanguinity between different individuals, in the same or different

ubpopulations. Previous work includes the gene identity recursions

n Section 3.8 of [18], the inbreeding recursions for age structured

odels in [13], and the inbreeding recursions for an island model of

iploid monoecious or dioecious individuals [12,101,102].

Second, real data estimates of our novel expressions for Ne and

ST should be developed, employing for instance methods described

n the review papers of Luikart et al. [55] and Levyiang and Hamilton

50]. Whereas the sampling scheme of Section 3.3 was a theoretical

onstruct, real data estimates requires sampling of a number of in-

ividuals for all subpopulations i that have positive weights wi. For

nstance, the temporal method is used to estimate NeV([0, t]) from

enetic data sampled at two time points r ∈ {0, t} at a number of

enetic markers l = 1, . . . , L, see [69,78,106] for homogeneous pop-

lations, and [37,108] for structured populations. If all markers are

iallelic, estimates P̂(l)
ri

and

ˆ(l)
r =

s∑
i=1

wiP̂
(l)
ri

, (77)

re provided for each time point r, of the frequencies of one of the

wo alleles at all loci l, in subpopulation i and the whole population

espectively. This is used in [75] to extend an approach of [38] for

omogeneous populations by estimating (34), and hence also (35),

rom the genetic drift of (77), averaged over several loci. It turns out

hat the choice of subpopulation weights wi is important, and the long

erm genetic drift (as quantified by NeE) can be estimated even from

hort time intervals with reproductive weights (45), for a population

f constant size, see [73].

Third, one may study the effect of mutation on effective size, and

efinitions (25), (28) or (30) of the inbreeding effective size are special
ases of

eI

(
[t0, t]

) =

⎧⎪⎪⎨
⎪⎪⎩

1

2

(
1 −

(
1−fTt

1−fTt0

)1/(t−t0)
) , fTt > fTt0

,

NaN, fTt ≤ fTt0
,

(78)

ith an identity by descent probability fTt of the whole population in

eneration t that allows for mutations. This is different though from

he heterozygosity effective size Neh of [19, p. 154] or the coalescence

ffective size NeC of [100], who included mutation as a source of

enetic change accounted for, not as an uncorrected confounder. A

urther extension of NeI would be to allow for selection as well.

Fourth, the whole predictive distribution of GSTt is sometimes of

nterest, not only a predictor gSTt of it, see [48,49,81] for work along

hese lines for the island and two-dimensional stepping stone mod-

ls. It would be challenging to generalize such methods to arbitrary

igration schemes. On the other hand the multilocus extension

STt =
∑L

l=1 HTt,l − ∑L
l=1 HSt,l∑L

l=1 HTt,l

f the coefficient of gene differentiation in [64], will be more concen-

rated around gSTt the larger the number of loci L is, suggesting that

STt is an adequate measure of subpopulation differentiation.

Fifth, for conservation genetics applications, it is well known that

bottleneck implies a transient loss of rare alleles, see [14,54,60] and

28]. It would be of interest to quantify some of the statistics of these

apers, and other quantities that are functions of the allele frequency

pectrum from multiple loci, analytically for subdivided populations.
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ppendix A. Extensions of theory and proofs

roof of (6) and (10). If genes are drawn with replacement, we first

how

≤ Ftij ≤
√

FtiiFtjj, (79)

or any pair of subpopulations i and j. It is clear from the definition of

tij in (3) that the left inequality of (79) holds, since all allele frequen-

ies Ptia are non-negative. Moreover, this inequality is sharp since

tij = 0 if i 	= j and at most one of Ptia and Ptja is positive for any allele a.

n order to prove the right inequality of (79), we assume without loss

f generality that Ftii ≥ Ftjj. Let Ati = {a; 1 ≤ a ≤ nt, Ptia > 0} denote

he set of alleles in subpopulation i, and put F′
tjj

= ∑
a∈Ati

P2
tja

≤ Ftjj.

hen

tij =
∑

a∈Ati

PtiaPtja

≤
√ ∑

a∈Ati

P2
tia

×
√ ∑

a∈Ati

P2
tja

=
√

Ftii ×
√

F ′
tjj

≤
√

Ftii ×
√

Ftjj,

http://dx.doi.org/10.13039/501100001862
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using Cauchy Schwarz inequality in the second step. In order to prove

that the right hand side of (79) can be attained for any Ftii and Ftjj, we

first choose allele frequencies so that Ptja/Ptia is constant for a ∈ Atia.

Then the fourth step holds with equality asymptotically, in the limit

of large populations, if nt − |Ati| → ∞ and maxa/∈Ati
Ptja → 0. We then

obtain (6) from (79) and Cauchy-Schwarz inequality, as

ftij = E0(Ftij)

≤ E0

(√
Ftii ×

√
Ftjj

)
≤

√
E0(Ftii)×

√
E0(Ftjj)

=
√

ftiiftjj.

Finally, it follows from (9) that f without
tij

= f with
tij

is the same if i 	=
j, whether the two genes are drawn with or without replace-

ment, whereas f without
tii

= 2Ntif
with
tii

/(2Nti − 1)− 1/(2Nti − 1). Together

with (6), this proves (10).

Proof of (8). We first verify the lower part of (8) when μ = 0. As-

sume t ≥ 1 and let Et−1 denote expectation conditionally on allele

frequencies at generation t − 1. By the definition of the reproduction

scheme in Section 2,

Et−1(Htij) =
(

1 − 1

2Nti

){i=j}

×
s∑

k,l=1

BtikBtjl

(
1 − 1

2Ne,t−1,k

){k=l} Ht−1,kl(
1 − 1

2Nt−1,k

){k=l} ,

since
(
1 − 1/(2Nti)

){i=j}
is the probability that the two genes drawn

from subpopulations i and j in generation t are different, BtikBtjl is

the probability that the two parents of two different genes from i

and j come from subpopulations k and l, (1 − 1/(2Ne,t−1,k))
{k=l} is

the probability that the two parental gametes in k and l originate

from different genes in the parental generation t − 1, and Ht−1,kl/(1 −
1/(2Nt−1,k))

{k=l} is the gene diversity of the two parental gametes,

given that they originate from different genes in subpopulations k

and l of generation t − 1.

Taking expectation E0 on both sides of the last displayed equation,

htij =
(

1 − 1

2Nti

){i=j}

×
s∑

k,l=1

BtikBtjl

(
1 − 1

2Ne,t−1,k

){k=l} ht−1,kl(
1 − 1

2Nt−1,k

){k=l} ,

proving the lower part of (8) when μ = 0. For any μ, we derive (8);

htij = (1 − μ)2 × (Atht−1)ij

+(1 − (1 − μ)2)×
(

1 − 1{i=j}
2Nti

)
+ 0 × 1{i=j}

2Nti

by conditioning on whether the same gene (with probability

1{i=j}/(2Nti)) or not is drawn, and in the latter case whether at least

one of the two genes have mutated since the last generation (with

probability 1 − (1 − μ)2) or not. Since f t = 1 − ht , we then obtain the

upper part of (8) from the lower.

Proof of (11). In order to prove the lower part of (11), we argue as

in the proof of (8) and initially assume μ = 0. Since the two genes of

subpopulations i and j in generation t are drawn without replacement,

Et−1(Htij) =
s∑

k,l=1

BtikBtjl

(
1 − 1

2Ne,t−1,k

){k=l}
Ht−1,kl,

and the rest of the proof is completely analogous to that of (8). For

generalμ, we condition on whether there is at least mutation between

generations t − 1 and t or not, and find that

htij = (1 − μ)2 × (Dtht−1)ij + (1 − (1 − μ)2)× 1,

a

ince the expected gene diversity is (Dtht−1)ij if none of the two genes

utates between t − 1 and t, and 1 if at least one of them does.

his proves the lower part of (11), and the upper part follows since

t = 1 − ht .

on-negativity of (17). When two genes are drawn with replace-

ent in the definitions of HTt and HSt , the numerator of (17), the so

alled gene differentiation between subpopulations, satisfies

STt = HTt − HSt

=
∑
i 	=j

wiwjDtij

=
nt∑

a=1

s∑
i=1

wi(Ptia − Pt·a)2

≥ 0,

here Pt·a = ∑
i wiPtia, and Dtij = Htij − (Htii + Htjj)/2 is the non-

egative gene differentiation between subpopulations i and j.

roof of (27). Suppose S = {i}. Then WT is a row vector with one in

osition (i, i) and zeros elsewhere, so that (25) simplifies to

eI

(
[t, t + 1]

) =

⎧⎪⎨
⎪⎩

1

2
(

1 −
(∑

kl Dt+1,ii,kl(1−ftkl)
1−ftii

)) , ft+1,ii > ftii,

NaN, ft+1,ii ≤ ftii,

(80)

or a time interval of length 1. If additionally i is isolated, Bt+1,ii = 1

nd

t+1,ii,kl = 1{(k,l)=(i,i)}
(

1 − 1

2Neti

)
. (81)

nserting (81) into (80), we arrive at (27).

roof of (34). We will prove that f t = (f cov
tij

) satisfies the recursion

t = Atf t−1 − At1 + 1, (82)

special case of the upper equation of (8) with μ = 0. Indeed, since

he gene is biallelic (nt = 2), it follows from (4) that the gene diversity

etween two subpopulations i and j in generation t simplifies to

tij = Pti(1 − Ptj)+ Ptj(1 − Pti). (83)

et Pt = (Pt1, . . . , Pts)′ be the vector of frequencies of Allele 1 in all

ubpopulations. A consequence of the definition of the reproduction

cenario in Section 2 is that E(Pt|Pt−1) = BtPt−1. Since P0 = P01s is

ssumed, where 1s is a column vector of s ones, it follows by induc-

ion with respect to t that E0(Pt) = P01s for any t = 1, 2, . . .. Taking

xpectation on both sides of (83) and invoking the lower part of (5),

e deduce

tij = E0(Htij)

= E0

(
Pti(1 − Ptj)+ Ptj(1 − Pti)

)
= 2P0(1 − P0)− 2Cov0(Pti, Ptj)

= 2P0(1 − P0)(1 − ftij),

here in the last step we used the definition of ftij = f cov
tij

in (33).

rom this, and the special case ht = Atht−1 of the recursion for ht in

he lower part of (8), when μ = 0, it follows that

t = 1 − ht/(2P0(1 − P0))

= 1 − Atht−1/(2P0(1 − P0))

= 1 − At(1 − f t−1)

= Atf t−1 − At1 + 1,

nd this completes the proof of (82). Since the allele frequencies of

ll subpopulations are the same in generation t = 0, we must have

0 = 0. In conjunction with (82) this leads to f t = 1 − At · . . . · A11,
nd multiplying this vector with WT , we finally arrive at (34).
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roof of (58). Write At = (A(t)
ij,kl

) and Dt = (D(t)
ij,kl

). We first prove that

(t)
ij,kl

= 1 − δij

1 − δkl

D(t)
ij,kl

(85)

y induction with respect to t = 1, 2, . . ., with δij as defined below

47). When t = 1, (85) follows directly from the definitions of A and

in (47) and (49). Suppose next that (85) has been established up to

≥ 1. Then

(t+1)
ij,kl

=
∑
mn

Aij,mnA(t)
mn,kl

=
∑
mn

(
1 − δij

1 − δmn
Dij,mn

) (
1 − δmn

1 − δkl

D(t)
mn,kl

)

= 1 − δij

1 − δkl

∑
mn

Dij,mnD(t)
mn,kl

= 1 − δij

1 − δkl

D(t+1)
ij,kl

,

o that (85) holds for t + 1, completing the induction proof of (85). It

ollows from Perron Frobenius’ Theorem that

At = λtrρ + o(λt),

Dt = λ̃t r̃ρ̃ + o(λ̃t),
(86)

s t → ∞, where λ = λmax(A) is the largest eigenvalue of A, with cor-

esponding s2 × 1 right eigenvector r = (rij), and 1 × s2 left eigenvec-

or ρ = (ρkl). Analogously, λ̃ = λmax(D) is the largest eigenvalue of D,

ith accompanying right and left eigenvectors r̃ = (r̃ij) and ρ̃ = (ρ̃kl).

omparing (85) and (86), it is clear that λ = λ̃, and the leading right

nd left eigenvectors of A and D can normalized so that rij = r̃ij(1 − δij)
nd ρkl = ρ̃kl/(1 − δkl), and this completes the proof of (58).

When the eigenvalues λ = λ1 > λ2 > . . . > λs2 of A are all dis-

inct, a Jordan decomposition of A implies that right and left eigen-

ectors ra = (ra,ij; 1 ≤ i, j ≤ s) and ρa = (ρa,ij; ≤ i, j ≤ s) with eigen-

alues λa exist for each 1 ≤ a ≤ s2. It follows easily from (85), with

= 1, that r̃a = (r̃a,ij; 1 ≤ i, j ≤ s) and ρ̃a = (ρ̃a,ij; ≤ i, j ≤ s) are right

nd left eigenvectors of D with the same eigenvalue λa, provided

a,ij = r̃a,ij(1 − δij) and ρa,kl = ρ̃a,kl/(1 − δkl). Hence the whole spec-

rum of eigenvalues of A and D is the same.

roof of (61). When subpopulation sizes and migration rates are

onstant over time, it follows from (28), (30) and (35) that

NeI([0, t])
(25)= 1/(2(1 − ((WT Dt(1 − f 0))/(WT(1 − f 0)))

1/t)),

NeI([0, t])
(30)= 1/(2(1 − ((WT At(1 − f 0))/(WT(1 − f 0)))

1/t)),

NeV([0, t])
(35)= 1/(2(1 − (WT At1)1/t)).

e need to prove that the right hand sides of all these three formulas

onverge to (28) as t → ∞. We confine ourselves with (30), since

35) is a special case of this formula, with f 0 = 0, and since (25) is

nalogous to (30), replacing A by D everywhere. Recalling that h0 =
− f 0, we find that

WT Ath0/(WT h0))
1/t = (WT(λ

trρ + o(λt))h0/(WT h0))
1/t

= λ((WT r)(ρh0)/(WT h0)+ o(1))1/t

= λ(C + o(1))1/t

= λ + O(1/t)

s t → ∞. The remainder term vanishes when (WT Ath0/(WT h0))
1/t =

, which happens when WT = ρ, the left eigenvectors of A with eigen-

alue λ, or when h0 = r, the corresponding right eigenvector of A.

educed state space recursions. Assume first that two genes are

rawn without replacement. To prove the upper part of (66), we start

o show that ftij is independent of i, j ∈ Ia, as specified by (65) for

= 0, 1, 2, . . .. When t = 0, (65) follows from (63). Assume t ≥ 1 and
hat (65) holds for t − 1. Pick a ∈ {1, . . . , d} and any i, j ∈ Ia. The upper

art of (11) implies

tij = (1 − μ)2
(
(Dtf t−1)ij − (Dt1)ij + 1

)
= (1 − μ)2

⎛
⎝∑

k,l

Dtij,kl(ft−1,kl − 1)+ 1

⎞
⎠

= (1 − μ)2

⎛
⎝ d∑

b=1

( ¯ft−1,b − 1)
∑

k,l∈Ib

Dtij,kl + 1

⎞
⎠

= (1 − μ)2

⎛
⎝ d∑

b=1

( ¯ft−1,b − 1)D̄tab + 1

⎞
⎠

= (1 − μ)2
(
(D̄t f̄ t−1)a − (D̄t1̄)a + 1

)
=: ¯fta,

nd this completes the induction step, so that (65) is verified, as well

s the upper part of (66). Finally, the lower part of (66) follows from

he upper part, since htij = h̄ta = 1 − ¯fta for i, j ∈ Ia and a = 1, . . . , d.

When two genes are drawn with replacement, the gene identities

nd gene diversities will satisfy recursions

f̄ t = (1 − μ)2(Āt f̄ t−1 − Āt1̄ + 1̄)+ (1 − (1 − μ)2)δ̄t,

h̄t = (1 − μ)2Āth̄t−1 + (1 − (1 − μ)2)(1̄ − δ̄t),
(87)

or t = 1, 2, . . . that are reduced state space versions of the recursions

n (8), with Āt = (Ātab) a d × d matrix with elements

¯
tab =

∑
k,l∈Ib

Atij,kl

=
(

1 − 1

2N̄ta

){a≤d0}
Q̄tab

⎛
⎝1 − 1

2N̄etb

1 − 1
2N̄tb

⎞
⎠

{b≤d0}
,

or any i, j ∈ Ia, with δ̄t = (δ̄ta)a d × 1 vector with δ̄ta = 1{a≤d0}/(2N̄ta).
ormula (87) is proved as (66), using (8) instead of (11).

roof of (75). Write D̄
t = (D̄(t)

a,b
) for t = 1, 2, . . .. Using induction with

espect to t = 1, 2, . . ., it can be shown that (67) extends to

¯ (t)
ab

=
∑

k,l∈Ib

D(t)
ij,kl

(88)

or any i, j ∈ Ia. It follows from Perron Frobenius’ Theorem that

¯ t = λ̄t r̄ρ̄ + o(λ̄t) (89)

s t → ∞, where λ̄ = λmax(D̄) is the largest eigenvalue of D̄, with cor-

esponding d × 1 right eigenvector r̄ = (ra) and 1 × d left eigenvector

¯ = (ρb). Comparing the lower part of (86) with (88) and (89), it fol-

ows that λ̃ = λ̄. To complete the proof, the leading right and left

igenvectors of D and D̄ can be normalized so that r̃ij = r̄a for any

j ∈ Ia and ρ̄b = ∑
kl∈Ib

ρ̃kl.

ubpopulation extinction. We will briefly indicate how some vari-

bles and recursions can be generalized to allow for subpopulation

xtinction. It is assumed in Section 3 that Ftij, Htij, ftij and htij are all

ndefined and assigned values NaN if at least one of i and j is extinct in

eneration t. Analogously, we put Atij,kl = δtij = NaN if either Nti = 0

r Ntj = 0, and Atij,kl = 0 of none of i and j is extinct in generation t,

ut at least one of k and l is extinct in generation t − 1. The recursions

n (8) remain valid with these conventions, if all matrix multiplica-

ions (Atht−1, Atf t−1 and At1) employ the rules NaN + NaN = NaN,

· NaN = 0 and NaN · C = NaN for C > 0. In particular, ht , f t , Atht−1,

tf t−1 and At1 will have NaN components for those pairs i, j of subpop-

lations of which at least one is extinct in generation t. When these

olumn vectors have been computed, we finally obtain the right hand

ides of (8), using the conventions NaN + NaN = NaN, C · NaN = NaN
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and C + NaN = NaN for any real-valued C, even C = 0. The conven-

tions for Dt recursions are the same as for At .

The subpopulation weights of Sections 3.3–3.4 may incorporate

extinction through the rule Nti = 0 =⇒ wi = 0, so that all extinct sub-

populations are assigned zero weights. This implies in particular that

quantities that depend on the weighting scheme, such as FTt , FSt , HTt ,

GST , fTt , fSt , hTt and hSt , are well defined sums of terms, some of which

satisfy 0 · NaN = 0.
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