On the use of Markov chains and Perron Frobenuis Theorem in Population Genetics

Ola Hössjer
Dept. of Mathematics
Stockholm University

June 2015

Motivation and Outline

- Conservation biology: Protect genetic diversity in order to
- Prevent inbreeding
- Keep species viable
- Improve environmental adjustment of species
- Outline:
- Populations with substructure
- Formulas for long term rate of loss of genetic variants

Effective population size N_{e}

- Population of size N
- N_{e} : Size of ideal population with same rate of loss of genetic variants as studied population (smaller $N_{e} \rightarrow$ faster rate)
- Short term protection rule: $N_{e} \geq 50$
- N_{e} / N varies between species

Genetic drift for size N population

- Discrete time $t=0,1,2, \ldots$.
- Genes $g=1, \ldots, 2 N$.
- Two variants white and black
- $\nu_{t g} \mathrm{nr}$. of offspring of g, time t.

- Freq. of black, time $t+1$, is

$$
\begin{aligned}
X_{t+1} & \left.\left.=\frac{1}{2 N} \right\rvert\,\{g ; g \text { is black at } t+1\} \right\rvert\, \\
& =\frac{1}{2 N} \sum_{g ; g \text { black at time } t} \nu_{\text {tg }} .
\end{aligned}
$$

$$
2 N=10
$$

$$
X_{t+1}=0.5
$$

$$
\nu_{t 2}=\nu_{t 5}=\nu_{t 6}=0,
$$

- $\left\{X_{t}\right\}$ Markov chain, state space

$$
\nu_{t 1}=\nu_{t 3}=\nu_{t 4}=\nu_{t 9}=\nu_{t, 10}=1
$$

$$
\nu_{t 8}=2,
$$

$$
\begin{aligned}
\mathcal{X} & =\left\{0, \frac{1}{2 N}, \ldots, \frac{2 N-1}{2 N}, 1\right\} \\
& =\{0\} \cup\{1\} \cup\left\{\frac{1}{2 N}, \ldots, \frac{2 N-1}{2 N}\right\} \\
& =\mathcal{X}_{0} \cup \mathcal{X}_{1} \cup \mathcal{X} .
\end{aligned}
$$

$$
=\mathcal{X}_{0} \cup \mathcal{X}_{1} \cup \mathcal{X}_{2} .
$$

Absorbing states: $\mathcal{X}_{0}, \mathcal{X}_{1}$
Transient states: \mathcal{X}_{2}

Ideal population: Wright-Fisher (WF) model ${ }^{1}$

Children pick parental genes independently;

$$
\left\{\nu_{t g}\right\}_{g=1}^{2 N} \sim \operatorname{Mult}\left(2 N ; \frac{1}{2 N}, \ldots, \frac{1}{2 N}\right)
$$

so that the transition kernel of $\left\{X_{t}\right\}$ is

$$
\begin{aligned}
\mathbf{P} & =(P(x, y))_{x, y \in \mathcal{X}} \\
P(x, y) & =P\left(X_{t+1}=y \mid X_{t}=x\right)=\binom{2 N}{2 N y} x^{2 N_{y}}(1-x)^{2 N(1-y)}
\end{aligned}
$$

Feller (1951) showed that the eigenvalues of \mathbf{P} are

$$
\lambda_{1}=\lambda_{2}=1, \lambda_{j}=\frac{(2 N-1)(2 N-2) \cdots(2 N-j+2)}{(2 N)^{j-2}}, \quad j=3, \ldots, 2 N+1,
$$

so that the largest non-unit eigenvalue is

$$
\begin{equation*}
\lambda=\lambda_{3}=1-\frac{1}{2 N} . \tag{1}
\end{equation*}
$$

It gives the asymtotic rate of fixation of one variant;

$$
\lim _{t \rightarrow \infty} \frac{P\left(X_{t} \in \mathcal{X}_{2}\right)}{\lambda^{t}}=C, \quad(0<C<\infty)
$$

${ }^{1}$ Fisher (1921), Wright (1931).

Cannings model

Cannings (1974) showed more generally that

$$
\lambda_{1}=\lambda_{2}=1, \lambda_{j}=E\left(\prod_{g=1}^{j-1} \nu_{t g}\right), \quad j=3, \ldots, 2 N+1
$$

if $\left\{\nu_{t g}\right\}_{g=1}^{2 N}$ are exchangeable, so that in particular,

$$
\lambda=\lambda_{3}=E\left(\nu_{t 1} \nu_{t 2}\right)=1+\operatorname{Cov}\left(\nu_{t 1}, \nu_{t 2}\right)=1-p,
$$

with coalescence probability

$$
\begin{aligned}
p & =-\operatorname{Cov}\left(\nu_{t 1}, \nu_{t 2}\right) \\
& =\frac{E\left[\nu_{t 1}\left(\nu_{t 1}-1\right)\right]}{2 N-1} \\
& =2 N \cdot E\left[\left(\begin{array}{c}
\nu_{t 1}
\end{array}\right)\right] /\binom{2 N}{2} \\
& =P(\text { two offspring have the same parent }) .
\end{aligned}
$$

Eigenvalue effective size ${ }^{2} N_{e E}=$ size of a WF population with fixation rate λ :

$$
\lambda=1-\frac{1}{2 N_{e E}} \Longrightarrow N_{e E}=\frac{1}{2(1-\lambda)}=\frac{N-\frac{1}{2}}{E\left[\nu_{t 1}\left(\nu_{t 1}-1\right)\right]}
$$

[^0]
Gene diversities

Introduce (predicted) gene diversities at time $t=0,1,2, \ldots$

$$
\begin{aligned}
H_{t} & =2 X_{t}\left(1-X_{t}\right) \\
& =P\left(\text { two genes picked with repl. have diff. variants } \mid X_{t}\right) \\
h_{t} & =E\left(H_{t}\right) \\
& =P(\text { two genes picked with repl. have diff. variants). }
\end{aligned}
$$

It can be shown that

$$
h_{t+1}=\lambda h_{t}
$$

Hence gene diversities

$$
\begin{equation*}
h_{t}=\lambda^{t} h_{0}=(1-p)^{t} h_{0} \tag{2}
\end{equation*}
$$

tend to zero at the same multiplicative rate as non-fixation probabilities $P\left(X_{t} \in \mathcal{X}_{2}\right)$.
But gene diversities and coalescence probabilities (p) are easier to analyze theoretically!!

Structured population

Divide into s subpopulations $i=1, \ldots$, . Let
$2 N_{i}=$ number of genes in subpop. $i,\left(\sum_{i} N_{i}=N\right)$
$X_{t i}=$ fraction of black variants in subpop. i at time t,
$\nu_{t k i g}=$ nr. of offspring of gene g of subpop. k at time t that end up in subpop. i at time $t+1$, exchangeable for $g=1, \ldots, 2 N_{k}$.

This gives dynamics

$$
X_{t+1, i}=\frac{1}{2 N_{i}} \sum_{k=1}^{s} \sum_{\substack{g: g \in \\ \text { subpop. } k \text { at time } \\ \text { g is black }}} \nu_{t k i g .} .
$$

Find, under suitable conditions,

$$
N_{e E}=\frac{1}{2(1-\lambda)},
$$

where λ is rate of fixation, so that for some $0<C<\infty$,

$$
\lim _{t \rightarrow \infty} \frac{P(\text { non-fixation at time } t)}{\lambda^{t}}=C
$$

Structured population, contd.

Let

$$
\mathbf{X}_{t}=\left(X_{t 1}, \ldots, X_{t s}\right)
$$

If reproduction is time invariant, $\left\{\mathbf{X}_{t}\right\}$ is Markov chain with state space

$$
\begin{aligned}
\mathcal{X} & =\left\{0, \frac{1}{2 N_{1}}, \ldots, \frac{2 N_{1}-1}{2 N_{1}}, 1\right\} \times \ldots \times\left\{0, \frac{1}{2 N_{s}}, \ldots, \frac{2 N_{s}-1}{2 N_{s}}, 1\right\} \\
& =\mathcal{X}_{0} \cup \mathcal{X}_{1} \cup \mathcal{X}_{2} .
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathcal{X}_{0}=\{(0, \ldots, 0)\}, \\
& \mathcal{X}_{1}=\{(1, \ldots, 1)\}, \\
& \mathcal{X}_{2}=\mathcal{X} \backslash\left(\mathcal{X}_{0} \cup \mathcal{X}_{1}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{P} & =(P(\mathbf{x}, \mathbf{y}))_{\mathbf{x}, \mathbf{y} \in \mathcal{X}} \\
P(\mathbf{x}, \mathbf{y}) & =P\left(\mathbf{X}_{t+1}=\mathbf{y} \mid \mathbf{X}_{t}=\mathbf{x}\right) \\
\lambda & =\text { 3rd largest eigenvalue of } \mathbf{P} .
\end{aligned}
$$

Gene diversities for structured population

Introduce (predicted) gene diversities ${ }^{3}$ at time $t=0,1,2, \ldots$

$$
\begin{aligned}
& \begin{aligned}
& H_{t i j}=X_{t i}\left(1-X_{t j}\right)+\left(1-X_{t i}\right) X_{t j} \\
&=P\left(\text { two genes picked with repl. from } i \text { and } j \text { have diff. variants } \mid \mathbf{X}_{t}\right) \\
&=E\left(H_{t i j}\right) \\
& h_{t i j}=P(\text { two genes picked with repl. from } i \text { and } j \text { have diff. variants) } \\
& \text { between all pairs of subpopulations } i \text { and } j . \text { The column vector }
\end{aligned} .
\end{aligned}
$$

$$
\mathbf{h}_{t}=\operatorname{vec}\left(\left(h_{t i j}\right)_{i, j=1}^{s}\right)
$$

with s^{2} predicted gene diversities satisfies

$$
\begin{equation*}
\mathbf{h}_{t+1}=\mathbf{A} \mathbf{h}_{t} \Longrightarrow \mathbf{h}_{t}=\mathbf{A}^{t} \mathbf{h}_{0} \tag{3}
\end{equation*}
$$

where

$$
\mathbf{A}=\left(A_{i j, k l}\right)_{i j, k l \in\{1, \ldots, s\} \times\{1, \ldots, s\}}
$$

is a square matrix of order s^{2}, and ${ }^{4}$

$$
\begin{equation*}
\lambda=\lambda_{\max }(\mathbf{A}) \tag{4}
\end{equation*}
$$

[^1]
Backward migration and coalescence theory to find \mathbf{A}

If children pick parental subpopulations independently, with

$$
\begin{aligned}
B_{i k}= & \text { probability by which genes in } i \text { pick } \\
& \text { parental subpopulations from } k \in\{1, \ldots, s\}, \\
p_{i j k} & =\text { coalescence probability within } k \\
= & P(\text { two genes from } i, j \text { with parents in } k, \text { have same parent }) \\
= & \frac{N_{k}}{2 N_{i} N_{j} B_{i k} B_{j k}}\left(\frac{E\left(\nu_{t k i 1}\left(\nu_{t k i 1}-1\right)\right)}{1-\frac{1}{2 N_{i}}}\right)^{\{i=j\}} E\left(\nu_{t k i 1} \nu_{t k j 1}\right)^{\{i \neq j\}} .
\end{aligned}
$$

Then (3) holds, with

$$
\begin{equation*}
A_{i j, k l}=\left(1-\frac{1}{2 N_{i}}\right)^{\{i=j\}}\left(\frac{1-p_{i j k}}{1-\frac{1}{2 N_{k}}}\right)^{\{k=l\}} B_{i k} B_{j l .} \tag{5}
\end{equation*}
$$

Motivation of (3) and (5)

We have that
$h_{t+1, i j}=P$ (genes from i and j at time $t+1$ have different variants)
$=P($ different genes picked from i and j at time $t+1)$
$\sum_{k, l} \cdot P$ (gene from i has parent from k at time t)

- P (gene from j has parent from $/$ at time t)
$\cdot P$ (different parents from k and $I)$
$\cdot P($ different variants of the different parents at time t)
$=\left(1-\frac{1}{2 N_{i}}\right)^{\{i=j\}} \sum_{k, l} B_{i k} B_{j l}\left(1-p_{i j k}\right)^{\{k=l\}} \cdot h_{t, k l} /\left(1-\frac{1}{2 N_{k}}\right)^{\{k=/\}}$
$=\sum_{k, l} A_{i j, k l} h_{t, k l}$.
with $A_{i j, k l}$ as in (5). In vector form this writes

$$
\mathbf{h}_{t+1}=\mathbf{A}_{t} \mathbf{h}_{t}
$$

Computation of $N_{e E}$

$$
\begin{aligned}
\left(N_{i}\right)_{i=1}^{s} & =(200,400,50,400,100) \\
N & =\sum_{i=1}^{s} N_{i}=1150
\end{aligned}
$$

Subpop 5

$\left(\begin{array}{lllll}0.94 & 0.05 & 0 & 0.01 & 0 \\ 0.0125 & 0.9825 & 0.005 & 0 & 0 \\ 0 & 0.1 & 0.82 & 0.08 & 0 \\ 0.005 & 0 & 0.0075 & 0.9875 & 0 \\ 0 & 0 & 0 & 0.05 & 0.95\end{array}\right.$

Repr. $=\left\{\left(\nu_{\text {tkig }}\right)_{g=1}^{2 N_{k}}\right\}_{k=1}^{s}$
$\sim \operatorname{Mult}\left(2 N_{i} ; \frac{B_{i 1}}{2 N_{1}}, \ldots, \frac{B_{i 1}}{2 N_{1}}, \ldots, \frac{B_{i s}}{2 N_{s}}, \ldots, \frac{B_{i s}}{2 N_{s}}\right)$ independently for $i=1, \ldots, s$,

$$
\begin{aligned}
p_{i j k} & =1 /\left(2 N_{k}\right) \\
N_{e E} & =970
\end{aligned}
$$

Gene diversity effective size $N_{e G}$

Let

$$
W_{i j}=P(\text { choose gene pair from } i \text { and } j)
$$

and collect them into row vector of length s^{2} :

$$
\mathbf{W}=\operatorname{vec}\left(\left(W_{i j}\right)_{1 \leq i, j \leq s}\right)^{\prime}
$$

Predicted gene diversity for two randomly sampled genes at time t, is

$$
\begin{aligned}
h_{t} & =P(\text { the two genes have different variants }) \\
& =\sum_{1 \leq i, j \leq s} W_{i j} h_{t i j} \\
& =\mathbf{W h}_{t} \\
& =\mathbf{W A}^{t} \mathbf{h}_{0}
\end{aligned}
$$

It follows from (1) and (2), that for Wright-Fisher model

$$
\begin{equation*}
h_{t}=\left(1-\frac{1}{2 N}\right)^{t} \cdot h_{0} \tag{6}
\end{equation*}
$$

Gene diversity effective size over time interval $[0, t]$ solves (6), i.e.

$$
N_{e G}([0, t])=\frac{1}{2\left[1-\left(\frac{h_{t}}{h_{0}}\right)^{1 / t}\right]} \stackrel{t \rightarrow \infty}{\rightarrow} \frac{1}{2(1-\lambda)}=N_{e E}
$$

Local/global $N_{e G}$ and $N_{e E}$

Constant subpop. sizes
Local bottleneck in 1
Blocked migration 1-2

Horizontal: $N_{e E}$
Solid: $t \rightarrow N_{e G}([0, t])$ for whole population and subpopulations
Global weights: $W_{i j}=1 / s^{2}$
Local weights, subpopulation k : $W_{i j}=1_{\{(i, j)=(k, k)\}}$

Proof of (4)

We have that

$$
\begin{equation*}
h_{t}=\mathbf{W} \mathbf{h}_{t}=\mathbf{W A}^{t} \mathbf{h}_{0}=C \lambda_{\max }(\mathbf{A})^{t}+o\left(\lambda_{\max }(\mathbf{A})^{t}\right) \tag{7}
\end{equation*}
$$

as $t \rightarrow \infty$. But also

$$
\begin{align*}
h_{t} & =\sum_{i j} W_{i j} h_{t i j} \\
& =\sum_{i j} W_{i j} E\left[X_{t i}\left(1-X_{t j}\right)+X_{t j}\left(1-X_{t i}\right)\right] \\
& =E\left[\phi\left(\mathbf{X}_{t}\right)\right] \tag{8}\\
& =E\left[E\left(\phi\left(\mathbf{X}_{t}\right) \mid \mathbf{X}_{0}\right)\right] \\
& =\sum_{\mathbf{x}, \mathbf{y}} \pi(\mathbf{x}) P^{(t)}(\mathbf{x}, \mathbf{y}) \phi(\mathbf{y}),
\end{align*}
$$

where

$$
\begin{aligned}
\phi(\mathbf{x}) & =\sum_{i, j} W_{i j}\left[x_{i}\left(1-x_{j}\right)+x_{j}\left(1-x_{i}\right)\right] \\
\pi(\mathbf{x}) & =P\left(\mathbf{X}_{0}=\mathbf{x}\right), \\
\mathbf{P}^{t} & =\left(P^{(t)}(\mathbf{x}, \mathbf{y}) ; \mathbf{x}, \mathbf{y} \in \mathcal{X}\right)
\end{aligned}
$$

Perron-Frobenius

Block decompose transition matrix as

$$
\mathbf{P}=\left(\begin{array}{ccc}
1 & 0 & \mathbf{0} \\
0 & 1 & \mathbf{0} \\
\mathbf{P}_{20} & \mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right) \Longrightarrow \mathbf{P}^{t}=\left(\begin{array}{ccc}
1 & 0 & \mathbf{0} \\
0 & 1 & \mathbf{0} \\
\mathbf{P}_{20}^{(t)} & \mathbf{P}_{21}^{(t)} & \mathbf{P}_{22}^{t}
\end{array}\right)
$$

Since \mathbf{P}_{22} is non-negative, irreducible and aperiodic, it has unique largest eigenvalue $\lambda=\lambda_{3}$, and therefore

$$
\begin{equation*}
P^{(t)}(\mathbf{x}, \mathbf{y})=\lambda^{t} r(\mathbf{x}) /(\mathbf{y})+o\left(\lambda^{t}\right), \quad \mathbf{x}, \mathbf{y} \in \mathcal{X}_{2} \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathbf{I}=\left(I(\mathbf{x}) ; \mathbf{x} \in \mathcal{X}_{2}\right) \\
& \mathbf{r}=\left(r(\mathbf{x}) ; \mathbf{x} \in \mathcal{X}_{2}\right)^{\prime}
\end{aligned}
$$

are left and right eigenvectors of \mathbf{P}_{2} with eigenvalue λ and components

$$
\begin{align*}
& I(\mathbf{x})>0 \\
& r(\mathbf{x})>0 \tag{10}
\end{align*}
$$

for all $\mathbf{x} \in \mathcal{X}_{2}$.

Proof of (4), contd.

Use (8), (9), (10) and the fact that

$$
\begin{aligned}
& \phi(\mathbf{x})=0, \quad \mathbf{x} \in \mathcal{X}_{0} \cup \mathcal{X}_{1}, \\
& \phi(\mathbf{x})>0, \quad \mathbf{x} \in \mathcal{X}_{2}\left(\text { if all } W_{i j}>0\right), \\
& \pi(\mathbf{x})>0, \quad \text { for some } \mathbf{x} \in \mathcal{X}_{2},
\end{aligned}
$$

to conclude

$$
\begin{aligned}
h_{t} & =\lambda^{t} \sum_{\mathbf{x}, \mathbf{y} \in \mathcal{X}_{2}} \pi(\mathbf{x}) r(\mathbf{x}) /(\mathbf{y}) \phi(\mathbf{y})+o\left(\lambda^{t}\right) \\
& =\lambda^{t} \sum_{\mathbf{x} \in \mathcal{X}_{2}} \pi(\mathbf{x}) r(\mathbf{x}) \cdot \sum_{\mathbf{y} \in \mathcal{X}_{2}} I(\mathbf{y}) \phi(\mathbf{y})+o\left(\lambda^{t}\right) \\
& =C \lambda^{t}+o\left(\lambda^{t}\right)
\end{aligned}
$$

with $C>0$. Combining this with (7), we finally deduce

$$
\lambda=\lambda_{\max }(\mathbf{A})
$$

Other topics

- Various types of structure (geographic, age, sex, combinations, ...).
- Computer program GESP (Olsson et al, 2015).
- Large population asymptotics:

$$
N_{e E}=\frac{N}{C_{1}}+o(N)=N_{e C}+o(N) \text { as } N \rightarrow \infty
$$

where $N_{e C}$ is coalescence effective size ${ }^{5}$ and C_{1} a coalescence rate.

- Small migration asymptotics:

$$
N_{e E}=\frac{N}{C_{2} B}+o\left(B^{-1}\right) \text { as } B \rightarrow 0
$$

where $B=$ long term rate of subpopulation change in ancestral line.

- Leading right eigenvector of \mathbf{A} to assess subpopulation differentiation ${ }^{6}$

[^2]
References

Hössjer, O. (2011). Coalescence theory for a general class of structured populations with fast migration. Advances in Probability Theory 43(4), 1027-1047.

Hössjer, O., Jorde, P.E. and Ryman, N. (2013). Quasi equilibrium approximations of the fixation index under neutrality: The island model. Theoretical Population Biology 84, 9-24.
Ryman, N., Allendorf, F.W., Jorde P.E., Laikre, L. and Hössjer, O. (2013). Samples from subdivided populations yield biased estimates of effective size that overestimate the rate of loss of genetic variation. Molecular Ecology Resources 14, 87-99.

Olsson, F. Hössjer, O., Laikre, L. and Ryman, N. (2013). Characteristics of the variance effective population size over time using an age structured model with variable size. Theoretical Population Biology 90, 91-103.
Hössjer, O. (2014). Spatial autocorrelation for subdivided populations with invariant migration schemes. Methodology and Computing in Applied Probability 16(4), 777-810. DOI 10.1007/s11009-013-9321-3.

Hössjer, O. and Ryman, N. (2014). Quasi equilibrium, variance effective population size and fixation index for models with spatial structure. Journal of Mathematical Biology 69(5), 1057-1128. DOI 10.1007/s00285-013-0728-9.
Hössjer, O., Olsson, F., Laikre, L. and Ryman, N. (2014). A new general analytical approach for modeling patterns of genetic differentiation and effective size of subdivided populations over time. Mathematical Biosciences 258, 113-133. DOI: $10.1016 / \mathrm{j} . \mathrm{mbs}$.2014.10.001.

Hössjer, O., Olsson, F., Laikre, L. and Ryman, N. (2015). Metapopulation Inbreeding Dynamics, Effective Size and Subpopulation Differentiation - a General Analytical Approach for Diploid Organisms. Theoretical Population Biology 102, 40-59. DOI:10.1016/j.tpb.2015.03.006.
Hössjer, O. (2015). On the eigenvalue effective size in structured populations. To appear in Journal of Mathematical Biology. Available online, DOI 10.1007/s00285-014-0832-5.

THANKS!

[^0]: ${ }^{2}$ Crow (1954), Ewens (1982).

[^1]: ${ }^{3}$ Maruyama (1970), Felsenstein (1972), Nei (1973).
 ${ }^{4}$ By Perron-Frobenius Theorem applied to \mathbf{P}.

[^2]: ${ }^{5}$ Nordborg and Krone (2002), Sjödin et al. (2005).
 ${ }^{6} F_{S T}$ of Wright (1943), GST of Nei (1973).

