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Motivation and Outline

I Conservation biology: Protect genetic diversity in order to
I Prevent inbreeding
I Keep species viable
I Improve environmental adjustment of species

I Outline:
I Populations with substructure
I Formulas for long term rate of loss of genetic variants



Effective population size Ne

I Population of size N

I Ne : Size of ideal population with same rate of loss of genetic
variants as studied population (smaller Ne → faster rate)

I Short term protection rule: Ne ≥ 50

I Ne/N varies between species



Genetic drift for size N population
I Discrete time t = 0, 1, 2, . . ..

I Genes g = 1, . . . , 2N.

I Two variants white and black

I νtg nr. of offspring of g , time t.

I Freq. of black, time t + 1, is

Xt+1 = 1
2N |{g ; g is black at t + 1}|

= 1
2N

∑
g ;g black at time t νtg .

I {Xt} Markov chain, state space

X = {0, 1
2N , . . . ,

2N−1
2N , 1}

= {0} ∪ {1} ∪ { 1
2N , . . . ,

2N−1
2N }

= X0 ∪ X1 ∪ X2.

Absorbing states: X0, X1

Transient states: X2

2N = 10,
Xt = 0.4,

Xt+1 = 0.5,
νt2 = νt5 = νt6 = 0,
νt1 = νt3 = νt4 = νt9 = νt,10 = 1,
νt8 = 2,
νt7 = 3.



Ideal population: Wright-Fisher (WF) model1
Children pick parental genes independently;

{νtg}2N
g=1 ∼ Mult

(
2N;

1

2N
, . . . ,

1

2N

)
,

so that the transition kernel of {Xt} is

P = (P(x , y))x,y∈X ,

P(x , y) = P(Xt+1 = y |Xt = x) =
(

2N
2Ny

)
x2Ny (1− x)2N(1−y).

Feller (1951) showed that the eigenvalues of P are

λ1 = λ2 = 1, λj =
(2N − 1)(2N − 2) · · · (2N − j + 2)

(2N)j−2
, j = 3, . . . , 2N+1,

so that the largest non-unit eigenvalue is

λ = λ3 = 1− 1

2N
. (1)

It gives the asymtotic rate of fixation of one variant;

lim
t→∞

P(Xt ∈ X2)

λt
= C , (0 < C <∞).

1Fisher (1921), Wright (1931).



Cannings model
Cannings (1974) showed more generally that

λ1 = λ2 = 1, λj = E

(
j−1∏
g=1

νtg

)
, j = 3, . . . , 2N + 1,

if {νtg}2N
g=1 are exchangeable, so that in particular,

λ = λ3 = E (νt1νt2) = 1 + Cov(νt1, νt2) = 1− p,

with coalescence probability

p = −Cov(νt1, νt2)

= E [νt1(νt1−1)]
2N−1

= 2N · E
[(
νt1

2

)]
/
(

2N
2

)
= P (two offspring have the same parent) .

Eigenvalue effective size2 NeE = size of a WF population with fixation
rate λ:

λ = 1− 1

2NeE
=⇒ NeE =

1

2(1− λ)
=

N − 1
2

E [νt1(νt1 − 1)]
.

2Crow (1954), Ewens (1982).



Gene diversities

Introduce (predicted) gene diversities at time t = 0, 1, 2, . . .

Ht = 2Xt(1− Xt),
= P(two genes picked with repl. have diff. variants|Xt)

ht = E (Ht)
= P(two genes picked with repl. have diff. variants).

It can be shown that
ht+1 = λht .

Hence gene diversities

ht = λth0 = (1− p)th0, (2)

tend to zero at the same multiplicative rate as non-fixation
probabilities P(Xt ∈ X2).

But gene diversities and coalescence probabilities (p) are easier to
analyze theoretically!!



Structured population
Divide into s subpopulations i = 1, . . . , s. Let

2Ni = number of genes in subpop. i , (
∑

i Ni = N)
Xti = fraction of black variants in subpop. i at time t,
νtkig = nr. of offspring of gene g of subpop. k at time

t that end up in subpop. i at time t + 1,
exchangeable for g = 1, . . . , 2Nk .

This gives dynamics

Xt+1,i =
1

2Ni

s∑
k=1

∑
g ;g∈ subpop. k at time t,

g is black

νtkig .

Find, under suitable conditions,

NeE =
1

2(1− λ)
,

where λ is rate of fixation, so that for some 0 < C <∞,

lim
t→∞

P(non-fixation at time t)

λt
= C .



Structured population, contd.
Let

Xt = (Xt1, . . . ,Xts).

If reproduction is time invariant, {Xt} is Markov chain with state space

X = {0, 1
2N1

, . . . , 2N1−1
2N1

, 1} × . . .× {0, 1
2Ns

, . . . , 2Ns−1
2Ns

, 1}
= X0 ∪ X1 ∪ X2.

where

X0 = {(0, . . . , 0)},
X1 = {(1, . . . , 1)},
X2 = X \ (X0 ∪ X1),

and

P = (P(x, y))x,y∈X ,
P(x, y) = P(Xt+1 = y|Xt = x),

λ = 3rd largest eigenvalue of P.

[c]



Gene diversities for structured population
Introduce (predicted) gene diversities3 at time t = 0, 1, 2, . . .

Htij = Xti (1− Xtj) + (1− Xti )Xtj ,
= P(two genes picked with repl. from i and j have diff. variants|Xt)

htij = E (Htij)
= P(two genes picked with repl. from i and j have diff. variants)

between all pairs of subpopulations i and j . The column vector

ht = vec
(
(htij)

s
i,j=1

)
with s2 predicted gene diversities satisfies

ht+1 = Aht =⇒ ht = Ath0, (3)

where
A = (Aij,kl)ij,kl∈{1,...,s}×{1,...,s}

is a square matrix of order s2, and4

λ = λmax(A). (4)

3Maruyama (1970), Felsenstein (1972), Nei (1973).
4By Perron-Frobenius Theorem applied to P.



Backward migration and coalescence theory to find A

If children pick parental subpopulations independently, with

Bik = probability by which genes in i pick
parental subpopulations from k ∈ {1, . . . , s},

pijk = coalescence probability within k
= P(two genes from i , j with parents in k , have same parent)

= Nk

2NiNjBikBjk

(
E(νtki1(νtki1−1))

1− 1
2Ni

){i=j}

E (νtki1νtkj1){i 6=j}.

Then (3) holds, with

Aij,kl =

(
1− 1

2Ni

){i=j}
(

1− pijk

1− 1
2Nk

){k=l}

BikBjl . (5)



Motivation of (3) and (5)

We have that

ht+1,ij = P(genes from i and j at time t + 1 have different variants)
= P(different genes picked from i and j at time t + 1)∑

k,l ·P(gene from i has parent from k at time t)

·P(gene from j has parent from l at time t)
·P(different parents from k and l)
·P(different variants of the different parents at time t)

= (1− 1
2Ni

){i=j}∑
k,l BikBjl(1− pijk){k=l} · ht,kl/(1− 1

2Nk
){k=l}

=
∑

k,l Aij,klht,kl .

with Aij ,kl as in (5). In vector form this writes

ht+1 = Atht .



Computation of NeE

Subpop 1
Subpop 2

Subpop 3

Subpop 4

Subpop 5

N4=400

N1=200

N3=50

N5=100

N2=400

5

2

10

3

4

2
52

5

(Ni )
s
i=1 = (200, 400, 50, 400, 100),

N =
∑s

i=1 Ni = 1150,

(Bik)
s
i,k=1 =


0.94 0.05 0 0.01 0
0.0125 0.9825 0.005 0 0
0 0.1 0.82 0.08 0
0.005 0 0.0075 0.9875 0
0 0 0 0.05 0.95

 ,

Repr. = {(νtkig )2Nk
g=1}

s
k=1

∼ Mult
(
2Ni ;

Bi1
2N1
, . . . , Bi1

2N1
, . . . , Bis

2Ns
, . . . , Bis

2Ns

)
independently for i = 1, . . . , s,

pijk = 1/(2Nk),

NeE = 970,



Gene diversity effective size NeG
Let

Wij = P(choose gene pair from i and j),

and collect them into row vector of length s2:

W = vec ((Wij)1≤i,j≤s)′ .

Predicted gene diversity for two randomly sampled genes at time t, is

ht = P(the two genes have different variants)
=

∑
1≤i,j≤s Wijhtij

= Wht

= WAth0.

It follows from (1) and (2), that for Wright-Fisher model

ht =

(
1− 1

2N

)t

· h0. (6)

Gene diversity effective size over time interval [0, t] solves (6), i.e.

NeG ([0, t]) =
1

2

[
1−

(
ht
h0

)1/t
] t→∞→ 1

2(1− λ)
= NeE .



Local/global NeG and NeE

Constant subpop. sizes
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Proof of (4)

We have that

ht = Wht = WAth0 = Cλmax(A)t + o
(
λmax(A)t

)
(7)

as t →∞. But also

ht =
∑

ij Wijhtij
=

∑
ij WijE [Xti (1− Xtj) + Xtj(1− Xti )]

= E [φ(Xt)]
= E [E (φ(Xt)|X0)]

=
∑

x,y π(x)P(t)(x, y)φ(y),

(8)

where

φ(x) =
∑

i ,j Wij [xi (1− xj) + xj(1− xi )] ,

π(x) = P(X0 = x),

Pt =
(
P(t)(x, y); x, y ∈ X

)
.



Perron-Frobenius
Block decompose transition matrix as

P =

 1 0 0
0 1 0

P20 P21 P22

 =⇒ Pt =

 1 0 0
0 1 0

P
(t)
20 P

(t)
21 Pt

22

 ,

Since P22 is non-negative, irreducible and aperiodic, it has unique
largest eigenvalue λ = λ3, and therefore

P(t)(x, y) = λtr(x)l(y) + o(λt), x, y ∈ X2, (9)

where
l = (l(x); x ∈ X2)
r = (r(x); x ∈ X2)′

are left and right eigenvectors of P2 with eigenvalue λ and
components

l(x) > 0,
r(x) > 0,

(10)

for all x ∈ X2.



Proof of (4), contd.

Use (8), (9), (10) and the fact that

φ(x) = 0, x ∈ X0 ∪ X1,
φ(x) > 0, x ∈ X2 (if all Wij > 0),
π(x) > 0, for some x ∈ X2,

to conclude

ht = λt
∑

x,y∈X2
π(x)r(x)l(y)φ(y) + o(λt)

= λt
∑

x∈X2
π(x)r(x) ·

∑
y∈X2

l(y)φ(y) + o(λt)

= Cλt + o(λt),

with C > 0. Combining this with (7), we finally deduce

λ = λmax(A).



Other topics
I Various types of structure (geographic, age, sex, combinations, . . . ).

I Computer program GESP (Olsson et al, 2015).

I Large population asymptotics:

NeE =
N

C1
+ o(N) = NeC + o(N) as N →∞,

where NeC is coalescence effective size5 and C1 a coalescence rate.

I Small migration asymptotics:

NeE =
N

C2B
+ o(B−1) as B → 0,

where B = long term rate of subpopulation change in ancestral line.

I Leading right eigenvector of A to assess subpopulation
differentiation6

5Nordborg and Krone (2002), Sjödin et al. (2005).
6FST of Wright (1943), GST of Nei (1973).
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Hössjer, O. (2011). Coalescence theory for a general class of structured populations with fast migration. Advances
in Probability Theory 43(4), 1027-1047.
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THANKS!


